
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2002

Software and hardware methods for memory access latency Software and hardware methods for memory access latency

reduction on ILP processors reduction on ILP processors

Zhao Zhang
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Zhao, "Software and hardware methods for memory access latency reduction on ILP processors"
(2002). Dissertations, Theses, and Masters Projects. Paper 1539623407.
https://dx.doi.org/doi:10.21220/s2-97q8-0748

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623407&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-97q8-0748
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software and Hardware Methods for Memory Access Latency

Reduction on ILP Processors

A Dissertation

Presented to

The Faculty of the Department of Computer Science

The College of William k Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Doctor of Philosophy

by

Zhao Zhang

2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL SHEET

This dissertation is subm itted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Zhao Zhang

Approved. June 2002

 V
Xiaodong Zhang

Thesis Advisor

William Bynum |

Phil Kearns

Evgenia Srnirni

^ ^^ A n ^ reas StathopouldfT'

^2
- 31m -

M a rk H in d ers
D epartm ent of Applied Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments ix

Abstract xi

1 Introduction 2

1.1 Overview of Existing S tu d ie s ... 3

1.2 Our C o n tr ib u tio n s .. 7

1.3 Organization of the Dissertation .. 11

2 Background o f Memory System Performance 12

2.1 Cache M e m o rie s ... 14

2.2 DRAM Technology.. 16

2.2.1 DRAM Architecture and O p e ra tio n s .. 16

2.2.2 Comparison of DRAM and S R A M ... 19

2.2.3 DRAM Access Request and DRAM O p era tio n s 19

2.2.4 DRAM V a r ia n ts .. 21

2.2.5 Memory Access S ch e d u lin g ... 23

2.3 Dynamically Scheduled Superscalar P ro c e s s o rs .. 26

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Evaluation Methodology: An Experimental Approach 29

3.1 Architectural S im u la tio n s .. 30

3.2 SimpleScalar Tool S e t .. 32

3.3 Our SimpleScalar E x te n s io n s ... 34

3.4 SPEC and TPC-C B enchm arks... 37

3.4.1 SPEC CPU95 B enchm ark .. 37

3.4.2 SPEC CPU2000 B enchm ark ... 37

3.4.3 TPC-C Benchm ark.. 40

4 Fast Bit-Reversals on Uniprocessors and Shared-Memory Multiproces­

sors 41

4.1 Blocking for B it-rev e rsa ls .. 46

4.2 Blocking with Buffers .. 47

4.2.1 Blocking W ith a Software Buffer and Its L im its 47

4.2.2 Cache Structure Dependent Blocking... 48

4.2.3 Victim-cache-aided Blocking ... 51

4.3 Blocking with P ad d in g .. 52

4.4 Blocking and Padding for a T L B .. 55

4.4.1 Blocking for a Fully Associative T L B .. 55

4.4.2 Padding for a Set-associative T L B .. 56

4.5 Experimental Results and Performance E v a lu a tio n ... 58

4.5.1 Experimental Environment and Evaluation M ethodology.................. 58

4.5.2 Effects of TLB and V irtual M e m o ry .. 60

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.3 Performance of the Hybrid Method for B it-re v e rsa ls 63

4.5.4 Performance Comparisons on the SGI 0 2 .. 63

4.5.5 Performance Comparisons on the Sun U ltra -5 65

4.5.6 Performance Comparisons on the Sun E-450 .. 65

4.5.7 Performance Comparisons on the Pentium-II 400 67

4.5.8 Performance Comparisons on the Compaq XP-1000 68

4.6 Performance Evaluation on SMP M ultiprocessors... 69

4.6.1 Performance Comparisons on the Sun E-450 ... 70

4.6.2 Performance Comparisons on the HP 9000 V2200 73

4.7 S u m m a ry .. 74

5 Reduce DR A M Row-buffer Conflicts by Breaking Address M apping Sym­

metry 76

5.1 Existing Address Mapping Schem es... 78

5.2 Mapping Symmetry and Row Buffer C onflicts.. 79

5.2.1 Large-cache Condition in Computer S y s te m s .. 81

5.2.2 Effect of Cache W rite b a c k s .. 81

5.2.3 The Effect of Cache Conflict Misses .. 83

5.3 A Permutation-based Page In te r le a v in g ... 84

5.3.1 The Scheme and Its P ro p e r tie s ... 84

5.3.2 Comparisons with the Swapping Schem e... 88

5.4 Experimental Environment ... 89

5.5 Performance Evaluation of Permutation-based Page Interleaving Scheme . . 90

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1 Reductions of Row-buffer Miss R a te s ... 91

5.5.2 Effects of Memory Organization V a r ia t io n s .. 93

5.5.3 Effects of Write B u ffe rs .. 94

5.5.4 Overall Performance Im p ro v em en t.. 96

5.6 Breaking Mapping Symmetry a t Cache L e v e l ... 98

5.6.1 Bitwise-XOR and Polynomial Mapping ... 98

5.6.2 Reduction of Miss R a te s .. 99

5.6.3 Comparisons of Overall P erform ance... 102

5.6.4 Tradeoffs between Cache Mapping Schemes and DRAM Interleaving

S chem es... 103

5.7 Considerations of Large Cumulative Row Buffer Sizes 104

5.8 O ther Related W o r k .. 106

5.9 Conclusion .. 109

6 Cached DRAM : A Simple and Effective Technique for M emory Access

Latency Reduction on ILP Processors 111

6.1 Structure and Operations of Cached D R A M .. 114

6.2 Experimental Environment ... 118

6.3 Comparisons of Overall Perform ance... 120

6.3.1 On-memory Cache O rganizations.. 121

6.3.2 Performance Improvement of Cached DRAM over S D R A M 122

6.3.3 Performance Comparisons of Cached DRAM and Other DRAM Ar­

chitectures 124

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Cached DRAM with Increasing ILP D e g re e .. 126

6.5 Comparisons with Approaches Exploiting Row Buffer Locality 128

6.6 S u m m a ry .. 130

7 Fine-grain Priority Scheduling on M ulti-channel Memory System s 131

7.1 Memory System C onsiderations... 135

7.1.1 Multi-channel Memory S ystem s.. 135

7.1.2 DRAM Mapping Scheme .. 136

7.2 Fine-grain Priority Scheduling.. 138

7.2.1 Granularity of S cheduling .. 138

7.2.2 Scheduling Po lic ies ... 139

7.3 Complexity A n a ly s is .. 141

7.3.1 Complexity inside Processor... 141

7.3.2 Complexity in Memory Controller ... 142

7.4 Experimental Environment ... 144

7.5 Experimental R esults.. 145

7.5.1 Burstiness in Miss S t r e a m s ... 145

7.5.2 Potentials of Fine-grain Priority Scheduling... 146

7.5.3 Performance Improvement of Fine-grain Priority Scheduling.............. 151

7.6 Other Related W o r k .. 154

7.7 S u m m a ry ... 156

8 Constructing Large Size and Low Overhead Off-Chip Caches by Cached

D RAM 157

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1 The CDC D e s ig n ... 161

8.1.1 On-chip CDC Controller, Tag Cache, and P r e d ic to r 161

8.1.2 CDC-DRAM M apping .. 163

8.1.3 CDC-cache M apping ... 164

8.1.4 The P red ic to r.. 165

8.1.5 Write Policy .. 166

8.1.6 Cache Coherence in Multiprocessor E nvironm ent.................................. 166

8.2 Experimental Setup .. 167

8.3 Performance R e s u l t s .. 169

8.3.1 Performance of SR A M -L 3... 171

8.3.2 Comparisons between CDC-predict and S R A M -L 3 173

8.3.3 Comparisons of the CDC V a r ia n ts ... 174

8.4 S u m m a ry .. 175

9 Conclusions and Future Work 177

9.1 C onclusions.. 177

9.1.1 Memory Latency Bottleneck.. 177

9.1.2 Our Approaches and Their Effectiveness.. 179

9.2 Future Work .. 181

9.2.1 Effective Memory Access Scheduling for Future Processors................. 181

9.2.2 Improving the Performance of C D C .. 183

A The Bit-reversal Program Using the Padding M ethod 185

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 187

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

This dissertation is a result of not only many years of efforts, but also the training,

mentoring, educating, and support of many people. First of all, I would like to sincerely

acknowledge Dr. Xiaodong Zhang, my advisor, for his mentoring and support for these

five years. I am grateful for the numerous hours he have spent generously with me. which

he spared from his heavy duties of research, service, and teaching. I appreciate his hard

working and persistence, vast knowledge in many areas, and vision and determination to

build up an excellent research team.

The Department of Computer Science at the College of William and Mary is a wonderful

place for me to pursue my Doctoral degree. I would like to thank all faculty and staff in

this department for their help in these years. I would like to acknowledge Dr. William

Bynum, Dr. Phil Kearns, Dr. Evgenia Smirni. and Dr. Andreas Stathopoulos for serving

the dissertation committee. I would like to thank Dr. Mark Hinders from the Department

of Applied Science to take time from his busy schedule to serve as the external member

of the committee. Especially, I thank Dr. William Bynum for his reviewing many of my

manuscripts, and Dr. Evgenia Smirni and Dr. Bruce Lowekamp for their help in my career

development. Dr. Bob Collins talked with me frequently in my first year in this department,

obviously with the intention to help me in speaking English. I would also like to acknowledge

Vanessa Godwin for the great help she has offered to me in my graduate study.

I would like to thank the members of the High Performance Computing and Software

Lab, who have helped to create an environment full of stimulation. Dr. Yong Yan and Dr.

Xing Du were great help to me, not only when we worked together but also after they

have started their own careers. I would like to acknowledge Dr. Guangzhi Li. Zhichun Zhu,

Li Xiao, Stefan Kubricht, Songqing Chen, Xin Chen, and Song Jiang for those wonderful

discussions and arguments. W ith many of them I not only share the excitement of research,

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

but also enjoy a lot of fun as friends.

I would like to thank other graduate students in the departm ent, including Lei Guo.

Aaron Hawkins, Zvezdan Petkovic, Alma Riska, Wei Sun, and Qi Zhang, but not exclusively,

for those interdisciplinary discussions and for their friendship.

I would like to acknowledge Dr. Yiming Hu of the Department of Electrical & Computer

Engineering and Computer Science a t University of Cincinnati, and Dr. Hong Wang in Intel

Microprocessor Research Labs, for both their insightful comments on technical issues and

their kind help in my career development.

