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Abstract
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Graphs, Springer-Verlag, Berlin, 1989] was written.
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1 Introduction

Distance-regular graphs are graphs with a lot of combinatorial symmetry, in the sense that
given an arbitrary ordered pair of vertices at distance h, the number of vertices that are at
distance ¢ from the first vertex and distance j from the second is a constant (i.e., does not
depend on the chosen pair) that only depends on h,i, and j. Biggs introduced distance-
regular graphs, by observing that several combinatorial and linear algebraic properties of
distance-transitive graphs were holding for this wider class of graphs, see Biggs’ mono-
graph [48] from 1974. Well-known examples are the Hamming graphs and the Johnson
graphs, as these graphs link the subject of distance-regular graphs to coding theory and
design theory, respectively. But there are many more interesting links to other subjects,
such as finite group theory (and distance-transitive graphs), representation theory, finite
geometry, association schemes, and orthogonal polynomials. Moreover, distance-regular
graphs are frequently used as test instances for problems on general graphs and other
combinatorial structures, such as problems related to random walks and from combinato-
rial optimization. An example is Hoffman’s (unpublished; see [85, Thm. 3.5.2]) coclique
bound, which was first proved by Delsarte [189, p. 31| for distance-regular graphs with
diameter two (also known as strongly regular graphs), as an example of his linear pro-
gramming method. Distance-regular graphs have applications in several fields besides
the already mentioned classical coding and design theory, such as (quantum) information
theory, diffusion models, (parallel) networks, and even finance.
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In this survey of distance-regular graphs, we give an overview of some developments
in the area of distance-regular graphs since the monograph ‘BCN’ by Brouwer, Cohen,
and Neumaier [78] from 1989 was written. This influential monograph, which is almost
like an encyclopedia of distance-regular graphs, inspired many researchers to work on
distance-regular graphs, such as the authors of this survey. Since then, many papers
have been written, many more than the ones we will discuss in this overview. We intend
to discuss the most relevant developments of the past twenty-seven years, realizing that
‘most relevant’ is quite subjective. Perhaps we should say that we give our personal
view on the past twenty-seven years. The same is true when we discuss the major open
problems in the area. A recent major breakthrough is the proof of one of the Bannai-
Ito conjectures made in the influential monograph by Bannai and Ito [38] from 1984,
i.e., the one that states that there are finitely many distance-regular graphs with given
valency (at least three). Just as important is the theorem stating that there are finitely
many non-geometric distance-regular graphs with both valency and diameter at least three
and smallest eigenvalue at least a given number; a generalization of a well-known result
about strongly regular graphs. The classification of tridiagonal pairs is an example of an
important recent breakthrough in algebraic combinatorics that is completely inspired by
the major (still) open problem of classifying the Q-polynomial distance-regular graphs.
The construction of the twisted Grassmann graphs, that is, of this family of strange
examples that were not expected to be in the picture, gave a better perspective on how
difficult this classification problem really is. It seems to suggest that the problem cannot
be solved just by algebraic methods. In addition, we need to better understand geometric
distance-regular graphs.

This survey is organized as follows. After this brief introduction, we present an in-
troduction to distance-regular graphs for the reader that is unfamiliar with the subject.
We then present the classical examples of distance-regular graphs, and an overview of the
most important constructions since ‘BCN’ [78]. In Section 4, we give more necessary and
advanced background for the remaining part of the paper. We then treat several sub-
jects in Sections 5-14, for example Q)-polynomial distance-regular graphs, the Terwilliger
algebra, the Bannai-Ito conjecture, geometric distance-regular graphs, and spectral char-
acterizations. In Section 15, we discuss important applications of distance-regular graphs,
namely in combinatorial optimization and in the area of random (classical and quantum)
walks (which model diffusion models, dynamic stock portfolios, and the abelian sandpile,
for example). In Section 16, we then discuss some miscellaneous topics, and in Section
17 we report progress on the ‘feasibility’ and ‘uniqueness’ of the intersection arrays that
were listed in the tables of parameter sets of distance-regular graphs in ‘BCN’ [78]. We
conclude with a section on open problems and some directions for future research.

Note that we will focus our attention on distance-regular graphs with diameter at least
three. We do not completely exclude strongly regular graphs (the diameter two case), but
we are of the opinion that they form a subject of their own. A separate survey of strongly
regular graphs would therefore be warmly welcomed. For some information we refer to
the recent book by Brouwer and Haemers on spectra of graphs [85, Ch. 9] and the paper
by Cohen and Pasechnik [132]. Also bipartite distance-regular graphs with diameter three

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS22 7



form a separate subject. These graphs are equivalent to symmetric designs, for which we
refer to the monograph by Ionin and Shrikhande [346].

2 An introduction to distance-regular graphs

In this section we intend to introduce some basics about distance-regular graphs to the
reader that is unfamiliar with the topic. This includes some basic proofs and questions
to give some (first) flavors of the area of distance-regular graphs.

2.1 Definition

Let I' denote a simple, undirected, connected graph, with vertex set V' = Vi of size v = |V/|.
Whenever there is an edge between two vertices x and y, we say that x is adjacent to v,
or that x and y are neighbors, use the notation x ~ y, and denote the edge by xy. The
distance in the graph between two vertices x and y is denoted by d(z,y) = dr(zx,y), and
is given by the length of the shortest path between x and y. The diameter of the graph is
D = Dr = max, yev d(z,y). The set of vertices at distance i from a given vertex z € V' is
denoted by T';(2), for i = 0,1,..., D. The distance-i graph T'; is the graph with vertex set
V', where two vertices x and y are adjacent if and only if dr(z,y) = i. A graph is called
bipartite if the vertex set can be partitioned into two parts such that every edge has one
end (vertex) in each part.

A connected graph I' with diameter D is called distance-reqular if there are constants
¢;, a;, b; — the so-called intersection numbers — such that for all : = 0,1,..., D, and all
vertices  and y at distance i = d(x,y), among the neighbors of y, there are ¢; at distance
1 — 1 from z, a; at distance i, and b; at distance ¢ + 1. It follows that I' is a regular graph
with valency k = by, and that ¢; +a; + b; = k for all « = 0,1,..., D. By these equations,
the intersection numbers a; can be expressed in terms of the others, and it is standard to
put these others in the so-called intersection array

{bo7b1; ...,bp_15c1,0,. .. 7CD}-

Note that bp = 0 and ¢y = 0 are not included in this array, whereas ¢; = 1 is included
(note that all numbers in the intersection array are positive integers). Also the number of
vertices can be obtained from the intersection array. In fact, every vertex has a constant
number of vertices k; at given distance i, that is, k; = |[';(2)| for all z € V. Indeed, this
follows by induction and counting the number of edges between I';(z) and I';41(z) in two
ways. In particular, it follows that ky = 1 and k;yq = b;k;/c;q for alli =0,1,...,D — 1.
The number of vertices now follows as v = kg + k; +- - -+ kp. In combinatorial arguments
such as the above, it helps to draw pictures; in particular, of the so-called distance-
distribution diagram, as depicted in Figure 1.
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Figure 1: Distance-distribution diagram

2.2 A few examples
2.2.1 The complete graph

The complete graphs K, (i.e., the graphs where all vertices are adjacent to each other)
are the distance-regular graphs with diameter 1, and have intersection array {v — 1; 1} if
v > 1.

2.2.2 The polygons

The polygons (cycles) C, are the distance-regular graphs with valency 2, and have inter-
section array {2,1,...,1;1,1,...,1} if v is odd, and {2,1,...,1;1,...,1,2} if v is even.

2.2.3 The Petersen graph and other Odd graphs

The well-known Petersen graph is a distance-regular graph with diameter 2, and has in-
tersection array {3,2;1,1}. The distance-regular graphs with diameter 2 are very special,
and form a subject of their own. They are exactly the connected strongly regular graphs
(for more on such graphs, see [85, Ch. 9]).

The Petersen graph is the same as the Odd graph Os;. For an integer £ > 2, the
vertices of the Odd graph Oy are the (k — 1)-subsets of a set of size 2k — 1, and two
vertices are adjacent if the corresponding subsets are disjoint. The Odd graph Oy is
distance-regular with diameter k — 1. For odd k = 2 — 1, its intersection array is {k, k —
Lk—=1,...,0+1,01+1,0;1,1,2,2,...,l— 1,1l — 1}. For even k = 2I, the intersection array
is{k,k—1,k—1,...,14+1,14+1;1,1,2,2,...,1 — 1,1 — 1,1}. Consequently, the numbers
a; are zero for all i =0,1,...,D — 1, but ap =1 > 0.

2.3 Which graphs are determined by their intersection array?

All graphs in the above examples have the property that they are the only ones that are
distance-regular with the given intersection array. In other words, given the particular
intersection array, it is possible to reconstruct the graph uniquely (up to isomorphism).
A typical combinatorial argument can be used to show this for the Petersen graph.

Proposition 2.1. The Petersen graph is determined as distance-reqular graph by its in-
tersection array.

Proof. Consider a distance-regular graph with intersection array {3,2;1, 1}. Take a vertex
z; it has by = 3 neighbors, each of which has b; = 2 neighbors at distance 2 from z (and
hence there are no triangles in the graph; a; = 0). Each of the vertices at distance 2 from
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z has precisely ¢; = 1 common neighbors with z (hence there are no 4-cycles in the graph
either). This already determines the 10 = 1 + 3 + 6 vertices and all edges except those
having both ends in I'3(2). The graph induced on I'y(2) is regular with valency as = 2,
and because the graph has no triangles, this must be a 6-cycle. Now there is (up to
isomorphism) only one way to make this 6-cycle if one takes into account that the entire
graph has no triangles and 4-cycles; we obtain the Petersen graph as the only graph with
intersection array {3,2;1,1}; see Figure 2. O

Figure 2: The Petersen graph

This is clearly a very interesting property; however it does not hold for all intersection
arrays. The smallest intersection array (smallest in terms of the number of vertices) that
corresponds to more than one graph is {6, 3;1,2}; it corresponds to the Hamming graph
H(2,4) (also known as the lattice graph Ls(4)) and the Shrikhande graph.

One of the problems in the field of distance-regular graphs is therefore to determine
which graphs are determined by their intersection array, and more generally, to determine
all graphs that have the same intersection array as a given graph. While for many graphs
this problem is still open, for the Odd graphs the problem was settled already long ago
by Moon [498]. Her result was later generalized by Koolen [406] as follows.

Proposition 2.2. Let I' be a non-bipartite distance-reqular graph with diameter D > 4,
and intersection numbers a; = as = a3 =0, co = 1, and c3 = ¢4 = 2. Then I' is an Odd
graph.

This result shows that we do not always need all intersection numbers to determine a
graph. This is very typical in the characterization results that we know. We will see
more examples of this later on, for example in the characterizations in Section 9.1. Note
that the condition that the graph is non-bipartite is also a condition on the intersection
numbers; it is not hard to see that a distance-regular graph is bipartite (i.e., has no odd
cycles) if and only if a; = 0 for all = 0,1,..., D. To obtain their results, both Moon
and Koolen used the correspondence to a certain Johnson graph; and Moon characterized
this Johnson graph by just a few intersection numbers. Hiraki [315] also strengthened
the result by Moon; he showed — among others — that a; = as, ay = 0, ¢co = 1, and
c3 = ¢4 = 2 suffices to determine the Odd graphs among the non-bipartite distance-regular
graphs with diameter D > 5. These results also ‘eliminate’ intersection arrays that match
the intersection arrays of the Odd graphs partially.

This brings us to the following question: which intersection arrays should we look
at? Do we need a distance-regular graph first, before we consider its intersection array?
Perhaps there are beautiful distance-regular graphs that we do not know of yet. How can
we find these? One way is to first try to classify possible intersection arrays.
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In order to find putative intersection arrays of distance-regular graphs, we should in
principle find as many conditions on such arrays as possible. In this introduction, we
will however only mention some elementary standard conditions. There are many other
— more technical — conditions known (some of which we will see in later sections) that
eliminate certain intersection arrays, but these are beyond the scope of this introduction.
We begin with some combinatorial conditions, and then bring linear algebra into the game
to obtain algebraic conditions.

2.4 Some combinatorial conditions for the intersection array

The first trivial conditions that should hold for the intersection array {bg,b1,...,bp_1;
¢1,Ca, ..., cp} of a distance-regular graph is that the intersection numbers listed are posi-
tive integers. Moreover, the intersection number a; = by — b; — ¢; is a nonnegative integer.
But we also have some divisibility conditions as follows.

Proposition 2.3. With notation as above, the following conditions hold:
(i) kiy1 = % is an integer for i =10,1,...,D —1,
(i) vk; is even fori=1,2,...,D,

(iii) k;a; is even fori=1,2,...,D,

(iv) vkay is divisible by 6.

Proof. (i) Earlier on, in Section 2.1, we obtained the recurrence ki1 = b;k;/c; 1 for all
1=20,1,...,D — 1, and this implies that

bobs -+ by
i =
Ci1C2 " - Cip1

for:=0,1,..., D — 1. These numbers are clearly positive integers.

(ii) By doubly counting all pairs (z,e), where z is an end vertex of edge e in I, it
follows that the number of edges in I'; equals vk;/2, which should be an integer.

(iii) Similarly, there are k;a;/2 edges of I' within I';(z) for a fixed vertex z, and this
should be an integer.

(iv) Finally, the number of triangles in I" equals vka; /6. O

There is also a nice order in the intersection numbers, and consequently the k; are uni-
modal, as we shall see next.

Proposition 2.4. With notation as above, the following conditions hold:
i) 1= <<+ <ep,
(i) k=0by=by = - =bp_1,

(iii) Ifi+j < D, then ¢; < b,
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(iv) There is an i such that kg < k1 < ... < k; and ki1 = kiyo > ... 2 kp.

Proof. (i) and (ii) Let ¢ = 1,2,..., D. Consider two vertices = and y at distance ¢, and
a vertex z that is adjacent to x and at distance ¢ — 1 from y. Now the ¢;_; neighbors of
y that are at distance ¢ — 2 from z are all at distance ¢ — 1 from x. Therefore ¢; > ¢;_1.
Similarly, the b; neighbors of y that are at distance ¢ + 1 from x are at distance ¢ from z,
hence b;,_1 > b;.

(iii) Consider two vertices x and y at distance i+ j, and a vertex z at distance ¢ from x
and j from y. Then the ¢; neighbors of z that are at distance 7 — 1 from x are at distance
Jj +1 from y. Hence ¢; < b;.

(iv) It follows from (i), (ii), and Proposition 2.3 that k? > k;_1k;y1 fori=1,2,..., D—
1. This implies that the k; are unimodal: there is an i such that kg < k1 < ... < k; and
kiv1 2 ko > ... 2 kp. O

Even though these and other combinatorial conditions are important, they are insufficient
to obtain most of the advanced results. We need linear algebra.

2.5 The spectrum of eigenvalues and multiplicities

The adjacency matrix A of a (simple, undirected) graph I" is the v X v symmetric matrix
with entries 0 and 1 whose rows and columns are indexed by the vertices of I', and where
Ay = 1if and only if 2 ~ y. Because A is real and symmetric, its eigenvalues are real
numbers. The spectrum of eigenvalues of a graph (that is, of its adjacency matrix) contains
quite some (but in general not all) information about the graph. Spectra of graphs is a
very fruitful subject on its own, and it has many more applications to distance-regular
graphs than the ones that we shall see here. Good references for spectra of graphs are
the classic monograph by Cvetkovi¢, Doob, and Sachs [160] and the more recent one by
Brouwer and Haemers [85].

The adjacency algebra of T', denoted by A = A(T"), is the matrix subalgebra of M, (R)
of polynomials in A, that is, A = R[A]. This algebra plays an important role for distance-
regular graphs, as we shall see later on. We note that the powers of A count walks in
the graph, that is, (A%),, equals the number of walks of length ¢ in the graph from z
to y. Using this, we can relate the number of distinct eigenvalues to the diameter of
the graph. To do this, assume that I' is an arbitrary graph with distinct eigenvalues
0o, 01, ...,04. Because the minimal polynomial of A now has degree d + 1, it is clear that
{I,A, A% ... A%} is a basis of A, and hence that dim A = d + 1.

Proposition 2.5. Let I be a connected graph with diameter D and distinct eigenvalues
60,91, - - ,Qd. Then D < d.

Proof. Consider two vertices z and y at distance i < D. Then (A%),, = 0if £ < i
and (A%);, # 0. This implies that the set of matrices {I = A% A,..., AP} is linearly

independent in A, and hence that D + 1 < dimA =d + 1. n
For7=0,1,...,d, we define the matrix F; = H?ZOJ# ’;%'95;. The matrix Fj; is the orthog-

onal projection onto the eigenspace V; of A corresponding to 6;. The set {Ey, E1, ..., E4}
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forms another basis of A. Indeed, let v be an eigenvector of A with respect to 6;. Then
E;v = 6;;v. This implies that {Ey, Ey, ..., E;} forms a linearly independent set of ma-
trices in A, and hence that it is a basis of A. We shall see more of this basis in the next
section.

The adjacency matrix A; of I'; is called the distance-i matriz of I', for : =0,1,...,D.
Let us now consider the case that I' is distance-regular. In this case, we shall see that
also {I = Ag, A = Ay, Ay,..., Ap} is a basis of A, and hence that D = d. Translating
the combinatorial definition of distance-regularity into matrix language, we obtain the
equation

AA; = b1 Aoy + @A+ e A (1)

for i = 0,1,...,D. Note that for © = 0 and ¢ = D, the indices in this equation attain
undefined values. Here — and in similar equations that will follow later — we will have the
sensible convention that the corresponding summands are zero (so b_1A_1 = cpy1Apy1 =

0). From this recurrence (note that the coefficients ¢; 1 are nonzero fori =0,1,..., D—1),
it follows that there exist polynomials v; of degree i such that

A= Ui(A) (2)
for i = 0,1,...,D. These polynomials also satisfy a three-term recurrence relation like

(1), and hence they form a system of orthogonal polynomials. Because Zi’io A, = J
(the all-ones matrix) and AJ = kJ (because I' is regular with valency k), it follows that
(ZZD:O v;(A))(A — kI) = 0. This shows that dimA < D + 1. We may conclude the

following.

Proposition 2.6. Let I' be a distance-reqular graph with diameter D. Then dim A =
D+ 1. In particular, I' has exactly D + 1 distinct eigenvalues.

Remarkably, these D + 1 distinct eigenvalues of the distance-regular graph I' can be
computed from the intersection numbers only. To see this, consider the tridiagonal (D +
1) x (D + 1) matrix intersection matriz

0 by
CcC1 ap b1 0
L= " 8
0 . . bD—l

This matrix is diagonalizable because it is similar to a symmetric matrix. In fact, if A is
the diagonal matrix with diagonal entries A;; = k; for ¢ = 0,1,..., D, then by using that
kiv1/ki = b;i/cit1, it can be verified that AY2LA71? is indeed a symmetric tridiagonal
matrix.

Let 6 be an eigenvalue of L, and let u = (ug,u1,...,up)’ be a corresponding (right)
eigenvector, that is, Lu = fu, with ug = 1. Then u; = 0/k and

Cilbi—1 + a;u; + b,‘ui_H = Qul (4)
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for i = 1,2,...,D. The sequence (u;)2, is called the standard (or cosine) sequence of T
with respect to 6.

A consequence of the above symmetrization of L is that the row vector v =u'A is a
left eigenvector of L. Thus, the components of v also satisfy a recurrence involving the
intersection numbers. It can be verified that these components can be obtained from the
polynomials v; in (2), that is, v = (vg(6),v1(0),...,vp(#)). This gives an alternative way
to obtain the standard sequence.

Proposition 2.7. Let I' be a distance-regular graph with diameter D. Then the D + 1
distinct eigenvalues of I are precisely the eigenvalues of L.

Proof. Let u be as above, i.e., an eigenvector of L with respect to eigenvalue 6, and fix
a vertex x of I'. Define the vector w by w, = uge, for y € V. It is not hard (but
a bit technical) to check that Aw = fw. Indeed, if a; denotes column x of A;, then
W = Zz‘io w;a;. By (1) and the above equations for the standard sequence, we obtain
that

wi(bi—1ai—1 + a;a; + ¢i118i41)

.
g
!
=

=0

|
,Mb

Il
=)

D
(ciui_l “+ a;u; + biuiﬂ)ai = E Hul-ai = Ow.
1=0

7

This shows that all eigenvalues of L are eigenvalues of I'.
What remains is to show that L has D + 1 distinct eigenvalues. We already observed
that L is diagonalizable, or in other words, that it has D + 1 eigenvalues. Because the

intersection numbers ¢, ¢o, ..., cp are all nonzero, it follows that the rank of L — 01 is at
least D for all # € R. This shows that all eigenvalues of L are distinct, which finishes the
proof. O]

Finally, also the multiplicities of the eigenvalues of I" follow from the intersection numbers,
via the standard sequence. This is known as Biggs’ formula.

Theorem 2.8. (Biggs’ formula) Let ' be a distance-reqular graph with diameter D and
v vertices. Let 0 be an eigenvalue of T and (u;)2, be the standard sequence with respect
to 0. Then the multiplicity m(0) of 0 as an eigenvalue of T' satisfies

v
D 2"
Zi:o kiu;

Proof. Let E be the matrix corresponding to the orthogonal projection onto the eigenspace
of I with respect to 6 (i.e., it is one of the matrices E; defined before). The idempotent
matrix £ only has eigenvalues 0 and 1, and the multiplicity m(6) of 6 as an eigenvalue
of T' is the same as the multiplicity of eigenvalue 1 of E, which implies that m(f) =
tr E. Because E € A and {Ag, A1,...,Ap} is a basis of A, there are real numbers
vi,i = 0,1,...,D such that £ = ZiD:O v;A;. Note that AE = 0FE, which implies that

m(0) =
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ciVi—1 + a;v; + by, = Oy for i = 0,1,...,D. From this it follows that v; = vy,
for i = 0,1,...,D. By considering the diagonal of the equation E? = E, we find that
ZZD:O kiv? = vy, which implies that Zio kiu? = 1/vy. Now it follows that

v
m(0) =tr £ = Brw =00 = —5—.
xezv > s kiud

Thus, it is relatively easy to compute the spectrum of a distance-regular graph from its
intersection array. Remarkably, the fact that multiplicities of eigenvalues are positive
integers is a condition that many intersection arrays (that satisfy all earlier conditions)
do not satisfy. Note also that algebraically conjugate eigenvalues must have the same
multiplicities. The latter plays an important role in the proof of the Bannai-Ito conjecture,
see Section 8.1.

Related to the vectors w in the proof of Proposition 2.7 and the standard sequence is
the representation associated to an eigenvalue 6. Let U be a matrix having as columns
an orthonormal basis of the eigenspace of eigenvalue . Then UU" is the corresponding
idempotent matrix F. For every vertex x € V, we denote by Z the x-th row of U. The
map x — & is called a representation (associated to 6) of T'. Given two vertices z,y € V,
we have that (2,9) = E,y = VoUg(z,), which is why the standard sequence is also called
the cosine sequence. The vectors & (x € V) all have the same length, /7%, hence we call
the representation spherical.

O

2.6 Association schemes

In the previous section we described three different bases for the adjacency algebra A of a
distance-regular graph: {I, A, A% ... AP} {Eo, E1,...,Ep}, and {Ag, Ay, ..., Ap}. The
last one was obtained by explicit use of the property of distance-regularity. A consequence
of this is that there are real numbers p?j (h,i,7=0,1,...,D) such that

D
h
Az‘Aj = ZpijAh~ (5>
h=0
for all 4,5 = 0,1,...,D. This expression has a combinatorial interpretation: for each

two vertices x and y at distance h, there are pzhj vertices z that are at distance 7 to x
and distance j to y. So the intersection numbers plhj are nonnegative integers. Note
that pi, | = ¢, pl; = a;, and pi,,, = b;. Also the other intersection numbers pf; can
be expressed in terms of the intersection array. This gives further conditions on the
intersection numbers.

What we have here is a special case of an association scheme: an edge decomposition of

the complete graph into spanning subgraphs I'; (i = 1,2, ..., D) whose adjacency matrices
A; (1 =1,2,...,D), together with Ag = I satisfy (5) for all 4,5 =0,1,..., D. Let us look
a bit closer at such an association scheme. Clearly also here {Ag, Ay, ..., Ap} is a basis of

an algebra: the Bose-Mesner algebra. Because the matrices in this algebra are symmetric,
they also commute by (5) (and hence p?j = p?z) This implies that they share a basis of
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eigenvectors and there is also a basis of primitive idempotents E; (i = 0,1,..., D) for A
(so M E; is a multiple of E; for all M € A). These E; are the projections onto the common
eigenspaces, and are the same as before in case of a distance-regular graph. They satisfy
the equations E;F; = 0;;F; for all ¢,7 =0,1,...,D and Zfio E,=1.

The coefficients to change from one of the two bases to the other are collected in the
so-called eigenmatiz P and dual eigenmatriz (). That is,

D D
1
Ai = E P]»LEJ and Ez = ; E jSAj
=0 7=0

fori=0,1,...,D. Note that so far we did not order the eigenvalues (or the E;s), so there
is some ambiguity in the definition of P and ). This is not really a problem (as long as we
keep some ordering fixed), except that it has become habit that the first row of P contains
the valencies of the graphs I';. For this reason, we order the eigenspace of constant vectors
first, so that Fy = %J , the trivial primitive idempotent of A. This is also justified by
the fact that dually we could reshuffle the A; (and I';), except the trivial Ay, and not
really get a ‘different’” association scheme (for a distance-regular graph there is of course
an order given!). Note also that column i of P gives the eigenvalues of the corresponding
graph I';. The normalization factor % for () is there to make sure that the entries of () can
be seen as ‘dual eigenvalues’; for example the multiplicities m; = tr E; of the eigenvalues
are in the first row of ). Just like in the case of distance-regular graphs, the eigenvalues
and multiplicities, and more generally, all entries of P and ) can be derived from the
intersection numbers pZ In the case of distance-regular graphs, we see now in the proof
of Biggs’ formula (Theorem 2.8) that a column of @) is a multiple of the corresponding
standard sequence.

Observe that the Bose-Mesner (or adjacency) algebra A is not just closed under ordi-
nary matrix multiplication but also under entrywise (Hadamard or Schur) matrix multi-
plication, denoted by o. The matrices Ay, Ay, ..., Ap are the primitive idempotents of A
with respect to o, i.e., A;0 A; = 6;;Ai, Zz‘io A; = J. This implies that we may write

D
1
Y=o

for some real numbers qlhj (h,i,j =0,1,...,D), known as the Krein parameters (or dual

intersection numbers) of I'. Because %qf; is an eigenvalue of F; o IJ;, which is a principal
submatrix of the positive semidefinite matrix F; ® E;, we get the following so-called Krein
conditions.

Proposition 2.9. The Krein parameters qlhj of an association scheme are nonnegative
numbers.

The Krein parameters can be calculated using the dual eigenmatrix as
;2L
h
P k‘ . -
d;; - ZE:o lthleQl]
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This follows from working out the sum of entries of the matrix F; o E; o Ej, o J in different
ways. The Krein conditions thus put further constraints on the intersection array of a
distance-regular graph. Moreover, if a Krein parameter equals zero, then this has certain
consequences. This is perhaps best illustrated in the case of the @-polynomial distance-
regular graphs of Section 5 (see also Section 2.7), where many Krein parameters vanish.
See also Section 6.3 for consequences of vanishing Krein parameters.

From the definition of P and @), it is clear that PQ = QP = vI. A different relation
between P and () can be obtained by working out the trace of A;E; (which equals the
sum of entries of A; o E;) in different ways. This gives the relation m;P; = k;Q;; for
all i,5 = 0,1,...,D. Together with PQ) = vI, this gives certain orthogonality relations
between the columns (and rows) of P. For a distance-regular graph I, this relation also
follows from the fact that the polynomials v; (i = 0,1,..., D) form a system of orthogonal
polynomials. Here Pj; = v;(Pj1), which follows from (2), where we remind the reader that
P;1 (j=0,1,...,D) are the distinct eigenvalues of T".

A final condition that we would like to mention is the absolute bound.

Proposition 2.10. The multiplicities m; of an association scheme satisfy the following

bound: L
m;m; if i1#£7
> < { ’ T
i(m; +1)/2 = 7.
o mi(m; +1)/2 if i=j

Proof. The left hand side equals the rank of E; o E;, because of (6) and the fact that the
idempotents are mutually orthogonal (and can be diagonalized simultaneously) so that
their ranks are additive. Let uj, uy, ..., u,, be a basis of E;R”, and let vy, vy, ..., vy, be
a basis of E;R”. Then the column space of E; o E; is contained in the subspace spanned
by the vectors usovy (s =1,2,...,m;, t =1,2,...,m;), thus proving the inequality for
1 # j. For i = j, note that the latter subspace is spanned by the vectors ug o u; with
s < t. O

For more information on association schemes, we refer to the handbook chapter by
Brouwer and Haemers [83] and the recent survey by Martin and Tanaka [470].

2.7 The Q-polynomial property

We already noted that the ordering of graphs and idempotents in an association scheme
is not really important. However, in an association scheme that comes from a distance-
regular graph, the graphs I'; are ordered naturally according to distance in the graph. This
ordering is called a P-polynomial ordering. This term comes from the fact that there are
polynomials v; of degree i such that A; = v;(A;), as we have seen. The association
scheme is therefore also called P-polynomial. An equivalent property of this ordering
is that the intersection numbers are such that p?j = 0 whenever 0 < h < |i — j| or
147 < h, and pﬁjj > 0 (for i + 7 < D). Because of this property, we call a P-polynomial
association scheme also metric. An association scheme can have at most two P-polynomial
orderings (that is, there can be at most two distance-regular graphs in it), except for the
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association schemes coming from the polygons. For more on association schemes with two
P-polynomial orderings, see Section 13.2.

It turns out that many important families of distance-regular graphs, that is, their
corresponding association schemes, satisfy the following dual property. We say that an
association scheme (and in particular, a distance-regular graph) is Q-polynomial if there is
an ordering Fy, E1, ..., Ep and there are polynomials ¢; of degree i such that E; = ¢;(E),
where the matrix multiplication is entrywise (so that (E;)., = ¢i((E1)sy) for all vertices
x and y). We also say that the corresponding ordering and the idempotent F; are Q-
polynomial. Also here there is an equivalent property in terms of — in this case — the
Krein parameters: an association scheme is called cometric (with ordering Ey, E1, ..., Ep)
if ¢ = 0 whenever 0 < h < |i — j| or i 4+ j < h, and qf;rj >0 (fori+j < D) Itis
well known though that to check the cometric property, it suffices to check the above
conditions for i = 1 (just like in the metric case). Dual to the intersection numbers of
a distance-regular graph, we here define ¢} = ¢} ;_;,a}f = ¢i,, b} = qi,,,, and the Krein
array {b5, 05, ..., b5 _1; ¢, 5, ..., Ch}

It was conjectured by Bannai and Ito [38, p. 312] that for large enough D, a primitive
D-class association scheme is P-polynomial if and only if it is @)-polynomial.

2.8 Delsarte cliques and geometric graphs

Delsarte [189, p. 31] obtained a linear programming bound for cliques in strongly regular
graphs. It was observed by Godsil [264, p. 276] that the same Delsarte bound holds for
distance-regular graphs, as follows.

