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Abstract

A simple graph is reflexive if its second largest eigenvalue does not exceed 2. A graph is treelike
(sometimes also called a cactus) if all its cycles (circuits) are mutually edge-disjoint. In a lot of cases
one can establish whether a given graph is reflexive by identifying and removing a single cut-vertex
(Theorem 1). In this paper we prove that, if this theorem cannot be applied to a connected treelike
reflexive graphG and if all its cycles do not have a common vertex (do not form a bundle), such a
graph has at most five cycles (Theorem 2). On the same conditions, in Theorem 3 we find all maximal
treelike reflexive graphs with four and five cycles.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

For an undirected graphG without loops and/or multiple edges (also called a simple
graph) letPG(�) = det(�I − A) be the characteristic polynomial of its(0,1) adjacency
matrixA, also called thecharacteristic polynomialof G and denoted byP(�) if it is clear
which graph it is related to. The roots ofPG(�) are theeigenvaluesof G and, since they
are real (A is a real and symmetric matrix), they can be designated in non-increasing or-
der: �1(G)��2(G)� · · · ��n(G). The family of eigenvalues is thespectrumof G and
the largest eigenvalue�1(G) is also called theindexof G. Note, if G is connected, then
�1(G)> �2(G), while for a disconnected graph, since its spectrum is the union of the spec-
tra of its components,�1(G) = �2(G) if these are the indices of two distinct components
of G. We assume that all graphs we are looking for are connected.
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Recall, the interrelation between the spectra of a graphG and its induced subgraphH is
expressed by the so-calledinterlacing theorem:

Let �1��2� · · · ��n be the eigenvalues of a simple graph G and�1��2� · · · ��m
the eigenvalues of its induced subgraph H. Then the inequalities�n−m+i ��i ��i (i =
1,2, . . . , m) hold.

Thus, ifm= n− 1, we have�1��1��2��2� · · · and also�1>�1 if G is connected.
Graphs for which�2�2 are usually calledreflexive graphs. In fact, these graphs cor-

respond to sets of vectors in the Lorentz spaceRp,1 having Gram matrix 2I − A (and
consequently norm 2 and mutual angles 90◦ and 120◦) and they are Lorentzian counterparts
of the spherical and Euclidean graphs, which occur in the theory of reflexion groups, having
direct application to the construction and the classification of such groups[7]. If �2�2��1,
they are also known ashyperbolic graphs. In particular, reflexive trees have been studied
in [5,6], and a class of bicyclic reflexive graphs in[10] (see also[8,3]).

A cactusor atreelike graphis a graph in which any two cycles have at most one common
vertex.

In Section 2 we give some known results, which will be useful tools for further inve-
stigation. Section 3 contains a general result on reflexive graphs with a cut-vertex[10]
(Theorem 1) and further discussion on the number of cycles of a reflexive cactus if this
theorem is not applicable, which results in Theorem 2. In Section 4 we find all treelike re-
flexive graphs with four and five cycles on the conditions that Theorem 1 cannot be applied
and that all cycles of such a graph do not make a bundle (Theorem 3). Since the graphic
property�2�2 is hereditary(every induced subgraph maintains the property), the result
is expressed through the set of maximal graphs. In some stages of the research theoretical
reasoning is combined with some aid of a computer.

The terminology of the theory of graph spectra in this paper is in accord with[1], while
for general graph theoretic concepts one can see[4].

2. Preliminaries

The following list of lemmas contains basic facts to be repeatedly used in Sections 3 and 4.

Lemma 1 (Smith[12] , see also[1, p. 79]). Let �1(G) be the index of a graph G. Then
�1(G)�2 (�1(G)<2) if and only if each component of G is a subgraph(resp. proper
subgraph) of one of the graphs depicted in Fig.1, all of which have index equal to2.

These graphs are known as Smith graphs.
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Very useful formulae, which express interrelations between the characteristic polynomial
of a graph and the set of its subgraphs, are the two equalities of the following lemma.

Lemma 2 (Schwenk[11]). Given a graph G, let C(v) (C(uv)) denote the set of all its
cycles containing a vertexv (resp. an edgeuv). Then

(1) PG(�) = �PG−v(�) − ∑
u∈Adj(v) PG−v−u(�) − 2

∑
C∈C(v) PG−V (C)(�),

(2) PG(�) = PG−uv(�) − PG−v−u(�) − 2
∑

C∈C(uv) PG−V (C)(�),

whereAdj(v) denotes the set of neighbours ofv, whileG − V (C) is the graph obtained
from G by removing the vertices belonging to the cycle C.