I would also like to acknowledge the funding agencies that provided funds and equipment

tha t supported my research: Sun Microsystems, for their donations of workstations and

servers, and the National Science Foundation and the Air Force Office of Scientific Research,

whose grants funded the majority of my graduate research.

I am deeply grateful to my parents, Guoxiang Zhang and Xiyin Warn, and my sisters,

Qing Zhang and Xi Zhang, and my brother-in-law. Bin Feng, all of whom have given me

the upbringing and education that allowed me to reach this point. A very special thanks

goes out to my mother, who started my education early by teaching me Chinese language,

arithmetic, and a little bit of English when I was only a few years old.

Most of all, I must acknowledge my wife, Zhichun Zhu, for her constant support, assis­

tance, and encouragement through these years. She helped me survive tough times, mean­

while she suffered through my all kinds of pressure, loss of direction, and rotten moods. I

could have never made it this far without her.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

While microprocessors have doubled their speed every 18 months, performance improve­
ment of memory systems has continued to lag behind. To address the speed gap between
CPU and memory, a standard multi-level caching organization has been built for fast data
accesses before the data have to be accessed in DRAM core. The existence of these caches
in a computer system, such as LI, L2, L3, and DRAM row buffers, does not mean tha t
da ta locality will be automatically exploited. The effective use of the memory hierarchy
mainly depends on how data are allocated and how memory accesses are scheduled. In
this dissertation, we propose several novel software and hardware techniques to effectively
exploit the da ta locality and to significantly reduce memory access latency.

We first presented a case study at the application level tha t reconstructs memory­
intensive programs by utilizing program-specific knowledge. The problem of bit-reversals.
a set of data reordering operations extensively used in scientific computing program such
as FFT, and an application with a special data access pattern that can cause severe cache
conflicts, is identified in this study. We have proposed several software methods, including
padding and blocking, to restructure the program to reduce those conflicts. Our methods
outperform existing ones on both uniprocessor and multiprocessor systems.

The access latency to DRAM core has become increasingly long relative to CPU speed,
causing memory accesses to be am execution bottleneck. In order to reduce the frequency of
DRAM core accesses to effectively shorten the overall memory access latency, we have con­
ducted three studies a t this level of memory hierarchy. F irst, motivated by our evaluation of
DRAM row buffer’s performance roles and our findings of the reasons of its access conflicts,
we propose a simple and effective memory interleaving scheme to reduce or even eliminate
row buffer conflicts. Second, we propose a fine-grain priority scheduling scheme to reorder
the sequence of data accesses on multi-channel memory systems, effectively exploiting the
available bus bandwidth and access concurrency. In the final part of the dissertation, we
first evaluate the design of cached DRAM and its organization alternatives associated with
ILP processors. We then propose a new memory hierarchy integration that uses cached
DRAM to construct a very large off-chip cache. We show th a t this structure outperforms a
standard memory system with an off-level L3 cache for memory-intensive applications.

Memory access latency has become a major performance bottleneck for memory-intensive
applications. As long as DRAM technology remains its most cost-effective position for
making main memory, the memory performance problem will continue to exist. The stud­
ies conducted in this dissertation attempt to address th is im portant issue. Our proposed
software and hardware schemes are effective and applicable, which can be directly used in
real-world memory system designs and implementations. Our studies also provide guid­
ance for application programmers to understand memory performance implications, and for
system architects to optimize memory hierarchies.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software and Hardware Methods for Memory Access Latency

Reduction on ILP Processors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The performance of processors has been doubling every 18 months as predicted by Moore’s

Law for decades. This fast improvement comes from the advances in circuit design, fab­

rication technology, and architectural innovations. However, the improvement of memory

systems has lagged far behind that rate. While the speed of high-end processors increases

by 60% per year, the speed of DRAM increases by only 7% per year [44|. In other words,

the speed gap between the CPU and the DRAM increases by more than 50% per year.

Currently, the time cost of a DRAM access is equivalent to that of executing hundreds

of instructions inside a processor. W ithout addressing the concern of the CPU-memory

gap, further improvement of processor performance will eventually vanish because of the

dominance of memory stall time.

Traditionally, this issue has been addressed by constructing a memory hierarchy, as

shown in Figure 1.1, where small and fast SRAM caches are at the top levels, and slow

and large DRAM memory is at the bottom level. When working effectively, the top-level

caches can serve most memory references, minimizing the number of accesses to the lower-

level DRAM memory. However, as the speed gap between the CPU and DRAM memory

continues to widen, even a small fraction of memory references falling into the DRAM

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 3

memory will make the memory stall times dominate in the total execution times of memory­

intensive applications.

DRAMMemoiy

Figure 1.1: A typical m em ory hierarchy in high-end w orkstations.

1.1 Overview of Existing Studies

Computer architecture research on memory hierarchy is focused on optimizing the hard­

ware organization of caches [101, 76], especially on LI instruction caches and LI data caches,

which satisfy more than 90 percent of memory references for most workloads. From com­

puter architecture point of view, the cache performance is determined by the cache miss

rates, cache access time, cache bandwidth, and miss penalty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 4

Increasing the cache size and using set-associative cache are effective methods to reduce

cache miss rates. However, they usually cause an increase of access time, which increases

either processor cycle time or pipeline length and delays the execution of all instructions.

Many studies have been done to achieve the best trade-off between reducing cache miss

rates and reducing cache access time. T he study in [47] investigates the use of simple, direct

mapped cache and the best balance between cache size and cache access time. New cache

organizations (e.g. [76]) have been proposed to achieve the fast access times of direct mapped

caches and the low cache miss rates of set associative caches, such as decoupled caches [103,

69, 98, 57, 77], multiple-access caches [2, 1, 123, 16, 78, 10], augmented caches [56. 87. 55],

and multilevel caches [106, 5, 6. 116, 80, 110].

As processors aggressively exploit instruction-level parallelism (ILP), cache bandwidth

becomes a serious limitation of processor performance. Issuing multiple instructions per

cycle, processors need to fetch multiple instructions and d a ta items per cycle. Wide in­

struction cache ports (outputting multiple consecutive instructions per access) and instruc­

tion buffers [41] exploit the spatial locality in the instruction fetch stream to increase cache

bandwidth. Trace cache [92, 52, 36, 12] uses branch prediction information to concatenate

non-contiguous instruction blocks separated by branch instructions into larger, contiguous

blocks. In this way, more than one basic block (contiguous instructions without a branch)

can be fetched in one cycle. Accesses to a data cache are less regular than those to an

instruction cache. Thus, different techniques are needed to increase the bandwidth of data

caches. D ata caches with two interleaved banks [9, 120] allow two simultaneous accesses as

long as they fail into different banks. A duplicating da ta cache [30] has two caches with

identical contents, doubling the bandwidth with the cost of double-sized chip area. An­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 5

other approach is phase-pipeline access [66], with which the cache outputs data on both

clock edges. Although this technique saves chip area, the cache has to be as twice fast as

the processor. As complexity-effective alternatives, authors in [88] propose locality-based

interleaved cache that enhances the cache by adding a multi-ported single line buffer to each

cache bank, and authors in [20] propose to use separate caches for program data, heap, and

stack regions.

Software approaches, such as compiler ones, operating systems ones, and application-

level ones also play an im portant role in reducing cache miss rate. Compiler approaches

reduce cache miss rate by either improving program locality, optimizing data layout, or

exploiting the opportunity of software prefetching. There are two types of locality op­

timization techniques: program transformation and d a ta layout transformation. Program

transformation [64, 72] tries to determine the best sequence of memory references that max­

imizes the reuse of cached data. Data layout transformation [53, 111] performs packing,

padding, and aligning on data arrays and data structures to reduce data size and to avoid

cache conflicts. Compilers can also insert prefetch instructions into programs [17, 74] to

hide cache miss latency, effectively reducing cache miss rates. However, this approach is

normally restricted to loop-based program code because the compiler must precisely predict

memory access patterns.

Operating systems approaches reduce cache conflict misses by carefully mapping virtual

memory pages onto physical memory pages. A static page mapping policy [60], such as

page coloring, uses heuristics to select the mapping tha t is most likely to minimize cache

conflict misses. A dynamic page mapping policy [11] employs special hardware to detect

severe conflict miss conditions and dynamically changes the mapping of related pages to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

avoid the conflicts.

Application-level approaches improve cache locality or reduce cache conflict misses by

exploiting the knowledge of application memory access patterns as well as the knowledge

of the architecture on which the application is running. As in compiler approaches, the

program access pattern or the data layout or both are reconstructed. Unlike compiler ap­

proaches, it is the application programmers who can make the changes because only the

programmers, not the compilers, have the global knowledge about the interaction between

the program and the underlying architecture. For example, a run-time method has been

proposed in [119] to optimize the cache locality of a set of programs with dynamic memory

access patterns running on shared-memory multiprocessors. Reconstructing the execution

of programs into small computation threads and using a bin-space-based task partitioning

method to assign those threads onto computing nodes, this method maximizes the reuse of

cached data and achieves load balance among computing nodes. In this dissertation (Chap­

ter 4), we also present a study of cache-optimal methods for bit-reversals, an application

with severe cache conflicts on typical cache organizations. One method we propose is to re­

construct the layout of data arrays by inserting small padding spaces such that concurrently

accessed data will not conflict in the cache.

Although numerous studies have been done to improve the effectiveness of memory

hierarchy and many of the proposed cache techniques have been implemented, memory

stall time will continue to increase due to the ever increasing CPU-memory speed gap. For

applications with large working sets and irregular access patterns, the cache misses due to

limited cache capacity can not be eliminated. For those applications, even if the cache miss

rate is reduced to the minimum level, the memory stall time due to DRAM accesses can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 7

easily dominate in the total execution time because of the very long DRAM access latency

(relative to processor speed). For example, if a program has 0.5 misses per 100 instructions

executed, and the cost of a DRAM access is equivalent to executing 200 instructions, (a

2GHz 2-way issue processor can execute up to two instructions in 0.5ns, while a typical

DRAM access will take 50ns.) the memory stall time can be up to one half of the total

execution time of the program.