Proposition 2.11. Let I' be a distance-reqular graph with valency k and smallest eigen-
value Oni,. Let C' be a clique in I' with ¢ vertices. Then ¢ <1 —

9min

Proof. Let x be the characteristic vector of C', and let E be the primitive idempotent
corresponding to fmin. The result follows from working out y ' Ey > 0. O

A clique C' in a distance-regular graph I' that attains this Delsarte bound is called a
Delsarte clique. In Section 4.4.2 we will characterize such cliques as certain completely
regular codes.

A distance-regular graph I' is called geometric (with respect to C) if it contains a
collection C of Delsarte cliques such that each edge is contained in a unique C' € C.
The concept of a geometric distance-regular graph was introduced by Godsil [265] and
generalizes the concept of a geometric strongly regular graph as introduced by Bose [66]
(and indeed the concepts are the same for diameter two).

Many classical examples of distance-regular graphs (see Section 3.1), such as John-
son graphs, Grassmann graphs, and Hamming graphs are geometric. Bipartite distance-
regular graphs are trivially geometric because in this case every edge is a Delsarte clique.

Even though the class of non-bipartite geometric distance-regular graphs is clearly
much more restricted than the class of arbitrary distance-regular graphs, Koolen and
Bang [410] showed that for fixed smallest eigenvalue there are only finitely many non-
geometric distance-regular graphs with both valency and diameter at least three (see
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Theorem 9.10). They in fact conjectured that for fixed smallest eigenvalue there are
finitely many distance-regular graphs with diameter at least three that are not a cycle,
Hamming graph, Johnson graph, Grassmann graph, or bilinear forms graph. This would
generalize a result by Neumaier [509] on strongly regular graphs. On the other hand,
because geometric distance-regular graphs have more structure than arbitrary distance-
regular graphs, it may be possible to classify them, or at least the ()-polynomial ones with
large diameter.

2.9 Imprimitivity

A connected graph I' with diameter D is called imprimitive if not all graphs I'; (i =
1,2,...,D) are connected. Bipartite graphs are examples of imprimitive graphs (I'y is
disconnected). Among the distance-regular graphs, there are also the antipodal graphs
that are imprimitive. These are the graphs for which I'p is a disjoint union of com-
plete graphs. In fact, Smith’s theorem states that these are all possibilities (see [78,
Thm. 4.2.1]), except for the polygons (indeed, for example Cy has D = 4 and only T's is
disconnected in this case).

Theorem 2.12. (Smith’s theorem) An imprimitive distance-regular graph with valency
k > 2 is bipartite and/or antipodal.

There is much more to say than this seemingly clear and simple statement. For this we
refer to Alfuraidan and Hall [4, Thm. 2.9], who revisited Smith’s theorem by working out
more precisely all the cases that can occur.

If I is a bipartite distance-regular graph, then I's is a graph with two components.
The induced graphs on these components are called the halved graphs of T'.

Proposition 2.13. The halved graphs of a bipartite distance-reqular graph are distance-
reqular.

We already noted before that bipartiteness of a distance-regular graph can be seen from
its intersection numbers. Clearly this is the case whenever a; =0 for all e =1,2,..., D.

A distance-regular graph is antipodal whenever b; = cp_; foralli =0,1,..., D, except
possibly i = | D/2|. If T' is an antipodal distance-regular graph, then by definition, I'p is
a disjoint union of cliques. These cliques are called the fibres of I'. We can also construct a
smaller distance-regular graph from an antipodal distance-regular graph: its folded graph
T. Its vertices are the fibres of I', and two such fibres are adjacent whenever there is an
edge (in ') between them. We also say the I' is an antipodal r-cover of T', where 7 is the
size of the cliques of I'p.

Proposition 2.14. The folded graph of an antipodal distance-reqular graph is distance-
reqular.

Typically, but certainly not always (see [4]), the halved graphs or folded graphs of an
imprimitive distance-regular graph are primitive (that is, not imprimitive). This suggests
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that the theory of distance-regular graphs can be boiled down to that of primitive distance-
regular graphs. This is not the case however. There is no unique recipe to construct
imprimitive distance-regular graphs from the primitive ones, for example. The halving
and folding constructions mentioned above cannot be reversed in a generic way, at least
not in general. This is best illustrated by the imprimitive distance-regular graphs with
diameter three. All of these have as halved or folded graph a complete graph. Sometimes,
however, there is an easy way to construct an imprimitive distance-regular graph from a
primitive one as follows. The bipartite double of a graph I' with vertex set V' is the graph
with vertex set V' x {0, 1}, where two vertices (x,7) and (y, j) are adjacent whenever x is
adjacent to y in I and 7 # j. The extended bipartite double of T" is a variation on this: it
has the same vertex set, and besides the edges of the bipartite double, it has additional
edges between (z,0) and (z,1), z € V.

If T is a distance-regular generalized odd graph (also called almost bipartite graph) with
diameter D, that is, if it has intersection numbers a; = 0 for i < D and ap > 0 (like the
Odd graphs), then the bipartite double of T" is distance-regular with diameter 2D+1. This
situation is interesting for several reasons, one of them being that this bipartite double
is not just bipartite, but it is also an antipodal 2-cover of I'. The Doubled Odd graphs
(for example) are thus showing that bipartiteness and antipodality can occur in the same
graph. Note by the way that the folded graph of this Doubled Odd graph is again the
Odd graph, but the halved graphs are not (these are isomorphic to I'y, a Johnson graph).

More generally, one can see from the intersection array of a distance-regular graph
whether the bipartite double or extended bipartite double is distance-regular (see [78,

§1.11)).

2.10 Distance-transitive graphs

Distance-regular graphs were ‘invented’ by Biggs (for an early account, see his monograph
[48]) while he was studying so-called distance-transitive graphs. An automorphism of a
graph is a bijection from the vertex set to itself that respects adjacencies, i.e., that maps
edges to edges. A graph is called distance-transitive if it has a group of automorphisms
that acts transitively on each of the sets of pairs of vertices at distance ¢, fori =0,1,..., D.
In other words, for each 7 and all pairs of vertices (z1,y;) and (xq, yo) with d(zq,y1) =i =
d(xs,ys), there is an automorphism that maps x; to xs and y; to yo. This property is easily
seen to imply the property of distance-regularity. Many — but not all — classical families
of distance-regular graphs, for example the Hamming graphs, are also distance-transitive.
The earlier mentioned Shrikhande graph is the smallest distance-regular graph that is not
distance-transitive. In fact, it is part of an infinite family of graphs that are distance-
regular but not distance-transitive: the so-called Doob graphs. It also indicates that
distance-transitivity of a distance-regular graph is not a property that can be recognized
from the intersection array.

A distance-transitive graph is clearly also vertex-transitive, that is, it has a group of
automorphisms such that for all z; and x5, there is an automorphism that maps z; to x».
Although there is no apparent relation between vertex-transitivity and distance-regularity,
it was long believed that distance-regular graphs with large enough diameter would have
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to be vertex-transitive. This belief was proven wrong by the construction of the twisted
Grassmann graphs; see Section 3.2.1.

3 Examples

3.1 The classical families with unbounded diameter

The Johnson graph J(n, D) has as vertices the subsets of size D of a set of size n. Two
subsets are adjacent if and only if they differ in precisely one element; cf. [78, §9.1]. Note
that J(n, D) is isomorphic to J(n,n— D); in the following we therefore restrict to n > 2D.
The Johnson graph J(n, D) is characterized as distance-regular graph by its intersection
array unless n = 8 and D = 2, in which case there are also three so-called Chang graphs.

The Grassmann graph J,(n, D) has as vertices the D-dimensional subspaces of a vector
space of dimension n over GF'(q). Two subspaces are adjacent if and only if they intersect
in a (D — 1)-dimensional subspace; cf. [78, §9.3]. Note that J,(n, D) is isomorphic to
Jy(n,n — D); again we therefore restrict to n > 2D. Metsch [478] showed that the
Grassmann graphs are determined by the intersection array if D # 2,7, or "T’l (for
all ¢) and (D, q) # (”772,2),("7’2,3), or (”T’?’,Z); see also Section 9.1. For D = 2, the
Grassmann graphs are in general not determined by the intersection array, as the line
graph of a 2-((¢" —1)/(¢ — 1),q+ 1,1) design has the same array. Van Dam and Koolen
[176] constructed the twisted Grassmann graphs; these are distance-regular graphs with
the same array as the Grassmann graphs for n = 2D + 1, D > 2, see Section 3.2.1.

The Hamming graph H(D,e) is defined on vertex set X? of words of length D from
an alphabet X of size e. Two words are adjacent if and only if they differ in precisely one
position; cf. [78, §9.2]. The Hamming graph H(D,e) is characterized by its intersection
array unless e = 4 and D > 1, in which case there are also so-called Doob graphs. A Doob
graph is a cartesian product of cliques of size 4 and Shrikhande graphs. The Hamming
graph H(D,?2) is also called a (hyper)cube or the D-cube. Its halved graph is called a
halved cube 1H(D,?2) and is characterized by its intersection array (see 78, §9.2.D]).

The bilinear forms graph Bil(D X e, q) has as vertices all D x e matrices with entries
from the field GF(q), where two matrices are adjacent if and only if their difference has
rank 1; cf. [78, §9.5.A] or [191]. We shall assume D < e in the following, so that D is the
diameter. The bilinear forms graph can be considered as the g-analogue of the Hamming
graph (view the vertices of the latter as the maps from a set of size D to a set of size e),
hence also the notation H,(D,e) is used in the literature. The bilinear forms graph has an
alternative description on the D-dimensional subspaces of a (D + e)-dimensional vector
space that intersect a fixed e-dimensional subspace trivially, where two such subspaces
are adjacent if they intersect in a (D — 1)-dimensional subspace; this shows that it is
isomorphic to a subgraph of the Grassmann graph J,(D + e, D). Rifa and Zinoviev [550]
showed that the bilinear forms graph is also a quotient (as defined in Section 4.4) of
the Hamming graph. Metsch [481] showed that the bilinear forms graph Bil(D X e, q) is
characterized by its intersection array if g =2 and e > D+4org >3 and e > D + 3;
see also Section 9.1. Gavrilyuk and Koolen [242] extended this characterization with the
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case ¢ =2 and e = D.

The alternating forms graph Alt(n, q) has as vertices all n X n skew-symmetric matrices
with zero diagonal and entries from GF(q). Two matrices are adjacent if and only if their
difference has rank 2. Note that a skew-symmetric matrix has even rank; cf. [78, §9.5.B]
or [192].

The Hermitian forms graph Her(D,¢*) has as vertices the D x D Hermitian matrices
with entries in GF(¢?), i.e., matrices H such that H;; = (H;;)? for all ¢ and j. Two
matrices are adjacent if and only if their difference has rank 1; cf. [78, §9.5.C]. The
Hermitian forms graphs are determined by their intersection arrays for D > 3, see Section
5.2.

The quadratic forms graph Qua(n, q) has as vertices the quadratic forms in n variables
over GF(q). In the quadratic forms graph two forms are adjacent if and only if the rank
of their difference equals 1 or 2; cf. [78, §9.6] or [208]. Under the group of invertible linear
transformations of variables, the quadratic forms fall into 2n 4+ 1 (¢ odd) or [#5H] (¢
even) orbits: each form of rank k # 0 is of one of two types. For even rank there is the
well-known distinction between hyperbolic and elliptic forms; in the case of odd rank, a
(parabolic) form is equivalent to x1xg + - - + x}_9Tk_1 + cxi, for some ¢, and the type
depends on whether ¢ is a square or not (cf. [514, Ch. IV]). If ¢ is even then each field
element is a square, hence there is no distinction for odd rank.

The dual polar graphs' have as vertices the maximal isotropic (D-dimensional) sub-
spaces of one of the below vector spaces V' endowed with a non-degenerate quadratic form.
Two subspaces are adjacent if and only if they intersect in a (D — 1)-dimensional space;
cf. [78, §9.4]. The following dual polar graphs can be distinguished:

Cp(q) for V = GF(q)*" with a symplectic form; e = 1;
Bp(q) for V = GF(q)*’*! with a quadratic form; e = 1;
Dp(q) for V.= GF(q)*’ with a quadratic form of Witt index D; e = 0;
’Dpi1(q) for V.= GF(q)*P*? with a quadratic form of Witt index D; e = 2;
2Ayp(/q) for V = GF(q)*"*" with a Hermitian form; e =
?Asp-1(y/q) for V = GF(q)*” with a Hermitian form; e =

9

SIS NIV

Here the mentioned parameter e is related to the classical parameter 8 of the next section
(see Table 1).

The dual polar graphs 2A2D,1(\/§) are determined by their intersection arrays for
D > 4, see Section 5.2. The dual polar graphs Bp(q) and Cp(gq) have the same intersection
array but are non-isomorphic unless ¢ is even. The dual polar graph Dp(q) is the extended
bipartite double of Bp_;(¢), and its halved graph, called a half dual polar graph Dp p(q),
is the distance 1-or-2 graph of Bp_;(gq). The extended bipartite double of Cp_;(q) is also
distance-regular and is called a Hemmeter graph [86]; its halved graph is the distance
1-or-2 graph of Cp_1(q) and is called an Ustimenko graph [362].

!These graphs already appear as distance-transitive graphs in disguise in a paper by Hua [338] from
1945.
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3.1.1 Classical parameters

The ‘classical’ distance-regular graphs from the previous section have intersection numbers
that can be expressed in terms of four parameters, that is, diameter D and numbers b, «,
B, in the following way:

(Dol oo,
om [l T -2

where [J] = 1+b+ 0%+ -+ V! is a Gaussian binomial coefficient. Therefore, a
distance-regular graph is said to have classical parameters (D, b, «, ) if its intersection
numbers can be expressed as in (7). We note that the parameter b must be an integer
not equal to 0 or —1. The classical examples of distance-regular graphs from the previ-
ous section have classical parameters as in Table 1 (note that one family of dual polar
graphs has intersection numbers that can be expressed in two ways). More basic informa-
tion on distance-regular graphs with classical parameters can be found in [78, Ch. 6, 9].
Important to mention is that distance-regular graphs with classical parameters must be
@-polynomial. In Section 5, we will therefore include also some results on distance-regular

graphs with classical parameters.

3.1.2 Other families with unbounded diameter

One of the ultimate problems in this area is to classify the families of distance-regular
graphs with unbounded diameter. Besides the above known families of distance-regular
graphs with classical parameters and the polygons (see Section 2.2.2), also the below six
families are known. All of them are related to the classical ones, but they do not have
classical parameters themselves.

The folded cube is obtained by folding the hypercube H(n,2). Unless n = 6, it is
determined by its intersection array. For n = 6, every graph with the relevant intersection
array is the incidence graph of a symmetric 2-(16,6,2) design. This gives two other
distance-regular graphs (see [78, §9.2.D]).

For n even, the folded cube is still bipartite (and the halved cube is still antipodal).
Its halved graph is the folded halved cube and it is determined by its intersection array
for n > 12 (that is, when its diameter is at least 3; see Section 5.3).

The Johnson graph J(2n,n) is antipodal, and its folding is called a folded Johnson
graph. This folded graph is determined by its intersection array for n > 6 (that is, when
its diameter is at least 3; see Section 5.3).

The folded cube, folded halved cube, and folded Johnson graph are so-called partition
graphs and these are known to be @-polynomial (see [78, §6.3]).

In Section 2.2.3, we already described the Odd graphs, which are determined by their
intersection array by Proposition 2.2. The Odd graph is the distance-D graph of the
Johnson graph J(2D + 1, D), and it is @-polynomial.
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D 5
Johnson graph J(n, D),n > 2D D 1 1 n—D
Grassmann graph J,(n, D), n > 2D; D q q q"—;_+11—1 —1
twisted Grassmann graph (n = 2D + 1)
Hamming graph H(D,e); D 1 0 e—1
Doob graph (e = 4)
Halved Cube 5 H(n,2) [2] 2 2[2]1 -1
Bilinear forms graph Bil(D x e, q), D q qg—1 ¢¢c —1
D <e
Alternating forms graph Alt(n, q), E q° ¢ —1 g —1
m=2[5] -1
Hermitian forms graph Her (D, ¢°) D —q | —q—1 | —(—q)” -1
Quadratic forms graph Qua(n, q), EXRNE ¢ —1 g —1
m=2[3]+1
Dual polar graph; D q 0 q°
Hemmeter graph (e = 0);
2 Asp1(,/7) also: D | -va| il | it
Half dual polar graph D,, ,,(q), 5] q? @ +q qw;tll_l -1
m=2[5] -1
Ustimenko graph

Table 1: Classical parameters of families of distance-regular graphs with unbounded di-
ameter
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Also the bipartite double of the Odd graph, the Doubled Odd graph, is determined by
its intersection array (see [78, §9.1.D]), but it is not )-polynomial.

The final known family of distance-regular graphs with unbounded diameter is the
family of Doubled Grassmann graphs. This graph is the bipartite double of the distance-
D graph of the Grassmann graph J,(2D + 1, D). Like the Doubled Odd graph, it is

determined by its intersection array (see Section 9.2), and it is not Q-polynomial.

3.2 New constructions

In this section, we mention some relatively new constructions of distance-regular graphs.

3.2.1 The twisted Grassmann graphs

Van Dam and Koolen [176] constructed the first family of non-vertex-transitive distance-
regular graph with unbounded diameter. These graphs have the same intersection array
as certain Grassmann graphs, and are constructed as follows. Let ¢ be a prime power, and
let D > 2 be an integer. Let W be a (2D + 1)-dimensional vector space over GF'(q), and
let H be a hyperplane in W. Vertices are the (D + 1)-dimensional subspaces of W that
are not contained in H, and the (D — 1)-dimensional subspaces of H. Two vertices of the
first kind are adjacent if they intersect in a D-dimensional subspace; a vertex of the first
kind is adjacent to a vertex of the second kind if the first contains the second; and two
vertices of the second kind are adjacent if they intersect in a (D —2)-dimensional subspace.
This graph is distance-regular with the same intersection array as the Grassmann graph
J,(2D + 1, D). In fact, this Grassmann graph and the twisted Grassmann graph are the
point graph and line graph, respectively, of a partial linear space whose points are the
D-dimensional subspaces of W, and where a (D + 1)-dimensional subspace of W that
is not contained in H is incident to the D-dimensional subspaces that it contains, and
a (D — 1)-dimensional subspace of H is incident to the D-dimensional subspaces of H
containing it.

The twisted Grassmann graph is not vertex-transitive (it has two orbits of vertices),
and hence it is not isomorphic to the Grassmann graph. Fujisaki, Koolen, and Tagami
[235] showed that the automorphism group of the twisted Grassmann graphs is PI"L(2D+
1,9)2p, the subgroup of PI'L(2D + 1,q) that fixes H. Bang, Fujisaki, and Koolen [25]
determined the spectra of the local graphs, and studied in some detail its Terwilliger
algebras (as defined in Section 4.3). Remarkably, these algebras with respect to vertices in
distinct orbits are not the same. The twisted Grassmann graphs are also counterexamples
to two conjectures by Terwilliger [616, p. 207-210], see [25]. Jungnickel and Tonchev [372]
constructed designs that are counterexamples for Hamada’s conjecture. Munemasa and
Tonchev [506] showed that the twisted Grassmann graphs are isomorphic to the block
graphs of these designs. Munemasa [504] showed that the twisted Grassmann graphs can
also be obtained from the Grassmann graphs by Godsil-McKay switching (cf. [85, §1.8.3]).
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3.2.2 Brouwer-Pasechnik and Kasami graphs

For prime powers ¢, Pasechnik [93] constructed a distance-regular graph with intersection
array {¢>,¢* — 1, —¢,¢* — ¢* + 1;1,¢,¢* — 1, ¢} as a subgraph of the dual polar graph
D4(q); in particular, the induced subgraph on the set of vertices at maximal distance from
an edge.

Brouwer [93] constructed related distance-regular graphs with intersection array {¢* —
L, —q,¢>—¢*+1;1,q,¢4> — 1} as follows. Consider the vector space GF(q)* equipped
with a cross product x. The vertex set is (GF(q)®)?, where a pair (u,v) is adjacent to a
distinct pair (u/, ') if and only if &' = u+ v x v'. The extended bipartite doubles of these
graphs are the above mentioned graphs constructed by Pasechnik. In fact, Brouwer’s
graph is a subgraph of the dual polar graph Bs(q); in particular, the induced subgraph
on the set of vertices at maximal distance from a vertex, see [93].

For even ¢, the mentioned graphs have the same intersection arrays as certain Kasami
graphs, cf. [78, Thm. 11.2.1 (11),(13)]. Pasini and Yoshiara [538] constructed distance-
regular graphs with the same intersection array as (bipartite, diameter 4) Kasami graphs
using dimensional dual hyperovals. Also the symmetric bilinear forms graphs for ¢ even
and n = 3 are distance-regular with the same intersection array as (diameter 3) Kasami
graphs, cf. [78, p. 285-286] and [74].

Van Dam and Fon-Der-Flaass used almost bent functions to generalize the Kasami
graphs, cf. [168], [169, Con. 3]: Let W be an n-dimensional vector space over GF(2),
and f be an almost bent function on W with f(0) = 0. Then the graph with vertex
set W2, where two distinct vertices (x,a) and (y,b) are adjacent if a +b = f(x + y) is
distance-regular with intersection array {2" —1,2" —2 2"~ +1;1,2,2"! — 1}. Recently,
a lot of new almost bent functions have been discovered in the guise of quadratic almost
perfect nonlinear functions in odd dimensional vector spaces over GF'(2), cf. [67, 97, 206].

3.2.3 De Caen, Mathon, and Moorhouse’s Preparata graphs and crooked
graphs

De Caen, Mathon, and Moorhouse [100] constructed distance-regular antipodal 2%~!-
covers of the complete graph Kye:, i.e., with intersection array {2% —1,2% —2,1;1,2, 2% —
1}. These graphs are defined as follows. Consider the vertex set V = GF(2*71)x GF(2) x
GF(2%71), and let two vertices (z,i,a) and (y, j,b) be adjacent if

a+b=2y+ay’+ (i+j)(2* +y°).

The construction is a bit more general, cf. [100], and is related to the Preparata codes.
The construction also allows for taking quotients. In this way, distance-regular graphs
with intersection arrays {22 —1,2% —2h 1:1,2" 22 —1} for h = 1,2, ..., 2t arise. Prior to
this construction, no distance-regular graphs with these intersection arrays were known
for h < t.

It is noteworthy that the Kasami graphs of the previous section are induced subgraphs
of the Preparata graphs. Because of this relation, it is not surprising that variations of
the above construction are possible. To obtain these, De Caen and Fon-Der-Flaass [99]
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used Latin squares, whereas Bending and Fon-Der-Flaass [43] and Van Dam and Fon-Der-
Flaass [169] used highly nonlinear functions such as crooked functions and almost bent
functions with accomplices: Let W be an n-dimensional vector space over GF(2), and f
be a crooked function on W. Then the (crooked) graph with vertex set W x GF(2) x W,
where two distinct vertices (z,4,a) and (y,7,b) are adjacent if a +b = f(x 4+ y) + (i +
J+1D)(f(x)+ f(y)) is distance-regular with the same intersection array as the Preparata
graphs. Godsil and Roy [275] determined that the above equation defines a distance-
regular graph precisely when f is crooked. The Gold functions, given by f(z) = z*** on
GF(2") with ged(e,n) = 1 and n = 2t — 1, give the Preparata graphs.

It follows from the observations in [169, p. 92] that bijective quadratic almost perfect
nonlinear functions (that map 0 to 0) are crooked. A new family of such functions was thus
constructed by Budaghyan, Carlet, and Leander [96, Prop. 1]. See also [47], but beware
that Bierbrauer used a less strict definition of crookedness (compared to the original one)
there.

The paper by De Caen and Fon-Der-Flaass [99] initiated the prolific construction by
Fon-Der-Flaass [232] of distance-regular n-covers of complete graphs K,z by using affine
planes of order n. Fon-Der-Flaass realized that in general, his method produces many
(potentially) non-isomorphic such graphs; at least 92 logn(1+o(1)) {4 he more precise. Com-
putational results by Degraer and Coolsaet [188] confirm this; they verified that at least 80
of the 94 distance-regular antipodal 4-covers of K4 can be constructed by Fon-Der-Flaass’
prolific construction. Also the (three) distance-regular antipodal 4-covers of Ko [188],
the (two) distance-regular antipodal 3-covers of K14 [187], and the (four) distance-regular
antipodal 3-covers of K7 [187] were classified by computer by Degraer and Coolsaet. We
also remark that Muzychuk [507] extended Fon-Der-Flaass’ ideas further.

Godsil and Hensel [269] (see also [100]) described a relation between regular antipodal
covers of complete graphs and generalized Hadamard matrices. By constructing skew
generalized Hadamard matrices, Klin and Pech [401] thus constructed new infinite families
of distance-regular antipodal covers of complete graphs. Their paper contains a good
overview of the state of the art concerning such covers, and has many interesting ideas
and connections. For more background on antipodal covers of complete graphs, we also
refer to Godsil and Hensel [269] and Godsil [266]. For the classification of distance-
transitive antipodal covers of complete graphs, we refer to the paper by Godsil, Liebler,
and Praeger [271].

3.2.4 Soicher graphs and Meixner graphs

Soicher [564] obtained three distance-regular graphs of diameter four, each being a triple
cover of a strongly regular graph. The first has intersection array {416,315,64,1;
1,32,315,416}, and is a triple cover of the Suzuki graph. The second has intersec-
tion array {56,45,16,1;1,8,45,56}, and is a triple cover of the second subconstituent
of the McLaughlin graph. In an unpublished manuscript, Brouwer [71] (see also [74])
showed that this cover is the only cover of the second subconstituent of the McLaugh-
lin graph, hence it is the only graph with the given intersection array. The third cover
constructed by Soicher is the second subconstituent of the second one, it has intersection
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array {32,27,8,1;1,4,27,32}, and is a triple cover of the Goethals-Seidel graph (the sec-
ond subconstituent of the second subconstituent of the McLaughlin graph). Soicher [566]
also showed that this graph is the only graph with the given intersection array.

Meixner [476] implicitly constructed two distance-transitive antipodal covers with in-
tersection arrays {176, 135,36, 1; 1,12, 135,176} and {176, 135, 24, 1; 1,24, 135,176}, as the
collinearity graphs of the geometries in [476, Prop. 4.3], see also [74]. Jurisi¢ and Koolen
[380] showed that the antipodal Meixner 4-cover is uniquely determined by its intersection
array.

Munemasa observed that the Meixner 2-cover is the extended )-bipartite double of
the Moscow-Soicher graph of the next section, cf. [469, Ex. 3.4].

3.2.5 The Koolen-Riebeek graph and the Moscow-Soicher graph

Brouwer, Koolen, and Riebeek [91] gave a construction of a bipartite distance-regular
graph with intersection array {45,44,36,5; 1,9, 40,45} from the ternary Golay code. Each
of its halved graphs is the complement of the Berlekamp-van Lint-Seidel graph.

Soicher [565] constructed another distance-regular graph related to one of the Golay
codes, in this case the binary. It has intersection array {110, 81,12;1,18,90}. Faradzev,
Ivanov, Klin, and Muzychuk [213, p. 119] already mentioned the underlying association
scheme of this graph without realizing it was metric.

4 More background

4.1 Miscellaneous definitions

A non-complete k-regular graph I' on v vertices is called strongly regular with parameters
(v, k, A\, ) if each two adjacent vertices have A common neighbors, and each two nonad-
jacent vertices have p common neighbors. Thus, the connected strongly regular graphs
are precisely the distance-regular graphs with diameter two. The definition of an amply
reqular graph with parameters (v, k, A, ;1) is obtained by replacing the condition on the
nonadjacent vertices by the condition that each two vertices at distance 2 have p common
neighbors.

For a graph I' and x € V, the graph induced on the set I';(x) is called an i-th
subconstituent of I'. The first subconstituent in consideration is also called a local graph
of I, and is denoted by Y (z). We say that I' is locally A if all local graphs are isomorphic
to A. More generally, we let YT (z,y) be the induced subgraph on the set of common
neighbors of z and y (so it is a local graph of a local graph if 2 and y are adjacent), etc..
A Terwilliger graph is a non-complete graph such that Y(x,y) is a clique of size u for
each two vertices x and y at distance two, for some p. Thus, a Terwilliger graph has no
induced quadrangles.

Let ' be a distance-regular graph with valency k and diameter D. Let {(c,a,b) =
H{i=1,2,...,D —1:(¢;,a;b;) = (c,a,b)}|. In particular, let h = h(I") and t = ¢(T") be
defined by h(T") = ¢(c1,a1,b1) and ¢(T') = €(by, a1,¢1). The parameter A(T") is called the
head of I' and ¢(I") is called the tail of T
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The girth of I is the length of its shortest cycle. The numerical girth of ' is 2h + 3 if
che1 = 1, else it is 2h + 2. If a1 = 0, then the girth is equal to the numerical girth. If I" is
locally a disjoint union of cliques, then the geometric girth of I is the minimal length of
a cycle for which the induced subgraph on each triple of its vertices is not a triangle; this
equals the numerical girth. If T has a local graph that is not a disjoint union of cliques,
then the geometric girth is defined as 3. For geometric graphs, the geometric girth is half
the girth of the incidence graph of the corresponding partial linear space (see Section 4.5).
Note that the girth and the numerical girth are determined by the intersection array, but
in general the geometric girth is not (for example, the Doob graphs have geometric girth
3, whereas the Hamming graphs (with the same intersection array) have geometric girth
4).

A quadruple (z,y, z,u) of vertices is called a parallelogram of length i if d(z,y) =
1 =d(z,u), d(z,z) = d(y,u) = d(y,z) =i — 1, and d(z,u) = i. The graph I' is called
m-parallelogram-free for some m = 2,3,..., D if I' does not contain any parallelogram of
length at most m. We say I is parallelogram-free if it does not contain any parallelogram.
Related conditions called (CR),, and (SS),, are given by Hiraki [307, 310].

A quadruple (z,y, z,u) of vertices of I is called a kite of length i if d(z,y) = d(z, z) =
d(y,z) =1, d(x,u) =i, and d(y,u) = d(z,u) =i — 1.

A subgraph A of T' is called geodetically closed, or closed for short, if z € Va for all
x,y € Va and z on a geodetic between x and y. (A closed subgraph is also called convez by
some authors.) The subgraph A is called strongly closed if z € Va for all vertices x,y € Va
and z € Vp such that dr(x, z) +dr(z,y) < dr(z,y)+1. (The term weak-geodetically closed
is also used for strongly closed.) It is known that if ¢ > 1 then all strongly closed
subgraphs are regular; cf. [649, Lemma 5.2] or [582]. A distance-regular graph I" with
diameter D is said to be m-bounded for some m = 1,2,..., D if forall i = 1,2,...,m
and all vertices x and y at distance i there exists a strongly-closed subgraph A(z,y) with
diameter ¢, containing = and y as vertices. (Note that Weng [648, 650] also required that
A(z,y) is regular.)

