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MODELING OUT-OF-ORDER SUPERSCALAR PROCESSOR

PERFORMANCE QUICKLY AND ACCURATELY WITH TRACES

Kiyeon Lee, PhD

University of Pittsburgh, 2013

Fast and accurate processor simulation is essential in processor design. Trace-driven simu-

lation is a widely practiced fast simulation method. However, serious accuracy issues arise

when an out-of-order superscalar processor is considered. In this thesis, trace-driven sim-

ulation methods are suggested to quickly and accurately model out-of-order superscalar

processor performance with reduced traces. The approaches abstract the processor core and

focus on the processor’s uncore events rather than the processor’s internal events. As a

result, fast simulation speed is achieved while maintaining fairly small error compared with

an execution-driven simulator. Traces can be generated either by a cycle-accurate simulator

or an abstract timing model on top of a simple functional simulator. Simulation results

are more accurate with the method using traces generated from a cycle-accurate simulator.

Faster trace generation speed is achieved with the abstract timing model. The methods

determine how to treat a cache miss with respect to other cache misses recorded in the

trace by dynamically reconstructing the reorder buffer state during simulation and honoring

the dependencies between the trace items. This approach preserves a processor’s dynamic

uncore access patterns and accurately predicts the relative performance change when the

processor’s uncore-level parameters are changed. The methods are attractive especially in

the early design stages due to its fast simulation speed.
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1.0 INTRODUCTION

As higher microprocessor performance is desired, the microprocessor design has evolved and

achieved spectacular breakthroughs over the last decades. In the 1990s, the microproces-

sor performance showed a significant boost with higher clock frequencies through deeper

pipelines and advanced microarchitectural techniques, such as out-of-order execution and

aggressive branch prediction [31, 67]. Computer architects have introduced architecture in-

novations to increase the parallelism in various forms—instruction-level parallelism (ILP),

memory-level parallelism (MLP), and the thread-level parallelism (TLP)—present in today’s

microprocessors [31]. ILP is achieved by executing multiple instructions in parallel supported

by multiple functional units and the multi-issue capability of a processor. MLP is achieved as

an effect of ILP and the capability of the processor’s cache subsystem to issue and track mul-

tiple outstanding requests to the main memory. In a single-core processor, TLP is realized

by executing multiple threads simultaneously on a single multithreaded processor core.

Starting from the decade of 2000, the trend in microprocessor design changed from

a single-core processor to a multicore processor architecture. Rather than squeezing the

performance out of a single-core processor core, a multicore processor improves the system

performance by increasing the total throughput of the system. In multicore architecture,

TLP is realized by executing multiple threads simultaneously on multiple processor cores.

As more and more processor cores are integrated in a single chip, the performance of

the underlying memory subsystem is critical to achieve high overall performance. More

specifically, as the number of processor cores in a chip increases, the contention in the

shared resources, such as the interconnection network, the last-level cache, and the memory

controller, has a significant and growing impact on the performance of a multicore processor

system. Such shared resources are sometimes referred to as “uncore” components [18, 64],
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distinguished from the processor core components such as the branch predictor and the L1

caches.

Developing a microprocessor system involves a thorough evaluation of the processor per-

formance, including the effect of advanced microarchitectural techniques like branch predic-

tion and out-of-order instruction execution, over several processor design stages. In the early

design stages, when the target processor system is not available, computer architects rely

on software simulation techniques with abstract performance models or rely on analytical

models to quickly explore a large design space and study the design trade-offs. More detailed

cycle-accurate execution-driven simulation, which closely models the events that occur in an

actual processor, is required in the later design stages as the microprocessor design gets fi-

nalized. After the silicon of a processor is available, the performance measurement units are

used to measure the performance of the implemented processor system. The performance

evaluation of a processor is a major challenge as it requires various tools, methodologies, and

experience [4].

1.1 PROBLEM DEFINITION

Software simulation enables one to quickly analyze the behavior of a complex system and to

evaluate subtle design trade-offs in a controlled experimental environment. However, despite

all the advantages, simulation may be unacceptably slow. Simulating seconds of program

execution in real time may entail days of simulation. This slow simulation speed affects the

development progress of a new processor design. Hence, improving the simulation efficiency

by increasing the simulation speed without sacrificing the simulation accuracy has been a

hot research topic in the computer architecture community. It is particularly important to

perform a fast and reasonably accurate simulation in early design stages.

Trace-driven simulation is a widely practiced simulation method when the traces are

prepared and fast simulation is required [73, 82]. To run a simulation, a trace of interesting

2



processor events1 need to be generated prior to simulation. Once the trace has been prepared

it can be reused multiple times with different machine configurations. Replacing detailed

functional execution with pre-captured trace results in a much faster simulation speed than

an execution-driven simulation method. Thanks to its high speed, trace-driven simulation

is especially favored in early design stages [73]. Unfortunately, the accuracy of trace-driven

simulation has often been questioned when modeling a complex processor such as an out-of-

order superscalar processor [10]; the static nature of the trace poses challenges when modeling

a dynamically scheduled out-of-order superscalar processor2 [10, 43, 45]. As a result, trace-

driven simulation has been typically limited to modeling relatively simple in-order processors,

unless a full instruction trace of a program is available.

In contrast, execution-driven simulation is a simulation method used to simulate the

behavior of a processor in detail without traces. It simulates the processor in a cycle-by-cycle

basis which provides great flexibility to simulate a complex processor and returns accurate

simulation results. To model a superscalar processor, it is believed that full tracing and

computationally expensive detailed modeling of processor microarchitecture are required [4].

However, this comes with the cost of a long development time and a slow simulation speed.

In this dissertation, accurate trace-driven simulation using reduced trace is considered for

modeling superscalar processor performance. The reduced trace only includes accesses to

the uncore components, a subset of the entire instructions, and summarizes the instructions

executed between operations. There are prior trace-driven simulation works using filtered

trace [73], which is a trace of memory references filtered from the program instruction stream.

In this dissertation, the notion of reduced trace is used to represent a trace of accesses to

the uncore components obtained by filtering the L1 cache hits.

Filtered trace based simulation is desirable because filtered trace simplifies the complexity

of modeling a processor core, obtains results faster, and requires less storage space than

trace-driven simulation using full instruction traces. Trace-driven simulation with filtered

trace works well for in-order processors. For example, consider the detailed simulation of a

1In this dissertation, a trace of a single processor event is denoted as a “trace item”. The size of a trace
item depends on the amount of information stored in the trace item. It is usually in the range of several 10’s
of bytes.

2In this dissertation, the terms “out-of-order superscalar processor” and “superscalar processor” are used
interchangeably.

3



227% 712%

72%

47%

11%
3%

0%

20%

40%

60%

80%

100%

mcf art gcc ammp perl facerec

C
P

I 
d

if
fe

re
n

c
e

Figure 1: Inaccurate CPI results from a näıve trace-driven simulation of a superscalar processor.

simple in-order processor. During the trace generation phase, one might record the type and

the address of every memory operation as well as the number of instructions executed and

the number of cycles elapsed since the last memory operation. Because the core executes

instructions in order and blocks while waiting for a memory access, the filtered trace would

be the same regardless of the memory configuration. Thus, using the same trace, one could

simulate many different memory hierarchy configurations, such as different cache latencies

or cache sizes, with high cycle accuracy and fast simulation speed.

However, this straightforward approach does not work for a superscalar processor, since

it does not necessarily block during a long latency operation and executes other instructions

to hide the latency cost. For example, a superscalar processor executes instructions during

a long latency off-chip access to hide the cost of the long latency. Even multiple off-chip

accesses can be simultaneously outstanding while the data fetched by individual access is still

in transit from the memory. Moreover, the impact of an off-chip access on program execution

time is determined dynamically during program runtime and changes with different machine

configurations. However, a trace naturally contains the choices made by a core in one partic-

ular instance of execution. Figure 1, produced using a typical 4-issue superscalar processor

model and a selected set of benchmarks from the SPEC2K benchmark suite [70], shows that

using the näıve approach described above to model superscalar processor performance indeed

results in very high errors.
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It is not straightforward how to assess the impact of a memory access in a superscalar

processor with pre-generated filtered trace, especially if one wants to further reduce the

amount of trace for faster simulation speed. In this dissertation, practical and effective

trace-driven simulation methods are developed and evaluated using reduced trace to model

the performance of superscalar processors, especially when the focus of a study is on uncore

components such as the L2 cache and the memory controller.

1.2 OVERVIEW OF THE APPROACH

Previously, researchers proposed analytical performance models to quickly derive the per-

formance of superscalar processors [13, 24, 36, 52]. For example, Karkhanis and Smith [36]

proposed a first-order analytical performance model to estimate a superscalar processor’s

performance by paying attention to “miss events” that can stall program execution, such as

branch misprediction, instruction cache miss, and data cache miss. The overall performance

of a program is derived by adding the ideal CPI and the CPI increase due to the miss events.

Chen and Aamodt [13] and Eyerman et al. [24] extended the first order model by improving

its accuracy and incorporating more processor artifacts. Michaud et al. [52] built a simple

analytical model based on the observation that the instruction-level parallelism (ILP) grows

as the square root of the instruction window size. These analytical models derive the overall

performance of superscalar processors from relatively simple mathematical models. How-

ever, the mathematical models cannot reproduce (or simulate) the dynamic behavior of the

processor being modeled. In this dissertation, I focus on trace-driven simulation methods

rather than analytical models.

A general trace-driven simulation framework consists of two phases [73, 82] as shown in

Figure 2. In the trace generation phase, traces are collected from a trace generator. A trace

consists of trace items, which may capture every executed instruction of a program, or may

contain the information of certain events, such as L2 cache accesses. The trace generator

in the figure represents the various tools that can be used for trace generation. The trace

generator may include an existing simulator or an emulator that can execute a program

5
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Figure 2: A high-level view of a trace-driven simulation method.

binary [2, 6, 8] or a binary instrumentation tool [49, 57]. In the trace simulation phase, the

trace simulator exploits the information recorded in the traces. In this work, in the trace

generation phase, a cycle-accurate simulator or an abstract timing model on top of a simple

functional simulator is used to generate traces. During trace generation, other instructions

are filtered and only the L1 cache misses (L2 cache accesses) are traced instead of tracing

the entire instructions of a program. Since the trace is a subset of a filtered memory trace, it

is named as “reduced trace”. In the trace simulation phase, an out-of-order trace simulation

is executed by exploiting the information recorded in the reduced traces.

The presented strategies abstract the processor core by replacing the core-level simulation

with a reduced trace, and focus on assessing the impact of uncore events on a superscalar

processor’s performance rather than focusing on the processor’s internal events. This dis-

sertation proposes simulation methods to quickly and accurately approximate superscalar

processor performance by reasoning about how to treat a cache miss with respect to other

cache misses. The trace can either be generated using a cycle-accurate simulator to include

the timing information of the processor core, or using an abstract timing model imple-

mented on top of a functional simulator to include an abstract timing information of the

processor core. During trace generation, the dependency information between trace items is

also recorded. During trace simulation, a trace item is processed considering the informa-

tion recorded in the trace item. Three simulation models are proposed for trace simulation

with timing information—isolated cache miss model, independent cache miss model [45], and

pairwise dependent cache miss model [45, 44]—and one trace simulation model is proposed

for trace simulation with abstract timing information—In-N-Out [43].

The isolated cache miss model computes the impact of each individual L1 cache miss by
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interleaving the L2 cache hit and miss latency to L1 cache misses during trace generation.

Multiple simulation runs are used to skew the alternation of assigning L2 cache hit and miss

latencies on L1 cache misses, and compute the L1 cache miss penalty by comparing the

number of cycles measured in the same interval. The isolated cache miss model is capable of

accurately quantifying the impact of an “isolated” L1 cache miss, however, it is not suitable

for a program that frequently creates overlapping L1 cache misses. To accurately model

the impact of both isolated and overlapping L1 cache misses, this dissertation proposes the

independent cache miss model.

The independent cache miss model determines when an L1 cache miss trace item can

be processed by dynamically reconstructing a processor’s reorder buffer (ROB) state during

simulation. However, the model is optimistic about when a trace item can proceed because

it does not consider the dependency between the L1 cache misses. Effectively, all L1 cache

misses are independent, and they do not block the execution of instructions after a miss.

The pairwise dependent cache miss model (PDCM) improves the independent cache

miss model by identifying and enforcing the dependency between L1 cache misses. PDCM

can model the impact of important processor artifacts, such as instruction caching, branch

prediction, L2 data prefetching, and limiting the number of outstanding L2 cache misses

using miss status handling registers (MSHRs) [39].

The last model, In-N-Out, uses an abstract timing model based on simple functional

simulator to quickly generate reduced in-order traces. Similar to PDCM, In-N-Out model

determines when to process an L1 cache miss trace item by analyzing the ROB occupancy

status and honoring the dependencies between trace items. Important processor artifacts

like data prefetching and miss status handling registers (MSHRs) can be easily incorporated

in the In-N-Out framework. The evaluation results show that In-N-Out produces relatively

accurate simulation results with a very high simulation speed.

The experimental results with the SPEC2K benchmark suite demonstrate that the pro-

posed trace-driven simulation models, based on simple yet effective ideas, achieve fast sim-

ulation speed and small CPI difference compared with a widely used execution-driven ar-

chitecture simulator. Among the proposed simulation methods, this dissertation primarily

focuses on PDCM and In-N-Out since the two models show the highest simulation accuracy

7



and fastest simulation speed compared to other studied methods. The extensive experiments

reveal that, PDCM achieves a very small CPI difference of 3% and fast simulation speeds

of 48 MIPS (million simulated instructions per second) on average. In-N-Out achieves a

reasonably small CPI difference of 7% and fast simulation speeds of 89 MIPS on average.

More importantly, it is observed that PDCM and In-N-Out preserve a processor’s dynamic

uncore access patterns and accurately predicts the relative performance change when the

processor’s uncore-level parameters are changed. Compared with a detailed cycle-accurate

simulator PDCM and In-N-Out show 55× and 102× simulation speedup on average.

1.3 THESIS CONTRIBUTIONS

Compared with detailed yet slow cycle-accurate simulation methods, the proposed methods

have a clear advantage in simulation speed. When compared with a full trace based simula-

tion method, the proposed methods are faster and require smaller storage space. Previous

simulation methods that use memory traces, both filtered and unfiltered, have not attempted

to model out-of-order superscalar processor performance accurately. In this dissertation, the

following contributions are made:

• This work presents practical trace-driven simulation methods employing reduced trace

to model the performance of realistic superscalar processors. The methods are practical

since they abstract a superscalar processor core’s dynamic behavior with high accuracy

and only require the timing models for uncore components. The reduced trace can be

generated from either a cycle-accurate simulator or an abstract timing model based on

a functional simulator or a binary instrumentation tool.

• This work proposed two novel trace-driven simulation methods employing reduced trace,

pairwise dependent cache miss model (PDCM) and In-N-Out, to model the performance

of realistic superscalar processors. The trace simulation algorithm and the key design

issues are discussed, and their effects are quantified.

• Both PDCM and In-N-Out can accurately predict the relative performance of the simu-

lated machine when the machine’s uncore parameters are changed. They are also capable
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of faithfully replaying how a superscalar processor exercises and is affected by the uncore

components.

• The proposed simulation methods are faster than a detailed cycle-accurate simulator.

The absolute simulation speed of PDCM and In-N-Out are in the range of MIPS, whereas

the simulation speed of a detailed execution-driven simulator is typically in the range of

KIPS (kilo simulated instructions per second).

1.4 THESIS ORGANIZATION

The rest of this thesis is organized as follows. Section 2 summarizes related work. Section 3

and Section 4 describe our proposed approaches and present the validation results. Section 5

compares our two signature models: PDCM and In-N-Out. Finally, the conclusion of this

work is highlighted in Section 6 and the future research directions are put forth in Section 7.
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2.0 BACKGROUND

2.1 OUT-OF-ORDER SUPERSCALAR PROCESSOR

In this dissertation, a machine model is assumed to be a superscalar processor system with

two levels of cache memory, L1 cache and L2 cache, and a main memory, as shown in Figure 3.

Program instructions and data are separately stored in L1 instruction cache and L1 data

cache, respectively. The L2 cache is a unified cache which stores both the program instruc-

tions and data. The superscalar processor core model used in this dissertation is sketched

inside the dotted box. It has a front-end “fetch pipeline” that fetches instructions from the

instruction cache and buffers the instructions for further processing. When a miss occurs in

the instruction cache, the L2 cache is accessed to fetch the instructions. If the instruction

fetch request also misses in the L2 cache, the main memory is accessed. The instruction fetch

bandwidth provides an upper bound on the throughput of all subsequent pipeline stages [67].

It is determined by the instruction cache, branch predictor, and the processor parameters

such as the instruction fetch queue size. To achieve sustainable instruction fetch bandwidth,

it is important to minimize the branch mispredictions, since modern superscalar processors

speculatively execute instructions fetched from a predicted path to increase the instruction-

level parallelism (ILP). If the processor mispredicts the path, the processor rolls back to its

state that was before the mis-predicted branch, and then executes the instructions fetched

from the correct path. Many branch prediction schemes [52, 66] and instruction caching

techniques [14, 16, 65] have been developed in the past for high bandwidth instruction fetch-

ing.

Once fetched, instructions are decoded and dispatched to various functional units such

as an ALU, branch unit, or data memory access unit. They may be temporarily stored
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Figure 3: Machine model having a superscalar processor core, L2 cache, and main memory.

in buffers (or reservation stations) associated with a specific functional unit until the unit

becomes available or until its input operands arrive. Due to the limited number of functional

units in a processor, resource conflicts may occur when more than one operations compete

for the same functional unit in the same cycle. When an instruction is dispatched, an entry

is allocated in the reorder buffer (ROB) so that the “update and commit pipe” can change

the architectural state properly in program order as instructions are committed in the pres-

ence of special events such as exceptions, branch mis-predictions, and cache misses. The

instructions are committed in program order by forcing an instruction to commit only when

it becomes the oldest instruction in the ROB (the head of the ROB). Only the instructions in

the ROB without any unresolved dependencies are considered to be scheduled at any given

time. Hence, the size of the ROB is an important parameter to achieve high instruction-level

parallelism or memory-level parallelism. For instance, with a 96-entry ROB, two instruc-

tions cannot be simultaneously executed if they are 96 or more instructions away from each

other [13, 36]. ROB holds the result of an operation until the associated instruction commits,

and provides the result to the depending instructions. For memory instructions, the memory

dependency is examined in addition to the data dependency between instructions. When

scheduling a load instruction, the store buffer is searched for a preceding store instruction

with an unknown memory address. If there is such store instruction, the load instruction
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cannot be issued until the memory address of the preceding store instruction is calculated.

Because of the disparity between the processor and memory speed [77, 79], the cache sub-

system plays a critical role in achieving high performance, particularly for memory-intensive

programs, by reducing the number of accesses to the main memory. It exploits the local-

ity presented in a program and stores frequently accessed data to avoid accessing the main

memory. The cache subsystem consists of multiple levels of hierarchy, where the upper level

caches are faster and smaller than the lower level caches. Modern superscalar processors

typically use two or more levels of caches. In this dissertation, the notion of “last-level cache

(LLC)” is used to indicate the last level of cache on chip before accessing the off-chip main

memory. The processor schedules a memory instruction to a load/store unit which issues a

cache access to the L1 data cache. When the cache access misses in L1 data cache, it accesses

the lower level caches until it hits in the cache or it reaches the LLC. If the access misses

in LLC, it accesses the off-chip main memory. Since the target machine assumes a two-level

cache hierarchy, L2 cache is the LLC in the target machine. The L2 cache may be placed in-

side or outside (uncore) the processor core. The L2 cache that is placed inside the processor

core is private to its processor core, whereas uncore L2 cache can be either private or shared

among the processor cores. It is noted that the uncore shared L2 cache and main memory

are considered as a system-wide resource in multicore processor architectures [23, 38].

To achieve high performance, it is important to reduce the amount of accesses to the

main memory and hide the main memory access latency as much as possible due to the long

main memory access latency. L2 cache data prefetching may reduce the number of L2 cache

misses by speculatively loading the data that are likely to be used in a near future from the

main memory to the L2 cache. In this dissertation, a sequential data prefetching technique,

tagged prefetch [69], and a stream-based prefetching [71] are employed. The tagged prefetch

algorithm uses a tag bit, which is used to mark prefetched blocks that are reused, associated

with every cache block. Tagged prefetcher triggers a prefetch request for cache block B +

1, when a cache miss occurs on cache block B, or when a hit occurs on a prefetched cache

block B. The stream prefetching algorithm, unlike the simple sequential data prefetching

algorithms, monitors the cache access streams and triggers a prefetch request when the

cache access is determined to be a part of an identified stream.
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To hide the long main memory access latency, the cache subsystem supports multiple

outstanding requests to the main memory to overlap the main memory accesses. If two

independent main memory accesses occur simultaneously, only the latency of single main

memory access will be exposed to the processor. Miss status handling registers (MSHRs)

are used to hold the information of an outstanding cache miss until the cache miss is resolved.

Hence, the number of outstanding L2 cache misses is determined by the number of L2 MSHRs

in the system. An MSHR holds the primary miss and many secondary misses to a cache

block. A primary miss is the first cache miss to a cache block and secondary misses are the

following cache misses to the same cache block (i.e., delayed hits).

More general description of superscalar processor design and operation can be found in

Hennessy and Patterson [31], Johnson [33], and Shen and Lipasti [67].

2.2 PERFORMANCE MODELING METHODS

Before the actual hardware of a target processor system is available, the performance of the

target system is estimated using performance modeling techniques. The two most common

performance modeling methods are (software) simulation and analytical modeling. It is

well known that simulation is accurate than analytical modeling techniques, however, it

suffers from long simulation time. On the other hand, analytical modeling techniques are

less accurate than simulation, however, they have a clear speed advantage over simulation.

Simulation can be classified into execution-driven simulation, which executes actual program

instructions, and trace-driven simulation, which is driven from a stored trace file1. Table 1

compares three popular performance modeling methods: execution-driven simulation, trace-

driven simulation, and analytical modeling.

An execution-driven simulator consists of a functional simulator and a timing simulator.

The functional simulator implements an instruction set architecture that can execute a real

1Trace-driven simulation may directly use the trace without storing the trace in a disk using on-line
tracing techniques. However, this dissertation assumes that trace-driven simulation uses stored traces. On-
line method does not incur storage space overheads, however, it does not allow traces to be shared and makes
it difficult to obtain repeatable simulation results [40].
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Methods Speed Required disk space size

Execution-driven Application-only Slow —
simulation Full-system Very slow Small

Trace-driven Full-trace Slow Large
simulation Filtered-trace Fast Moderate

Analytical modeling Very fast May require large space

Table 1: Comparing different performance modeling methodologies.

binary. It decodes the instructions in program order to get their operands and store operation

results in the target register. The timing simulator, also known as performance simulator,

models the processor microarchitecture artifacts. It takes the machine configuration and

the decoded instruction information as input and collects various statistics to measure the

performance.