1.2 Our Contributions

We have started our memory system study at the application level to reconstruct memory­

intensive programs by utilizing program-specific knowledge. The problem of bit-reversals.

a set of d a ta reordering operations extensively used in scientific computing programs, such

as FFT, is identified for such a study. This application has a special data access pat­

tern [58] tha t can cause severe cache conflicts. In this study, we examine different methods

using techniques of blocking, buffering, and padding for efficient implementations of bit-

reversals. We evaluate the merits and limits of each technique and their applications and

architecture-dependent conditions for developing cache-optimal methods. Besides testing

the methods on different uniprocessors, we conducted both simulation and measurements

on two commercial SMP multiprocessors to provide architectural insights into the methods

and their implementations. We made two contributions in this study: (1) Our integrated

blocking methods, which match cache associativity and TLB cache size and which fully use

the available registers, are cache-optimal and fast. (2) We show tha t our padding methods

outperform other software oriented methods, and believe they are the fastest in terms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 8

minimizing both CPU and memory access cycles. Since the padding methods are almost

independent of hardware, they could be widely used on many uniprocessor workstations

and multiprocessors.

The main focus of this dissertation is on DRAM memory. The access latency to DRAM

core has become increasingly long relatively to the CPU speed, causing DRAM accesses

to be the performance bottleneck of many workloads. In order to exploit the potential

of DRAM organizations to effectively shorten the overall memory access latency, we have

conducted three studies at this level of the memory hierarchy. First, we investigate the

potential of exploiting DRAM row buffer locality [124]. Each access to DRAM core must

go through the row buffer, which has a shorter access latency than the DRAM core. DRAM

row-buffer conflicts occur when a sequence of requests on different rows fall onto the same

memory bank, causing a much higher memory access latency than requests to the same

row or to different banks. We analyze the sources of row-buffer conflicts in the context

of dynamically scheduled superscalar processors, and propose a permutation-based page

interleaving scheme to reduce row-buffer conflicts and to exploit data access locality in the

row buffer. Compared with several existing schemes, we show that the permutation-based

scheme dramatically increases hit rates in DRAM row buffers and reduces memory stall

time of SPEC2000 benchmark programs.

Second, we proposed a fine-grain priority scheduling scheme for recent multi-channel

DRAM memory systems [126]. Configurations of contemporary DRAM memory systems

become increasingly complex. A recent study shows that application performance is highly

sensitive to DRAM memory configuration, and suggests that tuning burst sizes and channel

configurations be an effective way to optimize the DRAM performance for a given memory­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 9

intensive workload [24]. However, this approach is workload dependent. In this study, we

show that by utilizing fine-grain priority access scheduling, we are able to find a workload

independent configuration that achieves optimal performance on a multi-channel memory

system. Our approach can veil utilize the available high concurrency and high bandwidth

on such memory systems, and can effectively reduce memory stall time.

In the final part of the dissertation, we first evaluate the performance of cached DRAM

and its design alternatives in the context of ILP processors [124]. Then we propose a new

memory hierarchy organization th a t uses cached DRAM to construct a very large off-chip

cache. We show that this off-chip cache outperforms an off-chip SRAM cache in a standard

memory system for memory-intensive applications.

Cached DRAM is an existing technology that integrates a small cache into DRAM chip.

By exploiting the spatial locality of memory access streams missing from the L2 cache, a

cached DRAM can reduce the average DRAM access time. Previous studies have shown

that cached DRAM is effective in a relatively simple processor model with small or even

without data caches on the processor chip. Some recent studies have shown that this tech­

nique can be effective on modem ILP processors as well. Aiming a t further investigating

the ILP effects and comparing cached DRAM with other advanced DRAM organizations

and interleaving techniques, we present a study of the design and optimization of cached

DRAM in the context of processors with full ILP capabilities and large data caches. Con­

ducting experiments on execution-driven simulation, we have evaluated its performance

effectiveness using eight selected data-intensive SPECfp95 programs and TPC-C workload.

Our study provides three new findings: (1) cached DRAM is able to consistently show

its performance advantage as the ILP degree increases; (2) contemporary DRAM schemes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

such as SDRAM, Enhanced SDRAM, Rambus DRAM, and Direct Rambus DRAM, do

not exploit memory access locality of memory-intensive workloads as effectively as cached

DRAM does; and (3) compared with a highly effective permutation-based DRAM interleav­

ing technique, cached DRAM can still gain substantial performance improvement, because

its set-associative structure minimizes conflict misses in the on-memory caches.

Following the above study, we proposed a design th a t exploits the high density of cached

DRAM to construct large off-chip L3 caches. Large off-chip L3 caches are beneficial to

memory-intensive applications. However, there are two potential problems of using L3

caches: (1) The size of an SRAM cache is limited due to its low density and high cost, thus

the working sets of many memory-intensive applications cannot fit into it. (2) Since the L3

tag checking overhead is significant for a cache miss, performance of some memory-intensive

applications can be harmed by the existence of L3 cache due to increased memory access

latency. To address these two problems, we present a new memory hierarchy organization

tha t uses cached DRAM to construct a large size and low overhead off-chip cache. The high

density DRAM in the cached DRAM can hold large d a ta sets, while the small SRAM cache

exploits the spatial locality that appears in L2 miss streams to reduce the access latency.

A small on-chip tag cache is used to minimize the access overhead. Utilizing a prediction

technique, the hit/m iss status of an access to the cached DRAM can be accurately predicted,

further reducing the access latency.

Memory access latency of application programs has become a major performance bottle­

neck. As long as DRAM technology remains its most cost-effective position for making main

memory, the memory performance problem will continue to exist. The studies conducted

in this dissertation attem pt to address this im portant issue. The significance, potential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 11

impacts, and contributions of this dissertation are:

• Our performance studies on memory systems have provided insights into the effects

of application program interactions a t different levels of the memory hierarchy, and

provide motivation and guidance for application programmers to understand memory

performance implications, and for system architects to optimize the memory hierarchy

and its system organization.

• Our proposed software and hardware schemes are effective and applicable, which can

be directly used in the real-world memory system designs and implementations.

1.3 Organization of the D issertation

The rest of the dissertation is organized as follows. Chapter 2 presents the technical back­

ground of this dissertation. Chapter 3 presents the experimental performance evaluation

methodology. Chapter 4 describes and evaluates the memory-effective algorithms and im­

plementations of bit-reversals. Chapter 5 presents the permutation-based page interleaving

scheme and its evaluation. Chapter 6 presents the evaluation of cached DRAM organization.

Chapter 7 describes and evaluates the fine-grain priority access scheduling for multi-channel

memory system. Chapter 8 discusses the cached-DRAM cache techniques. Finally, Chap­

ter 9 concludes the dissertation and discusses the future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background of Memory System

Performance

An ideal memory is infinitely large and meanwhile allows instantaneous access to every word

stored in it. In practice, the access latency of a memory system increases with its capacity.

Although the speed of small memories is able to catch up the speed of processor, the speed

of large memories is many times slower due to technical limitations. To provide the illusion

of an ideal memory system to programmers, architects have built memory hierarchies that

contain fast, small memories at the top levels and large, slow memories a t the bottom

levels. A typical memory hierarchy in today’s high performance computers has two-level

on-chip caches that are integrated with the CPU, an optional off-chip cache, a DRAM

memory system, and hard disks, as shown in Figure 1.1. (In this dissertation, we focus on

applications that are memory-intensive but not I/O intensive, thus we do not consider the

performance related to disk I/O.)

The effectiveness of the memory hierarchy is based on the principle of program locality.

There are two types of locality: temporal locality and spatial locality. Assume a memory

word is accessed at a certain time during the execution of a program. The temporal locality

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 13

states tha t the memory word is likely to be accessed again in the near future, and the spatial

locality states that the neighbor words are likely to be accessed soon. Thus, the word in use

and its neighbor words should be stored a t the top levels of the memory hierarchy to reduce

the frequency of accessing slow memories. Both types of locality exist in the references

to the program code and those to the program data. Most programs have good temporal

locality and/or spatial locality so that the use of memory hierarchy can effectively hide the

long latency of the slow memories.

The performance of memory hierarchy is highly dependent on program behavior. For

programs that have small working sets, most memory references can be satisfied by the

on-chip caches. The performance of those programs is then determined by the performance

of the on-chip caches, whose access time is close to the processor cycle time. However, most

real-world programs have large working sets that cannot be held by the on-chip caches. For

those programs, on-chip caches can still filter out most memory references. However, as

the performance of the processor increases, the performance loss in the DRAM memories

increases dramatically.

The processor model has significant impacts on the design and optimization of caches and

DRAM memories. Contemporary superscalar processors have the features of multiple issue,

speculative execution, and non-blocking load to exploit ILP aggressively. The use of multiple

issue increases the number of instructions tha t the processor can execute every cycle, thus

increases the frequency of cache misses. Speculative execution and non-blocking load allows

multiple outstanding cache misses, providing the opportunity of exploiting memory access

concurrency.

The performance of a memory hierarchy can be measured by the increase of program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 14

execution time due to memory access latency1. The shorter the increase, the better the per­

formance of the memory hierarchy for the program. For simple processors, the performance

of a memory hierarchy can be estim ated by cache miss rates, cache hit latency, and cache

miss latency (See [44] and Chapter 5). For dynamically scheduling processors, however, the

insights of memory system performance must be discovered by detailed simulations. The

experimental methodology will be discussed in the next chapter.

The rest of the chapter is organized as follows. Section 2.1 introduces the design issues

and optimization of caches. Section 2.2 presents the details of DRAM technology. Finally.

Section 2.3 discusses the processor model used in this dissertation.

2.1 Cache M emories

A hardware cache buffers data contents tha t are likely to be accessed soon. A typical

cache is divided into blocks, each of which stores multiple words tha t are continuous in

the memory space. There are two common methods to map memory space onto the cache:

direct mapped and set associative. A direct mapped cache maps a memory block onto a

single location in the cache, while a set associative cache maps the block onto multiple

locations. The replacement policy decides which block in the cache will be replaced when a

cache miss happens. There is only one choice of replacement for direct mapped cache. For

set associative cache, the least-recently used (LRU) policy is commonly used.

Cache misses can be divided into three categories: compulsory, capacity, and conflict [44].