4.2 A few comments on the eigenspaces

Consider an association scheme with primitive idempotents Ey, Fy, ..., Ep. By computing
the squared norm, it follows that

Y Eie,®Eje, ® Eye, =0 ifandonlyif ¢ =0 (hi,j=0,1,....D), (8)
zeV
where e, € R” denotes the characteristic vector of {z}. In fact, this computation also gives
an alternative proof of the Krein conditions; cf. Proposition 2.9. Recall that the absolute
bound (cf. Proposition 2.10) was an immediate consequence of the obvious observation

that (E; o E;)RY C span(E;R" o E;R"). We remark here that these two subspaces indeed
coincide:

span(E;R" o E;R") = (Ej0 E))R" = > E,R" (i,j=0,1,...,D). (9)

q}#0
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To see this, note that (uov, w) = (u@vew,) |, Fe, ®FE;e, ® Ee,) for allu € E;R?,
v € E;RY, and w € E,R", where (, ) denotes the standard inner product. Therefore, it
follows from (8) that span(E;R" o E;R") is orthogonal to E,R” whenever ¢/; = 0. These
results are due to Cameron, Goethals, and Seidel [106] (cf. [38, §IL.8], [596]), and are
quite fundamental in the theory of distance-regular graphs and association schemes; see,
e.g., Sections 4.3 and 6.3.1. We note that, in view of (9), the ordering Fy, E, ..., Ep
is Q-polynomial if and only if >, ,(FyRY)°* = S°_ E/RY for all i = 0,1,..., D, where
(E1R?)** = EYRY 0o EYRY 0 - - - 0 B RY (£ times).

4.3 The Terwilliger algebra

The Terwilliger (or subconstituent) algebra of an association scheme was introduced in
[616]. Though it should be stressed that this algebra also plays an important role in the
theory of general distance-regular graphs (cf. Section 6), it is particularly well-suited for
@-polynomial distance-regular graphs. In fact, this algebra has (part of) its roots in the
study of balanced sets (cf. (14)); see, e.g., [614, p. 93, Note 1].

In the context of the Terwilliger algebra, the Bose-Mesner algebra of an association
scheme is always assumed to be over C, that is,

A =spanc{Ag, A1,..., Ap} C M,x,(C).

Fix a ‘base vertex’ x € V. For each ¢ = 0,1,...,D, let Ef = EX(x), A = Af(z) be the
diagonal matrices® in M,x,(C) with diagonal entries (E})y,, = (Ai)uy, (AD)yy = V(Ei)sy-
Note that Ef EY = 0, B, S P Er = I, and moreover ATAS = S q}s Ay These matrices
span the dual Bose-Mesner algebra A* = A*(x) with respect to x:

A* =spanc{E}, Ef, ..., EL} = spanc{Aj, AT, ..., AL} C M,yx(C).

Note that if the association scheme is Q-polynomial with respect to the ordering (E;)2,
then A} generates A*. The Terwilliger algebra T = T(x) with respect to x is the subalgebra
of M,x,(C) generated by A and A* [616]. The following are relations in T:

EfAE, =0 &pli=0, EAE, =0 &q¢:=0 (hij=01,...,D). (10)

We note that the latter is a variation of (8). Because T is closed under conjugate-
transposition, it is semisimple and every two non-isomorphic irreducible T-modules in C"
are orthogonal. Let G be the full automorphism group of the association scheme. Then
T is a subalgebra of the centralizer algebra® of the action of the stabilizer G, of 2 on C.
The two algebras are known to be equal, e.g., for Hamming graphs; cf. [251, Prop. 3]. We
also note that the structure of T may depend on the choice of z if G is not transitive on
V; cf. Section 3.2.1.

2We use x-notation instead of the usual *-notation in order to avoid confusion with the conjugate
transpose.

3Dunkl [202, 203, 204, 205] and Stanton [570] studied this latter algebra in detail in the context of
addition theorems for orthogonal polynomials associated with some classical families of distance-regular
graphs.
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Let W be an irreducible T-module. When the association scheme is P-polynomial
(resp. Q-polynomial) with respect to the ordering (A;)2, (resp. (E;)2,), we define the
endpoint (resp. dual endpoint) of W by min{i : EfW # 0} (resp. min{i : E;W # 0}).
We call W thin (resp. dual thin) if dim EXW < 1 (resp. dim E;W < 1) fori =0,1,...,D.
We also define the diameter and the dual diameter of W by |{i : EfW # 0}| — 1 and
[{i : E;W # 0}| — 1, respectively. If the association scheme is P-polynomial (resp. Q-
polynomial), then thin (resp. dual thin) implies dual thin (resp. thin) [616]. There is
a unique irreducible T-module with EfW # 0 and E,W # 0, called the primary (or
trivial) T-module; it is thin, dual thin, and given by spans{Ape,, Aie,, ..., Ape,}, where
e, € C" denotes the characteristic vector of {z}. We say the association scheme is i-thin
with respect to x if every irreducible T(z)-module W with EXW # 0 is thin.* It is said to
be thin with respect to x if it is i-thin with respect to x for all = 0,1,..., D. Finally, we
say the association scheme is thin (resp. i-thin) if it is thin (resp. i-thin) with respect to
x forallz e V.

In the study of the Terwilliger algebra, it is often quite important to consider the
following three matrices:

D D D—-1
L= Z E:—lAE;v F= Z E:AEZ*a R = Z E;—HAE;’ (11)
=1 1=0 1=0

called the lowering, flat, and raising matrices, respectively. Note that A= L+ F+ R. As
an illustrative example, suppose I' is the D-cube H(D,2), and let A* = A} = ZiO(D —
2i)E} correspond to the @-polynomial idempotent F; associated with the second largest
eigenvalue #; = D — 2. Then F' = 0 because I' is bipartite, and it follows that L, R, and
A* generate T. Moreover, we can easily verify that LR — RL = A*, RA* — A*R = 2R,
and LA* — A*L = —2L, so that the Terwilliger algebra T is a homomorphic image of
the universal enveloping algebra of the Lie algebra sly(C). Therefore, every irreducible
T-module W has the structure of an irreducible sly(C)-module, and @i_: E*XW gives the
weight space decomposition of W, where e denotes the endpoint of W. In particular,
H(D,?2) is thin. We refer the reader to Terwilliger [618] and Go [260] for more details.

4.4 Equitable partitions and completely regular codes

4.4.1 Interlacing, the quotient matrix, and the quotient graph

Eigenvalue interlacing is a useful tool in studying distance-regular graphs, and more gen-
erally, in spectral graph theory; see the survey by Haemers [283]. A sequence of numbers
1 = e = -+ =y is said to interlace a sequence Ay = Ay = -+ = \,, with n > m,
it A\ = py = My for all ¢ = 1,2, ... m. The interlacing is called tight if for some

4The definition of the i-thin condition here is taken from [197, 199]. This is slightly different from
the standard one for the case when the association scheme is P-polynomial, where it is called i-thin with
respect to x if every irreducible T(z)-module with endpoint at most ¢ is thin. On the other hand, the
present definition of course has the advantage that it makes sense for general association schemes. We
shall be careful below not to cause any confusion when we discuss results involving this concept.
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k€ {0,1,...,m} the equalities \; = p;,i = 1,... .,k and \,_prs = piyi = k+1,....m
hold.

An elementary interlacing result states that the eigenvalues of a principal submatrix
B of a symmetric matrix A interlace the eigenvalues of A itself. When applied to graphs:
the eigenvalues of an induced subgraph of a graph I' interlace the eigenvalues of T'.

A somewhat more complicated — but very useful — result concerns the so-called
quotient matrix. Let II = {Py, P»,..., P} be a partition of the vertex set of a graph T'.
Let fi; be the average number of neighbors in P; of a vertex in F;, for ¢,5 = 1,2,...,t.

The matrix F' = (f;;) is called the quotient matriz of II. The partition II is called
equitable if every vertex in P; has exactly f;; neighbors in P;. Also the eigenvalues of F'
interlace the eigenvalues of I'. Moreover, if the interlacing is tight, then the partition is
equitable. In this case, it can easily be seen that an eigenvector u of F' can be ‘blown
up’ to an eigenvector v of I' (with the same eigenvalue) by setting v, = u; if x € P,. An
example of an equitable partition in a distance-regular graph I' is the distance partition
IT = {To(2),T1(2),...,I'p(2)} of a vertex z, and its quotient matrix is the intersection
matrix L as in (3).

Given a partition IT = {Py, P, ..., P} of the vertex set of a graph T', we define the
quotient graph I'/II with vertex set II, where P, ~ P; if i # j and there exist + € P, and
y € Pj such that o ~ y in I'.

We call an equitable partition II uniformly regular if its quotient matrix F' and the
adjacency matrix B of I'/II are related as F' = fI + fB, for some numbers f and f # 0.
It is clear that in this case, the eigenvalues of the quotient I'/TI follow in a straightforward
way from the eigenvalues of F', and the latter are eigenvalues of I', as we just observed.
An example of a uniformly regular partition is given by the partition into fibres of an
antipodal distance-regular graph. In this case, the corresponding quotient graph is the
folded graph.

4.4.2 Completely regular codes

Let I' be a connected graph, say with diameter D, and let C be a subset of V' = V.. For
i>0,let C; ={x €V :d(z,C) =i}, where d(z,C) = min{d(z,c) : ¢ € C}. The covering
radius of C, denoted by p = p(C), is the maximum 7 such that C; # (). The subset (or
code) C' is called completely reqular if the distance partition IT = {C; : i = 0,1,...,p}
is equitable. Note that the corresponding quotient matrix is tridiagonal; it is therefore
common to denote f;; 1, fi; and fi; 11 by v, s, and 3;, respectively. These numbers are
called the intersection numbers of C'. This definition of a completely regular subset (or
code) was introduced by Neumaier [512] and he showed that for distance-regular graphs it
is equivalent to Delsarte’s definition [189, p. 67] in terms of the so-called outer distribution.
It is clear that if C' is completely regular then so is C,. Note that for a distance-regular
graph, every singleton {z} is a completely regular code with v; = ¢;, oy = a;, and §; = b;.
In general, the behavior of the intersection numbers of a completely regular code can
however be quite different from that of the intersection numbers of a distance-regular
graph. For example, it is not true in general that the -, are non-decreasing; see [409]. For
more background information on completely regular codes, we refer to the work of Martin
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(462, 466].

A partition Il = {Py, P,,..., P} of V is called a completely reqular partition if it is
equitable and all of the P; are completely regular with the same intersection numbers. It is
known that a completely regular partition is uniformly regular. A typical (and motivating)
example of a completely regular partition is the partition into cosets of a linear code C'
of length n over GF(q) that is completely regular in the Hamming graph H(n,q). (More
generally, we can consider a completely regular additive code in a translation distance-
regular graph.’) In this case we call T'/TI the coset graph of C. This coset graph is
distance-regular by the following result.

Theorem 4.1. [78, Thm. 11.1.5, 11.1.8] Let I be a distance-reqular graph and 11 a uni-
formly regular partition of I' with quotient matriz F'. Then U' /11 is distance-regqular if and
only if 11 is completely reqular. Moreover, if so, then the intersection numbers of I'/I1 can
be explicitly calculated from the intersection numbers of I' and F.

Delsarte cliques are examples of completely regular codes. Indeed, the following result
characterizes such cliques.

Proposition 4.2. [264, Lemmas 13.7.2, 13.7.4] Let I' be a distance-regular graph with
valency k, diameter D and smallest eigenvalue 0,;,. Let C be a clique in I' with ¢ vertices.
Then C' is a Delsarte clique if and only if C is a completely reqular code with covering
radius D — 1. Moreover, if so, then ¢;u; + (¢ — ¢;)u;y1 = 0, where (Uz')igo 18 the standard
sequence for O and ¢; = |I'y(x) N C| for a vertex x at distance i from C.

Note that the equation ¢;u; + (¢ — ¢;)u;41 = 0 follows from the fact that Exy = 0 (with
E and y as in the proof of Proposition 2.11). Indeed, if E = UU", then UTy = 0, and
hence for the corresponding representation associated to O, (see Section 2.5) we have

that
Yy z=o0. (12)

zeC

Taking the inner product with z, where = is a vertex at distance ¢ from C' gives the
required equation. This implies (by using [512, Thm. 4.1]) that the intersection numbers
of a Delsarte clique can be explicitly calculated from the intersection numbers of T'.

For a subset of the vertex set of an association scheme, with characteristic vector x,
the degree and dual degree are defined by |[{i # 0: xTA;x # 0}] and |{i # 0 : x"E;x # 0},

respectively.

4.5 Distance-biregular graphs and weakly geometric graphs

For an arbitrary graph with vertices x and y at distance i, we define ¢;(x,y), a;(z,y), and
b;(x,y) as the numbers of neighbors of y that are at distance i—1, i, and i+ 1, respectively.
Thus, a connected graph with diameter D is distance-regular if these numbers do not
depend on z and y (but only on their distance 7). If in an arbitrary graph the numbers

5A translation distance-regular graph is a distance-regular Cayley graph on an abelian group. An
additive code in such a graph is just a subgroup of the abelian group (= vertex set).

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS22 33



ci(x,y), a;(x,y), or bj(z,y) do not depend on = and y, for some i, then we will write ¢;, a;,
or b;, respectively (as in distance-regular graphs). For example, in an arbitrary bipartite
graph, one has a; = 0 for all 7.

For ease of notation and formulation, we will call the two biparts of a bipartite graph
its color classes R and B, and say that a vertex in R is red, and a vertex in B is blue.

Now a connected bipartite graph is called distance-biregular if the numbers ¢;(x,y)
and b;(z,y) depend only on i and the color of z. We denote these numbers by cf, bE, cZ
and b2. Straightforward examples are the complete bipartite graphs.

We say that a graph I is distance-regular around a vertex x if the singleton {x} is
a completely regular code in I'. A well-known result by Godsil and Shawe-Taylor [277]
states that if I' is a connected graph that is distance-regular around every vertex, then I
is distance-regular or distance-biregular.

A bipartite graph is called semiregular (or biregular) if the valency of a vertex only
depends on its color. We denote these valencies by kr and kp.

Powers [543] used the term semiregular for a concept that he introduced, and what
we now call distance-semiregular (following Suzuki [581, 587]). A connected bipartite
graph is called distance-semiregular with respect to one of its color classes, R say, if it is
distance-regular around all red vertices, with the same parameters (i.e, there are b and
c® such that b;(x,y) = bl and ¢;(z,y) = cf if z € R and d(x,y) = i). Note that every
distance-biregular graph is distance-semiregular, and in turn, each distance-semiregular
graph is semiregular, with valencies kg = bf and kp = 1 + bff. The Hoffman graph [328]
(the unique graph cospectral but not isomorphic to H(4,2)) is an example of a (regular!)
distance-semiregular graph that is not distance-biregular.

Let T be distance-semiregular with respect to R, then its halved graph '} (i.e., the
distance-2 graph of I', induced on R) is distance-regular. Let C' = I'(z) for some blue
vertex . Then C is a clique in T'¥, that is also a completely regular code in I'%. This
leads to the following definition.

A distance-regular graph A is called weakly geometric (with respect to C) if it contains
a collection C of cliques such that each edge is contained in a unique C' € C and all C' € C
are completely regular codes with the same parameters. Thus, a geometric distance-
regular graph (see Section 2.8) is weakly geometric. Because of the property that each
edge is contained in a unique clique, there is a naturally associated partial linear space,
whose points are the vertices of A and whose lines are the cliques of C, and incidence
is defined by containment. The point (or collinearity) graph of this partial linear space
is A. The bipartite (point-line) incidence graph of the partial linear space is a distance-
semiregular graph with girth at least 6; in fact, this gives a one-to-one correspondence
between the latter type of graphs and weakly geometric distance-regular graphs. The
partial linear space has also been studied by De Clerck, De Winter, Kuijken, and Tonesi
[186, 427] under the name distance-regular geometry.

Using the same correspondence, certain distance-semiregular graphs with girth 4 cor-
respond to Delsarte graphs and Delsarte clique graphs as introduced by Bang, Hiraki, and
Koolen [28] (see also [29]). Delsarte graphs and Delsarte clique graphs are closely related
to the geometric distance-regular graphs of Section 2.8.
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We remark that the Johnson graphs J(n, D) and Grassmann graphs J,(n, D) are not
just (weakly) geometric with respect to a set of Delsarte cliques (the (D — 1)-sets or
(D — 1)-dimensional subspaces; that is, the set of vertices containing a fixed (D — 1)-
set or (D — 1)-space is a Delsarte clique), but also weakly geometric with respect to
another set of cliques, namely the (D + 1)-sets or (D + 1)-dimensional subspaces (i.e., the
sets of vertices contained in these), respectively. The corresponding incidence graphs are
distance-biregular; for n = 2D+ 1, we obtain the distance-regular Doubled Odd graph and
Doubled Grassmann graph, respectively. In Section 9 we will discuss geometric distance-
regular graphs in more detail.

Following Suzuki [587], we say a distance-regular graph I' is of order (s,t) (for some
integers s and t) if it is locally the disjoint union of ¢t + 1 cliques of size s. This is
equivalent to the property that I' contains no induced complete tripartite graph K11 (a
kite of length 2).

A distance-regular graph I' of order (s,t) with diameter D is called a regular near
polygon if a; = c;aq for all @ = 1,2,..., D — 1. If ag = cpa; we call I' a regular near
2D-gon; otherwise it is called a regular near (2D + 1)-gon. A regular near polygon of
diameter D is geometric if and only if it is a regular near 2D-gon. We say ' is thick if
s > 2 (the regular near polygons with s = 1 are exactly the bipartite distance-regular
graphs and the generalized odd graphs).

Weng [650] defined a distance-regular graph to have geometric parameters (D, b, «) if
it has classical parameters (D, b, «r, f) with b # 1 and 8 = a%. He used this concept in
the partial classification of distance-regular graphs with classical parameters with b < —1.
This does not seem to be related to geometric distance-regular graphs.

4.6 Homogeneity

Let I' be a connected graph. For two distinct vertices = and y, define T'; ;(x,y) = I';(z) N
[;(y). If it is clear (or irrelevant) which pair z,y is meant we will write I'; ; instead of
L j(x,y). Foru ey, let p;j,s(u) =|{z € I'5: 2 ~ u}|. We say the parameter p; ;.
exists with respect to the pair @,y if p; j..s(w) = pijirs(v') for all u, v’ € I'; j(z,y).

A connected graph I'" with diameter D is called i-homogeneous (in the sense of No-
mura), ¢ = 0,1,..., D if for all pairs z,y at distance i and all r,s,7’, s € {0,1,..., D},
the parameter p, .,/ + exists and does not depend on the pair z,y, or in other words, the
partition {I'; ;(z,y) : I';;(z,y) # 0,i,j = 0,1,..., D} is equitable for each pair x,y at
distance ¢ and the parameters do not depend on the pair z,y.

Note that a 0-homogeneous graph is distance-regular, and a 1-homogeneous graph
is distance-regular. Examples of 1-homogeneous distance-regular graphs are the Johnson
graphs J(2D, D), the bipartite distance-regular graphs, and the regular near 2D-gons. To
study ¢-homogeneous graphs, it is sometimes useful to draw intersection diagrams with
respect to two vertices x and y. In Figure 3 we have an example of such an intersection
diagram for the Johnson graph J(6,3).

In most of the literature I'; ; is denoted as D{ . We chose different notation because D stands for the
diameter, and the superscript-subscript notation seems useful only in intersection diagrams.

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS22 35



Figure 3: Intersection diagram of J(6, 3)

4.7 Designs
Consider an association scheme with primitive idempotents F; (i = 0,1,..., D). Let T be
asubset of {1,2,...,D}. A set Y of vertices of the association scheme with characteristic

vector x is called a (Delsarte) T-design if E;x = 0 for all ¢ € T'. This definition is due to
Delsarte [189].

Suppose that the association scheme is ()-polynomial with respect to the ordering
Ey, Ey, ..., Ep. Inthis case, a {1,2,...,t}-design is simply called a t-design. The strength
of Y is then defined by min{i # 0 : E;x # 0} — 1, i.e., it is the maximum integer ¢ for
which Y is a t-design. Delsarte [189] showed that the ¢-designs in the Johnson graphs and
Hamming graphs are precisely the combinatorial block ¢-designs and the orthogonal arrays
of strength ¢, respectively. A similar interpretation was established for the other classical
families of distance-regular graphs by Delsarte [190], Munemasa [502], and Stanton [572].

For more results on T-designs in association schemes, see the recent survey by Martin
and Tanaka [470] and the references therein.

5 Q-polynomial distance-regular graphs

In this section, we collect (relatively new) results on Q-polynomial distance-regular graphs.
Throughout this section, we shall use the following notation unless otherwise stated. Let
I' denote a distance-regular graph with diameter D > 3 and valency k > 3. Let 6 be
an eigenvalue of I', F the corresponding primitive idempotent, and (u;)2, the standard
sequence with respect to 6.

Suppose for the moment that E is Q)-polynomial, and let Ey, F1 = E, Es, ..., Ep be
the corresponding @Q-polynomial ordering. Then by Leonard’s theorem (cf. [78, §8.1])
there exist p,r,r* € C such that

Uimy + Uiy = pus + 71, O+ 0 =pbi+r* (i=1,2,...,D—1). (13)

It should be remarked that the sequence of polynomials (v;)2, (see (2)) belongs to the
terminating branch of the Askey scheme [403, 402] of (basic) hypergeometric orthogonal
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polynomials. (We also allow the specialization” ¢ — —1.) See also [627]. We call E
classical if (u;—1 — u;)/(u; — u;11) is independent of @ = 1,2,..., D — 1. It follows that
I' has a classical Q-polynomial idempotent if and only if it has classical parameters such
that p = b+ b~%; cf. [78, Thm. 8.4.1], [598, Prop. 6.2].

We begin with discussions on graphs with classical parameters.

5.1 The graphs with classical parameters with b =1

All graphs with classical parameters with b = 1 have been determined: the Hamming
graphs, Doob graphs, halved cubes, Johnson graphs, and the Gosset graph; cf. [78,
Thm. 6.1.1] or [510]. Main contributors to this classification were Egawa [207], who
characterized the Hamming and Doob graphs, and Terwilliger [608, 610] and Neumaier
[510], who used the classification of root lattices and the representation with respect to
the second largest eigenvalue to come to the final classification. We note that b = 1
implies #; = b; — 1, and the graphs satisfying the latter have been classified; cf. [78,
Thm. 4.4.11]. In [424, 561], Koolen and Shpectorov used metric theory to classify the
distance-regular graphs whose distance-matrix has exactly one positive eigenvalue. The
distance-regular graphs with classical parameters with b = 1 have this property. Godsil
[267] considered the convex hull of the representation with respect to a fixed eigenvalue.
He classified when the 1-skeleton of this polytope with respect to the second largest eigen-
value is isomorphic to the original distance-regular graph. In his classification he again
finds all distance-regular graphs with classical parameters with b = 1.

5.2 Recent results on graphs with classical parameters

Metsch [481, Cor. 1.3] showed that if I has classical parameters and is not a Johnson,
Grassmann, Hamming, or bilinear forms graph, then the parameter 3 is bounded in terms
of D,b, and «.

Terwilliger [619] showed that if I" has classical parameters with b < —1 then I' has
no kites of any length ¢ = 2,3,..., D. This result, combined with earlier work of Ivanov
and Shpectorov [364], proves that the Hermitian forms graphs Her(D,q?) with D > 3
are uniquely determined by their intersection arrays. See also [647]. A related result by
Weng [649] is as follows (cf. Section 11.1).

Proposition 5.1. Suppose I is Q-polynomial with D > 3, co > 1, and ay # 0. Then the
following are equivalent:

(i) T has classical parameters, and either b < —1, or I' is a dual polar graph or a
Hamming graph,

(ii) T has no parallelogram of length 2 or 3,
(iii) I' is D-bounded.

"The polynomials corresponding to the case ¢ = —1 have recently been receiving considerable atten-
tion; see, e.g., [249] and the references therein.
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Liang and Weng [448] showed that if T" is Q-polynomial and D > 4 then T is parallelogram-
free if and only if either (i) I' is bipartite, (ii) I' is a generalized odd graph, or (iii) I has
classical parameters and either b < —1 or I' is a Hamming graph or a dual polar graph.
Weng [648] showed that if T has classical parameters with b < —1,a; # 0,c2 > 1, and
D > 4, then I' has geometric parameters (cf. Section 4.5). Building on this, he showed
among other results that there are no distance-regular graphs with classical parameters
with D > 4, ¢ = 1, and ay, > a7 > 1, and that under the assumption D > 4 and
¢y > 1, the dual polar graphs 2A4;p_1(—b) are the only graphs with classical parameters
with b = —a; — 1. The latter characterizes the dual polar graphs 2Asp_1(y/q) by their
intersection arrays for D > 4. Weng [650] also showed the following result.

Theorem 5.2. IfT' has classical parameters withb < —1, a1 # 0, ca > 1, and D > 4, then
either T is a dual polar graph >*Asp_1(—b) or a Hermitian forms graph Her(D, (—b)?), or
a=(b-1)/2, B=—(1+bP)/2, and —b is a power of an odd prime.

Vanhove [641] showed that a ((1—b)/2)-ovoid (i.e., a (D — 1)-design with index (1 —b)/2)
in the dual polar graph 2Asp_1(—b) with b odd would induce a distance-regular graph
having classical parameters of the latter case. For D = 2, such ((1—b)/2)-ovoids are better
known as hemisystems and these were constructed by Cossidente and Penttila [144] for
every odd prime power —b; see also [20]. No construction of a ((1 —b)/2)-ovoid is known
for D > 3.

Triangle-free distance regular graphs with classical parameters have been studied
by Pan, Lu, and Weng [527, 528, 529] and Hiraki [317]. One of the results is that
if ' has classical parameters and a; = 0,as # 0,D > 3 then either (i) (b,«a, ) =
(=2, -2, (=2)"* — 1)/3) (e2 = 1), or (i) (b, 5) = (~2,-3,—1 — (~2)?) (2 = 2),
or (iii) (b, v, B) = (=3, =2, —(1 + (=3)P)/2) (cs = 2); cf. [529, 317]. Case (i) with D = 3
is uniquely realized by the Witt graph Ma3 [78, §11.4B|, whereas Huang, Pan, and Weng
[343] ruled out case (i) with D > 4. Case (ii) is uniquely realized by the Hermitian forms
graph Her(D,4).

5.3 Imprimitive graphs with classical parameters and partition graphs

It is known ([78, Prop. 6.3.1]) when a distance-regular graph with classical parameters
(D,b,a, f) with D > 3 is imprimitive: it is bipartite if and only if « = 0 and 8 = 1,
whereas it is antipodal if and only if b = 1 and f = 1 + a(D — 1), in which case it is
an antipodal double cover of its folded graph. This folded graph has diameter D’ and
intersection numbers b; = (D —i)(1 +a(D —1—1)) and ¢; = i(1 + a(i — 1)) for ¢ < D',
bpr = 0, and c¢pr = YD'(1 + a(D" — 1)), where v = 1 if D = 2D’ 4+ 1 and v = 2 if
D = 2D'. The distance-regular graphs with such intersection numbers are called pseudo
partition graphs. Bussemaker and Neumaier [98, Thm. 3.3] showed that pseudo partition
graphs with diameter D’ > 3 must have the same intersection arrays as in one of the
three families of partition graphs: the folded cubes (o = 0), the folded Johnson graphs
(w = 1), and the folded halved cubes (a = 2).

The folded cubes are determined by their intersection arrays, except for the folded
6-cube, which has two mates (i.e., non-isomorphic distance-regular graphs with the same
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intersection array) in the form of (other) incidence graphs of 2-(16,6,2) designs (cf. [78,
Thm. 9.2.7]). The characterization of the other two families of partition graphs is now
complete, due to work by Metsch, Gavrilyuk and Koolen:

Proposition 5.3. [479, 480, 241] The folded Johnson graphs with diameter at least three
are uniquely determined as distance-reqular graphs by their intersection arrays.

Proposition 5.4. [479, 482, 241] The folded halved cubes with diameter at least three are
uniquely determined as distance-regular graphs by their intersection arrays.

Thus, all pseudo partition graphs with diameter at least three are known.

5.4 Characterizations of the Q-polynomial property

Bannai and Ito [38, p. 312] conjectured that every primitive distance-regular graph with
sufficiently large diameter is @-polynomial. We note that the Doubled Odd graphs are
not ()-polynomial yet have arbitrarily large diameter, so that the ‘primitivity’ condition
in the conjecture is necessary. Currently we know of no (real) progress towards proving
the conjecture; however there are several new characterizations of the ()-polynomial prop-
erty (since ‘BCN’ [78]). For completeness and because of its importance, we begin with
Terwilliger’s balanced set condition [611, 620]; cf. [78, §2.11, §8.3]. For distinct z,y € V
and for ¢,5 =0,1,..., D, welet x; j(x,y) = Zzerm(w) e. denote the characteristic vector
of I'; j(z,y) = Li(xz) N T (y); cf. Section 4.6.

Theorem 5.5. (Balanced set condition [611, 620]) The primitive idempotent E is Q-
polynomial if and only if u; # 1 for alli=1,2,...,D and

UZ'—U,]‘

Exij(z,y) — Exji(z,y) = plj = (Ee, — Ee,) (14)

foralli,j=0,1,....,D, h=1,2,...,D, and x,y € V with d(z,y) = h.

Terwilliger [620] obtained an inequality for every ¢ = 3,4, ..., D involving only the inter-
section numbers, 6, and (u;)?, by applying Cauchy-Schwarz to Ex;1(z,y) — Ex1.i(z,y)
and Fe, — Fe, with {i,h} = {{,¢ — 1}, and averaging over z,y € V with d(x,y) = h.
Equality is attained for all ¢ = 3,4,..., D (or just for ¢ = 3) if and only if F is Q-
polynomial; cf. [78, §8.3]. Instead of the four vectors in (14), we may also consider the
linear dependency of E; ;(z,y), Fe,, and Ee,. This was worked out in detail by Ter-
williger [614].% In particular, he applied Cauchy-Schwarz to Ex11(z,y) and Fe, + Fe,,
and took the average over each of the sets {(x,y) : d(z,y) = h} (h = 1,2) to obtain
an inequality involving only aq, by, ca, u1, uo; in this case, equality is attained if and only
if £/ is @-polynomial with afj = a} = --- = a},_; = 0. The linear dependency among
Exi1(z,y), Ee,, and Fe, for adjacent x and y is also relevant to the property of being
tight; cf. Section 6.1.1. There is also a ‘symmetric’ version of (14) due to Terwilliger

8The term ‘balanced set’ was introduced in [614] in this context, but many authors now refer to (14)
as the balanced set condition.
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(619, Thm. 2.6]. This lead, in particular, to the characterization of the Hermitian forms
graphs by their intersection arrays; cf. Section 5.2. Tonejc [636] recently presented several
inequalities by considering the vectors Ex;1(z,y) + Ex1.:(z,y) and Ee, + Ee,.

The following result is due to Pascasio [536] and may be viewed as an extension of
[78, Thm. 8.2.1] for the bipartite case.

Proposition 5.6. E is Q-polynomial if and only if all following properties hold:
(i) there exist p,r € C such that u;—y + uiy1 = pu; +r (i=1,2,...,D — 1),

(ii) there emist &, w,n* € C such that a;(u; — wi—1)(u; — wiy1) = Eu? + wu; +n* (i =
0,1,...,D), whereu_y andupyy are defined by (i) withi = 0 and i = D, respectively,

(iii) w; #1 (i =1,2,...,D).