Obvious consequences of these relations are the next formulae (due to E. Heilbronner—
see, e.g.[1, p. 59]).

Corollary 1. Let G be a graph obtained by joining a vertexv1 of a graphG1 to a vertex
v2 of a graphG2 by an edge. LetG′

1 (G′
2) be the induced subgraph ofG1 (G2) obtained by

deleting the vertexv1 (v2) fromG1 (resp. G2). Then

PG(�) = PG1(�)PG2(�) − PG′
1
(�)PG′

2
(�).

Corollary 2. Let G be a graph with a pendent edgev1v2 (v1 being of degree1).Then

PG(�) = �PG1(�) − PG2(�),

whereG1 (G2) is the graph obtained from G(resp. G1) by deleting vertexv1 (v2).

Now, we give a list of values ofP(2) for some small graphs, to be a very useful set of
tools for solving many particular cases in the coming sections.

Lemma 3 (The reduced list of Lemma4.1of[10]). LetG1, . . . ,G7 be thegraphsdisplayed
in Fig. 2 . Then

(1) PG1(2) = k + 2, (5) PG5(2) = −km,

(2) PG2(2) = 4, (6) PG6(2) = −m(2kl+k+l),

(3) PG3(2) = −klm+ k + l + m + 2, (7) PG7(2) = −4m.

(4) PG4(2) = 4(1 − kl),

Also, we will meet the situation of adding a new vertex to a Smith graph.

Lemma 4 (Radosavljevi´c and Simi´c [10]). Let G be a(connected) graph obtained by
extending any of the Smith graphs(see Fig.1) by a vertex of arbitrary degree. Then
PG(2)<0.
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3. Some general results

If it comes about that the removal of a cut-vertex of a graph results in two components
which are both Smith graphs (e.g. the graph ofFig. 3), it follows from the interlacing
theorem that such a graph has�2 = 2.

A more general question—what happens if we have an arbitrary number of components
among which there are Smith graphs, has its answer in the following theorem. Let us call a
graph positive, null or negative depending on whether its index is greater than, equal to or
less than 2, respectively.

Theorem 1 (Radosavljevi´c and Simi´c [10]). Let G be a graph as in Fig.4 (u being a
cut-vertex).

1. If at least two components ofG − u are positive, or if only one is positive and some of
remaining null, then�2(G)>2.

2. If at least two components ofG−u are null and any other non-positive, then�2(G)=2.
3. If at most one component ofG − u is null and any other negative, then�2(G)<2.

This theorem solves a wide class of cases of treelike graphs, but cannot do if we have
one positive and all other negative components. This means that, if we want to find all max-
imal reflexive graphs within a given class of treelike graphs, we actually have a problem
of solving those cases when Theorem 1 cannot be applied. That is why the non-usability of
Theorem 1 is a permanent assumption in the further investigation.

For one who wants to find all maximal reflexive treelike graphs, it may seem natu-
ral to start with the case when all cycles have a common vertex (forming a bundle),
but it immediately turns out that this initial case is at the same time the most difficult
one. The number of cycles is not limited and, though we can easily imagine trees hang-
ing on some vertices of cycles (including their common vertex) and giving graphs for
which we can establish, either by means of Theorem 1 or in some other way, whether
they are maximal reflexive graphs, the multitude of cases shows that this problem will
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have to be solved in some particular classes (e.g. bicyclic graphs, etc.). Therefore, in this
paper we assume that all the cycles of our cactus do not have a common vertex.

If a treelike graph has a bridge between two cycles, the case is still rather general, but
at the same time much more tractable. All maximal reflexive bicyclic graphs with a bridge
between the two cycles have been found in[10]. The result includes an exceptional case of
a tricyclic cactus, which appeared naturally along with the result contained in the following
lemma.

Let two cycles of arbitrary lengths be connected by a bridge whose vertices arec1 and
c2 and letc1c3 be additional pendent edge.

Lemma 5 (Radosavljevi´c and Simi´c [10]). If in a bicyclic graph with a bridge between its
cycles all vertices of the cycles exceptci (i = 1,2) are of degree two and if Theorem1 is
not applicable, it is reflexive if and only if it is an induced subgraph of a graph formed by
identifying withc2 andc3 two vertices obtained by splitting any of the Smith trees S at any
vertex into two treesS1 andS2 (Fig. 5(a)),or of the graph of Fig. 5(b) for l1 = l2 = 0.