Compulsory misses axe those misses happening when data items are loaded into the cache

'W hen comparing the performance of different configurations for the same program, CPI (cycle per
instruction) is usually used as a substitute for execution time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 15

for the first time. Capacity misses are related to the limited capacity of cache. In other

words, the capacity misses would not happen if the cache were infinitely large. Conflict

misses happen when too many memory blocks are mapped onto some cache sets. Even if

the cache is large enough to held the data items, only a small part of the cache can be

effectively used, causing conflict misses.

For simple processors with a single level of cache, the performance of the cache is de­

termined by cache miss rate, cache hit time, and cache miss penalty. The cache miss rate

is the ratio of the number of cache misses to the number of memory references. Cache hit

time is measured as the number of processor cycles that are needed to fetch data from the

cache. Cache miss penalty is the time to fetch and access the data item from the lower

level memory. Reducing the miss rate, the hit time, or the miss penalty will improve cache

performance. High-performance superscalar processors require high-bandwidth instruction

cache, high-bandwidth da ta cache, and non-blocking cache because of their multiple issue

and dynamically scheduling features.

Increasing the cache capacity is an effective way to reduce the number of capacity misses.

However, the cache hit time increases logarithmically as the cache capacity increases, which

causes an increase of either the pipeline length or the processor cycle time. Thus, the best

balance between the speed and the capacity must be determined by careful performance

evaluations with realistic workloads [47]. As the transistor budget for building a cache in­

creases, two-level or three-level caches are built to exploit the additional transistors w ithout

increasing the hit time of the first-level cache [5. 6, 116, 110]. Furthermore, more caches

are integrated into the processor chip, which reduces the cache hit time effectively.

Increasing cache associativity is an effective method to reduce conflict misses. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 16

example, authors in [76] report th a t the miss rate of a direct mapped 16KB cache is about

50% higher than that of a four-way associative counterpart for a commercial workload.

However, a set associative cache needs more tag storage, and has a longer hit time because

its tag comparison is more complex. To address the long hit time, researchers have proposed

a number of multiple-access cache techniques [2, 1, 16, 123, 78, 10], which allow fast accesses

for most hits while avoiding the high miss rates of a direct mapped cache.

High-performance ILP processors run at a high frequency and issue multiple instructions

per cycle, presenting new challenges for cache designs. Architects employ new techniques

such as non-blocking cache, high-bandwidth design, and trace cache. W ith a non-blocking

cache [63, 35, 34], the processor can issue other instructions even when a cache miss causes

a load instruction to be suspended. MSHR [63] (Missing Status/information Holding Reg­

isters) is used to resume the execution of the load instruction when the missed d a ta returns.

A high-bandwidth data cache [30, 120, 66, 88, 20] can return more than one date item each

cycle so that the processor can execute two or more load instructions simultaneously. Trace

cache [92, 52, 36, 12] combines instruction cache with branch prediction unit to meet the

demand for high instruction fetch bandwidth.

2.2 DRAM Technology

2 .2 .1 D R A M A rch itecture an d O peration s

The basic structure of DRAM (Dynamic Random Access Memories) is an array of memory

cells, as shown in Figure 2.1. Each cell consists of one transistor and one capacitor. The

capacitor, called storage capacitor, stores one binary bit whose value is determined by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 17

Bit line

w Selection transistor

Storage capacitor

Memory cell

Column decoder /Column
address

Sense amplifier

Data I/O

Figure 2.1 : T he structure of a DRAM m em ory bank.

amount of charge carried by the capacitor. The transistor, called selection transistor, is used

to control the input and output of the binary bit. Millions of memory cells form an array,

attached to thousands of bit lines and word lines. Such a block, including its peripheral

circuits, forms a memory bank. To read a word from a memory bank, the row decoder first

activates a word line (a horizontal line in Figure 2.1) according to the row address. The

charges carried by the memory cells on the word line propagate on the bit lines (a vertical

line in Figure 2.1). The sense amplifier reads the signals on the bit lines and buffers the

binary values in its own storage structure. The sense simplifier is also called row buffer.

Then the column decoder selects a word in the row buffer according to the column address,

and outputs it to the external world. This step is called column access operation. Reading

a row of data to the row buffer is called row access operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 18

Reading contents from DRAM memory cells is destructive. When the charges of a row

of memory cells propagate on the bit lines, the capacitors in those cells lose the charges and

the information they represent. Thus, the da ta stored in the row buffer must be written

back into the memory cells after the row access. The process of writing data into memory

cells also consists of row access and column access. The row access is the same as that of

the read process. During the column access, a word stored in the row buffer is replaced by

the input data, then all data stored in the row buffer is written back to the memory cells.

After a column access, a precharge operation must be performed to the memory bank

before the next row access to the DRAM memory array can happen. The effect of precharge

is to raise the voltage of bit lines, which is necessary for the sense amplifier to read signals

from the memory cells.

The capacitors of the memory cells lose their charges gradually over time. Thus, a

memory bank must be refreshed periodically. The process of refresh is just to read the data

stored in a row of memory cells to the row buffer, and write the data back to the same

memory cells. This process is done row by row.

The DRAM memory cell structure, which has only one selector transistor and one

storage capacitor, is possibly the most compact structure allowed by current semiconductor

technology. Because of the compactness of its memory cells and its array organization.

DRAM memory has very high density and is relatively inexpensive. Unfortunately, those

properties also limit the improvement of DRAM access latency. For contemporary DRAM

memories, the precharge time is 20~30ns, and the row access time and the column access

time are around 20ns. For more details and discussions of DRAM memory technology,

interested readers may refer to [81, 59, 27].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 19

2 .2 .2 C om parison o f D R A M an d S R A M

Compared with SRAMs (Static Random Access Memories), DRAMs have four major tech­

nical limitations. First, the simple cell structure with one capacitor and one transistor

makes the row access latency longer than th a t of SRAMs, which use multiple transistors

to facilitate a cell. Second, performing “read” operations on the DRAM cells is destructive

to the original signals. The signals have to be written back to the selected memory cells.

In contrast, the signals in SRAM cells are restored by themselves after read operations.

Third, each DRAM cell must be refreshed periodically to charge the capacitor. In contrast.

SRAMs hold their data bits using flip-flop gate circuits, where the memory contents are

retained as long as the power is on. Finally, the DRAM memory array must be precharged

for the next memory access.

SRAMs are fast, but expensive due to their low density. DRAMs are relatively slow, but

have high density and low cost because of their one-transistor cell structure and other circuit

characteristics. DRAMs have been widely used to construct the main memory for most

computer systems. The only exception has been for some vector computer systems where

expensive SRAMs are used for the main memory. This is because high speed is the first

consideration for those vector computers. All contemporary workstations, multiprocessor

servers, and PCs use DRAMs to build the main memory modules, and only use SRAMs to

construct caches.

2 .2 .3 D R A M A ccess R equest and D R A M O perations

As discussed earlier, an access to a DRAM bank may involve three types of operations:

precharge, row access, and column access. Those operations are not performed in a fixed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 20

order, and some of them may not be necessary. The sequence of the operations to satisfy

an access request depends on the bank state and the address to be accessed. From the

viewpoint of scheduling, a memory bank can be in two states: active or idle [90]. When

a bank is active, its row buffer contains valid data. When a bank is idle, it is precharged

but the data in its row buffer is lost. Figure 2.2 shows how the bank state transits. We

summarize the relationship between the operations and the bank states as following:

• Precharge can be performed when the bank state is active. After a precharge, the

data in the row buffer is lost, but the next row access can be performed. The bank

state will be idle after the operation.

• Row access can be performed when the bank state is idle. After a row access, a row

of data is read from the memory cell array to the row buffer. The bank state will be

active after the operation.

• Column access can be performed when the bank state is active. For a read request,

a block of data is selected and read from the row buffer. For a write request, a block

of data is selected and written to the row buffer. Only the d a ta existing in the row

buffer can be read or written. The bank keeps in the active s ta te after the operation.

The sequence of operations tha t are necessary for an access request is dependent on the

bank state and the data address. If the bank is active and the data to be accessed is already

in the row buffer, only a column access is necessary. This type of access has the shortest

latency. If the bank is active but the data to be accessed is not in the row buffer, then

the sequence of operations is precharge, row access, and column access. This type of access

has the longest latency. If the bank is idle, the sequence is always row access and column

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 21

Row access

Active Column
access

Precharge

F ig u re 2 .2 : M em ory bank sta tes.

access. Notice tha t precharge does not need a data address so it can be performed before a

request arrives, and column access is always the last step for an access.

2 .2 .4 D R A M Variants

There are a number of DRAM variants developed to improve DRAM latency and data trans­

fer rate. Recent commercial examples include Synchronous DRAM (SDRAM). Enhanced

SDRAM. Rambus DRAM, and Direct Rambus DRAM.

Synchronous DRAM (SDRAM): The d a ta access operations of an SDRAM are syn­

chronized with the processor by an external clock. The SDRAM technology improves

upon the efficiency and the data transfer rate of DRAMs in three ways. First. SDRAM

supports burst mode data access which reads or writes continuously allocated data

blocks in the same row sequentially without idle intervals. The burst data access is

defined by the starting address and the data length. Some asynchronous DRAMs

also support burst mode data accesses, but require the memory controller to provide

the column address for each da ta block. The burst mode in SDRAM significantly

improves the data transfer rate. Second, the synchronous clock coordinates the pro­

cessor and the main memory better, reducing processor idle time. Finally, SDRAMs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 22

normally have two or four independent data banks, providing opportunity to overlap

concurrent data accesses.

E n h a n c e d S D R A M (E S D R A M): A small SRAM cache is integrated into the row buffer

of each SDRAM memory bank. If an access is a hit in the buffer, the access time

is equivalent to that of accessing the fast SRAM cache. The other advantage of

ESDRAM is its ability of overlapping memory precharging and refreshing operations

with cache accesses.

R a m b u s D R A M (R D R A M): A special high speed but narrow (one-byte wide) bus is

designed to bridge between the processor and multiple memory banks. This bus is

multiplexed for transferring address/command and data. Both edges of the bus clock

signal are used for data transfer to double the data transfer rate. The memory banks

in Rambus DRAM can be independently accessed, precharged, or refreshed to make

accesses to different banks in a pipelining mode. Currently, Rambus DRAMs support

eight or sixteen banks.