We call E a tail [434] if E o E is a linear combination of Ey, E, and at most one other
primitive idempotent of A. Jurigi¢, Terwilliger, and Zitnik [386] established a character-
ization similar to Proposition 5.6, where property (ii) is replaced by E being a tail. We
shall discuss tails in detail in Section 6.3.

The following characterization is due to Kurihara and Nozaki [429]; cf. [525].

Proposition 5.7. Let F' be a primitive idempotent other than E. Then there is a Q-
polynomial ordering (E;)2, such that E = Ey and F = Ep if and only if ug,u1, ..., up
are distinct, and for i =20,1,..., D, the eigenvalue of A; for I is

(Uz‘ - Uo) ce (Uz - Uz’—l)(ui - Uz‘+1) ce (Uz - UD)‘

This result originated in an investigation of the D distances occurring in the spherical
embedding {Fe, : € V} C R™% extending a similar observation by Bannai and
Bannai [36] for strongly regular graphs.® Nozaki [526] recently showed that E is Q-
polynomial provided that v > (m(el);:?ﬁ) + (m(%tgfg) and u; # 1 fort=1,2,...,D.
There are also many results characterizing ()-polynomial graphs within certain sub-
classes of distance-regular graphs, such as bipartite graphs and tight graphs (cf. Section
6.1.1); see, e.g., [620, 533, 436, 629, 590]. For example, if I' is a thick regular near polygon
with D > 3, then I' is Q-polynomial if and only if T" has classical parameters; cf. [78,
Thm. 8.5.1]. It should be remarked that De Bruyn and Vanhove [185] recently showed
that for D > 4 there are no ()-polynomial thick regular near polygons, apart from the

Hamming graphs and dual polar graphs. See also [648, Thm. C] and Theorem 9.11.

5.5 Classification results

In this section, suppose that E is a @Q-polynomial idempotent, and let p,r,7* be as in
(13). Note that these scalars depend on E. We note also that, in the notation of Bannai

9See e.g., [106, 503, 573] for some results about spherical designs (cf. [37]) obtained in this way from
@-polynomial distance-regular graphs.
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and Ito [38, §IIL.5] (cf. [616, §2]), E is classical if and only if the @-polynomial structure
satisfies either type I with s* = 0 or one of types IA, ITA, IIC; see [598, Prop. 6.2] (cf. [78,
Thm. 8.4.1]). It turns out that most graphs with p = £2 already appeared in Sections
5.1 and 5.3.

5.5.1 Case p # +2

The @Q-polynomial structure is type I or type IA in [38]. The following result is due to
Terwilliger [unpublished].

Proposition 5.8. Type IA does not occur.

Proof. 1f the Q)-polynomial structure is type IA then E is classical and we have
0; =0 —sb(1—b), b=—tb"'(1—b""), c=0b1-b)(s—tb""")

for i = 0,1,...,D, where b,s,t € C\{0} and p = b+ b~ !; cf. [38, §IIL.5], [616, §2|.
The corresponding classical parameters are (D,b,a, 3), where a = tb' (1 — b)? and
B = tb'=P(1 — b). In particular, b is an integer distinct from 0,41, and thus s, € R.
From 6y > 6,05, it follows that b > 2 and s < 0. Moreover, because c; > 0 we have
sbP? < 2sbP~1 < 2t. But then 0y + 0p = 2by — sb(1 — ¢P) = b(1 — b=P)(sb? — 2t) < 0, so
that 0p < —6y, a contradiction. O

It follows that all graphs having classical parameters with b # 1 fall into type I with
s* = 0 (with respect to the associated )-polynomial ordering).

55,2 Casep=2,r#0,r"#0

The @-polynomial structure is type II in [38]. Terwilliger [609] showed that if D > 14
then either T is the halved (2D + 1)-cube, or T" has the same intersection array as a folded
Johnson graph or a folded halved cube. By Propositions 5.3 and 5.4, the classification is
now complete for D > 14.

553 Casep=2,r=0,r7r"#0

E is classical and the Q-polynomial structure is type ITA in [38]. It follows that T is either
a Johnson graph, a halved cube, or the Gosset graph; cf. Section 5.1.

554 Casep=2,r#0,r"=0

The @-polynomial structure is type IIB in [38]. Terwilliger [613] showed that I" is either
a folded cube or one of the other two non-isomorphic graphs with the intersection array

{6,5,4;1,2,6} of the folded 6-cube; cf. [78, §9.2D].

556, Casep=2,r=7r"=0

E is classical and the Q-polynomial structure is type IIC in [38]. Egawa [207] showed
that I' is either a Hamming graph or a Doob graph; cf. [78, §9.2B].
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5.5.6 Case p = —2

The Q-polynomial structure is type III in [38]. Terwilliger [612] showed that I' is either
the D-cube (D even), the Odd graph Op. 1, or the folded (2D + 1)-cube.

Next, we move on to (almost) imprimitive graphs.

5.5.7 Bipartite graphs

Suppose I is bipartite. Then r* = 0 by [78, Thm. 8.2.1]. If p = £2 then it follows from
the above results that I' is either the D-cube, the folded 2D-cube, or one of the other two
graphs with intersection array {6,5,4;1,2,6}. Caughman [114] showed that if p # +2
and D > 12 then I" has classical parameters (D,b,0,1) where b is an integer at least 2.
These parameters are realized by the dual polar graphs Dp(b) and the Hemmeter graphs.

5.5.8 Antipodal graphs

Curtin [146] showed that bipartite Q-polynomial antipodal (double) covers are precisely
the bipartite 2-homogeneous distance-regular graphs, and the latter graphs were classified
by Nomura [517]; cf. Section 6.1.3. These are the D-cube, the regular complete bipartite
graphs minus a perfect matching, the Hadamard graphs, and the graphs with intersection
arrays satisfying

(cr,¢0,.oves) = Lk —pu bk —1,k), b=cs—; (1=0,1,...,4),

where k = y(y2+3v+1), u = y(y+1), and v > 2 is an integer. The last case is uniquely
realized for v = 2 by the double cover of the Higman-Sims graph.

Dickie and Terwilliger [198] gave a classification of non-bipartite Q-polynomial antipo-
dal distance-regular graphs as follows: the Johnson graph J(2D, D), the halved 2D-cube,
the non-bipartite Taylor graphs, and the graphs satisfying

(c1, 2, ¢3,¢4) = (L pn, (p* — 1)(2n — p+ 1), p(2n + 2np — p*)), (15)
by = ¢4y (Z =0, 17273)7

where p > 3, n > 3p/4 are integers and 7 divides p*(p? — 1)/2. An example of the last
case is the Meixner double cover (p = 4,7 = 6); cf. Section 3.2.4. The array (15) with
p,n odd has been ruled out by Jurisi¢ and Koolen [375, Cor. 3.2].

5.5.9 Almost bipartite graphs

The @-polynomial generalized odd graphs have been classified by Lang and Terwilliger
[438]: the folded (2D+1)-cube, the Odd graph Op. 1, and the graphs with D = 3 satisfying

k=1+0@" —Dpp+2)—(p+De), a=—@+1)p°+p—1—(p+1)e),

where p < —2 is an integer. No example is known for the last case. We recall that the
distance-2 graph I's is again distance-regular, as it is the halved graph of the bipartite
double of I'; cf. Section 13.2.
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5.5.10 Almost Q-bipartite graphs

Suppose D > 4 and I' is almost )-bipartite, i.e., af = 0 for 7 < D and a}, > 0. Dickie
[197] showed that IT" is either the halved (2D + 1)-cube, the folded (2D + 1)-cube, or a
dual polar graph 2A2D_1(\/6). We note that the ‘Q-bipartite double’ of I' is a cometric
association scheme, and that Fs is again a (Q-polynomial idempotent; cf. Sections 5.7.2
and 16.8.

5.6 The Terwilliger algebras of Q-polynomial distance-regular graphs

Below we collect ‘handy’ sufficient conditions for I' being thin when it is ()-polynomial.

Proposition 5.9. [616, §5] Suppose ' is Q-polynomial with respect to the ordering (E;)2.,.
Then the following properties hold.

(i) T is thin with respect to x € V if fori=1,2,..., D and for everyy,z € T';(z), there
is an automorphism m of I' such that n(x) =z, 7w(y) = 2z, and w(2) =y,

(ii) T is thin ifag =az=---=ap_, =0,
(iii) I is thin if al =af=---=a}_, =0.

In particular, a ()-polynomial distance-regular graph is thin provided that it is bipartite
(=Q-antipodal), almost bipartite, antipodal (=Q@Q-bipartite), or almost Q-bipartite. It
also follows that many of the known graphs with classical parameters as well as partition
graphs (cf. Section 5.3) are thin; see [616, Ex. 6.1] for details. The following graphs are
known to be non-thin: Doob graphs, (bilinear, alternating, Hermitian, quadratic) forms
graphs, and the twisted Grassmann graphs. The irreducible T-modules of the Doob graphs
were determined by Tanabe [593]. Concerning the twisted Grassmann graph (cf. Section
3.2.1), Bang, Fujisaki, and Koolen [25] showed that it is thin with respect to any base
vertex x which is an (e — 1)-dimensional subspace of the fixed hyperplane H, by verifying
a different combinatorial criterion for thinness [616, Thm. 5.1(v)]. However, they also
showed that if x is not contained in H then the twisted Grassmann graph is not 1-thin
with respect to x.

The irreducible T-modules of bipartite (resp. almost bipartite) Q-polynomial distance-
regular graphs were described by Caughman [111] (resp. Caughman, MacLean, and Ter-
williger [115]). For these graphs, it turns out that the intersection array completely
determines the structure of T. In particular, explicit formulas for the multiplicities of
the irreducible T-modules in C” with small endpoints were successfully used in the clas-
sification of these graphs; cf. Section 5.5. Curtin and Nomura [155] and Curtin [151]
studied the Terwilliger algebra of bipartite Q-polynomial antipodal (double) covers which
are not the D-cube; in this case, it follows that T is a homomorphic image of the quantum
enveloping algebra U, (sly); cf. Section 5.8.

In general, if I' is @-polynomial then the structure of irreducible T-modules with
endpoint 1 is determined by the intersection array and the spectrum of the local graph
T (z) with respect to the base vertex z; cf. [618, Lecture 35]. To be more precise, suppose
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for the moment that I' is @-polynomial, and let W be an irreducible T-module with
endpoint 1. Then dim EfW = 1, so that ETW is an eigenspace for EfAET; let n denote
the corresponding eigenvalue. Then the isomorphism class of W is determined by 7.
Moreover, W is thin if and only if n is a root of a polynomial T of degree 4, which we
call the Terwilliger polynomial of T'; if T" has classical parameters (D, b, «, 3) then its four
roots are —1,—b— 1,8 —a — 1, and ab [Dfl} — 1. See also [241, Lemma 4.7] and [616,
Cor. 4.12(5)]. If W is non-thin then it follows that'® W has diameter D — 1 and that
dim EfW = dim Ep,W = 1, dim E;W = ... = dim £}, ;W = 2. Hobart and Ito [327]
studied in detail the structure of such a non-thin irreducible T-module with endpoint 1.
Miklavic [486, 491] showed that I" is 1-homogeneous if it is Q-polynomial with a; = 0, and
described the unique irreducible T-module with endpoint 1 (with n = 0) when ay # 0,
which turns out to be non-thin. Miklavi¢ [490] also described the irreducible T-modules
with endpoint 1 when I' has classical parameters with b < —1, a; # 0, and is not a near
polygon; there are exactly two isomorphism classes, and the first one is thin with n = —1
and the second one is non-thin with n = a;.

Suppose again that I is Q-polynomial, and let  be a local eigenvalue of I" (with respect
to the base vertex z), i.e., an eigenvalue of Y(x). We call n non-degenerate if it has an
eigenvector orthogonal to the all-ones vector, and degenerate otherwise. We note that
a1 is the only possible degenerate local eigenvalue and that it is non-degenerate precisely
when Y (z) is disconnected. The Terwilliger polynomial 7" mentioned above depends only
on the intersection array of I' and the @)-polynomial ordering, and has the property that
T'(n) = 0 for every non-degenerate local eigenvalue 7 for every base vertex x. We note that
if I has two ()-polynomial orderings then T" may be different for the different ordering.
Using the polynomial 7', Gavrilyuk and Koolen [241] recently showed the uniqueness of
the folded halved 2m-cube for m > 6; cf. Section 5.3. With the same approach we can also
show the uniqueness of the folded Johnson graphs. For the Grassmann graphs J,(2D, D)
(D > 3), Gavrilyuk and Koolen also obtained partial results. See also [602, §4.3] for more
discussions on the Terwilliger polynomial.

See Section 6.2 for more results on the irreducible T-modules with endpoint 1 of general
distance-regular graphs.

5.7 Further results on @Q-polynomial distance-regular graphs

In this section, we always assume that I" is ()-polynomial.

5.7.1 Antipodal covers

Van Bon and Brouwer [59] determined the distance-regular antipodal covers of the classical
families of distance-regular graphs; cf. [78, §6.12]. Suppose F is Q-polynomial, and recall

OTn fact, Terwilliger [618, Lectures 34-37] stated this result as a conjecture, and showed that
dim EXW < 2 for i = 2,3,...,D — 1, dimE;W < 1, and that W is thin if dim EZW = 1. Now,
that W has diameter D — 1 follows from a result of Go and Terwilliger [261, Thm. 9.8], and the val-
ues of the dim E}W follow from their symmetric and unimodal properties proved by Ito, Tanabe, and
Terwilliger [349] in the more general context of tridiagonal systems; cf. Section 5.8.
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(cf. (13)) that there exist p,r € C such that w; 1 +w;1q =pu; +rfori=1,2,...,D — 1.
Terwilliger [617] showed that if I has an antipodal cover of diameter D > 7, then this
three-term recurrence extends to i = 1,2,..., D — 1, where we formally define u; = u Pes
(t=D+1,D+2,..., [7) This parametric condition provides simple proofs of some of
the (non-existence) results in [59], and may be applied to the twisted Grassmann graphs
as well; cf. [235]. Caughman [112] used the condition to show that if I is bipartite with

D > 4 and has an antipodal cover then I is the folded 2D-cube; cf. [436, Cor. 12.3].

5.7.2 Distance-regular graphs with multiple Q-polynomial orderings

An association scheme can have at most two P-polynomial orderings, except for those
coming from the polygons; cf. [78, §4.2D]. Bannai and Ito [38, pp. 354-360] showed that
if k > 3 and D > 34 then I' has at most two ()-polynomial idempotents and moreover
all eigenvalues are integral. Brouwer, Cohen, and Neumaier [78, p. 247] conjectured that
the assumption D > 34 can be replaced by D # 4. Dickie [197, pp. 69-70] established
the result under the assumption D > 5. Indeed, he showed that if £k > 3 and D > 5
then I has more than one Q-polynomial idempotent if and only if I" is either the D-cube
(D even), the halved (2D + 1)-cube, the folded (2D + 1)-cube, or a dual polar graph
24, p—1(1/q), and these graphs have precisely two Q-polynomial idempotents but no non-
integral eigenvalues. (Note that if I' has non-integral eigenvalues and E is Q-polynomial
then E is again @-polynomial for any Q-automorphism o of the splitting field over Q.)
Building on work by Dickie [197], Suzuki [586] showed that every association scheme has
at most two Q-polynomial idempotents, again except for those coming from the polygons;
cf. Section 16.8. For D € {2,3,4}, the known Q-polynomial distance-regular graphs
with k£ > 3 and with non-integral eigenvalues belong to the following four families: the
conference graphs (D = 2), the incidence graphs of symmetric designs (D = 3), the Taylor
graphs (D = 3), and the Hadamard graphs (D = 4).!' Note that the graphs in these
families always have two ()-polynomial idempotents. The other candidate intersection
arrays {£(2p + 1), (u = D)2 + 1), 02, g3 1 g, p(pe — 1), (2 + 1)} (0 > 2) of primitive
-polynomial distance-regular graphs with non-integral eigenvalues given by Brouwer et
al. [78, pp. 247-248] were ruled out by Godsil and Koolen [270]; cf. Section 17.2.2. Ma
and Koolen [452] recently classified the distance-regular graphs with & > 3, D = 4, and
with two @-polynomial idempotents; these are the 4-cube, the halved 9-cube, the folded
9-cube, the dual polar graphs %A7(,/q), and the Hadamard graphs.

5.7.3 Bounds for the girth

Brouwer, Cohen, and Neumaier [78, p. 248] conjectured that I" has girth at most 6, with
equality only for the Odd graph Op,1, and showed that the numerical girth g of ' is at
most 7. Lewis [447] showed ¢3 > 2, proving g < 6. We note that if I' has girth 6, i.e.,
a; = ay = 0 and ¢ = 1, then it follows from Proposition 5.6 (or [486, Thm. 6.3]) that

1Tt seems that the above conjecture by Brouwer et al. was not properly stated, because we already
have counterexamples with D € {2,3}. We note that the graphs in the last three families are imprimitive.
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a; = ay = -+ = ap_; = 0, so that I" is bipartite or almost bipartite. Miklavi¢ [488]
showed that if I' is bipartite and D = 4 then ¢y > 2, i.e., g = 4.

5.7.4 The Erdds-Ko-Rado theorem

At the end of each of Sections 9.1-9.4 and 9.5A in [78] there is a remark about the Erdés-
Ko-Rado theorem for the graph in question. See [594, 541, 599, 345, 600, 273] for recent
results on this topic.

5.7.5 TUnimodality of the multiplicities

We recall from Proposition 2.4 (iv) that the k; are unimodal. Concerning the multiplicities
m;, Pascasio [534] showed that if T' is Q-polynomial with respect to the ordering (E;)2,
then m;_y < m; <mp_; fori =1,2,...,|D/2|. This result was originally conjectured by
Dennis Stanton in 1993, and is a simple application of the theory of tridiagonal systems;
cf. Section 5.8. We note that Bannai and Ito [38, p. 205] earlier conjectured that the
multiplicities of a cometric association scheme satisfy the unimodal property.

5.7.6 Posets associated with Q-polynomial distance-regular graphs

There are several classes of finite ranked posets that are closely related to ()-polynomial
distance-regular graphs: regular semilattices [190, 571], uniform posets [615], quantum
matroids [621]. (For definitions, see the references given.) Many of the known families of
@-polynomial distance-regular graphs arise as the top fibers of these posets, where two
vertices are adjacent if and only if they cover a common element.

Concerning quantum matroids, Terwilliger [621, Thm. 38.2] showed that if a quantum
matroid is ‘non-trivial’ and ‘regular’, then the graph on the top fiber with the above
adjacency is distance-regular. Moreover, in this case, the graph has classical parameters
if its diameter is equal to the rank of the quantum matroid. The culmination of the study
of quantum matroids is the classification ([621, Thm. 39.6]) of non-trivial regular quantum
matroids with rank at least four: they are precisely those posets naturally associated with
Johnson, Hamming, Grassmann, bilinear forms, and dual polar graphs. We may use this
classification as follows.

Fix a Q-polynomial ordering (E;)2, of T'. Let Y be a non-empty subset of V' and
let x be its characteristic vector. Brouwer, Godsil, Koolen, and Martin [81] defined the
width and dual width of Y by w = max{i : x' A;x # 0} and w* = max{i : x' E;x # 0},
respectively. They showed among other results that w + w* > D, and we call Y a
descendent (cf. [598]) of I if equality holds. It follows that every descendent is completely
regular, and that the induced subgraph is a Q)-polynomial distance-regular graph if it is
connected; cf. [81, Thm. 1-3].' We say that a set Z of descendents of I' satisfies (UD),
if each two vertices z,y € V at distance i are contained in a unique descendent in & with
width .

12The results in [81] are in contrast with Delsarte theory [189] based on the minimum distance and
(maximum) strength of a subset. We may remark that Suda [574] recently developed a theory which
unifies and ‘interpolates’ some of the theorems in [189] and [81] to a certain extent.
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Proposition 5.10. [598] Let 2 be a set of descendents of T'. Suppose that the following
properties hold.

(i) T' has classical parameters,
(i) 2 satisfies (UD), for all 1,
(i) YINYy € 2U{0} for all Y1,Y2 € 9.

Then @, together with the partial order defined by reverse inclusion, forms a non-trivial
reqular quantum matroid. In particular, if D > 4 then I" is either a Johnson, Hamming,
Grassmann, bilinear forms, or dual polar graph.

It was also shown that if & is the set of all descendents of I" then condition (iii) in the
above proposition is implied by the other two. See [81, 594, 337, 598] for more information
on descendents.

Unlike regular semilattices and quantum matroids, uniform posets are not assumed
to be semilattices, but give rise to at least 13 infinite families of ()-polynomial distance-
regular graphs with unbounded diameter, rather than just five as above; cf. [615, §4].
Suppose I' is (Q-polynomial and) bipartite, and fix z € V. Then we may view " as the
Hasse diagram of a ranked poset with D + 1 fibers I';(x) (i = 0,1,..., D). Miklavi¢ and
Terwilliger [496] recently showed that this poset is uniform.'® Caughman [113] showed
that the graph on the top fiber I'p(x) defined in the previous manner (which is in this case
the induced subgraph of the distance-2 graph of I') is distance-regular and @-polynomial.
See [630] and the references therein for more results on uniform posets.

The poset . consisting of all strongly closed subgraphs of I' with partial order de-
fined by reverse inclusion plays an important role in the study of distance-regular graphs
having classical parameters with b < —1. Suppose I" has geometric parameters (D, b, «)
(cf. Section 4.5) with D > 4 and is D-bounded in the sense of Weng [648, 650], i.e., every
A € . is assumed to be regular. Then b < —1 by [650, Lemma 5.5]. (Conversely, if I'
has classical parameters with b < —1,D > 4,a; # 0,c3 > 1 then I' is D-bounded and
has geometric parameters; cf. [650, Thm. 5.7, 5.8].) In this case, Weng [648] showed that
& is a ranked (meet) semilattice and every interval is a modular atomic lattice which is
isomorphic to a projective geometry over GF(b?).

5.8 'Tridiagonal systems

Let W be a finite dimensional vector space over C. Let a € Endc (W) be diagonalizable,
and let (6;)2_, be an ordering of the distinct eigenvalues of a. Then there is a sequence of el-
ements (¢;)2_, in Ende (W) such that (i) ae; = 0;e;; (i) eje; = d;e;; (iii) Z?:o ¢; = 1, where
1 is the identity element in Endc(W). (Specifically, ¢; =[], Z:_efgjl (1=0,1,...,6).) We
call ¢; the primitive idempotent of a associated with 0; (i = 0,1,...,9). Let a* be another

13See [496] for the precise statement of the result, noting that the hypercube H(D,2) with D even
has two @-polynomial structures. They also introduced the concept of strongly uniform and investigated
when the poset I' has that property.
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diagonalizable element in Endc(W). Let (67)3-, be an ordering of the distinct eigenvalues
of a* and let (ef)?_, be the corresponding sequence of the primitive idempotents. The
sequence ® = (a; a*; (e;)0_y; (¢1)2-,) is a tridiagonal system (or TD system) if

/1=

ejae; =0 ifli—j/>1 (i,j=0,1,...,),
ga‘e; =0 ifli—j|>1 (i,j=0,1,...,0),

and W is irreducible as a Cla, a*]-module. This definition is due to Ito, Tanabe, and
Terwilliger [349].1* Note that if T" is a Q-polynomial distance-regular graph then it follows
from (10) that every irreducible T-module naturally has the structure of a TD system.

Suppose that @ is a TD system. Ito et al. [349] showed § = 0*. Define U; =
(S et W) N (0 eW) (i =0,1,...,0). Note that Uy = ¢, and that (a — 6;1)U; C
Uiyr, (a* = 01)U; C U;—y (i = 0,1,...,9), where Uy = Usy; = 0. They showed
W = @) ,U. Tt also turns out that dime;}V’ = dime;W = dimU; (i = 0,1,...,4).
The sum W = @f:o U, is called the split decomposition and plays a crucial role in the
theory of TD systems. Let p; = dime;W (i = 0,1,...,d) and call the sequence (p;)°_,
the shape of ®. They showed that the shape is symmetric and unimodal: p; = ps_;
(1=0,1,...,0) and p;—1 < p; (1 =1,2,...,19/2]). A TD system with pg =---=ps =1
is called a Leonard system [623]. Leonard systems provide a linear algebraic framework for
Leonard’s theorem and have been extensively studied; see [627] and the references therein.
Note that if the TD system ® is afforded on an irreducible T-module of a @-polynomial
distance-regular graph, then the T-module W is thin if and only if ® is a Leonard system.
See [117] for a detailed description of thin irreducible T-modules motivated by the theory
of Leonard systems.

Ito et al. [349] showed that there exist scalars p,v,~v*, g, 0* € C such that

0 = [a, a*a* — paa*a + a*a® — y(aa* + a*a) — pa*], (16)

0 = [a*, a**a — pa*aa® + aa*® — v*(a*a + aa*) — o*al, (17)
where [b, ¢] := bc — ¢b, and (cf. (13))

Oi—o — 0;11 _ 07 5 — 07y

0i—1 —0; 07 — 07

—p+1 (i=23,....0—1). (18)

The relations (16) and (17) generalize the g-Serre relations (which are among the defining
relations of the quantum affine algebra U, (sIy)) and the Dolan-Grady relations (which are
the defining relations of the Onsager algebra); cf. [622]. It is conjectured ([349, Conj. 13.7])
that there exist positive integers dy, 09, . . ., d,, such that Zf:o pit' =T (1 +t+-- - 199),
where t is an indeterminate. This conjecture in fact suggests that ® would be regarded
as a ‘tensor product’ of Leonard systems. Let ¢ be a nonzero scalar in C such that
p = ¢* + ¢ 2. Using the representation theory of U,(sly) (cf. [122]), Tto and Terwilliger

1TD systems can be defined on vector spaces over arbitrary fields, and many of the results are valid
over wider classes of fields. However, for simplicity and in view of the connections to the theory of
@-polynomial distance-regular graphs, we shall only discuss TD systems over C.
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(351, 358] indeed constructed all TD systems (up to isomorphism!®) explicitly as tensor
products of Leonard systems (i.e., evaluation modules), under the assumption that ¢ is
not a root of unity. We remark that in this case the split decomposition corresponds
to the weight space decomposition. See also [350, 352, 356, 357, 236, 295]. Ito [private
communication] pointed out that the proofs of most of the results in [358] work under
the weaker assumption ¢ # =£1, ie., p # £2. It seems that the above conjecture is
still open for general TD systems, but Nomura and Terwilliger [521, 523 showed among
other results that py = 1, and more generally, p; < (f) (1 =0,1,...,6), a result which
would follow directly from the conjecture. See, e.g., [291, 353, 348] for some results on
TD systems with p = 2.
Observe now that the 1-dimensional subspace ejWW is invariant under

(a* —071)(a* —651) ... (a" —Of1)(a — 0;—11) ... (a — O11)(a — Op1)

for i = 0,1,...,0, and let (; be the corresponding eigenvalue (i = 0,1,...,d). The
sequence ((0;)2_q; (07)2_g; (C:)oy) is called the parameter array of ®. Nomura and Ter-
williger [521] showed that the parameter array is a complete invariant for a TD system.
Ito, Nomura, and Terwilliger [347] established the following theorem:

Theorem 5.11. [347, Thm. 3.1] Let m = ((6;)%_y; (0)0_y; (G)2_y) be a sequence of scalars
in C such that 0; # 0;, 07 # 05 if i # j (4,5 = 0,1,...,0), and suppose that (18) holds for
some p € C. Then there exists a (unique) TD system with parameter array = if and only

Zf CO = 17 CJ 7£ 07 and Z?:O Cl Hg:i-s—l(eo - 95)(06 - 9;) 7é 0.

We remark that the left-hand side of the last condition on the (; is a certain value of the
Drinfel’d polynomial of the corresponding TD system; cf. [356, 358]. See, e.g., [522, 524,
57] for more results on TD systems.

Given the above progress in the theory of TD systems, it is important to ‘pull back’ the
results to the study of Q-polynomial distance-regular graphs. For example, Pascasio [534]
used the symmetric and unimodal property of the shape of ® to study the multiplicities m;
of a @-polynomial distance-regular graph IT'; cf. Section 5.7.5. Terwilliger [626] ‘extended’,
so to speak, the split decompositions of the TD systems on the irreducible T-modules to
the entire standard module C”; and obtained the split and displacement decompositions
for T'. Tto and Terwilliger [354] used these decompositions to show that for the forms
graphs there are four natural algebra homomorphisms from U, (5A[2) to T via the so-called ¢-
tetrahedron algebra X, [352], and that T is generated by each of their images together with
the center Z(T). Corresponding results for the case p = 2, i.e., for Hamming and Doob
graphs, were recently obtained by Morales and Pascasio [501]. See also [355, 393, 394] for
more results on the split and displacement decompositions. Worawannotai [652] applied a
similar idea to dual polar graphs to show (among other results) that there are two algebra
homomorphisms from the quantum algebra U,(sls) to T, and that T is again generated by

1A TD system ® = (a/;a*; (¢})2_g; (¢1')9_,) on a vector space W' is isomorphic to ® if there is an
isomorphism of vector spaces o : W — W’ such that ca = a’c, oa* = a*'o, and oe; = ¢jo, o¢} = ¢}’ for

i=0,1,...,6.
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each of their images together with Z(T). The split and displacement decompositions have
also been applied to the Assmus-Mattson theorem for codes in ()-polynomial distance-
regular graphs [595]; cf. [78, §2.8].

6 The Terwilliger algebra and combinatorics

In this section, let I' be a distance-regular graph with diameter D > 3, valency k > 3,
and eigenvalues k = 0y > 6, > --- > 0p. Concerning 1-homogeneity of distance-regular
graphs, we shall occasionally consider the following weaker concepts. We say I' is 1-
homogeneous with respect to an edge xy if the parameters p; ;.. s exist with respect to z,y
for all 4, 5,7, s =0,1,..., D; cf. Section 4.6. We say I is 1-homogeneous with respect to a
vertex x € V if it is 1-homogeneous with respect to the edge xy for every y € I'(z) and
the parameters p; ;.. s do not depend on the choice of y.

6.1 Homogeneity and tight distance-regular graphs
6.1.1 Tight distance-regular graphs

Jurisi¢, Koolen, and Terwilliger [382] showed the following so-called ‘fundamental bound’:

k k ka1b1
0 0 z ——. 19
(1+a1+1>(D+a1+1) (a1+1)2 ( )

For a; = 0, equality holds if and only if I' is bipartite. One way to prove this bound is
to use the fact ([78, Thm. 4.4.3]) that (n; — 01)(n; — 0p) < 0 for i = 2,3,... k, where
él =—-1- 1_?191, éD =—-1- 1}:5}3, and a; =1, = 19 = ... = 1 are the eigenvalues of a
local graph; cf. [375]. This immediately shows that if a; # 0 then equality holds if and
only if every (or at least one) local graph is connected strongly regular with non-trivial
cigenvalues 0, 0p. We may also prove (19) by considering the determinants of the Gram
matrices of the three vectors Fe,, Fe,, Ex11(x,y) for adjacent vertices z,y € V and
E € {Ey,Ep}, where x11(z,y) is the characteristic vector of I'y1(z,y) = I'(x) N '(y);
cf. [382]. See also [535] for another proof. We say I is tight if a; # 0 and equality holds
in (19). Jurisi¢ et al. [382] showed that I" is tight if and only if a1 # 0, ap = 0, and T’
is 1-homogeneous. To be more precise, call an edge xy tight with respect to a non-trivial
eigenvalue 6 if Ee,, Ee,, Ex11(z,y) are linearly dependent, where E is the primitive
idempotent corresponding to 6. Then the following properties are all equivalent: (i) I" is
tight; (ii) a; # 0 and every (or at least one) edge of I' is tight with respect to both 6;
and 6p; (iii) a; # 0, ap = 0, and T" is 1-homogeneous (or 1-homogeneous with respect to
an edge). Pascasio [533] showed that if T is Q-polynomial then the following properties
are equivalent: (i) I' is tight; (ii) I" is non-bipartite and ap = 0; (iii) I" is non-bipartite
and aj, = 0. More characterizations of the tightness property will be given in the next
sections. The fundamental bound inspired quite a bit of the later research by Terwilliger
and his students.

