333 research outputs found

    Instruction fetch architectures and code layout optimizations

    Get PDF
    The design of higher performance processors has been following two major trends: increasing the pipeline depth to allow faster clock rates, and widening the pipeline to allow parallel execution of more instructions. Designing a higher performance processor implies balancing all the pipeline stages to ensure that overall performance is not dominated by any of them. This means that a faster execution engine also requires a faster fetch engine, to ensure that it is possible to read and decode enough instructions to keep the pipeline full and the functional units busy. This paper explores the challenges faced by the instruction fetch stage for a variety of processor designs, from early pipelined processors, to the more aggressive wide issue superscalars. We describe the different fetch engines proposed in the literature, the performance issues involved, and some of the proposed improvements. We also show how compiler techniques that optimize the layout of the code in memory can be used to improve the fetch performance of the different engines described Overall, we show how instruction fetch has evolved from fetching one instruction every few cycles, to fetching one instruction per cycle, to fetching a full basic block per cycle, to several basic blocks per cycle: the evolution of the mechanism surrounding the instruction cache, and the different compiler optimizations used to better employ these mechanisms.Peer ReviewedPostprint (published version

    Modeling Out-of-Order Superscalar Processor Performance Quickly and Accurately with Traces

    Get PDF
    Fast and accurate processor simulation is essential in processor design. Trace-driven simulation is a widely practiced fast simulation method. However, serious accuracy issues arise when an out-of-order superscalar processor is considered. In this thesis, trace-driven simulation methods are suggested to quickly and accurately model out-of-order superscalar processor performance with reduced traces. The approaches abstract the processor core and focus on the processor's uncore events rather than the processor's internal events. As a result, fast simulation speed is achieved while maintaining fairly small error compared with an execution-driven simulator. Traces can be generated either by a cycle-accurate simulator or an abstract timing model on top of a simple functional simulator. Simulation results are more accurate with the method using traces generated from a cycle-accurate simulator. Faster trace generation speed is achieved with the abstract timing model. The methods determine how to treat a cache miss with respect to other cache misses recorded in the trace by dynamically reconstructing the reorder buffer state during simulation and honoring the dependencies between the trace items. This approach preserves a processor's dynamic uncore access patterns and accurately predicts the relative performance change when the processor's uncore-level parameters are changed. The methods are attractive especially in the early design stages due to its fast simulation speed

    Is SC+ILP=RC?

    Get PDF
    Sequential consistency (SC) is the simplest programming interface for shared-memory systems but imposes program order among all memory operations, possibly precluding high performance implementations. Release consistency (RC), however, enables the highest performance implementations but puts the burden on the programmer to specify which memory operations need to be atomic and in program order. This paper shows, for the first time, that SC implementations can perform as well as RC implementations if the hardware provides enough support for speculation. Both SC and RC implementations rely on reordering and overlapping memory operations for high performance. To enforce order when necessary, an RC implementation uses software guarantees, whereas an SC implementation relies on hardware speculation. Our SC implementation, called SC++, closes the performance gap because: (1) the hardware allows not just loads, as some current SC implementations do, but also stores to bypass each other speculatively to hide remote latencies, (2) the hardware provides large speculative state for not just processor, as previously proposed, but also memory to allow out-of- order memory operations, (3) the support for hardware speculation does not add excessive overheads to processor pipeline critical paths, and (4) well- behaved applications incur infrequent rollbacks of speculative execution. Using simulation, we show that SC++ achieves an RC implementation's performance in all the six applications we studie

    Software and hardware methods for memory access latency reduction on ILP processors

    Get PDF
    While microprocessors have doubled their speed every 18 months, performance improvement of memory systems has continued to lag behind. to address the speed gap between CPU and memory, a standard multi-level caching organization has been built for fast data accesses before the data have to be accessed in DRAM core. The existence of these caches in a computer system, such as L1, L2, L3, and DRAM row buffers, does not mean that data locality will be automatically exploited. The effective use of the memory hierarchy mainly depends on how data are allocated and how memory accesses are scheduled. In this dissertation, we propose several novel software and hardware techniques to effectively exploit the data locality and to significantly reduce memory access latency.;We first presented a case study at the application level that reconstructs memory-intensive programs by utilizing program-specific knowledge. The problem of bit-reversals, a set of data reordering operations extensively used in scientific computing program such as FFT, and an application with a special data access pattern that can cause severe cache conflicts, is identified in this study. We have proposed several software methods, including padding and blocking, to restructure the program to reduce those conflicts. Our methods outperform existing ones on both uniprocessor and multiprocessor systems.;The access latency to DRAM core has become increasingly long relative to CPU speed, causing memory accesses to be an execution bottleneck. In order to reduce the frequency of DRAM core accesses to effectively shorten the overall memory access latency, we have conducted three studies at this level of memory hierarchy. First, motivated by our evaluation of DRAM row buffer\u27s performance roles and our findings of the reasons of its access conflicts, we propose a simple and effective memory interleaving scheme to reduce or even eliminate row buffer conflicts. Second, we propose a fine-grain priority scheduling scheme to reorder the sequence of data accesses on multi-channel memory systems, effectively exploiting the available bus bandwidth and access concurrency. In the final part of the dissertation, we first evaluate the design of cached DRAM and its organization alternatives associated with ILP processors. We then propose a new memory hierarchy integration that uses cached DRAM to construct a very large off-chip cache. We show that this structure outperforms a standard memory system with an off-level L3 cache for memory-intensive applications.;Memory access latency has become a major performance bottleneck for memory-intensive applications. as long as DRAM technology remains its most cost-effective position for making main memory, the memory performance problem will continue to exist. The studies conducted in this dissertation attempt to address this important issue. Our proposed software and hardware schemes are effective and applicable, which can be directly used in real-world memory system designs and implementations. Our studies also provide guidance for application programmers to understand memory performance implications, and for system architects to optimize memory hierarchies

    Limits of a decoupled out-of-order superscalar architecture

    Get PDF
    • …
    corecore