D ire c t R am b u s D R A M (D R D R A M): This is an advanced version of RDRAM which

provides a one-byte wide address bus and a two-byte wide data bus to connect a large

number of memory banks (16 or 32). The number of row buffers is roughly an half of

the number of memory banks, which makes each pair of adjacent banks share a row

buffer. The buffer sharing reduces the hardware cost.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 23

2 .2 .5 M em ory A ccess Schedu ling

Today most DRAMs have multiple independent banks, and each bank can be operated in­

dependently. For example, one memory bank can be read when another memory bank is in

precharge. Thus, contemporary DRAM memory systems can serve multiple accesses con­

currently. Scheduling those concurrent requests can make a big difference in performance.

Memory access scheduling can reduce access latency and improve bandwidth utilization

by re-arranging the order and issue time of DRAM operations for a group of concurrent

requests [75, 71, 48, 89, 90, 70].

Concurrent memory accesses can be classified into one of the following three categories:

1. Accesses to the same page in the same bank. These accesses not only fully exploit

the spatial data locality, but the corresponding operations can also be well pipelined.

Case 1 in Figure 2.3 shows the pipelined execution of three reads to the same page in

the same bank. Writes to the same page in the same bank can be well overlapped in

the same way. In both cases, the data bus is fully utilized during pipelined execution.

2. Accesses to different pages in different banks. Since the accesses can be done in

parallel, the operations can also be well pipelined. Case 2 in Figure 2.3 shows the

pipelined execution of three reads to different pages of different banks. Writes to

different pages in different banks can be well pipelined in the same way. In both

cases, the data bus is fully utilized during pipelined execution. Reads and writes can

also be overlapped, except there is a small bus turn-around gap between a write and

a following read.

3. Accesses to different pages in the same bank. These accesses not only have little data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 24

Cm * 2: tc m iw to different pages In different banks

access 1

access 2

access 3

mm sssapH
PlMtllfQI

Csss 3: accesses to different pages In the same bank

Figure 2.3: Pipelined executions o f three types of memory accesses. (T his figure only shows the
pipelining operations a t a conceptual level.)

locality to exploit, the corresponding operations are difficult to pipeline as well. Case 3

in Figure 2.3 shows the pipelined execution of three reads to three different pages in

the same bank. Precharge and row access are needed to initiate each access. The

precharge of an access can be overlapped with the d a ta transfer of another access.

However, the DRAM row access of a request cannot s ta rt until the access ahead of it

finishes. For each access in the pipelined execution, the idle time of the data bus can

be the sum of a row access and a column. Similarly, write accesses to different pages

in the same bank can not be effectively pipelined.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 25

The more independent banks in a memory system, the larger the potential that page

conflicts can be avoided (but a carefully designed memory address mapping is a necessity).

Normally a memory system consists of a number of DRAM chips. Each DRAM chip has four

or eight physically independent memory banks with current technique. The total number

of independent banks depends on the organization of memory system, the number of chips,

and the number of physical banks in a chip. Rambus DRAM systems tend to have more

independent banks than a conventional SDRAM systems. For example, a Rambus DRAM

system with 8 chips of 4 physical banks each have 32 independent banks. In comparison,

a SDRAM system with 128-bit bus, 8 chips with 16-bit data output and 4 physical banks

have only 4 banks; this is because the 8 chips must be operate together to supply 128-bit

data to the bus.

Another scheduling issue is to decide the time to precharge a bank when it has no

pending requests. There are two strategies: close page and open page. The close page

strategy begins the precharge immediately after the current column access finishes. The

next access to the bank will require a row activation and a column access. In contrast, the

open page strategy delays the precharge, hoping tha t the next access is a row buffer hit.

thus only the column access is needed. However, if the next access is a row buffer miss, all

three operations will be required. Which strategy wins depends strongly on the page hit

rate. If the hit rate is high, then the open page strategy is likely to reduce the memory

stall time2. The row buffers are like a cache with a small number of blocks with very large

cache size. It is well known that the performance of such a cache structure is comparable

2The memory stall time is not decided only by the hit rate, especially for dynamically scheduled proces­
sors. In the general trend, however, the memory stall tim e decreases as the hit rate increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 26

to large caches with small block size. There is a great potential to exploit this cache.

Recently, multi-channel memory systems have been used with high performance pro­

cessors that require high bandwidth DRAM memories. Each channel can be scheduled

independently. Direct Rambus DRAM is such a representative memory system. A Direct

Rambus DRAM system generally consists of multiple channels, where each channel provides

1.6 G B /s bandwidth. Each channel has its own row control bus, column control bus, and

two-byte wide data bus. The separation of row and column control buses eliminates the

contention in the address bus between row operations (precharges and row activations) and

column accesses. The bus clock rate is 400 MHz and the data is transferred on both edges of

the clock. The row and column addresses/commands and the data are transferred in pack­

ets, each taking four bus cycles. The minimal data packet length is 16 bytes. Each channel

can connect multiple devices (chips). Each device can have 32 banks and 33 half-page

row buffers (this may vary according to the configuration). Those banks may be operated

independently, which provides high concurrency at the bank level. The Intel Pentium 4

processor supports two channels, and the Compaq Alpha 21364 processor supports up to

eight channels.

2.3 Dynamically Scheduled Superscalar Processors

The processor model has significant impact on the design and optimization of memory

systems. The work in this dissertation is done in the context of dynamically scheduled

superscalar processors with the following features:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. BACKGROUND 27

• Dynamically scheduled [3]: The processor can issue (start the execution of) in­

structions out of program order. An instruction can be issued as long as previous

instructions that provide its inputs have finished, and the hardware resources for the

execution are available.

• M ultiple issue: Multiple instructions can be issued every processor cycle. If the

processor is capable of issuing n instructions per cycle, it is called an n -way proces­

sor. Most contemporary processors are from 2-way to 8-way. The actual number of

instruction issued per cycle may be less than n.

• Speculative execution: The processor may issue instructions speculatively to ex­

ploit more instruction-level parallelism before their dependencies are fully examined.

In case the speculation is wrong, the execution of the related instructions is nullified.

• N on-b lock ing load: The processor may not stall when a cache miss happens upon

the execution of a load instruction. The execution of the load instruction must be

suspended, but the processor can issue other instructions th a t are not dependent on

the load instruction.

One would think that dynamic scheduling combined with a non-blocking load can elim­

inate the processor stall due to memory accesses. In fact, the processor can tolerate only

the latency of L2 cache accesses. For a 2GHz processor, the latency of DRAM accesses is

around one hundred processor cycles, while the processor can tolerate a delay of about ten

cycles.

On the other hand, superscalar processors can reduce memory stall time from that of

simple processors as they increase the concurrency of DRAM accesses. A processor can issue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER 2. BACKGROUND 28

dozens of instructions before it stalls for a cache miss, and is likely to find more cache misses

during this period. This phenomena, called miss clustering, is widespread in the execution

of realistic benchmark programs. Then, with proper hardware support, the processor can

make multiple DRAM access requests to the DRAM memory system. An advanced DRAM

memory system can serve those requests in parallel, reducing the average latency of DRAM

accesses. Such an example has been shown in Figure 2.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Evaluation Methodology: An

Experimental Approach

We have extensively used architectural simulation and standard benchmarks to evaluate

our software methods and hardware designs. We conduct almost all experiments using Sim-

pleScalar [15], a set of simulation tools designed for program performance analysis and de­

tailed microarchitectural modeling. To evaluate our hardware designs, we have incorporated

new software modules in the simulator to simulate those hardware components. The only

exception is the study in C hapter 4, in which we use direct measurements and SimOS [91]

simulator to do performance evaluation. We have run SPEC95 [108] and SPEC2000 [45]

benchmark programs and TPC -C [112] workload in the simulation environment to evaluate

the performance of our designs.

This rest of this chapter is organized as follows. Section 3.1 discusses the background of

architectural simulations. Section 3.2 introduces the SimpleScalar tool set. Section 3.3

describes our extension to SimpleScalar. Finally, Section 3.4 introduces SPEC95 and

SPEC2000 benchmark programs and TPC-C workload.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 30

3.1 Architectural Simulations

Simulation is currently the predominant method for performance evaluation in computer

architecture research, complemented by direct measurement and analytical modeling. For

example, among 27 papers published in proceedings of the 29th International Symposium

on Computer Architecture (ISCA-29, 2002), 24 papers use simulators as the major tool of

performance evaluation. The authors come from both academia and computer industries

such as Intel, IBM, HP, and Sun. (In fact, those companies have their own teams developing

high-fidelity simulators to validate the design of their products.)

The use of simulation becomes popular as architects and researchers study advanced

techniques to exploit instruction-level parallelism. Using analytical modeling to evaluate

those techniques is extremely difficult, if not infeasible. The other alternative, direct mea­

surement, is not available until a prototype can be made. Thus, simulation has become

the only realistic choice in most cases. After years of development, today’s architectural

simulation has the following merits:

• Simulation of native ISA (Instruction Set Architecture): The simulators can emu­

late the execution of native binary codes (compiled on a real machines) without any

alternation, and produce exactly the same results as on the real machine.

• Cycle-by-cycle accuracy: Detailed simulators model the status of processor compo­

nents, including registers, instruction fetch with branch prediction, scheduling logic,

functional units, L1/L2 caches, and memory. The status changes of those components

are accurate cycle by cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 31

• Modular design: A good simulation program consists of well designed modules. Ar­

chitects and researchers, as users of the simulation program, can easily change existing

modules or incorporate new modules to test and validate their ideas.

The three most popular collections of architectural simulation software are:

• SimpleScalar [15]: SimpleScalar is a tool set of simulation that contains several sim­

ulators providing different simulation detail levels. It was originally developed in the

Computer Sciences Department at the University of Wisconsin-Madison. Now Sim­

pleScalar can emulate four ISAs: Alpha, PISA, ARM, and x86. SimpleScalar is widely

used in academia and industry and for both research and instruction. Section 3.2 de­

scribes SimpleScalar in more detail.

• SimOS [91]: SimOS is developed in the Department of Computer Science a t Stanford

University. It is a complete machine simulation environment for both uniprocessors,

shared-memory multiprocessors, and a network of uniprocessors or multiprocessors.

It models the MIPS R4000 and R10000 and allows the IRIX 5.3 OS to run on the top

of the simulator. An extension of SimOS models the Digital Alpha processor families

and supports Digital Unix OS.