There are two types of execution-driven simulation. One is an application-only execution-

driven simulation, which simplifies the handling of I/O operations and operating system

activities. When simulating a program binary on an application-only execution-driven sim-

ulator, the system calls from the binary are emulated by calling the host operating sys-

tem. Simplescalar [2] is a popular application-only execution-driven simulator suite used in

academia. The simulator suite has a fast functional simulator and a detailed timing sim-

ulator that models an out-of-order superscalar processor. The other type is a full-system

execution-driven simulation, which models the complete hardware system in enough detail to

run unmodified operating systems. There are many workloads that require an entire system

simulation to obtain meaningful simulation results, such as the database and server work-

loads [72] and multithreaded workloads [7]. Examples of well-known full-system simulators

are SIMICS [50], QEMU [6], gem5 [8], and MARSSx86 [63]. SIMICS and QEMU functionally

simulates the entire computer systems, but do not provide modules for timing simulation

of processor systems. Hence, SIMICS and QEMU users must develop their own modules

to simulate a processor system. An example is GEMS [51], which is a set of modules for

SIMICS that models the detailed microarchitecture of multiprocessor systems. On the other

hand, gem5 and MARSSx86 simulators provide both the functional simulator and detailed
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timing model to simulate a processor architecture. Unlike an application-only simulator, a

full-system simulator requires few giga-bytes of storage space to keep an image of the disk.

Trace-driven simulation replaces the functional simulation of the execution-driven sim-

ulation with pre-generated traces. Once the traces are generated, the traces can be reused

many times for timing simulation. The traces may be a full instruction trace or traces of cer-

tain events, such as memory references. Conventional trace-driven simulation for superscalar

processors employs a full instruction trace to simulate the dynamic behavior of a superscalar

processor [62]. However, a full instruction trace requires a large storage space. Moreover,

trace-driven simulation with a full instruction trace does not have a clear speed advantage

over an execution-driven simulation, since they both simulate the entire instruction stream

of a program. On the other hand, filtered-trace simulation requires a much smaller storage

space since it only traces specific events rather than the entire instructions of a program.

For instance, Dinero IV [11] is a cache simulator that takes memory reference traces and

provides the cache hit and miss information. This dissertation focuses on filtered traces that

capture only a subset of memory references.

Analytical modeling relies on mathematical equations to model the superscalar processor

performance based on several simplifications. It can provide valuable insights in the early

processor design stages, and it has a speed advantage over other simulation methods [36].

However, it only provides the estimated performance numbers as the end result, and it

cannot reproduce the dynamic behavior a superscalar processor. For accurate performance

modeling, analytical models require an instruction trace analysis for each program to obtain

the necessary information for their mathematical models.

During processor development, computer architects select appropriate performance mod-

eling methods depending on the purpose and requirement of the modeling work. For instance,

to obtain highly accurate simulation results, a detailed cycle accurate execution-driven simu-

lation is used. On the other hand, if the focus of a study is limited to certain events, filtered

trace-driven simulation can be used for faster simulation speed. For example, in this dis-

sertation, the processor core is abstracted and filtered trace-driven simulation is used, since

the focus of the work is on assessing the impact of uncore accesses on superscalar processor

performance.
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2.2.1 Trace-driven simulation

Trace-driven simulation is a widely practiced simulation method due to its fast simulation

speed and reduced programming effort compared to other detailed simulation methods, such

as execution-driven simulation. Trace-driven simulation consists of two phases [73, 82]. In

the trace generation phase, a benchmark is executed and information about key events is

recorded in a trace file. In the trace simulation phase, the information recorded in the first

phase is used to drive the simulation. The history of trace-driven simulation goes back

several decades [69, 73]. In 1966, Belady used trace-driven simulation method to study the

replacement algorithms for a virtual storage computer [5].

Trace-driven simulation’s increased speed is a result of replacing the detailed functional

execution of a benchmark with a pre-captured, but highly representative, trace of an exe-

cution. However, accuracy issues arise when using trace-driven simulation for superscalar

processors and multicore processors. Black et al. [10] questioned the accuracy of trace-driven

simulation for superscalar processors even when the full traces were used as the processor

complexity continues to increase and the benchmarks evolve to run for longer times. They

also determined that sampling techniques present a problem to the accuracy of trace-driven

simulation for superscalar processors. Bitar [9] and Goldschmidt and Hennessy [30] discussed

the accuracy of trace-driven simulation for multiprocessor studies. Parallel workloads run-

ning on a multiprocessor system are likely to introduce timing-dependencies in the memory

traces due to the asynchronous interactions between processes (threads), such as dynamic al-

location of shared resources and barrier synchronization. The timing-dependencies in trace

incur large inaccuracies when trace-driven simulation is used for multiprocessor systems.

Nevertheless, Goldschmidt and Hennessy [30] introduced a technique for accurate trace-

driven simulation of multiprocessors when timing dependencies are created by locks and

barriers.

In previous and current practice, much trace-driven simulation work on memory system

simulation has focused on either tracing memory references without timing [73] or using a

full trace of executed instructions for relatively fast simulation with complete fidelity [4]. In

the meantime, reducing traces has been considered important for practical reasons of storage
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space and simulation speed. For instance, Chame and Dubois [12] used the property of cache

inclusion to filter memory references that are guaranteed to hit in actual simulation and

Iyengar et al. [32] defined an “R metric” to guide reducing trace sizes while still maintaining

the branch related properties of the original traces. Wang and Baer [74] used a direct-mapped

“filter cache” to filter memory references. Further work by Kaplan et al. [35] has yielded

trace reduction techniques Safely Allowed Drop (SAD) and Optimal LRU Reduction (OLR),

which accurately simulate the LRU policy. These further filter out hits, and OLR is provably

optimal for the LRU policy. Agarwal and Huffman [1] proposed techniques to compress traces

by exploiting spatial locality. Filtered tracing differs from sampling [68, 80, 81], since filtered

trace items are generated throughout the execution of the program. However, previous trace-

driven simulation works that use filtered traces have not been done in the context of timing

accuracy for modeling superscalar processor performance.

In my previous work [45], I demonstrated that filtered trace-driven simulation can accu-

rately approximate superscalar processor performance. In [45], I introduced three different

trace-driven simulation models to approximate the impact of a long-latency memory access

on superscalar processor performance with filtered traces: isolated cache miss model, indepen-

dent cache miss model, and pairwise dependent cache miss model. However, the simulation

models require a cycle-accurate execution-driven simulator that models the microarchitecture

of the target superscalar processor to generate filtered traces.

In [44], I focused on the pairwise dependent cache miss model (PDCM) among the three

strategies introduced in [45]. I presented the trace simulation algorithm in complete detail

and discussed the improvements over [45] and many implementation issues. Moreover, I

considered important architectural artifacts including: MSHR, data prefetching, and branch

predictor. In [43], I proposed an abstract simulation method called In-N-Out to remove such

limitation by using a functional cache simulator to generate filtered traces. Since a functional

simulator does not provide timing information, In-N-Out resorts to information about data

dependency between instructions to estimate the distance between L1 data cache misses.

Filtered trace simulation has been used for experiments with multithreaded parallel ap-

plications. Eggers et al. [20, 21] use the memory references of parallel programs to analyze

the sharing behavior of parallel applications to evaluate the performance of coherency pro-
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tocols. In particularly, they analyze the memory reference patterns of write shared data in

parallel applications. There are trace-driven multicore simulators that use filtered traces like

this dissertation. Zauber [46] and TPTS [42] increase the simulation speed by replacing the

core-level simulation with filtered traces. TPTS assumes in-order processor cores and does

not model out-of-order superscalar processors. Zauber models out-of-order superscalar pro-

cessors, however, their work lacked the details of the simulation methodology and evaluation

of Zauber. Zauber uses Turandot [55] and TPTS uses Simplescalar and Simics [50] for col-

lecting traces. PDCM and In-N-Out are expected to be easily integrated in such trace-driven

multicore simulators.

Finally, traces for single-threaded or multi-threaded programs can be generated using

inline tracing technique [21], rather than employing existing simulators. The technique

automatically modifies the application binary to insert traps (codes) to collect traces dur-

ing program execution. Similarly, binary instrumentation tools, such as PIN [49] and Val-

grind [57], can be used to quickly generate instruction traces or filtered traces. There are

also compiler-based tracing techniques [40] that can reduce the trace generation time and

space overhead.

2.2.2 Analytical models for out-of-order superscalar processors

Due to its complexity, evaluating a modern superscalar processor’s performance with de-

tailed simulation requires a great deal of efforts on implementing and validating a simulator.

This motivated many researchers to develop alternative methods to quickly estimate the

performance of a superscalar processor. Hence, much superscalar processor modeling work

has focused on building an analytical model. There are four proposals [13, 24, 36, 52] the

most related to this dissertation. They all used a functional simulator to generate instruc-

tion traces prior to the actual modeling. The collected instruction traces are then profiled

to derive the parameters used in their analytical model.

Michaud et al. [52] built an analytical model to study the relations between instruction

fetching, branch prediction accuracy, and ILP. In their model, they partitioned the full

instruction trace into windows of constant size. They examined the length of the instruction
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dependency chains in each window, and observed that the length of the longest instruction

dependency chain can be used to estimate how many instructions can retire per cycle (IPC)

and thereby derive the execution time.

Karkhanis and Smith [36] have presented a first-order analytical model for modeling a

superscalar processor performance. Their first-order analytical performance model focuses

on “miss events” that can stall program execution, such as branch misprediction, instruction

cache miss, and data cache miss. Different equations are introduced to model individual

penalties. The overall performance of a program is estimated with the baseline CPI (mea-

sured with no miss-events) and the CPI due to these miss events.

Chen and Aamodt [13] extended the first-order model [36] by more accurately estimating

the CPI component due to long latency data cache misses. They proposed a method to

analytically model the effect of pending data cache hits, data prefetching, and MSHRs, which

were not considered in the first-order model. They also demonstrated that their model can

estimate the individual effect of data prefetching and MSHRs, and their combined effects as

well. Their model considered the effect of pending data cache hits, which was not considered

by Karkhanis and Smith. This dissertation also discusses the importance of considering the

pending data cache hits and modeling their effect accordingly. Chen and Aamodt assumed

perfect branch prediction and instruction caching.

Eyerman et al. [24] proposed a “mechanistic model” which is a revision of the first-

order model. They model the execution time between two miss events, namely “interval”,

and the overall execution time is derived by simply aggregating the execution times of all

intervals. For simpler performance penalty formulation, their model focused on the dispatch

stage of the processor, whereas the first-order model focused on the instruction issue stage.

Similar to Karkhanis and Smith, they modeled branch prediction and instruction caching,

but did not model the effect of pending data cache hits, data prefetching, and MSHRs. More

recently, Genbrugge et al. [29] proposed “interval simulation”, which extends the mechanistic

model [24] to raise the level of abstraction for fast multicore simulation. They use a functional

simulator to generate a dynamic instruction stream for their model. The significant difference

between simulation methods and these analytical models comes from the usage of these

models. The goal of using an analytical model is to quickly derive the overall performance
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Techniques Technique description

Sampling Find the representative simulation points of a program

Workload characterization Develop an alternative program to replace a large program

Increasing the abstraction
level

Focus on a few aspects that are most critical to the performance

Parallel simulation Achieve simulation speedup by parallelizing a single simulation

Table 2: Various techniques to reduce the simulation time.

number as an end result using mathematical equations, whereas a simulation method is used

as a tool to estimate the performance and observe the behavior of a target system.

Noonburg and Shen [58] have proposed a framework for statistical modeling of super-

scalar processors. Eeckhout et al. [19] compares different simulation methods and advo-

cates the advantage of using statistical simulation than other simulation methods, such as

trace-driven and execution-driven simulation, when detailed performance modeling is not

necessary. Nussbaum et al. [59, 60] also proposed using statistical simulation for superscalar

processors and symmetric multiprocessor system.

While a model-based approach is extremely useful when considering a few design param-

eters quickly, it does not diminish the role of fast and accurate simulation methods like the

ones developed in this research. The significant difference between the simulation methods

presented in this dissertation and these analytical models comes from the usage of these

models.

2.2.3 Other simulation time reduction techniques

While not directly comparable to the dissertation, there are other techniques to reduce the

simulation time, as listed in Table 2. Sampling techniques have been developed to reduce

the scope of (detailed) simulation during execution-driven simulation. Sherwood et al. [68]

proposed SimPoint, a technique to automatically identify “representative” program intervals

that exhibit stable behavior (called “phases”). One could choose to simulate portions of these

intervals (e.g., 100M instructions) to predict a benchmark’s execution time and other metrics
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rather than simulate the whole execution, thereby effectively reducing the time needed for

simulation. According to [68], each SPEC2k benchmark program has up to 10 phases.

Considering that typical SPEC2k benchmarks execute hundreds of billions of instructions,

SimPoint has the potential to reduce the amount of detailed simulation by a factor of ∼100

(100M per phase x 10 phases / 100B instructions). The average IPC error of SimPoint

based simulation, compared with sim-outorder, was reported to be ∼3% over the SPEC2k

benchmarks.

Another sampling method, SMARTS, was proposed by Wunderlich et al. [80]. Unlike

SimPoint that reduces the scope of detailed simulation to specific phases, SMARTS system-

atically samples program execution intervals with relatively fine granularity without paying

attention to program behavior changes. The number of samples and the length of each sam-

ple depend on the desired target confidence level. Compared with sim-outorder, SMARTS

was shown to achieve 60× simulation speedup and less than 1% error (on average). Com-

pared with SimPoint and SMARTS, the techniques presented in the dissertation resort to

cache filtering, a fundamentally different sampling strategy with no bearing on simulation

intervals. The proposed methods offer an orthogonal method to speed up detailed simula-

tion itself by focusing on a subset of processor events (cache misses) and abstracting away

other details. Naturally, they could work together with either SimPoint or SMARTS (in the

context of trace-driven simulation).

Ekman and Stenström [22] used statistical method “matched-pari” comparison to mini-

mize the number of simulation points of a program to achieve certain accuracy. Wenisch et

al. [75] presented a sampling framework that replaces “functional warming” with live-points

without sacrificing accuracy. Functional warming warms up large microarchitecture building

blocks, such as caches and branch predictor, while running functional simulation to quickly

move to the next simulation point [80].

Workload characterization is used to develop an alternative program that can replace

the long-running benchmark program. One such example is synthetic workloads. Synthetic

workloads are not a user program, but they capture the characteristics of the real bench-

marks that they wish to represent. Ganesan et al. [27] developed a framework that gener-

ates synthetic clones for the target benchmarks using the characterized information of the
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benchmarks. Genbrugge and Eeckhout [28] improved the statistical simulation methodology

by using synthetic trace and an accurate memory data flow model, which models delayed

hits, RAW (read after write) memory dependencies, and cache miss correlation. On the

other hand, MinneSPEC tries to reflect the behavior of SPEC2K benchmarks while using

a smaller, but representative input set [37]. Using this workload, simulation results can be

obtained in a reasonable time without developing new simulation techniques. The simulation

time is expected to be further reduced, if filtered traces generated with synthetic workloads

or MinneSPEC are used in the simulation methods proposed in this dissertation.

There are simple yet effective performance modeling works that achieve fast and accu-

rate performance estimation by increasing the abstraction level. An example is profile-based

approaches. Profiled-based performance estimation techniques run in two phases, instru-

mentation and analysis, similar to that of the trace-driven simulation method. In the instru-

mentation phase, the instrumentation tool instruments a benchmark to count the number

of times each basic block is executed in a specific run. In the analysis phase, the execution

time of each basic block in a program are estimated using a simple pipeline simulator. The

program execution time is then estimated as T =
∑numBBs

i=0 Ti × Counti, where numBBs is

the number of static basic blocks in a program, Ti is the time spent to execute basic block

i, and Counti is the number of times basic block i was executed in a specific run [61]. Such

approach works well for a simple in-order processor. However, very large errors are shown

when the above approach is applied for superscalar processor because it does not consider

the key characteristics of a superscalar processor, such as out-of-order issue, long dependency

arcs that cross basic block boundaries, etc. The reported error compared with a trace-driven

simulator was 125% on average using SPEC95 benchmarks [70]. The large average error can

be reduced to 43.4% by using a path tracing technique [3]. Ofelt and Hennessy [61] fur-

ther reduced the average error of using profile-based performance prediction for superscalar

processors to 1.25% by using their “Pairwise Analysis Algorithm (PAA)”.

Loh [48] introduced a time-stamping algorithm to model superscalar processor perfor-

mance using a functional simulator. The time-stamping algorithm concentrates on the time

when a particular event can occur rather than simulating the processor cycle by cycle. Fields

et al. [25, 26] proposed a method to construct a critical path of a program for microarchi-
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tectural performance analysis. The critical path is defined as a sequence of instructions in

a program that has the longest cumulative latency. Their work is based on the assumption

that the performance of a superscalar processor is mainly determined by the events on the

critical path. Chou et al. [15] introduced a simulation method based on their epoch model to

quickly derive the memory-level parallelism (MLP) of a program. Their simulator, MLPsim,

is a very simplified processor model based on several assumptions. Nonetheless, the simulator

shows accurate MLP results, especially when a long off-chip access latency is assumed.

Architects run many simulations in parallel to reduce the overall simulation time. Wenisch

et al. [76] proposed a simulation framework that can be parallelized using their checkpoints.

Since each checkpoint [75] can be simulated independently, users can run hundreds of simu-

lations in parallel using hundreds of checkpoints on many host machines. Similarly, a single

simulation may be parallelized to reduce the simulation time. Mukherjee et al. [56] presented

a tool called wisconsin wind tunnel (WWT) II that enables a parallel, discrete-event, direct-

execution simulation. In their work, they identified four key operations that can underlie

parallel, discrete-event, direct-execution simulation and made alternative implementations

of the four key operations in their tool. Assuming a 32-node target machine, WWT II

achieves a speedup of 4.1−5.4 when using 8 host processors. More recently, Miller et al. [53]

introduced a distributed parallel multicore simulator infrastructure named Graphite. Using

their framework individual simulation is distributed across a cluster of servers to accelerate

simulation, which works in a completely transparent fashion to the applications. Graphite

achieves near linear speedup on a simulation of a 1000-tile target using from 1 to 10 host

machines. Finally, Moeng et al. [54] proposed using Graphics Processing Units (GPUs)

to accelerate manycore architectural simulation. They showed that using GPUs for parallel

simulation can achieve better scaling with core count then other techniques by implementing

a trace-driven many cache simulator using NVIDIA’s CUDA toolkit.
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3.0 TRACE SIMULATION WITH TIMING INFORMATION

3.1 OVERVIEW

In this chapter, three trace-driven simulation models that use timing-aware traces are intro-

duced. Unlike most previous work that uses a trace-driven simulation framework [73], the

notion of timing is introduced during the trace generation phase and embed time-related

information in the trace. Hence, the trace generator must be able to model the microar-

chitecture of a processor using a user provided machine definition. Figure 4 illustrates the

relationship between the trace generator, trace simulator, machine definitions, and trace

files. The generic machine definition refers to the superscalar processor core configuration:

the intra-core parameters that shape the processor core described in Section 2.1. The target

machine definition is the system-level processor configuration such as L2 cache configuration

and main memory access latency, that completes the overall machine model. Throughout this

dissertation, sim-outorder, a detailed out-of-order processor simulator of the SimpleScalar

tool set [2], is used to generate traces.

The proposed models use timing-aware filtered traces. That is, trace files do not contain

all executed instructions during program execution and rather focus on memory access in-

structions [73]. Moreover, L1 cache hits that do not access the L2 cache are filtered out,

further cutting down the number of trace items to store in trace files, similar to [12, 42, 46].

Each trace item in the timing-aware filtered traces captures: (1) the number of executed in-

structions after the last trace item, (2) the number of elapsed cycles since the last trace item,

and (3) the information of the memory instruction that generated the trace item (L1 cache

miss): cache access type (data read, data write, or instruction fetch), instruction sequence

number, cache address, and write-back address (if a write-back occurred on a cache miss).
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Figure 4: Overall structure of PDCM. It uses a cycle-accurate simulator to generate reduced
traces (L1 filtered traces).

In this section, three trace-driven simulation methods are presented and evaluated to

quantify the impact of a long-latency memory access in a superscalar processor with timing-

aware filtered traces. The strategies are based on three different models about how a cache

miss is treated with respect to other cache misses: (1) isolated cache miss model, (2) inde-

pendent cache miss model, and (3) pairwise dependent cache miss model. It is important

to note that, in the proposed methods, the processor core configuration used in the trace

generator must be identical to the core configuration of the simulated machine. This work

assumes that the processor core parameters, such as branch prediction algorithm, ROB size,

available functional unit types, and L1 cache configuration, are fixed when the focus of study

is on the “uncore” components of a processor chip.

3.2 MODEL 1: ISOLATED CACHE MISS MODEL

3.2.1 Basic idea

The basic idea of this model is quite simple: The actual impact of a particular cache miss on

the overall program execution time is the time difference of two program runs, one without the

miss and one with the miss, assuming that all other memory access latencies are unchanged.

Figure 5(a) captures this idea. Program run 1 has no L2 cache misses, whereas program run
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Figure 5: (a) A single “isolated” L2 cache miss in a program run. (b) Using two additional traces
generated by interleaving hits and misses to efficiently compute the impact of isolated misses on
program execution time.

2 of the same program has a single L2 cache miss at a known L2 cache access. The impact

of the cache miss on the execution time of the program is simply (Trun 2− Trun 1). Trun 1

can be obtained using a cycle-accurate simulator modeling a perfect L2 cache having a 100%

hit rate. Trun 2 can be obtained by using the same cycle-accurate simulator and giving the

L2 cache miss penalty to a specific L2 cache access. One can measure the impact of each

and every potential L2 cache miss by repeating this process.

3.2.2 Instruction permeability analysis

While the basic idea of the isolated cache miss model is intuitive, the process of assessing

the impact of each potential L2 cache miss can be extremely time consuming. Suppose that

a program has N L1 cache misses. In an exhaustive approach to analyze this program, for

instance, one will generate N traces (each having exactly one L2 cache miss) and compare

them against the trace having no L2 cache misses to deduce the impact of each individual

cache miss.

To reduce the overhead of generating many traces to compute the impact of each potential
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L2 cache miss, a technique called instruction permeability analysis is used to systematically

assign a cache access latency to trace items as they are generated in the trace generation

phase. Figure 5(b) shows three traces generated from a target program for instruction

permeability analysis. One trace has only L2 cache hits and the other two have alternating

L2 cache hits and misses. The alternation of cache hits and misses is skewed in the two traces

so that all trace items are covered. By comparing the actual number of cycles measured in

trace intervals, each surrounded by two trace items, the impact of a single L2 cache miss can

be computed as would have been done with a trace having only a single L2 cache miss. The

configuration sketched in Figure 5(b) is called 2-interleaving because the additional traces

have one L2 cache miss every two trace items.