It follows from the above result of Pascasio that the non-bipartite antipodal -
polynomial distance-regular graphs are tight; examples are the Johnson graph J(2D, D),
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the halved 2D-cube, the non-bipartite Taylor graphs and the Meixner 2-cover; cf. Section
5.5.8. There are several sporadic examples known, all of which have diameter 4, and
of which only one is primitive, namely the Patterson graph. Jurisi¢ and Koolen [376,
Thm. 3.2] showed that tight distance-regular graphs with D = 3 are precisely the non-
bipartite Taylor graphs. Suda [575] recently gave a simple proof of this result by looking
at the intersection matrix L; cf. (3).

Using the fact that the Patterson graph, the Meixner 4-cover, the 3.07(3)-graph,
and the 3.04 (3)-graph are tight and hence 1-homogeneous, one can easily show that
the minimal convex subgraph of two vertices at distance two is a complete multipartite
graph K, «; with n > 2, ¢t > 2. This leads in each of the cases to its uniqueness as a
distance-regular graph; cf. [377, 378, 379, 380, 88].

The family of tight antipodal distance-regular graphs with D = 4 is called the AT4-
family. That they are 1-homogeneous gives rise to several feasibility conditions; cf. [375].
Jurisi¢ and Koolen [379] classified the members of the AT4-family with complete mul-
tipartite p-graphs. Jurisié, Munemasa, and Tagami [384] simplified, generalized, and
strengthened some of the results in [379)].

Vidali and Jurisié¢ [643] recently showed the non-existence of primitive tight distance-
regular graphs with classical parameters (D,b,b — 1,bP~1), where D >4 and b > 1.

6.1.2 The CAB condition and 1-homogeneous distance-regular graphs

Jurisi¢ and Koolen [374] introduced the CAB; condition. For vertices z,y € V at distance
i =0,1,...,D, define the sets C;(z,y) = I'i_1(z) N ['(y), Aj(x,y) = Ty(x) NT'(y), and
Bi(z,y) = Tip1(z) N T(y) (with T_y(z) = T'pyi(z) = 0). For j = 0,1,...,D, we say
I' satisfies CAB;, if for all ¢ = 0,1,...,7 and =,y € V at distance i, the partition
{Ci(x,y), Ai(x,y), Bi(x,y)} of the local graph Y(y) is equitable (where we assume that
empty sets are excluded from the partition). It is clear that ' satisfies CABy, and that '
satisfies CAB; if and only if it is locally strongly regular. Note that if I' satisfies CAB,
then the p-graph Y(x,y) for vertices z,y € V at distance 2 is regular. Jurisi¢ and Koolen
[374] showed that if I" satisfies CAB; then for all i = 0,1,...,5 and z,y € V at distance
i, the quotient matrix of {C;i(z,y), A;(z,y), Bi(z,y)} does not depend on the pair z,v,
but only on i. They also showed that if a; # 0 then I' satisfies CABp if and only if
it is 1-homogeneous. Note that if a; = 0 then I' always satisfies CABp. Nomura [516]
showed that the 1-homogeneous distance-regular graphs of order (s,t) with s > 2, ¢t > 1
are exactly the regular near 2D-gons, a result that can be shown easily using the CABp
condition. Jurigi¢ and Koolen [374] also determined the 1-homogenous Terwilliger graphs,
and gave an algorithm to determine all 1-homogeneous distance-regular graphs that are
locally a given strongly regular graph. See also [377].

6.1.3 More results on homogeneity

Miklavic [486] showed that the triangle-free Q-polynomial distance-regular graphs are 1-
homogeneous. Note that if a; = 0 then the multiplicity of an eigenvalue distinct from £k
is at least k by Terwilliger’s tree bound; cf. Section 14.1. Coolsaet, Jurisi¢, and Koolen
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[142] showed among other results that I' is 1-homogeneous if it has an eigenvalue with
multiplicity k, a; = 0, as # 0, and a4 = 0 (when D > 4), and then ruled out the infinite
family of intersection arrays {2u® + g, 2u® + o — 1, %, p, 1; 1, oy g2, 200 + o — 1,202 + p}
(u > 2). For u = 1, this intersection array is uniquely realized by the dodecahedron.
Jurisi¢, Koolen, and Zitnik [383] showed among other results that if I' is primitive and
has an eigenvalue with multiplicity k£, a; = 0, and D = 3, then the association scheme
underlying I' is formally self-dual and thus I' is @-polynomial and 1-homogeneous.

Nomura [517] classified the 2-homogeneous bipartite distance-regular graphs; cf. Sec-
tion 5.5.8. Nomura [518] also classified the 2-homogeneous generalized odd graphs. Ya-
mazaki [654] observed that if I' is bipartite then I" has an eigenvalue with multiplicity k
if and only if it is 2-homogeneous, while Curtin [146] showed that if I" is bipartite then I'
is 2-homogeneous if and only if it is ()-polynomial and antipodal.

6.2 Thin modules

Thin irreducible T-modules with endpoint 1 have been extensively studied; see e.g., [618,
261, 624, 625] and Section 5.6. For example, let v be a nonzero vector in EfCY which
is orthogonal to Aje,, so that Egv = 0. Go and Terwilliger [261] showed that if E;v
vanishes for some ¢ = 1,2,..., D then i € {1, D} and Av is a thin irreducible T-module
with endpoint 1 and diameter D — 2. There is also a characterization of thin irreducible
T-modules with endpoint 1, involving the pseudo primitive idempotents introduced by
Terwilliger and Weng [628]. Let 8 € C (not necessarily an eigenvalue of I'). The pseudo
cosine sequence for 0 is the sequence (ai)go defined by o9 = 1 and the recursion ¢;o;_1 +
a;0; + bijoiy1 = Oo; for i = 0,1,...,D — 1; cf. (4). A pseudo primitive idempotent Ejy
associated with 6 is then any nonzero scalar multiple of Zfio 0;A;. We also define F
to be any nonzero scalar multiple of Ap. Let v be as above, and let (A;v) = {M € A :
Mv € EjCY}. Note that J € (A;v). Terwilliger and Weng [628] showed that Tv is a
thin irreducible T-module (with endpoint 1) if and only if dim(A;v) > 2. Moreover, if
this is the case, then dim(A;v) = 2 and we have (A;v) = spanc{J, Ej;}, where 7 is the
local eigenvalue corresponding to Tv and

o0 ifn=-1,
n=<—1 if n = oo,
— —1%7 if n # —1,00.

Terwilliger [625] obtained an inequality'® involving the local eigenvalues of ', and showed
that equality is attained if and only if I" is 1-thin with respect to the base vertex z. Go

6We may remark that the discussions in [625] and those in the proof of the spectral excess theorem
(Theorem 10.2) given by Fiol and Garriga [226] are similar in nature. In [625], Terwilliger is concerned
with the thinness of irreducible T-modules with endpoint 1 of a distance-regular graph, whereas Fiol and
Garriga [226] take a “local approach”, which can be understood as being concerned with the thinness of
the primary T-module of a general (finite, simple, and connected) graph. (See [618] for the basic theory
about the Terwilliger algebra of a general graph.) In both cases, the characterization of the thinness as
equality in a bound is obtained by focusing on two specific vectors in E},C".
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and Terwilliger [261, Thm. 13.7] showed that the following properties are all equivalent:
(i) I is tight; (ii) ' is non-bipartite, ap = 0, and I" is 1-thin; (iii) I is non-bipartite,
ap = 0, and I'" is 1-thin with respect to at least one vertex.

We have some comments. It is well known that a; # 0 implies a; # 0 for ¢ =
1,2,...,D—1; cf. [78, Prop. 5.5.1]. Dickie and Terwilliger [199] showed that if I" is 1-thin
with respect to at least one vertex then a; = 0 implies a; = 0 for ¢ = 1,2,...,D —
1. We note that these results have dual versions for ()-polynomial association schemes;
cf. [197, 199].

Collins [136] showed that I' is thin with ¢5 = 1 if and only if it is a generalized octagon
of order (1,t¢). This shows that if I' is thin then the numerical girth ¢ is at most 8 (and
cannot be 7). (Collins [136] only mentioned the implication for the girth of I".) Suzuki
[589] strengthened this result as follows. Suppose T is of order (s,t), and recall that g
coincides with the geometric girth in this case. Suzuki showed among other results that
(i) g < 11 if there is a thin irreducible T-module with endpoint 3; (ii) I is a regular near
polygon'” if and only if it is 1-thin; (iii) if g > 8 then I is a generalized 2D-gon of order
(1,t) if and only if it is 1- and 2-thin; (iv) if g > 8 then I' is a generalized octagon of order
(1,t) if and only if it is 1-, 2-, and 3-thin.

Curtin [147] studied the Terwilliger algebras of bipartite distance-regular graphs. Sup-
pose for the moment that I' is bipartite. Then he showed among other results that I is
always 1-thin with a unique irreducible T-module with endpoint 1 up to isomorphism,
and that if I is 2-thin with respect to the base vertex x then the intersection array is
determined by D and the multiplicity in C¥ of each of the irreducible T-modules W with
endpoint 2, together with the scalar (W) = —% — 1, where n(W) is the eigen-
value of E5A;FE; on E5W, which is an eigenvalue of the local graph of x in the halved
graph of I'. See also [148]. In particular, if I" is 2-thin with respect to z with (at most)
two irreducible T-modules Wy, W5 with endpoint 2 up to isomorphism, then it turns out
that the intersection array is determined by D, k, ¢, ¥(W7), and ¢ (W5).

Collins [137] studied in detail the relation between the irreducible T-modules of an
almost bipartite distance-regular graph I' and those of its bipartite double [. In particular,
he showed that T' is thin if and only if T is thin.

6.3 Vanishing Krein parameters

Vanishing of Krein parameters often leads to strong (combinatorial) consequences. A
classical example is a result of Cameron, Goethals, and Seidel [107] which states that if a
strongly regular graph satisfies either ¢}, = 0 or ¢3, = 0 then for every vertex, the induced
subgraphs on both of the subconstituents are strongly regular.!® See [263, 376, 373] for
similar results for antipodal distance-regular graphs with diameter 3 or 4. In this section,
we discuss more results on this topic.

1"The referee kindly pointed out an error in [589, Thm. 1.2(ii)].
18Tn passing, by the results of [107] one can quickly find all the irreducible T-modules of a strongly
regular graph. In particular, it is always thin; cf. [635].
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6.3.1 Triple intersection numbers

Coolsaet, Jurisi¢, and others used vanishing Krein parameters to obtain information on
triple intersection numbers as follows. Let x,y,z € V. For r,s,t = 0,1,...,D, let
ey = Hu eV d(z,u) = rd(y,u) = s,d(z,u) = t}|. Now, if ¢}, = 0 then it follows
from (8) that

D
Z QriQs; Qunprdy = 0. (20)
r,s,t=0

This equation gives some extra information on the triple intersection numbers. We note
that (8) was also used earlier by Terwilliger [607] to study the number of 4-vertex con-
figurations with given mutual distances; he showed that if I' is @Q-polynomial then such
numbers can be computed from the intersection array and the numbers of 4-vertex cliques
in I'1,I, ..., pjg). Using (20), Coolsaet and Jurisi¢ [141] ruled out the infinite family
of intersection arrays {4r3 4+ 8r? +6r+1,2r(r+1)(2r+1),2r2 +2r+1;1,2r(r + 1), (2r +
)2 +2r+ 1)} (r > 2). The case r = 1, ie., {19,12,5;1,4,15}, was eliminated
by Neumaier; cf. [74, §5.5A]. Coolsaet and Jurisi¢ also ruled out the intersection array
{74,54,15;1,9,60}. Jurisi¢ and Vidali [388] used the above idea of triple intersection num-
bers to show that there exists a set of vertices mutually at distance 3 of size p3; + 2 for
distance-regular graphs with intersection arrays {(2r2—1)(2r+1),4r(r?—1),2r%1,2(r*—
1), 7(47?2=2)} or {2r*(2r+1), (2r—1)(2r*+r+1),2r% 1,2r% r(4r*—=1)} (r > 2), and showed
that consequently such graphs do not exist. Urlep [637] used (20) to rule out the intersec-
tion arrays {(r+1)(r*—1),r(r—1)(r*+r—1),7*=1; L,r(r+1), (r*=1)(r*+r—1)} (r = 3).
For r = 2, this intersection array is uniquely realized by the halved 7-cube. Vidali [642] re-
cently used (20) again to rule out the intersection array {55, 54, 50,35, 10; 1,5, 20,45, 55}.

6.3.2 Hadamard products of two primitive idempotents

Another important use of vanishing Krein parameters is the study of pairs of non-trivial
primitive idempotents E, F' such that £ o F' is a linear combination of a small number
of primitive idempotents; cf. (6). For convenience, we define e(M) = {E; : ME; # 0}
for M € A. Pascasio [532] showed that non-trivial primitive idempotents E, F' satisfy
le(EoF)| = 1 precisely when one of the following holds: (i) I'is tight, {F, F'} = {E, Ep},
and e(F o F) ={Ep_1}; (ii) T is bipartite and Ep € {E, F'}.

Suppose for the moment that I' is bipartite with D > 4. Let 6,6 be eigenvalues of
I’ other than £k, and let E, F' be the primitive idempotents associated with 6,6’. Then
le(E o F)| > 1 by (ii) above. MacLean [455] called the pair {E, F'} taut if |e(E o F')| = 2.
He showed that |e(E o F)| = 2 if and only if 0,0 attain equality in what he called the
‘bipartite fundamental bound’. We comment on the proof of this result. Let £ = E; and
F =E;, and for t = 0, 1,2, let f; be the vector in R”*™! with h-coordinate

h
m

eg,/% (h=0,1,...,D). (21)
Ly
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Then fy, f;, f; are linearly dependent if and only if |e(E o F)| = 2, and computing the
determinant of the (positive semidefinite) Gram matrix of fy, fi, f, yields the bipartite
fundamental bound. See [459, 458] for more proofs of this bound. We say I' is taut if
it has a taut pair of primitive idempotents and is not 2-homogeneous. MacLean [455,
Thm. 1.4] showed that {F, F'} is taut precisely when one of the following holds: (i) T’
is taut and {E,F} € {{En, E;} : h € {1,D — 1}, € {r,D — 7}} where 7 = |D/2];
(ii) T is 2-homogeneous and {E, F} N{Ey,Ep_1} # 0. For D = 4,5, T is taut or 2-
homogeneous if and only if I" is antipodal [455, §§7-8]. MacLean and Terwilliger [459]
showed among other results that if D is odd then the following are equivalent: (i) I' is
taut or 2-homogeneous; (ii) I is antipodal and 2-thin; (iii) I" is antipodal and 2-thin with
respect to at least one vertex; see also [460]. Examples of taut graphs with odd D > 5 are
the Doubled Odd graphs, the Doubled Hoffman-Singleton graph, the Doubled Gewirtz
graph, and the Doubled 77-graph; cf. [456, p. 131]. For D even and at least 6, MacLean
[455, Thm. 5.8] showed that I" is taut or 2-homogeneous if and only if its halved graphs
are tight. If I" is taut in this case, then it turns out however that D # 6 and that no
known example of a tight distance-regular graph with diameter at least 4 can be a halved
graph of T'; cf. [457].

Retaining the situation of the last paragraph, let Ag be the representation diagram?
of E = E;, and let (up,)P_, be the standard sequence associated with E. Note that 0 and
D are leaves (i.e., terminal vertices) in Ag, and that j is a leaf in Ag precisely when
le(Eo F)|=2and F € ¢(F o F). Lang [436] showed that

9

(up — upr)(ug —up_1) = (ug — up)(up —up) (h=1,2,...,D —1), (22)

with equality for every h = 1,2,..., D—1 (or just for h = 3) if and only if u;_; —pup+upiq
is independent of h = 1,2,..., D —1 for some p € R. When E attains equality, Lang [434]
showed that (i) up # 1 if and only if Ag is a path (i.e., £ is @-polynomial); (ii) up = 1 if
and only if Ag is the disjoint union of two paths. It follows that if case (ii) occurs then I'
is antipodal and the folded graph is @-polynomial; cf. [436, Thm. 10.2, 10.4]. Note that
in both cases (i) and (ii), E is a tail, i.e., |e(E o E)| < 3 and |e(F o E)\{Ey, F}| < 1.
Conversely, Lang [434] showed that if E is a tail and D # 6 then E attains equality in
(22). Lang [435] also showed that Ap has a leaf other than 0, D if and only if E attains
equality in (22) and case (ii) occurs above. One of the other results in [436] is that if
D > 6 and I has more than one primitive idempotent that attains equality in (22), then
I' is the D-cube.

Suppose now that I' is arbitrary (i.e., D > 3 and not necessarily bipartite). By
considering the Gram matrix of fy and f;, Pascasio [535] later extended some of the
results in [532], as well as the fundamental bound, to the level of P-polynomial character
algebras. Tomiyama [634] considered the situation where one of 1, D is a leaf in Ag and
generalized some of the results in [435, 436, 532, 533].

Assume E = F (soi = j) and 0(= ¢') # k. Then |e(E o E)| > 2. We call E a light

The representation diagram of E = E; is the simple graph with vertex set {0,1,..., D}, where two
distinct vertices h, ¢ are adjacent whenever qfh #0.
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tail®® [387] if |e(E o E)| = 2. Let £}, f] be the vectors obtained from fy, f;, respectively, by
the removal of the O-coordinate. Note that f{, f] are linearly dependent if and only if F is a
light tail. Jurisi¢, Terwilliger, and Zitnik [387] considered the Gram matrix of £}, f]. In this
case, the resulting inequality gives a lower bound on the multiplicity of 6; cf. Proposition
14.5. They showed among other results that distance-regular graphs with a light tail are
close to being 1-homogeneous, i.e., the parameters p; ;., s exist with respect to, and are
independent of, every pair of adjacent vertices x,y € V for all ¢, j,7,s =0,1,..., D except
possibly @ = 7 =2,3,..., D — 1. In particular, the local graphs are strongly regular. We
note that these results generalize those of Cameron, Goethals, and Seidel [107] mentioned
at the beginning of Section 6.3. They indeed showed that primitive strongly regular
graphs with a light tail (and k > 3) are precisely the Smith graphs.

6.4 Relaxations of homogeneity

In the previous sections, we explored connections among homogeneity, thin modules,
tightness, local graphs, Hadamard products of two primitive idempotents, and so on. In
fact, many of these results can be generalized in several directions, as we discuss below.

We say I' is pseudo 1-homogeneous with respect to an edge xy [385] if the parameters
Dijir,s €xist with respect to x,y for all 4, j,r,s = 0,1,..., D except possibly i = j = D. Let
0 € R\{k}, and let Ejy be a pseudo primitive idempotent associated with 8; cf. Section 6.2.
We say the edge xy is tight with respect to 6 [385] if a non-trivial linear combination of
Eye,, Eye,, Egx11(x,y) is contained in the subspace spang{e, : z € I'p p(z,y)}. Jurisi¢
and Terwilliger [385] showed among other results that if a; # 0 then the edge zy is tight
with respect to two distinct real numbers if and only if I' is pseudo 1-homogeneous with
respect to zy and the induced subgraph on I'y 1 (x,y) is not a clique. Under the condition
a; # 0, Curtin and Nomura [157] characterized the situation where I' is 1-thin with respect
to x with precisely two non-isomorphic irreducible T(x)-modules with endpoint one, in
terms of the pseudo 1-homogeneous property?' of the edges zy (y € I'(z)). They studied
in detail the case where a; = 0 as well. Extending the work of Pascasio [532] on the
tightness property, Pascasio and Terwilliger [537] described exactly when Fy o Ey with
0,0 € R is a scalar multiple of E, for some 7 € R.

Suppose for the moment that I" is bipartite with D > 4, and let x,y be vertices with
d(z,y) = 2. Curtin [146, §§4-5] showed that I" is 2-homogeneous if and only if |I'; 1 (x, y) N
I';_1(2)| depends only oni = 1,2,..., D —1 and is independent of z € I'; ;(z,y). We say I'
is almost 2-homogeneous [150] if the same condition holds for ¢ = 1,2,..., D — 2. Recall
that I is 1-thin with a unique irreducible T-module with endpoint 1 up to isomorphism.
Curtin [150] showed among other results that I" is almost 2-homogeneous if and only if it
is 2-thin with a unique irreducible T-module with endpoint 2 up to isomorphism. Curtin
[150] and Jurisi¢, Koolen, and Miklavi¢ [381] classified the almost 2-homogeneous bipartite

201t is easy to see that if e(E o E) = {Ey, E'} then I is antipodal with D = 3; cf. [387, Thm. 4.1(b)].
We view this case as degenerate, so we propose to assume E ¢ e(F o E) as well in the definition of a light
tail.

211t should be remarked that Curtin and Nomura [157] do not require the existence of the parameter
PD,D—1;r,s With respect to z,y.
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distance-regular graphs: the 2-homogeneous graphs (cf. Section 5.5.8), the generalized
2D-gons of order (1,k — 1), the folded 2D-cube, and the coset graph of the extended
binary Golay code.?? Lang [437] considered when Fy o Fy with 6§ € C\{k, —k} is a linear
combination of J and E, for some 7 € C, and showed that this occurs precisely when I'
is almost 2-homogeneous and ¢ > 2.

In some cases, it is possible to get an equitable partition of V' from II = {T'; ;(x,y) :
Iij(z,y) # 0,45 = 0,1,...,D}, where d(z,y) = h € {1,2}, by refining some of the
Lii(x,y) (1 = 2,3,...,D) into two cells, even when II itself is not equitable. This was
worked out in detail by Miklavi¢ for distance-regular graphs having classical parameters
with b < —1, a3 # 0 [487] (h = 1), for bipartite Q-polynomial distance-regular graphs
with ¢; = 1 [488] (h = 2), and for the bipartite dual polar graphs Dp(q) [492] (h = 2).
See also [489] for a description of the A-module spanned by {x;;(z,y) :4,j =0,1,...,D}
with h = 2 (cf. Section 5.4) for bipartite (-polynomial distance-regular graphs. The
parameters of the new equitable partition give rise to additional integrality conditions,
and he used these conditions to show that there is no bipartite ()-polynomial distance-
regular graph with D = 4 and girth 6; cf. Section 5.7.3.

7 Growth of intersection numbers and bounds on the diameter

In this section we will look at the growth of intersection numbers and its consequences
for bounds on the diameter.

7.1 The Ivanov bound
Ivanov [359] obtained the first general diameter bound for distance-regular graphs.

Theorem 7.1. (The Ivanov bound) Let I' be a distance-reqular graph with diameter
D > 2, head h, and valency k. Let 2 < i < i+j < D —1. If (¢;_1,ai-1,bi1) #
(ciyai, b)) = (Ciygy @iggy bivg), then j < i. In particular, D < 28=Y(h + 1).

Suzuki [587, p. 67] gave a proof of this bound using so-called intersection diagrams. Bang,
Hiraki, and Koolen [27, 319] improved the Ivanov bound, as we shall discuss below. One
of the tools that they used is the following result of Koolen [404], [407, Prop. 2.3].

Proposition 7.2. Let I" be a distance-reqular graph with diameter D.
(i) If ¢; > ¢izy for somei=2,...,D, thenc;_j+c; < ¢ forallj=1,...,i—1,
(i) If b; > biy1 for somei=0,...,D —2, thenb; > b;y; +c¢; forallj=1,...,D —1.

Wajima [644] also obtained Proposition 7.2 (but with a completely different method), and
Hiraki [315] obtained slight improvements of this result. Another tool by Bang et al. [27]
is the following.

228ee also [591] for a generalization of this result (as well as Nomura’s classification [517, 518] of bipartite
or almost bipartite 2-homogeneous distance-regular graphs) to triangle-free distance-regular graphs. That
the coset graph of the extended binary Golay code is almost 2-homogeneous was pointed out by Lang
[437, Lemma 3.4].
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Proposition 7.3. Let I' be a distance-reqular graph with valency k and diameter D. For
1<e<k, define e =min{i: ¢; > ¢} andn. = [{i: ¢; =c}|. Thenn. <& — 1.

Using a combination of Propositions 7.2 and 7.3, Bang et al. [27] improved the Ivanov
bound as follows (using the notation as introduced in Proposition 7.3):

Proposition 7.4. Let I' be a distance-regular graph with valency k and diameter D. Then
1
D < 51{:047]1 + 17

where o = inf{z > 0:4% — 23 <1} ~ 1.441.

Hiraki [311] showed, using earlier work from [123, 303, 308, 320], that if A > 2, then
Cont3 = 2 or, in other words, n; < 2h + 2. This immediately implies that if h > 2, then

D <k (h+1)+1.

For h = 1, it is conjectured by Hiraki [304] that there exists a constant C' such that
11 < C. Chen, Hiraki, and Koolen [124] showed that if a; # 2 and a; < 100, then ¢y > 2.

In the next sections we present better diameter bounds for certain subclasses of
distance-regular graphs.

7.2 Distance-regular graphs of order (s,t)

The following result was first shown by Terwilliger [605] for distance-regular graphs with
a; = 0 or ¢ > 2. Later it was generalized by Faradjev, Ivanov, and Ivanov [212] to
distance-regular graphs with a; > 0. We present their bound for the case that I' is locally
a disjoint union of cliques and ¢.1 > 2 holds. In the next section we will also present the
bound of Terwilliger for the case ¢y > 2.

Proposition 7.5. (cf. [587, Thm. 1.4.3, Cor. 1.4.4]) Let I" be a distance-reqular graph of
order (s,t) with head h, valency k, and diameter D > 2. If ¢jyq > 1, then b; > by, and
ci < cCiyp foralli=0,1,...,D — h, and in particular, D < th + 1.

For the bipartite case, Koolen [404] and Hiraki [315] made some improvements. Hiraki
[315] showed that if T" is a bipartite distance-regular graph with head h > 2 and diameter

D, then I is a Doubled Odd graph or D < [%Jh; see also Section 9.2. For the weakly
geometric case, Suzuki obtained the following.

Proposition 7.6. (cf. [587, Prop. 3.1.6]) Let I be a weakly geometric distance-regqular
graph of order (s,t) with head h and diameter D. Then b; > biip1 and ¢; < ¢iipy1 for
alli=0,1,...,D —h—1. In particular, D < t(h+1) + 1.

Corollary 7.7. Let T' be a distance-reqular graph of order (s,t) with head h and diameter
D. If s > t, then I' is geometric and hence b; > b pi1 and ¢; < ciipy1 for all i =
0,1,...,D —h—1 and in particular, D < t(h+ 1) + 1.

Corollary 7.8. For all integer t > 1 there exists a constant C; such that for all distance-
reqular graphs I of order (s,t), the diameter of I' is bounded by Cih(T'), where h(I') is the
head of T'.
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7.3 A bound for distance-regular graphs with c; > 2
Terwilliger [605] obtained the following bound for distance-regular graphs with ¢, > 2.

Proposition 7.9. (cf. [78 Thm. 5.2.5, Prop. 1.9.1]) Let T be a distance-reqular with
diameter D > 2 and cy > 2. If cy > 2(a1+1), then ¢;—b; = ¢;_o—b;_o+2 (i =2,3,...,D),
and in particular D < k. Moreover, if max{ay,2} < ¢g, thenc; > ¢;1+1 (1 =2,3,..., D).

Caughman [109] improved this result for bipartite distance-regular graphs as follows.

Proposition 7.10. Let I" be a bipartite distance-regular graph with valency k, diameter
D>3,andcy>2. Leti=1,2,...,D—1. Ifk > c¢;((ca—1)(ca —2)(¢; —c;i=1 — 1) /24 1),
then c;i1 = ci(ca — 1) + 1.

Moreover, Terwilliger [606] obtained the following diameter bound.

Proposition 7.11. (cf. [78, Thm. 5.2.1, Cor. 5.2.2]) Let I' be a distance-reqular graph
with diameter D. If ' contains an induced quadrangle, then ¢; —b; > ¢;_1 —bi_1 + a1 + 2

and, in particular, D < %

The distance-regular graphs with diameter k+c[2’ and containing a quadrangle have second

largest eigenvalue by — 1 and have been classified: besides the strongly regular graphs
with smallest eigenvalue —2, these are the Hamming graphs, Doob graphs, halved cubes,
Johnson graphs, locally Petersen graphs, and the Gosset graph, see [78, Thm. 5.2.3|; also
cf. Section 5.1. Note that if a distance-regular graph contains a quadrangle then the
second largest eigenvalue is at most b; — 1.

Neumaier [513] showed among other results that if there are infinitely many distance-
regular graphs with fixed ay, ¢, a;, ¢; containing an induced quadrangle then necessarily
¢iy1 = 1+ (c2 — 1)¢;. For dual polar graphs, equality holds.

7.4 The Pyber Bound

Using a slightly weaker result than Proposition 7.2, Pyber [544] showed that D < 5log, v
for a distance-regular graph with v vertices and diameter D. This essentially settles a
problem in ‘BCN’ [78, p. 189]. Pyber’s bound was improved by Bang, Hiraki, and Koolen
27] to D < §log, v.

8 The Bannai-Ito conjecture

In 1984, Bannai and Ito [38, p. 237] made the following conjecture.

Bannai-Ito conjecture. There are finitely many distance-regular graphs with fixed valency
at least three.

This Bannai-Ito conjecture has recently been proved by Bang, Dubickas, Koolen, and
Moulton [24]. In the next section, we will give an outline of this proof.
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8.1 Proof of the Bannai-Ito conjecture

Let T'" be a distance-regular graph with valency £ > 3, head h, and diameter D. The
Ivanov bound (Theorem 7.1) tells us that D < 4%h. So in order to prove the conjecture
it suffices to bound h as a function of k.

Bannai and Ito [40] obtained the following result, using head and tail. Recall that the
latter is defined by ¢t = £(b1, a1, ¢).

Theorem 8.1. Let M > 1 and k > 3. Then there are finitely many triangle-free distance-
reqular graphs with valency k, and diameter D < h+t+ M.

The key idea of the proof of this theorem is as follows. By interlacing, I' has an eigenvalue
in the interval (2/k — 1 cos 2% h+1 ,2v/k — 1cos h+1) Let © be the set of algebraic conjugates

of 6. Then
[T —k+1)
0'cO
is a nonzero integer. Let S = {x € [—k,k] : [2* — k + 1] > 1}. If h is large enough,
then @ ¢ S and there is an algebraic conjugate 6’ of # which is in S. Now it can be
shown, using Biggs’ formula (Theorem 2.8), that the multiplicity of 6 is of order ;5. If
"€ (—=2vk — 1,+2vk — 1), then the multiplicity of ¢ is Q(%), and else the multiplicity
of 6" is O(-%) for some fixed real @ > 1. This shows that the multiplicities of § and ¢’
are not the same if h large, which is a contradiction to the fact that they are algebraic
conjugates. Therefore h is bounded.
Suzuki [580] generalized this result by replacing the triangle-free condition by the
condition (a; + 1)(a; + 2) < k. Bang, Koolen, and Moulton [34] extended the result as
follows.