• RSIM [50]: RSIM (Rice Simulator for ILP Multiprocessor) is an architectural simu­

lator for shared-memory multiprocessors based on dynamically scheduled processors.

It was developed at the Department of Electrical and Computer Engineering a t Rice

University.

Developers of those software tools have made the source code open and granted licenses

to academic users free of charge. Nowadays, those tools have been widely used as simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 32

infrastructures on which researchers are able to make their own extensions. Proprietary

simulation software has also been developed in industry, but those programs are normally

not available for academic users.

Although architectural simulation is powerful, it has several limitations. First, the speed

of high-fidelity simulation is much lower than that of real machines. The simulation slow­

down, i.e., the time to finish the execution of a program on a simulator vs. that on a real

machine, ranges from 3000 to 10000 for uniprocessor simulation. This fact limits the vari­

ety of workloads and the number of configurations that can be investigated, and incurs a

high computation cost for running simulations. Second, the development and maintenance

of high-performance simulation infrastructures have become very expensive, requiring ex­

tensive human and equipment support. Finally, validating simulation is a daunting task.

Because of its complexity, identifying errors in simulation software is extremely difficult.

Simulation developers did make efforts to validate simulation infrastructures against real

machines [39. 28]. However, the results were not available until years after those simulation

tools had been extensively used.

3.2 SimpleScalar Tool Set

The SimpleScalar tool set [15] is a suite of processor simulation tools containing both de­

tailed and high-performance simulations. Ported to multiple instruction sets including Al­

pha, PISA (Portable Instruction Set Architecture), ARM, and x86. SimpleScalar has pro­

vided a powerful simulation infrastructure for both academic and industry users. Many ex­

tensions have been made to SimpleScalar, including value prediction, trace cache, multipro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 33

Commit

F ig u re 3 .1 : Processor pipeline in SimpleScalar. (from [15], reproduced w ith permission.)

cessor. and multithreaded processor. According to news on http://www.simplescalar.com/.

the SimpleScalar web site, SimpleScalar is used by more than two out of five papers pub­

lished in the 34th International Symposium on Microarchitecture (2001), more than one

third of the papers in the 8th International Symposium on High-Performance Computer

Architecture (2002), and more than one half of the papers in the 29th Annual International

Symposium on Computer Architecture (2002).

We have used the sim-outorder program in the SimpleScalar tool set to obtain most

performance results reported in this dissertation. Sim-outorder simulates the full detail of

a dynamically scheduling processor. It is a cycle-driven simulation: the simulator tracks

the change of the processor status every cycle, including of pipeline, register, load/store

queue, cache, TLB, and so on. The pipeline of the modeled processor has five stages: fetch,

dispatch, exec/mem, writeback, and commit, as shown in Figure 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.simplescalar.com/

CHAPTER 3. EVALUATION METHODOLOGY 34

3.3 Our SimpleScalar Extensions

We have made a set of extensions to sim-outorder to model the main memory system

in detail. The original sim-outorder implementation models a “perfect” main memory

systems, of which the memory access latency is a constant for a cache fill request. Our

extensions model the full detail of DRAM memory systems, including bus contention, bus

synchronization, bank status, row access, column access, precharge, and refresh. We also

model a writeback buffer and an MSHR unit.

Figure 3.2 shows the overall structure of the extensions we have made. First, we modified

the interface of the cache module in sim-outorder. The original cache module returns a fixed

integer value of the access latency for both cache hit and miss. When a cache miss happens,

the new cache module returns a negative value when it detects a cache miss. This change

allows the miss latency be determined after the detection of a cache miss. The new module

submits cache-related information to the MSHR module, and the processor module submits

processor-related information to the MSHR module. The MSHR module records both sets

of information and sends a message to the DRAM module. The DRAM module simulates

the DRAM operations, determine the finish time, and send a message to the processor to

inform it th a t the DRAM access has finished. Then the MSHR module find out the related

miss information and make a requests to perform cache fill and to wake up the waiting

instruction.

The interactions between the modules are based a message passing functionality tha t

we added into SimpleScalar. W ith this functionality, a simulation module can send/receive

messages to/from other modules. When sending a message, a module provides the des-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 35

submit

callback

submit

callback

Figure 3.2 : Diagram of our extension of DRAM memory sim ulation.

tination module, the message type, the time when the message should be delivered, and

a flexible set of parameters. Upon receiving a message, the message-driven code of the

destination module parses the message and processes accordingly.

The original processor module in SimpleScalar is written in cycle-driven style. There is

a variable sim _cycle that records the current clock cycle. Each cycle the activities of the

processor pipeline stages are simulated, then the clock cycle (sim_cycle) advances. We add

message-driven code into the processor module so that it can process messages from the

DRAM module. Messages are delivered a t the beginning of each cycle.

The DRAM module encapsulates the performance simulation of the memory controller

and the DRAM memory. It maintains request queues, the bus/channel status, and the

bank status. When a DRAM request arrives as a message sent by the processor module,

the DRAM module determines which bank should be used according to the DRAM mapping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 36

scheme, then buffers the request into the request queues. The DRAM module checks the

memory bus/channel status cycle by cycle. When the memory bus/channel is idle, a request

is picked up from the queues if (1) the memory bank to access is idle, and (2) the request has

the highest rank according to the scheduling policy. Then the DRAM module determines

which operation should be issued and when the operation will finish. If the operation is

a column access, the last step of a DRAM access, a message is sent back to the processor

module to inform it that the DRAM access finishes.

The DRAM module contains both message-driven code and cycle-driven code. The

message-driven code accepts DRAM requests as messages from the processor module, then

inserts the DRAM requests into its request queue. At the beginning of each simulation

cycle, the cycle-driven code checks the availability of memory bus/channel and the memory

bank status, determining if a DRAM operation can be started. When the code determines

that a column access operation will finish, it sends a message back to the processor module.

The cycle-driven code also sends messages to the DRAM module itself to inform it the finish

times of DRAM operations. When those messages are delivered, the message-driven code

updates the status of the bus and memory banks accordingly. In summary, the message-

driven code processes external DRAM requests and internal notifications of status changes,

while the cycle-driven code schedules DRAM operations and determines the time of internal

status changes and when DRAM accesses finish.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 37

3.4 SPEC and T PC -C Benchmarks

We have used SPEC CPU95 [108] benchmark, SPEC CPU2000 [45] benchmark, and TPC -

C [112] workload in our performance evaluations.

3.4 .1 SP E C C P U 9 5 B enchm ark

SPEC CPU95 (briefly, SPEC95) benchmark had been extensively used to study the perfor­

mance of processors, memory systems, and compilers until it had retired with the release of

SPEC CPU2000. As a representative mixture of compute-intensive applications. SPEC95

consists of two sets of benchmarks: CINT95 for compute-intensive integer performance and

CFP95 for compute-intensive floating point performance. CINT95 contains eight applica­

tions written in C, and CFP95 contains 10 applications written in FORTRAN. Table 3.1

gives short descriptions of SPEC95 programs (from the SEPC’s CPU95 Press Q&A [107]).

3 .4 .2 SP E C C P U 2 0 0 0 Benchm ark

The SPEC [107] organization states that SPEC CPU2000 (briefly, SPEC2000) “is the next-

generation industry-standardized CPU-intensive benchmark suite” . It is provided as “a

comparative measure of compute intensive performance across the widest practical range

of hardware” . Like SPEC95, SPEC2000 consists of two sets of applications. CINT2000

for compute-intensive integer performance and CFP2000 for compute-intensive floating

point performance. CINT2000 contains eleven applications written in C and one in C + +

(252.eon), and CFP2000 contains fourteen applications (six in Fortran-77, four in Fortran-

90, and four in C). Table 3.2 gives short descriptions of the SPEC2000 programs [107].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 38

CINT95
Artificial intelligence; plays the game of "Go"
Moto 88K Chip simulator; runs test program
New version of GCC; builds SPARC code
Compresses and decompresses file in memory
LISP interpreter
Graphic compression and decompression
Manipulates strings (anagrams) and prime numbers
in Perl
A database program

A mesh-generation program
Shallow water model with 513 x 513 grid
Quantum physics; Monte Carlo simulation
Astrophysics; Hydrodynamical Navier Stokes equations
Multi-grid solver in 3D potential field
Parabolic/elliptic partial differential equations
Simulates isotropic, homogeneous turbulence in a cube
Solves problems regarding temperature, wind, velocity
and distribution of pollutants
Quantum chemistry
Plasma physics; Electromagnetic particle simulation

Table 3.1: SPEC95 programs.

Compared with SPEC95, a significant change in SPEC2000 is that the applications in

SPEC2000 have larger working sets, resulting in higher cache miss rates and more signif­

icant memory stall times. For instance, in one of our experiments with a 1MB L2 cache

configuration, seven of the eleven CINT2000 applications have large portions of memory

stall times in their total execution times, while all the eight CINT95 programs have neg­

ligible memory stall time. This change reflects the fact that real-world memory-intensive

applications are putting high pressure on memory systems.

099.go
124.m88k8im
126.gcc
129.compress
130.li
132.ijpeg
134.peri

147.vortex
CFP95

101.tomcatv
102.swim
103.su2cor
104.hydro2d
107.mgrid
llO.applu
125.turb3d
141.apsi

145.fpppp
146.wave5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY

CINT2000
Name Remarks
164.gzip Data compression utility
175.vpr FPGA circuit placement and routing
176.gcc C compiler
181.ocf Minimum cost network flow solver
186.crafty Chess program
197.parser Natural language processing
252.eon Ray tracing
253.perlbmk Perl
254.gap Computational group theory
255.vortex Object Oriented Database
256.bzip2 Data compression utility
300.tvolf
2000

Place and route simulator

Name Remarks
168.vupvise Quantum chromodynamics
171.swim Shallow water modeling
172.mgrid Multi-grid solver in 3D potential field
173.applu Parabolic/elliptic partial differential equations
177.mesa 3D Graphics library
178.galgel Fluid dynamics: analysis of oscillatory instability
179.art Neural network simulation; adaptive resonance theory
183.equake Finite element simulation; earthquake modeling
187.facerec Computer vision: recognizes faces
188.ammp Computational chemistry
189.lucas Number theory: primality testing
191.fma3d Finite element crash simulation
200.sixtrack Particle accelerator model
301.apsi Solves problems regarding temperature, wind,

velocity and distribution of pollutants

Table 3.2: SPEC2000 Programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EVALUATION METHODOLOGY 40

3 .4 .3 T P C -C Benchm ark

TPC benchmarks represent commercial workloads, which are widely used by computer

manufacturers and database providers to test, evaluate, and demonstrate the performance of

their products. TPC-C, a part of the T PC benchmarks, is an on-line transaction processing

(OLTP) benchmark. It is a mixture of read-only and update-intensive transactions that

simulate a complex computing environment in which a population of terminal operators

execute transactions against a database. The database system we have used to support

the TPC-C workload is the PostgreSQL (version 6.5) [79]. This is the most advanced open

source database system available for basic research.

