58 research outputs found

    The Parter-Wiener theorem: Refinement and generalization

    Get PDF
    An important theorem about the existence of principal submatrices of a Hermitian matrixwhose graph is a tree, in which the multiplicity of an eigenvalue increases, was largely developed in separate papers by Parter and Wiener. Here, the prior work is fully stated, then generalized with a self-contained proof. The more complete result is then used to better understand the eigenvalue possibilities of reducible principal submatrices of Hermitian tridiagonal matrices. Sets of vertices, for which the multiplicity increases, are also studied.publishersversionpublishe

    Multicyclic treelike reflexive graphs

    Get PDF
    AbstractA simple graph is reflexive if its second largest eigenvalue does not exceed 2. A graph is treelike (sometimes also called a cactus) if all its cycles (circuits) are mutually edge-disjoint. In a lot of cases one can establish whether a given graph is reflexive by identifying and removing a single cut-vertex (Theorem 1). In this paper we prove that, if this theorem cannot be applied to a connected treelike reflexive graph G and if all its cycles do not have a common vertex (do not form a bundle), such a graph has at most five cycles (Theorem 2). On the same conditions, in Theorem 3 we find all maximal treelike reflexive graphs with four and five cycles

    Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices

    Get PDF
    Which assignments from 2n-1 arbitrary, distinct real numbers as eigenvalues of designated leading principal submatrices permit a real symmetric tridiagonal matrix? We raise this question, motivated both by known results and recent work on multiplicities and interlacing equalities in symmetric matrices whose graph is a given tree. Known results are reviewed, a general conjecture is given, and several new partial results are proved. (C) 2015 Elsevier Inc. All rights reserved

    Laplacian spectral properties of signed circular caterpillars

    Get PDF
    A circular caterpillar of girth n is a graph such that the removal of all pendant vertices yields a cycle Cn of order n. A signed graph is a pair Γ = (G, σ), where G is a simple graph and σ ∶ E(G) → {+1, −1} is the sign function defined on the set E(G) of edges of G. The signed graph Γ is said to be balanced if the number of negatively signed edges in each cycle is even, and it is said to be unbalanced otherwise. We determine some bounds for the first n Laplacian eigenvalues of any signed circular caterpillar. As an application, we prove that each signed spiked triangle (G(3; p, q, r), σ), i. e. a signed circular caterpillar of girth 3 and degree sequence πp,q,r = (p + 2, q + 2, r + 2, 1,..., 1), is determined by its Laplacian spectrum up to switching isomorphism. Moreover, in the set of signed spiked triangles of order N, we identify the extremal graphs with respect to the Laplacian spectral radius and the first two Zagreb indices. It turns out that the unbalanced spiked triangle with degree sequence πN−3,0,0 and the balanced spike triangle (G(3; p, ^ q, ^ r^), +), where each pair in {p, ^ q, ^ r^} differs at most by 1, respectively maximizes and minimizes the Laplacian spectral radius and both the Zagreb indices

    Spectral characterizations of complex unit gain graphs

    Get PDF
    While eigenvalues of graphs are well studied, spectral analysis of complex unit gain graphs is still in its infancy. This thesis considers gain graphs whose gain groups are gradually less and less restricted, with the ultimate goal of classifying gain graphs that are characterized by their spectra. In such cases, the eigenvalues of a gain graph contain sufficient structural information that it might be uniquely (up to certain equivalence relations) constructed when only given its spectrum. First, the first infinite family of directed graphs that is – up to isomorphism – determined by its Hermitian spectrum is obtained. Since the entries of the Hermitian adjacency matrix are complex units, these objects may be thought of as gain graphs with a restricted gain group. It is shown that directed graphs with the desired property are extremely rare. Thereafter, the perspective is generalized to include signs on the edges. By encoding the various edge-vertex incidence relations with sixth roots of unity, the above perspective can again be taken. With an interesting mix of algebraic and combinatorial techniques, all signed directed graphs with degree at most 4 or least multiplicity at most 3 are determined. Subsequently, these characterizations are used to obtain signed directed graphs that are determined by their spectra. Finally, an extensive discussion of complex unit gain graphs in their most general form is offered. After exploring their various notions of symmetry and many interesting ties to complex geometries, gain graphs with exactly two distinct eigenvalues are classified

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation

    Full text link
    The properties of the Volume operator in Loop Quantum Gravity, as constructed by Ashtekar and Lewandowski, are analyzed for the first time at generic vertices of valence greater than four. The present analysis benefits from the general simplified formula for matrix elements of the Volume operator derived in gr-qc/0405060, making it feasible to implement it on a computer as a matrix which is then diagonalized numerically. The resulting eigenvalues serve as a database to investigate the spectral properties of the volume operator. Analytical results on the spectrum at 4-valent vertices are included. This is a companion paper to arXiv:0706.0469, providing details of the analysis presented there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008. More compact presentation. Sign factor combinatorics now much better understood in context of oriented matroids, see arXiv:1003.2348, where also important remarks given regarding sigma configurations. Subsequent computations revealed some minor errors, which do not change qualitative results but modify some numbers presented her
    • …
    corecore