Proposition 8.2. Let k > 3. Then there exists a positive € = €, such that there are
finitely many distance-reqular graphs I with valency k, and diameter D < h +1t + €h.

The proof of Proposition 8.2 closely follows the proof of Theorem 8.1. Instead of consid-
ering an eigenvalue in the above mentioned interval close to 2v/k — 1, so-called indicator
intervals are used.

Let G = {(¢i,a;,b;) i =1,2,.. — 1} and g = |G|; note that ¢ < 2k — 3. We
will assume that G = {(%, a, f;) i = 1 2,...,9} is ordered by ~;+1 = 7; and Bi41 < 5.
Let ¢; = ((vi, o, 3;) for @ = 1,2,..., g, whence h = ¢;. Let £; = a; — 2¢/7;53; and
Ri = a; + 2¢/7:5; be the left and right indicator points, respectively. The indicator
interval is defined as the open interval Z; = (£;,R;), i = 1,2,...,g. Using the fact that
the ¢;s are non-decreasing and the b;s are non-increasing, it is fairly easy to see that (R;);
is a unimodal sequence. The fact that b; +a; > a1 +2 (i = 1,2,...,D — 1) implies that
Ry = Ra.

By removing from the (tridiagonal) intersection matrix L rows and columns 0, ¢1, {1 +
Uy, ..., 01 +---+ {4, 1, D and using interlacing, it follows that at most 2g + 2 eigenvalues
of I' (in general this is a relatively small number compared to the total) do not lie in any
of the indicator intervals. Instead of taking € close to Rq, one can show that there must
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exist an eigenvalue 6 close to a right indicator point different from Ry if D — h —t is
large enough. Then it is shown in a similar way as in Theorem 8.1 that there exists an
algebraic conjugate of # whose multiplicity is different from the multiplicity of ; again a
contradiction, so A is bounded.

Until now the approach was to calculate the multiplicity of a specific eigenvalue pre-
cisely and then show that this eigenvalue has an algebraic conjugate with a different
multiplicity. For a proof of the Bannai-Ito conjecture one needs to use another tactic, es-
pecially in the case that D — h —t is large. The idea here is to find an interval Z in which
there are at least 0h eigenvalues (where 4 is a positive real number only depending on k)
and in which every two algebraic conjugate eigenvalues 6 and ¢ satisfy |6 — ¢'| < f(h),
where f(h) — 0 (h — o0). The main reason that one can find such an interval Z is that
the right indicator points form a unimodal sequence. Although to calculate the multi-
plicities of the eigenvalues only involves three-term recurrence relations, to show that Z
really exists and that we can approximate the multiplicities in Z well enough is extremely
technical and subtle. Using some elementary number theory, it then follows that the
number of algebraic conjugates of eigenvalues in Z (which must all be eigenvalues of T') is
at least z(h)h, where z(h) — oo (h — 00). But as the the number of eigenvalues besides
the valency is exactly D, which — by the Ivanov bound — is at most 4*h, we see that
this is a contradiction if h is large. Again, this means that h is bounded, which proves
the Bannai-Ito conjecture.

8.2 Extensions of the Bannai-Ito conjecture

Bannai and Ito [39] showed that the length £(c, k — 2¢, ¢) is bounded by 10k2* for every c.
This inspired Hiraki, Suzuki, and others to obtain bounds for ¢(1,k — 2,1). The current
best bound is by Hiraki [314], who obtained ¢(1,k—2,1) < 14if k > 3and ¢(1,k—2,1) < 1
if k& > 58. Inspired by this, Bang, Koolen, and Moulton [33] showed that if b and ¢ are
positive integers, then there exists a constant k;, > max{b+ ¢,3} such that if I" is a
distance-regular graph with valency k > ki, and h > 2, then ¢(c,k — b — ¢,b) < 1. This
implies, by using the validity of the Bannai-Ito conjecture, that if b and ¢ are positive
integers, then there exists a constant /., such that for every distance-regular graph I"
with valency k& > max{b+c¢,3} and h > 2, we have that {(c,k —b—c,b) < lpay. It is still
an open problem whether this is true for h = 1 and ¢, = 1. This has been conjectured by
Bang et al. [33]. Park, Koolen, and Markowsky [531] extended the Bannai-Ito conjecture
as follows.

Proposition 8.3. Let M be a positive integer. Then there are finitely many distance-
reqular graphs with valency k > 3, diameter D > 6, and k—]j <M.

For diameter at most four, the analogous result is not true. For diameter two this is
clear. For diameter three, the Taylor graphs have ks = k and the incidence graphs of the
complements of projective planes of order ¢ have k = t*> and ko = t?> +t. For diameter
four, the Hadamard graphs have ko = 2(k — 1).

Koolen and Park [419] showed that the only primitive distance-regular graphs with
k—kz < 1.5, and diameter at least three are the Johnson graph J(7,3) and the halved 7-cube.

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS22 61



8.3 The distance-regular graphs with small valency

The edge is the only distance-regular graph with valency one, and the polygons are the
distance-regular graphs with valency two. The distance-regular graphs with valency three
have been classified by Biggs, Boshier, and Shawe-Taylor [52] (see also [78, Thm. 7.5.1]):
There are exactly 13 of them and all have diameter at most 8.

The intersection arrays of the distance-regular graphs with valency four have been
classified by Brouwer and Koolen [89]. There are exactly 17 such intersection arrays and
all have diameter at most 7 (all graphs are known, except perhaps for point-line incidence
graphs of a generalized hexagon of order three).

The distance-regular graphs with valency 6 and a; = 1 (i.e., of order (2, 2)) have been
classified by Hiraki, Nomura, and Suzuki [325]. There are exactly five of them and they
are all geometric. This last result also completes the classification of all distance-regular
graphs with valency at most 7 and a; > 1 (see [325] for a complete list).

The larger t is, the more difficult it is to classify the distance-regular graphs of order
(s,t). For example, it is much harder to classify the distance-regular graphs with valency
5 than the distance-regular with valency 6 and a; = 1. For t = 1 we have the line graphs,
and Yamazaki [653] developed some theory for the case ¢t = 2. It is not known whether
for a distance-regular graph with order (s,t), one can bound the diameter in terms of ¢
only, if t > 2 (see also Corollary 7.8).

9 Geometric distance-regular graphs

9.1 Metsch’s characterizations

As mentioned before, Metsch characterized most of the Grassmann graphs and bilinear
forms graphs by their intersection arrays. From these intersection arrays, he recovers the
geometric properties of these graphs. An important ingredient for this is the following
proposition, which is used to construct lines — large cliques — that partition the edge
set.

Proposition 9.1. [478, Result 2.2] Let u > 1, A\, A2, and m be integers. Assume that T'
15 a connected graph with the following properties:

(i) Every two adjacent vertices have at least \y and at most Ay common neighbors,
(ii) Fvery two nonadjacent vertices have at most pu common neighbors,
(i) 2A1 = Ao > 2m —1)(p—1) — 1,

(iv) Every vertex has fewer than (m + 1)(A; +1) — 3m(m + 1)(u — 1) neighbors.

Define a line to be a mazimal clique C satisfying |C| > A\ +2 — (m —1)(u — 1). Then
every vertex is on at most m lines, and every two adjacent vertices lie in a unique line.
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In [478], Metsch used Proposition 9.1 and a characterization of projective incidence struc-
tures by Ray-Chaudhuri and Sprague [546] (see also [78, Thm. 9.3.9], and [158] for a
generalization by Cuypers) to characterize the Grassmann graphs. The interesting thing
is that he hardly required any of the regularity conditions that follow from the intersection
array. The only conditions that Metsch used were the intersection number ¢y and upper
and lower bounds on the number by(z) of neighbors of a vertex z, and on the number of
common neighbors a;(z,y) of two adjacent vertices x and y, and a lower bound on the
number by (z,y) of vertices z and y at distance two. In weaker form, the characterization
is as follows.

Proposition 9.2. [478, Thm. 1.1] Let ¢ > 2 be an integer, and let D and n be integers
satisfying 2D < n. Let s +1 = (¢" P = 1)/(¢—1) and m = (¢” —1)/(¢ —1). Let T
be a connected ms-reqular graph with the property that every two adjacent vertices have
a; = s — 14 (m — 1)q common neighbors and every two vertices at distance two have
ca = (¢ + 1) common neighbors, and such that every two vertices x and y at distance

two have by(x,y) > (m—q—1)(s —¢* —q). If D # 2,2, or 5% (for all q) and (D, q) #

("7_2,2), ("7_2,3), or (”7_3,2), then q is a prime power and I' is the Grassmann graph

Jy(n, D).

Building on work by Huang [341] and a characterization of attenuated spaces by Sprague
[569], Metsch [481] also used Proposition 9.1 to characterize the bilinear forms graphs.

Proposition 9.3. Let I" be a distance-reqular graph with classical parameters (D, q, a, 5),
where « = ¢ — 1 and D > 3. Suppose that either ¢ = 2 and 3 > ¢ —1 or ¢ > 3 and
B = ¢P™® — 1. Then q is a prime power, B = ¢¢ — 1 for some integer e, and I' is the
bilinear forms graph Bil(D X e, q).

Proposition 9.1 can be used further in characterizing other geometric distance-regular
graphs. We will get back to this in Section 9.4.

9.2 Characterization of Doubled Odd and Doubled Grassmann graphs

In Section 4.5 we mentioned the distance-biregular graphs that arise as incidence graphs
between the vertices and the cliques coming from the (D + 1)-subspaces in the Grassmann
graph J,(n, D), and the similar one (with (D+1)-subsets) from the Johnson graph J(n, D).
Cuypers [158] classified the distance-biregular graphs with diameter at least 5 and cff =
1 < cf = ¢ (R being one of the color classes): the only ones are the above mentioned
graphs and the Doubled Moore graphs. This implies that the Doubled Grassmann graphs,
the Doubled Odd graphs (the case n = 2D + 1), and also the Doubled Hoffman-Singleton
graph are determined as distance-regular graphs by their intersection arrays.

Hiraki [315] (also) characterized the Odd graphs and the Doubled Odd graphs among
the distance-regular graphs by a few of their intersection numbers, as we already men-
tioned for the Odd graphs in Section 2.3. Moreover, Hiraki [312] characterized the Doubled
Grassmann graphs, the Doubled Odd graphs, and the Odd graphs by their strongly closed
subgraphs.
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9.3 Bounds on claws

An m-claw in a graph I' is an induced m-star K ,,, or in other words, a coclique of size
m in one of the local graphs Y(x),z € V.

If T is a geometric distance-regular graph (with respect to a set of Delsarte cliques C)
with smallest eigenvalue —m, then it follows easily that each vertex is in m cliques of C,
and hence I" has no (m + 1)-claws. Under some conditions, a reverse statement can be
made, as we shall see at the end of this section. Besides this, the existence of claws of
certain size gives rise to new parameter conditions. But as we shall see, sometimes the
intersection numbers force the existence of claws, thus giving some nonexistence results.

A special case of a result of Metsch’s work [477, Lemma 1.1.b] on the existence of large
cliques in graphs is the following (see also work by Godsil [265, Lemma 2.3] or Koolen
and Park [418, Lemma 2]).

Lemma 9.4. Let I be a distance-regular graph. Let x be a vertex and let i be the

mazimum size of I'(x) NT(y) NT'(2) where y ~ x ~ z and y o z. If the local graph Y (x)
m(a1+1)—k

(3)
The following consequence of this lemma was observed by Koolen and Park [418, Thm. 4],
using that a ‘greedy’ coclique in Y (z) has at least k/(a; + 1) vertices.

contains a coclique of size m, then pu >

Proposition 9.5. Let I' be a distance-reqular graph with valency k and diameter D > 2,
and let m' = [-£-7. Then
a1+1
m'(a1 +1) — k
()

with equality implying that T is a Terwilliger graph.

(23)

62—12

This result shows that there are no distance-regular graphs with intersection arrays
{44,30,5;1,3,40}, {65,44,11;1,4,55}, {81,56,24,1;1,3,56,81}, {117,80,30,1;1,6,80,
117}, {117,80,32,1;1,4,80,117} and {189,128,45,1;1,9,128,189} (the last four were
also ruled out by Jurisi¢ and Koolen [375]).

Gavrilyuk [239] showed that the only distance-regular graphs with ¢, > 1 for which
equality holds in (23) are the Icosahedron, the Conway-Smith graph, and the Doro graph.
Gavrilyuk [240] also extended the above by using Brooks’ theorem to eliminate the ex-
istence of a distance-regular graph with intersection array {55,36,11;1,4,45}. Brooks’
theorem (see [60, Thm. 14.4]) states that the chromatic number of a connected graph
is at most its maximum valency, except for the odd cycles and complete graphs. For a
distance-regular graph I, this implies that YT (x) has a coclique of size at least k/a;, unless
possibly when Y (z) contains an odd cycle (if a; = 2) or an (a; + 1)-clique as one of its
components. This means that Proposition 9.5 can be sharpened a bit.

Proposition 9.6. Let I' be a distance-regular graph with valency k and diameter D > 2,
and let m" = f%} If for some vertex x, the local graph Y(x) does not contain an odd
cycle or an (ay + 1)-clique as one of its components, then

m’(a; +1) — k
(")
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In particular, if I has smallest eigenvalue 6,,;,, then this proposition can be applied when
-1- Gm:+1 < ay (in which case the local graph is connected) and a; # 2.

In her work on distance-regular graphs without 4-claws, Bang [21] also ruled out the
intersection array {55,36,11;1,4,45}. Moreover, she related such graphs to geometric
distance-regular graphs with smallest eigenvalue —3. This led to the following more

general result by Bang and Koolen [32].

Proposition 9.7. Let m > 3 be an integer, and let I' be a distance-regular graph with

diameter D > 2 and wvalency larger than max{m? — m, min’I (ay + 1)}. Then I' has no

(m41)-claws if and only if T is a geometric distance-reqular graph with smallest eigenvalue

—m.

For m = 3, a slightly stronger result was obtained by Bang [21], in the sense that the
corresponding result holds for valency larger than max{3,$(a; + 1)}. We finally note
that the distance-regular graphs without 3-claws have been determined by Blokhuis and
Brouwer [54], and that some more work on distance-regular graphs without 4-claws has
been done by Guo and Makhnev [281] and Bang, Gavrilyuk, and Koolen [26].

9.4 Sufficient conditions

Proposition 9.8. Let I' be a distance-reqular graph with diameter D with the property
that there exists a positive integer m and a set C of cliques in I' such thatl every edge is
contained in exactly one clique of C and every verter x is contained in exactly m cliques
of C. If |C| < |V, then T is geometric with smallest eigenvalue —m. In particular, this is
the case if min{|C|: C' € C} > m.

Proof. Consider the |V|x|C| incidence matrix N, where N,c = 1 if x € C and 0 otherwise.
Then NN =mlI + A, so the smallest eigenvalue 0, of I' satisfies O, > —m. Suppose
now that |[V| > |C|. Then NN is singular and hence i, = —m. By the Delsarte bound,
every clique C has size at most 1 — -2~ = 1 4 % On the other hand, by considering

Omin
the cliques C' € C containing a fixed vertex, we see that they have 1 + % vertices on
average. This means that all cliques in C' contain exactly 1+ % vertices, and hence I is a
geometric distance-regular graph. In particular, if min{|C|: C € C} > m, then it follows
by counting the number of incident pairs (x, C') in two different ways that |C| < |V, so I’
is geometric. O

This proposition implies that distance-regular graphs of order (s,t) are geometric with
smallest eigenvalue —t — 1 if s > t; see also Corollary 7.7. Using Proposition 9.1 we now
obtain the following result.

Proposition 9.9. Let m > 2 be an integer, and let I be a distance-reqular graph with
(m—1)(a1 +1) < k <m(ar1 +m) and diameter D > 2. If a; = sm(m + 1)(cs + 1), then
I' is geometric with smallest eigenvalue —m.

Proof. The two given lower bounds on a; assure that Proposition 9.1 can be applied, i.e.,
that a1 > (2m —1)(c; — 1) and k < (m + 1)(a; + 1) — 3m(m +1)(cs — 1). Thus the set C
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of maximal cliques of size at least a; + 2 — (m — 1)(cy — 1) forms a set of lines such that
each vertex is in at most m lines, and each edge is in exactly one line. The given lower
bound on k assures that each vertex is in exactly m lines. Because the minimal line size
is at least a3 +2— (m —1)(ca — 1), which is at least m + 1 by one of the given inequalities,
it follows from Proposition 9.8 that I' is geometric with smallest eigenvalue —m. O

We note that the assumption k& < m(a; + m) holds for all distance-regular graphs with
smallest eigenvalue —m (see [410]).

9.5 Distance-regular graphs with a fixed smallest eigenvalue

Generalizing results by Neumaier [509] and Godsil [265], Koolen and Bang [410] showed
the following.

Theorem 9.10. For given m > 2, there are only finitely many non-geometric distance-
reqular graphs with both valency and diameter at least 3 and smallest eigenvalue at least
—m.

Note that valency 2 is excluded because of the odd polygons; and diameter 2 because of
the complete multipartite graphs. Koolen and Bang [410] did not quite prove this result,
as they restricted themselves to graphs with c¢o > 2. The graphs with ¢; = 1 are of order
(s,t), with s = a; +1 and ¢ = k/s — 1. If such a graph has smallest eigenvalue at least
—m, then by interlacing (see Section 4.4.1), the existence of a (¢ 4+ 1)-claw implies that
t +1 < m? Because a distance-regular graph of order (s,t) that is not geometric has
s < t, it follows that k = s(t + 1) < (m? — 1)m?. Therefore the result for the case ¢y = 1
follows from the Bannai-Ito conjecture. Note that the (general) result was known for
m = 2, see [78, Thm. 3.12.4, 4.2.16].

Because the smallest eigenvalue of a geometric graph is always integral, this theorem
also gives a partial answer to the question from [78, p. 130] whether every distance-regular
graph with valency at least three and diameter at least three has an integral eigenvalue
besides the valency.

One may also wonder whether it is true that for a given integer m > 2, there are
only finitely many geometric distance-regular graphs with D > 3, ¢, > 2, and smallest
eigenvalue —m, besides the Grassmann graphs, Johnson graphs, bilinear forms graphs,
and Hamming graphs. For D = 2 this is not true, but Neumaier [509] showed that in
essence the geometric strongly regular graphs fall into two infinite classes.

Concerning large smallest eigenvalue, we know that the distance-regular graphs with
smallest eigenvalue —1 are exactly the complete graphs. The ones with smallest eigenvalue
—2 are either strongly regular (and classified by Seidel [556]) or line graphs (and classified
by Mohar and Shawe-Taylor [497]) [78, Thm. 3.12.14]. Among these, the only geometric
distance-regular graphs with D > 3 and k& > 3 are the generalized 2D-gons of order
(s,1), s > 2 and D = 3,4,6, and the line graphs of the Petersen graph, the Hoffman-
Singleton graph, and putative Moore graphs on 3250 vertices (see [78, Thm. 4.2.16]).
Bang and Koolen [31] finished the classification of the geometric distance-regular graphs
with diameter at least 3, ¢o > 2, and smallest eigenvalue —3, by showing that such a
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graph is a Hamming graph, Johnson graph, or a generalized quadrangle of order (s, 3)
minus a spread (with s = 3 or 5). Yamazaki [653] obtained strong restrictions on distance-
regular graphs of order (s,2), s > 3. The (five) distance-regular graphs of order (2,2)
were classified by Hiraki, Nomura, and Suzuki [325]. All of these graphs are geometric
with smallest eigenvalue —3.

9.6 Regular near polygons

Recall from Section 4.5 that a distance-regular graph I' of order (s, t) with diameter D is
called a regular near 2D-gon if a; = c;a; for all © = 1,2,..., D, and that such a graph is
geometric. We call I" thick if s > 2.

Theorem 9.11. (cf. [78, Thm. 6.6.1, 9.4.4]) Let I be a thick regular near 2D-gon with
D>4. Ifco >3 o0rc =1 (i=2,3), then I' is either a dual polar graph or a Hamming
graph.

Proof. (sketch) For ¢o > 3, the proof is implicitly given in [78]. Brouwer and Wilbrink [94]
showed that a thick regular near 2D-gon with D > 4 and ¢y > 3 satisfies c3 = c3—cy+1 (the
gap as mentioned in [78, p. 206] is repaired by De Bruyn [181]). From [78, p. 277, Rem. ii|
(a remark on a a result by Brouwer and Cohen [77]), it follows that a thick regular near
2D-gon with c3 = c3 — co + 1 and ¢y > 3 is a dual polar graph.

For the case ¢; = i (i = 2,3), we will give a sketch of the proof, as it is not in
the literature. Let I'" be a thick regular near 2D-gon of order (s,¢) with D > 4 and
¢; =1 (i = 2,3). First, by a result of Brouwer and Wilbrink [94], one may assume that
¢; =1 fori < D—1. Second, it can be shown that if I" is of order (s,¢) with ¢; =i (i = 2, 3)
and ay = cpaq, then there exists a map ¢ : H(t+ 1,5 — 1) — T, such that the partition
{¢7!(z) : * € V} is completely regular (cf. [515, Thm. 3]). Using Theorem 4.1, one
can show that ¢~!(z) is a completely regular code with minimum distance 2D. Now its
truncated code is a perfect (D — 1)-error-correcting code and by the perfect code theorem
(see for example [330]), the only such codes with D > 4 (that are relevant to us; s > 2)
are the codes consisting of exactly one code word. This shows that ¢cp = D and that I' is
the Hamming graph H(D, s + 1). This finishes the proof of the theorem. O

In some cases, the intersection numbers of a distance-regular graph imply that it must
be a regular near 2D-gon; if ¢ = 1, a; < 1, or the graph has classical parameters
(D,—a; — 1,0, 5), see [619]. This for example implies that there can be no distance-
regular graphs with intersection array {147,144,135;1,4,49} (and classical parameters
(3,—3,—3,21)), because it would yield a regular near hexagon with (s, co,c3) = (3,4,49)
and this was ruled out by Shult according to Brouwer [69].

Let I" be a thick regular near polygon with diameter D and head h. Hiraki [306]
showed that if D > 2h + 1, then h € {1,2,3} (he mentions also the possibility A = 5, but
this would lead to a thick generalized 12-gon, a contradiction). This result also follows
from Proposition 11.3 (ii) (m = h — 1), as we obtain a thick generalized 2(h + 1)-gon
as strongly closed subgraph, and by the Feit-Higman theorem (cf. [78, Thm. 6.5.1]), it
follows that h + 1 € {2,3,4}. Hiraki [310] conjectured that if D > 2h + 1, then h = 1.
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For a thick regular near 2D-gon with D < 2h, one can bound the valency in terms of aq,
see [322].

De Bruyn and Vanhove [184] (see also [641]) obtained that for a regular near 2D-gon
with a; > 0, the intersection numbers satisfy ¢z < (a1 +1)? + 1 and

(@ + 1) = D(eia = (a + D7) _ P (Crs D'+ 1) (cim1 + (a1 +1)72)
(a1 +1)i2 —1 ST (a1 +1)2+1

for i = 3,4,...,D. Neumaier [511] obtained the upper bound for odd i and the lower
bound for even i as a specialization of the balanced set condition of Section 5.4 for the
smallest eigenvalue of a regular near 2D-gon. For D = ¢ = 3, the upper bound is the
Haemers-Mathon bound [282, p. 60]** for regular near hexagons. The upper bound for
even i and the lower bound for odd i can be seen as a specialization of Tonejc’s [636]
modification of the balanced set condition.

The following is a slight extension of a result due to Brouwer, Godsil, Koolen, and
Martin [81, Thm. 10]:

Proposition 9.12. Let T' be a thick reqular near 2D-gon with quads (i.e., geodetically
closed subgraphs with diameter two). Then the second smallest eigenvalue 0p_1 of T
satisfies

b
(a1 +1)(cz = 1)
with equality if and only if every quad has width and dual degree summing to D. Equality
occurs only for the dual polar graphs and Hamming graphs.

Op—1 =2 a1 +1—

The last sentence of the above proposition follows from the following. Let H be a sub-
hexagon of I" and @ be a subquadrangle in H. Brouwer and Wilbrink [94] showed that
c3 = ca(cg — 1) + 1 with equality if and only if there is no vertex at distance 2 from
in H; see also [181, p. 26]. Suppose there is a vertex z at distance 2 from @ in H. If
D > 4, this means that ) cannot be a completely regular code in I', as this vertex has
distance at most 3 to all vertices in (), while there also exists a vertex y at distance 2
from @) with distance 4 to some vertex in (). If D = 3, then the dual degree is at least the
covering radius of () in H, which is at least two, and therefore the sum of the width and
dual degree is at least 4. Therefore c3 = ca(co — 1) + 1, and hence I is a dual polar graph
or a Hamming graph (for D > 4, this follows from Theorem 9.11, whereas for D = 3, it
follows from [78, Thm. 9.4.4]).
For more results on regular near polygons, we refer to [321, 323, 324, 629].

10 Spectral characterizations

It is known that distance-regularity of a graph is in general not determined by the spec-
trum of the graph; see below and the overview by Van Dam, Haemers, Koolen, and Spence

23This bound is also called the Mathon bound. It was obtained jointly by Haemers and Mathon.
Yanushka recognized that the bound can be obtained from a Krein condition. Besides the remark in
[282], this is all unpublished.

THE ELECTRONIC JOURNAL OF COMBINATORICS (2016), #DS22 68



[175]. See also the survey by Fiol [222] on algebraic characterizations of distance-regular
graphs, and the surveys by Van Dam and Haemers [172, 173] on spectral characterizations
of graphs.

10.1 Distance-regularity from the spectrum

The following proposition surveys the cases for which it is known that distance-regularity
follows from the spectrum.

Proposition 10.1. If I is a distance-reqular graph with diameter D, valency k, girth g,
and distinct eigenvalues k = 0,01, ...,0p, satisfying one of the following properties, then
every graph cospectral with I' is also distance-reqular, with the same intersection array as
I:

(i) g 22D —1 [82],

(ii) g = 2D — 2 and T is bipartite [171],

(i) g > 2D —2 and cp_1cp < —(cp_1+ 1)(01 +--- +0p) [171],

(iv is a generalized odd graph, that is, a; = =ap_1 =0, ap # 0 [174, 342],

(vi) T is the dodecahedron, or the icosahedron [285],
(vii) ' is the coset graph of the extended ternary Golay code [171],

(viii) T is the Ivanov-Ivanov-Faradjev graph [175],

)
)
) g
) T
(V) o =--=cpy=1[171],
)
)
)
)

(ix) T is the Hamming graph H(3,e), with e > 36 [23].

In fact, more general results hold, because it is actually not in all cases (explicitly) required
that the graph is cospectral to a distance-regular graph. Instead, for the graph to be
distance-regular, it suffices that a similar spectral condition holds, where the diameter D
is replaced by the number of distinct eigenvalues minus one, and the intersection numbers
by the so-called preintersection numbers; for details, we refer to Abiad, Van Dam, and
Fiol [2].

Note that the polygons, strongly regular graphs, and bipartite distance-regular graphs
with diameter three are special cases of (i) and (ii). We also refer to the survey paper
by Van Dam and Haemers [172], where a list of distance-regular graphs that are known
to be determined by the spectrum is included (except that the antipodal 7-cover of Ky
is not mentioned). Van Dam, Haemers, Koolen, and Spence [175] give a list of graphs
cospectral with distance-regular graphs on at most 70 vertices (where Hadamard graphs on
64 vertices are missing). Note that Van Dam and Haemers [172] conjectured that almost
all graphs are determined by the spectrum. It follows from the prolific constructions of
distance-regular graphs by Fon-Der-Flaass [232] (see also Section 3.2.3) that almost all
distance-regular graphs are not determined by the spectrum.
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For (ix), we refer to Bang, Van Dam, and Koolen [23], who showed that the Hamming
graph H(3,e) with diameter three is uniquely determined by its spectrum for e > 36.
Moreover, it is shown that for given D > 2, every graph cospectral with the Hamming
graph H (D, e) is locally the disjoint union of D copies of the complete graph of size e — 1,
that is, it is geometric, for e large enough. The latter is obtained by bounding the number
of common neighbours of two vertices in terms of the spectrum, and applying Proposition
9.1. The result on the Hamming graphs with diameter three then follows from a result
by Bang and Koolen [30] who showed that if a graph cospectral with H(3,e) has the
same local structure as H(3,e), i.e., if it is geometric, then it is either the Hamming
graph H(3,e) or the dual graph of H(3,3). Furthermore, it is known that for D >
e >3, (D >4ande = 2), or (D > 2and e = 4), the Hamming graph H(D,e) is
not uniquely determined by its spectrum, whereas for (2 < D < 3and e = 2) or (e >
D = 2 and e # 4), the Hamming graph H (D, e) is uniquely determined by its spectrum
(cf. [78, 175, 285, 328]).

Van Dam, Haemers, Koolen, and Spence [175] showed that the Ivanov-Ivanov-Faradjev
graph is determined by its spectrum, whereas the Johnson graphs, the Doubled Odd
graphs, the Grassmann graphs, the Doubled Grassmann graphs, the antipodal covers of
complete bipartite graphs, and many of the Taylor graphs are shown to have cospec-
tral mates that are not distance-regular. These mates are usually obtained by Godsil-
McKay switching or by constructing partial linear spaces that resemble the structure of
the distance-regular graphs in question. Van Dam and Haemers [171] also used switching
to construct cospectral mates that are not distance-regular for the Wells graph, the bipar-
tite double of the Hoffman-Singleton graph, the triple cover of GQ(2,2), and the Foster
graph.

10.2 The p-rank

The p-ranks of T', that is, the ranks over GF(p) of matrices of the form A + ol + gJ
with «, 8 integral (and A the adjacency matrix), can sometimes be used to distinguish
cospectral graphs. Peeters [539] studied these p-ranks of distance-regular graphs. He
showed among other results that for odd e, the Hamming graphs H (3, e) are determined
by the spectrum and the 2-rank of A+ I. On the other hand, he showed that the p-ranks
of the Doob graphs and the Hamming graphs (with the same intersection array) are the
same.

10.3 Spectral excess theorem

The spectral excess theorem by Fiol and Garriga [226] states that a connected regular
graph with d + 1 distinct eigenvalues is distance-regular (with diameter d) if and only
if for every vertex, the number of vertices at distance d from that vertex (the excess)
equals a given expression in terms of the spectrum (the spectral excess). So a simple
‘quasi-spectral’ property suffices for a graph to be distance-regular. To specify the re-
sult, one should know that from the spectrum of a regular graph, a system of orthogonal
polynomials v;,2 = 0,1,...,d — the so-called predistance polynomials — can be con-
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structed. For distance-regular graphs, this system is well-known, and satisfies A; = v;(A),
fori =0,1,...,d, where A; is the distance-i adjacency matrix; see (2).