In what follows, we discuss how the impact of a cache miss is analyzed and how such

information is associated with trace items. Assume that S is the latency of a cache hit and

L is the latency of a cache miss. L is the latency penalty paid on a specific cache miss (i.e.,

main memory access) on top of a cache access latency S. From measurements one can obtain

a, the cycle count of the interval (n) after trace item (n) in trace 1 and b, the cycle count

of the same interval in trace 2. dn is defined as b − a. Because the nth trace item in trace

2 has a longer latency (S + L) than the latency of the corresponding trace item in trace 1

(S), b > a holds and equivalently dn > 0. Once dn is obtained, trace item (n) is annotated

with the timing information (a,∆n) where ∆n is defined as (L− dn). Given this, the actual

latency of interval (n) during the trace-driven simulation is:

a if trace item n hits in L2 cache and

a+ L′ −∆n if trace item n misses in L2 cache

where L′ is the actual main memory access latency used in the trace-driven simulation.

When L = L′, the method guarantees that the actual latency computed for interval (n) is

a or b depending on the cache access outcome of trace item (n), the same as those of the

timing-aware trace generation. If L ̸= L′, the actual latency will be either a or (b+ η) where

η = L′ − L.

The above description of instruction permeability analysis used a 2-interleaving configu-

ration. One may choose to employ a 3-interleaving configuration where there is one L2 cache
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Dispatch/issue/commit width 4
Reorder buffer (ROB) 64 entries
Integer /Floating point ALUs 4/2
L1 i- & d-cache 1 cycle, 16KB, 4-way, 64B line size, LRU
L2 cache (unified) 12 cycles, 1MB, 8-way, 64B line size, LRU
Branch prediction Perfect
Main memory latency 300 cycles

Table 3: The baseline machine configuration for evaluating the isolated cache miss model.

miss every three trace items. Obviously the most important factor affecting the effectiveness

of this scheme is how far in time trace items are separated from each other. If a “missed”

trace item is far away from the next missed trace item in trace 2 and 3 in the example of

Figure 5(b), the result of the analysis will be a close approximation of what would have

been obtained from the exhaustive method. Hence, it is expected that an n-interleaving

configuration will result in higher accuracy than an m-interleaving configuration if n > m,

at a higher trace generation and analysis cost. If n = N where N is the number of trace

items, the n-interleaving configuration degenerates to the exhaustive method.

3.2.3 Experimental setup

Table 3 shows the baseline machine configuration that is used to evaluate the isolated cache

miss model and the independent cache miss model (in Section 3.3). An ideal instruction cache

and a perfect branch predictor are used to isolate the interferences caused by instruction

cache misses and branch mispredictions. To evaluate the isolated cache miss model and

the independent cache miss model, a selected set of SPEC2K benchmarks is used: mcf, art

(benchmarks with high L1 cache miss rates), gcc, ammp (with medium L1 cache miss rates),

perl and facerec (with low L1 cache miss rates). Selection was based on their L1 cache

miss rates and the raw instruction level parallelism (ILP) present in the programs, such that

strengths and weaknesses of the studied strategies can be exposed. The entire benchmarks in

the SPEC2K benchmark suite are used to evaluate the pairwise dependent cache miss model

(in Section 3.4) and In-N-Out (in Section 4). The inputs for the entire SPEC2K benchmarks
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Integer Input Floating point Input

mcf inp.in art c756hel.in
gzip input.graphic galgel galgel.in
vpr route equake inp.in
twolf ref swim swim.in
gcc 166.i ammp ammp.in
crafty crafty.in applu applu.in
parser ref lucas lucas2.in
bzip2 input.graphic mgrid mgrid.in
perlbmk diffmail apsi apsi.in
vortex lendian1.raw fma3d fma3d.in
gap ref.in facerec ref.in
eon rushmeier wupwise wupwise.in

mesa mesa.in
sixtrack inp.in

Table 4: Inputs for the SPEC2K benchmarks.

are listed in Table 4.

The SPEC2K benchmarks used in this dissertation were compiled using the Compaq Al-

pha C compiler (V5.9) with the -O3 optimization flag. For each simulation, the initialization

phase of the target program [68] is skipped, then caches are warmed up for 100M instruc-

tions. The next 1B instructions are simulated after warming up the caches. To evaluate

studied simulation methods, CPI (cycles per instruction) error is used as the main metric.

The CPI error is defined as (Ttsim − Tesim)/Tesim, where Ttsim and Tesim are the simulated

program execution time (number of cycles) of trace-driven simulation and execution-driven

simulation, respectively.

3.2.4 Evaluation result

After running experiments, I learned that it is challenging to correctly align matching trace

items from multiple trace files to perform instruction permeability analysis, especially at a

high interleaving factor. This is because the order of trace items is not preserved across the

trace files as different cache access latencies are assigned to different trace items. Certain

trace items occur in one trace file, but not in others, thus mis-aligning the trace items that
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follow. The number of trace items that are correctly annotated using the 2-interleaving con-

figuration ranged from 23% (mcf) to 78% (perl). While devising better trace item annotation

methods is certainly an interesting question, the presentation in this section is limited to the

2-interleaving configuration, improved with an ad hoc method that uses a few more traces.

With four more trace files where long-latency trace items were chosen randomly, 54% (mcf),

80% (art), 90% (gcc), 92% (ammp), 95% (perl), and 99% (facerec) of the trace items were

annotated.

Despite being able to considerably reduce the magnitude of CPI errors compared with

the näıve method, Figure 6(a) shows that the isolated cache miss model was unable to

eliminate errors robustly. Programs having a high L1 cache miss rate (mcf and art) still

see a large CPI error. These programs have many independent, parallel cache misses in

short intervals, which result in incorrect accumulation of cache miss penalties. Figure 6(b)

shows that the studied programs have many L2 cache accesses in short intervals, confirming

the observation. Facerec has a low L1 data cache miss rate and its L1 cache misses occur

sparsely. This makes the isolated cache miss model (and even the näıve method) work well

for facerec. Interestingly, gcc and ammp have a negative CPI error, which was caused by

the aggressive ad hoc trace item annotation. In an effort to annotate as many trace items

as possible from “mis-aligned” trace files, a search-based trace item matching algorithm is

employed, which exhaustively inspects trace items within a specified range until it finds the

matching interval given two trace items. Some annotations (∆), especially in trace items

that exhibit different ordering in different trace files, become inaccurate and often larger.

As a result, at simulation time, the computed penalty for cache misses that occur from the

corresponding trace items becomes smaller.
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Figure 6: (a) CPI error of the isolated cache miss model. (b) The cumulative percentage of L1
data cache miss intervals in terms of clock cycles. All L1 data cache misses are assumed to hit in the
L2 cache. The dotted box shows that there are potentially many independent L2 cache accesses.
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3.3 MODEL 2: INDEPENDENT CACHE MISS MODEL

3.3.1 Basic idea

The main weakness of the isolated cache miss model lies in its assumption that the impact of

a long latency memory access is accumulated. Hence, while the model is capable of accurately

quantifying the delay penalty of a relatively “isolated” cache miss, it loses accuracy when

cache misses are close to each other; it pessimistically adds individually computed delay

penalties even if those misses can be overlapped in a real superscalar processor.

A Superscalar processor dynamically selects and executes multiple instructions. As a

result, more than one cache miss can be outstanding simultaneously. However, there is a

limit on the number of pending L1 cache misses, given a processor’s limited hardware data

structures and inherent dependencies between L1 cache misses. For example, the processor

configuration in Table 3 has a 64-entry ROB and hence will not allow two memory instruc-

tions to be simultaneously outstanding if they are at least 64 instructions away from each

other, or if one depends on the other.

The independent cache miss model builds on this observation. It reconstructs the ROB

during trace simulation to process a trace item only after the trace item enters the ROB,

however, the model ignores the dependency between the trace items in the ROB. In a nutshell,

the isolated cache miss model analyzes the ROB occupancy status to determine the progress

of trace simulation and when each trace item can issue a cache access.

Unlike the isolated cache miss model, the independent cache miss model is optimistic

about when an L1 cache miss in a trace item can proceed to the L2 cache. It assumes that

all L1 cache misses are independent of each other and can be handled without regard to

any outstanding cache misses. The independent cache miss model can potentially result in

more accurate results than the isolated cache miss model because it enables a trace-driven

simulator to process multiple cache miss events simultaneously (rather than sequentially) as

a superscalar processor would do. The work focuses on ROB among the many processor

data structures based on experiments and a previous analytical performance modeling work

done by Karkhanis and Smith [36].
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5 cycles  

A (100)

A 9 insts

64-entry Reorder Buffer

15 cycles  5 cycles  20 cycles  

B 29 insts C 23 insts D··· 6 insts ··· ··· 14 insts ··· E

B (110) C (140) D (170) E (185)

(b)

(a)

Figure 7: (a) Five trace items (A, B, C, D, and E) recorded in the trace file with timing information
in the trace generation phase. Inside parentheses are the instruction sequence numbers. (b) The
status of the ROB: Only the first three trace items are in the ROB.

3.3.2 ROB occupancy analysis in the independent cache miss model

The ROB occupancy analysis examines the ROB occupancy status to determine the progress

of the trace simulation. More specifically, the trace simulation is continued if the difference

between the instruction sequence number of a trace item and the head of the ROB is smaller

than the ROB size. Let us turn to the example in Figure 7.

In the example, suppose all five trace items (i.e., L2 cache accesses) miss in the L2 cache

and go to the main memory. Given their instruction sequence number, both B and C can

be placed in the ROB with A, since the number of instructions between A and C is smaller

than the ROB size. However, the number of instructions between A and D is larger than the

ROB size. Consequently, D and E cannot issue a cache access while A is in the ROB.

Since all L1 cache misses are assumed to be independent in this method, the L2 cache

accesses from B and C can be processed in parallel with the L2 cache access from A. The

recorded timing information in the trace items are used to determine the distance between

two trace items in the ROB. For example, B and C are processed 5 and 20 (5 + 15) cycles

after processing A, respectively. After A returns from L2 cache, A commits and exits the

ROB. After A commits, the issued instructions between A and B are committed, which

allows the instructions in front of D, as well as the instruction in D, to advance to the ROB.
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However, the available entries in the ROB are still not enough to hold all 14 instructions

between D and E, and only the next three instructions behind D are placed in the ROB. After

B is resolved and commits, the instructions between B and C will follow and commit at the

processor’s commit rate. In essence, the ROB occupancy analysis keeps track of instructions

in the ROB after each successive trace items, allows all L2 cache accesses in the ROB to issue

independently, and blocks any further processing of the following trace items if the ROB is

full.

The ROB occupancy analysis is done in the trace simulation phase. Therefore, the

independent cache miss model does not require any trace analysis before simulation. Note

that the multiple traces must be generated and analyzed prior to trace simulation in the

isolated cache miss model. The details of out-of-order trace simulation algorithm with the

ROB occupancy analysis are described in Section 3.4.

3.3.3 Evaluation result

To evaluate the independent cache miss model, the same machine configuration, benchmarks,

and the evaluation metric used to evaluate the isolated cache miss model (described in

Section 3.2.3) are employed.

Figure 8 compares the CPI collected from sim-outorder and the independent cache

miss model. The results show that the CPIs observed by the independent cache miss model

are in general smaller than the CPIs shown by sim-outorder (negative CPI errors). This

is because the independent cache miss model is optimistic about when a trace item can be

processed (i.e., L2 cache is accessed) and aggressively processes memory accesses in parallel.

The largest improvement was shown by art compared to the näıve method because the

majority of its L1 cache misses occur very closely to each other, as indicated in Figure 6(b).

This suggests that there are potentially many independent L2 cache misses in art which are

accurately quantified using the independent cache miss model.

In the case of mcf, a large simulated execution time deviation was observed. This large

magnitude of error is attributed to the memory access pattern of mcf–there are many trace

items that are dependent on other trace items. The profiling results of mcf reveals that 79%
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Figure 8: The CPI errors of the independent cache miss model when the ROB size is 64.

of mcf’s trace items have dependencies which are neglected in the independent cache miss

model. mcf shows 0% CPI error when the ROB size is reduced to 4, because the memory

accesses that depend on the previous memory accesses are often not placed in the ROB

together.

3.4 MODEL 3: PAIRWISE DEPENDENT CACHE MISS MODEL (PDCM)

3.4.1 Basic idea

The independent cache miss model discussed in Section 3.3 can be too optimistic. It works

well for the programs that have few dependencies between cache misses but it results in

smaller program execution times by scheduling memory accesses aggressively. On the other

hand, the isolated cache miss model in Section 3.2 is pessimistic about the dependences be-

tween trace items and processes them sequentially. Hence, the impact of each long-latency

memory access is simply accumulated. This approach works well for the programs that in-

herently have few parallel memory accesses but it results in large CPI errors for the programs

that have many independent memory accesses that are clustered.

In this section, yet another model is proposed, which combines the strengths of the

two previous models. The new model exploits the parallel scheduling capability of the
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independent cache miss model as well as the dependencies between trace items collected

during the trace generation phase. Unlike the independent cache miss model that was shown

to be “overly optimistic” for some benchmarks, the pairwise dependent cache miss model

(PDCM) honors the dependencies between trace items. To do so, in the trace generation

phase the dependencies between trace items are detected and recorded in trace items. In the

trace simulation phase, if a trace item in the ROB depends on a previous trace item (i.e.,

ancestor), it is not issued until the previous ancestor trace item gets its data back from the

cache or memory. Hence, if there exists a dependency between two trace items, even if both

of them are already in the ROB, the dependent cache access is not processed immediately.

3.4.2 Preparing reduced trace in PDCM

Identifying all data dependencies between trace items is critical for accurate filtered trace

simulation. In trace generation, to detect the dependencies between trace items, data depen-

dency chains are constructed during trace generation. In the dependency chain, the instruc-

tion sequence number of a parent trace item is propagated to the dependent trace items.

In this work, the dependency chains already implemented in the modified sim-outorder

simulator, which is employed for trace generation, is used. Note that a single trace item may

depend on multiple trace items. However, the experiments show that storing more than a

single ancestor does not produce significantly better results and thus, only one ancestor or

none (no dependence) is stored in each trace item. In the presence of multiple ancestors, a

heuristic is used to choose the latest ancestor in the instruction sequence, the closest to the

trace item under consideration.

Besides the explicit dependency between trace items, there also exists an implicit de-

pendency due to delayed hits. A delayed hit occurs when a memory instruction accesses a

cache block that is still in transit from the lower-level cache or the main memory. Consider

an L1 data cache miss that depends on an L1 delayed hit. This L1 data cache miss must

be processed after the previous L1 data cache miss that created the delayed hit, since there

exists an implicit dependency between the two L1 data cache misses via the L1 delayed hit

in between [13]. To expose all dependencies between trace items during trace simulation,
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Figure 9: (a) Five trace items (A, B, C, D, and E) recorded in the trace file. Trace item B depends
on trace item A, while all other trace items are independent of each other. Inside parentheses is
the instruction sequence number assigned to each trace item in program order. (b) The status of
the ROB: Only the first three trace items are in the ROB.

trace items are generated for L1 delayed hits as well as L1 data cache misses. To identify

delayed hits during trace generation, when a cache block is brought into the cache on a miss,

the cache block is marked with the instruction sequence number of the memory instruction

that generated the miss. A hit in L1 data cache is assumed is a delayed hit, if the difference

between the instruction sequence number of the corresponding memory instruction and the

recorded instruction sequence number in the cache block is smaller than a specified range.

3.4.3 ROB occupancy analysis in PDCM

In Section 3.3, the ROB occupancy analysis used in the independent cache miss model is

introduced with an example depicted in Figure 7. In PDCM, the ROB occupancy analysis

is improved by considering the dependency between trace items. In the independent cache

miss model, a trace item can be processed if it is in the ROB. However, in PDCM, a trace

item in the ROB cannot be processed if it has an unresolved data dependency.

Let us turn to the example in Figure 9. Suppose all five trace items A, B, C, D, and

E miss in the L2 cache, and A is the head of the ROB. Given their instruction sequence

number, both B and C can be placed in the ROB with A, since the number of instructions

between A and C is smaller than the ROB size. However, the number of instructions between

A and D is larger than the ROB size. Consequently, D and E cannot issue a cache access
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while A is in the ROB. C can issue a cache access in parallel with A, since C is in the ROB

and does not depend on A or B. However, B has to wait until the cache access from A is done

because it depends on A. After A returns from L2 cache, B can issue a cache access and A

commits and exits the ROB. The issued instructions between A and B also commit at the

processor’s commit rate, which allows the instructions between the tail of the ROB and D,

as well as the instruction in D, to advance to the ROB. Meanwhile, E cannot yet enter the

ROB. When B commits, the instructions between B and C will follow and commit. As more

and more entries become free, E will finally move into the ROB and be issued.

Unlike the independent cache miss model, in PDCM, trace items are generated when

a delayed hit occurs. These delayed hit trace items help us correctly analyze the ROB

occupancy status. Assume that there is a memory instruction with instruction sequence

number 120, and it issues a cache access after trace item B. If the cache access goes to the

same cache block as B, a delayed hit will occur. In such case, trace item D cannot enter the

ROB after trace item A commits, because the memory instruction 120 becomes the head

of the ROB and the distance between the memory instruction 120 and D is larger than the

ROB size.

In essence, the ROB occupancy analysis monitors the ROB occupancy after each succes-

sive trace item, allows all L2 cache accesses without data dependency stalls in the ROB to

issue, and blocks any further processing of the following trace items if the ROB is full.

3.4.4 Modeling a superscalar processor

Table 5 lists the notations used in this section.

3.4.4.1 Reconstructing the ROB During trace simulation, the ROB is reconstructed

with a linked-list referred to as rob-list. The trace items fetched from a trace file are inserted

in rob-list and sorted in increasing order of their instruction sequence number (ISN). The

trace item with the smallest ISN in rob-list becomes the head of the ROB (robHead).

If a trace item has an ISN that is greater than or equal to the sum of the ROB size and

the ISN of robHead, the trace item cannot enter the ROB. However, since the instructions
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current time The current clock cycle time
ISN The instruction sequence number
rob-list The list used to reconstruct the ROB
robHead The trace item in the head of rob-list
issue-list The list used for out-of-order trace simulation
issueHead The trace item in the head of issue-list
robReadyTime The time when a trace item can be processed if it has no data dependency

stalls
traceProcessTime The time to process a trace item
resolveTime The time when the cache access from a trace item is done

Table 5: Notations used in Section 3.4.4.

are issued out of order during trace generation, the trace items in a trace file are not written

in program order. Hence, when ROB is determined to be full, the trace items that can

enter the ROB may not have been fetched from the trace file. To capture the correct ROB

occupancy status, trace items are fetched until the difference between a trace item’s ISN

and robHead’s ISN is larger than a specified range. The size of the range does not affect

the simulation accuracy, but it should be larger than the ROB size in order to fetch all the

trace items that can enter the ROB. In the experiments, trace items were fetched until the

difference was larger than two times the ROB size. The trace items that cannot enter the

ROB are marked as “pending” trace items in rob-list. For instance, in the ROB example in

Figure 9, trace items D and E are pending trace items when A is robHead. When robHead

commits, the pending trace items can enter the ROB if there is enough room left in the

ROB. New trace items are fetched from the trace file if there are no pending trace items.

3.4.4.2 Out-of-order trace simulation The time to process a trace item (tracePro-

cessTime) is determined based on the ROB occupancy analysis, the recorded cycle count,

and the dependency information. If a trace item has a parent trace item, the trace item

has to wait until its parent’s resolveTime is known. Otherwise, the ROB occupancy status

is analyzed and the recorded cycle count is exploited to estimate when the trace item can

be processed (robReadyTime). Hence, traceProcessTime of a trace item is the larger of

robReadyTime and the parent’s resolveTime. After traceProcessTime of a trace item is esti-
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mated, the trace item is inserted in a linked-list that which is denoted as issue-list. issue-list

sorts the trace items in increasing order based on their traceProcessTime. In trace simula-

tion, the trace item in the head of issue-list (issueHead) is processed, which has the smallest

traceProcessTime. After issueHead is processed, issueHead is removed from issue-list and

the next trace item in the list becomes the new issueHead.

Figure 10 illustrates step by step how the trace items in the example of Figure 9 are

handled by the ROB occupancy analysis. The first row in the figure shows rob-list and

issue-list with trace items A, B, C, and D. Assume trace item A is robHead and A’s tracePro-

cessTime is (cycle) N. When trace items B and C are inserted in rob-list, their robReadyTime

is set to N + 15 and N + 40, respectively. Since C does not have a parent trace item, C’s

traceProcessTime is the same as robReadyTime. However, B depends on A, hence, B’s tra-

ceProcessTime cannot be estimated until A’s resolveTime is known. Consequently, only C

is inserted in issue-list. Note that D is a pending trace item when A is robHead.

At cycle N, A is processed and A’s resolveTime is set to N + memory access latency.

After processing A, A is removed from issue-list and C becomes the new issueHead. Since A’s

resolveTime is now known, B’s traceProcessTime is computed and B is inserted in issue-list

as shown in the second row.

There are two approaches—eager and lazy—when estimating the dependent trace item’s

traceProcessTime. The eager approach processes a dependent trace item immediately after

its parent trace item is resolved. On the other hand, the lazy approach delays the processing

of the dependent trace item by the number of cycles between the parent and the dependent

trace item. The rationale is that there may be other instructions depending on the parent

trace item and executed before the dependent trace item. Both approaches were studied

and the results showed that the lazy approach achieves higher accuracy on average than the

eager approach. The experiment results using both approaches is shown in Section 3.4.6.1.

Continuing with the example, C is processed in cycle N + 40, and C’s resolveTime is

set to N + 40 + memory access latency. After processing C, C is removed, and B becomes

the new issueHead. At cycle N + memory access latency, A is removed from rob-list, and B

becomes the new robHead. The pending trace item D can now enter the ROB as shown in

the last row of the figure.
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B (130)
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Figure 10: Using rob-list and issue-list to reconstruct the ROB and issue L2 cache accesses out
of order during trace simulation. The example builds on the ROB example in Figure 9. The red
dotted arrow shows that trace item B depends on A. The cycle counts between trace items on the
first row assume perfect L2 cache. Pending trace item D in the first row is depicted with lighter
color. Several abbreviations are used in the example. “tPT” represents traceProcessTime, “rT”
represents resolveTime, and “MEM” is the memory access latency. “eager tPT” and “lazy tPT”
stand for eager and lazy estimation of traceProcessTime, respectively.
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1: while (1) do
2: if (current time >= next commit time) then
3: ReconstructROB();
4: end if
5: while (current time == next event time) do
6: ProcessTraceItem();
7: end while
8: if (END OF FILE) then
9: return;
10: end if
11: end while

Figure 11: High-level pseudo-code of trace simulation in PDCM. next commit time indicates the
time to reconstruct the ROB and next event time is the time to process the trace items.

Now that I described how the two key ideas of PDCM—ROB occupancy analysis and

out-of-order trace simulation—are implemented, let us now move on to the details of the

trace simulation algorithm.

3.4.4.3 Simulation algorithm of PDCM Figure 11 shows the main loop in the trace

simulation algorithm. PDCM operates in two major steps: (1) reconstructing the ROB

(line 3) and (2) processing the scheduled trace items (line 6). The details of each step are

described below. The pseudo-codes presented in this section contain a dot (.) notation to

represent the association between a trace item and the recorded information. For example,

robHead.ISN means ISN of robHead.