There are five transaction types in TPC-C: new order, payment, order status, delivery,

and stock-level transactions. The transactions are generated by emulated users. Each

emulated user selects a transaction type, enters the required number of input fields, waits

for the output, and idles for a defined thinking time before submitting another request to

the system. The scale of the database is defined by the number of warehouses in the whole

system.

In our experiments, we set up ten warehouses, the maximum size of database supported

on the machine on which we run the simulation. We configure 320 MBytes of database

memory buffer which is also the maximum size supported on the machine. The memory'

buffer size in practice is 1 GBytes to 2 GBytes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Fast Bit-Reversals on

Uniprocessors and Shared-Memory

M ultiprocessors

Memory performance can be significantly improved by reconstructing programs based on

program-specific knowledge. This chapter focuses on cache-optimal methods of implement­

ing bit-reversals. Bit-reversals are often repeatedly used as fundamental subroutines in

scientific programs, such as FFT. If the bit-reversal operations are not implemented prop­

erly, those FFT operations can slow down significantly. On the other hand, it is easy

to improperly implement bit-reversals on uniprocessors and multiprocessors, because the

performance of bit-reversals is highly sensitive to the ways the memory hierarchies are ex­

ploited. In other words, a fast bit-reversal implementation must be cache effective. Several

papers have well addressed the significance and effects of considering memory hierarchies

to bit-reversals (e.g., [7, 58, 109]). Besides the important usage for FFT, different versions

of bit-reversal implementations can also be used as benchmark programs to evaluate the

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 42

memory hierarchy of various computer systems.

Performance degradation of bit-reversals is mainly caused by cache conflict misses. Al­

though compiler optimizations are effective in reducing cache conflicts for programs with

regular access patterns, they are not effective for bit-reversals because of their special ac­

cess pattern. Thus, in order to gain the best performance, cache-optimal methods and their

implementations should be carefully and precisely done at the programming level for those

special programs.

A standard bit-reversal program is described as follows:

for i * 1, N

Y[i’] = X[i]

The values of array X in their sequential positions i are copied to array Y in their

bit-reversal positions, i', for i = 1...., AT, where N = 2". The above program says tha t X

is a bit-reversal reordering of Y . The indices of i and i' of X and Y are represented by a

sequence of n binary digits. Positions i and its bit-reversal i' are defined in [58] as:

n —1 n —1

i = ^ a j 2 J and i' = y ^ a J2n~ 1~-?,
j= 0 >=o

where a, is either 0 or 1. For example, a 5-bit reversal of i = 10010 is i' = 01001.

The bit-reversal operations have following unique characteristics: First, in many im­

plementations, each element in an array is only used (read or written) once for its copy

operation. Thus, the reorderings have only spatial locality but no temporal locality for el­

ements. Second, the loops follow certain sequences with high spatial locality. Bit-reversals

are highly sensitive to problem sizes, cache sizes, and cache line sizes. Since the data array

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 43

sizes are a power of two, multiple elements stored in different memory locations could map

to the same cache line, causing severe cache conflict misses and cache thrashing. The reason

is simple. Most commercial computers use direct-mapped or n-way associative caches where

the mapping functions of cache sizes are also related to powers of two.

We use an identical unit, called an “element” , to represent the sizes of data arrays, caches

and others such as buffers and blocking. One element may represent a 4-byte integer, a

4-byte floating point number, or an 8-byte double floating point number. Because the sizes

of caches and cache lines are always a multiple of an element in practice, this identical unit

for all the sizes is practically meaningful for both architects and application programmers,

and makes the discussions straightforward. Here are the algorithmic and architectural

parameters we will use to describe cache-optimal methods of bit-reversals:

• C: data cache size, which could be further defined as C i\ and C l2 for data cache

sizes of LI and L2 respectively.

• L: the size of a cache line, which could be further defined as L n and Li_2 for cache

lines of LI and L2 respectively.

• K: cache associativity, which could be further defined as Ki_\ and K l 2 for cache

associativity of LI and L2 respectively.

• K t l b '■ TLB cache associativity. (A TLB cache is a small buffer that holds the most

recent memory page mappings. The concept will be discussed in detail later in the

chapter.)

• Ts: number of entries in the TLB cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 44

• N: the da ta size for the bit-reversal vector of size N = 2", where n is the number bits

used in the vector index.

• Rcache- blocking size of a B x B submatrix for cache.

• B t l b '■ blocking size for TLB.

• Ps: a memory page size.

In this chapter, we examine different methods for efficient implementations of bit-

reversals using techniques of blocking, buffering, and padding. We evaluate the merits

and limits of each technique and their application and architecture-dependent conditions

for developing cache-optimal methods. Although our methods are developed for out-of­

place bit-reversals, they are also applicable to in-place bit-reversals, where X and Y are the

same array.

Symmetric Multiprocessor (SMP) systems have become practical and cost-effective

servers for scientific computing and other applications. Although parallel efficiency and

communication latency reduction are major performance concerns, computations on an

SMP share many common considerations with uniprocessors. The most im portant one is

the effective usage of memory hierarchies. When the cache locality of each processor is

effectively exploited, the memory accesses to the shared-memory will be reduced, and so

will be the memory access contention. People have studied parallel data reordering al­

gorithms on distributed-memory systems with special networks, such as hypercubes (see

e.g. [29] and [54]). In this study, we target parallel bit-reversals on SMPs and show the

significant impact of the cache and TLB considerations for efficient method development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 45

and implementations. We also evaluate the performance impact of SMP interconnection

networks.

Our algorithm designs and implementations are optimized by considering severed non-

traditional, but practical and performance effective factors, namely, programming complex­

ity, memory space requirement, instruction count, cross interference among the da ta arrays,

and program portability. We will summarize the limits and merits of different bit-reversal

methods based on these considerations after we have discussed the designs and presented

the performance results, aiming at providing a guideline for performance programming and

memory performance optimization for other scientific computing applications.

We present two contributions in this study: (1) Our integrated blocking methods, which

match cache associativity and TLB cache size and fully use the available registers, are cache-

optimal and fast. (2) We show that our padding methods outperform other software oriented

methods, and believe they are the fastest in terms of minimizing both CPU and memory

access cycles. Since the padding methods are almost independent of hardware, they could

be widely used on many uniprocessor workstations and SMP multiprocessors. Using direct

measurement on five different platforms including PC, workstations, and servers, we will

show that our methods consistently outperform existing ones.

The rest of this chapter is organized as follows. Section 4.1 discusses the inherently

blocking nature of bit-reverse operations and the effectiveness and limits of blocking tech­

niques for solving the problems. Section 4.2 evaluates a software buffering technique and our

methods using existing hardware components for implementing the data reordering. Sec­

tion 4.3 presents our new method integrating blocking and padding. Section 4.4 discusses

blocking and padding techniques for the TLB. Sections 4.5 and 4.6 report the experimental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 46

Memory Layout: the distance between
each pair of sefemcnts is (N-BVL
cache Imcs

A 2-D Array equivalent Layout

Distnbuoora of B sefments in
a vector of N elements for
bit*<wenals

F ig u re 4 .1 : M em ory layout of a blocked bit-reversals, w here B = B cache-

measurements and analyses for evaluating different methods on uniprocessor workstations

and SMP multiprocessors, respectively. Finally, Section 4.7 summarizes this study.

4.1 Blocking for Bit-reversals

The blocked memory access patterns of bit-reversals can be easily viewed when we convert

the one dimensional vector to a 2-D equivalent array in Figure 4.1. All the reordering ele­

ments and elements in other groups will be allocated along the column in the 2-D equivalent

array forming a block.

In this blocking method, the bit-reversal reordering is performed block by block, where

the operations for each block are implemented similarly to the Evans’ method [33] (the

Evans’ method is used to construct a hybrid method in [58]). The program in the Appendix

presents such an implementation along with padding technique. (The padding technique

will be discussed in Section 4.) The blocking algorithm we have used can be classified as a

hybrid method.

In general, for a bit-reversal vector of N = 2" elements, the block size Bcache is a power

— .W-BVL —f r - (N-BVL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 47

of 2, denoted by = 2*. Each of the Bcache elements in X has the address format of

fg , where g is Bcache bits, and / has n — b bits. Each of the corresponding Bcache elements

in Y has the address format of g ' f . Therefore, the distance between two nearest elements

in the same group in Y is 2n~b = N/Bcache-

Choosing the cache line size as the minimum blocking size (Bcache = L), we can easily

calculate the maximum N s for the bit-reversal vector based on different data cache sizes.

For example, for a large cache of 2 MBytes, the blocking technique is effective up to an

18-bit-reversal reordering which represents 268,144 data elements, where each element is an

8-byte double type, and the cache line is 32 bytes. In practice, the data size of bit-reversals

could easily be larger them n = 20 [58].

4.2 Blocking w ith Buffers

As we have shown, the effectiveness of blocking is limited by the size of the data arrays. In

theory, the smallest blocking size could be 2 x 2. A cache line in a modern processor usually

holds more than 2 elements, i.e., is larger than 16 bytes. If we choose a 2 x 2 block, the

data in a cache line will not be fully used before its replacement, causing more cache misses

in the reorderings. The bit-reversal reordering demands large cache space to make blocking

effective. In order to effectively use limited cache space, Gatlin and Carter [38] present an

effective method using an additional buffer to first hold the conflict-missed elements of a

block in one array temporarily, and then copy the block to their reordered positions in the

other array. In this section, we discuss implementations of blocking methods supported by

both software and hardware buffers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 48

4 .2 .1 B locking W ith a Softw are Buffer and Its L im its

Because this buffer is defined in a reordering program, we call it a “software buffer” . This

buffer shares the allocation space with the data arrays X and Y in the cache.

