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While eigenvalues of graphs are well studied, spectral analysis of complex unit 
gain graphs is still in its infancy. This thesis considers gain graphs whose gain 
groups are gradually less and less restricted, with the ultimate goal of classifying 
gain graphs that are characterized by their spectra. In such cases, the eigenvalues 
of a gain graph contain sufficient structural information that it might be uniquely 
(up to certain equivalence relations) constructed when only given its spectrum. 

First, the first infinite family of directed graphs that is – up to isomorphism 
– determined by its Hermitian spectrum is obtained. Since the entries of the 
Hermitian adjacency matrix are complex units, these objects may be thought of 
as gain graphs with a restricted gain group. It is shown that directed graphs with 
the desired property are extremely rare. Thereafter, the perspective is generalized 
to include signs on the edges. By encoding the various edge-vertex incidence 
relations with sixth roots of unity, the above perspective can again be taken. With 
an interesting mix of algebraic and combinatorial techniques, all signed directed 
graphs with degree at most 4 or least multiplicity at most 3 are determined. 
Subsequently, these characterizations are used to obtain signed directed graphs 
that are determined by their spectra. Finally, an extensive discussion of complex 
unit gain graphs in their most general form is offered. After exploring their 
various notions of symmetry and many interesting ties to complex geometries, 
gain graphs with exactly two distinct eigenvalues are classified. 

Pepijn Wissing (Essen, Germany, 1994) received his Bachelor’s degree in 
Econometrics and Operations Research at Tilburg University in 2015, followed by 
a Research Master degree in Operations Research in 2018. He then became a PhD 
candidate at the department of Econometrics and Operations Research, funded in 
part by Tilburg University’s Research Talent grant. 
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CHAPTER 1

Introduction

Graphs are, at their essence, structures containing sets of objects in which some pairs

of the objects are in some sense related. The objects are commonly abstracted and

called vertices, and each of the related pairs of vertices is called an edge. Built on this

foundation are a frankly alarming number of subtly distinct subclasses and properties,

including the class that acts as the backbone of this thesis: gain graphs.

Informally, a gain graph is obtained by assigning a direction and a weight (a

complex number with unit length) to every edge that is present in a given graph.

They are usually represented either diagrammatically, such as in Figure 1.1, or by

some matrix, say A. Since the latter is square, one may compute its eigenvalues λ,

that satisfy Av = λv for some eigenvector v. Of primary concern to this thesis is

the structural information that may be extracted from a gain graph’s collection of

eigenvalues, with the ultimate goal of finding gain graphs whose eigenvalues contain

sufficiently much information that one may uniquely reconstruct said gain graph when

given only its eigenvalues.

1

1

1

1 −1

1

−1

1

−i

i

−i

i

A(Ψ) =



0 1 1 0 1 1

1 0 −i −1 0 i

1 i 0 1 −i 0

0 −1 1 0 −1 1

1 0 i −1 0 −i
1 −i 0 1 i 0



Figure 1.1 – A gain graph Ψ and its gain matrix A(Ψ)
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2 Chapter 1. Introduction

1.1 Basic definitions

Let us first thoroughly discuss the terminology and notation. Most of the concepts

below are well-known and will not always be explicitly referenced. For more detail,

the reader is referred to e.g., Bondy and Murty [9] or any other recent book on graph

theory.

1.1.1 Graph definitions

A graph of order n is denoted G = (V,E), where V (sometimes specified as V (G)) is

the vertex set, typically denoted V = {1, . . . , n}. E ⊆
(
V
2

)
is called the edge set of G.

Similarly to V (G), we will sometimes specify the associated graph G as E(G). In the

case of an undirected graph G, E(G) consists of unordered pairs of vertices, usually

denoted (u, v) for u, v ∈ V . For clearness, we will only use the word “graph” when it

concerns an undirected graph.

A directed graph or digraph of order n is denoted1 D = (V,E). However, in the

directed case, E ⊂ V ×V consists of ordered pairs uv of vertices, called arcs or directed

edges. Here, u is called the initial vertex and v is called the terminal vertex of uv. If

both uv ∈ E and vu ∈ E, we say that (u, v) is a digon in D.

A sign function σ : E(D) 7→ {±1} assigns a (positive or negative) sign to every

edge in a digraph. The pair Φ = (D,σ) is said to be a signed digraph. A large

portion of this thesis will use a Hermitian representation of such signed digraphs, that

corresponds naturally to a gain graph (see below) whose gain values are restricted to

T6 = {exp(iπk/3) | k = 1, . . . , 6}.
In general, such a complex unit gain graph is said to be the pair Ψ = (G,ψ), where

G is a bidirected graph and ψ : E(G) → T = {z ∈ C : |z| = 1} is a gain function

with the property that ψ(uv) = ψ−1((v, u)). Here, a bidirected graph is a directed

graph such that uv ∈ E if and only if (v, u) ∈ E.

We may sometimes be interested in the underlying graph of D,Φ or Ψ. Let Γ(·)
be the operator that transforms a digraph into its underlying graph. That is, given

D, the graph G = Γ(D) is obtained by including {u, v} in E(G) for every uv ∈
E(D) and discarding any duplicate edges. With slight abuse of notation, Γ(Φ) =

Γ(D) if Φ = (D,σ) and similarly Γ(Ψ) = Γ(G). To circumvent some of the more

1Some of the cited literature considers mixed graphs, which are defined to be an ordered triple
(V,E,A), where V is the vertex set, E is the undirected edge set and A is the directed edge set.
Since a single bidirected edge is, for our purposes throughout this thesis, equivalent to two arcs whose
directions are reversed, we consider the class of mixed graphs equivalent to the class of digraphs.
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Basic definitions 3

tedious technicalities, we will sometimes use the word edge to indicate an edge in

the underlying graph, when the context is clear. Finally, a loop is an edge of which

the terminal vertex equals the initial vertex. Throughout, we will not allow graph,

digraph or gain graph to contain loops.

1.1.2 Graph theoretical properties

A given graph G is said to be k-regular if every vertex has k neighbors and bipartite

if it contains no odd-sized cycles. Gain graphs are said to be k-regular and bipartite

when their underlying graphs are. Finally, a (signed) digraph is said to be oriented

when it contains no digons.

If D = (V,E) and letW ⊂ V , then we denote the (vertex-)induced subgraph that is

obtained by removing any vertices in V \W and removing any edges that are incident

to a vertex in V \W asD[W ]. The notation carries over to (gain) graphs in the obvious

way. A subgraph (notably: not induced) is obtained by additionally removing digons

or arcs without removing either of the incident vertices, and will almost exclusively

come up in the context of elementary subgraphs (see Section 1.1.4). The symmetric

subgraph G(D) of a digraph D is obtained by retaining only the digons in E(D).

Two digraphs D and D′ are said to be isomorphic if there exists a bijection

f : V (D) → V (D′) such that uv ∈ E(D) if and only if f(u)f(v) ∈ E(D′). For a

pair of signed digraphs Φ and Φ′, it is additionally required that σ(uv) = σ(f(u)f(v))

for all uv ∈ E(Φ); for a pair of gain graphs Ψ and Ψ′, it is similarly required that

ψ(uv) = ψ(f(u)f(v)) for all uv ∈ E(Ψ) In case the graph/digraph/gain graph is

mapped onto itself, f is called an automorphism. A graph is said to be symmetric if

it has a non-trivial automorphism.

The converse of a (signed) digraph D is denoted Dc, and is obtained by reversing

the direction of all arcs. A (signed) digraph that is isomorphic to its converse is said

to be self-converse.

1.1.3 Eigenvalues

A eigenvalues λ of a square matrix A satisfy Av = λv, for some eigenvector v. They

may be obtained as the roots of the characteristic polynomial

χ(λ) = det(λI −A) = λn + a1λ
n−1 + . . .+ an. (1.1)
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4 Chapter 1. Introduction

The collection of eigenvalues is also called the spectrum, often denoted

Σ =
{
θ
[m1]
1 , . . . , θ

[mk]
k

}
,

where θ1 > . . . > θk are the k distinct eigenvalues, whose multiplicities arem1, . . . ,mk.

The spectrum of (signed) digraph or gain graph is said to be the spectrum of the

associated matrix (the Hermitian adjacency matrix H, Eisenstein matrix E or gain

matrix A; formal definitions appear later in this chapter). The matrices associated

with the various kinds of graphs are all2 Hermitian, and thus diagonalizable [11] with

real eigenvalues.

A useful property of Hermitian matrices is known as eigenvalue interlacing (orig-

inally due to Cauchy and concisely surveyed by Haemers [55]).

Lemma 1.1. [55, 43] Suppose A is a Hermitian n× n matrix with eigenvalues λ1 ≥
. . . ≥ λn. Then the eigenvalues µ1 ≥ . . . ≥ µm of a principal submatrix of size m

satisfy λi ≥ µi ≥ λn−m+i for i ∈ [m].

This property is extremely useful when it comes to forbidden subgraph proofs,

and will be used extensively in Chapters 2, 4 and 7.

Two (signed) digraphs or two gain graphs are said to be cospectral when their

spectra (or, equivalently, characteristic polynomials) are equal. That is, Ψ and Ψ′

are cospectral when λ occurs as an eigenvalue of Ψ with multiplicity m if and only if

it occurs as an eigenvalue of Ψ′ with multiplicity m, for all eigenvalues λ. Note that

similar matrices are cospectral, and that the switching operations in Definitions 1.5

and 1.6 are essentially similarity transformations.

As is convention, ρ(D) denotes the spectral radius of D, i.e., its largest eigenvalue

in absolute value, and the spectrum is said to be symmetric if it is invariant under

multiplication by −1.

1.1.4 Cycles and gains of walks

Of essential interest, from a spectral point of view, is the gain of a cycle in G. Let C

be a subgraph of G that is a cycle and let C→ denote a directed cycle obtained from

C by orienting all edges of C in the same direction. That is, every vertex in C→ has

2With the exception of Section 1.3, which serves as an introductory example.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 17PDF page: 17PDF page: 17PDF page: 17

Basic definitions 5

indegree and outdegree equal to 1. Then the gain of C→ is defined as

ϕ(C→) =
∏

e∈E(C→)

ψ(e).

In case C is traversed in the reverse direction, say by C←, then ϕ(C←) = ϕ(C→).

Since the traversal direction does not affect the (primarily interesting, see Theorem

1.2) real part of the cycle gain, the direction is usually omitted.

Whenever two cycles C1 and C2 intersect on a path of length at least 2, their

symmetric difference C1 ⊖ C2 is, again, a cycle. In this way, the collection C of

all cycles in a graph (also called the cycle space) may be written as the symmetric

differences of cycles in the cycle basis B ⊆ C. Specifically, B is a smallest set of cycles

that generates the cycle space. Moreover, one may compute the gain of the new cycle

by taking the product of the gains of the old cycles, making sure that their intersection

is traversed in opposite directions. Loosely put, we have ϕ(C1⊖C2) = ϕ(C→1 )ϕ(C←2 ).

Crucially, the gains of cycles are closely related to the spectrum of a gain graph,

via the well-known Harary-Sachs coefficients theorem. A graph H is called an el-

ementary graph if each of its connected components is either an edge or a cycle.

The characteristic polynomial of a gain graph may be obtained from its elementary

subgraphs as follows.

Theorem 1.2. [91] Let Ψ be a unit gain graph with underlying graph G and charac-

teristic polynomial χ(λ) as in (1.1). Then

aj =
∑

H∈Hj(G)

(−1)p(H)2c(H)
∏

C∈C(H)

Re (ϕ(C)) , (1.2)

where Hj(G) is the set of all elementary subgraphs of G with j vertices, C(H) denote

the collection of all cycles in H, and p(H) and c(H) are the number of components

and the number of cycles in H, respectively.

Note that for the case of signed digraphs, the above may be slightly rewritten.

Theorem 1.3. Let Φ be a signed digraph with underlying graph G. Let χ(λ) =

λn+ a1λ
n−1+ . . .+ an be the characteristic polynomial of Φ. Then the coefficients aj

may be calculated as

aj =
∑

H∈Hj(G)

(−1)p(H)+n(H)2c(H)−z(H), (1.3)
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6 Chapter 1. Introduction

(a) 3-pan (b) Gem

Figure 1.2 – Two small graphs and their names.

Gain Drawing Type (SDG)

ψ(uv) = 1
u v

Positive digon

ψ(uv) = −1 u v
Negative digon

ψ(uv) = ω
u v

Positive arc

ψ(uv) = −ω = φ2 u v
Negative arc

ψ(uv) = γ
u v

-

ψ(uv) = 1, fixed ex ante
u v

-

Table 1.1 – Drawing conventions. The type concerns Chapter 4.

where n(H) and z(H) respectively denote the number of negative cycles and non-real

cycles in CH .

1.1.5 Conventions

Throughout, the identity matrix, the all-ones matrix and the zero matrix are denoted

I, J and O, respectively. Occasionally, a subscript is added to clarify its dimensions.

We often denote by respectively φ = exp(2iπ/3), ω = exp(iπ/3) and γ = exp(iπ/4)

the third, sixth and eighth roots of unity.

Finally, we include a few often-used graphs and their names. A complete graph of

order n is denoted Kn, and a complete k-partite graph is denoted Kn1,...,nk
. Further,

the empty graph is denoted On, the path is denoted Pn, and a cycle is denoted

Cn. The transitive tournament Tn is the digraph whose arc set is exactly E(Tn) =

{uv | u ≤ v for u, v ∈ [n]} . The remaining two named graphs are shown in Figure 1.2.

We conclude by offering an overview of the drawing conventions used in illustra-

tions throughout, shown in Table 1.1.
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1.2 Spectra of graphs

For decades, generations of mathematicians have investigated the interplay between

the eigenvalues of a graph and its structural characteristics. Accordingly, this connec-

tion is used in several computationally intensive fields such as combinatorial optimiza-

tion. Paraphrasing Mohar and Poljak [85], one of the key applications is the possibility

of the change to a “continuous optimization,” of which a classical example is Lovász

ϑ-function [77]. Its use as a bound gives rise to polynomial time algorithms for de-

termining the stability number, or the chromatic number in perfect graphs. Similar

approaches appear in relation to bipartion width, max-cut, and partition, among oth-

ers. [11]. Moreover, eigenvalues of graphs are also related to various design-oriented

disciplines like coding theory [102].

Indeed, the eigenvalues of a graph carry valuable information. This includes var-

ious classical results, like the observation that a graph is bipartite if and only if its

spectrum is symmetric (see Chapter 6). Now, it would be natural to ask whether or

not some graphs may have collections of eigenvalues (also called the spectrum) that

contain enough information, in terms of structural properties that may be derived

from them, that they are effectively the only graphs with those spectra. In other

words, graphs that are characterized or determined by their spectrum.

The question was, to our knowledge, first asked in 1956, when Günthard and

Primas [49] raised the issue in a paper that relates the theory of graph spectra to

Hückel’s rule [67] in chemisty. Another occurrence of this question from that time

in physics has to do with the question whether one can hear the shape of a drum.

Fisher [38] modeled a drum as a graph, and showed that the sound the drum makes

is characterized by the eigenvalues of this graph. For about a year, it was believed

that no two graphs would share a spectrum. Examples to the contrary would pop up

sporadically, the smallest one being the so-called “Saltire pair” in Figure 1.3. Later,

Schwenk [97] concluded that “almost all trees have a cospectral mate”.

Over the years, this has developed into a considerable body of research. However,

there is still no consensus as to statements for general graphs, analogous to Schwenk’s

result. The fraction of graphs that is known to be determined by its spectrum (here-

after: DS) goes to zero as their order goes to infinity, but so does the fraction of graphs

that have known cospectral mates. Thus, are almost all graphs DS, are almost no

graphs DS, or is neither true? It has been conjectured [27, 28], that the fraction of

DS graphs goes to one, although this has remained an open problem.
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8 Chapter 1. Introduction

(a) (b)

Figure 1.3 – A pair of graphs which have the same spectrum.

1.3 Directed graphs: a warm-up exercise

Far less is known about spectral characterizations of directed (or mixed) graphs. Part

of the problem is that it is as yet unclear which matrix best reflects the characteristics

of a directed graph in its eigenvalues. Consider, for example, the usual adjacency

matrix.

Definition 1.1. Let D = (V,E) be a digraph of order n. Then its n × n adjacency

matrix A(D) is defined by

[A]uv =

 1 if (u, v) ∈ E

0 otherwise.

Since, with respect to digraphs, (u, v) ∈ E does not necessarily imply (v, u) ∈ E, A

is in general not symmetric. As a consequence, its eigenvalues are not necessarily real

and many of the usual tools (such as eigenvalue interlacing and the typical counting

of order-k closed walks by tr
(
Ak
)
) are lost.

In general, directed graphs that are determined by their adjacency spectrum ap-

pear3 to be few and far between. What is worse, claims have turned out to be consid-

erably harder to formalize for directed graphs of arbitrary order. Even for extremely

narrow families, one needs reasonably big guns to even make a dent. We illustrate this

point by proving that the directed cycle
−→
C n is determined by its adjacency spectrum,

as a warming-up exercise. The eigenvalues λj of
−→
C n are given by [72]

λj = cos

(
2π
j

n

)
+ i sin

(
2π
j

n

)
, for j ∈ [n]. (1.4)

3Although the performed enumeration studies (see, e.g., [52]) have been limited to digraphs
of small order, this conclusion seems likely as the fraction of digraphs with unique characteristic
polynomials (w.r.t. A(D)) goes to zero at a rapid pace.
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Directed graphs: a warm-up exercise 9

While eigenvalue interlacing does not generally apply to the adjacency matrices

of directed graphs, one may use their spectral radii ρ(·) to work along a familiar line.

In particular, the following consequence of the well-known Perron-Frobenius theorem

is used.

Lemma 1.4. Let D be a directed graph and let D′ be obtained from D by removing

at least one arc. Then ρ(D′) < ρ(D).

The following conclusion now follows easily by observing that 1 is effectively the

smallest possible spectral radius of any strongly connected component.

Proposition 1.5. Let D be a digraph of order n. If D is strongly connected and D

has spectral radius 1, then D =
−→
Cn.

Proof. Assume that D is strongly connected, and suppose that D ̸=
−→
Cn. Then there

exists an integer k with 2 ≤ k ≤ n such that
−→
Ck can be obtained by removing one or

more arcs and n− k vertices from D. Indeed, note that otherwise at least one vertex

has outdegree zero and thus D would not be strongly connected. By Lemma 1.4, if

D′ is obtained from D by deleting one or more edges or nodes, then ρ(D′) < ρ(D).

Finally, since ρ(
−→
Ck) = 1 for any k > 1, it follows that ρ(D) > 1, contradiction.

Now, one may consider the order of strongly connected components in a digraph to

conclude that the directed cycle of arbitrary order has a uniquely occurring spectrum.

Proposition 1.6.
−→
C n is determined by its adjacency spectrum.

Proof. Let D be cospectral to
−→
C n. As a strongly connected digraph has an irreducible

adjacency matrix, it follows by the Perron-Frobenius theorem that any strongly con-

nected component has a real, positive spectral radius. Since only λ1 = 1 is strictly

real and positive, it follows that D contains exactly one strongly connected compo-

nent. Moreover, since none of the λj are zero, D contains no components that are

not strongly connected. The desired conclusion now follows by Proposition 1.5.

While the above proves spectral characterization w.r.t. the adjacency matrix, it

mostly abuses a few characteristics that are specific to the directed cycle, and has

proven difficult to extend to broader families of digraphs. As such, we explore the

possible benefits of the Hermitian adjacency matrix.
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1.4 The Hermitian adjacency matrix

A promising candidate to work around some of the shortcomings of the adjacency

matrix is the Hermitian adjacency matrix (usually simply the Hermitian for short),

introduced independently by Guo and Mohar [51] and Liu and Li [76].

Definition 1.2. [51, 76] Let D = (V,E) be a digraph of order n. Define the Hermitian

H = H(D) as the n× n matrix with entries

[H]uv =


1 if (u, v) ∈ E and (v, u) ∈ E,

i if (u, v) ∈ E and (v, u) ̸∈ E,

−i if (u, v) ̸∈ E and (v, u) ∈ E,

0 otherwise.

(1.5)

Conceptually, the premise is fairly simple: by encoding into the adjacency matrix

not just whether a given vertex is reachable from another, but also whether or not

the reverse direction might be traveled as well, a digraph is described unambiguously

by this matrix. Moreover, since H is, by definition, equal to its conjugate transpose

H∗, the matrix is Hermitian and therefore has certain algebraic benefits over the

traditional adjacency matrix, such as being diagonalizable with real eigenvalues [11].

From a spectral analysis point of view, there are some drawbacks to the departure

from real matrices. Out of the classical results, probably the most notable absentee

would be the Perron-Frobenius theorem, though many of the spectral results that

experienced graph theorists might be used to do not necessarily carry over either. For

example, while it is well known that the A-spectrum of a graph is symmetric around

the origin if and only if the graph is bipartite, this implication only goes one way with

respect to H.

Lemma 1.7. Let D be a bipartite digraph. Then its H-spectrum is symmetric. That

is, λ is an eigenvalue of H(D) with multiplicity m if and only if −λ is also an

eigenvalue of H(D) with multiplicity m.

Lemma 1.8. Let D be an oriented digraph, i.e., (u, v) ∈ E =⇒ (v, u) ̸∈ E. Then

its H-spectrum is symmetric.

However, neither of the reverse implications holds, as is evident by considering

the digraph in Figure 1.4. For our purposes, one of the foremost perks of using a

Hermitian matrix is that eigenvalue interlacing is applicable [52, 51].
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H(D) =

0 1 1
1 0 −i
1 i 0


Figure 1.4 – A digraph D whose H-spectrum is {−

√
3, 0,

√
3}

1.5 Signed directed graphs

By equipping an undirected graph with a sign function σ : E 7→ {±1}, Zaslavsky [109]

introduced the concept of signed graphs; an idea that is actively being researched to

this day [6]. While this notion is easily incorporated in the directed graph paradigm,

the Hermitian H does not lend itself well to the natural inclusion of said signs into

the defining matrices of signed directed graphs. Indeed, note how ‘simply’ multiplying

the entries of the negative arcs with −1, as is customary in the adjacency matrices

of signed graphs, would, in terms of the Hermitian adjacency matrix, reverse the

direction of the arc, rather than actually signifying the desired sign.

However, since the task of encoding an arc could effectively be performed by any

complex number, one quickly arrives at an intuitive candidate. Indeed, note that a

vertex can be the initial vertex of a positive arc, the terminal vertex of a positive arc,

incident to a positive arc, and all of their respective negative counterparts. As there

are six vertex-edge incidence relations, it would make sense to encode these relations

by the sixths roots of unity, also known as the unit Eisenstein integers [45]. This

translates to the usual element wise product to the ‘new’ Hermitian adjacency matrix

N [84].

Definition 1.3. Let D = (V,E) be a digraph of order n with sign function σ : E 7→
{±1}, and let Φ = (D,σ) be a signed directed graph. Let ω = exp(iπ/3) and define

the Eisenstein matrix E := E(Φ) as the n× n matrix with entries

[E ]uv = σ(u, v)Nuv, where [N ]uv =


1 if (u, v) ∈ E and (v, u) ∈ E,

ω if (u, v) ∈ E and (v, u) ̸∈ E,

ω̄ if (u, v) ̸∈ E and (v, u) ∈ E,

0 otherwise.

(1.6)

An interesting feature of E , compared to H and N , is that the set of allowed

entries is multiplicative. That is, the nonzero entries of E are all members of T6 :=
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12 Chapter 1. Introduction

{exp(iπk/3) : k = 1, . . . , 6}. One of the practical consequences of this property

is that one may without loss of generality assume that an arbitrary spanning tree

consists of only positive edges (or, in fact, any desired edge type.) On the flip side,

the possibility for admissible switches (see Section 1.7) opens up tremendously, which

is especially undesirable for those interested in the classical notion of spectral char-

acterization.

1.6 Complex unit gain graphs

In hindsight, all of the objects discussed so far have been special cases of so-called

complex unit gain graphs [110, 91]. Let G be a bidirected4 graph, and let ψ : E → T =

{z ∈ C : |z| = 1} be a gain function, with the property that the product of the gain

ψ(u, v) of an arc (u, v) and its converse arc (v, u) equals 1. That is, ψ(v, u) = ψ(u, v)−1

for all (u, v) ∈ E. Then the pair Ψ := (G,ψ) is known as a complex unit gain graph

(usually simply “gain graph”). By design, the corresponding gain matrix, whose u, v

entry is simply set to ψ(u, v), is Hermitian, and the discussion above applies.

Originally due to Zaslavsky [110], biased graphs have been around for some time.

Much of the theory of gain graphs is effectively a special case of that of biased graphs;

the latter being defined as a graph with a designated linear subclass of balanced

cycles5, where the balanced cycles of the former happen to be a linear class. The

spectral properties of gain graphs have been an active field of research ever since the

initial article to that goal by [91]. Some interesting recent advances include [7, 68, 78].

While various links between graph theory and (finite) geometry have been known

for a long time, gain graphs offer an interesting new such link. Specifically, there

are two kinds of matroids associated with a gain graph [111], the so-called frame

matroid and lift matroid, that relate to (real) systems of hyperplanes [112] of the

form xi = ψ(i, j)xj and xi = xj + ψ(i, j), respectively. This thesis does not engage

with said matroids, but we do find another interesting parallel between gain graphs

with particular spectra and systems of lines in complex space.

Note that indeed, the Hermitian adjacency matrix H and the Eisenstein matrix E
are effectively special cases of a complex unit gain graph. In retrospect, one may think

of these objects as if they were ‘restricted’ gain graphs, whose edge gains belong to a

subset of T. While the nonzero entries of Ψ and E belong to abelian groups, the entries

4Bidirected in the sense that an arc (u, v) occurs if and only if (v, u) does, as well.
5A cycle is said to be balanced if the product of its edge gains in a consistent direction equals 1.
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1 23 31 2

Figure 1.5 – Two isomorphic graphs

of H do not; this is the origin of the main distinction between the three otherwise

highly similar concepts, in terms of spectral determination.

1.7 Spectral determination and switching

From the outset, one of the intended goals of this thesis has been classification of

graphs that are determined by their spectra; whose spectra occur uniquely. One of

the first obstacles that one faces, in this regard, is related to the representation of

graphs by matrices. All of the graphs treated in this thesis are effectively unlabeled,

i.e., any vertex only differs from another in its relations to their mutual complement.

However, in order to obtain the usual matrix representation, one must effectively

assign a label to each vertex. And while the distribution of labels is of no consequence

to the obtained spectrum, the corresponding matter of identification is non-trivial.

Indeed, while one would like to say “spectrum X corresponds to that matrix Y

and thus to graph G,” it is almost always the case that spectrum X may belong to

distinct matrices Y1, Y2, Y3, . . . , YM , each of which represents the graph G. If this

happens, the rows and columns of Y2 may be relabeled such that Y2 = Y1. This is

known as isomorphism and is shown in Figure 1.5; a formal definition appeared in

Section 1.1. As such, the following definition of a graph that is determined by its

spectrum is customarily used.

Definition 1.4. A graph G is said to be determined by its spectrum when it is cospec-

tral to a graph G′ if and only if G is isomorphic to G′.

Effectively, it boils down to a question of equivalence. Indeed, if two matrices

are ‘close enough’ to one another that their rows and columns may be permuted

to make them coincide on all entries, they are equivalent in the sense that they

represent the same graph, and thus are considered ‘the same’ for the sake of spectral

characterization.

Upon entering the realm of (restricted) gain graphs, one has more of these ques-

tions to consider. In particular, taking the transpose of any matrix trivially does

not affect the spectrum, while this operation generally does mutate (for example)

the digraph the matrix represents. Moreover, for most gain graphs and Hermitian
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14 Chapter 1. Introduction

representations of (signed) digraphs, a phenomenon known as gain switching often

yields a plethora of distinct, yet very closely related graphs that are somewhat triv-

ially cospectral mates; so-called switching equivalent graphs. Similarly to the various

kinds of switching in traditional graph theory, such as Godsil-McKay switching [44]

or Seidel switching [75], the current version almost always changes the digraph, but

never changes its eigenvalues. While ‘traditional’ switching removes some edges and

adds others, gain-switching, as the operation was originally named by Zaslavsky [110],

exclusively changes the gain of an edge and, consequently, the type or direction of the

corresponding edge/arc in the (signed) digraph that might be represented by it.

In terms of the Hermitian adjacency matrix, this amounts to the following.

Definition 1.5. [51] A four-way switching is the operation of changing a digraph

D into the digraph D′ by choosing an appropriate diagonal matrix S with Sjj ∈
{±1,±i}, j = 1, . . . , |V (D)|, and setting H(D′) = S−1H(D)S, and possibly taking

the transpose. Informally, S is appropriate when H(D′) is a Hermitian adjacency

matrix.

Two digraphs are now said to be switching equivalent if they can be obtained

from one-another via a series of four-way switches. Note that indeed, the spectrum

will clearly be left unchanged, since the above are effectively a series of similarity

transformations and possibly a transposition.

Example 1.1. Consider the two digraphs in Figure 1.6. Their respective Hermitian

(a) (b)

Figure 1.6 – Two switching equivalent digraphs.
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adjacency matrices satisfy the equation1 0 0

0 1 0

0 0 −i


−1  0 1 i

1 0 i

−i −i 0


1 0 0

0 1 0

0 0 −i

 =

0 1 1

1 0 1

1 1 0

 , (1.7)

which means that (b) is obtained from (a) by a four-way switching.

Note that not any diagonal matrix S ∈ {±1,±i}n×n is necessarily appropriate.

If, for example, Suu = 1, H(D)uv = i and Svv = i, then H(D′)uv = 1 · i · i = −1,
and thus H(D′) would not be the Hermitian adjacency matrix of a digraph. In rather

exceptional cases, this leads to such Hermitian adjacency matrices that do not admit

any (non-identity) switching; this phenomenon is exploited in Chapter 2.

However, whereas the set of nonzero entries of H is not multiplicative, thus al-

lowing for the above exception, both E and ψ are defined on multiplicative groups.

While the former is finite and the latter is not, their respective switching operations

are effectively the same. Originally due to Zaslavsky [110], gain switching may be

defined as follows.

Definition 1.6. Let Ψ be a gain graph, and let Z be a diagonal matrix with Zjj ∈ T
for j = 1, . . . , |V (Ψ)|. Gain switching is said to be the operation that changes Ψ into

Ψ′ by setting A(Ψ′) = Z−1A(Ψ)Z, and possibly taking the transpose. Note that if

ψ(u, v) ∈ T6 for every u, v ∈ V and Zjj ∈ T6 for every j, then both Ψ and Ψ′ are

signed digraphs.

Formally, we then have:

Definition 1.7. Two gain graphs are said to be switching isomorphic if one may

be obtained from the other by a sequence of diagonal switches, possibly followed by

relabeling the vertices. Switching isomorphism of Ψ and Ψ′ is denoted Ψ ∼ Ψ′.

Since switching equivalence is transitive, one may keep switching along different

cuts to obtain yet more switching equivalent gain graphs. Since the values of Z do

not need to be further constrained in order for Ψ′ to be a gain graph (resp. signed

digraph), it follows that for any non-empty gain graph (resp. signed digraph), one

can find a partner to which it is switching equivalent, but not isomorphic. This is

discussed in detail in Section 4.5.1. Thus, one’s definition of spectral determination6

should be amended.
6A H-parallel to Definition 1.8 is referred to as ‘weakly determined by its H-spectrum’ in Chapter

2 and appeared in [83].
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16 Chapter 1. Introduction

Definition 1.8. A gain graph Ψ is said to be determined by its spectrum if it is

switching isomorphic to every gain graph Ψ′ to which it is cospectral. Similarly, if

Ψ and all Ψ′ are signed digraphs, then it is said to be Determined by the Eisenstein

Spectrum (DES).

While clearly weaker than Definition 1.4, it is similar in spirit. That is, gain graphs

(resp. signed digraphs) that are effectively equal up to a similarity transformation

are considered to be ‘the same,’ for the purposes of spectral characterization.

1.8 Contributions and Overview

We provide a concise overview of the main contributions of each chapter.

While the later parts of this thesis consider spectral characterizations up to switch-

ing equivalence, Chapter 2 is concerned with the conception of an infinite family of

connected digraphs whose Hermitian spectra occur uniquely up to isomorphism. That

is, a family that is strongly determined by its H-spectrum. Such a family is obtained

by effectively taking lexicographic products of a key digraph, which is named the

negative tetrahedron, with a selection of empty graphs. This operation is referred to

as twin expansion.

As an intermediate result, we determine all digraphs whose H-spectra have pre-

cisely one negative eigenvalue. If twin vertices are not allowed, this collection contains

exactly four members, which are all of order at most 4. Exactly one of them has rank

4: the negative tetrahedron. Since twin expansion does not affect the rank, nor the

number of positive (eq. negative) eigenvalues, it then follows that the only digraphs

whose H spectrum contains exactly one negative and three positive eigenvalues are

those that are twin expansions of the negative tetrahedron. To conclude the chapter,

we determine which of these expansions may be cospectral to one another and which,

conversely, have unique spectra.

It is easy to see that a digraph (or, equivalently, a mixed graph) is strongly deter-

mined by its H-spectrum only if it is isomorphic to its converse, in which case it is

said to be self-converse. Thus, an interesting question that comes up in the discussion

of Chapter 2 is: how rare are self-converse digraphs? Chapter 3 considers the details

of this question and provides an elegant proof to show that it is a rare property, in

the sense that the fraction of digraphs that satisfies it goes to zero when the order

increases.

In Chapter 4, we shift our focus to signed digraphs and their Eisenstein matri-
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ces. We first provide a classification of signed directed graphs that satisfy particular

spectral conditions. By fixing, without loss of generality, the gains of a spanning

tree and applying eigenvalue interlacing, we classify all signed directed graphs whose

rank is 2 or 3. The characterization of all such signed digraphs is rather concise, and

may be described as twin expansions of either an edge, a triangle, or the transitive

tournament of order four. Subsequently, we provide an extensive discussion of clique

expansions of the 5-cycle and the 4-path to characterize the minimally dense signed

directed graphs that have exactly 1 or 2 non-negative E-eigenvalues.

The above properties are then used to consider signed digraphs with spectra that

occur uniquely, up to switching equivalence. Through a series of counterexamples,

we show that the discussed low rank signed digraphs are not, in general, determined

by their spectra. However, by applying a sequence of counting arguments to the lists

obtained above, we are then able to prove that, among others, several of the families

with 2 non-negative eigenvalues are determined by their spectrum. Specifically, in

addition to a number of sporadic examples, we find several arbitrarily large graphs,

obtained as clique expansions of C4, P4 or C5, that admit signed digraphs cospectral

only to switching equivalent signed digraphs.

For the final three chapters of the thesis, we investigate complex unit gain graphs

in their least restricted form. That is, the group of admissible gains now contains

all complex numbers of unit norm. As a consequence of the shift to weights with a

continuous nature, the usual exhaustive search methods - that one so often entertains

in the initial search for a foothold - no longer work. Chapter 5 paints the broad

strokes of an application of the well-known optimization procedure known as simulated

annealing that may be applied to search for gain graphs with given properties.

Subsequently, in Chapter 6, we consider three forms of symmetry that are appli-

cable to general gain graphs, namely structural symmetry, spectral symmetry and

sign-symmetry; in particular, we study the relationships between them. We show

that a graph G is underlying only to spectrally symmetric gain graphs if and only

if it is bipartite, and that every graph is underlying to some spectrally symmetric

gain graphs. Then, we consider a number of doubling operations whose origin lies

with the recursive construction of Hadamard matrices. By design, these constructions

yield gain graphs with symmetric spectra. While most of them also implicitly yield

sign-symmetric gain graphs, we prove that a subtle adaptation of Sylvester’s double

transforms an arbitrary gain graph into infinitely many switching-distinct gain graphs

that are not sign-symmetric.
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18 Chapter 1. Introduction

Finally, in Chapter 7, we venture to classify various families of unit gain graphs,

with two distinct eigenvalues; a property that really only occurs in undirected graphs

when they are complete, and which turns out to be comparably rare in complex unit

gain graphs. The applied approach is twofold. Through an interesting parallel to var-

ious systems of lines in complex space, that equates such two-eigenvalue gain graphs

with equal-norm tight frames, we provide an algebraically oriented classification of

two-eigenvalue gain graphs whose least multiplicity is at most three. Moreover, various

other examples stemming from well-known combinatorial objects such as the Coxeter-

Todd lattice are discussed, as well as a technique that is parallel to the dismantling

of association schemes, which is used to find many two-eigenvalue gain subgraphs.

Afterwards, we take a combinatorial perspective, to classify two-eigenvalue gain

graphs of bounded degree. For gain graphs of degree at most four, we are able to

completely characterize the collection of desired unit gain graphs. Some of these col-

lections have infinitely many switching-distinct members, for given order and degree.

1.9 Disclosure

This thesis is based on the following five research papers. Each paper contains ideas

and contributions from its respective authors.

Chapter 2 Wissing, P., & Van Dam, E. R. (2020). The negative tetrahedron

and the first infinite family of connected digraphs that are strongly

determined by the Hermitian spectrum. Journal of Combinatorial

Theory, Series A, 173, 105232.

Chapter 3 Wissing, P. (2022). Self-converse mixed graphs are extremely rare.

Discrete Mathematics, 345(10), 112989.

Chapter 4 Wissing, P., & Van Dam, E. R. (2022). Spectral fundamentals and

characterizations of signed directed graphs. Journal of Combinato-

rial Theory, Series A, 187, 105573.

Chapters 5 & 7 Wissing, P., & Van Dam, E. R. (2022). Unit gain graphs with two

distinct eigenvalues and systems of lines in complex space. Discrete

Mathematics, 345(6), 112827.

Chapter 6 Wissing, P., & Van Dam, E. R. (2022). Symmetry in complex unit

gain graphs and their spectra. Work in Progress.
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CHAPTER 2

Digraphs that are strongly determined by the

Hermitian spectrum

Abstract

Thus far, digraphs that are uniquely determined by their Hermi-

tian spectra have proven elusive. Instead, researchers have turned

to spectral determination of classes of switching equivalent digraphs,

rather than individual digraphs. In this chapter, we consider the tra-

ditional notion: a digraph is said to be strongly determined by its

Hermitian spectrum (abbreviated SHDS) if it is isomorphic to each

digraph to which it is cospectral. Convincing numerical evidence to

support the claim that this property is extremely rare is provided.

Nonetheless, the first infinite family of connected digraphs that is

SHDS is constructed. This family is obtained via the introduction

of twin vertices into a structure that is named negative tetrahedron.

This special digraph, that exhibits extreme spectral behavior, is con-

tained in the surprisingly small collection of all digraphs with exactly

one negative eigenvalue, which is determined as an intermediate re-

sult.
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20 Chapter 2. Strongly HDS digraphs

2.1 Introduction

While there are various matrices that may be used to describe a directed graph,

there is still no consensus as to which of them best represents the characteristics of a

digraph in its eigenvalues. This may be considered part of the reason that relatively

well understood questions concerning undirected graphs remain wide open in the

directed graph paradigm. This chapter discusses a relatively recent candidate: the

Hermitian adjacency matrix [76, 51]. Of particular concern is the question: can we

determine a directed graph by its Hermitian spectrum.

Being an interesting candidate for the representation of digraphs, the Hermitian

adjacency matrix and its spectrum have been the subject of several recent publica-

tions. Following the two fundamental works, Mohar [83] has characterized all digraphs

whose Hermitian adjacency matrix have rank 2, and shown that there are infinitely

many digraphs that have cospectral mates, which are not members of the same switch-

ing equivalence class. Wang et al. [107] extends the research in [83] to the digraphs

of rank 3; their main result is that any pair of weakly connected, cospectral rank

3 digraphs is switching equivalent. Although using a different approach, Tian and

Wong [104] obtain similar results as in [107].

Further recent research that is concerned with the Hermitian spectrum but less

relevant to the current chapter includes Greaves et al. [47], Guo and Mohar [50],

Greaves [45], Hu et al. [64], Chen et al. [18] and Chen et al. [19].

Due to the presence of four-way switching, Mohar [83] defines a digraph to be

determined by their H-spectrum (Abbreviated HDS hereafter) if it is cospectral only

to those digraphs that are obtained from the digraph by a switching operation, pos-

sibly followed by the reversal of all edges. This definition is, however, much weaker

than that of the similarly named concept in undirected graph context; if a graph G

is said to be determined by its adjacency spectrum, then one is able to uniquely (up

to isomorphism) construct said graph when one is given its spectrum.

As such, the author set out to classify digraphs which are strongly determined by

their H-spectrum; that is, digraphs whose spectra occur uniquely. Two prominent

examples of such digraphs are shown in Figure 2.1. These digraphs are extremely rare,

as any such digraph must be self-converse. We observe that the fraction of digraphs

that satisfies this property rapidly goes to zero as the number of vertices grows. We

formally show that this is in fact true in Chapter 3.

For the present chapter, the author was inspired by a result first encountered
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in [52] and later in [51], which occurs here as Lemma 2.7. In particular, by said

lemma, there is exactly one kind of induced subdigraph of order 3 that may contribute

negatively to tr
(
H(D)3

)
, where H(D) is the Hermitian of a digraph D. This order 3

digraph is named negative triangle and shown in Figure 2.1a. Furthermore, eigenvalue

interlacing is used extensively.

The main results of this chapter are as follows. We construct the first infinite

family of connected, strongly HDS digraphs, in Theorem 2.23. This family is obtained

by twin expansion (see Def. 2.7) of a key digraph, which is named the negative

tetrahedron. This peculiar digraph is a tetrahedron, whose four faces are all negative

triangles, as is shown in Figure 2.1b. Moreover, it is the only reduced1 digraph

that has rank 4 and exactly one negative eigenvalue. Additionally, we determine all

digraphs that have precisely one negative eigenvalue in Theorem 2.20, and show that

any pair of connected rank 4 members of this class is switching equivalent if they are

cospectral in Proposition 2.27.