• ReconstructROB(): Figure 12 describes how the ROB is reconstructed in trace simula-

tion. ROB is reconstructed by removing robHeads and inserting pending trace items or new

trace items fetched from the trace file. When the simulated clock cycle time (current time)

reaches the time to commit a trace item (next commit time), the algorithm attempts to

remove robHead from rob-list (lines 2–9). If robHead’s resolveTime is larger than 0 and

current time is larger than robHead’s resolveTime, robHead commits and the next trace

item in rob-list becomes the new robHead. If robHead is a write trace item, a write access

to L2 cache is issued from robHead before it is removed (line 3–5). The trace items are
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committed until either rob-list becomes empty or the new robHead is not ready to commit.

After committing the trace items, rob-list accepts “pending” trace items (lines 10–15). If

there is no pending trace items and if the ROB is not full, new trace items are fetched from

the trace file (lines 16–26). After a trace item is inserted in rob-list, the trace item is inserted

in issue-list if the trace item’s traceProcessTime can be computed.

• ProcessTraceItem(): The L2 cache is accessed by issueHead, as described in Figure 13.

The L2 cache access latency is used to set resolveTime of the corresponding node in rob-list

(lines 3 and 4). After issueHead accesses the L2 cache, rob-list is searched to find the depen-

dent trace items. The identified dependent trace item’s traceProcessTime is computed, and

the dependent trace items are inserted in issue-list (lines 6–12). After processing issueHead,

the next trace item in issue-list becomes the new issueHead (line 16), and the algorithm

determines when to process the new issueHead (line 17).

If issueHead is a write trace item, an access to the L2 cache does not occur, but the

algorithm sets issueHead’s resolveTime to current time. The write trace item accesses the

L2 cache when it commits from rob-list.
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1: robNode = NULL;
2: while (robHead is not NULL) and (robHead.resolveTime > 0) and (current time > rob-

Head.resolveTime) do
3: if (robHead is a write trace item) then
4: Issue a write access to L2 cache;
5: end if
6: robNode = robHead.next; /*next trace item in rob-list*/
7: Commit robHead; /*remove robHead from rob-list*/
8: robHead = robNode;
9: end while
10: while (robNode is not NULL) and

(robNode.ISN − robHead.ISN < ROB size) do
11: if (robNode.pending == TRUE) then
12: robNode.pending = FALSE; /* insert pending trace items in rob-list */
13: end if
14: robNode = robNode.next;
15: end while
16: while (1) do
17: newTrace = a new trace item fetched from the trace file;
18: if (newTrace.ISN − robHead.ISN < ROB size) then
19: insert newTrace in rob-list;
20: else if (newTrace.ISN − robHead.ISN ≥ ROB size) and

(newTrace.ISN − robHead. ISN < 2× ROB size) then
21: newTrace.pending = TRUE;
22: insert newTrace in rob-list;
23: else
24: break;
25: end if
26: end while

Figure 12: High-level pseudo-code for reconstructing the ROB.
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1: rob = issueHead’s corresponding trace item in rob-list;
2: if (issueHead is a read trace item) then
3: make read access to L2 cache;
4: rob.resolveTime = current time + L2 access latency;
5: node = robHead;
6: while (node is not NULL) do
7: if (node’s parent.ISN == issueHead.ISN) then
8: node.traceProcessTime =

MAX(node.robReadyTime,
current time + L2 access latency + elapsed cycles between issueHead and node);

9: Insert node in issue-list;
10: end if
11: node = node.next; /*next trace item in rob-list*/
12: end while
13: else
14: rob.resolveTime = current time; /* IssueHead is a write trace item*/
15: end if
16: issueHead = issueHead.next; /*next trace item in issue-list*/
17: next event time = issueHead.traceProcessTime;

Figure 13: High-level pseudo-code for processing a trace item.

3.4.4.4 Modeling various processor artifacts in PDCM The algorithm described

above can be easily extended to model important processor artifacts, such as branch mis-

predictions, instruction caching, MSHRs, and data prefetching. To add new processor arti-

facts in the analytical models [13, 24, 36, 52], the constructed mathematical equations are

revised or new equations may be required. This can be a burden when new machine configu-

rations need to be modeled. Unlike analytical models, PDCM does not rely on mathematical

equations. The processor artifacts can be modeled with a little programming effort—revising

the trace generator or the trace simulator. For instance, the effect of branch misprediction is

modeled by simulating a branch predictor during trace generation and L2 data prefetching

is modeled by implementing a data prefetcher in the trace simulator.

• Modeling branch prediction: To model the branch prediction, a realistic branch predic-

tor is employed in the trace generator. Branch mis-predictions during trace generation create

“speculative” trace items when the program is executing on the mis-predicted control paths.

In trace generation, the speculative trace items are distinguished from the non-speculative
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(a)

i100

32-entry ROB

… i110 … …Before

i100 …i140…After

i120 i140

(b)

network_t *net;

…

if( net->m + MAX_NEW_ARCS > net->max_m

&& (net->n_trips*net->n_trips)/2 + net->m > net->max_m ) {

...

head

Figure 14: (a) The ROB occupancy status before and after the branch mis-prediction is resolved.
Assume instructions 110 through 120 are fetched from an incorrectly predicted control path. (b)
An example from mcf where a branch depends on memory instructions.

trace items, and the dependency information is collected only if the parent trace item is a

non-speculative trace item. In trace simulation, a speculative trace item accesses the L2

cache as a realistic superscalar processor would do. However, the speculative trace item is

removed from rob-list after it is processed.

In this research two important aspects that can affect the accuracy of branch handling

are observed. First, speculative trace items can affect the ROB occupancy analysis, and

second, a branch instruction depending on the data brought by a memory instruction can

affect the estimation of traceProcessTime. Let us turn to Figure 14 for illustration.

In Figure 14(a), assume instruction 100 is the head of the ROB and a branch mis-

prediction occurs from instruction 110 allowing the speculative instructions to enter the

ROB. After the branch is resolved, the instructions behind instruction 110 are squashed and

the processor fills the ROB with instructions fetched from the correct path. Instruction 100

and 140 are in the ROB at the same time even though they are more than ROB size number

of instructions away. To handle this case correctly during the ROB occupancy analysis,

ISN is incremented only when it is assigned to the non-speculative instructions in trace

generation.

The second observation is about the perfect L2 cache assumed in trace generation. If
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branch instructions depend on the data brought by L2 cache misses, the number of specu-

lative instructions with a perfect L2 cache and a realistic L2 cache will be different. Fig-

ure 14(b) shows an example from themcf benchmark in the SPEC2K benchmark suite, where

a branch instruction depends on memory instructions. To address this issue, an extra trace

item for a branch instruction is generated if the branch depends on a trace item. In trace

simulation, the trace items behind a branch trace item in rob-list are not processed until

the branch trace item is processed. In Section 3.4.6.1, the results show that such approach

accurately models the effect of branch mis-predictions.

• Modeling i-caching: Finally, to model the effect of instruction caching, a realistic in-

struction cache is employed in trace generation. If L2 cache is accessed by an instruction

cache miss, an L2 cache miss is allowed to occur in trace generation. The timing information

is recorded in the trace and exploited in trace simulation.

• Modeling MSHRs: In this dissertation, the MSHRs for L2 cache misses are considered;

the number of outstanding L2 cache misses is limited by the number of available L2 MSHRs.

Extending PDCM with L2 MSHRs is relatively straightforward. When an L2 cache miss

occurs from issueHead, the L2 cache miss cannot be processed if there is no available MSHRs.

In such case, issueHead’s traceProcessTime is changed to the time when an MSHR becomes

available and reorder issue-list.

• Modeling a data prefetcher: In this research, a tagged prefetcher [69] is modeled. The

tagged prefetcher fetches the next sequential cache block when a miss occurs, or when a

hit occurs in a prefetched block. Since the trace items represent the L2 cache accesses, the

tagged prefetcher simply needs to monitor the L2 cache accesses from the trace items and

make a prefetch request to the memory if necessary.

3.4.5 Experimental setup

Table 6 lists the “baseline” and “realistic” superscalar processor configurations used to evalu-

ate PDCM. The configurations are intended to resemble the Intel Core 2 Duo processor [17].

However, the baseline configuration does not incorporate any processor artifacts. The ac-

curacy of PDCM is first demonstrated with the baseline configuration. PDCM is then
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Baseline Realistic

Dispatch/issue/commit width 4

Reorder buffer 96 entries

Load/Store queue 96 entries

Integer ALUs 4

Floating point ALUs 2

L1 d-cache 2 cycles, 32KB, 8-way, 64B line size, LRU

L1 i-cache Perfect same as L1 d-cache

L2 cache (unified) 12 cycles, 2MB, 8-way, 64B line size, LRU

Main memory latency 200 cycles

Branch predictor Perfect Combined
· bimodal and gshare
· 4K meta-table size

L2 MSHRs Unlimited 8

L2 Data prefetcher — Tagged prefetcher

Table 6: Baseline and realistic superscalar processor configurations to evaluate PDCM.

further evaluated by individually adding a key superscalar processor artifact to the baseline

configuration in consideration. Finally, the realistic superscalar processor configuration in-

corporating all the artifacts is used to evaluate PDCM. The entire SPEC2K benchmarks are

used for evaluation.

To demonstrate the efficacy of PDCM, a PDCM-based trace-driven simulator (PDCM) is

employed and the simulation results are compared with that of sim-outorder, a detailed

execution-driven simulator. sim-outorder has been largely used as a counterpart when

verifying a new simulation method or an analytical model for superscalar processors [13, 24,

36, 45, 68, 80]. The main metrics are CPI error and relative CPI change. CPI error is defined

as (CPIpdcm−CPIsoo)/CPIsoo, where CPIpdcm is the CPI obtained with PDCM and CPIsoo is

the CPI obtained with sim-outorder. CPI error is used to show the percentage of difference

in cycle count when it is measured with PDCM and sim-outorder. The average CPI error

is obtained by taking the arithmetic mean of the absolute CPI errors, where the absolute

value of the CPI error shows the magnitude of the difference. Relative CPI change is defined

as (CPIconf2 − CPIconf1)/CPIconf1, where CPIconf1 is the CPI of a base configuration and

CPIconf2 represents the CPI of a revised configuration [47]. Relative CPI change is used to
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Figure 15: The CPI errors of the entire SPEC2K benchmarks using the baseline configuration in
PDCM. “ICM” is the independent cache miss model, and “PDCM-eager” and “PDCM-lazy” stand
for eager and lazy estimation of the dependent trace item’s processing time.

measure the performance change of the revised configuration relative to the performance of

the baseline configuration.

Relative CPI difference is used to compare the performance change amount shown by

sim-outorder and PDCM. Relative CPI difference is defined as |rel cpi chgsoo−rel cpi chgpdcm|,

where rel cpi chgsoo and rel cpi chgpdcm are the relative CPI change shown by sim-outorder

and PDCM, respectively.

Lastly, the capability of PDCM to reproduce the behavior of a superscalar processor by

tracking the temporal changes in memory access patterns is shown. Program execution is

divided into intervals and a histogram is generated to collect the frequency of the distance

(in cycles) between two consecutive memory accesses in each interval. The frequency of the

collected distances in PDCM and sim-outorder is compared to examine how closely PDCM

reproduces the off-core memory access patterns of sim-outorder.

3.4.6 Evaluation result

3.4.6.1 Accuracy of PDCM In this section, the evaluation results of PDCM using the

baseline and realistic configurations are presented.

• PDCM with the baseline configuration.: Figure 15 presents the CPI error of the entire

26 SPEC2K benchmarks with the baseline configuration. The CPI error of the independent
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cache miss model (ICM) [45]—equivalent to PDCM without taking the data dependency into

account—is shown to reveal the importance of honoring the data dependency between trace

items. Since ICM does not consider the dependency between trace items, it suffers large CPI

errors for the benchmarks that have many dependencies between L1 cache misses, e.g., mcf

(−73% CPI error). The CPI errors are significantly reduced with PDCM.

The figure presents the results of PDCM with the eager and the lazy approaches (used when

estimating the time to process the dependent trace items, see Section 3.4.4.2) separately.

The results show that the lazy approach has lower CPI errors in general than the eager

approach because there are often intervening instructions dependent on the parent trace

item. Accordingly, the lazy approach is used in the remainder of this section. The CPI

errors of the SPEC2K benchmarks range from −6% (equake) to 5% (ammp) with an average

of 1.9%.

The results show that some benchmarks, such as ammp, show positive CPI error even

with ICM. This is because PDCM does not take into account the overlap between the outstand-

ing L2 cache misses and the cycle count recorded in a pending trace item. Consider the case

when there is only one trace item in the ROB accessing the main memory and a pending

trace item waiting for the trace item to commit. Since the cycle count in the pending trace

item is the time spent on executing the instructions between the two trace items, a portion

of that cycle should be overlapped with the memory access. However, in this work, the

entire cycle count is simply used to estimate the processing time of the pending trace item

in trace simulation. Note that the individual direction of the CPI error using a particular

configuration is of relatively small interest (as compared with experiments spanning multiple

configurations, e.g., Section 3.4.6.3). What is more important at this point is the magnitude,

which is fairly small.

The small CPI errors show that PDCM can accurately model the baseline configuration,

but PDCM is also robust to the variation in processor’s inherent parameters. To study the

sensitivity of the model, PDCM is evaluated with different ROB size, L1 data cache size,

and issue-width. The experiment results show that the CPI errors were less than 3% when

different machine configuration is used in trace generation. Table 7 summarizes the studied

results.
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Different ROB sizes

size 32 64 128 256

Avg. CPI error 1.5% 1.9% 2.3% 2.8%

Different L1 data cache sizes

size 8KB 16KB 64KB

Avg. CPI error 2.5% 2.1% 1.8%

Different issue-width

width 2 8

Avg. CPI error 2.2% 2.1%

Table 7: The accuracy of PDCM with different processor core configurations. The processor’s
dispatch-width and commit-width are assumed to be identical to the processor’s issue-width.

Finally, although a fixed main memory access latency is assumed in this work, the ac-

curacy of PDCM does not depend on the off-chip access latency. To evaluate PDCM with

various main memory access latencies, experiments were conduced with a DRAM model in

sim-outorder and PDCM that has 16 banks (8 banks x 2 ranks) with 16KB row size and an

open-page policy. In the experiments, the main memory access latency is set to 80 cycles

when a page hit occurs in a bank, and 180 cycles when a page miss occurs in a bank. The av-

erage CPI error of PDCM was 4.1% over the entire SPEC2K benchmarks, which demonstrates

that PDCM is accurate with non-constant off-chip access latency.

• Effect of instruction caching in PDCM.: Up to this point, the trace files are generated

assuming a perfect instruction cache. To study the effect of instruction caching in PDCM, a

realistic 32KB instruction cache is employed during trace generation.

The results show that incorporating the instruction caching artifact in PDCM does not

affect the accuracy of PDCM. There were only 7 benchmarks that showed a relative CPI change

larger than 0% using sim-outorder after incorporating a realistic instruction cache to the

baseline configuration: gcc (10%), crafty (4%), parser (1%), perl (13%), vortex (2%), eon

(1%), and apsi (2%). The relative CPI difference of the 7 benchmarks was 0.3% on average

and the largest relative CPI change was shown by perl from both sim-outorder and PDCM.

The average CPI error of the entire 26 SPEC2K benchmarks was 1.8% on average.

• Effect of branch prediction in PDCM.: The trace files used so far are generated
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Figure 16: The CPI errors before (base) and after (base + real branch predictor) incorporating a
realistic branch predictor in PDCM.

with a perfect branch predictor. Let us now study how the branch mis-predictions in trace

generation can affect trace simulation accuracy. PDCM is driven by trace items generated

with a combined branch predictor (bimodal and gshare) in trace generation. Note that

sim-outorder was configured with the identical branch predictor.

Figure 16 compares the CPI errors before and after incorporating a realistic branch

predictor to the baseline configuration. The results show that incorporating the branch

prediction artifact in PDCM does not affect the accuracy of PDCM. The largest branch mis-

prediction penalties was shown by perl from both sim-outorder and PDCM. The relative CPI

change of perl after employing a realistic branch predictor was 48% in both sim-outorder

and PDCM. The relative CPI difference of the entire SPEC2K benchmarks was 1% on average.

One might question the validity of the timing information recorded in the trace items.

In trace generation, since a perfect L2 cache is used, a fixed L2 cache hit latency is returned

on each L1 miss. On the other hand, different latencies are returned depending on the result

of the L2 cache access in sim-outorder. If the memory access latency significantly affects

the branch prediction accuracy, it is difficult to correctly model the branch mis-prediction

penalties using the cycle counts in the trace items. To investigate this aspect, the effect

of the memory access latency on branch prediction accuracy is quantified using the eight

representative benchmarks in the SPEC2K benchmark suite [34], as shown in Table 8.

The branch prediction accuracy was collected separately from two simulation runs. The
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% of stable branch instructions in the program

stability ≤ 0.005 ≤ 0.01 ≤ 0.02 ≤ 0.03

mcf 84% 91% 94% 95%
gcc 79% 84% 88% 91%
gzip 84% 88% 91% 95%
twolf 82% 89% 93% 96%

fma3d 96% 97% 97% 97%
applu 91% 92% 93% 94%
mesa 87% 88% 88% 88%
equake 88% 91% 94% 95%

Table 8: The percentage of stable branch instructions in the benchmarks.

first simulation uses a fixed L2 hit latency and the second simulation uses a random memory

access latency—any integer number between the L2 hit latency (12) and a long memory

access latency (400)—on L1 misses. Using sim-outorder, for a given branch instruction

(say A), the number of correct branch predictions was collected from A with a fixed latency

(n correctA−fixedlat) and a random latency (n correctA−randomlat), and the number of total

branch predictions made from A (n totalA). The stability of a given branch instruction A is

defined by:

stability =
|n correctA−fixedlat − n correctA−randomlat|

n totalA

For instance, the last column in Table 8 shows that 88% of gcc’s branch instructions and

97% of fma3d’s branch instructions are stable, when the threshold is 0.03. The high stability

values in the table suggest that the L1 cache miss latency does not significantly change the

branch prediction accuracy.

In the following, PDCM is evaluated using the relative CPI change metric with the bench-

marks that show a change in CPI when superscalar processor artifacts are added in the

baseline configuration.

• Effect of L2 data prefetching in PDCM.: Figure 17 compares the relative CPI

change reported by sim-outorder and PDCM, when a tagged L2 data prefetcher is added in

the baseline configuration. The results show that PDCM can accurately model the effect of

L2 data prefetching. The two largest beneficiaries were swim and mgrid as shown by both
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Figure 17: The relative CPI changes when a tagged L2 data prefetcher is incorporated in the
baseline configuration in PDCM.
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Figure 18: The relative CPI changes when 4, 8, and 16 MSHRs are used, compared with unlimited
MSHRs, in PDCM. Among the entire 26 SPEC2K benchmarks, only the results of the benchmarks
that showed at least 1% relative CPI change from either sim-outorder or PDCM are presented.

sim-outorder and PDCM. The relative CPI difference of the benchmarks in the figure was

1% on average. The CPI error with the tagged prefetcher in the baseline configuration was

1.6% on average.

• Effect of limited L2 MSHRs in PDCM.: Figure 18 compares the relative CPI change

obtained with sim-outorder and PDCM, when limited number of L2 MSHRs is applied to

the baseline configuration. Since the number of outstanding L2 cache misses is limited by

the number of L2 MSHRs, the CPI increases with fewer L2 MSHRs.

The results show that PDCM can closely follow the relative CPI change of sim-outorder.
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Figure 19: The CPI errors of the SPEC2K benchmarks using the realistic configuration in PDCM.

The relative CPI difference of the benchmarks in the figure was 2% on average. fma3d is

particularly sensitive to the number of MSHRs because it has a very high L2 cache miss

rate and 72% of the execution time comes from L2 cache miss penalties. Moreover, L2 cache

accesses occur in a very close distance only in certain periods during program execution.

PDCM was able to reproduce this unique behavior of fma3d. The average CPI error was 2.1%,

2.2%, and 1.9%, when sim-outorder and PDCM both used 4, 8, and 16 MSHRs respectively.

• PDCM with the realistic configuration.: Finally, the simulation results using the

realistic superscalar processor configuration with PDCM is presented. The trace files used

in this section are generated with branch mis-predictions and instruction cache misses, and

sim-outorder was also modified to model the realistic superscalar processor. The CPI errors

of the entire 26 SPEC2K benchmarks are reported in Figure 19. The increased CPI error of

mgrid, compared with 1% CPI error with the baseline configuration, comes from the error

when modeling the data prefetching effect. The results show that PDCM achieves a very high

accuracy with an average error of 1.6%, which is even smaller than the average error (1.9%)

with the baseline configuration.

Since CPI error is a metric that is averaged over the entire simulation, it does not

show how accurately PDCM is modeling the superscalar processor performance over program

execution. To further examine the accuracy of PDCM, PDCM is evaluated with a series of

CPI errors measured over the program execution. The program execution is divided by an

interval of 1M instructions. Then in each interval, CPIs are measured using sim-outorder
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Benchmark Avg. Min. Max. Benchmark Avg. Min. Max.

mcf 1.3% 0.0% 6.5% art 4.6% 0.0% 11.3%
gzip 6.6% 3.2% 13.3% galgel 0.6% 0.0% 13.5%
vpr 5.0% 0.6% 11.4% equake 2.9% 0.0% 18.3%
twolf 0.6% 0.0% 1.1% swim 1.6% 0.1% 7.5%
gcc 1.8% 0.0% 24.9% ammp 4.1% 0.0% 10.8%

crafty 3.6% 2.4% 15.8% applu 3.3% 0.1% 12.7%
parser 3.4% 0.0% 21.9% lucas 5.6% 0.0% 27.4%
bzip2 2.9% 0.1% 20.0% mgrid 5.8% 0.0% 12.2%
perl 6.3% 4.6% 8.4% apsi 0.6% 0.0% 23.7%

vortex 2.8% 1.0% 14.2% fma3d 3.5% 0.6% 18.3%
gap 3.5% 2.0% 12.0% facerec 2.0% 0.6% 3.3%
eon 4.2% 2.0% 8.6% wupwise 2.8% 0.2% 9.1%

mesa 1.7% 0.2% 21.9%
sixtrack 7.4% 7.1% 8.3%

Table 9: The average, minimum, and maximum CPI errors of PDCM observed throughout a
program execution using the realistic configuration.

and PDCM to compute the CPI error of PDCM.

Table 9 shows the average, minimum, and maximum CPI errors of PDCM that were ob-

served from 1,000 intervals using the entire SPEC2K benchmarks. The results show that

there are benchmarks that show a large CPI error at some point during program execution.

However, overall, both PDCM and sim-outorder showed a very similar trend in CPI change.

Figure 20 shows an example with lucas, which has the largest CPI error in an interval (27.4%)

among all 26 SPEC2K benchmarks. The figure presents sim-outorder and PDCM showing

a similar trend in CPIs measured over 1,000 intervals. PDCM showed higher than 20% CPI

error when simulating in intervals between interval #104 and #110 (the region where the

first spike appears).