Theorem 10.2. (Spectral excess theorem) Let I' be a connected k-regular graph on n
vertices with d + 1 distinct eigenvalues and corresponding orthogonal polynomials v;,1 =
0,1,...,d, and let ky(x) be the number of vertices at distance d from x. Then T is
distance-regular if and only if kq(x) = vg(k) for all x.

In fact, the theorem can be stated a bit stronger: instead of requiring that k4(x) = vy(k)
for all z, it is sufficient to require that the harmonic mean of n — k4(z) equals n — vy(k).
Another remark is that the spectral excess vy(k) can be computed from the spectrum
{k=06507,...,07} directly as

-1
n 1
Ud(k) = 7T_(2) [Z mi7r2] )

where m; = [[;; [0; — 0;] for i =0,1,...,d.

The first result of this kind was obtained by Cvetkovi¢ [159] and by Laskar [439], who
showed that for a Hamming or Doob graph with diameter three, distance-regularity is
determined by the spectrum and having the correct number of vertices at distance two
from each vertex. This result was generalized to all distance-regular graphs with diameter
three by Haemers [284], and subsequently by Van Dam and Haemers [170], who proved
the spectral excess theorem for graphs with four distinct eigenvalues (not assuming that
the graph has the spectrum of a distance-regular graph).

At the same time, Fiol, Garriga, and Yebra [229] showed that a graph with d + 1
distinct eigenvalues is distance-regular if each vertex has at least one vertex at distance
d and its distance-d adjacency matrix Ay is a polynomial of degree d in the adjacency
matrix A, which is the first important step towards the spectral excess theorem, which
was then proved by Fiol and Garriga in [226]. The improvement to considering the above
mentioned harmonic mean was later proved in [222] (see also [165]). Fiol also obtained
more specific results for antipodal distance-regular graphs [219] and for strongly distance-
regular graphs [220] (a distance-regular graph with diameter D is strongly distance-reqular
if its distance-D graph is strongly regular; examples are the connected strongly regular
graphs, antipodal distance-regular graphs, and distance-regular graphs with D = 3 and
0, = —1). Elementary proofs of the spectral excess theorem are given by Van Dam [165]
and Fiol, Gago, and Garriga [225]. The original proof by Fiol et al. [226, 229] has a
local approach and, because of that, it is quite technical.?* We remark however that by
this local approach, Fiol et al. manage to prove more related results. Van Dam and Fiol
[167] generalized the spectral excess theorem by dropping the regularity condition and
using the Laplacian eigenvalues. We refer the interested reader also to surveys by Fiol
(222, 223].

24In the language of the Terwilliger algebra, (part of) this local approach can be interpreted as finding
a condition on the thinness of the primary T-module; see Footnote 16.
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A wuseful application of the spectral excess theorem is, for example, given by the
construction by Van Dam and Koolen [176] of a new family of distance-regular graphs
with the same intersection array as certain Grassmann graphs, see Section 3.2.1. Distance-
regularity of these graphs is proved by showing that they have the same spectrum as the
Grassmann graphs, and then checking the number of vertices at extremal distance from
each vertex. The spectral excess theorem was also used by Van Dam and Haemers [174]
to show that each regular graph with d 4 1 distinct eigenvalues and shortest odd cycle of
length 2d +1 is a distance-regular generalized odd graph. Lee and Weng [441] generalized
this by dropping the regularity condition, using a version of the spectral excess theorem
for nonregular graphs. Van Dam and Fiol [166] obtained the same result by an alternative
method that avoids the spectral excess theorem; these results generalize Proposition 10.1
(iv) above.

Kurihara [428] obtained a dual version of the spectral excess theorem, in the sense
that it characterizes when a spherical 2-design generates a cometric association scheme.
Kurihara and Nozaki [430] and Nomura and Terwilliger [525] independently derived a
spectral characterization of P-polynomial schemes (and hence distance-regular graphs)
among symmetric association schemes that is closely related to the spectral excess theo-
rem.

10.4 Almost distance-regular graphs

Motivated by spectral and other algebraic characterizations of distance-regular graphs,
Dalf6, Van Dam, Fiol, Garriga, and Gorissen [163] studied almost distance-regular graphs.
They used the spectrum and the predistance polynomials of a graph to discuss concepts
such as m-walk-regularity and partial distance-regularity. It was shown by Rowlinson [552]
that a graph is distance-regular if and only if the number of walks of given length between
vertices depends only on the distance between these vertices. Godsil and McKay [272]
called a graph walk-regular if the number of closed walks of given length is constant. The
concept of m-walk-regularity, as introduced by Dalf6, Fiol, and Garriga [164], generalizes
both, and requires the invariance of the number of walks of each given length between
vertices at each given distance at most m. Algebraically, this is equivalent to A; o F; =
%Qiin foralli=0,1,...,mand j =0,1,...,d (and some Q;;), where the notation is as
usual (cf. Section 2.5). An interesting problem raised in [163] is to determine the smallest
m = m(D) such that each m-walk-regular graph with diameter D is distance-regular.
Informally, the question is till what distance m one needs to check m-walk-regularity to
assure distance-regularity. We expect that m(D) is approximately D/2.

Dalf6, Van Dam, and Fiol [161] showed that m-walk-regular graphs can be character-
ized through the cospectrality of certain perturbations of such graphs. As a consequence,
some new characterizations of distance-regularity in terms of certain perturbations are
obtained. Cdmara, Van Dam, Koolen, and Park [102] observed a structural gap between
1-walk-regularity and 2-walk-regularity. They showed among other results that Godsil’s
bound on the valency in terms of a multiplicity (in Theorem 14.3), Terwilliger’s bounds
on the local eigenvalues [78, Thm. 4.4.3], and the fundamental bound (19) generalize to
2-walk-regular graphs. Moreover, they show that there are finitely many non-geometric
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2-walk-regular graphs with given smallest eigenvalue and given diameter (in the same
spirit as Theorem 9.10).

Another concept is that of m-partial distance-regularity (distance-regularity up to
distance m). This means that for i < m, the distance-i matrix can be expressed as
a polynomial of degree i in the adjacency matrix, which is equivalent to saying that
the intersection numbers ¢;, a;, b; are well defined up to ¢,,. We note that there are
(D — 1)-partially distance-regular graphs with diameter D that are not distance-regular;
for example the direct product of an edge and the folded cube. Lee and Weng [442]
used 2-partial distance-regularity to characterize the distance-regular graphs among the
bipartite graphs whose halved graphs are distance-regular (cf. Proposition 2.13).

Related to these concepts are two other generalizations of distance-regular graphs. We-
ichsel [646] called a graph distance-polynomial if each distance-i matrix can be expressed
as a polynomial in the adjacency matrix. A graph is called distance degree regular if each
distance-: graph is regular. Such graphs were studied by Bloom, Quintas, and Kennedy
[56], Hilano and Nomura [302], and also by Weichsel [646] (as super-regular graphs). A
concept that is dual to partial distance-regularity was introduced by Dalf6, Van Dam,
Fiol, and Garriga [162].

11 Subgraphs

Let I' be a distance-regular graph. In this section, a subgraph in I" will always be an
induced subgraph. Recall that a code in I' is simply a non-empty subset of V.. Therefore,
subgraphs, codes, and (vertex) subsets will be virtually the same objects in this section,
and we shall adopt one of these names depending on the context. Completely regular
codes will be separately discussed in Section 12.

11.1 Strongly closed subgraphs

Suzuki [582, Thm. 1.1] showed that strongly closed subgraphs of distance-regular graphs
are usually distance-regular.

Theorem 11.1. Let A be a strongly closed subgraph of a distance-regular graph I'. Let h
be the head of I' and k be the valency of I'. Then one of the following holds:

(i) A is distance-reqular,
(i) 2 < Da < I,

(iii) h and Da are even, and A is a distance-bireqular graph with co;_1 = co; for all
i=1,2,...,1D4,

(iv) h =3, Da =5, and A is isomorphic to the graph obtained by replacing each edge in
a complete graph K, 1, { = 3, by a path of length 3,

(v) h=6, Da =8, and A is isomorphic to the graph obtained by replacing each edge in
a Moore graph with valency ¢ € {3,7,57} by a path of length 3.
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It follows that (i) holds above precisely when bp, 1 > bp,, and that (iv) or (v) hold
above precisely when a; = 0 and (¢p,—1,ap,-1) = (¢pysap,) = (1,1). The Biggs-Smith
graph is the only known example of a distance-regular graph with h > 2 which satisfies
(Cha1,anr1) = (Chao,ania) = (1,1). We note that if co > 2 then every strongly closed
subgraph of I" is distance-regular.

Hiraki [308] introduced the condition (SC), as the condition®® that for all vertices
x and y at distance m there exists a strongly closed subgraph A(z,y) with diameter
m containing x and y. Hiraki [311, Thm. 1] showed that (SC),, is equivalent to m-
boundedness for m =1,2,..., Dpr — 1.

It is clear that if I" is m-bounded then it is (m + 1)-parallelogram-free. The converse
is not true in general because every bipartite distance-regular graph is parallelogram-free,
but it does not even need to be 2-bounded, as the incidence graph of a 2-(11, 6, 3)-design
shows. In some cases, however, (m + 1)-parallelogram-freeness is known to be equivalent
to m-boundedness.

Proposition 11.2. Let T be a distance-reqular graph with diameter D and let m €
{1,2,...,D —1}. Suppose one of the following holds:

(i

3
| |

(ii) ¢a > 1 and ay > 0,

)
)
(iii) co =1 and ag > a; >0,
(iv) m =2 and ay > a; = 0,
)

(v

Then T is (m + 1)-parallelogram-free if and only if T is m-bounded.

Cmi1 = 1 and as > ay.

We remark that (i) is obvious, (ii) was shown by Weng [649, Thm. 6.4], (iii) was shown by
Suzuki [583], (iv) was shown by Suzuki [583] for the case co = 1 (extending [78, Lemma
4.3.13]) and by Weng [649, Prop. 6.7] for the case co > 1, and (v) was shown by Hiraki
[305]. Hiraki [316] also obtained other sufficient conditions for a distance-regular graph
to be m-bounded.

The following proposition summarizes the known results on I'" being m-bounded for
some m that have been obtained by using combinatorial methods. Some more results are
known under the assumption that I' is ()-polynomial; cf. Section 5.2.

Proposition 11.3. Let I' be a distance-reqular graph with diameter D > 3 and head
h>1. Let m € {1,2,...,D — h}. Then T is m-bounded if one of the following holds:

(i) cman =1 and ap_1 < ap,

(ii) I' is Koq11-free, a1 >0, a; = c;aq fori=1,2,...,m+h—1, and cp_1 < cyp.

2We note that (SC),,, for some m € {1,2,...,Dr — 1} implies K5 ; 1-freeness, which in turn implies
h-boundedness, where h is the head of T'; cf. [311, p. 129, Remarks].
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Result (i) was obtained by Ivanov and Brouwer (cf. [78, Prop. 4.3.11]) for m = 2, and
by Hiraki [308, Thm. 1.3] for the other cases. Result (ii) was obtained by Hiraki [310,
Thm. 1.1], generalizing a result of Brouwer and Wilbrink [94] for thick regular near poly-
gons with A = 1. We remark that each of the assumptions (i) and (ii) implies b,,_1 > by,
so that if x and y are at distance m then A = A(z,y) is distance-regular with valency
A + Cp. In particular, if cop1 = 1 and m = h + 1, then A is a Moore geometry and it
is known that such a graph is either an odd polygon or has diameter at most 2; cf. [78,
Thm. 6.8.1]. This shows the following proposition in the case a; > 0. The case a; = 0
uses results by Chen, Hiraki, and Koolen [123, 303, 320].

Proposition 11.4. [311, Thm. 2| Let T be a distance-reqular graph with head h > 1 and
diameter D > 2h + 3. Then h =1 or copyz = 2.

We note that Wang [645] did related work. We remark also that if I is a distance-regular
graph with A = 1 and ¢4 = 1, then by Proposition 11.3(i) and a result from ‘BCN’ [78,
Thm. 5.9.9(i)], " has a distance-regular subgraph with diameter 3 and ¢3 = 1. No such
(latter) graph is known, however. Chen, Hiraki, and Koolen [124] in fact showed that no
such graph with a; # 3 and a; < 30 exists.

Let I" be a distance-regular graph with diameter D. Suppose I" is D-bounded and every
strongly closed subgraph is regular. In particular, we have b; > b;,1 fori =0,1,..., D—1.
Let . be the poset consisting of all strongly closed subgraphs of I' with partial order
defined by reverse inclusion. Weng [648] showed that .# is a ranked meet semilattice and
every interval in . is atomic and lower semimodular. He also showed the inequalities

b—i— _b—i b_i_ _b —1 .
boizt 7 Ph—itl », 7Dmiz2 7 7D (i=1,2,...,D—2),
bp—i-1 —bp—; bp—i—2 —bp_i1
with equality for all ¢+ = 1,2,..., D — 2 if and only if every interval in .¥ is a modular

atomic lattice. See also Section 5.7.6.
For some more work on strongly closed subgraphs in distance-regular graphs, we refer
to [318] and the references therein.

11.2 Bipartite closed subgraphs

Let I" be a distance-regular graph with diameter D. We say the condition (BGC)j holds
if for every pair of vertices at distance j there exists a bipartite closed subgraph with
diameter j containing this pair. This condition was introduced by Hiraki [313], and he
showed that (BGC); with j € {1,2,..., D — 1} implies (BGC), for all i =1,2,...,j. By
combining results of Hiraki [313] and Koolen [404, 405], we have the following.

Proposition 11.5. [313, Cor. 4.8] Let I' be a distance-regqular graph with diameter D > 3.
Lett € {2,3,...,D — 1} be such that ¢, = ¢,y +1 and a; = ay = --- =a;_1 = 0. Then
the condition (BGC), holds if and only if one of the following holds:

(i) (c1,c9,...,¢0) = (1,1,...,1,2) and every bipartite closed subgraph with diameter t
1s the ordinary 2t-gon,
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(i) (e1,¢9,...,¢) = (1,2,...,t) and every bipartite closed subgraph with diameter t is
the t-cube,

(i) t =2s+1 s odd, (c1,¢,...,¢) = (1,1,2,2,...,5,8,8+1), and every bipartite closed
subgraph with diameter t is the Doubled Odd graph with valency s + 1,

(iv) t =4, (c1,¢9,c3,¢4) = (1,1,2,3), and every bipartite closed subgraph with diameter
4 1is the Pappus graph.

Some more general results are obtained by Hiraki [313].

11.3 Maximal cliques

In most cases, it is easy to determine the maximal cliques of classical distance-regular
graphs; cf. [297]. However, the structure of the maximal cliques of the quadratic forms
graphs turns out to be extremely complicated. Hemmeter, Woldar, and Brouwer com-
pleted the classification of the maximal cliques in this case in a series of papers [298, 299,
300, 87, 301]. Brouwer and Hemmeter [86] classified the maximal cliques of half dual polar
graphs and Ustimenko graphs (which are the distance 1-or-2 graphs of dual polar graphs
B,.(q) and C,,(q), respectively). The maximal cliques of twisted Grassmann graphs were
described by Van Dam and Koolen [176].

Hemmeter [297] observed that if T" is a bipartite distance-regular graph with diameter
D > 4, then I'i(x) is a maximal clique of the halved graph for every x € Vr. Using this
fact, he was able to determine all bipartite distance-regular graphs whose halved graphs
belong to one of the known (at the time) infinite families with unbounded diameter;
cf. [296, 298]. Brouwer, Godsil, Koolen, and Martin [81, Cor. 2] showed that if a distance-
regular graph I' has a Delsarte clique then it cannot have an antipodal cover of odd
diameter. Van Dam and Koolen [176] looked at the structure of the maximal cliques of
the twisted Grassmann graphs to show that these graphs are not vertex-transitive.

11.4 Convex subgraphs

Lambeck [432] studied in detail the noncomplete convex subgraphs of classical distance-
regular graphs. He classified such subgraphs in Johnson, Hamming, Grassmann, dual
polar, bilinear forms, Hermitian forms, alternating forms graphs, and also quadratic forms
graphs Qua(n, q) with ¢ odd. The noncomplete convex subgraphs of Qua(n, q) with ¢ even
were classified by Munemasa, Pasechnik, and Shpectorov [505]. It turns out that if I" is one
of these graphs then its noncomplete convex subgraphs are distance-regular and belong
to the same family as I', with the exception of Her(D,4), which has Ky, as a convex
subgraph.

Tanaka [598] used the above results to describe the descendents (cf. Section 5.7.6) of
these graphs.
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11.5 Designs

For recent updates on the study of combinatorial block designs and orthogonal arrays
(i.e., t-designs in the Johnson and Hamming graphs), we refer the reader to [135]. It
should be remarked here that Keevash [390] has recently proved that, given ¢, k, and A,
the natural divisibility conditions for the existence of a block ¢-(v, k, \) design are also
sufficient, provided that v is large enough. This generalizes the result of Wilson [651] for
the case t = 2 and that of Teirlinck [603] which establishes the existence of block t-designs
for all t.

A number of simple ¢-designs over finite fields (i.e., t-designs in the Grassmann graphs)
with ¢ at most 3 have been constructed by many researchers; see, e.g., [68] and the
references therein. Recently, Fazeli, Lovett, and Vardy [214] showed that non-trivial
simple ¢-designs over finite fields [, exist for all ¢ and q.

Delsarte T-designs in a distance-regular graph with [T| = D — 1 (where D is the
diameter of the graph) have dual degree 1. Such designs are necessarily completely regular
with covering radius 1, and will be briefly discussed in Section 12.4.

11.6 The Terwilliger algebra with respect to a code

Let I' be a distance-regular graph with diameter D > 3, adjacency matrix A, and eigen-
values k = 0y > 6; > --- > 0p, and let C' be a non-empty subset of V- (i.e., a code) with
covering radius p. Let {Cy = C,C4,...,C,} be the distance partition with respect to C,
and let x; be the characteristic vector of C; (i = 0,1,...,p). Foreach i =0,1,...,p, let
Er = E*(C) be the diagonal matrix in M,,(C) with diagonal entries (EY),, = (x;),. The
Terwilliger algebra T = T(C) with respect to C' is the subalgebra of M, y,(C) generated
by A, Eg, EY, ..., E5. The algebra T(C') was first introduced and studied by Martin and
Taylor [471] for binary Hamming graphs. We shall use the same terminology as in the
case of the ordinary Terwilliger algebra (i.e., with respect to a vertex); cf. Section 4.3.
However, as observed by Martin and Taylor [471] and Suzuki [588], the primary T-module
is thin (and is therefore equal to spanc{xo, x1,--.,X,}) precisely when C is a completely
regular code.

Suzuki [588] studied irreducible T-modules in detail. The results in [588] generalize (to
some extent) both the theory of tight graphs (cf. Go and Terwilliger [261]) and the theory
of the width of a code (cf. Brouwer et al. [81]). Suzuki [588] showed that a T(C')-module
with endpoint v is also a T(C,,)-module with endpoint 0, where irreducibility and thinness
are also preserved. This allows us to focus on the irreducible modules with endpoint 0.

Recall that the width of C' is defined by w = max{i : xJ A;xo # 0}, where A, is the
distance-i matrix of I' (i = 0, 1,..., D); cf. Section 5.7.6. For i =0,1,..., D, let E; be the
primitive idempotent associated with 6;. Let v be a nonzero vector in E;C". Then it is
easy to see that there is a polynomial f of degree at most w such that || E;v||? = f(6;)m(6;)
(¢t = 0,1,...,D), where m(f) denotes the multiplicity of an eigenvalue 6 of I". This
immediately gives the inequality w > D — r(v), where r(v) = |{i : E;v # 0}| — 1. (Note
that r(xo) is the dual degree of C.) The vector v is said to be tight (with respect to C)
if w= D —r(v). Suzuki [588] showed among other results that if v is tight then Tv
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is a thin irreducible T-module with endpoint 0. This result was previously obtained by
Brouwer, Godsil, Koolen, and Martin [81] for v = xo, and generalizes a theorem of Go
and Terwilliger [261, Thm. 9.8]. An important consequence is that if I" is Q-polynomial
then every irreducible module of the ordinary Terwilliger algebra T(z) with displacement
0 is thin.?® This fact was used, e.g., to extend the Assmus-Mattson theorem; cf. [595, §5].

Hosoya and Suzuki [337] called T' tight with respect to C' if the orthogonal complement
of spanc{xo} in EFC" is spanned by tight vectors. By [261, Thm. 13.6], I' is tight in the
sense of Section 6.1.1 if and only if I" is non-bipartite and tight with respect to I'y(x)
for some (or all) z € Vi. Hosoya and Suzuki also introduced a homogeneity with respect
to C' in terms of the partition of Vi by the distances from both C' and a fixed vertex
in (', and studied the relation between these two concepts. They moreover showed that
if I' is @)-polynomial then the dual eigenmatrix of the association scheme induced on a
descendent (cf. Section 5.7.6) of I' satisfies a certain system of linear equations, which
in particular implies that I' is tight with respect to every descendent. This system of
linear equations turned out to be fundamental to the study of descendents; cf. [597, 598].
Lee [445] studied the above partition for Delsarte cliques (which are descendents of width
1) in Q-polynomial distance-regular graphs that have the most general ¢-Racah type,*’
and showed among other results that there is a natural action of the double affine Hecke
algebra of type (CY,C}) on the subspace of CY spanned by the characteristic vectors of
the cells of the partition. See [602] for detailed information on the Terwilliger algebra
with respect to a descendent.

12 Completely regular codes

In this section, we discuss completely regular codes in distance-regular graphs. Many
combinatorial configurations can be viewed as completely regular codes with certain ad-
ditional properties and/or special parameters in their underlying distance-regular graphs;
cf. Section 12.4.

As we have seen, a Delsarte clique in a distance-regular graph I" with diameter D is a
completely regular code in I" with covering radius D — 1, and all the geometric distance-
regular graphs have plenty of Delsarte cliques. Martin [462, Thm. 2.3.3] showed that if
two distinct vertices x, y in a distance-regular graph I' with diameter D form a completely
regular code then either d(z,y) = 1 and a; = ay = --- = ap_; = 0, i.e., I is bipartite
or almost bipartite, or d(z,y) = D and I' is antipodal. Camara, Dalfé, Delorme, Fiol,
and Suzuki [101] showed that all the edges of a connected graph are completely regular
codes with the same parameters if and only if the graph is a bipartite or almost bipartite
distance-regular graph. (The assumption on the parameters of the edges was later dropped
by Suzuki [592].) See [227, 228, 103, 104, 105] and also Section 11.6 for some algebraic

26The displacement ([626]) of an irreducible T(z)-module W is = e + ¢* + § — D, where e, e*,§ are
the endpoint, dual endpoint, and the diameter of W, respectively. It follows from Caughman’s results
[111, Lemmas 5.1, 7.1] that 0 <7 < D.

2In the notation of Bannai and Ito [38, §IIL.5] (cf. [616]), this Q-polynomial structure satisfies type I
with s # 0 and s* # 0. The polygons are the only known examples of this type.
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characterizations of complete regularity.
For certain distance-regular graphs, we can show that they come from completely
regular partitions in Hamming graphs.

Theorem 12.1. Let I' be a distance-regular graph with diameter D > 3, wvalency k,
intersection numbers ¢; = 1 for i = 1,2,3, and as = 2a,. Then ay + 1 divides k and
there exists a completely regular partition of the Hamming graph H(k/(a1 +1),a1 +2) or
a Doob graph with valency k, with covering radius D and parameters v; = ¢;, Bi_1 = b1
fori=1,2,...,D. The latter case only occurs when a; = 2.

This theorem was shown by Rifa and Huguet [547] when a; = 0 following ideas of Brouwer
[70] (cf. [78, Prop. 4.3.6, Thm. 11.3.2]), by Nomura [515] when a; # 2, and by Koolen
[408] when a; = 2.

12.1 Parameters

It is known that the sequence (¢;); in a distance-regular graph I' is non-decreasing, but
this is not true in general for the sequence (7;); of a completely regular code in I". Koolen
[409] gave an infinite family of completely regular codes in the Doubled Odd graphs with
the property that the sequence (7;); is not necessarily increasing, disproving a conjecture
of Martin [462]. Koolen also gave a sufficient condition for I' that the sequence (7;); is
increasing for every completely regular code in I'. Martin [private communication] showed
that the sequence (7;); is strictly increasing for any completely regular code in a Hamming
graph.

12.2 Leonard completely regular codes

Let T' be a distance-regular graph with diameter D, valency k, and eigenvalues k =
00,01, ...,0p (not necessarily in decreasing order). Let FE; be the primitive idempotent
associated with 6; for ¢ = 0,1,...,D. Let C' be a completely regular code in I' with
covering radius p. Let {Co = C,C4,...,C,} be the distance partition with respect to C,
and let x; be the characteristic vector of C; for i = 0,1,...,p. Let Spec(C) = {0;, =
k,0;,...,0;,} be (an ordering of)) the spectrum of the quotient matrix of the corresponding
distance partition. We say C' is Leonard (with respect the above ordering) if

(Eilxo)oe € spanc{E; Xo, . . ., £;, %o} \ spanc{ E; xo, .. ., Ei,_,Xo}

for ¢ = 1,2,...,p. This definition is due to Koolen, Lee, and Martin [412]. Let A be
the adjacency matrix of I', and let A* = A*(C) be the diagonal matrix in M,x,(C) with
diagonal entries (A*),, = ﬁ(Eilxo)y. They showed among other results that C' is Leonard
if and only if the matrices A and A* act on spanc{Xo,...,X,} = spanc{ L Xo, ..., E; X0}
as a Leonard pair [623]. If T is a translation distance-regular graph and C'is additive, then
it follows that C'is Leonard if and only if its coset graph is a ()-polynomial distance-regular
graph.
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Next we consider a weaker condition than being Leonard:
(Ei,x0) € spanc{Ei X0, ..., Ei,xo} (£=1,2,...,p).

As a class of completely regular codes satisfying this condition, Koolen, Lee, and Martin
[412] also introduced harmonic completely regular codes as follows. Suppose I' is Q-
polynomial with respect to the ordering 6y, 01,...,0p. We say C' is harmonic if there is
a positive integer ¢ such that i, = t¢ for £ = 0,1,...,p. Descendents (cf. Section 5.7.6)
are examples of harmonic completely regular codes with t = 1. Tanaka [598, Prop. 4.6]
showed that a descendent in I' with width w and dual width w* = D —w(= p) > 1 is not
Leonard (with respect to this ordering) precisely when w is odd and the Q-polynomial
structure satisfies type III in the notation of Bannai and Ito [38, §II1.5] (cf. [616]).

12.3 Completely regular codes in the Hamming graphs

Neumaier [512] conjectured that the only completely regular codes (with at least two
words) in the Hamming graphs with minimum distance at least 8 are the extended binary
Golay code and the (binary) repetition codes of length at least 8. But he forgot to
mention the even subcode of the binary Golay code (i.e., the subcode of the Golay code
consisting of the codewords with even weight), as remarked by Borges, Rifa, and Zinoviev
[63], which was implicitly known to be completely regular. (The bipartite double of
the coset graph of the binary Golay code is distance-regular and has intersection array
{23,22,21,20,3,2,1;1,2,3,20,21, 22,23}, and it follows from Theorem 12.1 that there is
a completely regular partition of the 23-cube corresponding to this graph. It is easy to
check that this partition corresponds to the cosets of the even subcode of the Golay code,
because all distances are even and it has exactly half the number of codewords of the
Golay code; see also [78, p. 362]). So we would like to rephrase Neumaier’s conjecture as
follows.

Conjecture 12.2. The only completely reqular codes (with at least two words) in the
Hamming graphs with minimum distance at least 8 are the extended binary Golay code,
the even subcode of the binary Golay code, and the repetition codes.

Gillespie [253] showed that the only completely regular codes in the binary Hamming
graphs H (D, 2) with minimum distance greater than max{2, D/2} are the repetition codes
and the dual code of the binary [7,4, 3]-Hamming code. Meyerowitz [485] described all
the completely regular codes with strength 0 in the Hamming graphs.

Brouwer [72] showed that any truncation of an even and almost even binary completely
regular code is again completely regular. Brouwer [73] also gave a necessary and sufficient
condition on when the extension of a binary completely regular code is again completely
regular.

We say that a binary code C' of length D is self-complementary if 1 + ¢ € C for all
c € C, and non-self-complementary otherwise,®® where 1 = (1,1,...,1) denotes the all-

28Self-complementary codes and non-self-complementary codes are sometimes called antipodal codes
and non-antipodal codes, respectively, in the literature. However, it seems that these are somewhat
confusing names.
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ones vector in GF(2)P. Borges, Rifa, and Zinoviev [63] showed among other results that
if C' is a binary non-self-complementary completely regular code with covering radius p,
minimum distance at least 3, and distance partition {Cy = C,C},...,C,}, then C, =
C + 1, from which it follows that C'U C, is again a completely regular code. This is a
special case of the following construction: if C' is a completely regular code with covering
radius p and if v; = B,; for i = 1,2,..., p with 2i # p, then C' U C, is also completely
regular.

12.3.1 Completely transitive codes and generalizations

Giudici and Praeger [259] defined the notion of a completely transitive code in a graph. A
code C'in a graph I' is called completely transitive if there is a group H of automorphisms
of I' such that every cell of the distance-partition of C'is an orbit of H. It is clear that a
completely transitive code is completely regular. Next suppose that [' is a Cayley graph
Cay(G, S). Let C be a subgroup of G with covering radius p (as a code in I'). We say C'is
coset-completely transitive if the subgroup ¥ of the automorphism group of G consisting
of the elements that stabilize both C' and S has exactly p + 1 orbits on G/C. This is an
extension of the notion of coset-completely transitive codes in Hamming graphs H (D, q)
defined by Giudici and Praeger [259],%° which in turn generalizes a concept of Solé [567].
It is easy to see that if C' is coset-completely transitive and is in the center of G, then C'
is completely transitive with H = C x ¥.

There are many examples of coset-completely transitive additive codes in Hamming
graphs, such as the codes in the Golay family: the binary Golay code, the extended binary
Golay code, the even subcode of the binary Golay code, the punctured code of the binary
Golay code, the even subcode of the punctured Golay code, the twice punctured binary
Golay code, the ternary Golay code, and the extended ternary Golay code. Rifa and
Zinoviev [550] showed that the lifts of the perfect Hamming codes are coset-completely
transitive and that the coset graphs of these codes are the bilinear forms graphs. Rifa and
Zinoviev [548] also constructed an infinite family of binary linear completely transitive
codes whose coset graphs are the halved cubes. Borges, Rifa, and Zinoviev constructed
many more linear completely regular and completely transitive codes; see, e.g., [65, 549].
Gillespie and Praeger [256, 257] also considered generalizations of completely transitive
codes.

There are only a few completely transitive binary codes known which are not coset-
completely transitive, among them are the Hadamard code of length 12 and its punctured
code. Gillespie and Praeger [255] showed that these codes are characterized as binary
completely regular codes by their lengths and minimum distances. See also [258]. Borges,
Rifa, and Zinoviev [61, 62] showed that the only binary coset-completely transitive codes
with minimum distance at least 9 are the binary repetition codes. Gillespie, Giudici, and
Praeger [254] showed that the only completely transitive codes in the Hamming graphs
with minimum distance at least 5 such that the corresponding groups H of automorphisms

29To be more precise, they defined the concept for linear codes and considered the stabilizer of C' in
the group of weight-preserving sesquilinear automorphisms of GF(q)”.
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are faithful on coordinates are the binary repetition codes.