This lemma was proved in[10, Propositions 4.5 and 4.5′] by recognizing all particular
cases of maximal reflexive graphs on the given assumptions. The fact that attachingS1 and
S2 to the verticesc3 andc2 gives such a graph can be verified also in the following way.

Let Sbe a Smith tree andv any of its vertices dividingS into S1 andS2 (Fig. 6(a)).
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We havePS(2) = 0 and, according to Lemma 2(1)

PS(2) = 2PS1−v(2)PS2−v(2) −
∑

u′∈Adj(v)
PS1−v−u′(2) · PS2−v(2)

−
∑

u′∈Adj(v)
PS2−v−u′(2) · PS1−v(2).

PuttingPS1−v(2)=A,PS2−v(2)=B,
∑

u′∈Adj(v) PS1−v−u′(2)=�1,
∑

u′∈Adj(v) PS2−v−u′(2)
= �2, PS1(2) = A1, PS2(2) = B1, we get

2AB − �2A − �1B = 0. (1)
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Also, by applying Lemma 2(1) toS1 andS2 and the vertexv, we have

A1 = 2A − �1, B1 = 2B − �2, (2)

respectively. The application of Corollary 1 to the graph ofFig. 5(a) gives

P(2) = − n�2(−mA) − nBmA1 = nm(A�2 − B(2A − �1))

= nm(A�2 + B�1 − 2AB) = 0, (3)

where we used the fact that for the graph ofFig. 6(b) P(2) = −n�2 by applying
Lemma 2(1) toc2.

If we assume thatS is a proper subgraph of a Smith tree, we obtain in (1)PS(2)>0
and consequentlyP(2)<0 in (3), which proves that for the graphs ofFig. 5(a) �2 = 2.
These graphs are maximal, for if we add a new vertex toS1 or S2, according to Lemma 4
Sbecomes a proper supergraph of a Smith graph for whichPS(2)<0, and we get in (3)
P(2)>0.

Splitting of a given Smith treeSat any vertex and attaching ofS1 andS2 to c2 andc3 (e.g.
as inFig. 5(c)) produces an interesting phenomenon of “pouring” between two vertices,
which we will meet several times in this paper.

Of course, since this fact includes also attaching a whole Smith graph to the vertexc2,
while c3 remains an end-vertex, a simple generalization gives rise to the tricyclic maximal
reflexive graphT0 displayed inFig. 7, which will be repeatedly used in the further analysis.

Let us now consider the general case of two bundles of cycles with a bridge which joins
their common vertices. For a single bundle ofk cycles of lengthsn1, n2, . . . , nk according
to Lemmas 2(1) and 3(1) it holdsP(2) = −2(k − 1)

∏k
i=1 ni . Let m1,m2, . . . , mk and

n1, n2, . . . , nl be the lengths of the cycles of the two bundles. By using Corollary 1 we
getP(2) = (4(k − 1)(l − 1) − 1)

∏k
i=1mi

∏l
i=1 ni . Thus, if one bundle contains only one

cycle,P(2)<0, i.e.�2<2 and the graph is reflexive (which is also clear by Theorem 1),
while for min(k, l)�2 P(2)>0. Also in the casek = 1 the graphT0 of Fig. 7shows that
already by adding the single pendent edge at the vertexc1 l becomes at most 2 (and if
l = 2, adding any other pendent edge to the left cycle is not possible). On the other hand, if
there are no pendent edges on the left cycle, we may apply Theorem 1. These facts, which
supplement the results of[10], show that those results actually embrace all cases of reflexive
treelike graphs with a bridge between cycles (of course, on the assumption of non-usability
of Theorem 1).

Therefore, from now on we are interested only in treelike graphs without such a bridge.
Assume now that every cycle has at most two vertices which belong also to some other
cycles. Then the total number of such vertices is at most two (if there were three, the
removal of the middle one gives�2>2).

However, if there is a cycle that has at least three common vertices with other cycles (in
this case let us call it the central cycle), it can be at most quadrangle (otherwise, the removal
of an appropriate vertex gives a subgraph to which Theorem 1 can be applied).

Now, in order to find all reflexive treelike graphs with more than three cycles, let us
consider the graph inFig. 8.