3.4.6.2 Reproducing temporal uncore access behavior In the above experiments,

the CPI error and relative CPI change computed over the entire execution span were used

as the main metrics to evaluate how closely PDCM approximates a realistic superscalar

processor’s performance. In what follows, this work focuses on two aspects of PDCM that are
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Figure 20: The change in CPI of lucas shown by sim-outorder and PDCM while simulating 1B
instructions (1,000 intervals).

relevant at the system level: (1) Does PDCM changes how a processor core exercises “uncore”

resources such as L2 cache and memory controller? and (2) Can PDCM predict a program’s

relative performance when uncore parameters such as L2 cache size are changed? These

aspects are especially important when evaluating a workload on a multicore architecture

where uncore resources are subject to contentions.

To explore the first aspect, for each benchmark, histograms of the distance (in cycles)

between two consecutive off-chip accesses (from L2 cache misses, writebacks from the L2

cache, or L2 data prefetching) are built in each interval of 100M instructions from both

sim-outorder and PDCM. Each bin in a histogram represents a specific range of distances,

and the value in a bin represents the frequency of distances that fall into the specified range.

In this experiment, PDCM is assumed to preserve the temporal off-chip access patterns

of sim-outorder if the frequency of distances between two consecutive off-chip accesses

that occur in each interval is similar to sim-outorder. The histogram is generated for 10

consecutive intervals from both sim-outorder and PDCM. The following metric

Similarity =

∑n
i=0MIN(bin sooi, bin pdcmi)∑n

i=0 bin sooi
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is used to compare sim-outorder and PDCM with a single number, where i is the bin index

and n is the total number of bins. bin sooi and bin pdcmi are the frequency value in ith bin

collected by sim-outorder and PDCM, respectively. High similarity implies PDCM’s ability to

preserve the off-chip access pattern of sim-outorder. If the similarity is 1, it suggests that

the observations made by the two simulators are identical.

Figure 21 depicts the representative interval of mesa and parser. Only the representative

intervals of the benchmarks that show the highest (mesa) and lowest (parser) similarity are

shown for clear presentation. mesa shows that sim-outorder and PDCM agree well on the

off-chip access behavior, while parser shows that sim-outorder and PDCM disagree somewhat

on the frequency of the distances between isolated memory accesses.

Table 10 presents the computed average Similarity over all intervals for all SPEC2K

benchmarks. Note that the similarity values of some benchmarks were affected by having a

few memory accesses in an interval of one simulator, while the other simulator not showing

any memory accesses in the same interval. For instance, fma3d showed two memory accesses

in the first interval with PDCM, while having no memory access in the first interval with

sim-outorder. If the first two memory accesses with PDCM were not taken into consideration,

the Similarity of fma3d increases from 85% to 99%. Overall, PDCM preserves the memory

access behavior of sim-outorder closely. Most benchmarks, 19 out of 26, showed 90% or

higher similarity.

3.4.6.3 Predicting the performance with different uncore parameters I now at-

tempt to answer the question of “Can PDCM correctly predict the performance of a new

machine configuration given the performance of a baseline configuration?” The ability to

predict relative performance (i.e., performance trend) is often more important in a system

performance study. In the following experiment, the realistic superscalar processor configu-

ration is used as the reference point and five new configurations that differ in one of their L2

cache or main memory parameters (described in Table 11) are simulated. Note that PDCM

used the same traces produced to study the realistic superscalar processor configuration in

Table 6 for all five different configurations.

The results in Table 11 show that PDCM was able to project the relative performance very
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closely to sim-outorder. First of all, the performance change direction (positive or negative),

was predicted correctly 100% of the time. Furthermore, Table 11 shows that the relative

CPI change seen by each benchmark and each configuration, was nearly identical between

the two simulators for most of the benchmarks. gcc showed a large relative CPI difference

when L2 cache size was reduced (Conf. 1). gcc’s CPI increased 78% in sim-outorder when

L2 cache size is reduced from 2MB to 1MB, whereas PDCM increased CPI by only 16%. PDCM

shows smaller CPI increase because it has smaller L2 cache misses with 1MB L2 cache than

sim-outorder. The different number of L2 cache misses is caused by not generating trace

items for L1 instruction cache misses. As mentioned in Section 3.4.4.4, instead of generating

extra trace items for instruction cache misses, the effect of instruction caching is modeled

by employing a realistic instruction cache in trace generation and recording the increased

cycle count in trace items. However, such simple approach does not accurately capture the

case when L1 instruction cache misses increase the number of L2 cache misses with smaller

L2 cache. In general, fairly accurate projections of the relative performance were obtained

from PDCM. The average relative CPI difference of the five configurations ranged from 0.3%

(larger L2 cache) to 3.4% (smaller L2 cache).

In summary, the results presented in Figure 21, Table 10, and Table 11 suggest that PDCM

is amenable for use in a multicore simulation environment [46, 42]. To simulate multiple pro-

cessor cores that run independent threads simultaneously (i.e., multiprogrammed workload),

one can prepare traces from a detailed uniprocessor simulator (like sim-outorder) and run

them together. The techniques can be applied to multithreaded shared memory applications

if individual threads can be traced [42]. One can reliably study the overall system behav-

ior thanks to the capability of the presented technique to preserve each processor core’s

memory access behavior like an execution-driven simulation engine. At the same time, one

can examine how individual program performance is affected by contentions in the shared

resources.
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Figure 21: The histogram of collected distances in an interval is depicted to compare the distance
(in cycles) between two consecutive L2 cache misses in sim-outorder and PDCM. The x-axis rep-
resents the bins used to generate the histogram and the y-axis represents the percent of collected
distances in the interval of 100M instructions. The bin size is 12 cycles.

Similarity Benchmark (similarity)

< 90% parser (81%), gzip (83%), fma3d (85%)
mgrid (86%), facerec (88%), swim, eon (89%)

art, gap (90%), galgel, gcc (91%)
ammp, applu, equake, mcf (92%), vpr (93%)

≥ 90% twolf (94%), lucas (95%), wupwise (96%)
apsi, bzip2, crafty (97%)
perl, vortex (98%), mesa, sixtrack (99%)

Table 10: The similarity in memory access patterns between sim-outorder and PDCM (shown in
percentage).
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Benchmark Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

mcf 1% 0% 1% 1% 0%
gzip 0% 0% 0% 0% 1%
vpr 1% 0% 0% 0% 1%
twolf 12% 0% 0% 0% 11%
gcc 62% 0% 0% 1% 6%

crafty 0% 0% 0% 0% 1%
parser 0% 1% 0% 0% 3%
bzip2 1% 0% 0% 0% 3%
perl 0% 0% 0% 0% 8%

vortex 0% 0% 0% 0% 1%
gap 0% 0% 0% 0% 1%
eon 0% 0% 0% 0% 1%

art 3% 3% 2% 2% 1%
galgel 3% 0% 0% 0% 2%
equake 0% 0% 0% 0% 0%
swim 0% 0% 3% 1% 0%
ammp 3% 0% 0% 0% 1%
applu 0% 0% 1% 1% 0%
lucas 0% 0% 0% 0% 1%
mgrid 0% 0% 1% 4% 0%
apsi 0% 0% 0% 0% 2%
fma3d 0% 0% 1% 1% 0%
facerec 0% 1% 0% 0% 1%
wupwise 0% 0% 0% 0% 1%
mesa 0% 0% 0% 0% 0%

sixtrack 1% 0% 0% 0% 0%

Avg. Error 3.4% 0.3% 0.4% 0.5% 1.8%

Table 11: The relative CPI differences between sim-outorder and PDCM. The five configurations
are identical to the realistic configuration (Table 6) except a single parameter. In Configuration 1
(Conf. 1) and 2 (Conf. 2), the L2 cache is 1MB and 4MB instead of 2MB (“smaller L2 cache” and
“larger L2 cache”). In Configuration 3 (Conf. 3) and 4 (Conf. 4), the memory latency is 100 cycles
and 300 cycles instead of 200 cycles (“faster memory” and “slower memory”). In Configuration 5
(Conf. 5), the L2 hit latency is 20 cycles instead of 12 cycles (“slower L2 cache”). The performance
change directions observed from the two simulators were identical.
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3.4.6.4 Simulation speed and storage requirements of PDCM Lastly, the simu-

lation speed and storage requirements of PDCM and a full trace-driven simulation strategy, a

widely practiced simulation method [4] is presented. The trade-off between the two methods

is clear. The biggest advantage of using PDCM over the full trace-driven simulation is its

fast simulation speed. On the other hand, the full trace-driven simulation strategy has the

advantage of being more accurate with the complete information of all instructions executed.

The simulation speeds of the two trace simulation methods are compared using the

speedups achieved over sim-outorder with the baseline configuration. Because the full detail

of the target superscalar processor operation per every supported instruction is modeled,

the implementation of the full trace simulator is essentially identical to sim-outorder. The

observed simulation speedups of PDCM range from 3.8× (gcc) up to 582.58× (eon) and their

average (geometric mean) was 62.5×. Note that the trace generation time was not included

when measuring the speedup. The trace generation was 1.24x slower than an execution-

driven simulation on average (geometric mean) over the entire SPEC2K benchmarks. On

the other hand, the speedups with the full trace-driven simulation was limited, ranging from

1.06× (mcf) to 1.35× (sixtrack). The average speedup was only 1.18×.

The observed absolute trace simulation speeds with PDCM using the realistic configuration

range from 2.3 MIPS (gcc) to 428.3 MIPS (sixtrack) and their average was 48.3 MIPS

(geometric mean), as shown in Figure 22. The simulation speed of fast cycle-accurate detailed

execution-driven simulators are about 0.5 MIPS on a 2GHz Pentium 4 [80].

The simulation speedups achieved with PDCM over sim-outorder using the realistic con-

figuration range from 3.5× (gcc) and 406.5× (eon). The average (geometric mean) simulation

speedup was 55.3× on average. PDCM’s absolute trace generation speed, using the realistic

configuration, ranges from 443 KIPS (gap) to 1171 KIPS (lucas) and their average was 756

KIPS (geometric mean).

In the current implementation, a single trace item in a full trace is 12B. Because trace

items are generated for 1.1B instructions, each trace file is 12.3GB. A single trace item with

PDCM is 20B, and the average trace file size is 1.5GB, ranging from 20MB (eon) to 9.6GB

(gcc). 22 out of 26 benchmarks were less than 1.9GB, and 14 out of 26 were less than 1GB.

Certain benchmarks require many trace items because of delayed hits, especially gcc. Since

62



1

10

100

1000

1

10

100

1000

m
cf

g
zip

v
p
r

tw
o
lf

g
cc

cra
fty

p
a
rse

r

b
zip

2

p
e
rlb

m
k

v
o
rte

x

g
a
p

e
o
n

a
rt

g
a
lg
e
l

e
q
u
a
ke

sw
im

a
m
m
p

a
p
p
lu

lu
ca
s

m
g
rid

a
p
si

fm
a
3
d

fa
ce
re
c

w
u
p
w
ise

m
e
sa

six
tra

ck

#
 o

f 
tr

a
ce

 it
e

m
s 

/ 
1

M
 in

st
s

(l
o

g
-s

ca
le

)

M
IP

S
 (

lo
g

-s
ca

le
)

MIPS # of trace items / 1M insts

Figure 22: The relationship between the simulation speed and trace file size in PDCM.

not all delayed hits may be needed for accuracy, the trace file size can be reduced significantly

if unnecessary delayed hits are filtered during trace generation as a possible optimization.

Trace file sizes were slightly larger with the realistic configuration with an average of 1.5GB,

and range from 25MB (eon) to 9.7GB (gcc).

As expected, simulation results of the full trace-driven simulation method were almost

identical to sim-outorder with 0% CPI error on average. PDCM is not as accurate, but the

error is very limited as discussed in this section. Considering the fast simulation speed, small

error, and much smaller storage overheads, PDCM is a more attractive simulation method than

the full trace-driven simulation, especially in the early design stages.

3.5 SUMMARY

The three cache miss models examined in this section have different strengths and weak-

nesses. The isolated cache miss model works well when the simulated program has a high L1

cache hit rate and isolated L1 cache misses. It is pessimistic about how trace items (cache

misses) can be scheduled during simulation; a long latency cache miss will simply block and

delay all following trace items. It also requires that the potential penalty of individual cache
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misses be pre-calculated before simulation during the trace generation phase. The related

analysis entails generating multiple traces and comparing trace items in those traces. The

process was shown to be error-prone for programs that have many clustered misses.

The independent cache miss model is optimistic about when a trace item can be sched-

uled; trace items are processed immediately as long as there is space in the ROB to hold

them. It produces much smaller CPI errors than the isolated cache miss model when cache

misses occur frequently and the misses overlap in time in a real superscalar processor. This

model does not require any pre-analysis of traces. Traces simply capture the L1 cache misses

and the trace simulator would determine the timing of each trace item in the trace using the

ROB status constructed during trace simulation. However, if there are dependencies among

trace items, this overly optimistic model becomes inaccurate.

The third model, the pairwise dependent cache miss model (PDCM), builds on the

independent cache miss model. It considers dependencies between trace items as it schedules

them. If a benchmark program does not present dependencies between trace items, PDCM

behaves just like the independent cache miss model. In other cases, it reduces the CPI error

of the independent cache miss model by properly delaying trace items that depend on an

unresolved trace item. Figure 15 showed that PDCM outperforms the independent cache

miss model in terms of the CPI error metric. I conclude that PDCM is the most accurate

model among the three when modeling the superscalar processor performance from reduced

traces. Compared with a detailed execution-driven simulation method, PDCM achieves an

absolute simulation speed of 48 MIPS on average (geometric mean) while giving sufficiently

small errors across benchmarks (less than 3% on average). PDCM also robustly predicts the

relative performance change for different machine configurations. The performance change

direction is always predicted correctly and the performance change amount is predicted with

small errors of less than 4% on average.
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4.0 TRACE SIMULATION WITH ABSTRACT TIMING INFORMATION

The pairwise dependent cache miss model (PDCM) provides accurate simulation results

using timing-aware filtered traces. However, it requires a cycle-accurate timing simulator

that models the microarchitecture of a target processor to generate the timing-aware filtered

traces. This is a drawback, if a cycle-accurate timing simulator is not available, especially

in the early processor design stages. On the other hand, a functional simulator is usually

prepared in the early design stages for software development. In-N-Out employs a functional

simulator to build an abstract timing model to quickly generate reduced in-order traces,

rather than using a detailed timing simulator, and hence, it is more appealing than PDCM

in the early design stages.

4.1 OVERVIEW

The overall structure of In-N-Out is illustrated in Figure 23. In-N-Out uses an abstract

timing model to quickly generate reduced traces (L1 filtered traces) on L1 data cache misses

and writebacks. Since the abstract timing model is based on a functional simulator, unlike

PDCM, the traces are generated in program order. In this dissertation, the sim-cache [2]

simulator is modified to implement an abstract timing model. The abstract timing infor-

mation is gathered by monitoring the dependencies between instructions. The monitored

dependency are the data dependency, memory dependency, and the dependency created by

the limited architectural resources or processor artifacts.

The reduced trace is fed into the trace simulator with the target machine definition.

The target machine definition includes the processor’s ROB size and the configuration of the
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Figure 23: Overall structure of In-N-Out. It uses an abstract timing model to generate reduced
traces (L1 filtered traces).

uncore components. The trace simulator runs the out-of-order trace simulation algorithm

by dynamically reconstructing the ROB state and exploiting the recorded abstract timing

information in trace items. Finally, the simulation results are obtained from the trace sim-

ulator. Compared with the trace-driven simulation models introduced in Chapter 3, the

filtered trace generation is simpler and faster because an abstract timing model is used.

The following sections present how the performance of superscalar processors is modeled

using reduced in-order traces. First, the trace generation approach is discussed, followed by

the details of the key design issues and the trace simulation algorithm. The quantitative

evaluation results are reported at the end of this section.

4.2 TRACE GENERATION IN IN-N-OUT

In Section 3, it was shown that superscalar processor performance can be accurately mod-

eled using timing-aware traces generated from a cycle-accurate timing simulator. However,

in In-N-Out framework, since the trace generator is based on a functional simulator, ac-

curate timing information of the processor core cannot be collected. The abstract timing

information can be collected considering the dependencies between instructions and the key

architectural parameters, such as the ROB size and the processor’s dispatch width. To col-

lect the abstract timing information, the following three types of dependencies are monitored
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i1: load $2, 0($1)

i2: load $3, 4($2)

i3: load $5, 0($4)

I4: load $6, 4($4) 

I5: load $7, 4($6)

Same cache block

Figure 24: An example of instruction data dependency in a program.

during trace generation: (1) data dependency, (2) memory dependency, and (3) microarchi-

tectural dependency.

4.2.1 Data dependency in superscalar processor

If an instruction depends on the data created by a preceding instruction, there exists a data

dependency between the two instructions. In Figure 24, load instructions i2 and i5 depend

on the data fetched by the load instructions i1 and i4, respectively, to compute their memory

address.

Besides the explicit data dependency between trace items, an implicit data dependency

may exist via a “delayed hit” as described in Section 3.4.2. A delayed hit occurs when a

memory instruction accesses a cache block that is still in transit from the lower-level cache

or the main memory. The second access to the block after a miss is registered as a hit, but

the access has to wait for the data to be brought from the memory. Consider an L1 data

cache miss that depends on an L1 delayed hit. This L1 data cache miss must be processed

after the previous data cache miss that caused the delayed hit, since the delayed hit has to

wait until the data is brought by the previous data cache miss [13]. An example is shown in

Figure 24. In the example, load instructions i3 and i4 access the same cache block. Assume

instruction i3 is issued before i4 and misses in both L1 and L2 caches. Instruction i5 does

not depend on i3, but since i3 and i4 access the same cache block and i5 has to wait until i4
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returns from the main memory, there exists an implicit data dependency between i5 and i3

via i4.

In the PDCM framework (see Section 3.4.2), to expose all data dependencies between

trace items during the trace simulation phase, the trace items are generated for L1 hits that

may become L1 delayed hits during trace simulation. However, certain benchmarks, such

as gcc, show a significantly large increase in trace file size when delayed hit trace items

are generated as discussed in Section 3.4.6.4. Moreover, since the trace simulation speed is

determined by the number of simulated trace items, it is important to minimize the number

of trace items in a trace file.

In In-N-Out, since not all delayed hit trace items are necessary for accurate simulation,

unnecessary delayed hit trace items are filtered. During trace generation, when an L1 data

cache miss occurs, the cache block is labeled with the instruction sequence number (ISN) of

the memory instruction that generated the miss. Later, when a memory instruction accesses

the same cache block, the labeled ISN on the cache block is used to notify the memory

instruction that there is a trace item it indirectly depends on. Note that a trace item

generated by a load instruction can be marked as a dependent of a trace item generated by a

store instruction, if it depends on a delayed hit created by the store instruction. Section 4.3.1

describes in detail how the delayed hit trace items are treated during trace simulation.

The data dependency between instructions are identified based on the registers accessed

by the instructions. When an instruction is processed, ISN is given to the instruction in

program order. When an instruction writes to a register, it labels the output register with

its ISN. Later, when a different instruction reads data from the same register, the labeled ISN

is used to identify the existing dependency. For example, in Figure 25, instruction i2 writes

its ISN in its output register and then the dependency between i2 and i3 is detected when

i3 reads from i2’s output register. This creates a dependency chain (DC2) originating from

i2. The length1 of the dependency chain is incremented when a new instruction is included

in the dependency chain. When two separate dependency chains merge at one instruction

(e.g., instruction i4 in Figure 25), the length of the longer dependency chain is used.

1The length of a dependency chain is defined as the sum of the execution latencies of the instructions on
the dependency chain.
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DC1.len = 1 

i1 i2 i3 i5 i6 i7 i4 i8 

DC2.len = 1 DC2.len = 4 DC2.len = 5 DC2.len = 6 DC2.len = 7 DC2.len = 2 DC2.len = 3 

i1 i1 

i2 i2 i3 i2 i4 i2 i5 i2 i6 i2 i7 i7 

i1 is dropped 

Figure 25: An example of eight instructions constituting two dependency chains. Each square
represents a register and each circle represents an instruction. Circle filled in darkish color represents
an instruction that generates a trace item. The dashed octagon on the square indicates the last
instruction that produced the data and the solid octagon indicates the last trace item in the
dependency chain.

The dependency between trace items is also identified and recorded in the dependent

trace item. The recorded dependency information includes the ISN of the parent trace item

and the distance (in terms of the instruction execution latency) between the two trace items.

Figure 25 explains how the dependency between trace items is detected. When a trace

item is generated, the ISN of the trace item is propagated in the dependency chain by its

descendants. For instance, instruction i2 and i7 are trace items in the example. The ISN of

i2 is passed on by the instructions in DC2 and the dependency between i2 and i7 is detected

from the ISNs labeled in i7’s input register. For instructions depending on multiple trace

items, the most largest ISN in the dependency chain is kept. While storing more than one

trace item may improve accuracy, experiment results revealed that storing single ancestor is

sufficient.

4.2.2 Memory dependency in superscalar processor

To ensure the correctness of the data read and written to the caches and the main memory,

superscalar processor issues the memory instructions considering the memory dependency.

During trace generation, if there is a memory dependency between trace items, the memory

dependency information is marked in the dependent trace item. Then during trace simula-

tion, the dependent trace item is processed after the memory dependency is resolved. There

are two conditions that can create a memory dependency between two memory instructions.

69



Store address unknown 

i1: load  $2, 0($1)

i2: store $3, 4($2) 

i3: load  $5, 0($4)

Store data unknown

i11: load  $12, 0($11) 

i12: store $12, 4($13) 

i13: load  $14, 4($13)

Same memory address

Figure 26: An example of a memory dependency in a program.

One condition is when there is an earlier store instruction with an unknown address. In

Figure 26, instruction i2 depends on instruction i1 to compute its memory address. Suppose

i1 misses in L1 and L2 caches, and the computed cache block address accessed by i2 and

i3 are the same. Instruction i3 does not depend on instructions i1 and i2. However, the

processor cannot issue i3 before i1 finishes accessing the main memory because otherwise

i3 will fetch stale data from the cache block. Hence, when scheduling load instructions, if

there is an earlier store instruction with an unknown memory address, the processor stops

scheduling the load instructions behind the store instruction. During trace generation, if a

store instruction B depends on a previous trace item A to compute its memory address, the

ISN of the trace item A is propagated to all trace items behind the store instruction B. The

propagation ends when the ISN of the currently simulated instruction is ROB size number

of instructions away from trace item A, or when another memory dependency is identified.