1

2

3

(a) The negative triangle T−

1

2

3

4

(b) The negative tetrahedron K−

Figure 2.1 – Two strongly HDS digraphs.

2.2 Preliminaries

For an outline of the applied terminology and notation, the reader is referred to

Section 1.1. Throughout this chapter, the rank and the spectral radius of a digraph

are respectively the rank and the spectral radius of its Hermitian adjacency matrix.

Below, a few more chapter-specific prerequisites are included.

1A digraph is said to be reduced if it contains no two vertices whose neighborhoods exactly
coincide, and no isolated vertices. See Def. 2.5.
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2.2.1 Determined by the Hermitian spectrum

As was briefly mentioned before, Mohar [83] pioneered spectral characterization with

respect to the Hermitian adjacency matrix. We include the details of Mohar’s defini-

tions below.

Definition 2.1. [83] A digraph is said to be (weakly) determined by its Hermitian

spectrum (WHDS) if it is switching equivalent (see Definition 1.5) to every digraph

to which it is H-cospectral.

However, the following definition of spectral determination is in a sense more loyal

to its undirected graph analogue.

Definition 2.2. A digraph is said to be strongly determined by its Hermitian spectrum

(SHDS) if it is isomorphic to every digraph to which it is H-cospectral.

The distinction between Definitions 2.1 and 2.2 summarizes what sets this work

apart from previous articles regarding Hermitian spectral characterization. To dis-

tinguish between the two definitions, the author has added the word ”weakly” to the

former and ”strongly” to the latter. The terminology is justified by the observation

that any SHDS digraph is implicitly WHDS.

We end this section with a few words of warning, regarding a frequent mistake sur-

rounding the term (W)HDS. Since neither four-way switching nor taking the converse

changes a digraph’s underlying graph, two digraphs of which just one is connected

cannot be switching equivalent. Hence, if a connected digraph is cospectral to a

digraph that contains isolated vertices, neither may be said to be (W)HDS. While

[107, 104] show that any pair of cospectral, connected rank 3 digraphs is switching

equivalent, cases in which such a connected digraph is cospectral to a disconnected

digraph may still be found. Therefore, the phrasing of the final theorems of both

[107] and [104], in which it is claimed that any rank 3 digraph is (W)HDS, is flawed.

2.2.2 Known results

Here, we will list some of the results that are vital to the discussion in this paper.

Likely the single most used tool throughout is known as eigenvalue interlacing, which

is a particularly powerful tool, adopted from graph theory. In particular, Lemma

1.1 will be one of the tools to determine the collection of all digraphs with a single

negative eigenvalue. To explicitly write the spectra of these families, the concepts
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known as quotient matrix and equitable partition are used. Both originate from [55],

in graph context, and have been published in [51] for Hermitian context.

Let D be a digraph and let V = {V1, . . . , Vk} be a partition of V (D). One may

order the vertices of V such that V induces a partition of H into block matrices as

H =


H11 · · · H1k

...
. . .

...

Hk1 · · · Hkk

 .
The quotient matrix of a Hermitian H with respect to V is the matrix Q = [qij ],

i, j ∈ [k], where qij is the average row sum of block Hij . The partition V is said to be

equitable if every block Hij has constant row sum. One then has the following result.

Lemma 2.1. [51] Let D be a digraph with Hermitian H, and let V be an equitable

partition of its vertices. Moreover, let Q be the quotient matrix of H with respect to

V. If λ is an eigenvalue of Q with multiplicity µ, then it is an eigenvalue of H with

multiplicity at least µ.

In [83], Mohar works with digraphs of rank 2, particularly those that are complete

bipartite or complete tripartite. With regard to the former, the following unproven

claim is made.

Conjecture 1. [83] There are only finitely many integers m and n for which the

complete bipartite graph Km,n is WHDS.

Regarding complete tripartite digraphs, Mohar claims that there are many in-

stances that are WHDS for number theoretic reasons. In particular, if we denote by
−→
C 3(a, b, c) the complete tripartite digraph with parts A, B, C, where |A| = a, |B| = b

and |C| = c, with all arcs from A to B, B to C, and C to A, then the following claims

hold.

Proposition 2.2. [83]
−→
C 3(n, n, n),

−→
C 3(n, n, n + 1) and

−→
C 3(n − 1, n, n) are WHDS

for every n.

Corollary 2.2.1. [83] Suppose that a and n > a > 0 are integers such that a2 < 2n.

Then
−→
C 3(n− a, n, n+ a) is WHDS if and only if a is not divisible by a prime that is

congruent to 1 modulo 6.
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This line of research was extended to rank 3 independently by Wang et al. [107]

and Tian and Wong [104]. Of most relevance to this work is the following result.2

Proposition 2.3. [107, 104] Any two connected, cospectral, rank 3 digraphs are

switching equivalent.

However, Wang et al. [107] also show that, if the assumption on connectedness is

omitted, one may construct infinite families of rank 3 digraphs that are not WHDS.

Proposition 2.4. [107] There are infinitely many digraphs with rank 3 that are not

WHDS.

2.2.3 Twins

The first half of the discussion in this chapter will concern ‘small’ digraphs with

exactly one negative eigenvalue; the second half will extend this discussion to ‘large’

digraphs. That said, the discussed digraphs remain largely similar, from a structural

point of view. Specifically, in order to increase the size of the considered digraphs

without compromising the structural arguments made in the former part, twins are

introduced into the small digraphs. Since there have been several authors (e.g., [3, 14])

to have introduced a similarly named concept, each with subtle differences, we provide

the formal definition as it is used throughout this paper.

Definition 2.3. Two vertices u, v in D, whose Hermitian is H, are called twins if

Hux = Hvx for every x ∈ V (D).

A simple but important observation is that u and v are implicitly not twins if

Huv ̸= 0, as loops are not allowed throughout. Moreover, if u, v, w are vertices in D,

w is said to distinguish u and v if Huw ̸= Hvw. Naturally, if such a vertex w exists in

D, then u and v are not twins in D, which justifies the terminology.

We will often want to consider the structure that is in a sense fundamental to a

large digraph that contains a set of equivalent vertices. To this end, we define the

twin reduction operation, which reduces such a collection of twin vertices down to a

single vertex; this may significantly reduce the order of a digraph, while retaining its

general structure and rank. Moreover, using said operation, we define a property that

characterizes digraphs we consider to be ’small’.

2Originally formulated as ”All connected digraphs of order n with rank 3 are WHDS,” which is
not entirely accurate, as discussed at the end of Sec. 1.1. The author took the liberty of slightly
rephrasing to avoid confusion.
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Definition 2.4. We define TR(·) to be the twin reduction operator, which removes

vertices and edges from a digraph in such a way that exactly one of every collection

of twins is kept and no isolated vertices remain.

Definition 2.5. A digraph D is called reduced if TR(D) = D.

Naturally, we may also want to reverse this operation, to increase the size of the

digraph without compromising the fundamental structure. The formal definition of

the corresponding operation is given below.

Definition 2.6. A vector t =
[
t0 t1 · · · tn

]
∈ Nn

0 is called an expansion vector

for a digraph D if n = |V (D)| and t1, . . . , tn ≥ 1.

Definition 2.7. Let D be a digraph with an ordered set V of n vertices, and let t

be an appropriate expansion vector. The twin expansion of D with respect to t is

denoted D′ = TE(D, t) and is obtained by replacing each vertex u in D by tu twins,

and adding t0 isolated vertices. Formally, if V = [n], let V (D′) = V0 ∪ V1 ∪ · · · ∪ Vn,
where V0, V1, . . . , Vn are mutually disjoint sets, with |Vu| = tu. In D′, V0 is a set of

isolated vertices, and H ′u′v′ = Huv for every u′ ∈ Vu, v′ ∈ Vv, u, v ∈ V , where H and

H ′ are the Hermitians of D and D′, respectively.

Note that each entry of the expansion vector thus corresponds to a specific vertex

in the digraph that is to be expanded. As a direct consequence, the vertex ordering

does matter, in the sense that permuting the expansion vector does not change the

resulting (expanded) digraph if the vertex order of the source digraph is permuted

accordingly. Thus, we will fix the vertex orderings of the relevant digraphs to ensure

that the above does not occur, when permutations of given expansion vectors are

discussed. Specifically, this ordering is given by the vertex labels of the defining

illustrations.

For the sake of clarity, we include the following example that shows the working

of the twin expansion operator.

Example 2.1. Let t =
[
2 3 2 1

]
. Then the vertices of the negative triangle T−,

shown in Figure 2.1a, and its twin expansion D′ = TE(T−, t) may be labeled such
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that their Hermitians are

H(T−) =

 0 1 i

1 0 −i
−i i 0

 and H(D′) =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 i

0 0 0 0 0 1 1 i

0 0 0 0 0 1 1 i

0 0 1 1 1 0 0 −i
0 0 1 1 1 0 0 −i
0 0 −i −i −i i i 0


.

We conclude this section with two observations that will be quite obvious to the

experienced graph theorist, though the ideas are in a sense key to the presented

discussion. As such, their proofs are omitted.

Lemma 2.5. Let D be a digraph of order n and let t be an expansion vector for D.

Then

Rank H(TR(D)) = Rank H(D) = Rank H(TE(D, t)) (2.1)

Lemma 2.6. Let D be a digraph of order n and let t be an expansion vector for D.

Suppose that D has p positive and q negative eigenvalues. Then TE(D, t) and TR(D)

also have p positive and q negative eigenvalues.

2.3 The negative tetrahedron

In the present paper, we are interested in families of digraphs that contain many

copies of a given substructure, which is in a sense counted by the spectrum. In this

section, we will provide a thorough introduction of these families and the elementary

observations upon which many of the later results are built.

2.3.1 Digraphs related to the negative triangle

Upon investigation of properties that may be inferred from the Hermitian spectrum

of a digraph, we are inspired by the following lemma by Guo [52], that ties in closely

to a similar, well-known result for undirected graphs (see Brouwer and Haemers [11]).

Lemma 2.7. [52] Let D be a digraph with Hermitian H. Then tr
(
H3
)
= 6(x1 +

x2 + x3 − x4), where xj denotes the number of copies of Dj that occur as induced

subdigraphs of D. The structures D1, . . . , D4 are shown in Figure 2.2.
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(a) D1 (b) D2

(c) D3 (d) D4

Figure 2.2 – The four triangles that conribute to tr
(
H3

)
.

The main observation to take away from Lemma 2.7 is that apparently, the struc-

tureD4, above, is the only order 3 substructure that has a negative impact on tr
(
H3
)
,

which in turn may be computed directly from the spectrum of a digraph. Thus, we

may be able to identify (or even determine) digraphs that have many such substruc-

tures. In the interest of clearness, we name the following two structures, which oc-

curred before in Figure 2.1 and that are in a sense fundamental to the discussion in

this paper.

Definition 2.8. Figure 2.2d is called the negative triangle and is denoted T−.

Definition 2.9. Figure 2.3 is called the negative tetrahedron and is denoted K−.

The negative tetrahedron is an interesting digraph for a number of reasons, and

has come up in the before mentioned works. One might first notice its extreme degree

of structural symmetry; K− is, in fact, vertex-transitive. A second interesting fact

is that T− and K− are exactly the two digraphs with rank more than 2 that are

antispectral3 to a complete graph. T− and K−, whose spectra are {−2, 1[2]} and

{−3, 1[3]}, respectively, are antispectral to respectively K3 and K4. Guo and Mohar

[51] have shown that there are no higher rank digraphs that admit to this property.

3A pair of digraphs D and D′ is said to be antispectral to one another if ΣD = −ΣD′ .



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

28 Chapter 2. Strongly HDS digraphs

1

2

3

4

Figure 2.3 – The negative tetrahedron K−.

1

2

3

4

(a) T−a

1

2

3

4

(b) T−b

Figure 2.4 – Illustrations for Def. 2.10.

Lastly, it is mentioned in [51] that K− exhibits extreme spectral behavior, in the

sense that it attains the bound ρ(D) ≤ 3µ1, where µ1 is the largest eigenvalue of D.

In addition to T− and K−, there are two more digraphs that play a prominent

role throughout this paper. In the interest of structure, we include their definitions

here.

Definition 2.10. The digraphs T−a and T−b are shown in Figures 2.4a and 2.4b,

respectively.

We note that both digraphs are reduced and have rank 3. Furthermore, we observe

that T−a and T−b are closely related to T−, from a spectral point of view. In fact, if

one expands a single vertex of T− once (to obtain, say, T−1,1,2), then T
−
1,1,2, T

−
a , T

−
b

are all cospectral and switching equivalent. More detail concerning this relation is

provided at the end of Section 2.3.3.
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2.3.2 The first families of SHDS digraphs

Using only the tools we have thus far, we are already able to construct some infi-

nite SHDS families. Probably the first, most trivial SHDS digraph that comes to

mind is the empty graph of order p, denoted Op. Indeed, using that 2|E(Γ(Op))| =
tr
(
H(Op)

2
)
= 0, the all-zero spectrum certainly determines the empty graph.

It is easy to check that T− is the smallest non-empty digraph that is strongly

determined by its Hermitian spectrum. In fact, it is a simple exercise to show the

following result,4 that signifies the essential role T− and K− play in the proposed

discussion. As a first step towards a less trivial infinite family of SHDS digraphs, we

classify all digraphs with largest eigenvalue 1.

Lemma 2.8. Let D be a connected digraph with largest eigenvalue 1. Then D is

either K2,K
′
2, T

−, or K−, where K ′2 is the oriented K2.

Proof. By interlacing, it follows that there is no U ⊆ V (D) such that Γ(D[U ]) = P3,

since every digraph whose underlying graph is P3 has µ1 =
√
2, where µ1 is the largest

eigenvalue. Hence, Γ(D) = Kn, for n ∈ N. If n = 2, both digraphs D with Γ(D) = K2

have µ1 = 1, and are therefore valid options. Note that n = 3, µ1 = 1 only if D = T−;

other potential digraphs of order 3 have an eigenvalue
√
3 or 2. Moreover, one should

also observe that if n > 3, each order-3 induced subdigraph of D should again be T−,

or else the claim is false by interlacing. Thus, if n = 4, D = K−. Moreover, as before,

if n > 4, any order 4 induced subdigraph of D must be K−.

Finally, suppose that n ≥ 5, and suppose that D[{1, 2, 3, 4}] = D[{1, 2, 3, 5}] =
K−. (Note that we are not imposing any extra assumptions; if these induced sub-

digraphs are not K−, D certainly has µ1 > 1.) Then we have D[{1, 4, 5}] ̸= T−, as

H(D)1,4 = H(D)1,5. It follows that µ1 > 1, by which we have a contradiction and

thus n ≤ 4.

By the result above, we are able to draw an interesting conclusion with regard to

the spectral determination of the class of digraphs with largest eigenvalue 1.

Corollary 2.8.1. Let D be a digraph with largest eigenvalue 1. Then D is WHDS.

Proof. By Lemma 2.8, every connected component must be K2,K
′
2, T

−, or K−. It

should be clear that every eigenvalue −3 belongs to a copy of K−, every eigenvalue

4A similar result occurs as Prop. 5.2 in [51], which concerns digraphs antispectral to Kn. While
the obtained collection of digraphs is almost identical, the author chose to include a proof as the
claim requirements and the argument are signifficantly different.
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−2 belongs to a T−, and every eigenvalue 0 belongs to an isolated node. Likewise,

every eigenvalue −1 belongs to K2 or K ′2. Since K2 is clearly switching equivalent to

K ′2, the claim follows.

Moreover, if one excludes K2 and K ′2, such a digraph is SHDS, by the same

argument.

Corollary 2.8.2. Let D be a digraph with largest eigenvalue 1 and no eigenvalues

−1. Then D is SHDS.

Thus, we have obtained an infinite family of SHDS digraphs, that may consist of

arbitrarily many disjoint copies of T− and K−, as well as isolated vertices.

2.3.3 The spectra of expansions of K− and related digraphs

In the discussion leading up to our main theorem, we will be interested in twin

expansions (recall Def. 2.7) of K−, in particular. The following Lemma is added for

completeness; its correctness should be evident from a brief look at Figure 2.5.

Lemma 2.9. Let t =
[
t0 t1 t2 t3 t4

]
and let Dt = TE(K−, t). Then Dt con-

tains n =
∑4

i=0 ti vertices, m =
∑

1≤i<j≤4 titj edges, and k =
∑

1≤i<j<l≤4 titjtl

copies of T−.

t2 = 4

t1 = 5
t4 = 3

t3 = 2

t0 = 2

Figure 2.5 – A digraph obtained as TE
(
K−, [2 5 4 2 3]

)
. Here, the dashed

circles indicate clusters of twins and an edge between two clusters is used to
draw all edges of that type between the members of said clusters.
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Note that a permutation of the coefficients t1, . . . , t4 would not necessarily yield

an isomorphic digraph, as is illustrated in Example 2.3, (Sec. 2.5) while the spectrum

is invariant under such a permutation, as we will see shortly.

As we set out to show that particular twin expansions of K− are SHDS, it seems

fitting to include the explicit spectra of this interesting family of digraphs. In the

below, we write their characteristic polynomials explicitly by employing Lemma 2.1.

While one could have used a before-mentioned result from [76] that counts elementary

subdigraphs to obtain the coefficients in (2.2), the author found the approach below

to be significantly more comprehensible.

Lemma 2.10. Let t =
[
t0 t1 t2 t3 t4

]
be an expansion vector and let n =∑4

i=0 ti. Then D = TE(K−, t) has characteristic polynomial

χD(µ) = µn−4

µ4 −

 ∑
1≤i<j≤4

titj

µ2 + 2

 ∑
1≤i<j<k≤4

titjtk

µ− 3

4∏
i=1

ti

 .

(2.2)

Proof. By construction, we may write the Hermitian of D as the block matrix

H(TE(K−, t)) =

[
0 0

0 M

]
, where M =


0 J iJ −iJ
J 0 −iJ iJ

−iJ iJ 0 J

iJ −iJ J 0

 , (2.3)

where the diagonal blocks have sizes t0 × t0, . . . , t4 × t4, respectively. Note that all of

the blocks in (2.3) are constant, and thus (2.3) is a so-called equitable partition. We

may then write the 4× 4 quotient matrix [55, 51] B as

B =


0 t2 it3 −it4
t1 0 −it3 it4

−it1 it2 0 t4

it1 −it2 t3 0

 .

One may compute det(µI −B) to find

χB(µ) = µ4 −

 ∑
1≤i<j≤4

titj

µ2 + 2

 ∑
1≤i<j<k≤4

titjtk

µ− 3

4∏
i=1

ti.
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Now, observe that Rank (B) = 4. Hence, χB(µ) has four nonzero roots, which are

the (not necessarily distinct) eigenvalues λ1, . . . , λ4 of B. Since (2.3) is an equitable

partition, each of the λj also occur as an eigenvalue of H(TE(K−, t)). Moreover,

since by construction Rank (H(TE(K−, t))) = Rank (B) = 4, it is clear that we have

χD(µ) = µn−4(µ− λ1)(µ− λ2)(µ− λ3)(µ− λ4)

= µn−4χB(µ).

Moreover, by plugging in t, one may readily show the following results.

Corollary 2.10.1. Let t1, t2, t3 ∈ N and t0 ∈ N0. For the following special cases of

expansion vector t, we may write the spectrum of D = TE(K−, t) explicitly. In the

below, n is the sum of the entries of t.

(i) If t =
[
t0 t1 t1 t1 t1

]
then

ΣD =
{
−3t1, t[3]1 , 0[n−4]

}
.

(ii) If t =
[
t0 t1 t1 t1 t2

]
then

ΣD =

{
−t1 −

√
3t1t2 + t21, −t1 +

√
3t1t2 + t21, t

[2]
1 , 0[n−4]

}
.

(iii) If t =
[
t0 t1 t1 t2 t2

]
then

ΣD =

{
t1, t2,

1

2

(
−t1 − t2 +

√
t21 + 14t1t2 + t22

)
,

1

2

(
−t1 − t2 −

√
t21 + 14t1t2 + t22

)
, 0[n−4]

}

Proof. Follows directly by plugging t into Lemma 2.10.

Corollary 2.10.2. Let t1, t2, t3 ∈ N and t0 ∈ N0. If t =
[
t0 t1 t1 t2 t3

]
then

TE(K−, t) has an eigenvalue t1.
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Proof. Plug in (2.2) to find

χD(µ) = µn−4(µ− t1)(µ3 + t1µ
2 − (2t1t2 + 2t1t3 + t2t3)µ+ 3t1t2t3),

which clearly has a root at µ = t1.

Now, one would like to conclude that the reverse is also true; that from the

occurrence of an integer eigenvalue µj it follows that an expansion vector contains µj

twice. This is in general not true, as shown by the following example.

Example 2.2. Suppose that t =
[
0 1 2 6 9

]
. Then, by Lemma 2.10, D =

TE(K−, t) has characteristic polynomial

χD(µ) = µ14
(
µ4 − 101µ2 + 384µ− 324

)
= µ14(µ− 3)(µ3 + 3µ2 − 92µ+ 108),

and thus D has an eigenvalue 3, while none of the ti equals 3.

That said, if an integer eigenvalue µj occurs at least twice, then we are able to

conclude the reverse, as we will discuss in the proof of Theorem 2.23.

We conclude this section with some brief notes regarding the spectral similarity

of T−, T−a , and T−b , and their respective expanded versions. As before, we are able

to compute their spectra explicitly by employing the quotient matrix.

Lemma 2.11. Let t =
[
t0 t1 t2 t3

]
be an expansion vector and let n =

∑
i ti.

Then D = TE(T−, t) has characteristic polynomial

χD(µ) = µn−3 (µ3 − (t1t2 + t1t3 + t2t3)µ+ 2t1t2t3
)
.

Lemma 2.12. Let t =
[
t0 t1 t2 t3 t4

]
and be an expansion vector. Let D′a =

TE(T−a , t) and D
′
b = TE(T−b , t). Then

χD′a
(µ) = µn−3 (µ3 − (t1t2 + t1(t3 + t4) + t2(t3 + t4))µ+ 2t1t2(t3 + t4)

)
and

χD′b
(µ) = µn−3 (µ3 − (t1t3 + t1(t2 + t4) + t3(t2 + t4))µ+ 2t1t3(t2 + t4)

)
.

Thus, it follows that TE(T−,
[
t0 t1 t2 (t3 + t4)

]
), TE(T−a ,

[
t0 t1 t2 t3 t4

]
)
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and TE(T−b ,
[
t0 t1 t3 t2 t4

]
) are all cospectral. Lastly, note that these digraphs

are also all pairwise switching equivalent.

2.4 Classification of digraphs with one negative eigenvalue

In order to construct the desired infinite family of SHDS digraphs, we first set out to

find its smallest members. It turns out that the members of the family in which we are

interested share the interesting property of only having a single negative eigenvalue; a

property that is satisfied by very few reduced digraphs. We note the following useful

observation with regard to such digraphs.

Lemma 2.13. Let D be reduced with exactly one negative eigenvalue. Then D is

connected.

Proof. Note that the spectrum of any connected component of order at least 2 contains

at least one negative eigenvalue, since the sum of the eigenvalues of a Hermitian

matrix must sum up to its trace, which is zero for the Hermitian adjacency matrix of

a digraph without loops. Moreover, recall that if D consists of two disjoint, connected

components D1 and D2, then ΣD = ΣD1
∪ ΣD2

, and thus ΣD contains at least two

negative elements. Lastly, note that no isolated vertices are allowed by definition of

reducedness.

We also impose a minor assumption on the rank of the considered digraphs, in

order to exclude cases that are in a sense trivial. Specifically, we require digraphs

to have rank larger than 2. Recall that there are no digraphs with rank less than 2

besides the empty graph, and that any nonempty rank 2 digraph trivially has precisely

one positive and one negative eigenvalue, by the observation above. However, no such

digraph is interesting for the present paper, as any rank 2 digraph is cospectral to

its underlying graph [83] and such digraphs are in general not WDHS.5 As such, we

exclude this class of digraphs; the interested reader is referred to [83], in which this

class is researched in considerable detail.

If one requires the considered digraphs to have rank larger than 2 in addition to

being reduced, one finds just four digraphs. The main result of this section, which is

the following theorem, shows exactly that.

5By employing twin expansion on e.g., K2 and
−→
C 3, one easily finds cospectral classes whose

members have at least two distinct underlying graphs.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

Classification of digraphs with one negative eigenvalue 35

Theorem 2.14. Let D be a reduced digraph of rank larger than 2 and with exactly

one negative eigenvalue. Then D is one of T−, T−a , T−b , or K−.

In order to prove Theorem 2.14, we first show several intermediate results. First,

we will provide a few crucial observations that are somewhat obvious, but that are

added for the sake of completeness. In Proposition 2.16, we will see that there are

exactly three reduced digraphs on four vertices that have the required single negative

eigenvalue. The remainder of the section is concerned with bounding the size of a

reduced digraph with exactly one negative eigenvalue. In particular, we will find that

such a digraph may contain at most four vertices; the correctness of Theorem 2.14

then follows.

As was mentioned before, the negative triangle T− plays an essential role through-

out. The simple, but useful fact that any digraph of sufficient rank must contain such

triangles if it has a single negative eigenvalue, is shown below.

Lemma 2.15. Let D be a digraph with rank larger than 2. If D has a single negative

eigenvalue, then D[U ] = T− for some U ⊆ V (D).

Proof. Let λ1, λ2, . . . , λp be the p positive eigenvalues of D and let λn be the negative

eigenvalue. We have λn = −
∑p

j λj , so tr
(
H(D)3

)
=
∑p

j λ
3
j −

(∑p
j λj

)3
< 0 and

thus D contains at least one negative triangle by Lemma 2.7.

Corollary 2.15.1. If D is a digraph with order 3, rank larger than 2, and exactly

one negative eigenvalue, then D = T−.

We are now ready to show the first major result, in which we obtain the collection

of order four digraphs that meets our requirements. We would remark here that,

while the collection of all order four digraphs is small enough to simply apply full

enumeration by computer, the author opts for a constructive argument that may be

used in similar fashion when the order is increased.

Proposition 2.16. Let D be a reduced digraph with order 4, rank larger than 2, and

exactly one negative eigenvalue Then D is one of T−a , T−b , or K−.

Proof. Let D be a digraph of order 4, with exactly one negative eigenvalue, and rank



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

36 Chapter 2. Strongly HDS digraphs

larger than 2. By Lemma 2.15, D contains T−. Hence, we may write H(D) as

H(D) =


0 1 i −i · z̄1
1 0 −i i · z̄2
−i i 0 z̄3

i · z1 −i · z2 z3 0

 ,

where z = [z1 z2 z3] ̸= 0, zj ∈ {0,±1,±i} and z1 ̸= i, z2 ̸= −i, z3 ̸= −1. Note that

the variable entries of H(D) are put in this form to make (2.4) symmetric. One then

readily obtains that

detH(D) =

3∑
j=1

|zj | − 2
∑

1≤i<j≤3

Re (ziz̄j) . (2.4)

Now, we make the following observation. Since D contains T−, it has at least two

positive eigenvalues, by interlacing. Moreover, from detH(D) =
∏

j λj it follows that

detH(D) > 0 if and only if D has an even number of negative eigenvalues. Hence, D

satisfies the requirements of the claim if and only if the corresponding z is such that

detH(D) ≤ 0. Note that if exactly one zj is nonzero, one may plug in (2.4) to obtain

detH(D) = 1, and thus H(D) has more than one negative eigenvalue. Therefore, at

least two elements of z must be nonzero.

Suppose that two elements of z are nonzero. Then detH(D) ≥ 0 (by (2.4)) and

thus we are only interested in the case that detH(D) = 0. Suppose that z3 = 0. Then

detH(D) = 0 ⇐⇒ |z1| + |z2| = 2Re (z1z̄2) ⇐⇒ z1z̄2 = 1 ⇐⇒ z1 = z2. Hence,

either z =
[
1 1 0

]
or z =

[
−1 −1 0

]
. Similarly, if z2 = 0 then z =

[
1 0 1

]
or z =

[
−i 0 −i

]
and if z1 = 0 then z =

[
0 1 1

]
or z =

[
0 i i

]
. It is readily

verified that out of these six possible z, three correspond to a digraph that contains

a twin and therefore do not meet the requirements of the claim; the remaining three

z correspond to either T−a or T−b .

Lastly, suppose that no element of z is zero. It is easily observed from (2.4)

that detH(D) ̸= 0, since Re (ziz̄j) ∈ Z ∀i, j and 3 = 2(m1 + m2 + m3) has no

solution for m1,m2,m3 ∈ Z. Thus, any z that meets the requirements of the claim

has detH(D) < 0. Hence, Re (ziz̄j) ≥ 0 ∀i, j, with at most one pair (i, j) such that

Re (ziz̄j) = 0. W.l.o.g., assume that z1z̄2 = z1z̄3 = 1. Then z1 = z2 and z1 = z3, and

thus z =
[
1 1 1

]
, which corresponds to exactly K−.
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In order for us to prove Theorem 2.14, we should consider the reduced digraphs of

larger order. As we will shortly show, we find that no digraph of order larger than 4

satisfies both required properties, i.e., being reduced and having exactly one negative

eigenvalue. In the interest of structure, the discussion to support this claim is split

up into Lemmas 2.17, 2.18 and 2.19.

The approach below is, for the most part, based on the idea of taking some small

substructure that is certainly contained in any of the candidates, and attempting to

build a digraph that meets all requirements by adding vertices and edges to it. In

particular, all of the digraphs we encounter contain at least one copy of T−. Moreover,

from the results at the top of this section, we know that there are scarcely any ways

to extend T− with vertices and edges without invalidating assumptions. Using these

facts, we will show in Lemmas 2.17, 2.18 and 2.19 that the order of the digraphs

that have so far been shown to satisfy our requirements cannot be extended without

introducing a twin vertex.

Lemma 2.17. Suppose that D is a digraph of order n ≥ 4, rank larger than 2, that

does not contain T−a , T−b , or K−. Moreover, suppose that D has exactly one negative

eigenvalue. Then D is not reduced.

Proof. By contradiction. We will show, through combinatorial reasoning, that a di-

graph that admits to the assumptions in the claim must contain twins. This reasoning

is illustrated with an example in Figure 2.6. We note that while the exact nature of

the edges in Figure 2.6 may differ depending on u, the reasoning below remains valid.6

Suppose that D is reduced. By Lemma 2.15, D contains T− as an induced subdi-

graph and D is connected by Lemma 2.13. Let U ⊂ V (D) be such that D[U ] = T−.

As n ≥ 4, there must be a vertex v ∈ v(D) that is adjacent to U in D. We now

observe that D[U ∪{v}] must contain a twin. Indeed, if we suppose that D[U ∪{v}] is
reduced, then by Proposition 2.16, D[U∪{v}] is either T−a , T−b or K−. However, since

none of these digraphs are allowed to be contained as induced subdigraphs, by the

requirements of the claim, we have a contradiction. Thus, D[U ∪ {v}] is not reduced,
and v is the twin of a vertex u ∈ U in D[U ∪ {v}]. (At this point, D[U ∪ {v}] may

look like Figure 2.6a.)

6In fact, one could even disregard the arc orientations in Figure 2.6 altogether and apply the
reasoning in the proof of Lemma 2.17 to the underlying graph of the considered digraph, without
compromising the proof. The author has opted for an example that best illustrates the situation at
hand.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

38 Chapter 2. Strongly HDS digraphs
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Figure 2.6 – Illustration for the proof of Lemma 2.17. Bold elements indicate
the most recent additions to the structure; dashed elements are temporarily
ignored.

But sinceD is assumed to be reduced, there must be some vertex that distinguishes

u from v in D. Let us call this vertex w and assume without loss of generality that

w is adjacent to u. Then, consider D[U ∪ {w}] and use the same argument as above

to obtain that w must be the twin of some vertex x ∈ U \ {u} (since u and w are

adjacent) in D[U ∪{w}]. Label the final unlabeled vertex in U with y; we then obtain

Figure 2.6b. Note that, again, by the same argument, D[{v, w, x, y}] contains T−

and should thus contain a twin. But as w is not adjacent to x (since w is the twin

of x in D[{u,w, x, y}]), w must be adjacent to v and implicitly w is the twin of x in

D[{v, w, x, y}] as well, (Figure 2.6c) and hence also in D[{u, v, w, x, y}]. Finally, if we
consider the full structure (Figure 2.6d) it then follows that w does not distinguish

between u and v, which is a contradiction.

Let us now consider digraphs that do contain T−a , T−b , or K−.
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Lemma 2.18. Suppose that D is a digraph of order n = 5, that contains T−a , T−b , or

K−. Moreover, suppose that D has exactly one negative eigenvalue. Then D is not

reduced.

Proof. First, suppose that U ⊂ V (D) is such that D[U ] ∼= K−. Let v be the fifth

vertex in V (D). We may assume that v is not an isolated vertex, otherwise D would

not be reduced. We make the following observations from Proposition 2.16: v cannot

have valency 1, and if v has valency 3, then the subdigraph of D induced by v and

its neighbors is isomorphic to K−. It then follows that v is connected to at least two

out of every three vertices in U . This, in turn, implies that v has valency at least 3.

Suppose that v has valency 3, let u ∈ U be non-adjacent to v and let U ′ =

U \ {u}∪ {v}. Then D[U ′] ∼= K−, and thus it follows that u and v are twins. If v has

valency 4, one may apply the same argument twice to obtain that v should be the

twin of two distinct vertices in U , which is impossible. Hence, v has valency 3 and D

is not reduced.

Next, suppose that D[U ] ∼= T−a . Then one may write

detH(D) = det


0 1 i −i −i · z̄1
1 0 −i i i · z̄2
−i i 0 0 z̄3

i −i 0 0 z̄4

i · z1 −i · z2 z3 z4 0

 (2.5)

= det


0 1 i 0 . . .

1 0 −i 0 . . .

−i i 0 0 . . .

0 0 0 0 z̄3 + z̄4

. . . . . . . . . z3 + z4 0


= − |z3 + z4|2 det

 0 1 i

1 0 −i
−i i 0

 = 2|z3 + z4|2, (2.6)

where zj ∈ {0,±1,±i} (j ∈ [4]), z1 ̸= i, z2 ̸= −i and z3, z4 ̸= −1. Since a positive

determinant implies an even (and thus larger than 1) number of negative eigenvalues,

it follows that z3+z4 = 0. Note that the proof of Proposition 2.16 gives us all possible

solutions for
[
z1 z2 z3

]
. We remove those with z3 = 1, since z4 = −1 is not allowed.

Besides z = 0, we obtain z =
[
1 1 0 0

]
,
[
−1 −1 0 0

]
,
[
−i 0 −i i

]
,
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[
0 i i −i

]
. The solution z = 0 makes the fifth vertex an isolated vertex, whereas

each of the other solutions makes it a twin of one of the four other vertices.

The proof for D[U ] ∼= T−b is analogous to the above and therefore omitted.

Using Lemma 2.18, we are able to extend its claim to arbitrarily large n.

Lemma 2.19. Suppose that D is a digraph of order n > 5, that contains T−a , T−b or

K−. Moreover, suppose that D has exactly one negative eigenvalue. Then D is not

reduced.

Proof. By contradiction. Suppose that D is reduced and let U ⊂ V (D) be such that

D[U ] is either K−, T−a or T−b . Fix some u′ ∈ V (D) \ U such that U∗ = U ∪ {u′}
induces a weakly connected subdigraph D[U∗]. By Lemma 2.18, there is a vertex

in U , say u, such that u and u′ are twins in D[U∗]. If we let U ′ = U∗ \ {u}, then
D[U ] ∼= D[U ′].

Because D is assumed to be reduced, there is some vertex w ∈ V (D) \ U∗ that

distinguishes u from u′. Let W = U ∪ {w} and W ′ = U ′ ∪ {w} and observe that, by

Lemma 2.18, w is twin to a member of U and U ′ in D[W ] and D[W ′], respectively.

Now, let v be a vertex in U \ {u} with valency 3 in D[U ]. Note that regardless of the

choice of u, such a vertex exists for each of the cases for D[U ]. Moreover, the relation

to v (in-neighbor, out-neighbor, undirected neighbor or no neighbor) is different for

each of the four vertices in D[U ]. This implies that the relation of w to v determines

which of the vertices in U is the twin of w in D[W ].

Suppose that the twin of w in D[W ] is u. Then the twin of w in D[W ′] is u′,

because u and u′ have the same relation to v. But then w does not distinguish u from

u′, since it is not adjacent to either of the two. This means that the twin of w in

D[W ] must be a member of U \ {u} = U ′ \ {u′}. Specifically, it is the same vertex as

the twin of w in D[W ′], as a consequence of the unique relation to v. But this twin

does not distinguish u from u′ (as D[U ] ∼= D[U ′]), so neither does w, and we have our

final contradiction. Thus, D is not reduced.

By Lemmas 2.17 through 2.19, we now have all the necessary tools to prove The-

orem 2.14.

Proof. (Of Theorem 2.14.) Suppose D is a reduced digraph of order n with rank

larger than 2 and exactly one negative eigenvalue. Since any digraph of order at most

2 has rank at most 2, it follows that n ≥ 3. Next, we distinguish two cases: either D

contains at least one of T−a , T−b , K− or it does not. In the former case, we have by
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Lemmas 2.18 and 2.19 that n ≤ 4, otherwise we would lose the reducedness of D. In

the latter case, the same conclusion follows unless n ≤ 3, by Lemma 2.17.

We are thus left with two possibilities: either n = 3 or n = 4. If n = 3, we have

that D = T−, by Corollary 2.15.1. Finally, if n = 4, then by Proposition 2.16 it holds

that D ∈ {T−a , T−b ,K−}.

We are, in fact, able to conclude much more. Using that the numbers of positive

and negative eigenvalues do not change when twin reduction is applied, the results of

Theorem 2.14 extend to the underlying structure of any digraph with a single negative

eigenvalue. This key observation is formalized in Theorem 2.20.

Theorem 2.20. Let D be a digraph of order n ≥ 5, rank larger than 2, with exactly

one negative eigenvalue. Then one of the following cases is true.

(i) Rank (D) = 3 and either TR(D) = T−, TR(D) = T−a or TR(D) = T−b ,

(ii) Rank (D) = 4 and TR(D) = K−.

Proof. Let D′ = TR(D). Then D′ is reduced and has exactly one negative eigenvalue,

which by Theorem 2.14 implies that D′ ∈ {T−, T−a , T−b ,K−}. The claim clearly fol-

lows.

In particular, we observe that if one is given a spectrum that contains three posi-

tive, one negative, and arbitrarily many zero eigenvalues, one could say with certainty

that the underying structure of the corresponding digraph is exactly K−. In other

words, this digraph is a twin expansion of K−. Inspired by this fact, the author was

convinced that many SHDS digraphs were within reach. Consider, for example, a

spectrum of the form

Σ =
{
t
[3]
1 , 0[4t1+t0−4],−3t1

}
for t1 ∈ N, t0 ∈ N0.

It is now not hard to show that this spectrum belongs to D, obtained from K− as

D = TE
(
K−,

[
t0 t1 t1 t1 t1

])
by considering

∑
µ∈Σ µ

2,
∑

µ∈Σ µ
3 and Theo-

rem 2.20. In the next section, we show a more general result, based on these principles.

As mentioned before, any rank 2 digraph trivially has precisely one negative eigen-

value. For completeness, we recall that a digraph has rank 2 if and only if Γ(TR(D))

is either K2, P3, or K3, where in the latter case it must additionally be required that
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TR(D) contains an odd number of arcs. For more detail, the interested reader is

referred to the full characterization in [83].

2.5 An infinite family of connected SHDS digraphs

We have so far restricted ourselves to reduced digraphs, as digraphs that admit to

this assumption are in a sense the fundamental structure to the digraphs that may

be obtained by introducing twin vertices. In this section, we will be relaxing said

assumption and consider twin expansions of the digraphs from Theorem 2.14, to

further inquire into the class of digraphs with exactly one negative eigenvalue. In

particular, we use that there is exactly one of those digraphs with rank four, to arrive

at a remarkable conclusion.

The main result of this section is Theorem 2.23, in which we show that any digraph

D = TE(K−, t), where t =
[
t0 t1 t1 t1 t2

]
is an expansion vector, is strongly

determined by its Hermitian spectrum. In other words, we obtain an infinite family

of digraphs that is SHDS, which includes the first such connected infinite family.

As was briefly touched on in the introduction, such digraphs are incredibly rare, as

there is an extreme degree of similarity within the collection of Hermitian adjacency

matrices of a given order, informally speaking. Even when one just considers a digraph

and its converse, which are clearly cospectral but in general not isomorphic, and

hence in general not SHDS. Indeed, one is easily convinced that any SHDS digraph

is necessarily self-converse, which is by itself an extremely rare property. Indeed, by

evaluation of the counting polynomials by Harary [59] and Harary and Palmer [60],

one is easily convinced that the claim ”the fraction of self-converse digraphs of order

n goes to zero as n goes to infinity” should be true. This idea is confirmed in Chapter

3.

First, we observe that, regretfully, there are still many twin expansions of K−

that we may not determine uniquely from their spectra, as the following example

illustrates.

Example 2.3. Let t =
[
0 2 2 1 1

]
and t′ =

[
0 2 1 2 1

]
. Then D =

TE(K−, t) and D′ = TE(K−, t′) are H-cospectral by Lemma 2.10. However, they

are clearly not isomorphic, as is visible in Figure 2.7: D contains 5 digons, whereas

D′ contains only 4.