12.3.2 Arithmetic completely regular codes

Harmonic completely regular codes in Hamming graphs were called arithmetic completely
regular codes and studied in detail by Koolen, Lee, Martin, and Tanaka [413]. Let C' be
a completely regular code in H(n,q) with covering radius 1. Then the cartesian product
CxCx---xC (ttimes) is an arithmetic completely regular code with covering radius ¢ in
H(nt,q). Next, let C' be a completely regular code in H(n, q) with covering radius p > 1
and parameters f;,7v; (i = 0,1,...,p). Similarly, let C’ be a completely regular code in
H(n',q") with covering radius p’ > 1 and corresponding parameters 3/, ~; (i = 0,1,...,p).
Koolen, Lee, Martin, and Tanaka [413, Prop. 3.4] showed that C'x C” is completely regular
in H(n,q) x H(n',q') if and only if there are integers 3,y such that 5,_; = fi, v; = ~i for
i=0,1,...,p,and 8, , = Bi,v; =vifori=0,1,...,p". We note that completely regular
codes having parameters of this form are arithmetic. From this result it follows that if
we take C” to be a perfect binary l-error correcting code with length 2¢ — 1 which is not
isomorphic to the binary Hamming code C' of the same length, then the cartesian product
of C" and s copies of C' is completely regular with covering radius s + 1, but this code is
certainly not completely transitive, answering a problem of Gillespie [252, Problem 11.6].

Koolen, Lee, Martin, and Tanaka [413, Thm. 3.16] also classified all arithmetic com-
pletely regular linear codes. This is a generalization of a result of Bier [46]. Borges,
Rifa, and Zinoviev [64] classified all completely regular linear codes with covering radius
1 (which are clearly arithmetic) using a different approach.

Fon-Der-Flaass [233] showed that, for fixed positive integers 3y and 7, there is a
completely regular code in H(D,2) with covering radius 1 and parameters f, and ; for
some D if and only if 5;’0;;’11) is a power of 2. (He attributed this result to S. Avgustinovich
and A. Frid.) Note that if C'is such a code in H(D,2) then sois C x GF(2) in H(D+1,2).
Fon-Der-Flaass [233] also obtained lower and upper bounds on the smallest diameter
D = Dy(5y,v1) for which such a code exists. A code in H(D,2) is called degenerated if it
is isomorphic to C'x GF'(2) for some code C'in H(D—1,2), and non-degenerated otherwise.
Simon [562] showed that for any non-degenerated bipartition of GF(2)P (= Viy(p,2)) there
is a vertex adjacent to at least (log, D) vertices in the other cell. This gives an upper
bound on the maximum diameter D = Dy (8o, v1)(= Do(Bo,71)) for which there is a non-
degenerated binary completely regular code with covering radius 1 and parameters 3y and
~v1. We remark that the method of Simon works in general for binary completely regular
codes, not only for covering radius 1.

12.4 Completely regular codes in other distance-regular graphs

The completely regular codes with strength 0 in the Johnson graphs as well as Hamming
graphs were described by Meyerowitz [484, 485]. Note that descendents (cf. Section 5.7.6)
in ()-polynomial distance-regular graphs are examples of completely regular codes with
strength 0. Brouwer, Godsil, Koolen, and Martin [81] used Meyerowitz’s results to deter-
mine all the descendents in the Johnson and Hamming graphs. Tanaka [594, 598] extended
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the classification of descendents to all of the 15 known infinite families of distance-regular
graphs having classical parameters with unbounded diameter.

Martin [463] determined the completely regular codes with strength 1 and minimum
distance at least 2 in the Johnson graphs. Martin [464] also studied general completely reg-
ular ¢t-designs in the Johnson graphs in detail. Sporadic examples include the 5-(24,8, 1),
4-(23,7,1), and 3-(12,6,2) designs. Completely transitive codes (cf. Section 12.3.1) in the
Johnson graphs were studied by Godsil and Praeger [274]. Liebler and Praeger [449] also
considered generalizations of completely transitive codes in the Johnson graphs. Com-
pletely regular codes in the Odd graphs were studied by Martin [468]. Koolen [409]
classified the completely regular codes in the Biggs-Smith graph.

The completely regular codes of a distance-regular graph with covering radius 1 are
exactly the same as (non-trivial) intriguing sets studied by De Bruyn and Suzuki [183].
Note that a code in a distance-regular graph is an intriguing set if and only if it has
dual degree 1. Tight sets and m-ovoids in finite polar spaces are examples of intriguing
sets. Hemisystems (cf. Section 5.2) are 1-designs in the dual polar graphs 2As(,/q) with
q odd, and are therefore intriguing sets. Gavrilyuk and Mogilnykh [248] showed among
other results the non-existence and uniqueness of certain Cameron-Liebler line classes in
PG(3, q), which are intriguing sets with dual width 1 in J,(4,2). See also [483, 247, 218,
180].

Recall that the incidence graph of a symmetric design is a (Q-polynomial bipartite
distance-regular graph with diameter 3. Martin [465] observed that several geometric
substructures in finite projective spaces are Delsarte T-designs with T € {{1,3},{2,3}}
in the corresponding bipartite distance-regular graphs, so that they provide more examples
of intriguing sets.

Vanhove [640] showed among other results that partial spreads with maximum size
V@ +1in 2A45(,/q) as well as spreads in Bp(g) and Cp(q) with D € {3,5} are completely
regular. See also [639] for more results.

Perfect codes in a distance-regular graph I' are completely regular, but non-trivial
ones are very rare.’? It is well known that the only non-trivial perfect codes in the
Hamming graphs H (D, ¢) with minimum distance 6 > 7 (or § = 5 and ¢ a prime power)
are the binary Golay code and the ternary Golay code; cf. [78, §11.1D]. See, e.g., [210]
and the references therein for recent progress towards proving a longstanding conjecture
of Delsarte [189, p. 55] that there are no non-trivial perfect codes in the Johnson graphs.
Chihara [125] showed that there are no non-trivial perfect codes in the Grassmann graphs,
dual polar graphs, and the forms graphs, except possibly Bp(q) and Cp(q) with D =
2™ — 1 for some positive integer m. Her proof depends only on a detailed analysis of
the orthogonal polynomials (v;)2 associated with these graphs (see (2) and the remark
after (13)), so that we also obtain, e.g., the non-existence for the twisted Grassmann
graphs. Martin and Zhu [474] gave a simple proof of the non-existence for the Grassmann
and bilinear forms graphs using Delsarte’s ‘Anticode Bound’ (cf. [78, Prop. 2.5.3]). We
note that the maximum anticodes in this case are precisely the descendents, in view

30Here, ‘non-trivial’ means that the minimum distance is at least 3, and also at most Dp — 2 if T is an
antipodal 2-cover with Dr odd.
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of the Erdds-Ko-Rado theorem for these graphs; cf. [594]. Koolen and Munemasa [417]
constructed perfect codes with minimum distance 3 in the two Doob graphs with diameter
5. Krotov [426] recently showed among other results the existence of perfect codes with
minimum distance 3 in infinitely many Doob graphs.

13 More combinatorial properties

13.1 Distance-regular graphs with a relatively small number of vertices

The Taylor graphs and Hadamard graphs form infinite families of graphs that have a
relative small number of vertices compared to the valency k. Indeed, Taylor graphs have
2k + 2 vertices and Hadamard graphs have 4k vertices. The following result, obtained by
Koolen and Park [421], shows that these two families are exceptions.

Theorem 13.1. Let a > 2. Then there are finitely many distance-regular graphs with
v wvertices, valency k, diameter D > 3 satisfying v < ak, besides imprimitive distance-
reqular graphs with diameter 3 and antipodal bipartite distance-regular graphs with diam-
eter 4.

As a consequence, they also obtained the following.

Theorem 13.2. Let 0 < € < 1. Then there are finitely many distance-reqular graphs with
valency k > 3, diameter D > 3 satisfying co > €k, besides imprimitive distance-reqular
graphs with diameter 3 and antipodal bipartite distance-reqular graphs with diameter 4.

For k < 1/e, this result follows from the Bannai-Ito conjecture (see Section 8.1). If
k > 1/e, then ¢o > 2 and one can use the Ivanov bound (Theorem 7.1) to bound the
diameter, and hence one can bound the number of vertices by a constant times k.

In the case that I" contains a quadrangle, Koolen and Park [420] obtained the following
bound on ¢, in terms of the valency and the diameter.

Proposition 13.3. Let I' be a distance-reqular graph with valency k > 3 and diameter
D > 4. IfT' contains an induced quadrangle, then co < %k‘ with equality if and only if
D >5and T is a D-cube or D =4 and I is a Hadamard graph.

The assumption of having induced quadrangles is necessary as the Foster graph and the
Biggs-Smith graph have k = 3, ¢ = 1 and D > 7. We wonder whether the assumption
can be removed for k£ large enough.

Note also that diameter three is exceptional, because the complete bipartite graph
Ky 41 k41 minus a perfect matching has valency k and ¢ = k — 1. Koolen and Park [419]
showed that if a distance-regular graph has diameter three, then ¢y < k/2 or it is bipartite
or a Taylor graph. They also showed that if a distance-regular graph with diameter at
least three and valency k& has a; > %, then it is a Taylor graph, a line graph, the Johnson
graph J(7,3), or the halved 7-cube.

For 4 < D < 6, Koolen and Park [420] strengthened Proposition 13.3 as follows:
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Proposition 13.4. Let I' be a distance-reqular graph with valency k > 3 and diameter
D. Then the following hold:

(i) If D > 6 and cy > 2, then c3 < k/3,

)
(ii) If D =4 and cg > k/3 then I' is a Hadamard graph (and hence co = k/2),
(i) If D =5 and cy > k/3, then T is the 5-cube,

)

(iv) If D =6 and co > 2k/7, then T is the 6-cube or the generalized dodecagon of order
(1,2).

13.2 Distance-regular graphs with multiple P-polynomial orderings

In the following, we assume that both the diameter and valency of I" are at least three, and
we follow ‘BCN’ [78, §4.2.D]. If a distance-regular graph I' has a second P-polynomial
ordering then the corresponding distance-regular graph A with the second ordering is
either the distance-2 graph I'y, the distance-(D — 1) graph I'p_1, or the distance-D graph
I'p.

The first case (A = I'9) is only possible if A is a Taylor graph (with ¢ <k —1) or a
generalized odd graph.

The second case (A = I'p_y) occurs if and only if I" is an antipodal 2-cover with
diameter D such that a; = 0 for all @ < (D — 1)/2. In this case, the folded graph is
either bipartite or a generalized odd graph. If the folded graph is bipartite, then I" is
bipartite and the diameter D is even. For diameter 4 only the Hadamard graphs occur;
for diameter 6 only the 6-cube. For larger diameter only the D-cubes are known. If the
folded graph is a generalized odd graph with diameter 3 then I' is a Taylor graph. For
larger diameter and bipartite I' only the Doubled Odd graphs and the cubes are known.
If T is not bipartite, then only three graphs are known: the Wells graph (D = 4), the
dodecahedron (D = 5), and the coset graph of the truncated even subcode of the binary
Golay code (see [78, p. 365]).

For the last case (A = I'p) either A is a generalized odd graph or ap = 0. In the
latter case (ap = 0), it holds that pP, # 0 and if D = 4 then p3, = 0; moreover, Suzuki
[584] showed that D < 4.

13.3 Characterizing antipodality and the height

Let I" be a distance-regular graph with valency at least 3. It is well-known that I' is an
antipodal 2-cover if and only if bp_; = ¢; for all i = 1,2,..., D [238]. Araya and Hiraki
[7] improved this by showing that I is an antipodal 2-cover if and only if bp_; = ¢; for
i=1,2,...,[D/2]. This also improved earlier work of Araya, Hiraki, and Jurisi¢ [8], who
showed that a distance-regular graph is an antipodal 2-cover if there is a j with b; = 1
and D > 2j. Araya, Hiraki, and Jurisi¢ [9] also showed that if by = 1, then I' is an
antipodal cover, in particular it is either an antipodal cover of a complete graph (D = 3),
an antipodal 2-cover of a strongly regular graph with A = 0 and pu = 2 (D = 4), or the
dodecahedron (D = 5). This solved one of the problems in ‘BCN’ [78, Prob. (i), p. 182].
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Suzuki [579] showed that if k; = k; for some ¢ < j with ¢ + j < D, then either kp =1
or k; = ki1 = --- = kj, thus solving another problem in ‘BCN’ [78, Prob. (ii), p. 168].
The only known distance-regular graphs with k; = k; for some 7 < j with ¢ + 7 < D and
kp > 2 are the odd polygons, but it is unknown whether any others could exist. Hiraki,
Suzuki, and Wajima [326] showed that if ks = k; for 2+ 5 < D and 2 < j, then I is
indeed a polygon (k = 2) or an antipodal 2-cover (kp = 1). In order to show this result,
the height of a distance-regular graph was used; a notion that we will introduce next.

The height ht(I') of a distance-regular graph I" with diameter D is defined as the
maximal i such that the intersection number pZ, is nonzero. Note that T" is an antipodal
2-cover if and only if ht(I") = 0. The case ht(I') = 1 occurs exactly when the distance-D
graph I'p is a generalized odd graph; see [78, Prop. 4.2.10]. Nakano [508] strengthened
some of the results in [326] by showing that if k; = k; for some i and j such that ¢ < j <
D — i and ht(I") is even and at most 2(D — 2i), then this height must be zero, that is,
kp =1.

Suzuki [580] asked whether I' can be characterized by its induced subgraphs on I'p(z),
for x € V. Some results in this direction were obtained by Hiraki [309], who showed
that if every induced subgraph on I'p hyr)(z,y) is a clique whenever d(z,y) = D, then
ht(I') = D, D — 1, or 1. He also showed that if pg,ht(r) = 1, then ht(T) equals D, 1,
or 0. Also Tomiyama [632, 633] gave some results in this direction, that is, for the case
ht(T) = 2.

13.4 Bounds on kp for primitive distance-regular graphs

Let I' be distance-regular with diameter D and valency k. Brouwer et al. [78, Prop. 5.6.1]
showed that if I" is not antipodal, then k < kp(kp — 1). Suzuki [578, 580] showed that in
this case also the diameter is bounded by a function of kp. This now also follows from
the above statement and the validity of the Bannai-Ito conjecture (see Section 8).

Park [530] showed that if I" has valency and diameter at least 3 and satisfies kp_1+kp <
2k, then I' is an antipodal 2-cover, I is bipartite with D = 3, I' is the Johnson graph
J(7,3), or I' is the halved 7-cube. In the case D = 3, there are infinitely many bipartite
non-antipodal distance-regular graphs with ks + k3 < 2k, for example the incidence graphs
of the complements of projective planes of order at least 3. This result also confirms a
conjecture by Bendito, Carmona, Encinas, and Mitjana [44] that states that no primitive
distance-regular graph with diameter three has the so-called M-property.

13.5 Terwilliger graphs and existence of quadrangles

Recall that a distance-regular graph without induced quadrangles is called a Terwilliger
graph. In this section we collect some sufficient conditions for a distance-regular graph
with ¢y > 2 to contain induced quadrangles. Note that by Proposition 7.11, the existence
of a quadrangle implies that ¢; — b; > ¢;_1 — b;_1 + a1 + 2. On the other hand, it is shown
in the proof of [78, Thm. 5.4.1] that a distance-regular graph with c¢3 < 2¢y and ¢y > 2
has an induced quadrangle. The following are some more such combinatorial conditions.
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Proposition 13.5. Let I be an amply reqular Terwilliger graph with diameter D > 2 and
with parameters (v, k, \, i) such that p > 2.

(i) If k < (64 &)(A+1), then T is the icosahedron, the Doro graph (see [78, §12.1]),
or the Conway-Smith graph (see [78, §13.2]) [419, Prop. 6],

(ii) If k < 50(n — 1), then I' is the icosahedron, the Doro graph, or the Conway-Smith
graph [78, Cor. 1.16.6(ii)],

(iil) If24p > 10(A+ 1), then I is the icosahedron, the Doro graph, or the Conway-Smith
graph [395].

In [78, Thm. 4.4.11], the distance-regular graphs with second largest eigenvalue b; — 1 are
classified. For Terwilliger graphs we can go a little further.

Proposition 13.6. [395] Let I" be a distance-reqular Terwilliger graph with diameter D >
3 and distinct eigenvalues 0y > 01 > --- > 0p. Then 0y < b1/2 —1 and p > —b,/3 — 1,
unless I is the icosahedron, the Doro graph, or the Conway-Smith graph.

Note that if we would know the Terwilliger distance-regular graphs that are locally
Hoffman-Singleton, then we could improve the above results. Note that there are two feasi-
ble intersection arrays known which could be locally Hoffman-Singleton: {50, 42,9; 1, 2,42}
and {50,42,1;1,2,50}, see [78, p. 36]. Gavrilyuk and Makhnev [244] have worked on the

classification of these graphs.

13.6 Connectivity and the second eigenvalue
13.6.1 Connectivity and matchings

Brouwer and Koolen [90] showed that a (non-complete) distance-regular graph I' with
valency k£ > 2 is k-connected and that the only way to disconnect I' by removing k
vertices is to remove the neighborhood of some vertex. This implies that also the edge-
connectivity of I' equals its valency, and consequently, that every distance-regular graph
on an even number of vertices has a perfect matching. This had been derived before
by Brouwer and Haemers [84], who also showed that the only way to disconnect T' by
removing k edges is to remove the edges through some vertex.

It was noted by Beezer and Farrell [41] that in general, the number of perfect matchings
does not follow from the intersection array. They showed that the numbers of matchings
consisting of i edges are determined by the intersection array for ¢ = 1,2,...,5; however
the Hamming graph H(2,4) and the Shrikhande graph (which have the same intersection
array) have different numbers of matchings with i edges for every ¢ > 5.

13.6.2 The second largest eigenvalue

Koolen, Park, and Yu [422] showed that for given o > 1, there are only finitely many
distance-regular graphs with £ > 3 and D > 3 whose second largest eigenvalue 6 satisfies
a > 0; > 1. Note that the (infinite family of) regular complete bipartite graphs minus a
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perfect matching are the only distance-regular graphs with D > 3 and 6, = 1, and there
are no distance-regular graphs with D > 3 and #; < 1. The distance-regular graphs with
D > 3 and 6; < 2 were also classified.

The distance-regular graphs with D > 3 and a; > 2 such that all local graphs have
second largest eigenvalue at most one have been classified by Koolen and Yu [425]. One
may wonder whether, given o > 1, there are only finitely many distance-regular graphs
with D > 3 and a; > « such that each local graph has second largest eigenvalue at most
a. The condition a; > « ensures that the local graphs are connected, and thus excludes
infinite families such as the Hamming graphs H (D, a + 2).

13.6.3 The standard sequence

Let I' be a distance-regular graph with diameter D and let

0 by
ca oar b
ca az by
L(Z) = )
Ci-1 @i—1 biq
C; a;
_ 0 b, -
Civ1 Q41 b¢+1
M(i) =

cp-1 ap—1 bp_;
CD ap

Cioaba and Koolen [130] studied the eigenvalues of these matrices in order to answer
a question by Brouwer. Note that the eigenvalues of L = L(D) = M(0) are the D + 1
distinct eigenvalues 6y > 6; > -+ > 0p of I". Let p; be the largest eigenvalue of L(i), let o;
be the largest eigenvalue of M (i), and let ug = 1, uq,...,up be the standard sequence of
the second largest eigenvalue #; of I'. By the theory of orthogonal polynomials, it follows
that this sequence has one sign change. Also, fori =2,3,...,D —1 and ¢ € {+1, —1}, if
eu; > 0, then ep; 1 < ety < eojyq. If u; =0, then 6, = p;_1 = 0;41.

ai++ /a%+4k

For D = 3, this means that 6, lies between a3 and 5 , and if two of these three
numbers are equal, then they are all equal. The latter case defines the class of Shilla
graphs introduced by Koolen and Park [418].

Cioaba and Koolen [130] used the above to derive that the induced subgraph =(j)
on I'j(x) UT 41(z) U... UT'p(z) is connected if j < D/2, and that Z(D/2 + 1) is not
connected if and only if I' is an antipodal r-cover with r» > 3. This answers a question by
Brouwer. It is not clear when Z((D + 1)/2) is disconnected.
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A final remark on the standard sequence of the second eigenvalue is that Park, Koolen,
and Markowsky [531] showed that u; > 0 if j < D/2 and u; > 0 if j = D/2. Moreover,
they showed that up/, = 0 if and only if I' is an antipodal cover.

We remark that if 6; < ok, then ¢; + a; < ak and hence b, = k — (a; + ¢;) > (1 — )k
for 2t + 2 < D. This implies that k; > k(l;?_)i_l for 2t +2 < D. Soif 6; < k/2, then
ki > k;_1, which gives a partial answer to a problem in ‘BCN’ [78, p. 189]. If 6; < k/3,
then we can improve Pyber’s bound of Section 7.4.

13.7 The distance-D graph

The spectral excess theorem (cf. Theorem 10.2) states that a connected regular graph
with d + 1 distinct eigenvalues is distance-regular precisely when the distance-d graph is
regular with the ‘right’ valency determined by the spectrum of the graph. As mentioned
in Section 10.3, Fiol [220] specialized this theorem to strongly distance-regular graphs.
Fiol [221, Conj. 3.6] also conjectured that a distance-regular graph with diameter at least
4 is strongly distance-regular if and only if it is antipodal.!

Fiol [221] showed that a distance-regular graph with diameter D and distinct eigenval-
ues k =6y > 0, > --- > 0p is strongly distance-regular if and only if, forv=1,2,..., D,
the multiplicity m; of 0; is expressed as a certain rational function in 6y, 6, ...,60p, and
the number of vertices, v. Brouwer and Fiol [80] among other results strengthened this
result for the case D = 4 as follows:

Proposition 13.7. Let I" be a distance-reqular graph with diameter 4. Then the following
are equivalent:

(i) T is strongly distance-regular, i.e., the distance-4 graph Ty is strongly regular,
(ii) b3 = as+ 1 and by = bycs,
(iii) (O1+1)(O3+1) = (62+1)(0,+1) = —by.

See also [224]. In [80], Brouwer and Fiol in fact studied the more general situation
where the distance-D graph has at most D distinct eigenvalues; or equivalently, where
the distance-D matrix Ap generates a proper subalgebra of the adjacency algebra A.
They showed for example that a distance-regular graph with diameter D belongs to this
class provided that D is odd and the distance 1-or-2 graph is distance-regular (e.g., the
Odd graph Opy1, the folded (2D + 1)-cube, and the dual polar graphs Bp(q) and Cp(q)).

14 Multiplicities

14.1 Terwilliger’s tree bound

Terwilliger [604] showed that if a distance-regular graph I', say with valency k, contains
an isometric subgraph that is also a tree, then the multiplicity of each eigenvalue 6 # +k

31'We note that a distance-regular graph with diameter 3 is strongly distance-regular precisely when it
has —1 as an eigenvalue; cf. [78, Prop. 4.2.17]. Some non-antipodal examples are the Odd graph O4 and
the Sylvester graph.
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of I' is at least the number of leaves (i.e., vertices of valency one) of that tree. This has
been generalized by Hiraki and Koolen [320, Prop. 3.1] to the case where the subgraph is
a block graph (i.e., a graph whose 2-connected components are complete). Their result is
too technical to state here, however, we mention its following consequence.

Proposition 14.1. (cf. [320, Prop. 3.3]) Let I' be a distance-reqular graph of order (s,t)
and with head h. Let 6 # k be an eigenvalue with multiplicity m, and let n = L%J Then
the following hold:

(i) If h is odd and 0 # —t — 1, then m > (t + 1)t"~1s",
(ii) If h is even and 0 # —t — 1, then m > (s + 1)(st)",

(i) If h is odd and @ = —t — 1, then m > 1+ (t + 1)(s — 1)—(“)“1

st—1 7

(iv) If h is even and 6 = —t — 1, then m > (371)(5?8115)7((5?““71) + 2.

This generalizes a result of Zhu [658, Prop. 3.5] who obtained that m > (t 4 1)(s — 1) for
n = 1. It also generalizes a result of Bannai and Ito [39] who showed that if a; # 0, then
m = (k/2)".

Camara, Van Dam, Koolen, and Park [102] showed that in a l-walk-regular graph
with valency k and an eigenvalue 6 # k with multiplicity m, a clique can have size at
most m + 1. This result is well-known for distance-regular graphs. Powers [542] already
observed earlier that for distance-regular graphs equality in this clique bound cannot
occur if 6 is the second eigenvalue, except for the complete graph. We can generalize this
as follows.

Proposition 14.2. Let T" be a distance-reqular graph with valency k. If T contains a clique
with ¢ vertices, and 0 # k is an eigenvalue of I' with multiplicity m, then ¢ < m+ 1, with
equality only if 0 = 0, and T is complete, complete multipartite, or bipartite.

Proof. Consider a clique C' with ¢ vertices, the idempotent £ = UU" and standard
sequence (u;)2, corresponding to 6. Recall from the proof of Biggs’ formula (Theorem
2.8) that £ = Zio v;A;, where v; = vou; fori = 0,1,..., D. The submatrix of F indexed
by the vertices of C' equals vo(/ + u1(J — I)), which has rank at least ¢ — 1 (recall that
u; = 0/k # 1). Because the rank of E equals m, the bound ¢ < m+ 1 follows. If equality
holds then 1 + w;(c — 1) = 0, and hence ¢ = 1 — k/6, which implies that C' is a Delsarte
clique and 0 = 0.

Suppose now that I' is not a complete graph. We aim to show first that us = 1.
Consider a representation associated to 6 (see Section 2.5); for simplicity we normalize it
so that the vectors & have length one for all x € V', and the inner products between these
vectors are given by the standard sequence. Because the rank of the above submatrix of
E is m, it follows that the vectors Z, with z € C span the row space of U. In particular,
if we consider a vertex x at distance one from C, then z = ZZGC a, z for certain . By
taking inner products with Z, it follows that «, depends only on whether x is adjacent to
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z or not. Hence, because ) .2 = 0, see (12), we may assume that o, = 0 for z = z.
Now let y be a vertex in C' that is not adjacent to x. We then obtain that

L—up = (&,2) = (£,9) = > _ a:((£,2) — (2,9)) =0,

and hence indeed uy = 1.

From (4), it now follows that a; = k + 6, and hence the polynomial vy(2) = é(z2 -
a1z — k) from (2) satisfies v9() = vo(k), which implies that I'y is disconnected. If the
diameter equals two, then G is a complete multipartite graph, so we may now assume
that D > 2.

Because I'y is disconnected, it follows that ay = 0, for otherwise pi, > 0, which would
imply that from every path between two given vertices in I' one can construct a path in
I's between these two vertices. Suppose now that a; > 0. Let xg ~ 1 ~ x5 ~ 23 be a
shortest path between two vertices xy and x3 at distance three, and let y be a common
neighbor of x; and x5. Because as is zero, it follows that y is also adjacent to xy and x3,
and so the latter are not at distance three, which is a contradiction. Thus a; = 0, and
because a; = k + 0, it follows that # = —k, and hence I' is bipartite. O

We remark that the above proof, and hence the result, is also valid for 2-walk-regular
graphs, just like part of Godsil’s bound in the next section (cf. Section 10.4).

14.2 Godsil’s bound

Godsil [262] obtained the following lower bound on the multiplicity of an eigenvalue.

Theorem 14.3. (Godsil’s bound) Let I' be a distance-regular graph with valency k and
diameter D, and suppose I' is not a complete multipartite graph. If I' has an eigenvalue

with multiplicity m > 3, then D < 3m — 4 and k < Mﬂ

Godsil’s diameter bound was improved by Hiraki and Koolen [320].

Proposition 14.4. [320, Thm. 1.1, 1.2] Let I' be a distance-regular graph with diameter
D. If T has an eigenvalue with multiplicity m > 3, then D < m + 6, unless h = 1 and
cy = 1, in which case D < m + 2 + log; m.

Note that the Doubled Odd graph with valency k£ has diameter 2k — 1 and an eigenvalue
k — 1 with multiplicity 2k — 2, so this result is clos§ to the best possible. Yet another
lower bound is obtained by Jurisi¢, Terwilliger, and Zitnik [387] (cf. Section 6.3.2):

Proposition 14.5. Let I" be a distance-reqular graph with valency k. If 6 # +k is an
eigenvalue of I' with multiplicity m, then

alk(Q + 1)2
(k+0)>+a1(6% — k)

m =k —
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Koolen, Kim, and Park [411] refined the above valency bound of Godsil. By using the
theory developed by Jurisi¢ et al. [387], they were able to show that for k > 3 and m > 3,
the only possible distance-regular graphs with diameter at least 3 and k = mE2m=1) are
Taylor graphs with intersection array {(2a+1)?(2a? 4 2a — 1), 20*(2a+3),1; 1, 203 (2a +
3), (2a+ 1)*(2a* + 2a — 1)}, with m = 4a® + 4a — 1, where « is an integer not equal to
0 and —101roz:#5 (m = 3).

Terwilliger (cf. [78, Thm. 4.4.4]) showed that if a distance-regular graph with valency
k has an eigenvalue 6 # k with multiplicity m < k, then @ is either the second largest
or the smallest eigenvalue. Moreover, in this case —1 — 0b_4i1 is an algebraic integer as it
is an eigenvalue of a local graph. Also, if m < (k — 1)/2, then 6 is an integer such that
0 + 1 divides b;. Terwilliger’s result was slightly improved by Godsil and Hensel [269]
for antipodal distance-regular graphs, and by Godsil and Koolen [270] for the case that
ap = 0. As a consequence, Godsil and Koolen showed that a distance-regular graph with
intersection array {u(2u + 1), (1 — 1) (20 + 1), p?, 5 1, o (e — 1), p(2p + 1)} with g > 2
does not exist.

14.3 The distance-regular graphs with a small multiplicity

Let I" be a distance-regular graph with valency k. The eigenvalues k, and —k in case I
is bipartite, are the only eigenvalues with multiplicity one. Each eigenvalue of a polygon,
besides £k, has multiplicity two; and the polygons are the only distance-regular graphs
with an eigenvalue having multiplicity two. The five Platonic solids, i.e., the icosahedron,
dodecahedron, cube, octahedron, and tetrahedron are the only distance-regular graphs
with an eigenvalue having multiplicity three. Zhu [658] (see also [657]) determined the
distance-regular graphs with an eigenvalue having multiplicity four, whereas Martin and
Zhu [473] (see also [407, Ch. 7]) determined those with an eigenvalue having multiplicity
five, six, or seven. Koolen and Martin [416] (see also [407, Ch. 7]) determined the distance-
regular graphs with an eigenvalue having multiplicity eight.

14.4 Integrality of multiplicities

Biggs’ formula (Theorem 2.8) for the multiplicities of the eigenvalues and the requirement
that these multiplicities are positive integers is a crucial part of Biggs’ definition [48,
Def. 21.5] of feasible intersection arrays of distance-regular graphs.

Godsil and McKay [272] generalized Biggs’ formula to walk-regular graphs, thus ob-
taining feasibility conditions for such graphs. Recall that a graph is called walk-regular
if the number of closed walks of given length from a vertex