The other condition that incurs memory dependency is when there is an earlier store

instruction with an unknown store operand that accesses the same memory address as a

later load instruction. In Figure 26, instruction i12 depends on i11 to get its store operand

and instructions i12 and i13 access the same memory address. Suppose instruction i12 already

knows its store address, but it is waiting for instruction i11 to fetch its store operand from

the main memory. Then instruction i13 cannot be issued until i12’s store operand is known,

because otherwise, i13 will read incorrect data from the cache. During trace generation,

if a store instruction B depends on a previous trace item A for its store data, the ISN of

trace item A and the memory address of store instruction B are kept. Later, if there is

70



a load instruction C accessing the same memory address as store instruction B, the model

determines that there exists a memory dependency between load instruction C and trace

item A. The ISN of the trace item A is then propagated to all the instructions that depend

on load instruction C. If one of the dependent instructions is a trace item, it will receive the

ISN of trace item A.

4.2.3 Microarchitectural dependency in superscalar processor

The microarchitectural dependency exists because of the finite resources in a superscalar

processor [25, 26]. The sources of the microarchitectural dependencies are described below.

• ROB size. Since an instruction cannot enter the ROB if ROB is full, there exists a

dependency between instructions iN and iN−ROBsize. Instruction iN can enter the ROB

only if iN−ROBsize is committed and removed from the ROB.

• Processor dispatch-width and commit-width. The number of instructions entering

and exiting the ROB per cycle is limited by the processor’s dispatch-width and commit-

width. For instance, if the processor can dispatch and commit N instructions per cycle,

there is a dependency between instruction i and i + N . The processor dispatches in-

struction i + N to the ROB one cycle after instruction i, and the processor commits

instruction i+N one cycle after instruction i.

• Movement between pipeline stages. There exists at least one clock cycle delay when

an instruction moves between pipeline stages. For instance, assume there is an instruction

i moving from the dispatch stage to the execute stage. If instruction i enters the dispatch

stage in clock cycle N , it enters the execute stage at cycle N+1, if there is no dependency

to resolve. If instruction i depends on a preceding instruction, i enters the execute stage

at cycle MAX(N +1, dependency− resolve− time), where dependency− resolve− time

is the clock cycles when the dependency is resolved.

• Instruction cache miss. If an instruction cache miss occurs when fetching instruction

i at clock cycle N , instruction i enters the dispatch stage at cycle N + lat, where lat is

the L2 cache hit latency or the main memory access latency.
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• Branch misprediction. If instruction i is a branch instruction and a branch mispre-

diction occurs by instruction i at clock cycle N , the instructions in the correct execution

path are not fetched until cycle N + lat, where lat is the latency required to resolve the

branch misprediction. If a branch instruction depends on an L2 cache miss and incurs

a branch misprediction, it has to wait until the depending L2 cache miss fetches the

data from the main memory. Hence, if a branch misprediction depends on a preceding

trace item, the trace items that are generated after the branch misprediction cannot be

processed before the preceding trace item is resolved.

4.2.4 Dependence-graph model

To collect the dependency information during trace generation, a dependence-graph model [25,

26] is constructed as shown in Figure 27. Each simulated instruction is represented by three

nodes: dispatch node (D), execute node (E), and commit node (C). The three nodes represent

the lifetime of an instruction from the time it enters the ROB until it is removed from the

ROB. The D node represents the dispatch pipeline stage, where instructions are dispatched

to the ROB. The E node represents the execute pipeline stage, where instructions with no un-

resolved dependencies are executed. The C node represents the commit pipeline stage, where

completed instructions are committed and removed from the ROB. The edge in the graph

shows the dependency relationship between the nodes. Each edge is weighted according to

the latency required to move from one node to the other node.

Table 12 describes the edges in the dependence-graph model. The edges Di−1Di and

Ci−1Ci, where i is ISN of an instruction, represent the dependencies between two consecutive

instructions i−1 and i created by the limited number of instructions a processor can dispatch

and commit per cycle. The weight of the Di−1Di (Ci−1Ci) edge can either be 0, when two

consecutive instructions are dispatched (committed) in the same clock cycle, or 1, when the

two instructions are separated by the processor’s dispatch-width (commit-width). Additional

latency may apply to the Di−1Di edge when an instruction cache miss occurs by instruction

i − 1. The weight of DiEi edge is one clock cycle because moving from a pipeline stage

to the next pipeline stage requires at least one clock cycle. The weight of the EiCi edge is
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Figure 27: The dependence-graph model with four instructions.

Dependency Source Weight

Di−1Di Limited dispatch-width 0/1/N (N: Instruction cache miss latency)

Ci−1Ci Limited commit-width 0/1

DiEi Dispatch-stage →
execute-stage

1

EiCi Execute-stage →
commit-stage

Lati +1 (LatEC : execution latency of instruction i)

ExEy Data/memory depen-
dency

Latx (LatEE : execution latency of instruction x)

Ei−1Di Branch misprediction Lat (LatED: latency required to resolve a branch
misprediction from instruction i− 1)

Ci−ROBsizeDi Limited ROB size 0 (ROBsize: the ROB size)

Table 12: The dependencies (edges) depicted in the dependence-graph model.

one clock cycle plus instruction i’s execution latency. The edge ExEy represents the data

dependency or memory dependency between two different instructions x and y. The weight

of the ExEy edge is the execution latency of instruction x. The edge Ei−1Di represents

the dependency between two consecutive instructions i − 1 and i, where instruction i − 1

is a mispredicted branch instruction. There exists a dependency because when a branch

misprediction occurs the new instructions are fetched from the correct execution path after

the branch misprediction is resolved. The weight of the Ei−1Di edge is the time to resolve

73



D
0

E
0

C
0

D
1

E
1

C
1

D
2

E
2

C
2

D
3

E
3

C
3

I0

(trace item)

i1 I2

(branch misprediction)

I3

(trace item)

1

2+1

1

4+1

1

1+1

1

2+1

0 1 0

2

0 0 0

0

0
4

2

Figure 28: An example of collecting the abstract timing information using the dependence-graph
model in trace generation. During trace generation, instruction 0 (i0) and 3 (i3) generate trace
items and a branch misprediction occurs by instruction 2 (i2). Assume the ROB size is two and
the L1 data cache hit latency is two cycles.

instruction 0 instruction 1 instruction 2 instruction 3

dispatch
time

1 1 (1+0) 5 (MAX(5+0, 1+1)) 10 (MAX(5+0, 8+2,
9+0))

execute
time

2 (1+1) 4 (MAX(2+2, 1+1)) 8 (MAX(4+4, 5+1)) 11 (10+1)

commit
time

5 (2+2+1) 9 (MAX(5+0,
4+4+1))

10 (MAX(9+0,
8+1+1))

14 (MAX(10+0,
11+2+1))

Table 13: The weight on edges between the nodes in the dependence-graph model. Assume
instruction 0 was dispatched at clock cycle 1, and the instruction execution latency of instructions
0, 1, 2, and 3 are 1, 4, 1, and 2 cycles, respectively. The branch misprediction penalty is set to 2
cycles.

a branch misprediction. Finally, the weight of Ci−ROBsizeDi edge is always 0. The limited

ROB size creates a dependency between instruction i−ROBsize and i when ROB becomes

full. In such case, instruction i will enter the ROB in the same clock cycle when instruction

i−ROBsize is committed.

Using Figure 28 and Table 13, an example is provided to demonstrate how the dependence-

graph model is used to collect the abstract timing information. In Figure 28, suppose in-
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struction 0 (i0) and instruction 3 (i3) generate trace items and a branch misprediction occurs

by instruction 2 (i2) during trace generation. The dependence-graph model shows that the

two instructions (i0 and i3) have the following four microarchitectural dependencies.

• Microarchitectural dependency caused by the limited dispatch-width.

• Microarchitectural dependency caused by the limited commit-width.

• Microarchitectural dependency caused by the limited ROB size.

• Microarchitectural dependency caused by a branch misprediction.

During trace generation, the abstract timing model estimates the time when an instruc-

tion is dispatched in the ROB (tg dispatch time), the time when an instruction is executed

(tg execute time), and the time when an instruction is committed and removed from the

ROB (tg commit time)2, as shown in Table 13. The estimated times are recorded in trace

items and are used during trace simulation to indicate the distance (in cycles) between two

trace items.

4.2.5 Trace generation algorithm in In-N-Out

The trace generation process is described below using instruction N (instructionN) as an ex-

ample, and the trace generation algorithm is presented in Figure 29. During trace generation,

it is assumed that the target processor has infinite number of FUs.

1. Access the instruction cache using the PC (program counter) address of instructionN . If

a miss occurs, an instruction cache miss trace item is generated.

2. Collect the time when instructionN is dispatched (tg dispatch time). The dispatch time

is the larger of the current dispatch time and the time when instructionN−ROBsize was

committed, where robSize is the size of the ROB. tg dispatch time is computed as,

tg dispatch time = MAX(tg dispatch time, (tg commit time of instructionN−ROBsize))

2The three notations used to describe the dispatch time (tg dispatch time), execute time
(tg execute time), and commit time (tg commit time) of an instruction during trace generation are used
throughout the rest of Section 4.
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3. Decode instructionN and collect its dependency information. If instructionN depends on

a preceding trace item, the ISN of the preceding trace item is recorded in the output

register of instructionN . The recorded ISN of the preceding trace item is propagated to

the instructions depending on instructionN as shown in Figure 25.

4. Collect the time when instructionN is ready to execute (tg execute time). The time when

instructionN is ready to execute is the larger of tg dispatch time +1 and the time when

instructionN ’s dependency is resolved. tg execute time is computed as,

tg execute time = MAX((tg dispatch time+ 1), dependency resolve time)

5. If instructionN is a memory instruction (load or store instruction), the data cache is

accessed. If a data cache miss occurs, a trace item is generated.

6. Collect the time when instructionN commits (tg commit time). The time when instructionN

is committed is the larger of tg commit time and the time when instructionN ’s execution

completes. tg commit time is computed as,

tg commit time = MAX(tg commit time,

(tg execute time+ instructionN ’s execution latency + 1)).

A reduced trace item, i.e., L1 filtered trace item, captures the following information: (1)

the ISN of the corresponding instruction, (2) the dependency information, (3) the abstract

timing information (tg dispatch time, tg execute time, and tg commit time), (4) the cache

access information, such as cache access type (data read, data write, instruction fetch), cache

address, and writeback address (if a writeback occurs on a cache miss).

The details of the trace simulation are given in the following section.
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1: /* n dispatch (n commit): the number of dispatched (committed) instructions in trace gener-
ation */

2: /* ROB head commit time: tg commit time of instructionN−ROBsize when instructionN is cur-
rently simulated. instructionN represents the Nth instruction and robSize represents the size of
the ROB */

3:

4: tg dispatch time = 0; tg commit time = 0;
5: while (there are instructions left to simulate) do
6: Access instruction cache. Generate trace on an instruction cache miss.;
7: n dispatch++; n commit++;
8: if (ROB head commit time > tg dispatch time) then
9: tg dispatch time = ROB head commit time; n dispatch = 1;
10: end if
11: Identify all existing dependencies of the simulated instruction.;
12: tg ready time = MAX(tg dispatch time +1, dependency resolve time);
13: if instructions is a load/store instruction then
14: Access data cache. Generate trace on a data cache miss.;
15: end if
16: Record the dependency information in the output register.;
17: if ((n dispatch % DISPATCH-WIDTH) == 0) then
18: tg dispatch time++; n dispatch = 0;
19: end if
20: inst commit time = tg ready time + instruction execution latency +1;
21: if (inst commit time > tg commit time) then
22: tg commit time = inst commit time; n commit = 1;
23: else if ((n commit % COMMIT-WIDTH) == 0) then
24: tg commit time++; n commit = 0;
25: end if
26: end while

Figure 29: The high-level pseudo-code of the trace generation algorithm.
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4.3 TRACE SIMULATION IN IN-N-OUT

At the heart of out-of-order trace simulation is the ROB occupancy analysis introduced in

Section 3.4.3. This section first revisits the ROB occupancy analysis, and then describes the

trace simulation algorithm.

4.3.1 ROB occupancy analysis in In-N-Out

The ROB occupancy analysis described in Section 3.4.3 is also used in In-N-Out. The ROB

occupancy analysis is simpler than PDCM, because trace items are always generated in

program order and there are less trace items to analyze. Unlike PDCM, in In-N-Out, a

delayed hit trace item is generated only if it has an effect on the ROB occupancy analysis.

Figure 30 shows an example with five trace items and a 96-entry ROB.

In Figure 30(a), suppose all five trace items (L1 cache misses) A, B, C, D, and E miss in

the L2 cache, and A is the head of the ROB. Given their ISN and the dependency information,

only C can access the main memory in parallel with A. B can issue a cache access after A

returns from the L2 cache. After A commits, the instruction in D can advance to the ROB

as instructions between A and B commit. Instruction in E can move into the ROB after

B commits. During trace generation in PDCM, a cache miss and the subsequent accesses

to the same cache block (delayed hits) may not occur in program order. For instance, in

PDCM, assume B-dh (instruction 120) and B (instruction 130) access the same L1 cache

block, but B accessed the L1 cache before B-dh, and B-dh became a delayed hit because of

B. If a trace item is not generated on a delayed hit, trace item D will move into the ROB

after A commits. However, this is not correct because B-dh (instruction 120) will block the

instructions committing from the ROB and ROB will be filled up without D (instruction

220). In In-N-Out, since In-N-Out uses an abstract timing model based on a functional

simulator to generate traces, such problem does not occur because L1 cache misses happen

in program order during trace generation.

Nevertheless, there is a case when a delayed hit trace item is needed in In-N-Out. The

case is illustrated in Figure 30(b). Since store instructions do not wait for data from the
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A (100)

A 29 insts

96-entry Reorder Buffer

25 cycles  10 cycles  20 cycles  

B 49 insts C 15 insts D··· 24 insts ··· ··· 19 insts ··· E

B (130) C (180) D (220) E (240)

(c)

(a)

dependency

15 cycles  

B-dh (120)

A (100)

25 cycles  10 cycles  20 cycles  

B (130) C (180) D (220) E (240)

(b)

store trace item

15 cycles  

A-dh (120)

Figure 30: (a) Five L1 cache misses (A, B, C, D, and E) and one L1 delayed hit (B-dh) created
by L1 cache miss B. Inside parentheses is the ISN of a memory instruction. (b) Assume L1 delayed
hit (A-dh) is created by L1 cache miss A, and A is a write L1 cache miss from instruction 100. (c)
The ROB occupancy status.

lower-level cache or the main memory, store instructions can be removed from the ROB right

after accessing the data cache in the commit pipeline stage. Assuming a write-back and a

write-allocate cache, if a store instruction misses in L1 and L2 caches, the subsequent load

instructions that access the same cache block as the store instruction has to wait until the

missed cache block is allocated. Assume memory instruction 120 is an L1 delayed hit created

by the write L1 cache miss trace item A. Since instruction 120 has to wait until the missed

cache block gets allocated, it will eventually become the head of the ROB and the ROB will

be filled up. Then trace item D will be blocked from entering the ROB while the instruction

120 is the head of the ROB. To model such case in In-N-Out, a trace item is generated for

the first read delayed hit following a write miss in the data cache. The trace items for the

successive delayed hits after the first read delayed hit are not needed, since all delayed hits

will be resolved at the same time, and only the earliest delayed hit will have an impact on

the ROB occupancy status.
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ROBsize The size of ROB
rob-list The list of trace items sorted in terms of the trace item’s ISN
robHead The trace item in the head of rob-list
sim time The current clock cycle time in trace simulation
dispatch time The estimated dispatch time of a trace item in trace simulation
ready time The time when a trace item is ready to be processed in trace simula-

tion
return time The time when the trace item’s cache access returns in trace simula-

tion
issue-list The list of trace items sorted in terms of the trace item’s ready time
issueHead The trace item in the head of issue-list

dep resolve time The largest parent trace item’s return time plus the recorded distance
to the parent trace item

trace process time The time to process issue head in trace simulation
rob head commit time The time to remove robHead from rob-list

Table 14: Notations used for the In-N-Out algorithm description.

4.3.2 Simulation algorithm of In-N-Out

Table 14 list the notations used throughout the rest of this section. In trace simulation, two

important lists—rob-list and issue-list—are employed to implement the simulation algorithm

similar to PDCM. rob-list links the trace items in program order to reconstruct the ROB

state during trace simulation. Trace items are inserted in rob-list if the difference between

the trace item’s ISN and robHead’s ISN is smaller than the ROB size. issue-list is used to

process trace items out of order. Modern superscalar processors can issue instructions while

long latency operations are still pending, if they are in the ROB and have no unresolved

dependency. Similarly, the model determines that a trace item is ready to be processed,

if it is in rob-list and has no unresolved dependency with other preceding trace items in

rob-list. Ready trace items are inserted in issue-list and lined up with respect to their

ready time. The head of issue-list is always the one that gets processed. issue-list and rob-

list are used to mimic the superscalar processor’s ability to issue instructions out of order

and commit completed instructions in program order. rob-list stalls the trace simulation

when there are no trace items to process and new trace items are not inserted. The trace

simulation resumes when new trace items are inserted after robHead is removed. This reflects
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1: while (1) do
2: sim time++;
3: if (sim time == rob head commit time) then
4: Commit Trace Items();
5: Update ROB();
6: update rob head commit time for the new robHead
7: end if
8: if (sim time == trace process time) then
9: Process Trace Items();
10: end if
11: if (no more trace items left in the trace file) then
12: break; /* END OF TRACE SIMULATION */
13: end if
14: end while

Figure 31: The high-level pseudo-code of the trace simulation algorithm.

how a superscalar processor stalls the program execution when the head of the ROB is a

pending memory instruction and there are no instructions to issue in the ROB. The processor

resumes executing the program after the memory instruction commits and new instructions

are dispatched into the ROB. In In-N-Out, since trace items (L1 data cache misses) are

always generated in program order, rob-list does not need to keep the pending trace items

as it did in PDCM (see Section 3.4.4.1).

Figure 31 presents the high-level pseudo-code of the trace simulation algorithm to model

the superscalar processor with the baseline configuration described in Table 6. The key steps

in the algorithm are described below.

Commit Trace Items. The instruction commit process employed in In-N-Out (shown in

Figure 32) is similar to the process used in PDCM. robHead is removed from rob-list, if

sim time is larger than robHead.return time (line 2). If robHead is generated by a store

instruction, a write access to the L2 cache is issued before robHead is removed (lines 3 to

9). Since the trace items in rob-list may depend on robHead (the store instruction) via a

delayed hit, dependent trace items in rob-list are searched after write access occurs (lines 5

to 8). If a dependent trace item is identified and all the dependencies of the dependent trace

item are resolved, the dependent trace item’s ready time is set and it is inserted in issue-list.
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1: robNode = NULL;
2: while (sim time > (robHead.return time +1)) do
3: if (robHead is a write trace item) then
4: Issue a write access to L2 cache;
5: Resolve dependency for the trace items (delayed hits) that depend on robHead;
6: if (A dependent trace item is ready to issue) then
7: Set the dependent trace item’s ready time;
8: Insert the dependent trace item in issue-list;
9: end if
10: end if
11: robNode = robHead.next; /*next trace item in rob-list*/
12: robHead = robNode;
13: end while

Figure 32: High-level pseudo-code for committing trace items.

After robHead is removed, the next trace item in rob-list becomes the new robHead (lines

11 and 12). Note that depending on the specified commit-width and the number of memory

ports in the processor system, more than one trace item behind robHead can be removed from

rob-list in the same cycle. The time to remove the next robHead from rob-list is indicated

by rob head commit time, which is computed after updating the ROB occupancy status.

Update ROB. After committing the old trace items in rob-list, the algorithm attempts to

insert new trace items from a trace file to rob-list. During trace simulation, the ROB is

reconstructed as shown in Figure 33. First, the algorithm checks whether the new trace item

can enter the ROB by comparing the ISN of robHead and the new trace item (line 1). If the

difference is smaller than the ROB size, the new trace item is inserted in rob-list, otherwise,

the algorithm stops fetching trace items from the trace file. Since multiple trace items are

inserted in rob-list simultaneously, the algorithm estimates when the new trace items are

actually dispatched in the ROB (line 2).

To estimate the dispatch time (dispatch time) of the new trace items during trace sim-

ulation, the algorithm uses tg dispatch time collected during trace generation. An example

is shown in Figure 34 assuming a 96-entry ROB. The example has four trace items from in-

structions 10 (A), 60 (B), 120 (D), and 140 (E). Assume L2 cache misses occur from all trace
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1: while (ROB is not full fetch a new trace item from a trace file) do
2: Estimate when the new trace item is dispatched in the ROB.
3: if (The new trace item has an unresolved dependency on a preceding trace item in rob-list)

then
4: Mark the dependency information between the trace items.
5: else
6: Set the new trace item’s ready time;
7: Insert the new trace item in issue-list.
8: end if
9: end while

Figure 33: High-level pseudo-code for updating the ROB.

A (10)

D. time: 

T
A

B (60)

D. time: 

T
B

D (120)

D. time: 

T
D

C (105)

D. time: 

T
C

E (140)

D. time: 

T
E

Figure 34: An example of estimating the dispatch time of trace items in trace simulation. Each
circle represents an instruction. Circle filled in darkish color represents an instruction that generated
a trace item. Inside parentheses is the ISN of an instruction. Instruction 105 (C) is the last
(youngest) instruction in the ROB when instruction 10 (A) is the head of the ROB. “D. time” is
the estimated dispatch time (tg dispatch time) of an instruction during trace generation.

items, and A was fetched at cycle N . The ROB will be filled while A waits for its requested

data from the main memory with instruction 105 (C) being the last (youngest) instruction

in the ROB. During trace simulation, dispatch time of A and B is estimated as N + TA and

N + TB, respectively. After A commits, D advances in the ROB as instructions between A

and B commit. dispatch time of D is computed as Tcommit−A+(TD−TC), where Tcommit−A is

the time when A is committed during trace simulation. Because the time spent dispatching

instructions between B and C in the ROB is overlapped with the main memory access from

A, using the time difference between D and B (TD−TB) to estimate dispatch-time of D would

incur an incorrect delay. During trace generation, when instruction i creates an L1 cache

miss (trace i), tg dispatch time of instructions i and i+ROBsize are recorded in the trace
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item generated from instruction i. Lastly, dispatch time of E is computed as dispatch time

of D plus TE − TD.

Let us return back to the pseudo-code presented in Figure 33. If the new trace item

depends on a preceding trace item in rob-list, the dependency information is marked in the

two trace items (lines 3 and 4). If the new trace item has no dependencies to address, the

trace item’s ready time is computed and inserted in issue-list (lines 5 to 6). The new trace

item’s ready time is computed as

ready time = MAX(dispatch time+ (tg execute time− tg dispatch time),

dep resolve time), (tg execute time− tg dispatch time ≥ 1)

Since a trace item may depend on a long sequence of instructions that are not trace items, the

difference between tg execute time and tg dispatch time, collected during trace generation,

is used to capture the execution latencies of its parent instructions. The difference between

tg execute time and tg dispatch time is at least 1, because the abstract timing model assumes

a one cycle latency during trace generation when an instruction moves from the dispatch-

stage to the execute-stage as described in Section 4.2.4.