Example 2.3 clearly illustrates the main obstacle in this part of our quest to con-

struct SHDS digraphs; expansion vectors that are closely related, but which do not
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(a) D (b) D′

Figure 2.7 – Digraphs illustrated in Example 2.3.

quite yield isomorphic digraphs when used to expand K−. Specifically, permuta-

tions of the same expansion vector yield cospectral, but not necessarily isomorphic,

digraphs. This observation is formalized in the following lemmas.

Lemma 2.21. Let t0 ∈ N0, τ ∈ N4 and let τ ′ be a permutation of τ. If t =
[
t0 τ

]
and t′ =

[
t0 τ ′

]
, then TE(K−, t) and TE(K−, t′) are cospectral.

Proof. Immediate from Lemma 2.10.

Lemma 2.22. Let t0 ∈ N0 and let τ ∈ N4 be such that fewer than three entries of

τ are equal. Then there exists a τ ′ ̸= τ , obtained as a permutation of τ, such that if

t =
[
t0 τ

]
and t′ =

[
t0 τ ′

]
, then TE(K−, t) ̸∼= TE(K−, t′).

Proof. By contradiction. Recall that (1, 2) and (3, 4) are digons in K−, and that

two digraphs may only be isomorphic if they contain equal numbers of digons. Let

t =
[
t0 t1 t2 t3 t4

]
, and assume that no three tj ’s are equal. (j = 1, . . . , 4.)

Let t′ =
[
t0 t1 t3 t2 t4

]
and t′′ =

[
t0 t1 t4 t3 t2

]
. Suppose that all three

t construct isomorphic expansions. Then by counting digons TE(K−, t) ∼= TE(K−, t′)

TE(K−, t) ∼= TE(K−, t′′)
=⇒

 t1t2 + t3t4 = t1t3 + t2t4

t1t2 + t3t4 = t1t4 + t2t3

=⇒

 (t1 − t4)(t2 − t3) = 0

(t1 − t3)(t2 − t4) = 0

and thus t1 = t2 = t3, t1 = t2 = t4, t1 = t3 = t4, or t2 = t3 = t4, which is a

contradiction.
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From Lemma 2.22, we find the following necessary condition for SHDS expansions

of K−.

Corollary 2.22.1. D = TE
(
K−,

[
t0 τ

])
, t0 ∈ N0, τ ∈ N4, is SHDS only if at

least three entries of τ are equal.

Intuitively, one might also say that if the condition in Corollary 2.22.1 is satisfied,

then any permutation of t would yield digraphs that are isomorphic to one another.

In other words, that the condition above is not just necessary, but also sufficient. In

the theorem below, which the author considers to be the main contribution of this

paper, we show exactly that.

Theorem 2.23. Let t be an expansion vector. Then D = TE(K−, t) is SHDS if

and only if t =
[
t0 τ

]
, where t0 ∈ N0 and τ is a permutation of

[
t1 t1 t1 t2

]
,

t1, t2 ∈ N.

Proof. Necessity was addressed in Corollary 2.22.1, so we will only show sufficiency.

Let D∗ be a digraph and suppose that ΣD = ΣD∗ . If we can show D ∼= D∗, the claim

is true. Since D has rank 4 with three positive eigenvalues, we know by Theorem

2.20 that D∗ = TE(K−, b) for some expansion vector b =
[
b0 b1 b2 b3 b4

]
.

Moreover, by Corollary 2.10.1, D∗ has eigenvalue t1 with multiplicity 2. Since t1 > 0,

the eigenvectors corresponding to eigenvalue t1 are orthogonal to the nullspace of

H = H(D∗). Therefore, the eigenvalues are constant on the four nontrivial parts of

D∗ and 0 on the isolated vertices in D∗. That is, the eigenvectors z corresponding to

t1 satisfy

z =
[
0 z1j1 z2j2 z3j3 z4j4

]⊤
for z1, z2, z3, z4 ∈ C. (2.7)

Recall that Hermitian matrices are diagonalizable [11] and that diagonalizable matri-

ces have geometric multiplicities equal to their algebraic multiplicities. Hence, there

are two independent eigenvectors z and w that correspond to t1 and satisfy (2.7).

Moreover, any linear combination of z and w is again an eigenvector for t1. Hence,

there is an eigenvector x that is obtained as such a linear combination, which is zero

for any one of the nontrivial parts of D∗. Suppose that at least one of x2, x3, x4 is

nonzero and

x =
[
0 0 x2j2 x3j3 x4j4

]⊤
and Hx = t1x, (2.8)
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where

H =


0 0 0 0 0

0 0 J iJ −iJ
0 J 0 −iJ iJ

0 −iJ iJ 0 J

0 iJ −iJ J 0


for blocks Hij of appropriate dimensions. Working out the latter equality in (2.8), we

obtain−ib2x2ib2x2

4x2

b2x2

+

+

+

+

b3x3

0x3

−ib3x3
ib3x3

+

+

+

−

0x4

x4

ib4x4

ib4x4

=

=

=

=

t1x4

t1x3

t1x2

0

from which it follows that b2x2 = t1x2, b3x3 = t1x3 and b4x4 = t1x4. Moreover, at

most one of x2, x3, x4 can be zero and therefore at least two of b2, b3, b4 are equal

to t1. But similarly, this implies that at least two among each three of b1, b2, b3, b4

equals t1, and thus at least three of b1, b2, b3, b4 are equal to t1. Thus, since the last

four numbers may be permuted to any order without changing the spectrum, we may

assume without loss of generality that b =
[
b0 t1 t1 t1 b4

]
.

Finally, by comparing the number of edges in the underlying graph, we obtain

b4 = t2, and since |ΣD| = |ΣD∗ |, we have b0 = t0. Hence, if ΣD = ΣD∗ then b = t

and thus D∗ ∼= D.

Thus, by Theorem 2.23, we may be certain that we may uniquely determine each

digraph whose Hermitian spectrum is of the form{
−
√
3t1t2 + t21 − t1,

√
3t1t2 + t21 − t1, t

[2]
1 , 0[t0+3t1+t2−4]

}
, t0 ∈ N0, t1, t2 ∈ N.

2.6 Closing remarks regarding WHDS digraphs

While most of this chapter has been concerned with strong determination by the

Hermitian spectrum, we conclude with some remarks on its weaker counterpart. It

stands to reason that the digraphs that are not SHDS due to the problem illustrated

in Example 2.3 might be WHDS, as most of the machinery that was used to show

Theorem 2.23 is still in place. We first observe that it is in general not true that any
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46 Chapter 2. Strongly HDS digraphs

expansion of K− is WHDS, after which we prove an analogue to Proposition 2.3.

As mentioned before, relaxing the connectivity assumption may yield cospectral

digraphs with distinct underlying graphs, which implies that said digraphs are not

switching equivalent. Recall the following example by Wang et al. [107].

Example 2.4. [107] Consider the two digraphs D and D∗, obtained from T− as

D = TE
(
T−,

[
t0 3 3 18

])
and D∗ = TE

(
T−,

[
t0 + 4 2 9 9

])
, for some

t0 ∈ N0. Then ΣD = ΣD∗ (plug in (2.2)) regardless of t0. Since D and D∗ do

not contain an equal number of isolated vertices, they cannot be switching equivalent.

Thus, there are infinitely many pairs of cospectral mates. Most notably, suppose that

t0 = 0. Then D is connected, but not switching equivalent to D∗, while they are

cospectral. Thus, D is not WHDS, even when t0 = 0.

As we have seen throughout this paper, there are many parallels between T− and

K−. This has caused us to believe that a similar phenomemon occurs for the negative

tetrahedron. As we will see shortly, there are indeed pairs of expansion vectors t, t′

for K− such that D = TE(K−, t) and D′ = TE(K−, t′) are both connected and have

the same nonzero eigenvalues, but not the same number of vertices, which allows us

to formulate an analogue of Proposition 2.4.

Proposition 2.24. There are infinitely many rank 4 digraphs with exactly one neg-

ative eigenvalue that are not WHDS.

The correctness of Proposition 2.24 follows immediately from the following exam-

ple.

Example 2.5. Let t0 ∈ N0 and consider the vectors t =
[
t0 9 18 20 60

]
and

t′ =
[
t0 + 4 10 12 36 45

]
. Then D = TE(K−, t) and D′ = TE(K−, t′) both

have characteristic polynomial

χ(µ) = µ103+t0(µ4 − 3522µ2 + 90720µ− 583200). (2.9)

Moreover, as the two contain distinct numbers of isolated vertices, they are clearly

not switching equivalent.

However, it should also be noted that such examples have proven to be extremely

rare. If one enumerates all vectors t =
[
0 t1 t2 t3 t4

]
with7 0 < t1 ≤ t2 ≤ t3 ≤

7Note that this does not restrict the investigation, as we are not interested in switching equivalent
pairs.
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t4 ≤ 104 and computes the characteristic polynomials corresponding to TE(K−, t)

via Lemma 2.10, we find as few as five characteristic polynomials whose nonzero roots

do not occur uniquely. Out of these five polynomials, χ(µ) as in (2.9) is of smallest

order; the corresponding digraphs contain at least 107 vertices. For the remaining

digraphs, we obtain strong evidence that they are WHDS. In particular, we may thus

conclude the following.

Proposition 2.25. Any digraph of order less than 107 that has rank 4 and exactly

one negative eigenvalue is WHDS.

Proof. It is clear that any pair of digraphs D = TE(K−, [0 τ ]), D′ = TE(K−, [0 τ ′])

with |V (D)|, |V (D′)| < 107 and equal nonzero eigenvalues would have occurred in the

performed enumeration. Since they did not, and the number of isolated vertices that

may be added is bounded by the assumption on the order of the digraphs, the claim

follows.

Proposition 2.26. Let t0 ∈ N0, τ ∈ N with τj ≤ 7, j = 1, . . . , 4. Then TE(K−, [t0 τ ])

is WHDS.

Proof. Let t = [t0 τ ] with τj ≤ 7, j ∈ [4], and t′ = [t0 τ ′] where τ ′ contains at least

one element larger than 100. Then∑
1≤i<j≤4

titj ≤ 294 < 306 ≤
∑

1≤i<j≤4

t′it
′
j .

Thus, if there were expansion vectors that would have yielded the same characteristic

polynomial coefficients as t, they would have occurred in the performed enumeration.

Moreover, if we assume connectivity, we obtain a result similar to Proposition 2.3.

Proposition 2.27. Any two connected, cospectral rank 4 digraphs with exactly one

negative eigenvalue are switching equivalent.

Proof. Let D1 and D2 be connected, cospectral, rank 4 digraphs with exactly one

negative eigenvalue. By Theorem 2.20, TR(D1) = TR(D2) = K−. Let t, s be such

that D1 = TE(K−, t) and D2 = TE(K−, s). (Note that t0 = s0 = 0 is implied.)

We first observe that s may be obtained as a permutation of t. Indeed, consider

equations (2.10)-(2.13), which should all hold simultaneously by Lemma 2.10. (Note

that (2.10) is implied by t0 = s0.) Then, if these elementary symmetric polynomials
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48 Chapter 2. Strongly HDS digraphs

in {t1, t2, t3, t4} and {s1, s2, s3, s4} are the same, s is indeed distinct from t by at most

a reordering of its entries.

4∑
j=1

tj =

4∑
j=1

sj (2.10)

∑
1≤i<j≤4

titj =
∑

1≤i<j≤4

sisj (2.11)

∑
1≤i<j<k≤4

titjtk =
∑

1≤i<j<k≤4

sisjsk (2.12)

4∏
j=1

tj =

4∏
j=1

sj (2.13)

Now, observe that any permutation of t might be obtained by a sequence of

pairwise interchanges of elements. Thus, if we can show that every such pairwise

exchange yields a switching equivalent digraph, we are done. Suppose that t′ is ob-

tained from t by interchanging elements tu and tv, u, v ∈ [4], and let D = TE(K−, t)

and D′ = TE(K−, t′). We distinguish two cases: either (u, v) is a digon in K− or it

is not. Note that we may assume without loss of generality that (u, v) = (1, 2) in the

former case, and (u, v) = (1, 3) in the latter.

Suppose that (u, v) = (1, 2). Then D′ ∼= Dc, and thus D is switching equivalent to

D′. Finally, suppose that (u, v) = (1, 3) and let S = Diag
([
−i · jt1 jt2 i · jt3 jt4

])
.

If we let DS be the digraph determined by the Hermitian HS = S−1H(D)S, then

DS
∼= D′. Since DS was obtained from D by a four-way switching, D is again switch-

ing equivalent to D′, which completes the proof.
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CHAPTER 3

Self-converse digraphs are extremely rare

Abstract

A digraph is cospectral to its converse, with respect to the usual

adjacency matrices. Hence, it is easy to see that a digraph whose

eigenvalues occur uniquely, up to isomorphism, must be isomorphic

to its converse. It is therefore natural to ask whether or not this is

a common phenomenon. This note contains the theoretical evidence

to confirm that the fraction of self-converse digraph tends to zero.
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3.1 Introduction

With the rising interest in spectral characterization of digraphs and some of their gen-

eralizations came an interesting question, concerning the existence of a fairly obvious

pairs of cospectral digraphs. At the heart of this issue is the fact that a digraph and

its converse, obtained from the former by reversing all of the oriented edges, are typ-

ically encoded by matrices that are each other’s conjugate transpose. In other words,

two digraphs that may not be equivalent, are almost trivially cospectral. Thus, in

order for a digraph to be determined by its spectrum in the traditional way [27], it

must be isomorphic to its converse; such digraphs are said to be self-converse [9].

This then raises the following question: how rare are self-converse digraphs? In

Chapter 2, numerical evidence (see Table 3.1, below) suggesting that the fraction of

self-converse digraphs converges to zero as the number of vertices n goes to infinity

was provided, although a formal proof to this claim has not appeared yet. Specifi-

cally, while the counting polynomials by [60, 59] are quite easily evaluated, they are

relatively unwieldy objects to work with, for arbitrary n. In this note, we will present

a simple proof, to formally show the desired result.

3.2 Main result

The discussion in this chapter essentially involves the existence of a non-trivial au-

tomorphism in a random graph. See Section 1.1 of automorphism, and recall the

Erdős-Rényi random graph Γ(n, p), and its natural directed analog D(n, p). Γ(n, p) is

the order-n graph such that every edge occurs with probability p. That is, P({u, v} ∈
E) = p. Accordingly, D(n, p) is the order-n digraph whose arcs uv occur with prob-

ability p; if both arcs uv and vu occur, we say instead that the edge {u, v} occurs.
The key argument used in the proof of the main result is the notion that almost

all symmetric subgraphs of a random directed graph D(n, 1/2) have no nontrivial

automorphism. For completeness, a proof of this essentially well-known fact for the

desired Erdős-Rényi graph Γ(n, p = 1/4) is included, below.

Key to the discussion below is the idea that the existence of edges in a random

graph with some probability p corresponds to a Bernoulli trial. These are well-known

to exhibit concentration around the mean, which is formalized (among others) by the

so-called Chernoff bounds.

Theorem 3.1 (Chernoff bounds [20]). Let Xj be n independent Bernoulli variables,
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Main result 51

let X =
∑n

j Xj, and let µ = E(X). Then, we have:

P[X ≥ (1 + δ)µ] ≤ exp

(
−δ2µ
2 + δ

)
(δ > 0), and (3.1)

P[X ≤ (1− δ)µ] ≤ exp

(
−δ2µ
2

)
(0 < δ < 1). (3.2)

By a straightforward application of the above, one may then draw asymptotic

conclusions regarding the number of neighbors of a vertex, and common neighbors of

a pair of vertices.

Lemma 3.2. Let Γ = Γ(n, 1/4) and ϵ > 0 be arbitrarily small. The vertices of Γ have

degree at least n
4 (1− ϵ) and at most n

8 (1+ ϵ) common neighbors, with high probability

(as n goes to infinity).

Now, the following is an easy adaptation from [86, Thm. 3.1].

Theorem 3.3 ([86]). With high probability, the random graph Γ(n, p = 1/4) is asym-

metric (as n goes to infinity).

Proof. Let V = {1, 2, . . . , n} be the vertex set of Γ = Γ(n, 1/4) and let f : V 7→ V

be an automorphism such that f(x) = y for some vertices x ̸= y. Let M = {v ∈ V :

f(v) ̸= v} be the set of vertices that are moved by f . Moreover, let V ′ =
(
V
2

)
, and let

f ′ : V ′ 7→ V ′ be the permutation defined by f ′({u, v}) = {f(u), f(v)}.
By Lemma 3.2, for sufficiently large n, there exist at least ⌈n4 (1 − ϵ) − n

8 (1 +

ϵ)⌉ = ⌈n8 (1 − 3ϵ)⌉ vertices that are connected by an edge to x but not to y. All

of these vertices are moved by the automorphism f . Therefore, |M | ≥ cn for c =

(1− 3ϵ)/8 with ϵ small. Thus the number of pairs of vertices that are moved by this

automorphism is at least
(
cn
2

)
− n ≥ c′n2 for

c′ =
c2n− c

2n
−−−−→
n→∞

1− 6ϵ+ 9ϵ2

128
> 0 for ϵ ̸= 1

3

and sufficiently large n. Therefore, the number of cycles of f ′ is at most k =
(
n
2

)
−

c′n2/2.

If f is an automorphism of Γ, then the pairs in one cycle of f ′ are either all edges

or they are all non-edges of Γ. Hence, there are at most 2k graphs such that f is their

automorphism.
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52 Chapter 3. Self-converse digraphs

Combining the above, it follows that the probability that Γ(n, 1/4) has a non-

identity automorphism is at most

n! · 2(
n
2)−c

′n2/2

2(
n
2)

≤ nn

2c′n2/2
,

which tends to 0 as n→∞. Indeed, note that

log

(
nn

2c′n2/2

)
= n log n− 1

2
c′n2 log 2 −−−−→

n→∞
−∞,

for all c′ > 0.

In fact, Erdős and Rényi [33] have shown that Theorem 3.3 holds whenever

min{p, 1 − p} ≤ (1 − ϵ)n log n. Here, n log n is the so-called threshold value; see

[39] for more detail.

The next result now follows naturally, by observing that any relabeling of the

vertices that maps a digraph D to Dc simultaneously maps its symmetric subgraph

onto itself. Indeed, since the latter implies with high probability that said mapping

is, in fact, the identity mapping, a contradiction follows.

Proposition 3.4. The probability that D(n, 1/2) is self-converse tends to zero as

n→∞.

Proof. Let n→∞, and let D be an order-n digraph graph whose symmetric subgraph

is G. IfD = D(n, 1/2), then G is the order-n Erdős-Rényi graph with edge probability
1
4 . By Theorem 3.3, G has no nontrivial automorphism with high probability. Now,

since any isomorphism from D to Dc is an automorphism of G, said isomorphism must

be the identity map. However, with high probability, there is a pair (x, y) ∈ V × V
such that E(D) contains the arc (x, y) but not its converse arc (y, x). Therefore, the

identity map is no isomorphism from D to Dc (with high probability), thus yielding

a contradiction.

One should be somewhat mindful of what is being counted. Proposition 3.4 implies

that the fraction of self-converse labeled digraphs tends to zero, whereas we are inter-

ested in its unlabeled counterpart, i.e., the fraction of all non-isomorphic digraphs.

Note the significant distinction: any digraph with only the identity automorphism

has n! labeled versions, whereas (e.g.) the complete graph only has one. In other
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words, the former is weighted much more heavily than the latter, by a probabilis-

tic argument. Fortunately, this does not invalidate the approach. In their extensive

book, Harary and Palmer [61] prove that almost all graphs of order n can be labeled

in n! ways, and observe:

Theorem 3.5 ([61]). Most labeled graphs have property “P” if and only most unla-

beled graphs have property “P”.

It should be clear that the argumentation would directly carry over to digraphs.

Hence, the desired result follows from Proposition 3.4.

Proposition 3.6. The fraction of order-n self-converse digraphs tends to zero as

n→∞.

3.3 Convergence rate

To give some idea as to the rate at which the fraction of self-converse digraphs tends

to zero, we include Table 3.1, below. Here, f(n) denotes said fraction of the non-

isomorphic digraph of order n, obtained by evaluation of counting polynomials from

[60, 59].

n 3 4 5 6 7 8
f(n) 6.25·10−1 3.21·10−1 7.36·10−2 9.87·10−3 6.16·10−4 2.20·10−5
n 9 10 11 12 13 14

f(n) 3.89·10−7 3.79·10−9 1.85·10−11 4.89·10−14 6.50·10−17 4.58·10−20
n 15 16 17 18 19 20

f(n) 1.63·10−23 3.06·10−27 2.90·10−31 1.43·10−35 3.59·10−40 4.64·10−45

Table 3.1 – The fraction f(n) of digraphs of order n that is self-converse.
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CHAPTER 4

Spectral properties of signed directed graphs

Abstract

The spectral properties of signed directed graphs, which may be

naturally obtained by assigning a sign to each edge of a directed

graph, have received substantially less attention than those of their

undirected and/or unsigned counterparts. To represent such signed

directed graphs, we use a striking equivalence to T6-gain graphs to

formulate a Hermitian adjacency matrix, whose entries are the unit

Eisenstein integers exp(kπi/3), k ∈ Z6. Many well-known results,

such as (gain) switching and eigenvalue interlacing, naturally carry

over to this paradigm. We show that non-empty signed directed

graphs whose spectra occur uniquely, up to isomorphism, do not

exist, but we provide several infinite families whose spectra occur

uniquely up to switching equivalence. Intermediate results include

a classification of all signed digraphs with rank 2, 3, and a deep dis-

cussion of signed digraphs with extremely few (1 or 2) non-negative

(eq. non-positive) eigenvalues.
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4.1 Introduction

While the spectral perspective on complex unit gain graphs is still relatively fresh,

various special cases have been studied to a varying extent. Most prominently, signed

graphs [109, 5], which may effectively be thought of as ‘real unit gain graphs,’ have

received considerable attention. Moreover, the Hermitian adjacency matrices H and

N for mixed graphs [51, 76, 84] also come to mind. These have, in hindsight, sim-

ply allowed subsets of T and accompanied the relevant entries with an appropriate

interpretation to represent directed graphs.

Most relevantly, in [84], the allowed entries are {exp(ikπ/3) | k ∈ {−1, 0, 1}},
where the strictly real entry represents a digon, and those with a nonzero imaginary

part represent arcs. This chapter generalizes that line, allowing gains in the subgroup

{exp(ikπ/3) | k ∈ [6]} =: T6. Accordingly, the corresponding matrices naturally

represent signed directed graphs.

Albeit quietly, these objects are often useful in the modeling of dynamical systems,

such as classical predator-prey populations [105]. In this context, a dedicated group

of researchers (see, e.g., [16, 57, 105]) has been studying signed digraphs stemming

from sign-pattern matrices; effectively imposing no assumptions on the conversion

rate between states in such a system, other than the sign of the effect. Conclusions

regarding, e.g., the stability of a (or, sometimes, any) system with the corresponding

signs are obtained using spectral techniques. In contrast, this chapter focuses on

the above-mentioned gain graph representation of a signed directed graph, and the

spectral consequences thereof.

Our ultimate interest lies with the question whether or not this representation

of signed directed graphs may offer sufficient combinatorial information, in order to

uniquely determine such a signed directed graph, when given its spectrum. The

answer to this question consists of two parts. First, we show that any signed di-

rected graph has a partner that is switching equivalent (and thus cospectral), but

not isomorphic. This is a natural consequence of the fact that T6 is closed under

multiplication, due to which it is always possible to apply gain switching and obtain

a non-isomorphic signed directed graph. We do, however, obtain several families of

signed directed graphs that are switching equivalent to every signed directed graph

to which they are cospectral.

In order to streamline the discussion, we first set out to classify signed directed

graphs that satisfy particular spectral conditions. We show that one may without loss

of generality assume the gains of a spanning tree, which aids the classification signifi-
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cantly. By applying this idea, in conjunction with eigenvalue interlacing we classify all

signed directed graphs whose rank is 2 or 3; we find a notably concise characterization

of all such signed digraphs, which may be described as twin expansions of either an

edge, a triangle, or the transitive tournament of order four.

Subsequently, we provide an extensive discussion of signed directed graphs with

exactly 1 or 2 non-negative eigenvalues. We show that such graphs are highly dense

and provide a list of necessary properties, though already in the case of 2 non-negative

eigenvalues, the complete list of candidates quickly becomes unwieldy. Thus, we focus

on a few special cases, such as clique expansions of the 5-cycle and the 4-path. In

particular, we characterize all signed directed graphs on these minimally dense graphs,

such that the resulting signed digraphs admit to the imposed requirements.

The above characterizations are then used to consider spectral determination.

Through a series of counterexamples, we show that the discussed low rank signed

digraphs are not, in general, determined by their spectra. However, by applying

a sequence of counting arguments to the lists obtained above, we are then able to

prove that, among others, several of the families with 2 non-negative eigenvalues

are determined by their spectrum. Specifically, in addition to a number of sporadic

examples, we find several arbitrarily large graphs, obtained as clique expansions of

C4, P4 or C5, that admit signed digraphs cospectral only to switching equivalent signed

digraphs.

The contents of this chapter are organized as follows. We first provide a thorough

introduction of the subject matter, in Section 4.2. Sections 4.3 and 4.4 are concerned

with the characterization of signed digraphs that satisfy an imposed set of spectral

requirements. The obtained knowledge is then applied in Section 4.5, to investigate

spectral characterizations of signed digraphs. Finally, we conclude with a collection

of open questions.

The main tools used throughout are eigenvalue interlacing and expansion of graphs

via lexicographic products with either empty or complete graphs. Additionally, Lem-

mas 4.1 and 4.2, which count respectively edges and triangles, and Proposition 4.4,

which allows us to fix the signature of a subset of the edges without loss of generality,

are frequently applied throughout.

4.2 Preliminaries

The objects studied in this chapter are, in essence, T6-gain graphs. These are complex

unit gain graphs [91] whose gain groups are restricted to the multiplicative group
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Re

Im

ω1ω2

ω3

ω4 ω5

ω6

ω−ω̄

−ω ω̄

−1 1

Figure 4.1 – The possible entries of E .

T6 = {exp(ikπ/3) | k ∈ [6]} = {ωk | k ∈ [6]}, and recall that ω = (1 + i
√
3)/2 as is

denoted throughout. For further details regarding the terminology and notation, the

reader is referred to Section 1.1.

The main discussion in this chapter is concerned with the matrices that are asso-

ciated with the described structures. The nonzero entries of the so-called Eisenstein

matrix E(Φ), as defined in Definition 1.3, are exactly the unit elements of the imag-

inary quadratic ring Z[ω]. The elements of the latter group are called the Eisenstein

integers [45], which justifies the terminology.

As noted before, an Eisenstein matrix whose entries have non-negative real parts

coincides exactly with the alternative Hermitian adjacency matrix for directed graphs,

proposed by Mohar [84]. Since the negative counterpart to every such (non-zero) entry

is also contained in T6, an arbitrary Eisenstein matrix naturally represents a signed

directed graph. That is, any T6-gain graph coincides with the natural Hermitian

adjacency matrix1 of a directed graph whose edges are accompanied with a weight

that is either 1 or −1, and vice versa. Hereafter, we will use the latter perspective

in our discussion, though the implications and applicable theory of the gain graph

equivalent are widely applied.

In the context of signed digraphs, note that the gain φ(C) of a cycle C always

satisfies φ(C) ∈ T6. It is sometimes called real if Im (φ(C)) = 0, and it is called

positive (resp. negative) if Re (φ(C)) > 0 (resp. < 0). Finally, since the real part

contains all of the information that is interesting from a spectral point of view (see

1Note that the original Hermitian adjacency matrix [51, 76] does not allow for a natural inclusion
of the signs, whereas the variant [84] does.
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Theorem 1.3), the choice of direction in which a cycles is traversed is, for the purposes

of this chapter, inconsequential and thus not specifically mentioned.

4.2.1 Expansions

Similarly to Chapter 2, Sections 4.3 and 4.4 will be looking to construct arbitrarily

large signed digraphs, based on smaller structures that we know admit to some pre-

determined set of requirements. Depending on the context, we will be looking to add

either twins or pseudotwins to a signed digraph. While these conceptual ideas are

widely known, we include a formal definition, as the details tend to vary.

In essence, two nodes u and v are twins or pseudotwins if their respective relations

to the remaining vertices in V are equivalent. The former additionally requires u and v

to be non-adjacent, while the latter requires that they are adjacent and additionally

that all triangles containing both u and v have gain 1. Accordingly, twins, twin

expansion and twin reduction follow Definitions 2.3 and 2.7, up to the notable absence

of isolated vertices for the remainder of this chapter2. Further, pseudotwins are

defined as follows.

Definition 4.1. Let Φ = (G,φ) be a signed digraph of order n, whose Eisenstein

matrix is E , and let u, v ∈ V (Φ) be distinct vertices. If, for some gain switching

matrix X and all z ∈ V we have (E + I)uz = (XEX−1 + I)vz, then u and v are called

(switching) pseudotwins.

Now, as before, we may straightforwardly define an expansion and a reduction

operator that respectively grow and shrink signed digraphs, by introducing and re-

moving pseudotwins.

Definition 4.2. Let Φ = (G,φ) be a signed digraph with an ordered set V of n

vertices, and let τ ∈ Nn be an appropriate expansion vector. The clique expansion of

Φ with respect to τ is denoted Φ′ = CE(Φ, τ) and is obtained by replacing each vertex

u in Φ by tu pseudotwins. Formally, if V = [n], let V (D′) = V0 ∪V1 ∪ · · · ∪Vn, where
V0, V1, . . . , Vn are mutually disjoint sets, with |Vu| = τu. In Φ′, E ′u′v′ = Euv for every

u′ ∈ Vu, v′ ∈ Vv, u, v ∈ V , where E and E ′ are the Eisenstein matrices of Φ and Φ′,

respectively. Finally, E ′u′v′ = 1 for every pair of u′, v′ ∈ Vj, j ∈ [n]

Alternatively, one may think of the twin expansion and clique expansion operators

as taking the lexicographic product (see, e.g., [43]) of a signed digraph Φ with the

2Rather than writing the corresponding expansion vectors as [t0 = 0 t1 · · · tn], the first entry,
which would have corresponded to any isolated vertices, is simply discarded throughout this chapter.
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collection {Oτ1 , Oτ2 , . . . , Oτn}, in the case of twin expansion, or {Kτ1 ,Kτ1 , . . . ,Kτ1}
in the case of clique expansion. Note that the number of nonzero eigenvalues is

unaffected by the twin expansion, and the number of eigenvalue unequal to −1 is not

affected by clique expansion.

Other authors (e.g., [83, 87]) have used the concepts above with varying notation;

the author prefers the definition in terms of operators, to make the distinction between

them clear.

Remark 4.1. Since, for both expansion operators, vertex j is mapped to a group of

τj vertices, the ordering of τ and the corresponding labeling of the graph that is to be

expanded both matter. Without explicit mention hereafter, we will label the vertices of

a path graph such that its edges are (1, 2), (2, 3), . . . , (n − 1, n), and the vertices of a

cycle graph such that its edges are (1, 2), (2, 3), . . . , (n−1, n), (n, 1), for the remainder

of this chapter. Other cases will be explicitly illustrated.

4.2.2 Counting substructures

A well-known result in spectral graph theory is that the number of closed walks in

a graph of a given length are, in a sense, counted by the sum of its eigenvalues,

exponentiated to the corresponding length. With respect to E , a direct analogue of

this idea holds.

Lemma 4.1. If Φ is a signed digraph such that Γ(Φ) contains m edges. Then

tr
(
E(Φ)2

)
= 2m.

Proof. Let ej denote the columns of E := E(Φ). Then E2jj = e∗jej = dj , where dj is

the degree of node j in Γ(Φ). Hence, we have tr (E)2 =
∑n

j=1 dj = 2m.

Note that we may categorize the three-cycles into four categories, based on the

real part of their gains. The following then straightforwardly follows.

Lemma 4.2. Let Φ be a signed digraph, and let s(z) denote the number of triangles

t with Re (φ(t)) = z that are contained in Φ as induced subdigraphs. Then

tr (E) (Φ)3 = 6s(1) + 3s(1/2) − 3s(−1/2) − 6s(−1).

Proof. Let u ∈ V (Φ) and let ∆u be the collection of triangles in Γ(Φ) that contain u.

Then, we have

(E3)uu =
∑
t∈∆u

φ(t) =
∑

z∈{±1,± 1
2}

2z · c(z),
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where c(z) denotes the number of triangles t with Re φ(t) = z in Φ contain u. Here, the

second equality holds since every triangle is traversed in two directions. Specifically,

recall that the gains of such mirror traversals are each others complex conjugate, and

α+ ᾱ = 2Re α for α ∈ C. The claim then follows, since every triangle counted thrice:

once for every vertex it contains.

4.2.3 Switching equivalence and isomorphism

In the later parts of this chapter, we will be looking to classify signed digraphs that

are Determined by their Eisenstein Spectra (DES). Recall that a signed digraph is

said to be determined by its E-spectrum if it is switching isomorphic to every signed

digraph to which it is cospectral; see Definitions 1.7 and 1.8 for formal statements.

Naturally, we would like to have a way to conclusively determine whether or

not a given pair of signed digraphs is switching isomorphic, which is found in [92].

Specifically, Reff [92] presents a sufficient condition, based on the idea (originally

from [110]) that the gain of a given cycle in a gain graph is not affected by switching

operations. (See Section 1.1.4 for an introductory discussion regarding the relation

of cycle gains and the spectrum.) This condition is, in fact, also necessary; a fact

previously discussed by Samanta and Kannan [96]. The author feels that the result

follows more directly than the discussion in [96] suggests. We present the alternative

proof below.

Proposition 4.3. Let D and Φ be signed digraphs on the graph G. Then D ∼ Φ if

and only if there is a D′ isomorphic to D with φ(D′[C]) = φ(Φ[C]) for every cycle C

in G.

Proof. Sufficiency is shown in Reff [92], so we will only discuss necessity. Let E(Φ) =
XE(D)X−1, and let C = {u1u2, u2u3 . . . , uku1} be a cycle in G. Then:

φΦ(C) = E(Φ)u1,u2
E(Φ)u2,u3

· · · E(Φ)uk,u1

= Xu1,u1
E(D)u1,u2

X−1u2,u2
·Xu2,u2

E(D)u2,u3
X−1u3,u3

· · ·Xuk,uk
E(D)uk,u1

X−1u1,u1

= Xu1,u1
E(D)u1,u2

E(D)u2,u3
· · · E(D)uk,u1

X−1u1,u1

= φD(C).

Finally, observe that a relabeling of the vertices changes nothing except for the indices

in the above, and the claim follows.
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12
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4 5

6

(a) Φa

12

3

4 5

6

(b) Φb

Figure 4.2 – Cospectral but not switching isomorphic signed digraphs on one
underlying graph.

Marginally expanding on the above, Samanta and Kannan [96] show that one

only needs the fundamental cycles of a gain graph to have equal (real parts of) gains.

Indeed, it stand to reason that if a basis of the cycle space has equal gains, then all

cycles in the cycles space agree. To see this, one simply needs to observe that any

cycle C may be obtained as the symmetric difference of fundamental cycles, and note

that the gain of C is simply the product of the gains of these fundamental cycles.

In this last respect, one should exercise some care, as the traversal direction does

matter here, and should be chosen such that the edges on which the fundamental

cycles intersect are traversed in opposite directions.

We conclude this section with an application of the above, which shows that

cospectral signed digraphs on the same underlying graph may belong to distinct

switching isomorphism classes.

Example 4.1. Consider the signed digraphs Φa and Φb in Figure 4.2. A quick com-

putation of the characteristic polynomial of their respective Eisenstein matrices yields

that

χΦa
(λ) = χΦb

(λ) = λ6 − 8λ4 + 13λ2 − 5.

However, the gains of their fundamental cycles, shown in Table 4.1, do not coincide.

Thus, Φa and Φb do not belong to the same switching isomorphism class. As a final

note, we remark that this conclusion could also have been drawn by computing the gain

of the (sole) 6-cycle in Φa and Φb, though an application of Proposition 4.3 seems

appropriate.
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U Re (ϕ(Φa[U ])) Re (ϕ(Φb[U ]))

{2, 3, 4} −1 −1/2
{1, 5, 6} 1 1/2
{1, 2, 4, 5} 1/2 1/2

Table 4.1 – Fundamental cycle gains in Figure 4.2

4.2.4 Limiting degrees of freedom

As a direct consequence of the equivalence relations discussed before, any exercise in

classification of signed digraphs would encounter an abundance of seemingly distinct

digraphs, that turn out to be equivalent upon closer inspection. Thus, it is desirable

to consider ways to limit the number of possibilities that have to be considered. It

seems particularly practical to be able to fix a subset of the edges to a certain type,

while maintaining the certainty that all switching isomorphic classes were considered.

In the below, we will show that any switching isomorphism class on a graph G

contains at least one member whose edge-induced subdigraph coincides with a fixed

spanning tree T of G. This idea is quite natural from a gain graph perspective,

using the well-known result that appears here as Corollary 4.4.2. In the interest of

completeness, we include a brief proof to a result that will frequently be applied, later

on.

Proposition 4.4. Let G be a graph and let Φ1,Φ2 be distinct signed digraphs on G.

Let T ⊆ E(G) be a spanning tree of G. Then, there exists a switching matrix Y such

that Φ′2, obtained from Φ2 as E(Φ′2) = Y E(Φ2)Y
−1, satisfies Φ′2[T ] = Φ1[T ].

Proof. Consider the edge (u, v) ∈ T. Since T is a spanning tree, T \ (u, v) induces an
(edge-induced) subdigraph on G that consists of two disjoint components, say V1 (that

contains u) and V2 (that contains v); see Figure 4.3. Now, let E(Φj)uv denote the

(u, v) entry of the Eisenstein matrix corresponding to Φj , and construct the diagonal

matrix X(uv) as

X
(uv)
jj =

 E(Φ1)uv/E(Φ2)uv if j ∈ V1
1 if j ∈ V2

(4.1)

Now, consider the switched digraph Φ′2, whose Eisenstein matrix is defined as E ′ :=
X(uv)E(Φ2)

(
X(uv)

)−1
. Firstly, observe that we have E ′uv = E(Φ1)uv, by construction.

Moreover, since for any (p, q) ∈ T \(u, v) it holds that either {p, q} ⊂ V1 or {p, q} ⊂ V2,
it follows that E ′pq = E(Φ2)pq. In other words, the arcs in Φ corresponding to exactly
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u

v

V1

V2

Figure 4.3 – An example graph G for Prop. 4.4. Here, the thick lines
represent T .

one edge in T , namely (u, v), were changed by the switching with X(uv). It follows

that Y :=
∏

(u,v)∈T X
(uv) satisfies the desired requirements.

The below conclusions then follows immediately.

Corollary 4.4.1. Let G be a graph and let T ⊆ E(G) be a spanning tree on G.

Further, let D denote the collection of all signed digraphs on G, and let DT ⊂ D be

the collection of such signed digraphs that coincide with T on the relevant edges. Then

Φ ∈ D ⇐⇒ ∃Φ′ ∈ DT s.t. Φ ∼ Φ′.

The following well-known fact also follows immediately from Proposition 4.4.

Corollary 4.4.2. Let G be a forest and let Φ = (G,φ) be a signed digraph. Then

Φ ∼ G.

Note that DT may contain more than one member from a given switching isomor-

phism class, as illustrated in the following example.

Example 4.2. Consider the non-isomorphic signed digraphs Φ and Φ′, as illustrated

in Figures 4.4a and 4.4b, respectively. It is obvious that a tree, represented by the

thick lines, coincides. However, if the vertically oriented digons in Figure 4.4b are

multiplied by −1 (which clearly is a switching operation), the result is isomorphic to

Figure 4.4a. Thus, Φ and Φ′ belong to the same switching isomorphism class.

As a closing remark to this section, we would like to express interest in the non-

trivial question that follows up on the example above, and asks exactly how many

members of a given switching equivalence class may coincide in a predetermined span-

ning tree. This matter is not explored further in this work.
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(a) Φ (b) Φ′

Figure 4.4 – Signed digraphs for Example 4.2.

Figure 4.5 – Another signed digraph whose spectrum is symmetric.

4.2.5 Symmetric spectra

In spectral graph theory, it is commonly asked which structural characteristics imply

symmetry of the corresponding spectrum. It is well-known that graphs have sym-

metric spectra if and only if they are bipartite. With respect to the (conventional)

Hermitian adjacency matrix H [51], digraphs have been shown to have symmetric

spectra if they are bipartite or (switching equivalent to) an oriented3 digraph, but the

reverse implications do not hold. In the current context, one may show the following.

Lemma 4.5. Let G be a bipartite graph and let Φ = (G,φ) be a signed digraph. Then

the spectrum of Φ is symmetric around zero.

Proof. Let Φ′ = (G,φ′), where φ′(uv) = −φ(uv). If G is bipartite then every cycle

C of G satisfies φ′(C) = (−1)|C|φ(C) = φ(C). By Proposition 4.3, we thus have

Φ′ ∼ Φ. Finally, since E(Φ′) = −E(Φ) and their spectra coincide, it follows that said

spectra are symmetric.

However, an oriented signed digraph in general does not have a symmetric spec-

trum, and no necessary properties were found. As a consequence of the existence of

sporadic, ‘ugly’ examples such as the signed digraph in Figure 4.5, the author expects

that a tight characterization of all signed digraphs that have symmetric spectra is

unlikely to be found. For further details, Chapter 6 contains an extensive discussion

of gain graphs with symmetric spectra.

3A digraph is said to be oriented if it contains no digons.
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4.3 Signed digraphs of low rank

As we work our way towards spectral characterizations, we first consider signed di-

graphs of rank 2 or 3. This restriction severely limits the combinatorial complexity of

the corresponding structure. Indeed, if almost all rows of its Eisenstein matrix E need

to be linearly dependent, it stands to reason that many vertices have similar relations

to one another, as well. Without too much effort, one may show the following two

results, regarding the ranks of some basic digraphs.