Of course, fork�3 it is a supergraph (induced) of the graphT0 of Fig. 7. Since�2 may
remain unchanged by adding to a graph a new vertex of arbitrary degree, extension ofT0
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may be possible if we join the new vertex by two new edges withc-vertices, thus forming
a graph without a bridge between the cycles. Indeed, by applying Lemma 2(1) to the ver-
tex c2 and making use of Lemma 3, we obtainP(2) = 2lmn(k − 3), which allowsk = 2
and 3.

If k = 3 (Fig. 9(a)), we already have�2 = 2, but since also�2(T0) = 2, it follows by
induction that this graph can be extended infinitely at the vertexc4 preservingP(2)=0 (no
extension atc3 is possible because ofT0).

Of course, this simply means that after some steps of extension we only get�3 = 2, . . . ,
and we must find the limit before which we have�2 = 2. If we consider only maximum
number of cycles, it is clear thatT0 allows a cycle atc4, and indeed such a graph with five
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cycles has�2 = 2 (Q1 of Fig. 10(a)). No additional cycle can be attached toc4 because
of T0, but if we remove one cycle atc2 and attach it toc3, again�2 = 2 (the graphQ2 in
Fig. 10(b)). The same conclusions might be obtained by starting from the graph ofFig. 3
and adding the new vertexd2 (Fig.9(b)). This extension does not change�2 =2 and further
extension atd1 andd2 preservesP(2) = 0.

Both resulting graphs are maximal: forQ1 we must not attach additional edges because
of T0, while for Q2, if we add a pendent edge at any vertex, by removing a vertex of the
quadrangle we get a proper supergraph of the graph ofFig. 3 to which Theorem 1 can be
applied.

If k = 2 (Fig. 9(c)), we haveP(2)<0, i.e.�2<2. Possible new cycles may be added
only atc2 andc3 and in both cases, by applying Lemma 2(1) to e.g.c2, and using facts of
Lemma 3, we getP(2) = 0 (the graphsT1 andT2 of Fig. 10(c) and (d)).

Both graphs are maximal. In the case ofT1 no pendent edge can be put atc3, because
if we apply Corollary 2 we getP(2)>0, while any other additional edge is not possible
because ofT0 or the results of[10]. In the case ofT2 the same conclusions hold forc1 and
c3, and all other vertices, respectively.

Now, based upon the previous analysis and conclusions, we may formulate the following
theorem.

Theorem 2. A treelike reflexive graph to which Theorem1 cannot be applied and whose
cycles do not make a bundle has at most five cycles. The only such graphs with five cycles,
which are all maximal, i.e. cannot be extended at any vertex, are the four families of graphs
of Fig. 10.

4. Treelike reflexive graphs with four cycles

In order to find all maximal reflexive cactuses with 4 cycles, let us have a look again at
graphs ofFig. 10. Since a cycle is simply one of Smith graphs, it is natural to try to replace
one cycle by other Smith graphs, the situation which we already had with the graphs of
Lemma 5 and the graphT0. Moreover, it will turn out that the effect of splitting Smith
graphs and “pouring” them from one vertex to another (in Lemma 5 fromc1 to c3 and vice
versa) will play the crucial role.

Proposition 1. If the cycle atc1 (or c4) of the graphQ1 is replaced by any of Smith trees,
attached toc1 at any vertex, all obtained graphs are maximal reflexive cactuses(Fig. 11(a)).
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Proof. Direct checking shows that we always have�2=2.Also, no extension of these graphs
is possible. The Smith tree cannot be extended because after removingc2 and applying
Theorem 1 toc3 we get�2>2. The extension at other vertices is impossible because
of T0. �

Proposition 2. If one of the cycles atc2 of the graphQ1 is replaced by any of Smith trees,
attached toc2 at any vertex, all obtained graphs are maximal reflexive cactuses(Fig. 11(b)).

Proof. Checking of all cases gives�2 = 2. The extension at any vertex of the Smith tree
or atc3 is not possible because of Lemma 5, while adding a pendent edge at any vertex of
the remaining cycle atc2 is not allowed according to the results of[10, Theorem 4.6]. The
same holds for the cycles atc1 andc4, but this is obvious also by removingc2 and applying
Theorem 1 toc3. �

Proposition 3. If any of the four non-central cycles of the graphQ2 is replaced by any
of Smith trees, attached at any vertex, all obtained graphs are maximal reflexive cactuses
(Fig. 11(c)).

The proof is analogous to previous cases.
Also, like in Lemma 5, we again come to the phenomenon of “pouring” of Smith trees.