Update rob head commit time. After updating rob-list, rob head commit time is com-

puted to indicate the time to remove the new robHead. The new rob head commit time is

estimated as MAX(robHead-commit-time, (robHead.return time +1)) for the new robHead,

where robHead-commit-time is computed as below.

robHead-commit-time = sim time+ robHead.tg commit time−

prev. robHead.tg commit time

Process Trace Items. The time to process issueHead is indicated by traceProcessTime. If

issueHead was generated by a load instruction, the algorithm makes a read access to the L2

cache and then searches for the dependent trace items in rob-list. If issueHead was generated

by a store instruction, issueHead’s return time is set to sim time and a write access is issued

when issueHead is removed from rob-list; i.e., when it commits.
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1: if (trace item is a delayed hit) then
2: if (the selected MSHR can hold the current trace item) then
3: process the trace item
4: else
5: insert the trace item back in issue-list with a new ready time
6: end if
7: else
8: if (if there is a free MSHR) then
9: mark the trace item as the owner of the free MSHR and process the trace item
10: else
11: insert the trace item back in issue-list with a new ready time
12: end if
13: end if

Figure 35: The high-level pseudo-code for MSHR allocation. A trace item is determined a delayed
hit if there is an MSHR holding pending trace items with the same tag address (line 1).

4.3.3 Modeling various processor artifacts in In-N-Out

Modeling the L2 data prefetcher. Modeling the data prefetcher in L2 cache is straight-

forward. Since the trace items represent the L2 cache accesses, the prefetcher monitors the

L2 cache accesses from the trace items and generates a prefetch request to the memory

as necessary. Other than adding a model for the data prefetcher, no additional changes are

needed in the trace simulation algorithm besides creating the interface between the simulator

and the data prefetcher model.

Modeling L2 MSHRs. This dissertation assumes that an L2 MSHR can hold the L2 cache

miss and the delayed hits to the same cache block. Since the number of outstanding L2 cache

misses is now limited by the available MSHRs in the processor, MSHRs are examined before

a cache access is issued, as described in Figure 35.

Modeling the instruction caching effect. To model the instruction caching effect, during

trace generation, trace items are generated on L1 instruction cache misses. The penalties

from instruction cache misses are accounted during trace simulation by stalling the simulation

when an instruction cache miss trace item is encountered and if there are no trace items to

process in the ROB, as shown in Figure 36. In “Update ROB” function, the algorithm stops
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updating rob-list if it fetches a trace item generated from an instruction cache miss. The

L2 cache is accessed with the instruction cache miss trace item, and the returned latency is

accumulated (icache miss delay). New trace items are fetched from a trace file only when

icache miss delay is 0. The experiments reveal that with this simple strategy In-N-Out can

accurately predict the increased clock cycles due to instruction cache misses.

Modeling the branch prediction. To account for the effect of branch prediction, a branch

predictor is used in the trace generator. The penalty caused by branch mispredictions

are modeled during trace generation as described in Section 4.2.3. Hence, a trace item’s

tg dispatch time collected during trace generation would be larger with a branch predictor

in the trace generator, compared to tg dispatch time collected without a branch predictor

in the trace generator. During trace simulation, the algorithm exploits tg dispatch time of

a trace item and the dependency between trace items created by branch mispredictions.

86



1: /* icache miss delay: the accumulated L2 cache access latencies from instruction cache miss
trace items. */

2: while (1) do
3: sim time++;
4: if (icache miss delay) then
5: icache miss delay−−;
6: end if
7: if (sim time >= rob head commit time) then
8: if (robHead == NULL) then
9: if (icache miss delay == 0) then
10: Update ROB();
11: end if
12: else
13: Commit Trace Items();
14: if (icache miss delay == 0) then
15: Update ROB();
16: end if
17: update rob head commit time for the new robHead
18: end if
19: end if
20: if (sim time == trace process time) then
21: Process Trace Items();
22: end if
23: if (no more trace items left in the trace file) then
24: break; /* END OF TRACE SIMULATION */
25: end if
26: end while

Figure 36: The high-level pseudo-code of the trace simulation algorithm incorporating the in-
struction caching effect.
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4.4 EXPERIMENTAL SETUP

Two different machine models are used in experiments, “baseline” and “realistic.” Table 6

lists the baseline and realistic configurations, which resembles the Intel Core 2 Duo pro-

cessor [17]. The baseline model assumes perfect branch prediction and instruction caching,

infinite MSHRs, and no data prefetching. The realistic model uses realistic branch predic-

tion and instruction caching, and also incorporates L2 data prefetching and L2 MSHRs.

For L2 data prefetching, a tagged prefetch [69], a sequential prefetching technique, and a

stream-based prefetching [71] technique are implemented.

The baseline and realistic machine configurations are simulated with two simulators:

sim-outorder [2] and the In-N-Out trace-driven simulator (“In-N-Out”). For comparison,

sim-outorder is extended with L2 data prefetching and L2 MSHRs. In-N-Out implements

the algorithm described in Section 4.3. To drive In-N-Out a trace generator is needed. This

dissertation adapts sim-cache, a functional cache simulator [2], for trace generation. To

simulate the impact of branch mispredictions on program execution time, a branch-predictor

model is added in the trace generator.

All benchmarks from the SPEC2K suite are used in the following experiments. For each

simulation, the initialization phase of the target program [68] is skipped, then caches are

warmed up for 100M instructions. The next 1B instructions are simulated after warming up

the caches.

To evaluate In-N-Out, CPI error and relative CPI change are used as the main metrics.

The evaluation metrics and their definitions are described in Section 3.4.5.

4.5 EVALUATION RESULT

4.5.1 Accuracy of In-N-Out

This section comprehensively evaluates In-N-Out. First, the accuracy of In-N-Out using the

baseline and realistic configurations is presented, followed by the evaluation of In-N-Out in
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Figure 37: (a) The CPI errors of In-N-Out with the baseline configuration. (b) The relative CPI
changes shown by sim-outorder when there are no FU conflicts.

terms of its uncore access behavior.

• In-N-Out with the Baseline configuration. In-N-Out is first evaluated with the

baseline configuration. Figure 37(a) shows the CPI errors of the 26 SPEC2K benchmarks

using the baseline configuration. The CPI errors range from −18% (apsi) to 0% (gzip) with

an average of 6.4%. There are two main sources of error in In-N-Out. The first source of error

is created by not modeling the penalties caused by the conflicts on functional units (FUs).

FU conflict occurs if the number of operations accessing the same type of FU is larger than

the number of available FUs in a given cycle. As a result, In-N-Out shows large CPI errors

for the benchmarks that are sensitive to the number of FUs in the processor. Figure 37(b)

shows the relative CPI change observed by sim-outorder when there are no FU conflicts.

Benchmarks that show a relatively large CPI change, such as gcc, perl, vortex, eon, and

apsi, also show a large CPI error. The second source of error is created by not modeling

the effect of the instruction scheduling policy on program execution time. In-N-Out can be

taken as a processor model that has no limit on the number of instructions it can can issue
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Different ROB sizes

size 32 64 128 256

Avg. CPI error 4.1% 5.8% 7.3% 8.6%

Different L1 data cache sizes

size 8KB 16KB 64KB

Avg. CPI error 6.1% 6.4% 6.6%

Different dispatch-width (commit-width)

width 2 8

Avg. CPI error 12.4% 8.5%

Table 15: The accuracy of In-N-Out with different processor core configurations.

per cycle, whereas sim-outorder schedules instructions according to a certain instruction

scheduling policy due to the limited number of instructions it can issue per cycle. twolf

is not sensitive to FU conflicts but it shows a relatively large CPI error (−10%), because

in sim-outorder, the scheduling of memory instructions are frequently deferred by other

instructions, but In-N-Out does not show such delays caused by the instruction scheduling

policy.

Similar to PDCM, In-N-Out is robust to the variation in processor’s inherent parameters.

Different ROB size, L1 data cache size, and the processor’s dispatch-width are used to study

the sensitivity of In-N-Out. Table 15 summarizes the studied results. The results show that

the accuracy of In-N-Out improves when smaller ROB is used. This is because smaller ROB

reduces the amount of instruction-level parallelism (ILP), which reduces the number of FU

conflicts. Accordingly, the accuracy of In-N-Out degrades when larger ROB is used, because

the number of FU conflicts increases. The accuracy of In-N-Out slightly improves when a

smaller data cache is used during trace generation. With smaller data cache, more trace

items are generated during trace generation. In trace simulation, having more trace items

help analyzing the ROB occupancy status, which helps improving the accuracy of In-N-Out.

Finally, the processor’s dispatch-width is used to examine the robustness of In-N-Out. In the

experiments, the processor’s commit-width was identical the processor’s dispatch-width. In

sim-outorder, the processor’s issue-width was also same as the processor’s dispatch-width.
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As the processor’s dispatch-width was changed from 4 to 2 and 8, more FU conflicts were

observed from the benchmarks. Consequently, the accuracy of In-N-Out degraded as the

processor’s dispatch-width was changed from 4 to 2 and 8.

• Effect of instruction caching in In-N-Out. To model the effect of instruction caching

in In-N-Out, trace items are generated from data and instruction cache misses during trace

generation. For this experiment, a 32KB instruction cache, described in the realistic config-

uration 6, is employed in the baseline configuration.

The results show that incorporating the instruction caching artifact in In-N-Out does not

affect the accuracy of In-N-Out. Similar to PDCM, only 7 benchmarks (out of 26), including

gcc, crafty, parser, perl, vortex, eon, and apsi, showed a relative CPI change larger than 0%.

The relative CPI difference of the 7 benchmarks was 1.1% on average and the largest relative

CPI change was shown by perl from both sim-outorder (14%) and In-N-Out (12%). The

CPI error using all 26 SPEC2K benchmarks was 6.5% on average. The results show that

incorporating the instruction caching artifact in In-N-Out does not affect the accuracy of

In-N-Out.

• Effect of branch prediction in In-N-Out. To examine how In-N-Out performs with a

realistic branch predictor, a combined branch predictor (bimodal and gshare), described in

Table 6, is incorporated in the baseline configuration. sim-outorder is configured with the

identical branch predictor.

Figure 38 compares the CPI errors before and after incorporating a realistic branch

predictor to the baseline configuration. The results show that incorporating the branch pre-

diction artifact in In-N-Out does not largely affect the accuracy of In-N-Out, except for

gzip and eon. gzip shows a CPI error close to 0% with the baseline configuration, however,

when a branch predictor is added to the baseline configuration, gzip shows a large CPI error

(−20%). The large CPI error of gzip was created by the large difference in branch mispredic-

tion counts between sim-outorder and the abstract timing model used to generate traces

for In-N-Out. Since the abstract timing model is implemented on sim-cache, a functional

cache simulator, the branch predictor is updated right after a branch prediction is simulated.

However, in sim-outorder, the branch prediction occurs in the instruction fetch stage and

then the branch predictor was updated in the instruction commit stage. The branch predic-
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Figure 38: The CPI errors before (base) and after (base + real branch predictor) incorporating a
realistic branch predictor in In-N-Out.

tion results of gzip and eon are affected by the difference in time when sim-outorder and

sim-cache update the branch predictor. If the branch predictor is updated in the instruction

dispatch stage in sim-outorder, the CPI error of gzip becomes −4%.

To evaluate how In-N-Out performs with regard to L2 data prefetching and L2 MSHRs,

a relative metric is used to compare the CPI with and without these artifacts. To explore a

large design space in early design stages, it is less critical to obtain very accurate (absolute)

performance results of a target machine configuration. The performance model should rather

quickly provide the performance change directions and amounts to correctly expose trade-offs

among different configurations.

• Effect of L2 data prefetching in In-N-Out. Figure 39(a) and (b) compare the relative

CPI change reported by sim-outorder and In-N-Out, when an L2 tagged prefetcher and

an L2 stream prefetcher are added in the baseline configuration, respectively. The results

show that In-N-Out can accurately model the effect of L2 data prefetching. When an L2

tagged prefetcher is employed, the two largest beneficiaries were swim and mgrid as shown

by both sim-outorder and In-N-Out. When an L2 stream prefetcher is employed, the

largest beneficiary was fma3d as shown by both sim-outorder and In-N-Out. Overall,

In-N-Out closely follows the performance trend revealed by sim-outorder. The relative

CPI differences of the relative CPI changes with the L2 tagged prefetcher and the L2 stream

prefetcher were 1.2% and 1.8% on average, respectively. The CPI errors with the L2 tagged
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Figure 39: The relative CPI changes when different prefetching techniques are used, compared
with no prefetching, in In-N-Out. For stream prefetching, the prefetcher’s prefetch distance is 64
and the prefetch degree is 4, and 32 different streams are tracked in the prefetcher.

prefetcher and the L2 stream prefetcher in the baseline configuration were 6.9% and 7.5%

on average, respectively.

• Effect of limited L2 MSHRs in In-N-Out. Figure 40 compares the relative CPI

changes obtained with In-N-Out and sim-outorder, when limited number of L2 MSHRs is

applied to the baseline configuration. Since the number of outstanding L2 cache misses is

limited by the number of L2 MSHRs, the CPI increases with fewer MSHRs. The results show

that In-N-Out can closely follow the relative CPI change of sim-outorder. As discussed

in Section 3.4.6.1, fma3d is particularly sensitive to the number of MSHRs. In-N-Out was

able to reproduce this unique behavior of fma3d. The largest relative CPI change was shown

by fma3d with 4 MSHRs—316% and 333% with sim-outorder and In-N-Out, respectively.

The average relative CPI difference of the relative CPI changes shown in Figure 40 was

1.7%. The average CPI errors after incorporating 4, 8, and 16 L2 MSHRs in the baseline

configuration were 6.0%, 6.1%, and 6.2%. Finally, the accuracy of In-N-Out is reported

below when the realistic instruction cache, realistic branch predictor, L2 MSHRs, and L2
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Figure 41: The CPI errors of the SPEC2K benchmarks using the realistic configuration in
In-N-Out.

data prefetcher are added to the baseline configuration.

• In-N-Out with the realistic configuration.: The CPI error with the realistic config-

uration is presented in Figure 41. Comparing Figure 37 and Figure 41, the results show

that In-N-Out maintains the average CPI error of the baseline configuration even when

the realistic configuration is used. In-N-Out is also evaluated with a series of CPI errors

measured over the program execution. The program execution is divided by an interval of

1M instructions. In each interval, CPIs are measured using sim-outorder and In-N-Out to
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Benchmark Avg. Min. Max. Benchmark Avg. Min. Max.

mcf 0.8% 0.0% 2.3% art 8.0% 0.3% 17.9%
gzip 26.1% 15.2% 38.5% galgel 4.2% 0.3% 30.1%
vpr 6.6% 0.0% 22.5% equake 10.7% 0.3% 18.4%
twolf 13.5% 12.6% 14.4% swim 2.7% 5.1% 0.8%
gcc 23.8% 0.1% 33.4% ammp 6.7% 2.7% 11.1%

crafty 18.0% 13.5% 21.7% applu 10.7% 1.2% 18.0%
parser 11.0% 0.1% 66.9% lucas 5.6% 0.0% 14.5%
bzip2 8.2% 0.3% 22.9% mgrid 1.8% 0.3% 18.5%
perl 21.7% 20.0% 23.5% apsi 17.4% 1.6% 34.0%

vortex 17.8% 11.1% 20.0% fma3d 10.7% 6.3.% 16.4%
gap 18.8% 0.8% 26.4% facerec 1.6% 0.0% 3.7%
eon 28.3% 21.2% 32.8% wupwise 8.6% 0.9% 14.3%

mesa 10.6% 0.3% 12.7%
sixtrack 15.5% 14.9% 15.2%

Table 16: The average, minimum, and maximum CPI errors of In-N-Out observed throughout a
program execution using the realistic configuration.

compute the CPI error of In-N-Out. Table 16 shows the average, minimum, and maximum

CPI errors of In-N-Out that were observed from 1,000 intervals using the entire SPEC2K

benchmarks.

Similar to PDCM, the results show that there are benchmarks that show a large CPI

error at some point during program execution. However, both In-N-Out and sim-outorder

showed a very similar CPI trend while simulating 1B instructions. Figure 42 presents an

example using parser, which showed the largest CPI error in an interval (66.9%) among all

SPEC2K benchmarks. The 66.9% CPI error was observed in interval 535, where the CPI

measured by sim-outorder was 0.75 and the CPI measured by In-N-Out was 1.25. Overall,

the experiment results show that In-N-Out can closely follow changes in CPI over program

execution shown by sim-outorder. Some benchmarks experience relatively large CPI errors

from In-N-Out during trace simulation, however, it does not affect the overall trend.
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Figure 42: The CPI change of parser shown by sim-outorder and In-N-Out while simulating
1B instructions (1,000 intervals). Two separate figures are shown because it is difficult to observe
the result due to the overlapped lines drawn from sim-outorder and In-N-Out.
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4.5.2 Impact of uncore components

Until now, the evaluation of In-N-Out has focused on comparing the CPI of sim-outorder

and In-N-Out by measuring the CPI error or the relative CPI change. In this subsection

two important questions about how well In-N-Out captures the interaction of a processor

core and its uncore components are addressed: (1) Does In-N-Out faithfully reproduce

how a processor core exercises uncore resources? and (2) Can In-N-Out correctly reflect

changes in the uncore resource parameters in the measured performance? These questions

are especially relevant when validating the proposed In-N-Out approach in the context of

multicore simulation; the shared uncore resources in a multicore processor are subject to

contention as they are exercised and present variable latencies to the processor cores.

To explore the first question, for each benchmark, histograms of the distance (in cycles)

between two consecutive off-chip accesses (from L2 cache misses, writebacks from L2 cache, or

L2 data prefetching) are built over the program execution with sim-outorder and In-N-Out.

The intuition is that if In-N-Out preserves the off-chip access patterns of sim-outorder, the

two histograms should be similar. To track the temporal changes in a program, the program

execution is first divided into intervals of 100M instructions and a histogram is generated

for each interval. Each bin in a histogram represents a specific range of distances between

two consecutive off-chip accesses. The value in a bin represents the frequency of distances

that fall into the corresponding range. Since In-N-Out does not issue speculative off-chip

accesses, in sim-outorder, only the distances between consecutive non-speculative off-chip

accesses are collected.

To compare sim-outorder and In-N-Out with a single number, the Similarity metric

introduced in Section 3.4.6.2 is used to evaluate In-N-Out.

Similarity =

∑n
i=0MIN(bin sooi, bin ioi)∑n

i=0 bin sooi

where i is the bin index and bin sooi and bin ioi are the frequency value in ith bin collected by

sim-outorder and In-N-Out, respectively. The MIN(bin sooi, bin ioi) returns the common

population between sim-outorder and In-N-Out in ith bin. High similarity value implies

In-N-Out’s ability to preserve the memory access pattern of sim-outorder. If the similarity

is 1, it suggests that the frequency of the collected distances between off-chip accesses in
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the two simulators is identical. Table 17 presents the computed average Similarity over 10

intervals for all SPEC2K benchmarks, except twolf. All 25 examined benchmarks showed

90% or higher similarity. The Similarity metric was not applicable for twolf, because twolf

did not have two consecutive off-chip accesses in an interval. sim-outorder showed only 2

off-chip accesses and In-N-Out showed 5 off-chip accesses while simulating twolf. In-N-Out

issued all 5 off-chip accesses in the first interval (0 − 100M simulated instructions), however,

sim-outorder showed one off-chip access in the first interval and the other off-chip access

in the second interval (100M − 200M simulated instructions).

Figure 43 depicts the histograms of an interval of the benchmarks that show the lowest

(fma3d) and highest (mesa) similarity for clear presentation. Only one interval of a bench-

mark is shown because most intervals of a benchmark show similar off-chip access patterns.

mesa shows that sim-outorder and In-N-Out agree well on the off-chip access behavior,

while fma3d shows that sim-outorder and In-N-Out disagree somewhat on the frequency

of the distances between close off-chip accesses. In fma3d, some very short intervals (“0–12”)

have shifted into the next, longer interval range (“13–24”). Overall, both plots show that

In-N-Out preserves the temporal off-chip access patterns of the programs fairly well.

To address the second question, the relative CPI changes obtained with sim-outorder

and In-N-Out are compared when five important uncore parameters are changed. Changing

an uncore parameter makes the memory access latencies seen by the processor core differ-

ent. The relative CPI differences are reported for all SPEC2K benchmarks across five new

configurations in Table 18. An element in the table is the relative CPI difference between

sim-outorder and In-N-Out. For example, when 2MB L2 cache is changed to 1MB L2

cache, twolf experiences a relative CPI change of 76% with sim-outorder and 85% with

In-N-Out. The relative CPI difference of the two is 10% (rounded off), which is shown in

the fifth row (twolf) and second column (Conf. 1) in Table 18. Note that the performance

change directions predicted by sim-outorder and In-N-Out always agreed. The largest

relative CPI difference was shown by gcc when the L2 cache size was reduced from 2MB

to 1MB. The relative CPI change was 77% with sim-outorder and 91% with In-N-Out.

Overall, the relative CPI differences were very small—the arithmetic mean of the relative

CPI difference was under 2% for all five new configurations.
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Figure 43: The histogram of collected distances between two consecutive memory accesses in
sim-outorder and In-N-Out when executing mesa and fma3d. The x-axis represents the bins used
to collect the distances and the y-axis represents the frequency of the collected distances in an
interval of the program execution. The bin size is 12 cycles. Only one interval is shown as it is
representative.

Similarity Benchmark (similarity)

< 95% fma3d, mgrid (90%), vortex (92%), equake (93%)

applu, facerec, swim, wupwise (94%)

gcc (95%), art, gzip (96%)

≥ 95% ammp, crafty, parser, vpr (97%)

apsi, eon, galgel, lucas, perl (98%)

bzip2, gap, mcf, sixtrack (99%), mesa (100%)

Table 17: The similarity in memory access patterns between sim-outorder and In-N-Out (shown
in percentage).
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Benchmark Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5

mcf 1% 1% 0% 0% 0%
gzip 0% 0% 0% 0% 0%
vpr 0% 0% 0% 0% 1%
twolf 10% 0% 0% 0% 4%
gcc 14% 1% 3% 3% 1%

crafty 0% 0% 0% 0% 0%
parser 1% 1% 1% 1% 4%
bzip2 2% 1% 0% 0% 2%
perl 0% 0% 0% 0% 1%

vortex 0% 0% 1% 1% 0%
gap 0% 0% 2% 2% 1%
eon 0% 0% 0% 0% 0%

art 9% 6% 2% 2% 3%
galgel 0% 0% 0% 0% 1%
equake 0% 0% 2% 2% 1%
swim 0% 0% 1% 1% 0%
ammp 3% 0% 0% 0% 3%
applu 0% 0% 1% 2% 0%
lucas 0% 0% 1% 1% 0%
mgrid 0% 0% 5% 3% 0%
apsi 0% 0% 1% 1% 0%
fma3d 0% 0% 1% 2% 0%
facerec 3% 6% 0% 0% 1%
wupwise 0% 0% 1% 1% 0%
mesa 0% 0% 0% 0% 0%

sixtrack 0% 0% 0% 0% 0%

Avg. Error 1.7% 0.6% 0.9% 0.9% 1.0%

Table 18: The relative CPI differences between sim-outorder and In-N-Out. The five configu-
rations are identical to the realistic configuration (Table 6) except a single parameter. In Config-
uration 1 (Conf. 1) and 2 (Conf. 2), the L2 cache is 1MB and 4MB instead of 2MB (“smaller L2
cache” and “larger L2 cache”). In Configuration 3 (Conf. 3) and 4 (Conf. 4), the memory latency
is 100 cycles and 300 cycles instead of 200 cycles (“faster memory” and “slower memory”). In
Configuration 5 (Conf. 5), the L2 hit latency is 20 cycles instead of 12 cycles (“slower L2 cache”).
The performance change directions observed from the two simulators were identical.
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Figure 44: The relationship between the simulation speed and trace file size in In-N-Out.