Lemma 4.6. Let Pn be a path of order n. Then Φ = (Pn, φ) has rank 2⌊n/2⌋ for
any φ.

Proof. Since Γ(Φ) is a tree, Rank (Φ) = Rank (Γ(Φ)) = Rank (Pn), by Corollary

4.4.2.

Lemma 4.7. Let Cn be a cycle of order n, with n odd. Then Φ = (Cn, φ) has rank

n for any φ.

Proof. Cn has exactly one elementary spanning subgraph, so its characteristic poly-

nomial χ(λ) has a nonzero coefficient an, by Theorem 1.3, and thus no zero roots.

Note that for n even, it also follows that signed digraphs on Cn have rank n,

except when they have gain 1 and n is divisible by 4, or when they have gain −1 and

n− 2 is divisible by 4. The case n = 4 will be relevant later on.

We note explicitly that since bipartite signed digraphs have symmetric spectra,

their ranks are necessarily even. Finally, an intuitive observation, concerning the rank

of some block matrices, is the following.

Lemma 4.8. Let A be a Hermitian matrix defined as

A =

[
O A12

A∗12 A22.

]
,

with A12 nonzero and where A22 has a zero diagonal. If Rank A = 3 then Rank A12 =

1 and 2 ≤ Rank A22 ≤ 3. Moreover, if Rank A = 2 then Rank A12 = 1 and A22 = O.

Specifically, the lemma above implies that if two vertices are twins in an induced

subdigraph of a signed digraph whose rank is 2 or 3, then they are also twins in said

(larger) signed digraph.
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4.3.1 Rank 2

Let us first consider signed digraphs of rank 2. As is common in this type of research,

the eigenvalue interlacing theorem is used extensively, to forbid particular structures

from occurring as induced subgraphs. Using the lemmas above, we may characterize

the underlying graphs of all signed digraphs with rank 2, based on this idea.

Lemma 4.9. If Φ = (G,φ) is a connected signed digraph with Eisenstein rank 2,

then G is a complete bipartite graph.

Proof. By contradiction. By Lemma 4.7, Φ is odd-cycle-free, and thus bipartite. Let

P,Q denote the coloring classes of Φ. Now, suppose to the contrary that u ∈ P, v ∈ Q
are a pair of vertices that is nonadjacent in G. Since Φ is connected, there is a u→ v

path in G. Let U ⊆ V (Φ) be the collection of vertices that is traversed on a shortest

u→ v path; then G[U∪{u, v}] ∼= P2k, for some k > 1. However, since Rank P2k = 2k,

we obtain a contradiction, by interlacing.

The next natural question to ask would be which signed digraphs on underlying

graph Kp,q have Eisenstein rank 2. In the below, we show that any signed digraph

that satisfies this requirement is switching isomorphic to its underlying graph.

Proposition 4.10. If Φ = (G,φ) is a connected signed digraph with Eisenstein rank

2, then Φ is switching isomorphic to the complete bipartite graph G.

Proof. By Lemma 4.9, G is complete bipartite. Let P,Q denote the coloring classes,

as before. By Proposition 4.4, we may without loss of generality choose the edge gains

of a spanning tree of G. If u ∈ P and v ∈ Q, then such a spanning tree (say, T ) may

be obtained by taking all edges incident to at least one of u or v. If we choose the

edges in T to be positive digons, the Eisenstein matrix E(Φ) contains
1 j⊤

j X

1 j⊤

j X∗

 , (4.2)

where the diagonal blocks are square all-zero blocks of appropriate dimensions, j

denotes an all-ones vector and the X blocks are unknown. Finally, since all of the
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induced 4-cycles must have gain 1, we have

E(Φ) =

[
Op×p Jp×q

Jq×p Oq×q

]
.

Thus, there is exactly one rank 2 switching isomorphism class on Kp,q, and the claim

follows.

Note that implicitly, all connected rank-2 digraphs have underlying graphs that

are twin expansions of K2. We will see a similar trend if the rank is increased.

4.3.2 Rank 3

Increasing the allowed rank just slightly still allows for a neat characterization of the

switching isomorphism classes. To obtain this characterization, we first obtain an

understanding of the twin reduced structure, after which expansions and signatures

are included.

Proposition 4.11. Let Φ be a connected, twin reduced signed digraph of order 4 and

rank 3. Then Φ ∼ (T4,±),4 where T4 denotes the order-4 transitive tournament.

Proof. Observe that Φ is not bipartite, as bipartite signed digraphs have even rank.

Thus, Φ contains an odd-sized cycle, which implicitly is a triangle. Moreover, by

connectedness, at least one vertex (say, s) in said triangle is also adjacent to the

fourth vertex. We apply Proposition 4.4 to assume without loss of generality that the

arcs incident to s have gain 1; that is

E(Φ) =


0 1 1 1

1 0 a c̄

1 ā 0 b

1 c b̄ 0

 ,

for a ∈ T6 and b, c ∈ T6∪{0}. (Note that a, b, and c are symmetric, so we may assume

w.l.o.g. that a is nonzero.) Now, note that if Re (a) > 0 and Re (b) < 0, then by

interlacing, Φ has two positive and two negative eigenvalues, and thus Rank E(Φ) = 4,

and similarly for the pairs b, c and a, c. Thus, a, b, c must be such that either their

real parts are all positive or all negative; we assume positivity for now. For a, b, c as

4Note that the (D,ϕ) notation is used in this instance, as opposed to (G,φ).
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above, we then find that

det E(Φ) = 1 + |b|+ |c| − 2Re (ab+ ac+ bc) . (4.3)

We proceed to distinguish three cases.

(i) b = c = 0. Then det E(Φ) = 1 and Rank (Φ) = 4.

(ii) b ̸= 0, c = 0. Then det E(Φ) = 2− 2Re (ab) = 0 ⇐⇒ a = b̄, which implies that

Φ is not twin reduced, contradiction.

(iii) b, c ̸= 0. Then we need det E(Φ) = 3−2Re (ab+ ac+ bc) = 0, which holds if and

only if one of the following cases is true: (I) Re (ab) = Re (bc) = Re (ac) = 1/2 or

(II) Re (ab) = Re (bc) = 1 ∧ Re (ac) = −1/2. In case (I), we write ab = ωka+kb ,

and use that Re (ab) = 1/2 implies ka+ kb is odd. Clearly, there are no integers

ka, kb, kc such that (ka + kb), (kb + kc) and (ka + kc) are all simultaneously odd,

so the desired a, b, c do not exist. in case (II), assume Re (a) ,Re (b) ,Re (c) > 0

to conclude that either a = c = ω and b = ω or a = c = ω and b = ω. Both

possibilities are equivalent, and yield Φ ∼ (T4,+).

Finally, note that if negativity was assumed, we would have obtained Φ ∼ (T4,−).

Now, we may naturally try to increase the order. A well-known fact is the follow-

ing.

Lemma 4.12. A digraph D is a transitive tournament if and only if every one of its

induced subdigraphs is also a transitive tournament.

The above holds analogously when switching is allowed. We forego a formal proof,

as this fact should be clear by observing that the gains of a basis of the cycle space

is known and a quick application of Proposition 4.3.

Now, if we extend the above by considering rank-3 signed digraphs of order n ≥ 5,

we find that such signed digraphs are not twin reduced.

Lemma 4.13. Let Φ be a connected signed digraph of order ≥ 5, rank 3. Then Φ is

not twin reduced.

Proof. Let n ≥ 5 and suppose to the contrary that Φ is twin reduced, of order n and

rank 3. We distinguish three cases.
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(i) There is an order-4 induced subdigraph Φ′ of Φ such that Γ(Φ′) ∼= K1,1,2. This

induced subdigraph has rank at most 3, by interlacing, and is therefore not

twin reduced, by Proposition 4.11. Then, using Lemma 4.8, we obtain that the

vertices that are twins in Φ′ are also twins in Φ, and thus Φ is not twin reduced,

contradiction.

(ii) There is an order-4 subdigraph of rank 2 or 0. These are respectively complete

bipartite or empty, and therefore contain twins; the contradiction follows as in

case (i).

(iii) All order-4 subdigraphs satisfy Proposition 4.11. Then, by interlacing, they

are either all switching isomorphic to (T4,+) or all to (T4,−). Hence, using

Lemma 4.12, we find Φ ∼ (T5,±). However, Rank (T5,±) = 5, and we obtain a

contradiction.

All three possible cases yield a contradiction, so the claim follows.

The results above show that the number of distinct structures (up to switching

isomorphism) whose clique expansions have rank 3 is very small. Thus, we easily

arrive at the following result, that concerns their expanded counterparts.

Proposition 4.14. Let Φ be a connected signed digraph of rank 3. Then either

Φ ∼ TE((K3, φ), τ), for any φ and τ ∈ N3, or Φ ∼ TE((T4,±), τ), τ ∈ N4.

Proof. Note that any triangle has rank 3, and observe that any complete tripartite

signed digraph has rank 3 if and only if the edges between partition groups have equal

types, as touched upon in the proof of Lemma 4.11. The second part of the claim

then follows by application of Lemmas 4.11 and 4.13.

4.4 Few non-negative eigenvalues

Inspired by the recent work by Oboudi [87], we inquire into signed digraphs that

satisfy a different set of spectral requirements. Specifically, we now require candidates

to have an (almost) minimal number of non-negative or, equivalently, non-positive

eigenvalues. A neat characterization of signed digraphs that admit to these conditions,

could be the foundation upon which to build another set of (possibly infinite) families

of signed digraphs, whose spectra determine them, up to switching isomorphism.

Until the end of this section, we will consider the former case, that is, few strictly

positive eigenvalues. However, note that the negative case is indeed equivalent, and
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may be obtained by multiplying the signature φ by −1. Additionally, observe that

(switching) twins are inherently forbidden, since their existence implies the occurrence

of 0 as an eigenvalue.

4.4.1 One non-negative eigenvalue

A clear starting point for this investigation is the class of signed digraphs with exactly

one non-negative eigenvalue.

Proposition 4.15. The signed digraph Φ = (G,φ) satisfies λ2 < 0 only if G is

complete.

Proof. By induction on the order n of Φ. For n = 2, the claim is obviously true.

Now, suppose that the claim holds for any order-n signed digraph Φ, and consider

Φ′ of order n + 1. Since the underlying graph of every order-n induced subgraph of

Φ′ is complete, by the induction hypothesis and eigenvalue interlacing, it follows that

Γ(Φ′) is complete.

We note explicitly that Proposition 4.15 is not sufficient. One may, for example,

consider the signed digraph (T4,+), which has λ2 = 0, while its underlying graph is

complete.

Building on Proposition 4.15, we will now characterize all signed digraphs whose

second largest eigenvalue is negative. Indeed, note that we thus far know for sure that

such a signed digraph must have a complete underlying graph, but which (and how

many) signatures φ may be added to yield a signed digraph that satisfies the desired

spectral requirements, is as of yet unknown. In the below, we find that this collection

is limited to exactly two switching equivalence classes, for given n.

Definition 4.3. Let K∗n denote the digraph obtained from Kn by orienting exactly

one edge.

Lemma 4.16. K∗n has a negative second-largest eigenvalue for all n ≥ 3.

Proof. The characteristic polynomial of K∗n is given by

χ(λ) = (λ+ 1)n−3
(
λ3 − (n− 3)λ2 − (2n− 3)λ− 1

)
,

which by Descartes rule of signs has exactly one positive root, and clearly no zero

roots.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

72 Chapter 4. Signed Directed Graphs

Theorem 4.17. Let Φ be a signed digraph with λ2 < 0. then either Φ ∼ Kn or

Φ ∼ K∗n.

Proof. By Proposition 4.15, Γ(Φ) is complete. Then, the claim may easily be verified

for n ≤ 4, and we proceed by induction. Let n ≥ 4, suppose that the claim is true

for signed digraphs of order n and consider a signed digraph Φ of order n + 1. Let

k denote the number of such induced subdigraphs that are switching isomorphic to

Kn, and let V := V (Φ′).

Note that the n + 1 order-n induced subdigraphs of Φ must all simultaneously

satisfy λ2 < 0, by eigenvalue interlacing. This implies that every such order-n sub-

graph has either only gain-1 triangles, or has n − 2 triangles whose gain is ω, which

all intersect on an edge, and
(
n
3

)
− n+ 2 gain-1 triangles.5

Now, we may count the number of pairs (u, t) where u ∈ V (Φ) is not part of the

gain-ω triangle t in Φ. Since for all u ∈ V we have Φ[V \ {u}] ∼= Kn or K∗n, where

the former holds for k out of the n + 1 order-n subgraphs, we find that there are

(n+ 1− k)(n− 2) such pairs (u, t). Similarly, since every gain-ω triangle contains all

but n − 2 vertices of Φ, there are (n − 2)∆ such pairs, where ∆ is the total number

of gain-ω triangles in Φ. Hence, ∆ = n+ 1− k.
Now, we may distinguish a few cases. If k ≥ 4, then every triangle in Φ is part of

at least one induced subgraph that is switching isomorphic to Kn, and thus T = 0,

which implies k = n + 1 and thus Φ ∼ Kn+1. Similarly, if k = 3, then all but one

triangle in Φ certainly have gain 1. This implies ∆ ≤ 1 and thus n ≤ 3, which is a

contradiction.

If k = 2, then ∆ = n− 1. Suppose that Φ[V \ {u}] and Φ[V \ {v}] are the ∼ Kn

subdigraphs. Then at most the triangles that contain the edge (u, v) may have gain

ω; the others all have gain 1. Moreover, since there are exactly n− 1 such triangles,

all of them necessarily have gain ω. Then, using that the collection of triangles in

a complete graph form a basis of the cycle space, we may apply Proposition 4.3 to

conclude that Φ ∼ K∗n.
Next, if k = 1 then ∆ = n. Suppose that Φ[V \ {u}] ∼ K∗n. Then, the n − 2

gain-ω triangles in Φ[V \ {u}] intersect on some edge (v, z). Moreover, at least one of

Φ[V \{v}] and Φ[V \{z}] is also switching equivalent to K∗n, which thus contains n−2

different gain-ω triangles, necessarily containing u. Hence, n = ∆ ≥ 2(n− 2), which

implies n ≤ 4 and thus n = 4. This yields the potential counterexample Φ ∼ K∗∗5 ,

5Recall that a cycle is said to have gain ω if taking the product of the arc gains corresponding
to the arcs hit by traversal of the cycle in at least one direction equals ω. I.e., φ(C) = ω if either
φ(C→) or φ(C←) equals ω.
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where K∗∗5 is obtained from K5 by orienting two of its edges, such that their initial

vertex coincides. However, a quick computation of its spectrum yields λ2 = 0, and

thus K∗∗5 does not satisfy the claim.

Finally, if k = 0 then ∆ = n + 1, which, as above, implies that n + 1 ≥ 3(n − 2)

and thus n ≤ 3, which is a contradiction.

As was previously mentioned, Theorem 4.17 tells us that for a given order n, a

signed digraph that satisfies λ2 < 0 must belong to exactly one of two (spectrally

distinct, recall Lemma 4.2) switching isomorphism classes. This ties in to a natural

spectral characterization result, which is provided in Section 4.5.

To conclude this section, we briefly discuss the natural question how much of the

above carries over when instead, signed digraphs with one positive eigenvalue are

considered; that is, when zero eigenvalues are allowed. It turns out that the collection

of (twin reduced) signed digraphs with this property contains various (’ugly’) members

of increasing order, that have little in common with the families of graphs that have

been discussed so far. As such, this is considered out of the scope of this work.

4.4.2 Signed digraphs with λ2 > 0 > λ3

In a recent article, Oboudi [87] characterized all graphs with exactly two non-negative

eigenvalues. This collection turns out to be an exhaustive list of fairly reasonable

length. As such, it seems reasonable to ask whether an analogue idea may be applied

in the current context. In this section, we will first find some necessary structural

properties, to which any signed digraph that satisfies λ2 > 0 > λ3 must admit. After

that, we will inquire into the signatures of signed digraphs on such graphs.

Necessary properties

The original result by Oboudi [87] follows quite straightforwardly as a forbidden sub-

graph result that forbids O3 and C4. Clearly, O3 should still be forbidden, as its

inclusion would imply a non-negative third-largest eigenvalue, by eigenvalue interlac-

ing. However, since a signed digraph on C4 still meets the requirements if its gain is

not 1, we must substantially deviate from the conclusions in [87]. As usual, let us first

consider the graph structures that may be underlying to signed digraphs that satisfy

our needs.

Lemma 4.18. Let G be a connected O3-free graph, of order n ≥ 5. Every order-5

vertex-induced subgraph contains a C5 or a clique expansion of P4.
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It should be noted that the collection of graphs that are O3-free contains many

graphs with higher edge-density than clique expansions of C5 and P4. However, as

should be clear to the reader, given such a graph, one may always remove edges to

arrive at a graph that is still O3-free, but which is such an expansion. That is to say,

a graph is O3-free because every relevant subset of the vertices is contained in either

one of C5, P4, or a clique.

Given the above, we may formulate some natural conditions for a signed digraph

to satisfy λ2 > 0 > λ3. These will be particularly useful in Section 4.5, when we are

constructing potential cospectral mates of a given signed digraph.

Proposition 4.19. Let Φ = (G,φ) be a connected signed digraph that satisfies λ2 >

0 > λ3. Then G is a clique expansion of P4 or C5, possibly supplemented with

additional edges up to a complete graph. Additionally, it must satisfy the following:

(i) For every U ⊂ V (Φ) with Γ(Φ[U ]) = K4, at least one triangle in Φ[U ] is positive,

(ii) For every U ⊂ V (Φ) with Γ(Φ[U ]) = C4, it holds that φ(Φ[U ]) ̸= 1,

(iii) For every U ⊂ V (Φ) with Γ(Φ[U ]) = C5, it holds that Re (φ(Φ[U ])) < 0,

Proof. Follows from Lemma 4.18 and the forbidden subdigraphs switching isomorphic

to (K4, φ1), (C4,+) and (C5, φ2), where φ1 is such that all triangles inK4 are negative,

and φ2 is such that the 5-cycle has positive gain.

In case we relax the assumption on connectedness, the following conclusion is an

immediate consequence of Theorem 4.17.

Proposition 4.20. Let Φ be a signed digraph on G, where G is a graph that is

obtained as the disjoint union of at least two connected components. If Φ satisfies

λ2 > 0 > λ3 then Φ = Φ1 ∪ Φ2, where Φj ∼ Knj or Φj ∼ K∗nj
, j = 1, 2.

The conditions in Proposition 4.19 are certainly not sufficient; plenty of examples

to show this are provided in Figures 4.6, 4.7 and 4.9, as well as any clique expansions

of C5that exceed Table 4.2.

Due to an abundance of possibilities, the full classification of signed digraphs with

λ2 > 0 > λ3 is not provided here. However, we will still zoom in on a few special cases.

While the complete graph seems like an attractive starting point, the vast number

of admissible signatures drove the author to first consider more palpable families.

In particular, we will investigate a selection of the clique expansions of P4 and C5,



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

Few non-negative eigenvalues 75

which in a sense have the minimal required number of edges. In the remainder of this

section, we will classify such signed digraphs that satisfy λ2 > 0 > λ3; these families

will be revisited in Section 4.5, where we provide spectral characterizations.

Short kite graphs

An (a, b)-kite is said to be obtained from a Ka and a Pb by connecting some vertex in

the clique to a pendant vertex of the path. Such graphs have recently been shown to

be determined by their adjacency spectra, for all choices of a and b [99]. Moreover,

if b = 1 or b = 2, then for any a ≥ 2, the corresponding (a, b)-kite graph is O3-free,

and may potentially satisfy λ2 > 0 > λ3. In fact, we obtain a rather nice parallel

to the results of Section 4.4.1. It seems intuitive that the complete part of the kite

should have a negative second largest eigenvalue, in order for the corresponding signed

digraph to satisfy λ2 > 0 > λ3. An elegant application of eigenvalue interlacing

confirms this belief.

Proposition 4.21. Let Φ = (Kn, φ), v ∈ {T6 ∪ 0}n and let

E :=

E(Φ) v 0

v∗ 0 1

0⊤ 1 0

 .
Then E satisfies λ2 > 0 > λ3 if and only if Φ is switching isomorphic to Kn or K∗n.

Proof. Since the eigenvalues µj of

E ′ :=

[
E(Φ) 0

0⊤ 0

]

interlace those of of E , necessity of the claim follows by Theorem 4.17. Indeed, note

that µ3 ≥ 0 yields a contradiction, by interlacing.

Now suppose that Φ is switching isomorphic to Kn or K∗n. Then, again using that

the eigenvalues µj of E ′, which by construction satisfy µ1 > 0 = µ2 > µ3, interlace

those of E , we obtain λ1 ≥ µ1 ≥ λ2 ≥ 0 ≥ λ3. Finally, observe that

n+2∏
j=1

λj = det E = −det

[
E(Φ) 0

v∗ 1

]
= −det E(Φ) = µ1 ·

n+1∏
j=3

µj ̸= 0,

and thus λ2 > 0 > λ3.
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Since the above is quite independent of the choice of v, the desired result follows

easily.

Corollary 4.21.1. Let Φ be a signed digraph of order n ≥ 5 whose underlying graph

is a (n − 1, 1) or (n − 2, 2)-kite graph. Then Φ satisfies λ2 > 0 > λ3 if and only

if it contains a subdigraph that is switching isomorphic to Kn−2 or K∗n−2 that is

non-adjacent to the pendant vertex.

Semi-complete signed digraphs

If not one, but instead both pendants of P4 are expanded, we obtain a convenient

structure that contains many induced (a, 2)-kites. Thus, if λ2 > 0 > λ3 is required,

we get substantial structural information almost for free.

Definition 4.4. Let G = CE(P4, [p 1 1 q]), p, q ∈ N with p, q ≥ 2, and let

P ⊂ V (G) be the vertices associated with p. Let φ̃ be the signature that differs from

the all-one signature only on (u, v), u, v ∈ P , which has φ̃(u, v) = ω. Similarly, let

φ̂ be the signature that differs from the all-one signature only on (s, t), s, t ∈ Q, with

φ̂(s, t) = ω. Then Φ̃ := (G, φ̃) and Φ̂ := (G, φ̂).

Proposition 4.22. Let p, q ∈ N, let G = CE(P4, [p 1 1 q]), Then Φ = (G,φ)

satisfies λ2 > 0 > λ3 if and only if Φ ∼ G, Φ ∼ Φ̃ or Φ ∼ Φ̂.

Proof. Necessity follows by a straightforward application of Proposition 4.20, while

respecting the forbidden subdigraphs in Figure 4.6.

Now, suppose that Φ ∼ G, Φ ∼ Φ̃ or Φ ∼ Φ̂ which contains respectivelyKp+1∪Kq,

K∗p+1∪Kq orKp∪K∗q+1 as an induced subgraph. Since either satisfies µ2 > 0 > µ3 (by

Theorem 4.17), we obtain by interlacing that Φ has at most three positive eigenvalues.

Then, using some elementary matrix algebra, we find that both cases satisfy

sign (det E(Φ)) = (−1)p+q+2.

Hence, its number of positive eigenvalues must be even, and thus be equal to two.

The G above is a so-called semi-complete graph, which in general consists of

two cliques and an arbitrary number of bridges. In his investigation of graphs with

at most two non-negative eigenvalues, Oboudi [87] finds that graphs, which satisfy

λ2 > 0 > λ3, are clique expansions the members of a family of clique reduced semi-

complete graphs that are C4-free.
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(a) (b)

Figure 4.6 – Two signed digraphs with λ3 = 0.

Thus, it would be natural to ask which signed digraphs on semi-complete graphs

satisfy λ2 > 0 > λ3. Conveniently, we find that the clique reduced graphs in Oboudi’s

family contain large induced (n− 2, 2)-kite graphs, to which we may apply Corollary

4.21.1 and interlacing to conclude that its complete parts should be switching isomor-

phic6 to K or K∗. However, this does not yield much useful information regarding

the possible signatures of the bridges. In fact, it turns out that there are admissible

signed digraphs on Oboudi’s graphs whose triangle gains do not all share the same

sign. Moreover, if we generalize from Oboudi’s family of graphs, and allow for induced

four-cycles, a similar phenomenon occurs. These graphs are illustrated in Figure 4.7.

These potentially occurring negative triangles open up a vast number of potential

signatures to consider. Thus, a concise, full classification of the signed digraphs with

λ2 > 0 > λ3, whose underlying graphs are semi-complete graphs may not exist.

Clique expansions of C5

By applying what we have learned about kite graphs, we may draw some interesting

conclusions with regard to the expansions of C5. Indeed, it is not hard to see that

any clique expansion of C5 contains many proper induced subgraphs that are simply

(n−2, 2)-kite graphs. Thus, under the usual assumptions (recall Prop. 4.19), we may

substantially limit the potential signatures.

In order to structure the following discussion, it is convenient to define some dis-

6In case n is even; if n is odd then the situation is slightly more complicated. Here, K and K∗

are respectively the complete graph and the signed digraph defined in Definition 4.3, of appropriate
order.
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(a) (b)

Figure 4.7 – Two semi-complete examples with λ2 > 0 > λ3, which contain
negative triangles.

tinct types of signatures, for clique expansions of C5. Given some G = CE(C5, τ) and

Φ = (G,φ), the four distinct signature types φ are displayed in Figure 4.8. Informally,

all induced cliques in types A and C are switching isomorphic to complete graphs,

while all of their induced 5-cycles have gains −1 and −ω, respectively. Oppositely,

types B and D do contain gain-ω triangles. If the induced cliques associated with

expansion parameter τj are denoted Cj , then type D is such that exactly one pair

(i, j) is such that Ci ∪ Cj induces a K∗, while every Cj induces K and the induced

5-cycles have gain 1 or ω. Similarly, expansions of type B are such that exactly one

Cj induces a K∗, the remaining four induce K, and all induced 5-cycles have gain 1.

We find the following.

Proposition 4.23. Let G be a clique expansion of C5, and let Φ = (G,φ) be a signed

digraph that satisfies λ2 > 0 > λ3. Then Φ ∼ Φ′ = (G,φ′) where φ′ is type A, B, C

or D.

Proof. As usual, we may assume that a spanning tree Y ⊆ E(G) of the edges are

positive digons in Φ. Specifically, if we denote the cliques corresponding to expansion

coefficient tj (see Figure 4.8) by Gj , a convenient choice of spanning tree is obtained

by fixing five nodes uj ∈ V (Gj), j = 1, . . . , 5, and choosing the spanning tree

Y =

5⋃
j=1

{(uj , v) | v ∈ V (Gj) \ uj} ∪
4⋃

j=1

{(uj , uj+1)}.

Since the subgraph Φ[V (Gj)∪V (Gk)] induced by two adjacent cliques, indexed by j, k,



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

Few non-negative eigenvalues 79

Kt1Kt2

Kt3

Kt4

Kt5

(a)

Kt1Kt2

Kt3

Kt4

K∗t5

(b)

Kt1Kt2

Kt3

Kt4

Kt5

(c)

Kt2

Kt3Kt4

Kt1

Kt5

(d)

Figure 4.8 – Illustrations of signature types A, B, C, D.

is again a clique, the subgraph Φ[V (Gj)∪V (Gk)] necessarily satisfies µ2 < 0, since the

eigenvalues of Φ[V (Gj)∪V (Gk)]∪O1 interlace those of Φ. For such subgraphs with k =

j+1, j ∈ [4], we may use that a spanning tree of the induced clique consists of positive

digons, to find that exactly one of two cases must be true: either all edges in the

induced clique are positive digons, or the induced clique contains exactly one positive

arc and the remainder is made up of positive digons. Finally, Φ[V (G1)∪V (G5)] must

also be switching equivalent to either Km or K∗m, for appropriate m. However, since

every induced C5 necessarily has negative gain, it follows straightforwardly that the

edges between G1 and G5 must either be all negative digons, or a single negative arc

supplemented with negative digons. Note that either option may indeed be obtained

from Km or K∗m with a simple diagonal switch that hits the edges between G1 and

G5.

By the above, no two adjacent Gj may both contain an arc. Thus, natural question

would be whether or not two non-adjacent cliques may both contain an arc. Now, since

the smallest admissible signed digraph that might satisfy this property, structured as
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(a) (b)

Figure 4.9 – Two clique expansions of C5 with λ3 = 0

Figure 4.9a, has a zero third largest eigenvalue, we may conclusively answer this

question with ’no.’ In a similar vein, since the structure in Figure 4.9b also has

λ3 = 0, none of the cliques may contain an arc if one of the induced five-cycles

has gain −ω. Combining all of the above, we obtain that if G = CE(C5, τ) and Φ

satisfies λ2 > 0 > λ3, then φ must be switching equivalent to a type A, B, C, or D

signature.

However, as was briefly mentioned before, not any clique expansion of C5 may

be underlying to a signed digraph that fits our requirements. Using our knowledge

on the admissible signatures, we learn the following by a computer search. In the

below, we write Tj =
{
G ∼= G′[U ] | U ⊆ V (G′), G′ = CE(C5, τ

j)
}
; that is, Tj is the

collection of all graphs that are obtained from C5 by clique expansion with expansion

vector at most τ j .

Proposition 4.24. Let Φ = (G,φ) be a signed digraph that satisfies λ2 > 0 > λ3.

Then, up to switching equivalence, the following holds:

(i) if φ is type A, then G ∈
⋃13

j=1 Tj,

(ii) if φ is type B or D, then G ∈ T12 ∪ T13, and

(iii) if φ is type C, then G ∈ T14,

where the τj are displayed in Table 4.2.

From Table 4.2, we may observe that there are still arbitrarily large expansions

of C5 that satisfy our needs, in addition to some subtly differently structured smaller

ones.
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φ type: A A,B,D C
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14

t1 3 3 3 3 4 5 5 5 3 t1 t1 t1 t1 t1
t2 3 3 4 2 2 3 2 1 1 1 t2 t2 1 1
t3 3 2 2 4 2 1 2 3 5 2 2 1 1 1
t4 2 2 2 2 2 2 2 2 2 2 1 1 t4 1
t5 1 2 1 1 2 1 1 1 1 1 2 t5 t5 1

Table 4.2 – Maximum clique expansions sizes of C5, such that it admits a
signed graph that satisfies λ2 > 0 > λ3. Free variables in τ10-τ14 may be
arbitrarily large. Note that for types A and D, the collections T12 and T13

are equal. However, since they do not necessarily coincide for type B, the
distinction is kept.

It should be noted here, that the signed digraphs obtained by taking a G ∈ Tj
and an admissible φ from the parameters and structures described above are, as has

been the habit throughout, in some sense leading members of a switching equivalence

class. For example, if one starts with a C5 whose gain is −ω, any single vertex may

be clique expanded to arbitrary size, without compromising the spectral requirement.

However, since every signed digraph obtained in such a manner is switching equivalent

to one obtained by expansion of vertex ”1,” as in Figure 4.8, these are not explicitly

listed.

4.5 Cospectrality and determination

Of particular interest to the author are uniquely occurring spectra of graphs. That

is, spectra that uniquely determine a graph, up to isomorphism. This notion has

received considerable attention for several decades [27, 28]. When an analogous line

of research was launched for the Hermitian adjacency matrix H, Mohar [83] sub-

tly shifted the definition of ”determined by the spectrum” such that ’DS’ digraphs

were now allowed to have non-isomorphic cospectral mates, as long as they were all

switching isomorphic.

In a Chapter 2, we considered the traditional notion, applied in the Hermitian

adjacency matrix paradigm. It was determined that digraphs whose H-spectra occur

uniquely, up to isomorphism, are extremely rare; though some infinite families do

exist. However, we find that with respect to E , any non-empty signed digraph has

a (in fact, many) non-isomorphic, switching equivalent partner. This is formally
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shown below, with an intuitive counting argument. Thereafter, we make use of the

classifications from Sections 4.3 and 4.4 to prove that several of the discussed families

have spectra that occur only for their respective switching equivalence classes; i.e.,

these families are determined by their spectra in the broader sense [83].

4.5.1 Existence of a switching equivalent partner

We will formally show that any non-empty signed digraph has at least one switching

equivalent, non-isomorphic partner. In the upcoming proofs, let Ωk(E) denote the

number of entries of E that are equal to ωk, for k ∈ Z6. We make the following

observation.

Lemma 4.25. Let Φ = (G,φ) be a signed digraph. Let U ⊂ V and W = V \ U be a

cut, and partition E(Φ) such that

E =

[
EU,U EU,W

EW,U EW,W

]
.

If there are k, l ∈ Z6 such that Ωk(EU,W ) ̸= Ωl(EU,W ), then there is a Φ′ ̸∼= Φ such

that Φ′ ∼ Φ.

Proof. Suppose that there are k, l ∈ Z6 such that Ωk(EU,W ) ̸= Ωl(EU,W ) and assume

to the contrary that Φ′ ∼= Φ for all Φ′ ∼ Φ. Consider the switching matrix

Sk =

[
ωkIu O

O In−u

]
with k ∈ Z6,

and set Ek = SkES−1k , which serves as the Eisenstein matrix of the switching iso-

morphic signed digraph Φk. Since isomorphic signed digraphs necessarily contain an

equal number of positive digons, Ω0(Ek) = Ω0(E). Note that EU,U = (Ek)U,U and

EW,W = (Ek)W,W , and that

Ωp(EU,W ) = Ωp+k((Ek)U,W ) for all p, k ∈ Z6.

Then, since E , Ek are Hermitian, it follows that Ω0(EU,W ) = Ω0(Ek)U,W = Ω−k(EU,W )

for every k ∈ Z6 and we obtain a contradiction.

Now, we may simply consider the number of edges that is hit by a given cut, to

determine that the required cut U and k, l certainly exist in a given non-empty signed
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digraph.

Proposition 4.26. Let Φ be non-empty. Then there exists a Φ′ ̸∼= Φ such that

Φ ∼ Φ′.

Proof. Let Φ be a non-empty signed digraph, and suppose that Φ is strongly deter-

mined by its spectrum. Then, for any cut U ⊂ V (D) and any switching over the

edges between U and V (Φ) \U , the digraph obtained by the corresponding switching

is isomorphic to Φ. By Lemma 4.25, this implies that any cut of Φ hits equally many

edges of every type. This, in turn, implies that any cut in Γ(Φ) must hit a number

of edges that is divisible by 6.

Now, suppose that u, v are two vertices that are neighbors in Γ(Φ). By the above,

the degrees du and dv of u and v, respectively, must satisfy du ≡ 0 (mod 6) and

dv ≡ 0 (mod 6). But then the cut set {u, v} hits exactly du + dv − 2 ≡ 4 (mod 6)

edges, and we have a contradiction.

To conclude, we remark that the line above holds for any finite unit gain group

except T2. However, if the the set of allowed complex unit gains is not closed un-

der multiplication, one may construct examples such that each cut that violates the

premise above does not allow for gain switching, and therefore cannot produce a

counterexample. This phenomenon occurs, for example, with the Hermitian adja-

cency matrix for directed graphs, and is exploited in Chapter 2.

4.5.2 Spectral determination

By the conclusion in the previous section, it is natural to adopt the before mentioned

definition of spectral determination due to Mohar. Formally, we have the following.

Definition 4.5. [83] Let Φ be a signed digraph and let Co(Φ) be the collection of

signed digraphs whose spectra coincide with the spectrum of Φ. Φ is said to be deter-

mined by its E-spectrum (DES) if Φ ∼ Φ′ for all Φ′ ∈ Co(Φ).

In the remainder of this work, we draw from the classifications in Sections 4.3 and

4.4 and verify whether or not some of these families, whose spectral behaviour is, in

a sense, extreme, have non-equivalent cospectral mates.

Low rank

Let us first consider the families of signed digraphs with low rank. Since the collection

of graphs that might be underlying to such signed digraphs was neatly characterized,
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we may straightforwardly show the following results.

Proposition 4.27. Let Φ be a connected signed digraph with Rank (Φ) = 2. If D is

connected and cospectral to Φ, then D ∼ Φ.

Proof. Recall from Proposition 4.10 that Rank (D) = Rank (Φ) = 2 implies Φ ∼ Kf,g

and D ∼ Kp,q, for f, g, p, q ∈ N. Now, we may simply solve |V (Φ)| = |V (D)|

|E(Φ)| = |E(D)|
⇐⇒

 p+ q = f + g

pq = fg
⇐⇒ (p, q) = (f, g) ∨ (p, q) = (g, f).

To obtain Φ ∼ Kf,g
∼= Kp,q ∼ D, which completes the proof.

An important note to place here is that the assumption on connectedness is almost

always required. Indeed, note that for instance K1,4 and K2,2 ∪ K1 (known as the

saltire pair) admit to the requirements, but are cospectral. The reason is quite simple:

if connectedness is relaxed, then one may (using the notation from the proof above)

simply find numbers p, q such that pq = fg, add r isolated vertices to satisfy p+q+r =

f + g. The following small generalizations follow straightforwardly from this insight.

Corollary 4.27.1. Let Φ ∼ Kp,q with p, q prime. Then Φ is DES.

Corollary 4.27.2. Let Φ ∼ Kn,n, for n ∈ N. Then Φ is DES.

Proof. Follows since Φ attains the minimum number of vertices (2n) necessary for a

rank-2 signed digraph with |E| = n2.

In Section 4.3, we have shown that Φ has rank 3 if and only if its twin reduction

is equivalent to either a triangle7 or an order-4 transitive tournament. However,

contrary to the above, their respective expansions may sometimes be cospectral, as

was observed in [73]. Cospectrality occurs for each pairing of the positive reduced

graphs K3,K
∗
3 , T4, and equivalently for their negative counterparts. The smallest

examples to this fact are:

• TE(K3, [1 8 15]) is cospectral to TE(K∗3 , [3 5 16]),

• TE(K∗3 , [3 4 7]) is cospectral to TE(T4, [1 1 6 6]),

• TE(K3, [3 20 25]) is cospectral to TE(T4, [3 5 10 30]).

7Recall that there are exactly four classes of triangles, which contain K3, K∗3 , −K3 and −K∗3 ,
respectively.
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Moreover, each of the three reduced signed digraphs has an arbitrarily large (nontriv-

ial) twin expansion cospectral to a signed digraph with a different underlying graph.

The propositions below are easily checked by simply counting the number of vertices,

edges, and triangles8.

Proposition 4.28. Let Φ and Φ′ be defined as Φ = TE(K∗3 , [2i+1 i(3i+2) 2(3i+

1)(i+ 1)]) and Φ′ = TE(K3, [i (3i+ 1)(i+ 1) 2(3i+ 1)(i+ 1)− 1]) for i ∈ N. Then
Φ is cospectral to Φ′.

Proposition 4.29. Let Φ and Φ′ be defined as Φ = TE(K∗3 , [i(i+ 1)/2 i(i+ 1)/2 +

1 i(i+ 1) + 1]) and Φ′ = TE(T4, [1 i(i− 1)/2 (i+ 1)(i+ 2)/2 i(i+ 1)]) for i ∈ N.
Then Φ is cospectral to Φ′.

A single non-negative eigenvalue

Since the collection of signed digraphs that satisfy λ1 > 0 > λ2 on a given number

of vertices is characterized by just two switching equivalence classes, we may use the

structural information obtained in Section 4.4.1 to draw some quick conclusions with

regard to their cospectrality.

Proposition 4.30. Let Φ be either Kn or K∗n. Then Φ is DES.

Proof. Let D be cospectral to Φ. Then D has λ1 > 0 > λ2, and thus by Theorem

4.17, either D ∼ Kn or D ∼ K∗n. Suppose w.l.o.g. that Φ = Kn and D ∼ K∗n. Then,
by Lemma 4.2 or 4.16, D is not cospectral to Φ, which is a contradiction. Thus,

D ∼ Φ.

Naturally, the same argument also holds when all edge gains are multiplied by −1.

Corollary 4.30.1. Let Φ be either (Kn,−) or (K∗n,−). Then Φ is DES.

Smallest eigenvalue −1

A straightforward example to show that DES signed digraphs do not necessarily con-

sist of a single connected component, possibly appended with a collection of disjoint

vertices, carries over from graph theory.

Lemma 4.31. Let Φ be an order-n connected signed digraph with λn = −1. Then

Φ ∼ (Kn,+).

8Since their gains are a factor, the triangles in expansions of K3 should all be counted twice.
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Proof. Since Φ is connected, Γ(Φ) contains a shortest path Pu,v for every u, v ∈ V (Φ).

The result follows by two applications of interlacing: first to see that every such Pu,v

is length at most two, and thus Γ(Φ) = Kn, and then to obtain that every induced

triangle has gain 1.

Proposition 4.32. Let m ∈ N and Φ =
⋃m

j=1(Knj ,+), nj ∈ N, j ∈ [m]. Then Φ is

DES.

Proof. Note that Φ has smallest eigenvalue −1, and let D be cospectral to Φ. Then

by Lemma 4.31, every connected component of D is switching isomorphic to a com-

plete graph of appropriate order. The result follows since every positive eigenvalue

characterizes such a connected component, and every zero eigenvalue corresponds to

an isolated vertex.

Corollary 4.32.1. Let m ∈ N and Φ =
⋃m

j=1(Knj
,−), nj ∈ N, j ∈ [m]. Then Φ is

DES.

Weakly determined with λ2 > 0 > λ3

In the final section of this work, we will draw from the families of graphs characterized

in Section 4.4, and use much of their inherent structure to obtain several more families

of signed digraphs that are weakly determined by their E-spectra.
In the below, we will use the same line of proof in two distinct situations, mainly

separated by the numbers of edges and triangles that must (at least) occur in the cor-

responding underlying graphs. The considered graphs consistently contain relatively

large cliques, which translate to a large number of triangles, relative to the contained

number of edges. Implicitly, said graphs must also contain some vertices with sub-

stantially smaller degree, which is what will serve as the basis upon which the proofs

are founded. Specifically, we will use the somewhat artificial notion of edge-degrees,

formally defined as follows.