Proposition 4. If we remove one of the four non-central cycles ofQ2, say the one attached
to c3, and identify withc3 andc2 two vertices obtained by splitting any of Smith trees, at
any vertex, into S1 andS2, all obtained graphs are maximal reflexive cactuses(Fig. 11(d)).

Proof. BesidesP(2)=0, as in previous cases we have�2 =2. All such graphs are maximal
since no pendent edge can be added atS1 andS2 (after removingc1 or c4 we would have
a proper supergraph of a member of the family described in Lemma 5) and the same holds
for adding new edges at non-central cycles.�

Since the “pouring” of Smith trees from one vertex to another naturally includes attaching
of a complete Smith tree to one of these vertices, we may also assume that cases (b) and (c)
are embraced by (d).

Now, let us consider the graphT1. We immediately guess that a cycle atc2 can be replaced
by an arbitrary Smith tree, but this time we will at once treat the general case.

Proposition 5. If we remove one of the cycles at the vertexc2 of the graphT1, and identify
with c2 and c3 two vertices obtained by splitting any of the Smith trees, at any vertexv,
into S1 andS2, all obtained graphs are maximal reflexive cactuses, including cases when a
whole Smith tree is attached toc2 or c3 (Fig. 12).

Proof. We will use the notation which follows Lemma 5.
Relations (1) and (2) imply

2AB− �2A − �1B = A(2B − �2) − �1B = AB1 − �1B = 0. (4)
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We will now apply Lemma 2(1) to the graph atFig. 12and its vertexc2.

P(2) = 2mn(−pB)A − pB1mnA − 0 − 2(n − 1)m(−pB)A

− 2(m − 1)n(−pB)A − �1(−pB)mn − 2(m + n)A(−pB) − 2mnpAB

= − mnp(B1A − �1B) = 0. (5)

If Swere a proper subgraph of a Smith tree, it would bePS(2)>0, implyingAB1−�1B >0
in (4) andP(2)<0 in (5), which proves that the eigenvalue of graphs ofFig. 12which is
equal to 2 is just�2. All these graphs are maximal, because if we assume thatS is a proper
supergraph of a Smith tree formed by adding one new vertex (PS(2)<0, see Lemma 4),
we obtain in (5)P(2)>0. �

Of course, even if we add nothing toc2 andc3 after removing one cycle attached toc2,
the vertexc1 cannot be loaded by a new edge (i.e. no pendent edge can be attached to it)
because of the graphT0. The same follows for any vertex of the cycle atc1 from the result
of [10, Theorem 4.6]. Loading of vertices of the cycles atc2 is not possible because of the
results of[Proposition 8]. Thus, we can reformulate the last proposition.

Proposition 5′. If we start from the graph with four cycles obtained by removing a cycle
at c2 from the graphT1, and if we attach some trees only to its c-vertices, such a graph
will be reflexive if and only if it is an induced subgraph of some of the graphs of the family
displayed in Fig.12.

The cyclic structure of the graphT2 suggests that a cycle atc2 can be replaced by a Smith
tree, which then can “pour” betweenc2 and e.g.c3.

Proposition 6. Let G be a graph obtained by removing one of the cycles at the vertexc2
of T2 and identifying withc2 andc3 two vertices obtained by splitting any of Smith trees
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S at any vertex intoS1 andS2, including cases when a whole Smith tree is attached toc2 or
c3 (Fig. 13). Then�2(G)= 2 and G is a maximal reflexive graph, with the exception of the
case when, after removingc1 from G, the remaining component with the bridgec2c3 is the
graph of Fig.5(b).

Proof. Proceeding in the same manner and using the same designations as in the proof of
Proposition 5, we have

PG(2) = −mnp(B�1 + A�2 − 2AB),

implying PG(2)<2, PG(2) = 2, PG(2)>2 if S is a proper subgraph of a Smith tree, a
Smith tree, or a proper supergraph of a Smith tree, respectively. Therefore, the assump-
tion that S is a Smith tree means�2(G) = 2. According to the results of[10], no ad-
ditional edges can load vertices of the cycles atc2 and c3. As for the vertexc1, let us
load it by a pendent edge and apply Corollary 2 to the new graphG1. We getPG1(2) =
2PG(2) − mPG′(2), whereG′ is the bicyclic component obtained after removingc1 from
G. Thus,PG1(2) = 0 if and only ifPG′(2) = 0 and this happens in the case of the graph of
Fig. 5(b). For all other possibilities of splitting a Smith tree intoS1 andS2 we may ver-
ify by inspection that every such case is a proper subgraph of some case ofFig. 5(a) of
Lemma 5, implyingPG1(2)>2. Also, it turns out that loading of other vertices of the cycle
at c1 is possible only in the described exceptional case, those graphs being covered by the
results of[Proposition 8]. �

Of course, it follows by induction that in the described case whenPG1(2)= 0 an infinite
extension atc1 preservesP(2) = 0. The maximal graph for the fact�2 = 2 is the graph of
Fig. 13(b).
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Since Proposition 6 covers all situations when one or twoc-vertices are loaded, in order
to find all maximal graphs with the cyclic structure as of the graphs ofFig. 13we will have
to suppose that now allc-vertices are of at least degree 5.

Proposition 7. If we remove one of the cycles at the vertexc2 of the graphT2, and attach
some trees to all its c-vertices, such a graph is a maximal reflexive cactus if and only if it
belongs to one of the10 families of graphs of Fig. 14or the one of Fig.13(b).

Proof. If we want to load allc-vertices but not to get a graph ofFig. 13(b), the consequence
of Proposition 6 is that at any twoc-vertices, sayc2 andc3, we must have such trees that,
having glued them i.e. having identifiedc2 with c3, we get a proper subgraph of a Smith tree.
This fact points to starting from all such subgraphs (Coxeter–Dynkin graphs) and splitting
them into two parts to be attached toc2 andc3. At least one of the three trees atc-vertices
is not a simple path (otherwise we would have a proper subgraph of a graph ofFig. 13(b))
and suppose that it is atc2. If it were a proper subgraph of the Smith treeWn displayed in
Fig. 15(let us denote it byZm1), c1 can be loaded by at mostZm2 because of Proposition
6, and then atc3 we also haveZm3. If we attach toc2 andc3 parts of a proper subgraph of
some of the rest of Smith trees, after a simple discussion and a little aid of a computer we
come to the resulting maximal graphs ofFig. 14, which all have�2 = 2. �

Attaching the result of Proposition 6 to Proposition 7 we can reformulate the latter one.

1)

10)9)8)7)6)

5)4)3)2)

Fig. 14.

1 2 3 m1

Zm1

Fig. 15.
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Proposition 7′. If we start from the graph with four cycles with the cyclic structure as of
the graphs of Fig.13, and if we attach some trees only to its c-vertices, such a graph is
reflexive if and only if it is an induced subgraph of some of the graphs displayed in Figs.13
and14.

Besides thec-vertices, loading of other vertices of non-central cycles can also give rise to
maximal reflexive cactuses. These possibilities have been discussed in[9] and completely
solved by considering various particular cases.

Proposition 8 (Theorem 3 of[9] ). A treelike graph with four cycles to which Theorem1
cannot be applied, whose cycles do not form a bundle and which, besides the c-vertices, has
at least one vertex of non-central cycles loaded, is reflexive if and only if it is an induced
subgraph of some of the(families of) graphsH1 − H48, I1 − I9, J1 − J11,K1 − K36,

L1 −L12,M1 −M12 andN1 −N42 displayed in Figs. 16–221 (Figs. 9, 13, 15, 17, 19, 21,
23and24of [9]).

Those maximal graphs that have�2<2 are marked by asterisk.
All results contained in the previous propositions lead to the following conclusion.

Theorem 3. A treelike graph with four cycles to which Theorem1 cannot be applied and
whose cycles do not make a bundle is reflexive if and only if it is an induced subgraph of
some of the graphs of Figs. 11–14 and Figs.16–221 (Figs. 9, 13, 15, 17, 19, 21, 23, 24
in [9]).

A proper subgraph of a cycle is a path, and if we replace any of non-central cycles of any
of the graphs ofFig. 10by a path, attached to any of its vertices on the central cycle, we
always have a graph that fits in the results of Theorem 3. Thus, according to Theorem 2, we
can make the following formulation.

Theorem 3′. A treelike graph with more than three cycles to which Theorem1 cannot be
applied and whose cycles do not make a bundle is reflexive if and only if it is an induced
subgraph of some of the graphs of Figs. 10–14 and Figs. 16–221 (Figs. 9, 13, 15, 17, 19,
21, 23, 24in [9]).

Finally, let us mention that by following the ideas of replacing cycles by Smith trees
and splitting and “pouring” Smith trees one can anticipate various new classes of maximal
reflexive cactuses with less than four cycles.
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