82,651 research outputs found

    Computer numerical control vertical machining centre feed drive modelling using the transmission line technique

    Get PDF
    This study presents a novel application of the Transmission Line Matrix Method (TLM) for the modelling of the dynamic behaviour of non-linear hybrid systems for CNC machine tool drives. The application of the TLM technique implies the dividing of the ball-screw shaft into a number of identical elements in order to achieve the synchronisation of events in the simulation, and to provide an acceptable resolution according to the maximum frequency of interest. This entails the use of a high performance computing system with due consideration to the small time steps being applied in the simulation. Generally, the analysis of torsion and axial dynamic effects on a shaft implies the development of independent simulated models. This study presents a new procedure for the modelling of a ball-screw shaft by the synchronisation of the axial and torsion dynamics into the same model. The model parameters were obtained with equipments such as laser interferometer, ball bar, electronic levels, signal acquisition systems etc. The MTLM models for single and two-axis configurations have been simulated and matches well with the measured responses of machines. The new modelling approach designated the Modified Transmission Line Method (MTLM) extends the TLM approach retaining all its inherent qualities but gives improved convergence and processing speeds. Further work since, not the subject of this paper, have identified its potential for real time application

    A Random Access Protocol for Pilot Allocation in Crowded Massive MIMO Systems

    Full text link
    The Massive MIMO (multiple-input multiple-output) technology has great potential to manage the rapid growth of wireless data traffic. Massive MIMO achieves tremendous spectral efficiency by spatial multiplexing of many tens of user equipments (UEs). These gains are only achieved in practice if many more UEs can connect efficiently to the network than today. As the number of UEs increases, while each UE intermittently accesses the network, the random access functionality becomes essential to share the limited number of pilots among the UEs. In this paper, we revisit the random access problem in the Massive MIMO context and develop a reengineered protocol, termed strongest-user collision resolution (SUCRe). An accessing UE asks for a dedicated pilot by sending an uncoordinated random access pilot, with a risk that other UEs send the same pilot. The favorable propagation of Massive MIMO channels is utilized to enable distributed collision detection at each UE, thereby determining the strength of the contenders' signals and deciding to repeat the pilot if the UE judges that its signal at the receiver is the strongest. The SUCRe protocol resolves the vast majority of all pilot collisions in crowded urban scenarios and continues to admit UEs efficiently in overloaded networks.Comment: To appear in IEEE Transactions on Wireless Communications, 16 pages, 10 figures. This is reproducible research with simulation code available at https://github.com/emilbjornson/sucre-protoco

    Advanced optical microscopies for materials: new trends

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32166This article summarizes the new trends of Optical Microscopy applied to Materials, with examples of applications that illustrate the capabilities of the technique

    The application of ultrasonic NDT techniques in tribology

    Get PDF
    The use of ultrasonic reflection is emerging as a technique for studying tribological contacts. Ultrasonic waves can be transmitted non-destructively through machine components and their behaviour at an interface describes the characteristics of that contact. This paper is a review of the current state of understanding of the mechanisms of ultrasonic reflection at interfaces, and how this has been used to investigate the processes of dry rough surface contact and lubricated contact. The review extends to cover how ultrasound has been used to study the tribological function of certain engineering machine elements

    An ultrasonic approach for contact stress mapping in machine joints and concentrated contacts

    Get PDF
    The measurement of pressure at a contact in a machine part is important because contact stresses frequently lead to failure by seizure, wear or fatigue. While the interface might appear smooth on a macroscale, it consists of regions of asperity contact and air gaps on a microscale. The reflection of an ultrasonic pulse at such a rough contact can be used to give information about the contact conditions. The more conformal the contact, the smaller is the proportion of an incident wave amplitude that will be reflected. In this paper, this phenomenon has been used to produce maps of contact pressure at machine element interfaces. An ultrasonic pulse is generated and reflected at the interface, to be received by the same piezoelectric transducer. The transducer is scanned across the interface and a map of reflected ultrasound (a c-scan) is recorded. The proportion of the wave reflected can be used to determine the stiffness of the interface. Stiffness correlates qualitatively with contact pressure, but unfortunately there is no unique relationship. In this work, two approaches have been used to obtain contact pressure: firstly by using an independent calibration experiment, and secondly by using experimental observations that stiffness and pressure are linearly related. The approach has been used in three example cases: a series of press fitted joints, a wheel/rail contact and a bolted joint

    Numerical and experimental characterization of a railroad switch machine

    Get PDF
    This contribution deals with the numerical and experimental characterization of the structural behavior of a railroad switch machine. Railroad switch machines must meet a number of safety-related conditions such as, for instance, exhibiting the appropriate resistance against any undesired movements of the points due to the extreme forces exerted by a passing train. This occurrence can produce very high stress on the components, which has to be predicted by designers. In order to assist them in the development of new machines and in defining what the critical components are, FEA models have been built and stresses have been calculated on the internal components of the switch machine. The results have been validated by means of an ad-hoc designed experimental apparatus, now installed at the facilities of the Department of Industrial Engineering of the University of Bologna. This apparatus is particularly novel and original, as no Standards are available that provide recommendations for its design, and no previous studies have dealt with the development of similar rigs. Moreover, it has wide potential applications for lab tests aimed at assessing the safety of railroad switch machines and the fulfilment of the specifications by many railway companies
    • …
    corecore