Definition 4.6. Let G = (V,E) be a graph and let e = (u, v) ∈ E be an edge. If the

vertex-degrees of u and v are respectively du and dv, then the edge-degree δ(e) of e is

du + dv.

The first infinite family of signed digraphs whose spectral characterization we

will discuss is based on maximally dense clique expansions of C4. Using the results

from Section 4.2.2, we may be certain that any graph G that is underlying to a
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n− 2

(a) CE(P3, [n− 2 1 1])

n− 3

(b) CE(C4, [n− 3 1 1 1])

n− 4

(c) CE(Gem, [1 n− 4 1 1 1])

Figure 4.10 – The graphs in Lemma 4.33.

signed digraph D that is cospectral to such a clique expansion must contain precisely(
n−1
2

)
+ 1 edges and at least

(
n−1
3

)
− n + 3 triangles. Now, in case the minimum

degree of G is small enough, we can easily use just the number of edges to pin-point

its structure precisely, which is formalized in the following lemma.

Lemma 4.33. Let n ≥ 3, and let G be an O3-free graph with n vertices and m =(
n−1
2

)
+ 1 edges. Futher, let u be the vertex of minimal degree. If du = 1, then

G ∼= CE(P3, [n− 2 1 1]). Moreover, if du = 2 then either G ∼= CE(C4, [n− 3 1 1 1])

or G ∼= CE(Gem, [1 n− 4 1 1 1]).

If, instead, the minimum degree exceeds two, we may instead show that the graph

must be one of four exceptional graphs on small n.

Lemma 4.34. Let n ≥ 3, and let G be an O3-free graph with n vertices, m =
(
n−1
2

)
+1

edges and t = |T (G)| triangles. Then t ≥
(
n−1
3

)
−n+3 if and only if G has minimum

vertex degree 1 or 2, or if G is one of the exceptional graphs G1, G2, G3, G4, illustrated

in Figure 4.11.

Proof. First, we note that G cannot have an isolated vertex, because then the remain-

ing n − 1 vertices would have to harbour
(
n−1
2

)
+ 1 edges, which is impossible for a

simple graph. Thus, suppose that every vertex has degree at least 3.

We will then consider the triangle-free complement G = (V,E) of G, whose degrees

are denoted du, u ∈ V . This complement has n− 2 edges, so
∑

u∈V du = 2n− 4. By

the above assumption, du ≤ n− 4 for u ∈ V .
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(a) G1 (b) G2

(c) G3 (d) G4

Figure 4.11 – Complements of the four exceptional graphs for Lemma 4.34.

By inclusion-exclusion, we may express the number of triangles in G as

t =

(
n

3

)
− (n− 2)2 +

∑
u∈V

(
du
2

)
. (4.4)

Here, the second term represents the n − 2 edges missing from G, which are each

responsible for n − 2 missing triangles, unless they intersect with another missing

edge. Then, using that G is K3-free, the third term corrects the overshoot resulting

from the second term.

Expanding the third term and plugging in
∑

u∈V du and
∑

u∈V d
2
u =

∑
e∈E δ(e)

yields

t =

(
n

3

)
− (n− 1)(n− 2) +

1

2

∑
e∈E

δ(e),

which may in turn be combined with t ≥
(
n−1
3

)
− n+ 3 to find that∑

e∈E

δ(e) ≥ n2 − 5n+ 8.

Now, we may take the average of δ(e) over E to obtain

1

n− 2

∑
e∈E

δ(e) ≥ n− 3 +
2

n− 2
> n− 3. (4.5)
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So there is an edge e with δ(e) ≥ n − 2. But δ(e) ≤ n − 1, because G contains only

n − 2 edges. We distinguish two cases: either there is an edge with degree n − 1, or

there is not.

First, suppose that there is an edge e∗ = (u, v) with δ(e∗) = n − 1. Then du =

n− 1− dv, and without loss of generality dv ≤ du. Now, since G is triangle-free and

u and v are together adjacent to n− 3 of the remaining vertices, the degree sequence

of G is n − 1 − dv, dv, 1, 1, . . . , 1, 0. Observe that since du ≤ n − 4, it follows that

3 ≤ dv ≤ 1
2 (n− 1), which we may use to we obtain an upper bound for

∑
e∈E δ(e) as:∑

e∈E

δ(e) =
∑
w∈V

d2w = d2v+(n−dv−1)2+(n−3) ≤ 9+(n−4)2+n−3 = n2−7n+22.

Together with the lower bound
∑

e∈E δ(e) ≥ n2 − 5n+ 8, this yields n ≤ 7, which in

turn implies dv = du = 3, n = 7. This uniquely characterizes the graph G1 since G is

triangle-free and δ(e∗) = |E|+ 1.

Now, instead suppose that all edges have δ(e) ≤ n− 2. As argued in (4.5), there

is an edge e∗ = (u, v) with δ(e∗) = n− 2. This fixes all but one edge. Again, we have

du = n−2−dv, with dv ≤ n−2−dv ≤ n−4, so 2 ≤ dv ≤ 1
2n−1. Working analogously

to before, this case surprisingly yields the same upper bound for
∑

e∈E δ(e):∑
e∈E

δ(e) ≤ d2v + (n− 2− dv)2 + 2 · 4 + n− 6 ≤ 4 + (n− 4)2 + n+ 2 = n2 − 7n+ 22.

Because of the lower bound for
∑

e∈E δ(e), we then find that 6 ≤ n ≤ 7, and because

dv ≤ 1
2n − 1 that dv = 2 and du = n − 4. By checking the remaining 7 (non-

isomorphic) configurations, if follows that G has sufficient triangles only when it is

one of the remaining exceptional graphs G2, G3, or G4.

Given the above, we may now simply consider a limited number of potential

underlying graphs and investigate in which cases they lead to cospectrality. Let C∗4
be the four-cycle with gain −ω. Since it belongs to the only switching isomorphism

class on C4 that has eigenvalue −1 with multiplicity n− 3 , we may apply interlacing

to conclude the following with relative ease.

Theorem 4.35. Let Φ = CE(C∗4 , [n− 3 1 1 1]). Then Φ is DES, for n ≥ 4.

Proof. Suppose that D is cospectral to Φ. Then the spectrum of D contains 2 strictly

positive and n−2 strictly negative eigenvalues; specifically, −1 occurs with multiplicity
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K3

K4

(a)

K6

(b)

Figure 4.12 – A cospectral pair

n − 3. Furthermore, |E(D)| =
(
n−1
2

)
+ 1 and |T (Γ(D))| ≥

(
n−1
3

)
− n + 3, which by

Lemma 4.34 implies that Γ(D) contains a vertex of degree 1 or 2, or is one of four

exceptional graphs. We first explore the four exceptions, illustrated in Figure 4.11.

Recall that graphs G1, G2, and G4 contain exactly |T (Φ)| triangles, and thus

D = (Gj , φ), j = 1, 2, 4, may be cospectral to Φ only when all of its triangles (i.e.,

a basis of its cycle space) have gain 1. Using Proposition 4.4, it follows that D is

switching isomorphic to its underlying graph. Then, simply computing the spectra of

G1, G2, G4 leads to the desired conclusion. If D = (G3, φ), then we find analogously

that 6 triangles in D must have gain 1, and exactly two must have gain ω, which

again leads to a unique switching isomorphism class on G3, whose spectrum does not

coincide with Φ. Thus, the exceptional cases are covered.

We move on to the general case: suppose Γ(D) contains a vertex of degree at

most 2. Then Γ(D) is either CE(P3, [n − 2 1 1]), CE(Gem, [1 n − 4 1 1 1]) or

CE(C4, [n−3 1 1 1]), by Lemma 4.33. Now, it may easily be brute-forced that signed

digraphs on Gem have at least 4 eigenvalues that are not −1. By an application of

eigenvalue interlacing , it follows that signed digraphs on clique expansions of Gem

have eigenvalue −1 with multiplicity at most n − 4, which is insufficient. Similarly,

signed digraphs on clique expansions of P3 have eigenvalue −1 with multiplicity at

most n− 3; it is not hard to see that this is attained only when such a signed digraph

is switching isomorphic to its underlying graph. Since tr (E) (CE(P3, [n− 2 1 1]))3 >

tr (E) (Φ)3, it follows that Γ(D) = CE(C4, [n−3 1 1 1]). Finally, note that all triangles

in D then must have gain 1, to satisfy tr (E) (D)3 = tr (E) (Φ)3, and all of the 4-cycles

must have gain −ω, since C∗4 is the only 4-cycle with an eigenvalue −1. Since D

coincides with Φ on all cycle gains, the conclusion follows by Proposition 4.3.

Moreover, note that as a consequence of the proof above, we get the following for
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(a) G5 (b) G6

Figure 4.13 – Exceptional graphs for Lemma 4.37

free, since all candidates for cospectrality that contain sufficient triangles are switching

isomorphic.

Proposition 4.36. CE(P3, [n− 2 1 1]) is DES for n ≥ 3.

At this point, the attentive reader may wonder whether the above holds analo-

gously for clique expansions of the other switching classes on C4. While most of the

argument will hold up, we find that there are many signed digraphs on expansions of

P3 that have an eigenvalue −1 with sufficiently high multiplicity to potentially share

the spectrum of such a C4-expansion. In fact, an example of such a cospectral pair

is shown in Figure 4.12. Thus, we would have to provide a substantially different

approach; in the interest of unity, we move on to the next family of graphs.

In similar fashion, we may also consider maximally dense expansions of C5, that

satisfy λ2 > 0 > λ3. We follow largely the same line as in the proof of Lemma 4.34.

Lemma 4.37. Let G be an O3-free graph with n ≥ 5 vertices, m =
(
n−2
2

)
+ 2 edges

and t = |T (G)| triangles. Then t ≥
(
n−2
3

)
− n + 4 if and only if G is one of the

following graphs:

i) CE(C5, [n− 4 1 1 1 1]),

ii) CE(P4, [n− 3 1 1 1]), i.e., an (n− 2, 2)-kite,

iii) CE(P4, [2 1 n− 4 1]),

iv) One of the sporadic examples CE(P3, [3 1 3]), G5 or G6. (See Figure 4.13.)

Proof. Like before, G cannot have an isolated vertex. If G has a vertex of degree 1,

then the n− 2 non-neighbors form a clique, and it follows that G is an (n− 2, 2)-kite.

For the remaining cases, we may assume that every vertex has degree at least 2.
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Again consider G, whose degrees are du, u ∈ V , and note that now
∑

u∈V du =

4n − 10. Moreover, by assumption, du ≤ n − 3 for u ∈ V . As before, by inclusion-

exclusion, it follows that the number of triangles t in G may be expressed as

t =

(
n

3

)
− (2n− 5)(n− 2) +

∑
u∈V

(
du
2

)
.

Using that
∑

e∈E δ(e) =
∑

u∈V d
2
u and the above, it follows that

t ≥
(
n− 2

2

)
− n+ 4 ⇐⇒

∑
e∈E

δ(e) ≥ 2n2 − 8n+ 10.

From this inequality, we will determine the several remaining options for G. Once

more, we take the average over E to see that

1

2n− 5

∑
e∈E

δ(e) ≥ n− 2 +
n

2n− 5
> n− 2.

This implies that there is an edge e∗ ∈ E, such that δ(e∗) ≥ n−1. Note however that,

because G is triangle-free, δ(e) ≤ n. Now, either (I) there is an edge with degree n or

(II) there is not.

(I): First, assume that G has an edge e∗ = (u, v) ∈ E such that δ(e∗) = n and

du = n − dv. Without loss of generality, dv ≤ du, and because n − dv ≤ n − 3, it

follows that 3 ≤ dv ≤ 1
2n.

Let E
′
be the set of n− 1 edges in E that are incident to u or v, let Nu = N(u) \

{u, v} be the set of neighbors of u besides v and similarly Nv = N(v)\{u, v}. Because
there are n−4 edges not in E

′
, and because G is triangle-free, these are edges with one

vertex in Nu and the other in Nv. Thus,
∑

w∈Nu
(dw − 1) =

∑
w∈Nv

(dw − 1) = n− 4.

Now ∑
e∈E′

δ(e) = δ(e∗) +
∑

w∈Nu

(dw + n− dv) +
∑

w∈Nv

(dw + dv)

= n2 − (2dv − 3)n+ 2d2v − 10.

So for the remaining n − 4 edges not in E
′
we require that

∑
e ̸∈E′ ≥ n2 + (2dv −

11)n− 2d2v + 20.

Suppose now that dv ≥ 4. Because the lower bound n2 + (2dv − 11)n− 2d2v + 20
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is the weakest for dv = 4 (in the range 4 ≤ dv ≤ n
2 ), we obtain that

∑
e ̸∈E′

δ(e) ≥ n2 − 3n− 12, and thus
1

n− 4

∑
e ̸∈E′

δ(e) ≥ n− 1 +
2n− 16

n− 4
.

This implies that the only possible values for n and dv in this range is n = 8, dv = 4,

in which case δ(e) = n−1 for all e ∈ E′. It is easy to check however that this requires

more edges than E
′
contains. In addition, it is easy to check that if e ̸∈ E

′
then

δ(e) ≤ n−1, for otherwise the complement of E
′
would consist of at least n−3 edges.

So instead we must have dv = 3 and
∑

e ̸∈E′ δ(e) ≥ n
2 − 5n+ 2. Averaging yields

1

n− 4

∑
e ̸∈E′

δ(e) ≥ n− 2 +
n− 6

n− 4
,

which implies that if n > 6 then there is an edge ẽ ̸∈ E′ with δ(ẽ) = n − 1. Let us

assume existence of ẽ for n = 6 as well, and let ẽ = (ũ, ṽ), with ũ ∈ Nv and ṽ ∈ Nu.

Then there are two options. The first is that δṽ = 2 and δũ = n − 3. This fixes all

edges not in E
′
, and we obtain the complement of CE(P4, [2 1 n−4 1]). The second

option is that dṽ = 3 and dũ = n − 4, where we may assume that n > 6, otherwise

this is the same as the first option. Again, this fixes the entire graph. However only

for n = 7 does it satisfy the requirements, and we obtain the complement of G6. For

n = 6, the above inequality does not guarantee the existence of an edge ẽ ̸∈ E′ with
d(ẽ) = n − 1. Indeed, if we require all edges e ̸∈ E′ to have δ(e) ≤ n − 2, then we

obtain the complement of G5.

(II): Let us consider the possibility that, contrary to the case above, there is no

edge e ∈ E with δ(e) = n, but there is an edge e∗ = (u, v) such that δ(e∗) = n − 1.

Again, let du = n− 1− dv and assume without loss of generality that dv ≤ du. Since
n − 1 − dv ≤ n − 3, we now have that 2 ≤ dv ≤ 1

2 (n − 1). We proceed in the same

way as before, but now E
′
has n− 2 edges. The main difference to (I) is that there is

a vertex z that is not adjacent to u or v. That is: V \ (Nu ∪Nv) = {u, v, z}. In this

case, we have that
∑

w∈Nu
(dw − 1) +

∑
w∈Nv

(dw − 1) + dz = 2(n− 3) and therefore∑
e∈E′

δ(e) = n− 1 + (n− dv − 2)(n− dv − 1) + (dv − 1)dv +
∑

w∈Nu

dw +
∑

w∈Nv

dw

= n2 − (2dv − 1)n+ 2d2v + 2dv − 8− dz.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

94 Chapter 4. Signed Directed Graphs

It follows that for the remaining n− 3 edges, we require∑
e ̸∈E′

δ(e) ≥ n2 + (2dv − 9)n− 2d2v − 2dv + 18 + dz.

By averaging (as before) over the n− 3 edges and using that this average is at most

n − 1, we find that we may restrict to the cases dv = 3 with 7 ≤ n ≤ 9 and dv =

2 with n ≥ 5. The latter case leads (as only possibility) to the complement of

CE(C5, [n− 4 1 1 1 1]).

For dv = 3, we have
∑

e ̸∈E′ δ(e) ≥ n2 − 3n − 6 + dz and dw ≤ n − 4 for all

w ∈ V \ {z}. If dz ≥ 1, then consider an edge e′ incident to z. It must satisfy

δ(e′) ≤ dz + n− 4, and thus ∑
e ̸∈E′∪{e′}

δ(e) ≥ n2 − 4n− 2.

But then 1
n−4

∑
e ̸∈E′∪{e′} δ(e) ≥ n− 1, which is a contradiction.

Therefore, dz = 0, and we have to add n − 3 edges between Nu and Nv. For

n = 7, this yields K1 ∪K3,3, which is the complement of our final sporadic example

CE(P3, [3 1 3]). For n = 8, 9, it is easily verified that the corresponding graphs

(respectively the complements of K1∪K3,4 minus one edge, and K1∪K3,5 minus two

edges) contain insufficient triangles, which concludes the proof.

Theorem 4.38. Let G = CE(C5, τ) with τ = [n− 4 1 1 1 1], and let Φ = (G,φ)

where φ is of type A or C. Then Φ is DES.

Proof. Suppose that D is cospectral to Φ. Using Lemma 4.2, it follows that Γ(D)

contains at least 1
6 tr (E) (Φ)

3 =
(
n−2
3

)
−n+4 triangles, which by Lemma 4.37 implies

that Γ(D) is one of at most six potential graphs. Analogously to the proof of Theorem

4.35, it may easily be evaluated that the sporadic cases are not underlying to any

signed digraphs that are cospectral to appropriately sized Φ, so we focus on the

general case.

Suppose that Γ(D) = CE(P4, [n − 3 1 1 1]); an (n − 2, 2)-kite. By Corollary

4.21.1, the signed digraph that is induced by the (n−2)-clique is switching isomorphic

to Kn−2 or K∗n−2. This implies that 1
6 tr (E) (D)3 ≥

(
n−2
3

)
− 1

2 (n− 4) > 1
6 tr (E) (Φ)

3,

which is a contradiction.

Next, suppose that Γ(D) = CE(P4, [2 1 n− 4 1]). Then Γ(D) contains exactly

one more triangle than G for every n ≥ 5, which implies that tr (E) (D)3 ̸= tr (E) (Φ)3,
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and we again obtain a contradiction. Hence, Γ(D) = CE(C5, [n− 4 1 1 1 1]), and

the conclusion regarding φ follows by Proposition 4.3.

As before, we can draw similar conclusions for other graphs considered above.

Theorem 4.39. Let G be an (n − 2, 2)-kite, n ≥ 3, and let Φ = (G,φ) be such that

the induced (n− 2)-clique is switching isomorphic to either Kn−2 or K∗n−2. Then Φ

is DES.

Proof. By Corollary 4.21.1, Φ has λ2 > 0 > λ3, so Lemma 4.37 is applicable if

n ≥ 5. Now, observe that for n > 6, 1
6 tr (E) (Φ) >

(
n−2
3

)
− n+ 5, which is the largest

number of triangles in any graph in Lemma 4.37 that is not itself an (n − 2, 2)-kite.

The conclusion follows easily by brute-forcing (by computer) the limited collection of

signed digraphs from Lemma 4.37 on n = 4, 5, 6 whose underlying graphs do contain

sufficient triangles. (Recall that if n = 3 then Φ ∼ G, by Proposition 4.4.)

Finally, as an immediate consequence of Theorems 4.38 and 4.39, the following is

easily verified. Since all cospectral candidates for n ≥ 8 are DES themselves, one only

needs to check a limited number of graphs on 5 ≤ n ≤ 7.

Proposition 4.40. CE(P4, [2 1 n− 4 1]) is DES.

To conclude, we note that there are various families of signed digraphs that are

close tangents of the discussed DES families, which have remained untreated in this

section. For example, maximally dense C5 expansions with signatures B and D, or

minimally connected semi-complete graphs come to mind. While the author is con-

vinced that similar results could be obtained for these cases, their particular challenges

are preserved for future research.

4.6 Open questions

We end this chapter with a summarizing list of open questions.

Question 4.1. For a given underlying graph, there is a switching equivalence class

whose edges have gain 1 on a predetermined spanning tree. However, is it possible to

determine (or bound) the number of members of said class that do so?

Question 4.2. An interesting, ’ugly’ example of a signed digraph whose spectrum is

symmetric was provided in Figure 6.2. Perhaps, it is too ambitious to ask for a tight

characterization of all signed digraphs with symmetric spectra. However, would it be

possible to formulate some necessary properties?
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96 Chapter 4. Signed Directed Graphs

Question 4.3. The collections of signed digraphs whose rank is either 2 or 3 have

been completely characterized. Do ranks 4 and up also allow for a comprehensive

characterization?

Question 4.4. In order to keep the discussion on signed digraphs with two non-

negative eigenvalues tidy, we have zoomed in on a number of special cases. Is it feasible

to complete the characterization? Possibly under some additional restrictions?

Question 4.5. How do the results of this work change when one considers other gain

groups Tk? Which parts carry over to a gain set that is not closed under multiplica-

tion?

Question 4.6. Do the remaining columns of Table 4.2 give rise to DES signed di-

graphs? And what about other signed digraphs on C4?

Question 4.7. In our representation, φ(u, v) is positive if and only if φ(v, u) is

positive. In dynamical systems, this does not have to be the case. Should we adapt

our formulation to accommodate for these ’negative feedback loops’, or can the issue

be sufficiently circumvented with a simple subdivision trick? Moreover, can spectral

analysis of T6-gain graphs then offer new insights into the (possible) stability of such

systems?
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CHAPTER 5

Computer-aided search for gain graphs with

predetermined properties by Simulated Annealing

Abstract

A common first step in any classification of graphs would be to em-

ploy the help of a computer. Classically, a simple exhaustive search

on graphs of small order would suffice. However, this approach quite

quickly fails if one is looking for gain graphs, as a consequence of

their continuous nature. As a surprisingly effective solution to this

issue, we apply a technique from continuous optimization called Sim-

ulated Annealing to obtain gain graphs whose eigenvalues satisfy a

predetermined property.
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98 Chapter 5. Search with Simulated Annealing

5.1 Introduction

A natural way to start off an investigation into graphs of any sort that are united in

satisfying some sort of property is to work off of a collection of satisfactory examples,

in order to test initial hypotheses. While such examples will often be more or less

readily available in the literature, it is quite common to apply some sort of search. In

traditional graph related fields, one is often inclined to iteratively consider all graphs

within a given band of parameters. While this may be somewhat time consuming,

one at least has the guarantee that all possible examples of graphs with the desired

property, in the domain of the search, are found.

However, if one is interested in complex unit gain graphs; effectively weighted

graphs with weights on the complex unit circle, such an approach does not work.

Indeed, observe that by their continuous nature, considering ”all” gain graphs of a

given order is simply impossible. One may turn this weakness into a strength by

observing that the shift to a continuous paradigm opens the door to various highly

effective continuous optimization procedures. For example, one might minimize the

summed quadratic distances of the (ordered) eigenvalues of a gain graph Ψ to a

predetermined choice of spectrum, by treating the edge gains as variables. While

failure to find a candidate does not conclusively prove that none exists, one can

certainly use the output of such a search when said sum total is close to zero.

Below, we describe the applied method, a well-known procedure known as sim-

ulated annealing. We conclude the chapter with a brief discussion on performance

observations and potential applications.

5.2 Simulated annealing

To overcome some of the challenges presented by the gain graph paradigm, we have

implemented a search method that is somewhat unusual in this context, though gen-

erally well-known. Specifically, a Simulated Annealing [69] algorithm, which is com-

monly found in more applied optimization applications, has turned out to fit our

needs. Some recent, particularly successful applications of this process in various

applied fields include [34, 79, 94, 113].

Briefly put, the procedure searches randomly around some ‘currently best candi-

date,’ moving to a new candidate with probability 1 if it is ’better’ and with some

probability smaller than 1 if it is ‘worse.’ The latter probability is dependent on the

relative qualities of the old and the new candidates. Moreover, the variability (i.e.,
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how ‘different’ a new candidate is from the old candidate) gradually changes over

time, such that the algorithm starts off exploring the possibilities somewhat overzeal-

ously, and then cautiously exploiting the current best solution before terminating the

search.

More than anything, the evaluation of the quality of a candidate is crucial to the

success of the method. This is usually done with some function f(·). The evaluation

should be continuous in the sense that movement in the ‘right direction’ is correctly

captured. To state the obvious: the evaluation function

g(A) =

 0 if A satisfies the desired property

1 otherwise,

will not be of any use, as it will not be able to distinguish between candidates that

are ‘close’ or not. If one is interested in finding gain graphs whose spectrum consists

of the (ordered) eigenvalues µ1, . . . , µn, a simple quadratic distance metric appears to

work well. That is,

f(A) =

n∑
j=1

(λj − µj)
2, (5.1)

where the λj are the eigenvalues of A. For different applications, other evaluation

functions may be desirable. These may be slight alterations of (5.1), such as

f(A) =

n∑
j=1

(λj + λn−j+1)
2, (5.2)

which is used in Chapter 6, in order to gain a foothold for the proposed discussion

concerning gain graphs with symmetric spectra. Alternatively, some instances might

require a more tailored fit.

In Chapter 7, we will be looking for gain graphs with exactly two distinct eigen-

values. Any gain matrix A that satisfies this requirement admits to the equation

A2 − aA+ kI = O. Taking the norm of the left-hand side would in some sense mea-

sure how far A is removed from satisfying this equality. Thus, we use the evaluation

function

f(A) = ∥A2 − (λ1 + λn)A+ λ1λnI∥, (5.3)

where λ1 and λn are respectively the largest and the smallest eigenvalues of A.

We have found it most convenient to fix the underlying graph to some input value,
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100 Chapter 5. Search with Simulated Annealing

and to only allow the gains of the edges to vary. In particular, since said gains are

all in T, one may simply rotate the gain values around the complex unit circle with a

random amount to move from on candidate to the next in a rather controllable fashion.

Broadly speaking, the procedure for a given input graph may then be described as

follows.

Algorithm 5.1 Gain graph search by Simulated Annealing (sketch)

Input: Cool-down parameter 0 < α < 1; Initial temperature 0 < t ≤ 1;
minimum temperature τ > 0; terminal value ε (small); iterations m
bidirected graph G; evaluation function f(·)

Output: Gain graph Ψ, Valuation v

Initialize
Set old← G
Fix a spanning tree of the edges of old; randomly assign the other edges a gain.

while t > τ do
for j = 1, . . . ,m do

Set new ← old

Randomly mutate the new candidate
For each non-fixed edge (u, v) in new do

Randomly draw r from U(−1, 1)
Set ψnew(uv)← exp(iπ · r · t) · ψold(uv) and ψ(vu)new ← ψnew(uv)

−1.
Compute f(old) and f(new).

Terminate if target is met, or choose from which candidate to continue
if f(new) < ε then

Set Ψ← new and v ← f(new), return
else
Set p← min {exp ((f(old)− f(new))/(f(old) · t)) , 1} .
Randomly draw r from U(0, 1)
if r ≤ p then

Set old← new

Set t← ατ

Set Ψ← old, v ← f(old), return.

Here, the initialization step uses the fact that a more general version of Proposition

4.4 holds for general gain graphs. Even when the value of the function f is reasonably

low, at the end of the procedure above, it yields gain graphs which only approximately
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satisfies the desired property; one still has to distill the actual exact gain graph, to

which the procedure had been converging.

5.3 Performance

Simulated Annealing, in general, satisfies some very strong theoretical convergence

results [62]. Loosely put: if (I) the search neighborhoods are sufficiently connected1

and (II) the cool-down is sufficiently slow, then there are probabilistic guarantees that

the global optimum is found. The former condition is true, for Algorithm 5.1, but the

latter is less black-and-white.

In particular, since one might be searching for something that does not necessarily

exist for the selected underlying graph, one has to make a trade-off between speed and

accuracy. If one decides on a quicker cool-down procedure (that is, higher α and/or

lower m), Algorithm 5.1 may not converge to an output that globally minimizes f .

This translates to not finding an example with the desired property, while there would

have been one to find.

To showcase this trade-off, we have tested the success rate of this procedure by

searching for two-eigenvalue gain graphs on the underlying graphs of various known

two-eigenvalue gain graphs Ψ of increasing order and density. Specifically, we (through

trial and error) settled on two distinct set-ups, which are outlined by Table 5.1.

We primarily tune with initial temperature, iterations per temperature (m) and the

cool-down procedure, though they all more or less accomplish the same thing: more

iterations of the random search, at some point in the temperature curve. The former

(speed) one that has terminated each call in under 10 seconds and the latter (accuracy)

that successfully found an example at least 95% of its calls. Their respective success

rates and computation times, for various underlying graphs, are shown in Figure 5.1.

With the exception of the complete graphs, that somehow converge remarkably well

in the quick set-up, we observe a clear trade-off.

As one might expect, the main challenge (particularly when the considered graphs

become relatively dense) is getting sufficiently close to the true example in the final

stages of the search. This ties seamlessly with one of the drawbacks of the proposed

procedure: even when the output matrix A is very close to a gain graph with the

desired property, e.g. f(A) = 0.02, it is still not a trivial matter to arrive at the

1In the sense that any candidate may be mutated a (possibly huge) number of times to become
any one other candidate, for our case.
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Figure 5.1 – Statistics on simulated annealing calls on admissible underlying
graphs that converge to a gain graph with two eigenvalues. (40 calls for each
admissible graph.)

Speed Accuracy

α 0.98 0.995
t 0.2 0.2
τ 0.001 0.001
m 50 400
ε 0.0001 0.0001

Table 5.1 – Tuning parameters corresponding to Figure 5.1

true gain graph. Refinement of this final step could go a long way to improving the

applicability of this procedure.

Additionally, while it has served our needs just fine, the current implementation

is still relatively crude. The expansive body of research on the subject of simulated

annealing contains many potential modifications (see, e.g., [34]) that might further

improve the search method itself. Moreover, it seems likely that performance can be

significantly improved with more dedicated research and optimization; as it stands,

methods in this chapter have played a mostly supporting role.

5.4 A selection of the results

In the interest of completeness, we include some of the results that have been found

using the methods described in this chapter, which do not appear elsewhere in this

work.
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5.4.1 Signed digraphs

The described simulated annealing procedure has been applied to find a number of

signed directed graphs with exactly two non-negative eigenvalues. In order to ensure

that the results would be T6-gain graphs, we added what may effectively be considered

a penalty component2

p(A) = c ·
∑

(u,v)∈E

∥Auv − Euv∥2, (5.4)

where Euv = argminx∈T6
∥Auv − x∥ and c = 5, to the evaluation function f .

Various evaluation functions could theoretically work here; one could simply min-

imize λ3. (Note that λ2 may easily be shown to be necessarily non-negative, except

when the underlying graph is complete.) However, we found that minimizing the

somewhat arbitrary-looking evaluation function

f(A, λ1, . . . , λn) = (λ3 + 1)2 + (λ4 + 1)2 + (λ5 + 1)2 + p(A) (5.5)

worked relatively well.

Application of the described search procedure on random underlying graphs (being

mindful to ensure that said underlying graphs contain no order-3 stable sets), we

find various examples on underlying graphs that are not (although they do contain)

clique expansions of C5 or P4. As an interesting aside, repeated runs of the search

on underlying graphs that we know to admit a signed digraph with exactly two non-

negative eigenvalues are almost always equally successful. Some of the obtained graphs

are included, below.

2In hindsight, it might have made more sense to apply a discrete version of SA. That is, rather
than rotating the non-fixed gains a random distance that decreases over time, instead only allow the
sixth roots of unity and rotate with decreasing (w.r.t. time as well as distance) probability. As a
proof of concept, this has been implemented and found to work more quickly than the penalty-based
method, though no extensive studies were done using this alternative.
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104 Chapter 5. Search with Simulated Annealing

E1 =



0 0 0 ω̄ 1 1 1 ω̄ ω̄ 1

0 0 −1 1 0 0 0 1 1 0

0 −1 0 0 −ω̄ 0 0 0 0 1

ω 1 0 0 −ω̄ ω ω 1 1 1

1 0 −ω −ω 0 1 1 −ω −ω 1

1 0 0 ω̄ 1 0 1 ω̄ ω̄ 1

1 0 0 ω̄ 1 1 0 ω̄ ω̄ 1

ω 1 0 1 −ω̄ ω ω 0 1 1

ω 1 0 1 −ω̄ ω ω 1 0 1

1 0 1 1 1 1 1 1 1 0



, λ3 = −0.1575.

E2 =



0 −ω̄ ω̄ 0 1 1 1 0 1 ω

−ω 0 0 ω 1 −ω −1 0 −1 ω̄

ω 0 0 0 1 ω ω −ω ω ω

0 ω̄ 0 0 1 0 0 ω 0 1

1 1 1 1 0 1 1 1 1 1

1 −ω̄ ω̄ 0 1 0 1 0 1 ω

1 −1 ω̄ 0 1 1 0 −ω̄ 1 ω

0 0 −ω̄ ω̄ 1 0 −ω 0 −ω 0

1 −1 ω̄ 0 1 1 1 −ω̄ 0 ω

ω̄ ω ω̄ 1 1 ω̄ ω̄ 0 ω̄ 0



, λ3 = −0.2080.

E3 =



0 0 1 0 0 −ω̄ 0 0 −1 0 1 1

0 0 0 ω 1 1 1 1 0 1 0 0

1 0 0 −ω̄ 0 ω 0 0 −1 0 1 1

0 ω̄ −ω 0 1 ω 1 ω̄ 0 1 0 0

0 1 0 1 0 0 1 1 0 1 0 1

−ω 1 ω̄ ω̄ 0 0 0 0 −ω̄ 0 −ω −ω
0 1 0 1 1 0 0 1 0 1 0 0

0 1 0 ω 1 0 1 0 1 1 0 0

−1 0 −1 0 0 −ω 0 1 0 0 −1 −1
0 1 0 1 1 0 1 1 0 0 0 0

1 0 1 0 0 −ω̄ 0 0 −1 0 0 1

1 0 1 0 1 −ω̄ 0 0 −1 0 1 0



, λ3 = −0.0757.
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E4 =



0 1 1 0 0 0 0 0 1 0 1 1

1 0 1 0 0 1 0 0 1 0 1 1

1 1 0 0 0 0 0 0 1 0 1 1

0 0 0 0 ω̄ ω 1 1 0 1 −ω 0

0 0 0 ω 0 ω 1 1 0 1 0 0

0 1 0 ω̄ ω̄ 0 ω̄ ω̄ 0 ω̄ ω̄ 0

0 0 0 1 1 ω 0 1 0 1 1 0

0 0 0 1 1 ω 1 0 0 1 ω̄ 0

1 1 1 0 0 0 0 0 0 0 1 1

0 0 0 1 1 ω 1 1 0 0 0 1

1 1 1 −ω̄ 0 ω 1 ω 1 0 0 1

1 1 1 0 0 0 0 0 1 1 1 0



, λ3 = −0.004.

5.4.2 Symmetric spectra

During the initial exploration for the material that will be discussed in Chapter 6,

we found that gain graphs with symmetric spectra seem to be relatively common, in

the sense that many switching-distinct examples were found on the same underlying

graphs. To illustrate the degree to which this held up, we present a repeated search

for gain graphs with symmetric spectra on 500 random underlying graphs of orders

n = 20, 40, 60, 80 with evaluation function

f(λ1, . . . , λn) =

n∑
j=1

(λj − λn−j+1)
2. (5.6)

For each underlying graph, the search is performed 50 times; the results are shown

in Table 5.2. Not only does the algorithm consistently finds a candidate in each

run, we also observe that the outputs corresponding to the same underlying graph

are all pairwise switching-distinct (in fact, pairwise not cospectral). This lead us to

believe the somewhat surprising suspicion that the statement “almost every graph is

underlying to infinitely many switching distinct gain graphs with symmetric spectra,”

which is discussed in detail in Chapter 6, could possibly be true. As an aside, note

that the terminal values increase in a roughly linear fashion, which corresponds to

linearly increasing number of quadratic differences that are summed.
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106 Chapter 5. Search with Simulated Annealing

n Total calls # Switching classes max fval (×10−4)
20 25000 25000 2.3
40 25000 25000 6.4
60 25000 25000 11.1
80 25000 25000 15.5

Table 5.2 – Repeated search for gain graph with symmetric spectra on 500
random underlying graphs Γ; 50 calls for each Γ.

5.4.3 Two-eigenvalue gain graphs

Finally, the procedure has been applied to obtain gain graphs with precisely two dis-

tinct eigenvalues, for Chapter 7. Most notably, a systematic search of two-eigenvalue

gain graphs on order-12, degree-5 graphs, we found precisely M1, . . . ,M4, shown in

Examples 5.3-5.5, in addition to the order-12 donut (see Section 7.6.4). As mentioned

before, we cannot be absolutely certain that no other examples exist due to the ran-

dom nature of the search algorithm, but the author is reasonably confident that all

two-eigenvalue gain graphs with (n, k) = (12, 5) have been found.

We include a list of new examples, which will not appear in Chapter 7. Other

candidates, such as the one presented in Example 7.1, have also been obtained via

the described search procedure, though they turned out to have appeared elsewhere,

first.

Example 5.1. New example on K8:

K∗8 =



0 1 1 1 1 1 1 1

1 0 i −i i −i i −i
1 −i 0 −i −i i i i

1 i i 0 −i −i −i i

1 −i i i 0 i −i −i
1 i −i i −i 0 i −i
1 −i −i i i −i 0 i

1 i −i −i i i −i 0


.
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Example 5.2. A signed graph example on K10:

K∗10 =



0 1 1 1 1 1 1 1 1 1

1 0 −1 −1 1 1 −1 −1 1 1

1 −1 0 1 1 −1 1 −1 −1 1

1 −1 1 0 −1 −1 −1 1 1 1

1 1 1 −1 0 −1 1 −1 1 −1
1 1 −1 −1 −1 0 1 1 −1 1

1 −1 1 −1 1 1 0 1 −1 −1
1 −1 −1 1 −1 1 1 0 1 −1
1 1 −1 1 1 −1 −1 1 0 −1
1 1 1 1 −1 1 −1 −1 −1 0



.

Example 5.3. New example on the icosahedron:

M1 =



0 1 0 0 0 1 1 1 0 0 0 1

1 0 1 0 0 0 1 −1 1 0 0 0

0 1 0 1 0 0 0 −1 −1 1 0 0

0 0 1 0 1 0 0 0 −1 −1 1 0

0 0 0 1 0 x 0 0 0 −1 −1 −x
1 0 0 0 x̄ 0 −1 0 0 0 −x̄ 1

1 1 0 0 0 −1 0 1 0 0 0 −1
1 −1 −1 0 0 0 1 0 −1 0 0 0

0 1 −1 −1 0 0 0 −1 0 −1 0 0

0 0 1 −1 −1 0 0 0 −1 0 −1 0

0 0 0 1 −1 −x 0 0 0 −1 0 x

1 0 0 0 −x̄ 1 −1 0 0 0 x̄ 0



, x ∈ T.

Example 5.4. A bipartite example based on a new non-graphical weighing matrix of
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108 Chapter 5. Search with Simulated Annealing

weight 5:

Z =



1 1 1 1 1 0

1 −x̄ −1 x̄ 0 −x
1 −1 x 0 −x x

1 x̄ 0 −x̄ −1 −x
1 0 −x −1 x x

0 x̄ −x̄ x̄ −x̄ 1


, x ∈ T, and M2 =

[
O Z

Z∗ O

]
.

Example 5.5. Two more sporadic examples:

M3 =



0 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 1 0 0 1 0 1 −1 −1
0 0 0 0 0 1 1 0 −x x x 0

0 0 0 0 0 1 1 0 x −x 0 −x
1 1 0 0 0 0 1 0 0 0 −x x

0 0 1 1 0 0 0 −1 1 1 0 0

0 0 1 1 1 0 0 0 −1 −1 0 0

1 1 0 0 0 −1 0 0 0 0 x −x
1 0 −x̄ x̄ 0 1 −1 0 0 0 0 0

0 1 x̄ −x̄ 0 1 −1 0 0 0 0 0

1 −1 x̄ 0 −x̄ 0 0 x̄ 0 0 0 0

1 −1 0 −x̄ x̄ 0 0 −x̄ 0 0 0 0



, x ∈ T, and

M4 =



0 0 0 1 0 0 1 0 1 1 1 0

0 0 0 0 1 0 1 1 0 0 −1 1

0 0 0 0 0 1 1 −1 0 0 −1 −1
1 0 0 0 0 0 i 0 −i −i i 0

0 1 0 0 0 0 0 −i i −i 0 i

0 0 1 0 0 0 0 i i −i 0 −i
1 1 1 −i 0 0 0 0 0 i 0 0

0 1 −1 0 i −i 0 0 0 0 0 −i
1 0 0 i −i −i 0 0 0 0 −i 0

1 0 0 i i i −i 0 0 0 0 0

1 −1 −1 −i 0 0 0 0 i 0 0 0

0 1 −1 0 −i i 0 i 0 0 0 0



.
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5.5 Potential other applications

Since the backbone of the described search method is essentially independent of what

we have been searching for in the context of this particular project, it should be noted

that such search procedures could potentially be extremely useful in similar contexts.

The search primarily hinges on the evaluation function f and the idea that one could

move “gradually closer” to satisfying the desired property, and as such seems to work

well for various spectral properties of gain graphs.