4.5.3 Simulation speed and storage requirement

The biggest advantage of using In-N-Out over sim-outorder is its very fast simulation speed.

The absolute simulation speed of In-N-Out and speedups over sim-outorder are measured

with the realistic configuration on a 2.26GHz Xeon-based Linux box with an 8GB main

memory. Similar to PDCM, In-N-Out’s absolute simulation speed depends on the number of

trace items to process as shown in Figure 44. The observed absolute simulation speeds range

from 5 MIPS (mcf) to 434 MIPS (eon) and their average is 89 MIPS (geometric mean).

The observed simulation speedups range from 15× (art) to 494× (eon) and their average

(geometric mean) is 102×. Note that this is the actual simulation speedup without including

the time spent for fast-forwarding in sim-outorder.

In-N-Out’s absolute trace generation speed, using the realistic configuration, ranges from

1371 KIPS (mcf) to 1881 KIPS (sixtrack) and their average was 1709 KIPS (geometric

mean). The trace generation speedups achieved with In-N-Out over PDCM using the realistic

configuration range from 1.56× (lucas) to 3.97× (gap). The average (geometric mean) trace

generation speedup was 2.26× on average.

A single trace item with In-N-Out was 24B, and the actual trace file size of the SPEC2K

benchmarks was 24 (sixtrack) to 4,845 (mcf) in bytes per 1,000 simulated instructions. The

trace file size can be further reduced by compressing the trace file when it is not used.
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Note that trace file size reductions of over 70% are not uncommon when using well known

compression tools like gzip.

4.6 SUMMARY

This chapter introduced In-N-Out, a novel trace-driven simulation strategy to evaluate

out-of-order superscalar processor performance with reduced in-order traces. This chapter

demonstrated that In-N-Out achieves reasonable accuracy in terms of absolute performance

estimation, and more importantly, it can accurately predict the relative performance change

when the uncore parameters such as L2 cache configuration are changed. In-N-Out can

easily incorporate important processor artifacts such as data prefetching and MSHRs, and

track the relative performance change caused by those artifacts. Compared with a detailed

execution-driven simulation, In-N-Out achieves an absolute simulation speed of 89 MIPS on

average (geometric mean) when running the SPEC2K benchmarks. This chapter concludes

that In-N-Out provides a very practical and versatile framework for superscalar processor

performance evaluation.
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5.0 COMPARING PDCM AND IN-N-OUT

In Section 3 and 4, trace-driven simulation methods were introduced to model superscalar

processor performance using reduced traces. In this section, the two signature simulation

methods proposed in this dissertation, PDCM and In-N-Out, are compared.

First of all, both PDCM and In-N-Out use reduced trace, which only captures the uncore

accesses. In terms of simulation accuracy, PDCM achieves higher accuracy than In-N-Out by

exploiting the timing information collected during trace generation. To collect the timing

information, PDCM employs a cycle-accurate timing simulator to generate reduced traces. On

the other hand, In-N-Out cannot capture the correct timing information because it generates

reduced traces using an abstract timing model based on a functional simulator or a binary

instrumentation tool. However, In-N-Out can still provide reasonably accurate simulation

results based on the abstract timing information and the dependency information between

trace items. The reduced trace in PDCM may have speculated trace items generated from

the mispredicted execution path of a program. On the other hand, the reduced trace in

In-N-Out does not have any speculated trace items.

In this section, the evaluation results of PDCM and In-N-Out are first compared. Then, the

result of a case study is reported to show how well PDCM and In-N-Out respond to different

uncore configurations. Lastly, the limitations of PDCM and In-N-Out are discussed.

5.1 COMPARING THE ACCURACY

The absolute CPI error shows the amount of difference between the CPIs measured from

sim-outorder and PDCM and In-N-Out. The machine configurations and the observed ab-
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Metric Configuration PDCM In-N-Out

S1 CPI err. baseline configuration
(base cfg.)

1.9% (−6% ∼ 5%) 6.4% (−18% ∼ 0%)

S2 CPI err. base cfg. & 8KB d-cache 2.5% (−6% ∼ 6%) 6.1% (−17% ∼ 0%)
S3 CPI err. base cfg. & 16KB d-cache 2.1% (−6% ∼ 5%) 6.4% (−19% ∼ 0%)
S4 CPI err. base cfg. & 64KB d-cache 1.8% (−5% ∼ 5%) 6.6% (−17% ∼ 0%)
S5 CPI err. base cfg. & 2 disp-width 2.2% (−14% ∼ 7%) 12.4% (−24% ∼ −2%)
S6 CPI err. base cfg. & 8 disp-width 2.1% (−6% ∼ 7%) 8.5% (−29% ∼ 1%)
S7 CPI err. base cfg. & 32-ROB 1.5% (−13% ∼ 4%) 4.1% (−11% ∼ 0%)
S8 CPI err. base cfg. & 64-ROB 1.9% (−17% ∼ 3%) 5.8% (−17% ∼ 0%)
S9 CPI err. base cfg. & 128-ROB 2.3% (−11% ∼ 3%) 7.3% (−21% ∼ 0%)
S10 CPI err. base cfg. & 256-ROB 2.8% (−10% ∼ 9%) 8.6% (−24% ∼ 0%)
S11 CPI err. base cfg. & 32KB i-cache 1.8% (−6% ∼ 5%) 6.5% (−17% ∼ 0%)
S12 CPI err. base cfg. & branch pred. 1.8% (−5% ∼ 4%) 8.4% (−24% ∼ 1%)
S13 CPI err. realistic configuration 1.6% (−7% ∼ 7%) 8.3% (−24% ∼ 1%)

Table 19: Absolute CPI errors of PDCM and In-N-Out using different machine configurations.

solute CPI errors are presented in Table 19. The absolute CPI errors with the baseline

configuration using PDCM and In-N-Out are 1.9% and 6.4% on average, respectively (S1).

PDCM achieves high simulation accuracy, regardless of the processor core configuration, by

exploiting the timing information recorded in the trace items. On the other hand, In-N-Out

relies on abstract timing information, which causes larger CPI error than PDCM. In-N-Out

achieves smaller CPI error for the programs that show regular memory access patterns, such

as the floating point benchmarks in the SPEC2K benchmark suite, and shows larger CPI

error for the programs that produce irregular memory access patterns with frequent branch

predictions, such as the integer benchmarks in the SPEC2K benchmark suite. In-N-Out also

shows larger CPI error for the benchmarks that experience frequent FU conflicts or frequent

delays on issuing certain instructions due to the instruction scheduling policy. To examine

the robustness of PDCM and In-N-Out to the variation in processor’s inherent parameters,

different L1 data cache sizes, instruction dispatch-width, and ROB sizes were used in the

experiments.

The number of generated trace items increases when smaller L1 data cache is assumed

during trace generation (S2 ∼ S4). In PDCM, the absolute CPI error tends to increase if
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the number of trace items increases because a timing error may occur when trace items are

inserted in the ROB during trace simulation. On the other hand, in In-N-Out, the absolute

CPI error tends to decrease if the number of trace items increases because more trace items

help analyzing the ROB occupancy status more accurately during trace simulation.

The correlation between the processor’s dispatch-width and the accuracy of PDCM and

In-N-Out was not clear (S5 and S6). PDCM maintained small CPI errors regardless of the

processor’s dispatch-width. However, In-N-Out showed larger CPI error (on average) when

the processor’s dispatch-width was set to 2 and 8 instead of 4, because the integer benchmarks

experienced more FU conflicts when the dispatch-width was changed from 4 to 2 and 8 in the

baseline configuration. In the experiments, the number of FUs in the baseline configuration

was changed accordingly when the processor’s dispatch-width was changed. The ROB size

determines the amount of instruction-level parallelism (ILP) a program can extract from the

processor (S7 ∼ S10). Higher ILP is typically achieved with larger ROB in the processor,

and lower ILP is shown with smaller ROB. The amount of ILP has an effect on the number

of FU conflicts a program can experience, which affects the absolute accuracy of In-N-Out.

With smaller ROB size, the processor limits the instruction-level parallelism, which reduces

the number of FU conflicts. Hence, In-N-Out achieves smaller CPI error with smaller ROB

size, but shows larger CPI error with larger ROB size. In PDCM, a timing error may occur

when the trace simulation algorithm determines the time to insert a pending trace item in

the ROB, especially when the distance between the last trace item in the ROB and the last

instruction in the ROB is large. With smaller ROB, we observed that the trace items tend

to fill up the ROB more frequently, which reduces the chances of introducing errors during

trace simulation.

The branch prediction and instruction caching did not have a large affect on the CPI

errors for both PDCM and In-N-Out (S11 and S12). However, there were a few benchmarks

(gzip and eon) that showed large CPI errors in In-N-Out when a realistic branch predictor

was incorporated in the baseline configuration. The branch prediction results of gzip and

eon were affected by the difference in time when the branch predictor was updated in the

abstract timing model, the trace generator used in In-N-Out, and sim-outorder.

Finally, the absolute CPI errors of the SPEC2K benchmarks between PDCM and In-N-Out
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are compared using the realistic configuration (S13). The realistic configuration combines

the baseline configuration and the important processor artifacts, such as branch prediction,

instruction caching, L2 data prefetching, and L2 MSHRs. When the realistic configuration is

used, the accuracy of PDCM and In-N-Out depend on how accurately the processor artifacts

are modeled in PDCM and In-N-Out. For instance, in In-N-Out, the CPI error of gzip is

0% when the baseline configuration is employed. However, the CPI error of gzip is −20%

when the realistic configuration is used, which is caused by the errors from the branch

mispredictions during trace generation.

Both PDCM and In-N-Out can accurately predict the relative performance change when

uncore configurations are changed. The experiment results show that PDCM and In-N-Out

closely follow the relative CPI changes predicted by sim-outorder. We note that the most

sensitive benchmarks observed from sim-outorder, PDCM, and In-N-Out to the changes on

uncore configurations were identical.

To explore whether PDCM and In-N-Out change how a processor core exercises the un-

core resources, for each SPEC2K benchmark, the distances between two consecutive off-chip

accesses were measured using PDCM, In-N-Out, and sim-outorder. A metric called “Sim-

ilarity” was introduced to show how well PDCM and In-N-Out can reproduce the off-chip

access patterns shown by sim-outorder. Overall, the experiment results showed that PDCM

and In-N-Out show over 90% similarity on off-chip access patterns for most of the SPEC2K

benchmarks.

5.2 CASE STUDY

The evaluation results presented in Section 3.4.6 and 4.5 strongly suggest that PDCM and

In-N-Out offer adequate performance prediction accuracy for studies comparing different

machine configurations. Moreover, the two simulators (PDCM and In-N-Out) were shown to

successfully reproduce a superscalar processor’s dynamic uncore access behavior. To further

show the effectiveness of the two simulators, a case study is designed and conducted which

involves L2 MSHRs, an L2 stream prefetcher, L2 cache associativity, L2 cache sizes, and a
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simple DRAM model. For this study, five different sets of programs are selected for each

experiment. Each set has the eight most sensitive programs to the studied parameter.

When the number of MSHRs increases, the CPI decreases because more memory accesses

can be outstanding simultaneously. The two simulators and sim-outorder reported the

largest decrease in CPI when the number of MSHRs increased from 4 to 8 as shown in

Figure 45(a). The CPI becomes stable when more MSHRs are provided. The close CPI

change shown by the two simulators is a result of a good reproduction of the temporal

memory access behavior of sim-outorder.

Figure 45(b) shows that when the L2 cache associativity is increased, the two simulators

and sim-outorder reported the largest decrease in CPI when the L2 cache associativity

changed from 1-way to 2-way associativity.

In a stream prefetcher, the larger (smaller) prefetch distance and prefetch degree makes

the prefetcher more aggressive (conservative) when making prefetching decisions [71]. In

general, the CPI increases if the prefetcher becomes more conservative. Figure 45(c) shows

that the performance change predictions from the two simulators were less accurate when

the stream prefetcher’s configuration is changed, compared with the performance change

predictions made using other uncore parameters. However, the results show that the two

simulators can still be used to decide the configuration of the stream prefetcher. All three

simulators reported the largest CPI increase when the prefetch distance and degree were

changed from (16, 2) to (8, 1). All three simulators showed that the lowest and highest CPIs

were observed when the stream prefetcher’s prefetch distance and degree were set to (4, 1) and

(64, 4), respectively. Different stream prefetcher configuration or different set-associativities

have an effect on CPI by changing the number of cache misses during simulation. The close

CPI trend, observed using sim-outorder and the two simulators, shows that our simulation

methods can correctly follow how the core responds to different uncore access latencies (e.g.,

cache misses).

Figure 45(d) shows that when the L2 cache size is increased, the two simulators and

sim-outorder reported the largest decrease in CPI when the L2 cache size was increased

from 4MB to 8MB.

Lastly, instead of using a constant main memory access latency, in Figure 45(e), the two
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simulators are evaluated with various main memory access latencies using a simple DRAM

model. A DRAM model that has 16 banks (8 banks x 2 ranks) with 16KB row size and

an open-page policy were assumed for sim-outorder, PDCM, and In-N-Out. In the results,

the three simulators show a linear increase in CPI when the page hit and miss latencies are

increased linearly.

The results shown in the case study suggest that both PDCM and In-N-Out can be ef-

fectively used in the place of sim-outorder to study the relatively fine-grain configuration

changes. Note that the performance change trend shown by PDCM was extremely close to

sim-outorder.
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Figure 45: Comparing the trend in performance (average CPI) change of the superscalar processor
between sim-outorder and PDCM and In-N-Out. The effects of L2 cache configuration and main
memory access latency on performance are studied using the three simulators. The following
changes have been made on the realistic configuration: (a) 5 different MSHRs: 4, 8, 12, 16, and 20
MSHRs. (b) 5 different L2 cache associativities: 1, 2, 4, 8, and 16. (c) 5 different stream prefetcher
configurations (prefetch distance, prefetch degree). (d) 5 different L2 cache sizes: 512KB, 1MB,
2MB, 4MB, and 8MB. (e) 5 different DRAM model configurations (page hit latency, page miss
latency). For each study, the top eight benchmarks that showed the largest performance change
amount when observed with sim-outorder are used.
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5.3 LIMITATIONS OF PDCM AND IN-N-OUT

Finally, the limitations of the PDCM and In-N-Out are discussed below.

• PDCM requires a detailed cycle-accurate simulator that models the target processor to

generate timing-aware reduced traces. In-N-Out uses an abstract timing model imple-

mented on top of a functional simulator or a binary instrumentation tool to make the

trace generation process easier and faster than PDCM. However, In-N-Out does not provide

as highly accurate simulation results as PDCM.

• PDCM and In-N-Out require an initial simulation to generate traces. PDCM is not practical

when running a simulation one time only because it uses a detailed cycle-accurate sim-

ulator to generate traces. On the other hand, In-N-Out can still be practical to run a

one-time simulation, because it is based on a functional simulator or a binary instrumen-

tation tool to quickly generate traces. Note that the trace generation time is amortized

as the generated traces are reused for different uncore configurations.

• The reduced traces have to be regenerated if a core parameter is changed. In this

research, both PDCM and In-N-Out focus only on assessing the impact of uncore events

on program execution time and assume that a superscalar processor core’s parameters

are fixed during a series of uncore experiments.
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6.0 CONCLUSIONS

This dissertation presented practical trace-driven simulation methods that can quickly model

the performance of superscalar processors using reduced traces. Conventional simulation

methods for superscalar processors, such as execution-driven simulation and trace-driven

simulation with full instruction traces, provide accurate simulation results. However, they

are slow and storing a full instruction trace requires a large storage space. Compared with

the conventional approaches, the presented methods achieve faster simulation speed while

creating only a small error and use smaller disk space.

In this dissertation, two trace-driven superscalar processor simulation methods, pairwise

dependent cache miss model (PDCM) and In-N-Out, are mainly discussed. The dissertation

described how one can model the superscalar processor performance using reduced traces

when the focus of study is on assessing the impact of uncore events, such as L1 cache misses,

on program execution time. In PDCM and In-N-Out, important processor information is

recorded in the reduced traces during trace generation, and then the recorded information

is exploited during trace simulation to model superscalar processor performance.

The following contributions are made to the field of performance modeling in computer

architecture.

• The dissertation proposed practical trace-driven simulation methods to quickly and ac-

curately model a realistic superscalar processor performance. Unlike the conventional

simulation methods for superscalar processors, the proposed methods use reduced traces

and abstract a superscalar processor core’s dynamic behavior to achieve fast simulation

speed.

• The dissertation presented pairwise dependent cache miss model (PDCM), which enables
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highly accurate trace simulation of superscalar processors using timing-aware reduced

traces. The traces are generated from a cycle-accurate simulator. PDCM achieves an

absolute simulation speed of 48 MIPS on average (geometric mean) while giving suffi-

ciently small errors across benchmarks (less than 3% on average), when compared with

a detailed execution-driven simulation method. The simulation speedup achieved by

PDCM over a detailed execution-driven simulator was 55× on average.

• The dissertation presented In-N-Out, which achieves accurate trace simulation of super-

scalar processors using reduced inorder traces. The traces are generated from an abstract

timing model implemented on top of a functional simulator or a binary instrumentation

tool. Compared with PDCM, the trace generation and trace simulation is simpler and

faster, however, the trace simulation results are less accurate. In-N-Out achieves an ab-

solute simulation speed of 89 MIPS on average (geometric mean) while giving reasonably

small errors across benchmarks (less than 7% on average), when compared with a detailed

execution-driven simulation method. The simulation speedup achieved by In-N-Out over

a detailed execution-driven simulator was 102× on average.

• Both PDCM and In-N-Out accurately predict the relative performance change using

different uncore configurations. The performance change direction is always predicted

correctly and the performance change amount is predicted with small errors. Moreover,

both PDCM and In-N-Out are capable of faithfully replaying how a superscalar processor

exercises and is affected by the uncore components.

Since this research uses a reduced trace-based simulation approach, there are a few limi-

tations on the presented work. The limitations and the assumptions made in this dissertation

are summarized below.

• The proposed trace-driven simulation methods focus only on assessing the impact of

uncore events, such as L1 cache misses, on program execution time. Hence, they cannot

be used for processor core simulation.

• Because the proposed methods require an initial simulation to generate traces, they are

not practical when running a simulation one time only. However, the trace generation

time will be amortized as the generated traces are reused.
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• The reduced traces have to be regenerated if one or more processor core parameters are

changed. However, the focus of this research is on assessing the impact of uncore events,

such as misses on on-chip caches, on program execution time. Hence, it was assumed that

a superscalar processor core’s parameters are fixed during a series of uncore experiments.

Nevertheless, the presented simulation methods are attractive in the early processor

design stages due to their fast simulation speed. Finally, I conclude that the two main

simulation methods, PDCM and In-N-Out, presented in this dissertation provide a very

practical and versatile framework for fast superscalar processor performance evaluation.
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7.0 FUTURE RESEARCH DIRECTION

This thesis opens a new area on a simulation methodology research. The study demonstrates

that trace-driven simulation with reduced trace is a promising approach. There are sill many

interesting research topics that can be considered as the possible future work.

7.1 TRACE-DRIVEN SIMULATION FOR MULTI-CORE PROCESSORS

As current and future processor research is centered on multicore architectures, the impor-

tance of studying uncore components such as shared L2 cache, on-chip network, and memory

controller, will continue to grow. However, modeling the performance of complex multicore

systems with detailed cycle-accurate simulation is extremely time consuming. The situation

is aggravated as large core counts are expected in future multicore systems. However, existing

multicore simulators for superscalar processors [8, 51, 63] are not scalable to support large

core counts. Moreover, they do not have sufficient simulation speed to conduct numerous

studies in the early design stages. Given that the importance of simulation productivity will

only grow with multicore scaling, multicore simulators must be faster and more scalable than

today. I believe that PDCM and In-N-Out are the essential first step for developing a very

fast and scalable multicore simulator that can model the performance of systems with many

superscalar processor cores. In-N-Out uses a simpler and faster trace generation approach

than PDCM, hence, I expect to have a novel and efficient multicore simulation environment

for many superscalar processor cores by extending the In-N-Out framework. Tracing algo-

rithm is required to collect traces from multithreaded programs, such as PARSEC [7] and

SPLASH-2 [78].
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Figure 46: (a) A tile-based multicore system with 16 superscalar processor cores. (b) Each tile
has a superscalar processor core (depicted in Figure 3), L2 cache slice, directory, and a router.

7.1.1 Multicore system model

The target multicore system for future research is a tile-based homogeneous chip multipro-

cessor (CMP) with a 2D mesh interconnection network. Figure 46(a) depicts an example of

having 16 superscalar processors and Figure 46(b) shows the superscalar processor core and

uncore components in each tile. L2 cache and directory are physically distributed in each

tile. For future research, let us assume the multicore system model employs private L2 cache

organization because private cache is expected to achieve better performance than shared

cache in manycore processors [41]. Both L1 and L2 cache are write-back and write-allocate

cache. Invalidation-based MESI protocol is assumed to maintain cache coherence.

7.1.2 Goals

There are two primary goals for the multicore simulator: fast simulation speed and high

scalability.

• The primary goal is to achieve fast simulation speed for multicore simulations in the

early design stages. By abstracting the superscalar processor cores in the system and
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focusing only on the uncore events, I expect to reduce a significant amount of simulation

time overhead.

• Simulator’s memory space usage is an important aspect when scaling the simulator to

support hundreds of cores. The framework consumes a small and constant memory

space during simulation regardless of the workload, whereas existing execution-driven

simulations do not. Efficient usage of memory space is why such framework is appealing

for highly scalable multicore simulator, when hundreds of core counts is considered.

7.1.3 Evaluation methods

Much previous performance modeling works, including simulation and analytical modeling,

were validated by comparing the estimated performance of the proposed model to an existing

simulator. Making comparison with a real hardware is not practical in many occasions, hence,

the reference simulator is assumed to be the golden model for comparison. Comparing the

proposed multicore simulator with other state-of-the-art multicore simulators will definitely

be a plus, however, it is difficult to make such comparison because of the following reasons.

First, to the best of my knowledge, there is no multicore simulator that can simulate hundreds

of superscalar processor cores. Second, even if such simulator exits, it is difficult to modify

the simulator to make close comparisons with the simulation results. Hence, I plan to instead

devise case studies to test the simulator’s capability. The case studies will focus on evaluating

the relative performance change, and measuring the off-chip bandwidth and the contention

on shared resources such as L2 cache and memory controller.
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