Another interesting avenue to explore could be to turn ones attention to the search

for, e.g., new strongly regular graphs, or new distance regular graphs. Such searches

could be performed indirectly, by instead searching for equivalent gain graphs (see,

for example, [24, 66, 37]) or one could theoretically also move away from the fixed un-

derlying graphs. The most important issue to tackle in order for the latter searches to

be fruitful, would be to come up with a reasonable evaluation criterion. In particular,

one would need to find a way to deal with the discrete nature of a graph, compared

to the continuous nature of the gains, which might be challenging. Nevertheless, it

might be interesting to try something unusual in a field that has come up with very

few new examples over the past two decades.
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CHAPTER 6

Symmetry in complex unit gain graphs and their

spectra

Abstract

Complex unit gain graphs may exhibit various kinds of symmetry. In

this chapter, we explore structural symmetry, spectral symmetry and

sign-symmetry in gain graphs, and their respective relations to one-

another. Our main result is a construction that transforms an arbi-

trary gain graph into infinitely many switching-distinct gain graphs

whose spectral symmetry does not imply sign-symmetry. This ef-

fectively provides a much more general answer to the gain graph

analogue to an existence question that was recently treated in the

context of signed graphs.
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112 Chapter 6. Symmetric spectra of gain graphs

6.1 Introduction

Throughout the natural sciences, symmetry might be the single most widely recog-

nized feature that is in some way beautiful, useful, or both. It, therefore, occurs in

various forms. Of particular interest to the author is symmetry in the eigenvalues of

graphs and their diverse generalizations. A collection of eigenvalues (also called the

spectrum) is said to be symmetric if it is invariant under multiplication by −1. Two
recent works that consider symmetry in eigenvalues are [56, 48].

In addition to spectral symmetry, two more instances of symmetry come up in this

work. Likely the best known of the two is concerned with the existence of multiple

assignments of the same collection of labels to graph vertices, that cannot be distin-

guished by looking at the adjacency and non-adjacency of pairs of vertices. That is,

a graph is said to be (structurally) symmetric if it has any non-trivial automorphism.

Structurally, this (asymptotically rare) property implies that parts of the graph are

akin to one-another, as well as identical in relation to their mutual complement.

Finally, we encounter a phenomenon known as sign-symmetry. A particular line of

research is concerned with the invariance of signed graphs, which was introduced some

time ago by Zaslavsky [109], under negation of their sign functions. In particular,

if (G, σ) is switching isomorphic (see Def. 1.7) to (G,−σ), it is said to be sign-

symmetric. Its relation to spectral symmetry is interesting: while sign-symmetry

implies a symmetric spectrum, the reverse relation fails, in general. Sporadic examples

of signed graphs that show the latter phenomenon on complete graphs, as well as

various such infinite families have been found by Ghorbani et al. [42].

In the current article, we consider these types of symmetry, and the relation be-

tween them, in the complex unit gain graph paradigm. These objects are, effectively,

weighted bidirected graphs with weights on the complex unit circle, such that the

weight of every arc is equal to the inverse weight of its converse arc. In a recent

(re)popularization, the generalizations of various well-studied graph theoretical ob-

jects, such as signed graphs and the Hermitian adjacency matrices for directed graphs

[51, 76, 84], have seen quite some attention. Applications of gain graphs are primar-

ily related to quantum state transfer [23], and spectral analysis of these objects has

yielded a number of interesting parallels to complex geometry, such as those discussed

in Chapter 7.

While some relations between the aforementioned symmetries are clear, the exis-

tence of (an infinite family of) signed graphs which are spectrally symmetric but not

sign-symmetric was open until recently, when Ghorbani et al. [42] constructed the
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· · ·
· · ·

· · ·

s vertices

Figure 6.1 – The signed graph Γs. Here, the dashed edge has gain −1.

family Γs (illustrated in Figure 6.1) and proved that such signed graphs exist. While

mention is made of other infinite families that have the desired property, they seem

to effectively involve adding vertices to the leftmost hexagon in Figure 6.1. Thus,

this article addresses a natural follow-up question, and asks what happens when the

framework is generalized to encompass all complex unit gain graphs, rather than just

signed graphs.

As a gentle introduction to the subject matter, we first consider spectral symmetry

of gain graphs. We show that a graph G is underlying to only spectrally symmetric

gain graphs if and only if it is bipartite, and that every graph is underlying to some

spectrally symmetric gain graphs. Then, we consider a number of doubling operations

whose origin lies with a well-known recursive construction of Hadamard matrices. By

design, these constructions yield gain graphs with symmetric spectra. While most

of them also implicitly yield sign-symmetric gain graphs, we prove that a subtle

adaptation of Sylvester’s double transforms an arbitrary gain graph into infinitely

many switching-distinct gain graphs that are not sign-symmetric.

The contents of this paper are organized as follows. First, we provide a thor-

ough introduction of all of the concepts used in this article. This is followed by a

discussion of various constructions of gain graphs with symmetric spectra, in Sec-

tion 6.3. While most of these constructions are sign-symmetric by design, we prove

that an appropriate adaptation of Sylvester’s double, in general, is not. To conclude

this article, Section 6.5 puts a spotlight on an open question concerning the general

(asymptotic) case. Specifically, we have come to believe that the vast majority of

graphs is underlying to an infinite number of switching-distinct gain graphs that is

spectrally symmetric but not sign-symmetric.
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114 Chapter 6. Symmetric spectra of gain graphs

6.2 Preliminaries

We recall some of the essential definitions specific to this chapter, which concerns

various kinds of symmetry in complex unit gain graphs. A graph G is said to be

symmetric if it has a non-trivial automorphism.

If a gain graph is such that it has an eigenvalue λ with multiplicitym only if it also

has an eigenvalue −λ with multiplicitym, then it is said to have a symmetric spectrum

or be spectrally symmetric. The following is a well-known property of diagonalizable

matrices.

Lemma 6.1. Let Ψ be a unit gain graph with underlying graph G and characteristic

polynomial χ(λ) as in (1.1). Then Ψ has a symmetric spectrum if and only if aj = 0

for all odd j ≤ n.

We say that a graph G allows symmetric gain-spectra if there exists a gain graph Ψ

on G whose spectrum is symmetric; if moreover all gain graphs on G have symmetric

spectra then we say that G requires symmetric gain-spectra.

The negation of a gain graph Ψ is found by multiplying the gain of every arc with

−1. This is commonly simply denoted as −Ψ := (G,−ψ)). A gain graph is said to

be sign-symmetric if it is switching isomorphic to its negation; that is, if Ψ ∼ −Ψ.

A useful concequence of Propositon 4.3 is the following.

Lemma 6.2. Let Ψ be a gain graph, and let γk(µ) denote the number of distinct

order-k cycles in Ψ with Re (ϕ(C)) = µ. If it holds that γ2k−1(µ) ̸= γ2k−1(−µ) for

some µ ∈ R and k ∈ N, then Ψ is not sign-symmetric.

6.2.1 Initial observations

We briefly discuss the more obvious relations between the different notions of sym-

metry. Firstly, neither one of spectral symmetry and structural symmetry implies the

other. For the sake of brevity, we illustrate with the simplest examples, though there

are many to be found. Take, for example, any odd cycle C2k+1. This graph clearly

has a non-trivial automorphism, but Ψ = (C2k+1, ψ) is spectrally symmetric only

when ϕ(Ψ) = ±i. Moreover, taking an arbitrary asymmetric graph G and assigning

each of its edges a strictly imaginary gain yields a spectrally symmetric gain graph,

disproving the reverse implication.

Next, it is easy to see that sign-symmetry of Ψ implies the structural symmetry

of its underlying graph Γ(Ψ), unless every odd cycle has strictly imaginary gain.
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Proposition 6.3. If the gain graph Ψ is sign-symmetric then either Γ(Ψ) is sym-

metric or every odd cycle C in Ψ has Re (ϕ(C)) = 0.

Proof. Suppose that Ψ is switching isomorphic to−Ψ, i.e., A(Ψ) = XP (−A(Ψ))P−1X−1

for some diagonal matrix X with Xjj ∈ T for all j and some permutation ma-

trix P . Moreover, suppose that at least one odd cycle C has Re (ϕ(C)) ̸= 0. Then

Re (ϕ(CΨ)) ̸= Re (ϕ(C−Ψ)) , so P is not the identity. Then Γ(Ψ) is not asymmetric

since there exists an automorphism of Γ(Ψ). Indeed, Γ(Ψ) = PΓ(Ψ)P−1.

The reverse implication does not hold. This is easy to see, by taking any symmetric

non-bipartite graph G and choosing the all-one gain function 1. Then Ψ = (G,1)

contains at least one odd cycle with gain 1, but no odd cycles with gain −1. Thus, the
conclusion follows by Lemma 6.2. For more detail regarding the case that Re (ϕ(C)) =

0, see Section 6.3.2.

Finally, sign-symmetry clearly implies spectral symmetry.

Lemma 6.4. If Ψ = (G,ψ) is sign-symmetric, then its spectrum is also symmetric.

Proof. By construction λ occurs as an eigenvalue of A(Ψ) if and only if −λ occurs as

an eigenvalue of A(−Ψ) = −A(Ψ), and since switching equivalence of two gain graphs

implies that their spectra coincide, it follows that Ψ ∼ −Ψ implies {λ1, λ2, . . . , λn} =
{−λn,−λn−1, . . . ,−λ1}.

The reverse is not necessarily true, though examples to attest to this fact have

historically been difficult to find. Some signed graph examples can be found in [42],

and the remainder of this work will be dedicated to finding a much larger family of

gain graphs with this property, which is ultimately found and discussed in Theorem

6.17.

6.3 Spectral symmetry

In order to understand the possibility for spectral symmetry without sign-symmetry,

it stands to reason that one must first have a firm grasp of the circumstances required

for the former to occur. In particular, we investigate whether or not any graph allows

a symmetric spectrum, and which graphs require it.
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6.3.1 Necessary sign-symmetry

Probably the first result that one learns about in a spectral graph theory course is

the well-known theorem that a graph has a symmetric spectrum if and only if it is

bipartite. We find a largely similar result in the context of gain graphs. Indeed,

without too much effort, one may show that all Ψ on G are spectrally symmetric if

and only if G is bipartite.

Lemma 6.5. If G is bipartite, then any Ψ with Γ(Ψ) ∼= G is sign-symmetric, and

thus spectrally symmetric.

Proof. Let −Ψ = (G,ψ′), where ψ′(uv) = −ψ(uv). If G is bipartite then every cycle

C ∈ C(G) satisfies ϕ′(C) = (−1)|C|ϕ(C) = ϕ(C). By Theorem 4.3, we thus have

Ψ ∼ −Ψ, so Ψ is indeed sign-symmetric.

Proposition 6.6. The graph G requires symmetric gain-spectra if and only if G is

bipartite

Proof. Sufficiency follows from Lemma 6.5. In order to see necessity, assume to the

contrary that G is not bipartite. Then G is, itself, a gain graph (with the all-ones

signature). Since G is not bipartite, its adjacency spectrum is not symmetric, and

the claim follows.

The above may be reformulated in an interesting manner.

Corollary 6.6.1. The graph G requires symmetric gain-spectra if and only if G itself

has a symmetric spectrum.

6.3.2 Allowed spectral symmetry

As was clear from Lemma 6.1 and Theorem 1.2, and even further illustrated by

Proposition 6.6, a central role is played by odd cycles contained in our gain graphs.

This section gradually considers some special cases of graphs that do contain odd

cycles, to conclude that any graph allows a symmetric gain-spectrum.

In case only one odd cycle appears, it straightforwardly follows that the gain graph

is spectrally symmetric if and only if said odd cycle has strictly imaginary gain.

Proposition 6.7. Let Ψ be a non-bipartite gain graph and let Γ(Ψ) be unicyclic.

Then Ψ has a symmetric spectrum if and only if its cycle C satisfies Re (ϕ(C)) = 0.
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Proof. Let C be the sole cycle in G, whose order m is odd. It should be clear that C

constitutes the single order-m elementary subgraph of Γ(Ψ). Hence

am = 2Re (ϕ(C)) = 0 ⇐⇒ Re (ϕ(C)) = 0.

Furthermore, since any elementary subgraph of odd order j > m must contain C, the

contribution of said subgraph to aj is multiplied with Re (ϕ(C)) = 0, hence, aj = 0

follows. Finally, note that for any odd j < m, there exist no elementary spanning

subgraphs of order j as there are no odd cycles of order at most j.

Moreover, note that the above still holds up when arbitrarily many even cycles

occur.

Proposition 6.8. Let Ψ be a gain graph with arbitrarily many even-sized cycles, but

only a single odd-sized cycle C. Then Ψ has a symmetric spectrum if and only if

Re (ϕ(C)) = 0.

An interesting distinction between the two propositions above should be mentioned

here. Note that the graphs in Proposition 6.7 have the gains of their entire cycle space

determined by the demand for spectral symmetry. That is, a unicyclic graph allows

a spectrally symmetric gain graph, but any such gain graph belongs to the same

switching equivalence class. By contrast, while the odd cycle of the gain graphs in

Proposition 6.8 is ‘locked’ to ±i, the remaining cycles are all even and their gains are

therefore of no consequence to the symmetry of the spectrum. Since the gain of at

least one such even cycle may be freely chosen, it then follows from Theorem 4.3 that

infinitely many switching-distinct gain graphs with symmetric spectra occur on these

underlying graphs. However, it should also be noted that graphs with exactly one odd

cycle are reasonably rare. In particular, they either consist of exactly a single odd

cycle or are not 2-connected; the latter is mainly relevant for Theorem 6.20. Section

6.5 will explore this situation in more detail.

The following can be shown analogously to Proposition 6.7.

Lemma 6.9. Let Ψ be a gain graph whose odd-sized cycles C all satisfy Re (ϕ(C)) = 0.

Then the spectrum of Ψ is symmetric.

Note that the reverse need not be true, as is the case in Figure 6.2. A straightfor-

ward application of Lemma 6.9 leads to the conclusion that any graph is underlying

to at least one equivalence class of gain graphs whose spectra are symmetric.
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Figure 6.2 – A gain graph whose spectrum is symmetric. Here, the filled
edges have gain 1 and the dashed arcs have gain exp(2iπ/3). (Ocurred before
as Figure 4.5)

Proposition 6.10. Any graph G allows a symmetric gain-spectrum.

Proof. Let G be a graph and let Ψ be the gain graph obtained from G by assign-

ing strictly imaginary gain to any edge in E(G). Then any odd cycle C in Ψ has

Re (ϕ(C)) = 0, and the conclusion follows by Lemma 6.9.

Note, however, that this brings us no closer to finding families of gain graphs

whose spectral symmetry does not imply sign-symmetry. Indeed, any gain graph all

of whose odd cycles have strictly imaginary gain is, again, necessarily sign-symmetric.

Lemma 6.11. Let Ψ be a gain graph with Re (ϕ(C)) = 0 for every odd cycle C. Then

Ψ is sign-symmetric.

Proof. Observe that the gain of every even cycle is unaffected by the negation, as

in the bipartite case. Moreover, the odd cycles all have a zero real part, which is

therefore also unchanged.

The above should be somewhat expected to the experienced reader, as it was

effectively previously observed by Guo and Mohar [51] in the context of Hermitian

adjacency matrices. Nevertheless, it is a good example of the ways in which this

much more general setting differs from circumstances in which the original question

was posed.

6.4 Constructions

The logical question that follows from the above asks if we can construct spectrally

symmetric graphs with at least one odd cycle whose gain has a nonzero real part.

Clearly, the contribution of such an odd cycle must be counteracted by the contri-

butions of other (possibly smaller) odd cycles, in such a way that their respective

contributions to all odd aj are, in a sense, balanced. The easiest way to accomplish
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this would be to simply take the disjoint union of Ψ and −Ψ. In order to find graphs

which are connected, we must be a bit more resourceful.

The idea of effectively joining Ψ and −Ψ together to obtain a single spectrally

symmetric gain graph is quite similar to the ideas applied in various constructions of

Hadamard matrices [100, 65], weighing matrices [8] and constructions of e.g. cubic

graphs [2]. For example, the following is a straightforward generalization of a result

by Ghorbani et al. [42].

Lemma 6.12 ([42]). Let Ψ be an arbitrary gain graph, and denote A = A(Ψ) and B

be a Hermitian n-by-n matrix. Then Ψ̃, obtained from Ψ as

A(Ψ̃) =

[
A B

B∗ −A

]

has a symmetric spectrum. Moreover, Ψ̃ is sign-symmetric.

Proof. Let P =

[
O I

I O

]
and X =

[
−I O

O I

]
. Then

PXA(Ψ̃)X−1P−1 =

[
−A −B
−B∗ A

]
= −A(Ψ̃),

and thus A(Ψ̃) ∼ −A(Ψ̃).

In case B is not Hermitian, the switching isomorphism above does not work in

general, as is illustrated in the following example.

Example 6.1. Let A be Hermitian n× n, let B be non-Hermitian with B = C + zI

for some Hermitian C and z ∈ T \ {±1}, and X and P as above. Then

−

[
A B

B∗ −A

]
=

[
−A −C − zI

−C∗ − z̄I A

]

̸=

[
−A −C − z̄I

−C∗ − zI A

]
= PX

[
A B

B∗ −A

]
X−1P−1.

As an aside, note that if A and C are strictly real, then the two matrices are still

switching equivalent, as the switching classes are closed under transposition, by defi-

nition.
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However, in case the off-diagonal blocks are not Hermitian, one may still apply

similar block constructions. The attentive reader may notice a similarity to the dou-

bling operation used by Huang [65] to construct signed n-cubes. This construction

may indeed be used to obtain gain graphs with symmetric spectra.

Lemma 6.13. Let Ψ be an arbitrary order-n gain graph, denote A = A(Ψ) and let

z ∈ T. Then Ψ̂, defined by A(Ψ̂) =

[
A zI

z̄I −A

]
, is sign-symmetric.

Proof. In the following, recall that addition of vertex indices is modulo 2n. Then, by

construction, for every odd cycle C, whose (ordered) vertices are vu1
, vu2

, . . . , vuk
, the

cycle C ′ with vertices vu1+n, vu2+n, . . . , vuk+n, is such that ϕ(C) = −ϕ(C ′). Hence,

Ψ is isomorphic to −Ψ.

The above are all even-order gain graphs. Of course, one may obtain the same

kind of symmetry with a central (2n + 1)th vertex. To illustrate, we include the

following construction.

Lemma 6.14. Let Ψ be an arbitrary gain graph, and denote A(Ψ) =

[
0 a

a∗ A′

]
. Then

Ψ̂, obtained from Ψ as A(Ψ̂) =

 0 a −a
a∗ A′ O

−a∗ O −A′

 is sign-symmetric.

The above yields plenty of spectrally symmetric gain graphs. The main drawback

of the constructions above, for the purposes of this article, is that they are also all

sign-symmetric. However, inspired by Example 6.1, we arrive at another construction,

the foundation of which is known as Sylvester’s double. Effectively, we more or less

use a hybrid of Lemmas 6.12 and 6.13 to turn an arbitrary gain graph into a spectrally

symmetric one.

Lemma 6.15. Let Ψ be an arbitrary gain graph, denote A = A(Ψ) and let z ∈
T ∪ {0}.Then Ψ̆, defined by

A(Ψ̆) =

[
A A+ zI

A+ z̄I −A

]
, (6.1)

has a symmetric spectrum.
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Proof. Let M =

[
A A+ zI

A+ z̄I −A

]
. Then, we have

det(M − µI) = det

([
A− µI A+ zI

A+ z̄I −A− µI

])
= det((A− µI)(−A− µI)− (A+ zI)(A+ z̄I))

= det(−A2 + µ2I − (A+ zI)(A+ z̄I)),

where the second equality holds since A+ z̄I and A− µI commute. Since µ appears

in the final expression only as µ2, no odd-powered terms appear in the characteristic

polynomial and thus the spectrum is symmetric.

The key difference of Lemma 6.15 compared to the constructions that appeared

before, is that one does not necessarily have sign-symmetry. An example is provided

below.

Example 6.2. Let c ∈ T and ω = exp(iπ/3). Define

A =


0 1 1 ω̄ ω̄2

1 0 ω̄2 ω̄2 0

1 ω2 0 0 ω̄2

ω ω2 0 0 0

ω2 0 ω2 0 0

 and M =

[
A A+ zI

A+ z̄I −A.

]

Let z = exp(iπ/5). Then M contains 628 nine-cycles with real part − 1
2 (
√
3 Im (z) +

Re (z)) and only 620 with real part 1
2 (
√
3 Im (z) + Re (z)). It follows by Lemma 6.2

that M is not sign-symmetric. The same conclusion holds for any z ∈ T, though the

exact count may differ. This fairly tedious matter of counting has been verified by

computer.

In fact, we may abuse the fact that the off-diagonal blocks are not Hermitian to

conclude that the above construction is, in general, not sign-symmetric.

Theorem 6.16. Let Ψ be a connected nonbipartite gain graph with Γ(Ψ) asymmet-

ric, denote A = A(Ψ) and let z ∈ T \ T4. Then Ψ̆, defined by M := A(Ψ̆) =[
A A+ zI

A+ z̄I −A

]
, is sign-symmetric if and only if Ψ is switching equivalent to a

signed graph.
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Proof. Suppose that Ψ is switching equivalent to a signed graph. Then, w.l.o.g.,

it may switched such that the entries of A(Ψ) are all real. Let P =

[
O I

I O

]
and

X =

[
−I O

O I

]
. Then

PXMX−1P−1 =

[
−A −A− z̄I

−A− zI A

]
= −M⊤. (6.2)

Since switching isomorphism classes are by definition closed under taking the converse,

this shows that M ∼ −M. Note that taking the transpose only affects the diagonal

entries of the off-diagonal blocks, since A is strictly real and thus symmetric.

We consider the reverse implication. By construction,

Γ(M) =

[
|A| |A|+ I

|A|+ I |A|

]

has precisely the full automorphism group generated by all of the transpositions (v, v+

n), with v ∈ [n], where n is the order or Ψ. Since a switching isomorphism from M to

−M is an automorphism of Γ(M), it therefore follows that the permutation matrix

P , representing the relabeling of the vertices, is symmetric. That is, P 2 = I.

Note that since Ψ is nonbipartite, there is at least an odd cycle C ′ in Ψ̆ whose gain

is affected by the negation, i.e., Re (ϕ(C ′)) ̸= 0. Indeed, if all odd cycles in Ψ would be

strictly imaginary; one could take an odd cycle C = (vc1 , vc2 , . . . , vck) from Ψ and add

two vertices from the negated copy to obtain C ′ = (vc1 , vc1+n, vc2 , vc2+n, vc3 , vc4 , . . . , vck).

Then ϕ(C ′) = z2ϕ(C), and thus Re (ϕ(C ′)) ̸= 0, showing our claim. Since switching

does not affect the gain of a cycle, M ∼ −M now implies P ̸= I.

Assume, for now, that we do not take the converse. Then there are some ma-

trices P,X such that PXMX−1P−1 = −M , where P is a (non-identity) symmetric

permutation matrix and X is a diagonal matrix whose diagonal entries are complex

units. Let R ⊆ V denote the vertices that are not fixed by P . Observe that |R| = 0

implies P = I, which contradicts the above. Assume without loss of generality that

R = {1, . . . , r} for some 1 ≤ r < n (the case r = n is treated later), and decompose

A as

A =

[
AR B

B∗ AF

]
,
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where AR ∈ Cr×r and the remaining blocks are appropriately dimensioned. Ac-

cordingly decompose X as X = diag(XR, XF , YR, YF ), where XR, YR ∈ Cr×r and

XF , YF ∈ Cn−r×n−r. Then

M ′ := PXA(Ψ̆)X−1P−1 = (6.3)
−YRARY

−1
R YRBX

−1
F YR(AR + z̄I)X−1R −YRBY −1F

XFB
∗Y −1R XFAFX

−1
F XFB

∗X−1R XF (AF + zI)Y −1F

XR(AR + zI)Y −1R XRBX
−1
F XRARX

−1
R XRBY

−1
F

−YFB∗Y −1R YF (AF + z̄I)X−1F YFB
∗X−1R −YFAFY

−1
F

 ,

which equals −M on all entries. Observe from the (1,3) block that z̄YRX
−1
R = −zI,

and thus YR = −z2XR. Furthermore, from blocks (1,2) and (3,2), we have YRBX
−1
F =

−B = XRBX
−1
F . Now, since B is non-zero (otherwise Ψ is not connected), these two

equations jointly imply z2 = −1, which is a contradiction.

What remains is to consider r = n. Then similarly to before

M ′ =

[
−XRARX

−1
R −z2XR(AR + z̄I)X−1R

−z̄2XR(AR + zI)X−1R XRARX
−1
R

]
, (6.4)

and thus −XRARX
−1
R = −AR and −z2XRARX

−1
R = −AR, which in this case implies

z2 = 1 since AR is non-zero. This is again a contradiction.

Finally, we revisit the matter of taking the converse. Let 1 ≤ r < n and, contrary

to before, suppose now that M ′ = −M⊤, where M ′ is as in (6.3). Then z̄YRX
−1
R =

−z̄I and thus XR = −YR. Note the similarity to before; a parallel argument may be

formulated with little effort.

In case r = n, some extra effort is needed. Plugging in XR = −YR into (6.3) and

equating the result to −M⊤ yields XRARX
−1
R = A⊤R, which is equivalent to

[XR]uuAuv[XR]
−1
vv = Auv ∀(u, v) ∈ E. (6.5)

Note that if Auv = 1, then it clearly follows that [XR]uu = [XR]vv. Now, since one

may without loss of generality assume (see Corollary 4.4.1) that a spanning tree of

the edges has gain 1, it follows that XR = cI for some c ∈ T. But then (6.5) reduces

to Auv = Auv, which implies A ∈ Rn×n and is therefore switching equivalent to a

signed graph.

Using Lemma 6.15 and Theorem 6.16, we thus obtain a huge family of gain graphs
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that are spectrally symmetric but not sign-symmetric. In particular, since there is

substantial freedom in the choice of Ψ, there should be examples of such gain graphs

with many graph theoretical properties. In light of the comparatively narrow families

of signed graphs presented by Ghorbani et al. [42], this is quite surprising. The

following should be clear.

Theorem 6.17. For almost every gain graph Ψ and c ∈ T, its double Ψ̆ as constructed

in (6.1) is spectrally symmetric and structurally symmetric, but not sign-symmetric.

6.5 An open problem concerning the general case

While Theorem 6.17 yields an abundance of examples, we have reason to believe that

spectral symmetry without sign-symmetry occurs much more widely. With extensive

numerical exploration, including but not limited to the trials discussed in Section

5.4.2, we find that most sufficiently dense graphs allow many switching-distinct gain

graphs with symmetric spectra. It has proved difficult to formulate a convincing

argument for the general case, but we choose to include our expectations in the hopes

of attracting attention to this interesting question.

At the heart of the following discussion is the cycle space C of a graph and its

dimension1 dim C = |B|, relative to the order of the graph. We recall the following

fact.

Lemma 6.18. Let Ψ = (G,ψ) be a connected gain graph. Then dim C(Ψ) is equal to

m− n+ 1.

Proof. Let T be a spanning tree of G. Then there are m − n + 1 (not necessarily

disjoint) cycles consisting of exactly one edge outside of T and a number of of edges

inside T ; these are called fundamental cycles. Since every cycle in G may be obtained

as the symmetric difference of fundamental cycles, these cycles form a basis.

6.5.1 Even cycles in a cycle basis

Initially, one is inclined to use the observation that the gain of an even cycle is much

less restricted by the desire for spectral symmetry. However, one quickly encounters

a problem that was eluded to following Proposition 6.8.

1Recall that B denotes the basis of the cycle space.
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Lemma 6.19. Let G be such that every basis of its cycle space contains an even-

order cycle. Then there are infinitely many switching equivalence classes on G, whose

spectra are symmetric.

Proof. let C be an arbitrary basis of the cycle space of G, and construct Ψ by choosing

the gains of all odd cycles in C to be strictly imaginary. Then, independently of the

gains of the even cycles in C, the spectrum of Ψ is symmetric. Since two gain graphs

are switching equivalent if and only if (the real parts of) their gains coincide on a

basis of the cycle space, the remaining freedom of choice for the gains of the even

cycles yields infinitely many switching equivalence classes, as desired.

Interestingly, the requirement in Lemma 6.19 is very rarely met: it would require

the graph to not be 2-connected. That is, the graph be such that removal of a single

vertex would yield a disconnected graph. Clearly, such a vertex is unlikely to occur

in a large random graph, thus invalidating Lemma 6.19 as a piece of machinery fit for

analysis of the asymptotic case.

Theorem 6.20 (Henning and Little [63]). Every 2-connected nonbipartite graph has

a cycle basis consisting only of odd cycles.

Proof. (Sketch.) Start with an odd cycle C1, and pick a cycle C2 that coincides with

C1 on at least an edge. Now either C2 is odd or C2 is even. In the latter case, C ′2,

obtained as the symmetric difference of C1 and C2, is odd. One may continue in this

way to obtain an odd cycle basis, provided that the graph is 2-connected.

6.5.2 A system of polynomial equations

Once more, the central issue seems to be the age-old question of a number of solutions

to a given system of equations. Indeed, note that since the gain of every cycle in a

gain graph may be written as a product of the gains of cycles from a (fundamental)

cycle basis, constructing a gain function that equips a given underlying graph with a

symmetric gain-spectrum essentially corresponds to solving the system of equations

a2k+1 = 0, 2k + 1 ≤ n, k ∈ N. If the cycle space is relatively small, this may lead to

a system with finitely many solutions.

Example 6.3. Consider the graph in Figure 6.3a. Its cycle space consists of two

independent triangles whose gains are α and β. By applying Theorem 1.2, it follows
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α β

(a)

α

β γ

(b)

Figure 6.3 – Illustrations for Examples 6.3 and 6.4. Fat edges may w.l.o.g.
be assumed to have gain 1. Only the ’forward’ arc of every remaining pair is
illustrated.

that the corresponding gain graph is spectrally symmetric if and only if−2Re (α)− 2Re (β) = 0

4Re (α) + 2Re (β) = 0,

which implies α = ±i and β = ±i. These options leave at most four distinct gain

graphs; in this particular case, they are all equivalent.

Note that if the rightmost vertex were removed, then the corresponding gain graph

would be spectrally symmetric for any α = −β. Indeed, in this case, the two triangles

would be symmetric to one-another, which translates to dependency in the system of

equations above.

Formalizing the idea in the example above leads to the following intuitive result.

Proposition 6.21. Let G be connected and asymmetric with m ≤ 3
2 (n− 1). Then G

allows finitely many switching-distinct gain graphs with symmetric spectra.

Proof. Let B be a cycle basis of G of size b = m− n+ 1 = . For every Cj ∈ B, apply
a common change of variable by setting ϕ(Cj) = rj + iqj , with rj , qj ∈ R. Clearly,

since |ϕ(Cj)| = 1, it should also hold that r2j + q2j = 1 for all j = 1, . . . , b.

Consider an order-k elementary subgraph H of G. By Theorem 1.2, the con-

tribution of H to ak is dependent on the gains of the cycles in H; specifically, on
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∏
C∈C(H) Re (ϕ(C)). Since ϕ(C) may be expressed as2

ϕ(C) =
∏

Cj∈B→(C)

ϕ(Cj)
∏

Cj∈B←(C)

ϕ(Cj) =
∏

Cj∈B→(C)

(rj + iqj)
∏

Cj∈B←(C)

(rj − iqj),

(6.6)

it should be clear that

Re (ϕ(C)) = fC(r1, . . . , rb, q1, . . . , qb)

for some real polynomial fC .Because this applies for every cycle C in every elementary

subgraph H of every order k, it follows that every coefficient ak is a polynomial in

r1, . . . , rB , q1, . . . , qB . By collecting all of the above, we obtain the following system

of simultaneous equations: ak(r1, . . . , rB , q1, . . . , qB) = 0 for all 3 ≤ k ≤ n, k odd

r2j + q2j = 1 for all j = 1, . . . , B.
(6.7)

Note that this system contains (n− 1)/2+B equalities and 2B real-valued variables.

Additionally, since G is asymmetric, it follows that the equations are linearly inde-

pendent. Now, since 2B − ((n − 1)/2 + B) = m − 3
2 (n − 1) ≤ 0 by assumption, this

system of polynomial equations has at most as many variables as equalities. Hence,

the system has finitely many solutions over the complexes [82, Thm. 14.1]; implicitly,

it also has finitely many solutions over the reals.

Conversely, if the cycle space is of sufficiently high dimension, this leads to a

system of equations that has more variables than equations, which is often associated

with infinitely many solutions.

Example 6.4. Consider the graph in Figure 6.3b. Again, its spectrum is symmetric

if and only if the following system of simultaneous equations holds:−2Re (α)− 2Re (β) = 0

4Re (α) + 2Re (β)− 2Re (βγ) = 0

2Here, B→(C),B←(C) ⊆ B are the basis cycles traversed respectively ”clockwise” and ”anticlock-
wise” to obtain C. Recall that in order for the gain of a constructed cycle to be the product of the
gains of the constructing cycles, their intersection must be traversed in opposing directions.
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with α, β, γ ∈ T. As in the proof of Proposition 6.21, this can be turned into

−2r1 − 2r2 = 0

4r1 + 2r2 − 2(r2r3 − q2q3) = 0

r21 + q21 = 1

r22 + q22 = 1

r23 + q23 = 1.

Since this system of polynomial equations has strictly more variables than equalities,

it has infinitely many solutions over an algebraically closed field. Regrettably, the later

system has real-values variables by the applied change of variables, so this argument

does not apply.

Nevertheless, one can still conclude that any solution with r1 ∈ [−1, 1], r2 =

−r1, r3 = −1, with appropriate q1, q2, q3, solves the system. Since the gains of the

fundamental cycle basis may take infinitely many distinct values, it follows by Theo-

rem 4.3 that there are infinitely many switching distinct gain graphs with symmetric

spectra on this underlying graph.

This then leads to the following question.

Question 6.1. Is it true that a graph G allows finitely many switching-distinct gain

graphs with symmetric spectra only if |E(G)| ≤ m∗, for some m∗ ∈ N? In particular,

does the bound m∗ = 3
2 (n− 1) apply?

Numerical testing has thus far not given us a reason to believe that the statement

should be more nuanced than above, though that is, of course, a possibility. While

one may formalize by hand on a case-by-case basis, as in Example 6.4, a conclusive

answer to the general question unfortunately still eludes us.

6.5.3 Asymptotic consequence

The above has some interesting repercussions for the existence of gain graphs whose

spectral symmetry does not imply sign-symmetry. In particular, recall from Propo-

sition 6.3 that a (non-bipartite) sign-symmetric gain graph is necessarily structurally

symmetric. One could then be easily convinced of the following conclusion.

Proposition 6.22. If Question 6.1 can be positively answered on both counts, then

almost all graphs allows infinitely many switching-distinct gain graphs whose spectra
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are symmetric, but which are not sign-symmetric.

Proof. It is well-known that almost every graph is asymmetric; see Chapter 3. Thus,

we may consider the probability that a random Erdős-Rényi graph G(n, p = 1/2)

satisfies the bound mentioned in Question 6.1, to arrive at the desired conclusion.

Let Xj be independent Bernoulli variables with P(Xj = 1) = 1
2 and let

X =

n(n−1)/2∑
j=1

Xj . (6.8)

Then, with δ = 1− 6
n and µ = E(X) = n(n− 1)/4, we have:

P
(
X ≤ 3(n− 1)

2

)
= P(X ≤ (1− δ)µ) (6.9)

≤ exp

(
−1

2
δ2µ

)
(6.10)

= exp

(
−1

4

(
n2 − 13n+ 48− 36n−1

))
, (6.11)

which clearly tends to 0 as n goes to infinity. Here, (6.10) follows by application of

the Chernoff bound (see Theorem 3.1).

To conclude, we note that the conclusion of Proposition 6.22 would be, in some

respect, quite surprising. Indeed, the matter of signed graphs that are not sign-

symmetric, but whose spectra are symmetric, turned out to be quite formidable ques-

tion that was listed as an open problem in [6] and answered by [42]. While one has

much more freedom to work with in the gain graph paradigm, it does seem remarkable

that gain graphs that satisfy the above property appear so bountifully.
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CHAPTER 7

Unit gain graphs with two distinct eigenvalues

Abstract

Since the introduction of the Hermitian adjacency matrix for di-

graphs, interest in so-called complex unit gain graphs has surged.

In this chapter, we consider gain graphs whose spectra contain the

minimum number of two distinct eigenvalues. Analogously to graphs

with few distinct eigenvalues, a great deal of structural symmetry is

required for a gain graph to attain this minimum. This allows us to

draw a surprising parallel to well-studied systems of lines in complex

space, through a natural correspondence to unit-norm tight frames.

We offer a full classification of two-eigenvalue gain graphs with de-

gree at most 4, or with multiplicity at most 3. Intermediate results

include an extensive review of various relevant concepts related to

lines in complex space, including SIC-POVMs, MUBs and geome-

tries such as the Coxeter-Todd lattice, and many examples obtained

as induced subgraphs by employing a technique parallel to the dis-

mantling of association schemes. Finally, we touch on an innovative

application of Simulated Annealing to find examples by computer.
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132 Chapter 7. Gain graphs with two eigenvalues

7.1 Introduction

An especially captivating line of research considers graphs, whose associated matrices

have few distinct eigenvalues. Such graphs are generally highly structurally symmet-

ric, which allows for a beautiful interplay of algebra and combinatorics. A non-empty

graph must always have at least two distinct eigenvalues; a bound that is essentially

only attained in a complete graph. In this chapter, we explore the degree to which

this holds true for modern alternatives to the classical binary graphs, and investigate

the necessary circumstances for such generalizations to yield examples outside of their

immediate graph parallels.

Recently, Belardo et al. [6] posed the problem of investigating signed graphs

with exactly two distinct eigenvalues. Quite a few papers have since appeared on

the topic. In particular, Huang [65] has used a construction of signed n-cubes with

exactly two eigenvalues in his recent proof of the so-called Sensitivity Conjecture

of Nisan and Szegedy on Boolean functions. Furthermore, Ramezani [90] applies

the star-complement technique to find infinitely many k-regular signed graphs with

two distinct eigenvalues ±
√
k, with k = 5, 6, . . . , 10, and Stanić [101] offers various

theoretical and computational results, among others completing the list of 3- and

4-regular signed graphs with two distinct eigenvalues. Lastly, in an earlier work

classifying cyclotomic matrices, Greaves [45] has obtained several infinite such families

with two eigenvalues, slightly restricted versions of which can be interpreted as unit

gain graphs.

In this work, we will further develop the ideas and results on signed graphs, above,

to the more general setting of complex unit gain graphs. Many (or in fact all) such

graphs that have exactly two eigenvalues correspond to interesting systems of lines

in complex space, such that the angle between every non-orthogonal pair of lines is

equal to some given constant. If every such line is represented by a vector with a given

norm (say, 1), then one obtains an object known as an equal-norm tight frame [106].

Moreover, if no two such vectors are orthogonal, the system is said to be equiangular.

Due to their rich theoretical properties and their numerous practical applications,

equiangular tight frames are arguably the most important class of finite-dimensional

tight frames, and they are the natural choice when one tries to combine the advan-

tages of orthonormal bases with the concept of redundancy provided by frames [102].

While most research regarding equiangular lines is relatively old (frames were used to

analyze wavelets in the 1980s, e.g., [80]), the quantum computing community has been

increasingly interested in equiangular tight frames, especially in the context of sym-
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metric, informationally complete, positive operator-valued measures (SIC-POVM),

which is a prominent candidate for a “standard quantum measurement,” (see, e.g.,

[53, 54].) It has been shown to have applications in quantum state tomography [17]

and quantum cryptography [40]. Furthermore, such SIC-POVM’s are equivalent to

equiangular tight frames of d2 vectors in Cd, and their existence for arbitrary d is one

of the important open problems of the moment in quantum computing.

Our ultimate goal is to classify various families of unit gain graphs, with two dis-

tinct eigenvalues. The applied approach is twofold. Specifically, the combinatorially

oriented graph perspective is focused on the degree of said graphs, while the lines

perspective, that focuses on the multiplicities of eigenvalues, is more algebraically ori-

ented. For gain graphs of degree at most four, we are able to completely characterize

the collection of desired unit gain graphs. Some of these collections have infinitely

many switching-distinct members, for given order and degree. The lines perspective

also produces an abundance of interesting examples, and a complete characteriza-

tion with least multiplicity at most 3 is obtained. Moreover, various other examples

stemming from well-known combinatorial objects such as the Coxeter-Todd lattice

are discussed, as well as a technique that is parallel to the dismantling of association

schemes, which is used to find many two-eigenvalue subgraphs.

This chapter is organized as follows. In Section 7.2, we provide a thorough intro-

duction of the concepts used throughout. Section 7.3 is concerned with the recursive

constructions that may be applied to grow arbitrarily large gain graphs with exactly

two distinct eigenvalues. Next, Section 7.4 draws from the literature on systems of

lines in complex space to construct various examples; Section 7.5 uses these insights

to classify all two-eigenvalues gain graphs with small multiplicity. Section 7.6 provides

classifications of unit gain graphs with restricted degree, taking the combinatorial per-

spective. Finally, in Section 5.2, we touch on an application of simulated annealing

to search for the desired gain graphs by computer.

7.2 Preliminaries

For details regarding terminology and notation, the reader is referred to Section 1.1.

We note explicitly that any of the (gain) graphs throughout this chapter are assumed

to be connected, as all possibly disjoint two-eigenvalue gain graphs may be constructed

by taking the disjoint union of two smaller such gain graphs whose distinct eigenvalues

coincide.
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7.2.1 Two distinct eigenvalues

The main body of this work is concerned with gain graphs whose gain matrix has

precisely two distinct eigenvalues; we will commonly call such objects two-eigenvalue

gain graphs. Suppose that the two-eigenvalue gain graph Ψ has eigenvalues θ1 and θ2

with multiplicities m and n−m, respectively. If a = θ1 + θ2 and k = −θ1θ2, then the

gain matrix A of Ψ satisfies

A2 = aA+ kI. (7.1)

This implies that Ψ is k-regular, and hence that k is integer. Moreover, since clearly

k > 0 (otherwise Ψ is the empty graph), A has full rank. Additionally, since A and

−A have opposite eigenvalues, we will consider without loss of generality only the case

with a ≥ 0, which since Tr (A) = 0 implies m ≤ n/2. Also note that a ≤ n − 2 with

equality if and only if Ψ is switching equivalent to a complete graph, with distinct

eigenvalues k and −1.
It is not hard to see that the eigenvalues of Ψ are the square roots of rational

numbers. Indeed, using that 0 = Tr (A) = mθ1 + (n − m)θ2 and nk = Tr (A)
2
=

mθ21 + (n−m)θ22, it follows that

θ1 =

√
k(n−m)

m
and θ2 = −

√
km

n−m
.

Moreover, by applying the quadratic formula to (7.1), we also have

θ1 =
a+
√
a2 + 4k

2
and θ2 =

a−
√
a2 + 4k

2
.

If a is integer, the following result from Ramezani [89] carries over.

Lemma 7.1. Let Ψ be a two-eigenvalue gain graph, and let a ∈ Z. Then either

(i) a = 0 and the eigenvalues are ±
√
k, or

(ii) a ̸= 0 and a2 + 4k is a perfect square,

Proof. The first part follows by plugging in a = 0 into (7.1). The second part is

shown by contradiction. Suppose that a2 + 4k is not a perfect square, so that θ1 is

irrational. Then, since the characteristic polynomial of Ψ is a monic integral poly-

nomial, the algebraic conjugate of θ1, i.e., θ2, occurs as an eigenvalue of A with

the same multiplicity; say m. Now, since the trace of A equals zero, it follows that

mθ1 +mθ2 = ma = 0, and hence a = 0, contradiction.
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Equivalently, one may formulate this in terms of n,m and k.

Lemma 7.2. Let Ψ be a two-eigenvalue gain graph. If a ∈ N then kn2

m(n−m) is a perfect

square.

Proof. If a > 0, then by Lemma 7.1, a2 + 4k = b2, for some b ∈ N. We may rewrite

to obtain:

b2 = a2 + 4k =

(√
k(n−m)m−1 − k

(√
k(n−m)m−1

)−1)2

+ 4k =
kn2

m(n−m)
.

However, contrary to [89], the current context does not guarantee that a is integer.

Consider the following example, constructed from an equiangular tight frame of 7

vectors in dimension 3, which is closely related to the Fano plane.

Example 7.1. Let A = 1
4

√
2(I − J − i

√
7(N −N⊤)), where

N = CM
([

0 1 1 0 1 0 0
])
.

Then a = 1
2

√
2 and the eigenvalues of A are 2

√
2 and − 3

2

√
2. Moreover, note that

a2 + 4k = 24 1
2 , which is not a perfect square.

The construction in Example 7.1 is a member of an infinite family of gain graphs

with two eigenvalues, that is based on a particular tight frame. Details regarding said

family can be found in Section 7.4.4.

We end this preliminary section with an interesting tangent, concerning a line of

research considers the spectral characterizations of (gain) graphs. A gain graph is

said to be determined by its spectrum if it is switching isomorphic to any gain graph

to which it is cospectral; a property that has not been much-researched in the context

of gain graphs. It should then be noted that the two-eigenvalue gain graphs described

in this work, have spectra that are extremely rare. By this observation, it stands to

reason that a sizable number the two-eigenvalue gain graphs are, in fact, determined

by their spectra. We will see in Sections 7.5 and 7.6 that this instinct is true. In an

effort to keep the discussion focussed, we will not point out every instance of spectral

determination, except in the summarizing Theorems 7.16 and 7.24.
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(a) (b)

Figure 7.1 – Cospectral connected signed graphs, of which only (a) is regular.

7.2.2 Regularity in gain graphs

Unlike for its graph analog, regularity of a gain graph Ψ is not characterized by its

spectrum. To see this, Belardo et al. [6] offer an example pair that are cospectral to

one-another, while one is regular and the other is not. However, this pair does not

feature two connected signed graphs.

It seems interesting to ask whether such examples may also be constructed under

the assumption of connectedness. With relative ease, one finds a number of small

examples to confirm the claim, even when both halves of the cospectral pair are

required to be connected. Figure 7.1 illustrates one such example, though arbitrarily

large ones may also be constructed. One such construction is provided below. Let

Kp,q be the complete bipartite graph, whose nonzero eigenvalues are ±√pq with

multiplicity 1. Furthermore, let K∗p,q,r be a complete tripartite graph whose 3-cycles

all have gain i and whose closed 4-walks all have gain 1; this graph has exactly two

nonzero eigenvalues which are exactly ±
√
pq + qr + rp.

Proposition 7.3 (Xu et al. [108]). Let Γ be a connected graph and let Ψ = (Γ, ψ) be

a gain graph. Then Rank(Ψ) = 2 if and only if either Ψ ∼ Kp,q or Ψ ∼ K∗p,q,r.

By using their respective spectra, as above, one finds the following.

Corollary 7.3.1. Let m, j, s, t be natural numbers such that m = j(s2 + st + t2).

Then Km,m is cospectral to K∗js2,jt2,j(s+t)2 .

The above shows a construction of arbitrarily large pairs of connected gain graphs,

of which exactly one (i.e., Km,m) is regular, while the other not necessarily is. Note

that this construction generalizes a remark that first appeared in [83].

As an aside, we note that one may characterize all gain graphs with rank 3 with a

straightforward, though tedious, forbidden subgraph approach. This collection may

loosely be described as all gain graphs switching equivalent to a twin expansion (see
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Definition 2.7) of a triangle (not K∗1,1,1) or a rank-3 gain graph on K4. This has been

proven by the author; the details are omitted.

7.3 Constructions

Somewhat unsurprisingly, there are various fairly well understood areas that are linked

to the here considered notion. In this section, we will showcase these links and build

on existing theory to obtain various two-eigenvalue gain graphs.

7.3.1 Weighing matrices

A complex unit weighing matrix is an n × n matrix W with entries in T such that

WW ∗ = kI, for some k. Real weighing matrices have been quite extensively studied

(see [58]), and their complex generalizations have recently been getting more and more

attention, too. For example, Best et al. [8] characterized all complex unit weighing

matrices (simply weighing matrix, hereafter) with weight at most 4.

Note that since a weighing matrix is square and WW ∗ = W ∗W = kI, a Hermi-

tian weighing matrix W with a zero diagonal characterizes a unit gain graph with

eigenvalues ±
√
k. The smallest nontrivial example of this is

W4 =


0 1 1 1

1 0 i −i
1 −i 0 i

1 i −i 0

 .

Following a convention for Hadamard matrices [1], weighing matrices are said to be

graphical when they are Hermitian and their diagonal is constant. This may only

occur when the constant diagonal has value δ ∈ {0, 1,−1}; the corresponding gain

graph is then obtained as W − δI. By construction, such gain graphs have distinct

eigenvalues −δ ±
√
k.

Below, we will mainly consider the generic case with δ = 0. It should be noted that

similar considerations are possible when δ ̸= 0, although these cases are considerably

more restrictive. Indeed, if δ ̸= 0 then the adjacency matrix A = W − δI satisfies

A2 = −2δA + (k − 1)I, where W 2 = kI, and thus 4k must be a perfect square, by

Lemma 7.1. (Note that A has degree k−1.) An example of such a case is the complete

graph K4, whose adjacency matrix A is related to the graphical Hadamard matrix

A− I.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 150PDF page: 150PDF page: 150PDF page: 150

138 Chapter 7. Gain graphs with two eigenvalues

Another interesting link to the field of weighing matrices appears when one re-

stricts oneself to the class of bipartite gain graphs. Indeed, if Ψ is bipartite, then its

gain matrix A may be written as

A =

[
O B

B∗ O

]
, (7.2)

and thus1

A2 =

[
BB∗ O

O B∗B

]
= kI ⇐⇒ BB∗ = B∗B = kI.

That is, Ψ has exactly two distinct eigenvalues if and only if B is a square weighing

matrix of weight k. In our below classification, we will will denote the bipartite gain

graph obtained from a weighing matrix B as in (7.2) by IG(B).

We have to place a note of care here. It follows easily that the direct sum of any

two weighing matrices of equal weight is again a weighing matrix. However, by the

same token, if W is the disjoint union of W ′ and W ′′, then IG(W ) is disconnected.

Since we assume connectedness throughout, we require that W is irreducible.

The smallest nontrivial examples of unit weighing matrices are

W2 =

[
1 1

1 −1

]
, W3 =

1 1 1

1 φ φ

1 φ φ

 and W4.

In fact, we may draw some additional conclusions, regarding on these matrices.

Proposition 7.4. Let Ψ be a connected, order-n gain graph with eigenvalues ±
√
2.

Then Ψ is switching isomorphic to IG(W2).

Proof. Immediate from [8, Thm. 10], since any irreducible weighing matrix of weight

2 is equivalent to W2.

Using the subsequent result from Best et al. [8] that characterizes weighing ma-

trices of weight 3, one also readily finds the following, analogous result.

Proposition 7.5. Let Ψ be a connected, order-n gain graph with eigenvalues ±
√
3.

Then Ψ is switching isomorphic to either W4, IG(W3) or IG(W4).

1Note that a = 0 follows since bipartite gain graphs have symmetric spectra.
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In fact, it turns out that these graphs (and K4) are the only two-eigenvalue gain

graphs with degree 3; this is shown formally in Section 7.6. Further examples of

weighing matrices include

W5 = CM
([

0 1 φ φ 1
])

and W7 = CM
([
−1 1 1 0 1 0 0

])
.

Of course, many more examples of weighing matrices may be (and have been) con-

structed, though we will not explicitly list them here. Several methods to generate

such examples are discussed in the next section.

It should be noted that cubelike graphs, in particular, may often be equipped with

a gain function such that the corresponding gain matrix is a weighing matrix. For

example, IG(W4) is (switching equivalent to) a signed cube and by taking Kronecker

products of the 2× 2 Pauli matrices, Alon and Zheng [2] construct such gain graphs

on graphs that may be obtained as a Cartesian product of a folded cube and a cube.

7.3.2 Recursive constructions

In the previous section, we have seen a construction that takes a given weighing

matrix, and turns it into a gain graph with exactly two eigenvalues. In fact, if such

a weighing matrix W has a zero diagonal, such that it characterizes a gain graph Ψ,

then IG(W ) in a sense doubles Ψ. The following was effectively proven above, below

(7.2).

Lemma 7.6. Let Ψ be an order-n gain graph with exactly two eigenvalues ±
√
k.

Then IG(Ψ) has order 2n and eigenvalues ±
√
k.

One might wonder whether the reverse also holds, when the trivial counterexam-

ples such as W2 and W3 are excluded. This is not true, as is shown in the example

below.2

Example 7.2. Let B be the matrix defined as

B =


1 1 1 0

1 −1 0 1

1 0 −1 −1
0 1 −1 1

 .
2Note that B is equivalent to W4 under the operations listed in [8]. However, B is not graphical,

while W4 is.
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Then the signed cube IG(B) has eigenvalues ±
√
3, while B itself is not graphical.

Many such examples may be constructed, by using a set of operations that map a

given weighing matrix to another, which does not necessarily preserve the Hermitian

property, or the zero diagonal. These operations include permuting the rows (eq.

columns) or multiplying a row (eq. column) by a number in T; see [8] for details.

An idea similar to the doubling operation above was recently used by Huang [65]

in his proof of the Sensitivity Conjecture of Nisan and Szegedy on Boolean functions.

For a given Hermitian matrixW with exactly two distinct eigenvalues ±
√
k, one easily

finds that

A =

[
W I

I −W

]
(7.3)

has distinct eigenvalues ±
√
k + 1. In particular, this construction was used by Huang

to construct signed n-cubes; see [6] for more info. We will call this construction

Huang’s Negative Double, denoted ND(Ψ).

Stanić [100] observed that under the same conditions, Sylvester’s recursive con-

struction for Hadamard matrices carries over to the current paradigm. That is, the

matrix

B =

[
W W

W −W

]
(7.4)

also has two distinct eigenvalues, i.e., ±
√
2k. This construction is, in turn, called the

Sylvester Double and denoted SD(Ψ). Moreover, we obtain variation on the above

by adding an identity component to the off-diagonal blocks. Specifically, the matrix

B =

[
W W + iI

W − iI −W

]
(7.5)

has eigenvalues ±
√
2k + 1. This operation will be denoted SD∗(Ψ), hereafter. Since

these constructions are all applicable to graphical weighing matrices, the following

should be clear.

Lemma 7.7. Let Ψ be an order-n gain graph with distinct eigenvalues ±
√
k. Then

the distinct eigenvalues of ND(Ψ) are ±
√
k + 1 and the distinct eigenvalues of SD(Ψ)

are ±
√
2k. Finally, the distinct eigenvalues of SD∗(Ψ) are ±

√
2k + 1.

A final construction that follows a similar pattern was provided by Greaves [45]

in his classification of cyclotomic matrices over the Gaussian and Eisenstein integers.
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A concrete description of these is as as follows. Let C be an order-t weighing matrix

with weight 1 and a zero diagonal, such that C + C∗ is also a unimodular matrix.

Then, construct A as

A =

[
C + C∗ C − C∗

C∗ − C −C − C∗

]
. (7.6)

One is easily convinced that A2 = 4I, and thus A has eigenvalues ±2.
Note that C+C∗ is the gain matrix of a cycle with gain x, for some x ∈ T. Using

Proposition 4.4, we may without loss of generality switch such that all but one entry

of C equal one, such that the final entry equals x. For C defined in such a way, and

A obtained from C as in (7.6), we say that A is the gain matrix of a toral tesselation

graph [45], which is denoted T
(x)
2t . Note that the graphs T

(x)
2t , T

(x)
2t , T

(−x)
2t , and T

(−x)
2t

are all switching isomorphic.

Finally, we note that a variation on (7.6) similar to (7.5) is also possible. That is,

B =

[
C + C∗ C − C∗ + I

C∗ − C + I −C − C∗

]
,

which is later said to be a donut graph, has eigenvalues ±
√
5. We discuss this con-

struction in more detail in Section 7.6.4, when we use it to construct infinite families

of gain graphs with eigenvalues ±
√
5, for every even n ≥ 8.

To end this section, the author would like to express some interest in similar

recursive constructions that do not require its blocks to be weighing matrices. In

particular, it seems plausible that gain graphs with two distinct eigenvalues that do

not sum to zero, may also be expanded into larger graphs that keep much of their

structure, and thereby have exactly two distinct eigenvalues, as well. However, such

constructions are unknown to the author, at the time of writing.

7.4 Relations to systems of lines

Interestingly, the matter at hand has various links to other well-studied fields that

are more geometric and algebraic in nature. In particular, numerous topics that are

all based on of a system of lines in complex space are naturally tied to the highly

structured matrices that we are interested in. The connection between systems of

lines and highly symmetric graphs has been explored before, most notably in the

classification of graphs with least eigenvalue −2 by Cameron et al. [15], which was
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recently extended to signed graphs by Greaves et al. [46]. In this work, we explore a

similar connection in a much more general setting.

In this section, we will touch on several interconnected research areas that are

concerned with these peculiar systems of lines. These topics include (Tight) Frames

[106], Mutually Unbiased Bases (MUB) [32] and Symmetric Informationally Com-

plete Positive Operator-Valued Measurements (SIC-POVM) [41]. For now, we aim to

survey the various links and their subtleties in relation to two-eigenvalue gain graphs.

The obtained perspective is put to work in Section 7.5, where an algebraic approach

is taken to characterize all two-eigenvalue gain graphs with small least multiplicity.

7.4.1 The Eisenstein matrix

In Chapter 4, we have considered a Hermitian adjacency matrix for Signed Directed

Graphs. This matrix, which was called the Eisenstein matrix, after the group of unit

Eisenstein integers T6 that make up its nonzero entries, may simply be considered to

be the gain matrix of a gain graph. The current line of questioning does therefore

apply. In this section, we will offer a brief intermezzo in which we will restrict the

allowed edge gains to the entries of T6, in order to illustrate the perspective one might

obtain by considering systems of lines.

The attentive reader may have observed that almost all examples (excluding Ex-

ample 1) have had either a = 0 or a = k− 1. (Recall that a = θ1+ θ2 and k = −θ1θ2,
where k is the degree of the corresponding gain graph.) As an illustrative exercise, let

us attempt to construct signed digraphs with exactly two distinct eigenvalues, such

that 0 < a < k − 1.

An important detail to note here, is that a ∈ Z when the edge gains are restricted

to T6. Indeed, since A
2 = aA+ kI, we have

a =
∑
h

AihAhjAji, (7.7)

for some nonzero Aij . In this particular case, (7.7) then means a is a sum of elements

in T6. Moreover, since a = θ1 + θ2, a is real and it follows naturally that a ∈ Z.
Hence, Lemma 7.1 may be applied.3 (As an aside, a parallel argument holds when

the gains are restricted to T4.)

3The same conclusion can be reached by using that A has a characteristic polynomial with integer
coefficients, see e.g. Theorem 1.2. It then follows that its minimal polynomial λ2−aλ−k has integer
coefficients, as well.
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(a) (b)

Figure 7.2 – Signed digraphs with spectra
{
3[2n/5],−2[3n/5]

}
. (In (b), all

three vertices hit by each straight line through the center of the picture are
pairwise adjacent; all such edges have gain 1.)

Since Lemma 7.1 applies, the tuple (a, k) must satisfy a2 + 4k = b2 for some

integer b. One is easily convinced that the smallest value of k such that 0 < a < k−1

and the above holds is k = 6, in which case a = 1. It then follows that θ1 = 3 and

θ2 = −2, and thus m = 2n/5 and n−m = 3n/5. This, in turn, implies that n must

be a multiple of 5. In the below, we will consider a number of possible values n, and

discuss possible examples of signed digraphs with two distinct eigenvalues and the

before mentioned parameters.

The smallest possible n is n = 10. Ramezani [89] has constructed a signed graph

(gains in T2 ⊂ T6) with the above spectrum on the complement of the Petersen graph.

Ramezani moreover shows that this example, illustrated in Figure 7.2a, is actually a

member of an infinite family of signed graphs with two distinct eigenvalues on the

triangular graphs4 ∆(m).

The next case, n = 15, also admits an example with the above parameters that is

related to the triangular graphs. Below, we propose a construction on the generalized

quadrangle GQ(2, 2), which is the complement of ∆(6), and illustrated in Figure 7.2b.

To find the desired example, we employ the so-called hexacode [22]: a 3-dimensional

linear code of length 6 over GF (4) = {0, 1, φ, φ}, where φ and φ denote the third

4The triangular graph ∆(m) is the line graph of complete graph Km.
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roots of unity. Specifically, the hexacode is defined by

H =
{[
p2 p1 p0 f(1) f(φ) f(φ)

]
: f(x) = p2x

2 + p1x+ p0, pj ∈ GF (4)
}
.

In particular, the hexacode has 45 elements, called codewords, of weight 4, oc-

curring in 15 1-dimensional subspaces; i.e., lines through the origin. From each such

subspace, we choose one nonzero codeword which we consider as a vector in C6. These

vectors vh, h ∈ [15], represent our vertex set. It is easily verified that each of the pos-

sible 15 supports occurs exactly once, and distinct supports can intersect in 2 or 3

positions. Moreover, the construction is such that if two codewords vh and vj have

supports that intersect in 3 positions, then the corresponding inner product is always

v∗hvj = 1 + φ + φ = 0. If two codewords have supports that intersect in 2 positions,

then the inner product is either 1 + 1, φ + φ, or φ + φ. Hence, we may define an

Eisenstein matrix E (gain matrix) by

Ehj =
1

2
v∗hvj , h ̸= j; Ejj = 0.

Note that the above indeed defines a signed directed graph, since Ehj ∈ {0, 1, φ, φ}
and E is Hermitian. Moreover, if we set M to be the matrix whose columns are the

vj , then according to the definition above E = 1
2M

∗M − 2I, and thus

E2 =
1

4
M∗MM∗M − 2M∗M + 4I =

1

2
M∗M + 4I = E + 6I, (7.8)

where the second equality follows since MM∗ = 10I. (A similar fact should hold in

general; this is formalized in Proposition 7.8, below.) Lastly, note that by (7.8), it

follows that E indeed has the desired spectrum {3[6],−2[9]}.
Note that, by definition, taking a different representative vector of a subspace

will lead to a signed digraph that is switching equivalent with the original one. The

corresponding equivalence class is, in fact, the only one with the desired spectrum

with this particular underlying graph, thus yielding an easy spectral characterization.

The particulars to this fact are quite tedious, and have been verified by computer.

The construction above has some ties to previously studied objects. It is, for

example, closely related to the so-called tilde-geometry [88]. Moreover, Figure 7.2b

is in a sense a quotient of the distance-regular antipodal 3-cover of the collinearity

graph of the generalized quadrangle of order 2 [13, p. 398]. This, in turn, is a distance-

regular graph that is defined on the above mentioned 45 codewords of weight 4, with
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adjacency of vertices h and j if Ehj = 1
2v
∗
hvj equals 1.

Most importantly, the above discussion sheds some light on the way in which sys-

tems of lines (1-dimensional subspaces) are connected to the remarkable gain graphs

that are the topic of this work. In essence, one needs systems of lines that are either

orthogonal to one-another, or are all separated by the same specific angle. Corre-

spondingly, Ramezani’s examples on ∆(m) can be described by the lines through the

vectors eh − ej (h < j) in Rm, where eh is a standard basis vector. Systems of lines

that are pairwise separated by the same angle (so-called equiangular lines) will be of

special interest, later in this section. First, we offer a little more general insight based

on the above.

7.4.2 Decomposition as a {0, α}-set

In the above, we have showcased a clear parallel between gain graphs with few distinct

eigenvalues, and systems of lines that are separated by few distinct angles. The

equation E = 1
2M

∗M − 2I is particularly reminiscent of a Gram matrix, though it

does need a little additional work.

In general, if A := A(Ψ) for some gain graph Ψ with smallest eigenvalue θmin,

whose multiplicity is n −m, then I − θ−1minA is a positive semi-definite matrix with

rank m. It can therefore be represented as the Gram matrix of (Hermitian) inner

products of a set of n unit vectors {u1, u2, . . . , un} in complex space Cm. As before,

the absolute values |u∗i uj | of these inner products represent the angles between the

lines through the unit vectors. In our case, there are exactly 1 or 2 such angles.

Correspondingly, the inner product of every two distinct unit vectors has absolute

value either zero or −θ−1min. In the study of lines in (complex) space, this phenomenon

is known as a {0, α}-set, where α = −θ−1min is the non-orthogonal separation angle.

Example 7.3. Recall W2 =

[
1 1

1 −1

]
and let Ψ = IG(W2). Then Ψ has eigenvalues

±
√
2, and thus

I − θ−12 A(Ψ) =


1 0 1

2

√
2 1

2

√
2

0 1 1
2

√
2 − 1

2

√
2

1
2

√
2 1

2

√
2 1 0

1
2

√
2 − 1

2

√
2 0 1

 ,
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146 Chapter 7. Gain graphs with two eigenvalues

which is the Gram matrix of the unit vectors

u1 =
[
1 0

]⊤
, u2 =

[
0 1

]⊤
, u3 =

1

2

√
2
[
1 1

]⊤
, u4 =

1

2

√
2
[
1 −1

]⊤
.

As before, the vector notation can be translated to a matrix (outer)product. Let

N be the matrix whose columns are the vectors u1, . . . , un. Then, by the above,

N∗N = I − θ−1minA. However, one cannot carelessly expect that any {0, α}-set of

unit vectors will yield a two-eigenvalue gain graph, as is showcased in the following

example.

Example 7.4. Let {u1, . . . , u4} be the collection of vectors{[
1 0 0

]⊤
,
[
1
2

1
2

√
3 0

]⊤
,
[
0 1

3

√
3 1

3

√
6
]⊤

,
[
1
2 − 1

6

√
3 1

3

√
6
]⊤}

and let N =
[
u1 u2 u3 u4

]
. Then

N∗N =
1

2


2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

 = I − (−2)−1A(C4),

where C4 is the undirected four-cycle, which has spectrum {−2, 0[2], 2}.

This goes to show that n unit vectors that are separated by one of two angles do

not, in general, suffice to find a two-eigenvalue gain graph. However, the following

interesting fact gives us an easy characterization.

Proposition 7.8. Let A be an order-n Hermitian matrix with least eigenvalue θmin ̸=
0, whose multiplicity is n − m, m > 0, and let N ∈ Cm×n be such that N∗N =

In − θ−1minA. Then A has exactly two distinct eigenvalues if and only if NN∗ = zIm

for some z ∈ R.

Proof. A has exactly two distinct eigenvalues if and only if N∗N ∈ Cn×n has a

spectrum given by
{
0[n−m], 1− θ−12 θ

[m]
1

}
. Since N∗N and NN∗ coincide on the

nonzero eigenvalues, this is equivalent with NN∗ ∈ Cm×m having a single eigenvalue

1 − θ1θ
−1
2 with multiplicity m. This, in turn, occurs if and only if NN∗ = (1 −

θ1θ
−1
2 )I.
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It should be noted that if A has a zero diagonal and constant-norm nonzero entries,

then z = 1− θ1θ−12 = n/m ∈ Q. Furthermore, if the columns of N form a {0, α}-set
of unit vectors such that NN∗ = zI, then either N∗N = I and the columns of N

form an orthonormal basis (z = 1, n = m, and the matrix A = 0), or N∗N = I + αA

and A is a two-eigenvalue gain graph.

To conclude this section, we touch on some interesting facts. In case two of the

unit vectors from u1, u2, . . . , un are scalar multiples of each other, then their inner

product is a unit. This implies that θmin = −1 and therefore that the corresponding

unit gain graph is switching isomorphic to a complete graph. It follows that m = 1

and the uj are simply unit complex numbers. This somewhat trivial case will be

excluded in the classifications discussed in Section 7.6.

Moreover, one should also exercise some care when taking induced subgraphs.

Instinctively one might be keen to claim that taking a subset of a given system of

lines that constitutes a two-eigenvalue gain graph will yield another one. However,

one cannot carelessly remove columns from N without affecting the entries of NN∗,

the latter of which must be a multiple of the identity. In Section 7.5.2, we will discuss

a method to obtain two-eigenvalue subgraphs.

7.4.3 Bounds

An intuitive question related to the matter of lines in complex space has to do with

existence. Specifically: how many lines can there be in an m dimensional space,

such that the angle between each pair is one of a given number of possible angles.

In general, the classic result by Delsarte et al. [31], that bounds the number n of

distinct lines in Cm, whose separation angles are all contained in some collection

As = {α1, α2, . . . , αs} tells us that

n ≤
(
m+ s− 1

m− 1

)(
m+ s− 1− ε

m− 1

)
, (7.9)

where ε = 1 if 0 ∈ As and zero otherwise. This has been called the absolute bound

for systems of lines; for a particularly concise proof, the interested reader is referred

to [70]. As should be evident from the previous section, we will exclusively concern

ourselves with the cases A1 = {α} and A2 = {0, α}, for α ∈ (0, 1). In these cases,

(7.9) reduces to n ≤ m2 and n ≤ 1
2m

2(m+1), respectively. However, the latter bound

may be sharpened under particular circumstances.
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Proposition 7.9. Let Ψ be an order-n gain graph with spectrum {θ[m]
1 , θ

[n−m]
2 }, such

that Γ(Ψ) has degree k and an eigenvalue − km
n−m with multiplicity m′ ≥ 0. Then

n ≤ m2 +m′.

Proof. Let {vj}nj=1 be the corresponding system of vectors in Cm, and consider the

matrix M defined by Mhj = Tr (v)h v
∗
hvjv

∗
j = |v∗hvj |2. Then M = I + n−m

km B, where

B is the adjacency matrix of Γ(Ψ). Consider now the linear transformation T : Cn 7→
Cm×m defined by T (x) =

∑
j xjvjv

∗
j . Then, by the rank-nullity theorem, one has

n = dimRange(T ) + dimker(T ) ≤ m2 +m′. Here, it is used that dimker(T ) ≤ m′

since T (x) = 0 implies Mx = 0 and thus x is in the eigenspace of B for eigenvalue

− km
n−m .

The above directly ties into some of the well-studied geometric objects that will

be discussed shortly. For example, if Γ = Kt×m, then m
′ = n/m − 1 and the above

reduces to n ≤ m(m + 1). These are precisely the underlying graph and the bound

that occur in the case of Mutually Unbiased Bases, which is treated in Section 7.4.6.

Furthermore, it should be clear from the proof above that in the case of equality, the

projectors vjv
∗
j span Cm×m. If, additionally, m′ = 0 then they form a basis of Cm×m.

This corresponds to the absolute bound in the case of an A1-set, which is attained by

a ’symmetric, informationally complete positive operator-valued measurement,’ which

are treated in Section 7.4.5.

To conclude this section, we touch on the relative bound, which originally was a

bound on the eigenvalues of Seidel matrices by Van Lint and Seidel [75, Lemma 6.1]. It

bounds the angle α of a system of n lines (represented by unit vectors uj) in Cm with

mutual angles at most α. Although this bound does not have any implications for our

work, it is good to notice that equality in this bound leads to a two-eigenvalue graph.

This is immediately clear from the proof5 by Brouwer and Haemers [11, Prop. 10.6.3].

7.4.4 Tight frames

Another school of thought is concerned with the notion of tight frames. Boiled down

to its essence, a tight frame is an over-complete collection of vectors that span some

vector space; that is, the frame contains some deliberately redundant members. Un-

der the right circumstances, this redundancy is actually an advantage. Since their

5Indeed, note that in the case of equality Tr (Y )Y ∗ = 0 and thus Y =
∑

j uju
∗
j − n

m
I = 0,

which implies that
∑

j uju
∗
j , which in our notation is equal to NN∗, is a multiple of I, and hence

Proposition 7.8 applies. Therefore, we indeed have equality if and only if the corresponding gain
graph has two distinct eigenvalues.
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conception, tight frames have found the most use in the development of wavelets,

since decomposition into tight frames rather allowed for far simpler representation

than orthonormal bases would.

Let us recall the formal definitions from [106]. Formally, a frame is a set of vectors

{vk}k∈K in a Hilbert space H, indexed by some collection K, that satisfy

c1∥u∥2 ≤
∑
k∈K

|⟨u, vk⟩|2 ≤ c2∥u∥2 ∀u ∈ H,

for some constants 0 < c1 ≤ c2 < ∞. In case c1 = c2, then {vk}k∈K is said to be a

tight frame. Moreover, in case c1 = c2 = 1, then u =
∑

k∈K⟨u, vk⟩vk for any u ∈ H
and the set {vk}k∈K is called a normalized tight frame. In particular, note that c1 is

merely a scaling factor, when the frame is tight.

While there are definitely similarities to the typical bases that one is used to,

there are some important differences. Most importantly, K can be arbitrarily much

larger than dimH, and {vk}k∈K could even contain repeated vectors. In particular,

the following theorem, which is in essence a special case of an old result known as

Naimark’s dilation theorem [26], has provided the author with considerable insight.

Theorem 7.10. (Naimark) Every finite normalized tight frame {vk}k∈K for H is the

orthogonal projection onto H of an orthonormal basis for a space of dimension |K|,
and vice versa.

A clear parallel to our case becomes evident from the following characterization.

Proposition 7.11. [106, Prop. 2.1] A finite sequence {vk}k∈K in H is a tight frame

for H with frame bound c if and only if NN∗ = cI. Here, N is the synthesis operator,

i.e., N(x) =
∑n

j=1 xjvj for x ∈ Cn and N∗ is the (dual) analysis operator, i.e.

N∗(x)j = ⟨x, vj⟩.

Indeed, we observe a striking similarity to Proposition 7.8. We do not, however,

immediately obtain equivalence. The main distinction between a general tight frame

and the systems of lines that are of interest for this work, is that we require that the

the frame vectors to have unit norm.

Note that indeed, this does not have do be the case, as is illustrated in Figure

7.3. Thus, we are, in fact, looking for a special case of the above, which are called

equal-norm tight frames. In particular, by Propositions 7.11 and 7.8, it follows that

{vk}k∈K is a unit-norm tight frame if and only if it corresponds to a two-eigenvalue

gain graph via the usual construction.
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(a) (b) (c) (d)

Figure 7.3 – Three tight frames in R2 of order 3, 4, 5, 6, respectively. Only
(a) is equal-norm.

The former case, in which the {vk}k∈K are an A1-set, is known as an equiangular

tight frame. These have been studied quite extensively, see e.g. [103, 36, 35], and

will translate nicely to a two-eigenvalue gain graph on a complete graph. In addition

to various sporadic examples, some infinite families of equiangular tight frames have

been uncovered. For example, the vectors

[0 τ σ]⊤, [σ 0 τ ]⊤, [τz σ 0]⊤, [0 τ −σ]⊤, [−σ 0 τ ]⊤, [τz −σ 0]⊤ (7.10)

form an equiangular tight frame for arbitrary z ∈ T if τ =

√
5+
√
5

10 , σ =

√
5−
√
5

10 .

Interestingly, the corresponding gain graph is, in fact, a donut graph (see Definition

7.1) with

C =

0 0 1

1 0 0

0 z 0

 .
Moreover, in his article [93], Renes obtains an infinite family of equiangular tight

frames of increasing order, based on the quadratic residues of prime powers of Gaus-

sian primes (i.e., prime numbers congruent to 3 mod 4). Below, we showcase an

infinite family of gain graphs that may be distilled from this construction.

Theorem 7.12. [93] Let p be a Gaussian prime and let n := pz, z ∈ N. Then define

the n× n matrix M by

Mjh =


0 if j = h

1 if j ̸= h and h− j is a quadratic residue in GF (n)

−1 otherwise.
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Now the matrix A, obtained from M as

A = (n+ 1)−1/2
(
I − J − i

√
nM

)
has exactly two distinct eigenvalues. Specifically, it has an eigenvalue

√
n+ 1 with

multiplicity (n− 1)/2 and an eigenvalue −(n− 1)/
√
n+ 1 with multiplicity (n+1)/2.

Corollary 7.12.1. For a given Gaussian prime p and n = pz, z ∈ N, the n×n matrix

A as above defines a complex unit gain graph with exactly two distinct eigenvalues,

whose underlying graph is Kn.

In case the frame vectors are allowed to be either orthogonal, or separated by

angle α, then much less previous work is readily available. Some work has been done

on so-called 2-angle tight frames or two-distance tight frames: see e.g., [4]. However,

their setting is more general (our case fixes one of the allowed angles to zero) and

such works are generally concerned with constructions without orthogonal vectors.

7.4.5 SIC-POVM

As was briefly touched upon, an interesting link to two-eigenvalue gain graphs finds its

origin in foundational quantum mechanics. In particular, one needs to be especially

careful when measuring the state of a quantum algorithm. The foremost candidate

to become the ’standard quantum measurement’ is the so-called symmetric, informa-

tionally complete, positive operator-valued measure (SIC-POVM); a measure that is

in possession of certain desirable qualities.

Slightly paraphrasing [41], an IC-POVM is described by m2 positive semi-definite

operators {Ej}m
2

j=1 that span the m2-dimensional space of observables on an m-

dimensional Hilbert space H. It is called an SIC-POVM if, in addition, it also satisfies

the following three conditions:

1. Ej is rank one for all j ∈ {1, . . . ,m2},

2. TrEjEh = c for all j ̸= h, j, h ∈ {1, . . . ,m2},

3. TrEj = b for all j ∈ {1, . . . ,m2},

where b and c are nonnegative constants. In the below, we choose b = 1 without loss

of generality.

There is a clear relation of the above to an A1-set of lines that attains the bound

in (7.9). Specifically, the above is equivalent to a system of m2 unit-norm vectors
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in an m-dimensional complex space, with pairwise equal inner products, in absolute

value. It is well-known that this system is, in fact, an equiangular tight frame, whose

vectors all have unit-length. Thus, it corresponds to a two-eigenvalue gain graph in

the usual way.

Lemma 7.13. Let {E1, E2, . . . , En} be a SIC-POVM in Cm, so n = m2. Let N be

the matrix whose columns are v1, v2, . . . , vn, where Ej = vjv
∗
j for every j ∈ [n]. Then

A =
√
m+ 1(N∗N − I) is the gain matrix of a two-eigenvalue gain graph.

The simplest example of a nontrivial SIC-POVM is obtained in C2 by the vectors

that form the vectices of a regular tetrahedron in the Bloch sphere. Specifically, let

N2 =
1√
3

[√
3 1 1 1

0
√
2
√
2φ

√
2φ2

]
, (7.11)

then A(Ψ) =
√
3(N∗2N2 − I) =W4, which as we know has eigenvalues ±

√
3.

The first example that has not appeared in this work yet is obtained from a SIC-

POVM of dimension 3, is given by columns of the matrix N3, below. (Recall that

ω = (1 + i
√
3)/2.)

N3 =
1√
2

1 0 ω 1 0 −1 1 0 ω

ω 1 0 −1 1 0 ω 1 0

0 ω 1 0 −1 1 0 ω 1

 (7.12)

Given the results we have seen so far, the reverse construction is straightforward,

though one would need a gain graph with very particular properties to work with.

Proposition 7.14. Let Ψ = (Kn, ψ) be a gain graph of order n = m2, for some

m ∈ N, whose spectrum is

ΣΨ =

{
(m− 1)

√
m+ 1

[m]
,−
√
m+ 1

[m2−m]
}
.

Then there exists an N ∈ Cm×n such that N∗N = I + 1√
m+1

A(Ψ); the columns of N

correspond to a SIC-POVM of dimension m.

An interesting application of the above could be the search for new SIC-POVMs

through the search for their corresponding gain graphs. As of yet, we do not posses

the means to find such graphs, though further development of constructions such as

the ones in Section 7.3 might lead to surprising results on this front.
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7.4.6 Mutually Unbiased Bases

Another relevant concept from quantum information theory is that of Mutually Unbi-

ased Bases [32]. Where a SIC-POVM is effectively a maximum A1-set, a collection of

MUBs is a particular A2-set. Formally, two orthonormal bases {ej}mj=1 and {fh}mh=1

of Cm are said to be mutually unbiased if |e∗jfh|2 = 1/m for all j, h ∈ [m].

Much is known about MUBs. For instance, the maximum number of MUBs in

Cm is m + 1 when m is a prime power, i.e., m = pz, z ∈ N, with p prime. Yet, if m

is a different composite number, then the maximum number of MUBs is not known;

even relatively small cases such as m = 6 remain open6.

From the definition, one may already have observed the clear parallel to two-

eigenvalue gain graphs. Indeed, if N is the m × (t ·m) matrix whose columns are t

MUBs, then A =
√
m(N∗N − I) defines a unit gain graph. Moreover, it follows from

the definition that NN∗ = tI, and thus Proposition 7.8 applies, confirming that A

has exactly two distint eigenvalues (t − 1)
√
m and −

√
m. Note that its underlying

graph is the complete multipartite graph Kt×m.

We will briefly discuss some examples. For the smallest nontrivial case, the stan-

dard basis and the 4 vectors

1√
2

[
1

ij

]
, j ∈ {0, 1, 2, 3},

together form 3 MUBs in C2. The corresponding two-eigenvalue gain graph, hereafter

indicated by K
(γ)
2,2,2, is described by the following matrix:

A(K
(γ)
2,2,2) =



0 0 −i i 1 1

0 0 1 1 −1 1

i 1 0 0 −γ̄ γ

−i 1 0 0 −γ γ̄

1 −1 −γ −γ̄ 0 0

1 1 γ̄ γ 0 0


, (7.13)

6The general belief is that the maximum number of MUBs in C6 is 3.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 166PDF page: 166PDF page: 166PDF page: 166

154 Chapter 7. Gain graphs with two eigenvalues

where γ = (1+ i)/
√
2. In similar fashion, one may take consider C3. Here, the vectors[

1 0 0
]⊤

,
[
0 1 0

]⊤
,
[
0 0 1

]⊤
and

1√
3

[
1 φj φh

]⊤
, where j, h ∈ {0, 1, 2},

(7.14)

form 4 MUBs in C3.

It should be clear that when the set of MUBs does not attain the upper boundm+1

on its size, the above still holds true. For example, the toral tesselation graph T
(x)
8 ,

where x ∈ T, may alternatively be obtained from a pair of MUBs in C4. Specifically,

if N is the matrix whose columns are the standard basis appended with the basis

formed by the vectors

1

2
[1 1 1 − 1]⊤,

1

2
[1 1 − 1 1]⊤,

1

2
[1 − 1 x x]⊤,

1

2
[−1 1 x x]⊤,

the graph characterized by 2(N∗N − I) is switching isomorphic to T
(x)
8 .

As with the SIC-POVMs in the previous section, the relation between gain graphs

with two specific eigenvalues and MUBs is an equivalence.

Proposition 7.15. Let Ψ be a gain graph on Kt×m, with exactly two distinct eigen-

values −
√
m and (t − 1)

√
m. Then there exists an N ∈ Cm×tm such that A(Ψ) =

√
m(N∗N − I); the columns of N form t mutually unbiased bases in Cm.

7.5 A classification based on multiplicities

The previous section has mostly been concerned with drawing various parallels be-

tween the here considered gain graphs and various notions related to systems of lines

in complex space. Existence of such systems, especially those whose cardinality is

high compared to the dimension of the space in which they exist, is certainly no

trivial issue. In turn, said dimension corresponds to the multiplicity of the largest

eigenvalue of our gain graphs. As a consequence, we may use the discussed results to

classify two-eigenvalue gain graphs with low multiplicity, by considering the systems

of lines in low-dimension spaces.

This section first sets out to classify all two-eigenvalue gain graphs with least mul-

tiplicity at most 3. The remainder of the section is concerned with larger examples

obtained from the Witting polytope, the Coxeter-Todd lattice, and a complex reflec-

tion group by Shepard and Todd. Additionally, we discuss the partitioning of their

fundamental line sets into subsets which each constitute their own two-eigenvalue gain
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m Graph Order k DS

1 Kn n n− 1 *

2
IG(W2) 4 2 *
W4 4 3 *

K
(γ)
2,2,2 6 4 *

3

2 MUBs from (7.14) 6 3 *

T
(x)
6 6 4

Equation (7.10) 6 5
Theorem 4.4 7 6 *
3 MUBs from (7.14) 9 6 *
Equation (7.12) 9 8 *
4 MUBs from (7.14) 12 9 *

Table 7.1 – Classification of all two-eigenvalue gain graphs with least mul-
tiplicity at most 3. A star in the DS column indicates that any connected,
cospectral gain graph is switching isomorphic.

subgraph.

7.5.1 Algebraic classification

Through careful evaluation of the available knowledge on the existence of the discussed

systems of lines in low-dimensional spaces, we arrive at the complete classification

presented in Theorem 7.16. Named graphs are listed as such; unnamed examples are

referenced using the equation that contains it or an equivalent system of lines.

Theorem 7.16. All two-eigenvalue gain graphs with least multiplicity at most 3 are

switching isomorphic to one of the gain graphs in Table 7.1.

The remainder of this section will systematically evaluate the various possible

parameter choices to arrive at the classification presented above. An interesting fact,

known as the Cvetković bound, is a particularly useful tool in the approach that is

taken below.

Lemma 7.17. [11, Thm. 3.5.1] Let Ψ be a gain graph with spectrum
{
θ
[m]
1 , θ

[n−m]
2

}
.

Then the largest coclique in Ψ has size at most m.

Proof. Suppose Ψ contains a coclique of size m+ 1. Then, by eigenvalue interlacing,

Ψ has λm+1 ≥ 0, which is a contradiction.
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Recall that least multiplicity 1 occurs only for gain graphs that are switching

equivalent to a complete graph, so we proceed to the smallest interesting case.

Multiplicity 2

Let us classify the gain graphs Ψ whose spectrum is exactly{
θ
[m]
1 , θ

[n−m]
2

}
, where m = 2. (7.15)

As noted above, this corresponds to a system of lines in C2. Applying the bound in

(7.9), we obtain that n ≤ 4 if the gain graph is complete and n ≤ 6 otherwise. In the

former case, one trivially obtains K3; the case n = 4 is exactly the unique SIC-POVM

in (7.11), whose corresponding gain graph is7 W4. The non-complete case yields two

more admissible gain graphs.

Lemma 7.18. If Ψ is an order n gain graph with spectrum
{
θ
[2]
1 , θ

[n−2]
2

}
and degree

k < n− 1, then Ψ is switching isomorphic to either IG(W2) or K
(γ)
2,2,2.

Proof. Since k < n − 1, Ψ corresponds to an A2-set. Without loss of generality,

we choose the first vector to be the standard unit vector e1. Then, since Ψ is not

complete, at least one vector must be orthogonal to e1, so (without loss of generality)

we take the second unit vector e2. Since we are working in C2, there is no vector

that is orthogonal to both e1 and e2, so it follows that Ψ has (constant) degree

k = n − 2. This, in turn, means that Γ(Ψ) is complete multipartite Kt×2, and thus

(by Proposition 7.15) Ψ corresponds to a pair (n = 4) or a set of three (n = 6) MUBs.

This yields precisely a gain graph that is switching isomorphic to IG(W2) or to K
(γ)
2,2,2,

respectively.

Multiplicity 3

We may apply the same line of questioning for graphs with spectrum {θ[3]1 , θ
[n−3]
2 }.

If k = n − 1, then the corresponding line system is an equiangular frame, and the

absolute bound n ≤ 9 applies. These have been classified in dimension 3 by Szöllősi

[103], and the results are summarized in Table 7.2.

7Note that any unitary transformation of the system of lines does not change the corresponding
gain graph. That is, if U is a unitary matrix, then M := UN and N represent the same gain graph
because M∗M = N∗N .
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n

3 Standard basis
4 Regular simplex
5 -
6 Corresponds to (7.10)
7 Corresponding graph obtained from Theorem 7.12
8 -
9 Corresponds to (7.12)

Table 7.2 – Classification A1-sets in C3 from Szöllősi [103], up to equivalence.

In case k = n−2, then Γ(Ψ) = Kt×2, where t ≥ 3 since it was assumed throughout

thatm ≤ n/2. In other words, the vectors come in orthogonal pairs, with vectors from

distinct pairs being separated by some angle α. Note that for given n,m, and k, we

may compute the value of θ2, which, as discussed before, determines α. Furthermore,

note that since Kt×2 does not have an eigenvalue −3(2t−2)/(2t−3), Proposition 7.9

implies that n ≤ 9. Using the above, we are left with just two cases: either n = 6 or

n = 8. Let us first consider the former.

Lemma 7.19. Suppose Ψ is a gain graph with spectrum {θ[3]1 , θ
[3]
2 } and k = 4. Then

Ψ ∼ T z
6 for some z ∈ T.

Proof. As before, (n,m, k) = (6, 4, 3) implies that α = 1/2. Since the vectors oc-

cur in orthogonal pairs, we may take the first two standard unit basis vectors as

a starting point. Since vectors from distinct pairs must have an inner product

equal to α in absolute value, it follows that any further candidate v is of the form

v =
[
x/2 y/2 z/

√
2
]⊤

, for x, y, z ∈ T. It is not hard to see that the desired system

is (up to equivalence) represented by the vectors10
0

 ,
01
0

 ,
 1/2

1/2

1/
√
2

 ,
 1/2

1/2

−1/
√
2

 ,
 1/2

−1/2
z/
√
2

 ,
 1/2

−1/2
−z/
√
2

 (7.16)

for any z ∈ T. Finally, note that the corresponding two-eigenvalue gain graph is

indeed the order-6 toral tesselation graph T
(z)
6 . (See the end of Section 7.3.)

What is left is the the case n = 8. We will formally show that (n,m, k) = (8, 3, 6)

does not yield any two-eigenvalue gain graphs.
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Lemma 7.20. There is no gain graph Ψ with spectrum {θ[3]1 , θ
[5]
2 } and k = 6.

Proof. Since (n,m, k) = (8, 3, 6) it follows that α =
√
5/18 and Γ(Ψ) = K4×2. Hence,

the corresponding line system contains four pairs (vj , vj+1), j ∈ {1, 3, 5, 7}, of or-
thogonal lines, such that any two lines from distinct pairs are separated by angle α.

Without loss of generality, choose the first pair to be (v1, v2) = (e1, e2). Then any

other candidate is of the form

vj =
[
αxj αyj βzj

]⊤
with xj , yj , zj ∈ T for j = 3, . . . , 8 and where β =

2

3
.

As before we may assume w.l.o.g. that xj = 1 for all j = 3, . . . , 8. Now, if N is the

matrix whose columns are v1, . . . , v8 and Ψ is a two-eigenvalue gain graph, then NN∗

is a multiple of the identity. In other words, the rows of N are orthogonal. It follows

straightforwardly that
8∑

j=3

yj = 0 and

8∑
j=3

zj = 0. (7.17)

Furthermore, let y := ȳ3y4 and z := z̄3z4. Then v∗3v4 = α2 + α2y + β2z = 0 if and

only if y = −1 − β2α−2z. Since |y| = |z| = 1, z is on the intersection of two real-

centered circles on the complex plane, and thus there is (at most) one conjugate pair

of solutions for z. Suppose that z̃ is such a solution, and set ỹ = −1 − β2α−2z̃. By

symmetry, we also have8 ȳ5y6 = ȳ7y8 = ỹ and z̄5z6 = z̄7z8 = z̃. Plugging this into

(7.17) yields
∑8

j=3 yj = 0 if and only if y3+y5+y7 = 0, and similarly z3+z5+z7 = 0.

Here, it is used that ỹ ̸= −1, since this would contradict |z| = 1.

Finally, w.l.o.g. assume y3 = z3 = 1. Then the equations |y5| = |y7| = 1 and

y5+y7 = −1 must simultaneously hold, which implies y5 = ±φ and y7 = ȳ5; similarly

z5 = ±φ and z7 = z̄5. But now |v∗3v5| = |α2 + α2y5 + β2z5| ≠ α, which is a

contradiction.

Finally, in case k ≤ n − 3, we find that Ψ must contain a coclique of order (at

least) 3.

Lemma 7.21. Let Ψ be an order-n gain graph with constant degree k ≤ n − 3, and

spectrum
{
θ
[3]
1 , θ

[n−3]
2

}
. Then Ψ contains a coclique of order 3.

Proof. We will be reasoning with the system of lines that corresponds to Ψ in the

usual way. Suppose that Ψ does not contain a coclique of order 3 and let e1 be the

8Up to conjugation, though since ȳ5y6 = ȳ6y5, equality is assumed without loss of generality.
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first standard unit vector. If k ≤ n− 3, then there are (at least) two vectors that are

orthogonal to e1. Moreover, said vectors may not be orthogonal to one another, since

this would imply existence of an order-3 coclique. Hence, they must be separated

by an angle α =
√
(n− 3)/(3k). Without loss of generality, choose the second unit

vector e2 and v = [0 α z], where |z| =
√
1− α2.

Now, we may repeat the argument, since, in addition to e1, there is at least one

more vector that is orthogonal to e2. Furthermore, said vector must make an angle

α with e1. Without loss of generality, choose w = [α 0 z′], where |z′| =
√
1− α2.

However, now |v∗w| = |z∗z′| = 1 − α2, which implies α = 1 − α2, and thus α =

(
√
5− 1)/2, which is a contradiction for all possible (n, k).

Essentially, by using the symmetry in the argument above, it follows that any

vertex in a two-eigenvalue gain graph Ψ with the desired spectrum is contained in an

order-3 coclique. Then, it is not too hard to see that the inclusion of such an order-3

coclique implies that the corresponding line system consist of MUBs.

Lemma 7.22. Let Ψ be a two-eigenvalue gain graph with least multiplicity 3. If

Ψ contains an order-3 coclique then the usual corresponding line system consists of

mutually unbiased bases.

Proof. Consider the corresponding line system. Since Ψ contains a coclique of size 3,

the system contains an orthonormal basis; without loss of generality, assume that it

is the standard basis.

Now, suppose another vector v has first entry 0. By considering |e∗2v| and |e∗3v|,
which should both equal α, it follows that α =

√
1/2. Moreover, it also follows that

k < n− 3, since there are 3 vectors that are orthogonal to e1. (Specifically, e2, e3 and

v.) Hence, there must be a third vector with second entry 0, which (by repeating the

above) must satisfy |e∗1w| = |e∗3w| = α. But now |v∗w| = |(e∗3v)(e∗3w)| = 1/2 ̸= α,

which is a contradiction. Hence, no vectors other than the standard basis may have

zero entries, and thus k = n − 3. The conclusion now follows since every vertex is

contained in a unique order-3 coclique.

Since there exists a limited number of such mutually unbiased bases, the following

observation completes the classification.

Corollary 7.22.1. If Ψ is a gain graph with spectrum {θ[3]1 , θ
[n−3]
2 } then Ψ is switch-

ing equivalent to a gain graph obtained from two, three or four of the mutually unbiased

bases in (7.14).
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At this point, we have methodically considered all possible tuples (n,m, k) for

m = 1, 2, 3 to gradually discuss all entries of Table 7.1 and conclusively prove that

no further candidates exist. Naturally, one could choose to increase the multiplicity

further and apply more or less the same arguments again; the final series of arguments

(concerning k ≤ n−m) in particular appears as if it would carry over with little to no

issues. However, since we feel that such a discussion would provide little new insight,

we choose to move on.

7.5.2 Dismantling two-eigenvalue gain graphs

As was noted before, one must exercise considerable care when taking subgraphs of

two-eigenvalue gain graphs. While it may at a first glance look intuitive to simply take

a subset of the corresponding system of lines, the problem is that such a subset does

not, in general, satisfy the necessary equation NN∗ = zI. However, a reliable way

to obtain such subsystems is reminiscent of the dismantlability of certain association

schemes [81, 71, 30].

Suppose that the m-dimensional complex unit vectors {vj}nj=1 correspond to a

two-eigenvalue gain graph in the usual way. Then the matrix N , whose columns

are the vj , satisfies NN
∗ = zI for some z ∈ R. Now, if the columns of N can be

partitioned and concatenated into two matrices N1 and N2, where the former also

constitutes a two-eigenvalue gain graph, then clearly N1N
∗
1 = yI. However, since

NN∗ =
∑n

j=1 vjv
∗
j = N1N

∗
1 + N2N

∗
2 , it follows that N2N

∗
2 = (z − y)I, and thus,

per the discussion following Proposition 7.8, the N2 either corresponds to an empty

graph, or to a two-eigenvalue gain graph.

Clearly, the above may simply be repeated so long as one can find a subset of

the vectors that satisfies the required equation. In particular, the {vj}nj=1 may be

partitioned into s subsets that each satisfy NiN
∗
i = ziI, with zi ∈ R and i = 1, . . . , s.

Hence, every union of such subsets constructs a two-eigenvalue gain graph. Moreover,

since every such gain graph is regular, the corresponding partition is an equitable

one. The last conclusion, in particular, smells a lot like dismantlability. Formally, we

obtain the following.

Theorem 7.23. Let s ≥ 2 and let Ψ be a two-eigenvalue gain graph with a multiplicity

m on vertex set V . Let Vi, i = 1, . . . , s be a partition of V . If the induced subgraph on

Vi is either an m-coclique or a two-eigenvalue gain graph with a multiplicity m, for all

i = 1, . . . , s−1, then for each nonempty subset I of {1, 2, . . . , s}, the induced subgraph
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on ∪i∈IVi is either an m-coclique or a two-eigenvalue gain graph with a multiplicity

m.

One may observe that the above generalizes the case of MUBs. Indeed, each basis

in a collection of MUBs corresponds to an m-coclique, so it is clearly a special case

of Theorem 7.23. While the correspondence to MUBs (i.e., spectrum {θm1 , θn−m2 }
on underlying graph Km,n/m) offers a clear way to partition the vertices, it is not

clear how one obtains a partition into m-cocliques and two-eigenvalue gain graphs, in

general. Nevertheless, this still yields an abundance of two-eigenvalue subgraphs of

two-eigenvalue gain graphs that correspond to highly symmetric geometries, such as

those discussed in Section 7.5.3.

7.5.3 More examples from geometric objects

We conclude this section by showcasing a number of new two-eigenvalue gain graphs

that arise from various other well-studied combinatorial objects. Inspired by the

construction of the example on 15 vertices in Section 7.4.1, we offer several construc-

tions that follow a similar pattern. The constructions presented below are essentially

found by drawing {0, α}-sets from highly symmetric geometric objects. Moreover,

by observing that these {0, α}-sets contain several orthonormal bases, the obtained

constructions may be dismantled into several more two-eigenvalue subgraphs.

The Witting polytope

Real polytopes have been generalized to complex Hilbert spaces for quite some time.

While precise definitions do not exist for the general case, the regular complex poly-

topes have been completely characterized by Coxeter. We forego the details, though

it would be fair to say that these geometries are highly symmetric, which enables us

to translate (parts of) them to the desired systems of lines.

Consider theWitting polytope [25] in C4. Its 240 vertices occur in 40 1-dimensional

subspaces, which form an A2-set meeting the absolute bound. In particular, take the

4 standard basis vectors along with

1√
3

[
1 0 − φj − φh

]⊤
,
1√
3

[
1 − φj 0 φh

]⊤
,
1√
3

[
1 φj φh 0

]⊤
, and

1√
3

[
0 1 − φj φh

]⊤
, with j, h ∈ {0, 1, 2}.
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162 Chapter 7. Gain graphs with two eigenvalues

Then the matrix N , whose columns are the vectors above, satisfies NN∗ = 10I, so

that Proposition 7.8 applies. Indeed, A =
√
3(N∗N − I) characterizes an order-40

unit gain graph whose spectrum is
{
9
√
3
[4]
,−
√
3
[36]
}
, and whose underlying graph is

the complement of the symplectic generalized quadrangle of order 3.

Finally, note that the 40 vectors above may be partitioned into ten orthonormal

bases, which form a spread in said quadrangle. Following the discussion in Section

7.5.2, one may use this partition to get two-eigenvalue gain graphs with spectrum{
(t− 1)

√
3
[4]
,−
√
3
[4(t−1)]}

, t ∈ {2, . . . , 10}.

A rank-5 complex reflection group

In the same vein, one may draw on the collection of complex reflection groups and

distill a unit gain graph from its hyperplanes of symmetry. In particular, we consider

the group named ST33 in the (complete) classification by Shephard and Todd [98].

The desired collection of vectors may roughly be divided into two parts. The

former part consists of all vectors obtained from

1√
2
[1 − φj 0 0 0]⊤, j = 0, 1, 2,

by permuting the first four entries in all possible ways, such that the leftmost nonzero

entry is9 1/
√
2; this yields 18 vectors belonging to distinct hyperplanes in C4. The

second part, containing the remaining 27 vectors, is described by

1√
6
[1 φj1 φj2 φj3

√
2φ−j1−j2−j3 ]⊤, where j1, j2, j3 ∈ {1.2.3}.

This yields a total of 45 unit vectors, whose pairwise inner products have absolute

value either 0 or 1
2 , such that every vector is orthogonal to exactly 12 others. Thus, the

matrix A = 2(NN∗−I) characterizes a unit gain graph with spectrum
{
16[5],−2[40]

}
.

Note that the underlying graph is the generalized quadrangle of order (4, 2), which

does not have a spread. However, we have found a partition of the vector set that

contains six orthonormal bases; this corresponds to a partial spread. By consider-

ing unions of such bases and their complementary sets, we obtain induced subgraphs

whose spectra are
{
2(t− 1)[5],−2[5(t−1)]

}
for t = 2, . . . , 8. Interestingly, the corre-

sponding gain matrix has entries in T6, so it (and its induced subgraphs) could be

9Note that the vector obtained by interchanging the two nonzero entries is a member of the same
hyperplane.
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interpreted as a signed digraph.

The Coxeter-Todd lattice

Finally, we consider the famous Coxeter-Todd lattice in C6, which finds its origin in

the hexacode, discussed at the start of this section. It has various equivalent descrip-

tions [21], which give rise to different interesting two-eigenvalue gain (sub)graphs.

In particular, these graphs attain the absolute bound (7.9) in terms of order n with

respect to the multiplicity 6. The descriptions may be distinguished by their base10.

In the 2-base, take all 15 projectively distinct hexacodewords of weight 4, and

take all of their variations by multiplying at most 3 nonzero entries of every such

codeword by −1. Scaling them down yields a collection of 120 distinct unit vectors,

that may be appended with a standard unit basis of C6 to find 126 unit vectors

whose pairwise inner products have absolute value either 0 or 1
2 . Thus, as before,

we find a two-eigenvalue gain graph. Note, specifically, that the before-mentioned

example on 15 vertices clearly occurs as an induced subgraph of this construction, as

its corresponding system of lines is a subset of the 126 vectors required here.

In fact, the 126 vectors decompose into 21 orthogonal bases. This is easy to see,

since the gain graph above has an order-126 underlying graph that is the complement

of the strongly regular graph that appears in Brouwer and Van Maldeghem [12] as

NO−6 (3). According to [12], the complement of NO−6 (3) has chromatic number 21,

which implies that the desired decomposition exists. This, as before, yields two-

eigenvalue gain subgraphs of order 6t, for t = 2, . . . , 21.

One might also consider the 3-base parallel. Indeed, take the 45 vectors obtained

from

[i
√
3 − i

√
3φc 0 0 0 0]⊤, c ∈ [3]

by permuting its entries in such a way that the first nonzero entry is strictly imaginary,

and append with the 81 vectors

[1 φj1 φj2 φj3 φj4 φ−j1−j2−j3−j4 ]⊤ with j1, . . . , j4 ∈ [3].

It is easily verified that the pairwise inner products of these 126 vectors have absolute

value either 0 or 3, and thus the usual construction applies, after scaling.

10The lattice is said to be represented in the b-base if all absolute values of the pairwise inner
products of the coordinate vectors are divisible by b, before scaling [21].
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164 Chapter 7. Gain graphs with two eigenvalues

It should be noted that the collections of 45 and 81 vectors also construct two-

eigenvalue gain graphs (with two-eigenvalue subgraphs), that are notably different

from the subgraphs of order 6t, above. In fact, the 81 vectors of weight 6 have yet

another interesting link to other combinatorial objects constructed by Van Lint and

Schrijver [74], such as their partial geometry. There is a clear correspondence of

the above 81 vectors and the dual code of [74, Construction 2]. The different inner

products (up to conjugation) of our vectors correspond to the weights in this dual code

[74, Table III], and define a 4-class fusion scheme of the 8-class cyclotomic association

scheme on GF (81), which can be further fused to an amorphic association scheme

[29]. We should note that Roy and Suda [95] have obtained many results such as the

above, where the inner products give rise to various association schemes. These most

interesting constructions are called spherical t-designs, which in a sense generalize the

above.

Lastly, we draw from the 4-base variant. Take the 96 distinct vectors obtained

from

[i
√
3 (−1)j1 (−1)j2 (−1)j3 (−1)j4 (−1)−j1−j2−j3−j4 ]⊤, with j1, . . . , j4 ∈ [2],

by permuting its entries and append with the 30 obtained as the pairwise linearly

independent permutations of

[2 ± 2 0 0 0 0]⊤.

Then the pairwise inner products have absolute value 0 or 4, and the usual construc-

tion applies.

It turns out that each of these constructions yields a gain graph that belongs to

the same switching equivalence class. Will will not offer formal argumentation, but it

is easily verified by computer. Note, moreover, that this is quite unsurprising, since

the lines were drawn from various descriptions of the same group. Additionally, it

turns out that each of the obtained gain graphs once again has all of its nonzero

entries in T6, thus admitting a signed digraph interpretation.

7.6 Two-eigenvalue gain graphs with small degree

Having classified all two-eigenvalue gain graphs with bounded multiplicity, a relatively

small collection of admissible graphs was obtained. We will now take a different

perspective in bounding the degree of a candidate gain graph to a small number; this
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Two-eigenvalue gain graphs with small degree 165

will warrant a combinatorial approach in which we will systematically investigate the

potential underlying graphs and the corresponding gain functions that may act on

their edges. Interestingly, for all degrees k ≤ 4, we obtain implicit bounds on the

order of our candidates.

We should note that this classification in the context of Hermitian adjacency

matrices and Eisenstein matrices has essentially already been done by Greaves [45].

Foregoing the complete graphs, his constructions all have a = 0. However, as might

be expected by now, we cannot generally make this assumption for gain graphs.

Indeed, Section 7.4 contains many examples to the contrary, such as K
(γ)
2,2,2, which

was obtained from 3 mutually unbiased bases in C2 and has distinct eigenvalues 2
√
2

and −
√
2.

The results of the classification are summarized by the following theorem.

Theorem 7.24. All two-eigenvalue gain graphs with degree at most 4 are switching

isomorphic to one of the gain graphs in Table 7.3.

k Graph Order m DS

2
K3 3 1 *
IG(W2) 4 2 *

3

K4 4 1 *
W4 4 2 *
IG(W3) 6 3 *
ND(IG(W2)) 8 4 *

4

K5 5 1 *

K
(γ)
2,2,2 6 2 *

ND(W4) 8 4 *
IG(W5) 10 5 *
ND(IG(W3)) 12 6 *
IG(W7) 14 7 *
ND(ND(IG(W2))) 16 8 *

T
(x)
2t 2t, t ≥ 4 t

Table 7.3 – Classification of all two-eigenvalue gain graphs with degree at
most 4. A star in the DS column indicates that any connected, cospectral
gain graph is switching isomorphic.

In Sections 7.6.1-7.6.3, we will provide the corresponding classification for degrees
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166 Chapter 7. Gain graphs with two eigenvalues

2, 3, and 4, respectively. Together, these sections prove the correctness of Theorem

7.24. A particularly useful insight that will be helpful in the argumentation below, is

the following.

Lemma 7.25. Let D be a connected two-eigenvalue gain graph. Then any two vertices

at mutual distance 2 have at least two common neighbors.

Proof. If there would be exactly one common neighbor w between non-adjacent

vertices u and v, then (A2)uv = AuwAwv ̸= 0. This contradicts the equation

A2 = aA+ kI.

Additionally, by the following observation, we may substantially limit the number

of possible parameter choices in case Ψ is triangle-free.

Lemma 7.26. Let Ψ be a connected two-eigenvalue gain graph. If Ψ is triangle-free,

then a = 0 and thus θ1 = −θ2.

Proof. a ̸= 0 implies that (A2)uv ̸= 0 for connected vertices u, v, and thus there is a

walk u→ w → v. But then Ψ[{u,w, v}] is a triangle.

Before we get into the actual classification, we would like to recall that it is assumed

throughout that a = θ1 − θ2 ≥ 0; that is, the eigenvalue whose multiplicity is lower

is assumed to be positive. While this is a restrictive assumption, each of the graphs

that are subsequently excluded may be obtained by multiplying one of the obtained

graphs by −1. Hence, nothing is effectively lost.

7.6.1 Degree 2

The first relevant case to consider is, of course, k = 2. Without much effort, we

show that there are exactly two switching equivalence classes that admit the imposed

requirements.

Proposition 7.27. Let D be a connected unit gain graph with degree k = 2 that has

two distinct eigenvalues. Then D is switching isomorphic to K3 or IG(W2).

Proof. Suppose that D is not a balanced triangle. Then both eigenvalues of D have

multiplicity at least 2, and thus n ≥ 4. Now, since k = 2, then by Lemma 7.25 we

have Γ(D) ∼= C4. By Proposition 4.4, 3 out of 4 edges may be assumed to have gain

one. Finally, by Lemma 7.26, a = 0 and thus A must satisfy the equation A2 = 2I;

the desired conclusion easily follows.
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7.6.2 Degree 3

Increasing the degree of the considered candidates to 3 gives us some more freedom,

though the collection of switching equivalence classes is still limited to 4. The desired

classification is obtained with relative ease, by application of the process described

above. As was announced earlier, we find that the examples in Proposition 7.5 form

a complete list.

Proposition 7.28. Let Ψ be a connected unit gain graph with degree k = 3 that has

two distinct eigenvalues. Then D is switching isomorphic to K4 or one of the graphs

W4, IG(W3), or the signed 3-cube ND(IG(W2)).

Proof. Suppose that Ψ is not switching equivalent to K4 and let A := A(Ψ). We

distinguish two cases: either Ψ contains a triangle, or it does not.

Suppose that Ψ contains a triangle. Then without loss of generality, we may

assume that A12 = A13 = A14 = 1 and A23 ̸= 0. Then, equating the first column of

A2 to the corresponding entries of aA+ kI, we find that all of

A23 +A24 = a, A23 +A34 = a, and A24 +A34 = a

must simultaneously hold. Now, since a is real, it follows that A23 = A24 = A34 and

thus that Γ(Ψ) = K4. Indeed, since Ψ is connected and the first four vertices all

have degree 3, no further vertices can be added. Moreover, since Ψ is not switching

isomorphic to K4, its eigenvalues must be ±
√
3 and thus a = 0. Finally, using the

equations above, this implies A23 = ±i; both choices yield W4.

If Ψ does not contain triangles, then by Lemma 7.26, a = 0. Moreover, by Lemma

7.25, every two vertices at distance 2 have at least two common neighbors. There are

now two subcases to distinguish, and each leads to one graph. First, suppose that all

pairs of vertices at distance 2 have precisely two common neighbors. Then Γ(Ψ) is the

cube [10], of which the edges marked fat in Figure 7.4a may be fixed to gain 1. Now,

note that every two non-adjacent vertices of every face are connected with exactly

two walks of length 2. Since the off-diagonal entries of A2, which must be zero, are

given by the sum of the gains of such a pair of walks, the gains of the non-fixed edges

are all determined by the equation A2 = 3I. The resulting signed graph corresponds

to ND(IG(W2)), the signed cube.

In the other case, there must be two non-adjacent vertices, say 1 and 2, that share

all three neighbors. It follows that Γ(Ψ) ∼= K3,3; label such that 1, 2, 3 are pairwise
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(a) ND(IG(W2))

56

4 32

1

(b) IG(W3)

Figure 7.4 – Illustrations for Proposition 7.28. A dashed edge has gain −1;
a dashed arc has gain φ.

nonadjacent. Without loss of generality, we set A14 = A15 = A16 = A42 = A43 = 1.

Then, since we have

(A2)12 = ϕ(1→ 4→ 2) + ϕ(1→ 5→ 2) + ϕ(1→ 6→ 2) = 1 +A52 +A62 = 0,

it follows that A52 = A62 and either A52 = φ or A52 = φ. Moreover, since the

same argument holds when (A2)13 is considered, we also have A53 = A63 and either

A53 = φ or A53 = φ. Finally, since (A2)23 = 0, we obtain A52 = A53, and thus Ψ

must be precisely IG(W3), up to equivalence.

7.6.3 Degree 4

Proceeding along the same line, we may consider unit gain graphs with degree four. In

order to gain some insight into the underlying graph, we use the following consequence

of Lemma 7.1.

Lemma 7.29. Let k be such that 1+4k is not a square, and let Ψ be a two-eigenvalue

gain graph with degree k. Then in the underlying graph, no edge can be in exactly one

triangle.

Proof. Assume to the contrary that u and v are adjacent with precisely one common

neighbor w. Without loss of generality, we may assume that Auv = Auw = 1. Then

Avw = (A2)uv = a, which is real, since a = θ1 + θ2, and unit, since a = Avw.

Therefore, a = ±1. But then a ∈ N0, so a
2 + 4k is a perfect square, by Lemma 7.1,

which is a contradiction.
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In the following classification, we first treat the case in which triangles are allowed.

Proposition 7.30. Let D be a two-eigenvalue gain graph with degree 4. If D has

triangles, then D is switching isomorphic to K5, ND(W4), K
(γ)
2,2,2, or T

(x)
6 for some

unit x.

Proof. Again, theK5 case is clear, so let us assume that D is not switching isomorphic

to a complete graph. Then both eigenvalue multiplicities are larger than 1, which

implies that n ≥ 6, since n = 5 would violate the absolute bound for equiangular lines

in C2. (See Section 7.4.3.)

Since there is a triangle, we obtain by Lemma 7.29 that there must be an edge

which is in precisely two triangles. Indeed, if every edge would be in 0 or more than

2 triangles, then the graph would be K5. Without loss of generality, we may now

assume that A12 = A13 = A14 = A15 = 1, A23 = 0, A24 = x ∈ T, and A25 ̸= 0. Now

since A24 +A25 = (A2)21 = a, for some real a, A25 = a− x. We now distinguish two

cases depending on whether a = 0 or not, in which case a > 0.

For the first case, assume that a = 0 and thus A25 = −x. Let y, z ∈ T ∪ {0}, and
without loss of generality set A35 = y, A45 = z. Since (A2)31 = 0, it follows that

A34 = −y. Moreover, since (A2)41 = 0 and (A2)51 = 0, it follows that

x− y + z = 0 and − x+ y + z = 0, (7.18)

and hence z + z = 0. This holds true in two subcases: either z = 0 or z = ±i.
In the former subcase, z = 0 and thus x = y. Since we may, w.l.o.g., set A26 = 1,

we have 
(A2)32 = A36 − 1 = 0

(A2)42 = A46 + 1 = 0

(A2)52 = A56 + 1 = 0

=⇒ A36 = −A46 = −A56 = 1,

and we obtain the toral tesselation graph T
(x)
6 , illustrated in Figure 7.5a, with no

further restrictions on x.

In the latter subcase, w.l.o.g. choose z = i. Applying the same technique again,

we find

0 = (A2)45 = 1− xx− yy = −yy =⇒ y = 0,

which means that n ≥ 8, since vertex 3 needs three more neighbors. Moreover, by

plugging in y and z into (7.18), it follows that x = i. Without loss of generality we
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may then assume that A26 = 1 and observe that (A2)2j = 0 for all j, to determine Aj6

for j = 3, 4, 5. Similarly by assuming (w.l.o.g.) A47 = 1 we may determine Aj7 for

j = 3, 5, 6, and finally assuming A58 = 1 determines Aj8 for j = 3, 6, 7. Altogether,

we find a unique graph (up to switching equivalence), which was before obtained as

ND(W4), and is illustrated in Figure 7.5c.

In case a > 0, we find one more switching equivalence class through a series of

similar arguments. Recall that A24 = x and A25 = a− x. Since a− x ∈ T, it follows
that a − x = x. Similarly, since (A2)13 = A43 + A53 = a = x + x, it follows that

A43 ∈ {x, x} and A53 = A43. However, setting A26 ̸= 0 w.l.o.g. and choosing A43 = x

yields

(A2)23 = A21A13 +A24A43 +A25A53 +A26A63 = 3 +A26A63 ̸= 0 = a ·A23,

where the inequality holds since |A26A63| ≤ 1. Clearly, this is a contradiction and

thus A43 = A35 = x. From (A2)14 it then follows similarly that A45 = 0.

As before, we may now assume without loss of generality that A26 = 1, and

determine the values A63, A64 and A65 by repeating the same argument three times,

as follows.

1 +A64 = (A2)24 = a ·A24 = (x+ x)x = 1 + x2 =⇒ A64 = x2,

1 +A65 = (A2)25 = a ·A25 = (x+ x)x = 1 + x2 =⇒ A65 = x2, and

1 + x2A63 = (A2)43 = a ·A43 = (x+ x)x = 1 + x2 =⇒ A63 = x4.

Finally, note that (A2)61 = 1 + x2 + x2 + x4 = (1 + x2)(1 + x4) = 0, which holds

subject to a = x+x > 0 precisely when either x = γ or x = γ; both cases yield K
(γ)
2,2,2,

illustrated above.

The attentive reader may have noted that we did not fix the order of the above

considered graphs, during the proof. However, by allowing the initially undetermined

edge gains to be either complex units or zero, and following the implications, we arrive

at a 4-regular gain graph in each of the possible cases. Hence, we may be certain that

no larger connected examples exist.

What is left is the triangle-free case. While the following result may be shown

through procedure similar to the above, we opt to defer to a classification of weighing

matrices by Best et al. [8], since these effectively coincide.



585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing585052-L-bw-Wissing
Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022Processed on: 11-10-2022 PDF page: 183PDF page: 183PDF page: 183PDF page: 183

Two-eigenvalue gain graphs with small degree 171

−x

x

−x

x

(a) T
(x)
6

(b) K
(γ)
2,2,2

(c) ND(W4)

Figure 7.5 – Illustrations for Proposition 7.30. Filled arcs have gain i. Further
edges without labels follow the usual drawing conventions.

Proposition 7.31. Let D be a two-eigenvalue gain graph with degree 4. If D is

triangle-free, then D is switching isomorphic to one of the graphs IG(W5), ND(IG(W3)),

IG(W7), ND(ND(IG(W2))), or T
(x)
2t , for some t > 3 and x ∈ T.

Proof. If D is triangle-free, then by Lemma 7.26, A := A(D) satisfies A2 = 4I, which

means that A is a weighing matrix. Thus, the results in [8, Sec. 3.5] apply, and the

conclusion follows.

It should be clear that the correctness of Theorem 7.24 now follows by Propositions

7.27, 7.28, 7.30 and 7.31. As before, the approach presented above could be expanded

to include degrees 5, 6, . . . with relative ease, but the abundance of possibilities would

yield a discussion that is likely too lengthy to be included here.

7.6.4 Degree 5

While we will not offer a full classification, we will consider some degree-5 examples.

We briefly touch on graphs of order at most 8, after which we will treat a new
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infinite family of two-eigenvalue gain graphs, whose underlying structure is somewhat

of a doubled cycle. The remaining sporadic examples that have been found through

computer search appear in Appendix 5.4.3, and will not be discussed explicitly.

Since there are exactly four 5-regular graphs of order at most 8, we may simply

treat them on a case-by-case basis. For two of those candidates, namely the comple-

ment of C8, the complement of C3∪C5, one may show that neither may be underlying

to a two-eigenvalue gain graph. The proof follows the same pattern as the proofs of

Propositions 7.30 and 7.31, so we forego the details.

The two remaining candidates, K6 and the complement of 2C4, are contained in

the class of donut graphs, which admit infinitely many two-eigenvalue gain graphs for

every (even) order n. Let us provide the formal definition.

Definition 7.1. Let Ct be the cycle graph of order t ≥ 3, whose adjacency matrix is

B. Then the 5-regular graph characterized by

A =

[
B B + I

B + I B

]

is called the order-2t donut graph.

We will now characterize all two-eigenvalue donut graphs with symmetric spectra.

Theorem 7.32. Let G be an order n := 2t donut graph, t ≥ 3, and let Ψ = (G,ψ)

be a unit gain graph. Then Ψ has eigenvalues ±
√
5 if and only if it is switching

isomorphic to [
C + C∗ C − C∗ + I

C∗ − C + I −C − C∗

]
,

where C is an order-t weighing matrix of weight 1, or to D∗8(c) in Figure 7.6b.

Proof. Sufficiency is clear, following the discussion in Section 7.3, so we only show

necessity. If t = 3 then the claim holds by Theorem 7.16, so suppose that t ≥ 4. Let

C be the t× t matrix whose nonzero entries are Cjh = 1 for all h = j+1 and Ct1 = x

for some x ∈ T. Let W,Y and Z be matrices with the same support as C, and set

A =

[
C + C∗ W − Z∗ + I

W ∗ − Z + I Y + Y ∗

]
.
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(a) A general two-eigenvalue donut

c

c

c

c−c

−c

−c

−c

(b) D∗8(c)

Figure 7.6 – Illustrations for Theorem 7.32. The fat arcs have gain ±x, and
dotted lines indicate continuation of the pattern.

Note that without loss of generality, A(Ψ) = A. Computing the upper left block of

A2(Ψ) yields:

A2 = 5I =⇒ C2 −WZ + (C∗)2 − Z∗W ∗ +W − Z +W ∗ − Z∗ = O

=⇒ W = Z and C2 + (C∗)2 =W 2 + (W ∗)2,

where the final equivalence follows by grouping the terms by support. Similarly,

plugging in the above and computing the upper right block yields

A2 = 5I =⇒ C + Y + C∗ + Y ∗ + CW +WY − C∗W ∗ −W ∗Y ∗ = O

=⇒ Y = −C and CW +W ∗C∗ =WC + C∗W ∗.

Now, if t ≥ 5 then we may again group by support to reduce the final equality above

to CW =WC. It follows that either W = C or W = −C, completing the gain graph.

Note that either choice yields the same switching equivalence class.

In case t = 4, all of the second order matrices have the same supports, so the

above is not the only solution. Briefly put, by solving the system

C2 + (C∗)2 =W 2 + (W ∗)2

CW +W ∗C∗ =WC + C∗W ∗
⇐⇒


x+ 1 = w12w23 + w34w41

x+ 1 = w23w34 + w12w41

w23 + w41 = w12 + w34x

w34 + w12x = w23 + w41
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we obtain three options:

i. x ∈ T and W = ±C,

ii. x = −1 and W = diag
([
c c̄ c̄ c

])
C, c ∈ T,

iii. x = 1 and W = diag
([
c c̄ c c̄

])
C, c ∈ T.

The latter two yield gain graphs switching isomorphic to the exception D∗8 , shown in

Figure 7.6b, which completes the proof.

Note that indeed, K6 is a donut, strictly speaking; though it is somewhat of a

special case. In particular, since t = 3 implies that C2 and C∗ have the same support,

the particulars of the proof above do not apply. However, as a consequence of Theorem

7.16, we know that the statement holds regardless.

Finally, note that the case D∗8(c) is distinct from the two-eigenvalue order-8 donut

that follows the general construction. Indeed, the triangles in the former have gains

±c, whereas the latter has triangles with gains ±1 for all x ∈ T.
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693 Pepijn Wissing Spectral Characterizations of Complex 
Unit Gain Graphs 

978 90 
5668 695 6 

November  
2022 

     

 





While eigenvalues of graphs are well studied, spectral analysis of complex unit 
gain graphs is still in its infancy. This thesis considers gain graphs whose gain 
groups are gradually less and less restricted, with the ultimate goal of classifying 
gain graphs that are characterized by their spectra. In such cases, the eigenvalues 
of a gain graph contain sufficient structural information that it might be uniquely 
(up to certain equivalence relations) constructed when only given its spectrum. 

First, the first infinite family of directed graphs that is – up to isomorphism 
– determined by its Hermitian spectrum is obtained. Since the entries of the 
Hermitian adjacency matrix are complex units, these objects may be thought of 
as gain graphs with a restricted gain group. It is shown that directed graphs with 
the desired property are extremely rare. Thereafter, the perspective is generalized 
to include signs on the edges. By encoding the various edge-vertex incidence 
relations with sixth roots of unity, the above perspective can again be taken. With 
an interesting mix of algebraic and combinatorial techniques, all signed directed 
graphs with degree at most 4 or least multiplicity at most 3 are determined. 
Subsequently, these characterizations are used to obtain signed directed graphs 
that are determined by their spectra. Finally, an extensive discussion of complex 
unit gain graphs in their most general form is offered. After exploring their 
various notions of symmetry and many interesting ties to complex geometries, 
gain graphs with exactly two distinct eigenvalues are classified. 

Pepijn Wissing (Essen, Germany, 1994) received his Bachelor’s degree in 
Econometrics and Operations Research at Tilburg University in 2015, followed by 
a Research Master degree in Operations Research in 2018. He then became a PhD 
candidate at the department of Econometrics and Operations Research, funded in 
part by Tilburg University’s Research Talent grant. 
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