There are two major limits in this approach. First, the buffer itself may interfere with

arrays of X and Y , causing additional access conflicts. This interference is certain when

the sizes of X and Y are larger than the size of the cache, C. Each cache block or set is

mapped from arrays X and Y more than once. No m atter where the buffer is located in

the cache, it will interfere with the arrays. The larger the buffer size, the more interference

will occur.

The second limit is the additional copy overhead time involved in moving d a ta from

the array X to the buffer and then in moving them to the target array in their reordered

positions. This overhead exactly doubles the instruction cycles for d a ta copying. T he data

copy through a buffer is a worthy investment if the number of cycles lost from cache misses

is much higher than the additional CPU cycles for the da ta copy.

To overcome the two limits, we propose several alternatives to eliminate cache interfer­

ence caused by the software and to reduce or eliminate the data copy time.

4 .2 .2 C ache S tru ctu re D ependent B lock ing

Blocking based on set associativity

The cache associativity, K , is an im portant factor to consider for blocking. If K > L,

a n L x L or a . K x K blocking method for bit-reversals would effectively avoid conflict

misses. Because the hit time is a less sensitive performance factor than the cache misses in

the L2 cache, a higher associativity of the L2 cache is more effective than that of L I. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 49

example, if a cache line holds four double floating point elements (L = 4 elements of 32

bytes in Pentium processors), a 4 x 4 blocking method without any data buffer is able to

fully use the cache associativity. The blocking method would gain more benefit from caches

of associativity higher than 4, such as a design in [123].

What would we do if the associativity is not sufficiently high for the blocking, or K < LI

One solution is to make a K x L rectangular blocking. Unfortunately bit-reversals require

am L x L blocking.

Supplement w ith registers

We may also consider using the available registers to supplement a low associativity

cache. The number of registers available to a user prograun is limited. Normally, a unipro­

cessor provides up to 16 registers to users. For example, for a 2-way associative cache, we

need 8 registers to buffer two additional cache lines so that we could effectively make a 4 x 4

blocking as if we ran the prograun on a 4-way associative caiche.

We develop a more efficient blocking method for bit-reversails. which requires only (L —

K) x (L - K) registers. The operation sequence of this method is in three steps: (1) The L —K

cache lines of X axe stored in K cache lines of Y and aiccessed by copying its (L — K) x K

elements to Y in the reordered positions, amd copying the rest of (L — K) x (L — K) elements

to a buffer consisting {L — K) x (L — K) registers. (2) The rest of K lines of X are brought

to the cache set, amd its K x K elements are copied to Y in the reordered positions. (3)

Finally, the (L — K) x (L — K) elements in the register buffer amd the rest of the (L — K) x K

elements are copied to Y in their reordered positions. A cache set will be used more than

twice if K < L f 2.

Besides the advantage of no access conflicts between the register buffer and the arrays

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 50

of X and Y, there is another advantage of using registers to buffer the da ta in a load/store

processor. A d a ta copy through the registers from X to Y is equivalent to the two-step

process of load and store, and thus there will be no additional overhead. We will show our

experimental performance in section 5.

Using Registers As the Buffer

If the cache is direct-mapped, we have to fully rely on a buffer for blocking. Here we

discuss some ways to use registers to serve the buffer in order to eliminate the potential

cache conflicts and eliminate extra data copying by taking advantage of the load/store

operations. The number of registers for a buffer of L x L elements is determined by the

number of elements a cache line can hold. The length of a cache line of the LI cache in

some processors, such as Sun SPARC Micro I and II, is L = 2 of 16 bytes, which holds only

two floating point elements. The blocking size could be as small as 2 x 2 using a buffer of

4 registers.

The cache line length of the LI cache in many advanced workstations is 32 bytes, such

as the Sun U ltra and Intel Pentium processors, each of which holds 4 double floating point

elements. In this case, we need a buffer of 4 x 4 = 16 registers for a blocking. This would

be difficult due to the limited number of available registers. We have two solutions for this.

First, we only use the number of registers available to form a smaller buffer than it should

be, which will not make each cache line fully used and will cause additional cache misses.

Our experiments show that this blocking method of using a buffer of insufficient number

of registers still achieves a reasonable performance improvement and outperforms of the

implementation using a software buffer.

The second method is to further reduce the size of the buffer, which reduces the required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 51

number of registers by using our (L — K) x (L — K) blocking method.

LI cache versus L2 cache

The main objective of building two-level caches is to make the LI cache small enough

to catch up to the cycle time of the fast CPU , and to make the L2 cache large enough to

capture as many accesses as possible [44]. In practice, the data size of a bit-reversal is larger

than the size of the L2 cache. LI and L2 caches offer different sizes of the cache line, L.

and the associativity, K. Both of the following alternatives are effective for blocking. (1)

Taking advantage of a short cache line and fast hit time of the LI cache, we could effectively

use limited registers as the buffer and make a small L x L blocking effective. (2) Taking

advantage of high associativity of the L2 cache, we could effectively use both associativity

and supplemental registers as the buffer and make a large L x L blocking effective.

4 .2 .3 V ictim -cache-aided B lock ing

Victim cache [56] is a small fully associative cache serving as the buffer containing only cache

blocks due to conflict misses from LI cache. This is an on-chip cache connected between

LI and the next level cache or memory. On a miss in LI, the victim cache is first checked

before going to the next level. If the missed block is found there, the victim cache block

and the LI cache block are swapped and then the block is delivered to CPU from the LI

cache. Victim cache has been available in some commercial workstations, such as HP7200.

The minimum number of victim cache lines required for L x L blockings of transpose

and bit-reversal reorderings is L — K . In execution, L x L elements of each blocking are

allocated in a set of K lines in LI cache, and the rest of the elements are allocated in the

L — K lines of the victim cache. The victim cache is able to hold all the conflict misses in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 52

the reorderings by a L x L blocking. In addition, a conflict miss in the LI cache that hits in

the victim cache has only one additional cycle miss penalty. Thus, a simple L x L blocking

method would be effective if such a victim cache is available.

However, the victim cache does not have a direct connection with the CPU. When a data

hit happens in the victim cache, it has to be first swapped to the LI cache and then delivered

to CPU. This swapping operation is unnecessary for our reordering algorithms. Without

counting the cold misses of bringing the elements in the first column for a L x L blocking,

and considering the LRU replacement policy, the entire blocking will have L x (L - l) conflict

misses in the LI cache, which are then found in the victim cache. This also means that

each of such a blocking needs L x (L - l) additional swapping cycles between the LI cache

and the victim cache, which is independent of the associativity, K. In contrast with the

blocking method based on the associativity supplemented by registers, the swapping cycles

in the victim cache are additional overhead. Despite this, a victim-cache-aided blocking

is more efficient than a blocking method with a software buffer because there are no cross

interference conflicts between the victim buffer and arrays of X and Y.

4.3 Blocking with Padding

Padding is a technique tha t modifies the data layout of a program so th a t the conflict misses

are reduced or eliminated. The da ta layout modification can be done a t run-tim e by system

software [11, 119], or at compile-time by compiler optimization [86]. Sharing the same

objective of compiler optimization to change the base addresses of potentially conflicting

cache blocks in the reorderings, we insert padding variables inside the data array. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 53

example, the padding can be done as part of the last butterfly for the decimation in an

FFT computation without additional cost, and the output is not padded.

However, we notice that this free padding opportunity may not be easily found, and the

bit-reversal result may be padded in some cases. For example, the padding of a recursive

implementation of the Cooley-Tukey FFT algorithm [23] is more complex than the padding

in our implementations. The padding method produces padded results in a vector if the

bit-reversals are done in place. The accesses to the padded results need to go through a

simple address converting process with additional CPU cycles. In addition, our methods

target bit-reversals based on the data size of powers of 2. However, FFT algorithms are not

limited to this data size. If the data size is not a power of 2, the padding method will be

more complex to implement. Poor memory performance of bit-reversals has been reported

even for non-power of 2 data sizes (see e.g. [7]).

Since the data arrays of bit-reversals form a vector whose size is power of 2. the padding

is highly regular, inserting L elements or a cache line space starting a t the vector positions

of N/ L , 2 x N/ L , and (L — 1) x N/ L. Using L elements or a section data of a cache line

to separate the vector a t these L points can completely eliminate the cache conflicts caused

by the address mapping based on powers of 2. Again during execution, the reordering data

copies are directly conducted between the arrays X and Y w ithout going through a data

buffer. Another advantage is tha t the number of padding elements needed is only L x L

or L cache lines, and is independent of the data array size, N. Compared with the data

size of bit-reversals, the number of padding elements is insignificant. Figure 4.2 shows how

the data layout of a bit-reversal vector is modified by padding so that conflict misses are

eliminated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 54

Cache s o Before padding

Y-array

X-array

Cache After padding

sm+L H/B+LH/B+L
ss i rr i yyyFTrv r r i

Figure 4.2: D ata layout of a bit-reversal is modified by padding, where B = Bcache = L.

Compiler optimization targets a large range of application programs, and automatically

inserts padding variables in the programs for users. An optimal padding is application

program dependent. For example, padding positions are different from different applications

unique nature of the data reordering, the optimal padding unit used by our methods for

bit-reversals is a cache line with L elements. In contrast, a compiler optimization normally

uses an element as the basic padding unit. How many padding units to use and where

to pad in the data arrays are determined by some approximation models which may not

precisely fit the unique memory access patterns of each case. In addition, applying the

padding technique to bit-reversals embedded in applications would not increase complexity

in the entire computation. For example, when a padded bit-reversal is performed in a FFT

computation, it has little effect on the neighboring butterfly operations.

in order to effectively change base addresses of conflicting cache blocks. Based on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 55

4.4 Blocking and Padding for a TLB

The TLB (Translation-Lookaside Buffer) is a special cache tha t stores the most recently

used virtual-physical page translations for memory accesses. The TLB is a small and usually

fully associative cache. Each entry points to a memory page of 4 KBytes to 64 KBytes.

The page size is normally fixed a t the operating system level and cannot be changed by

user programs. A TLB cache miss will make the system retrieve the missing translation

from the page table in memory, and then select a TLB entry to replace. W hen the data

to be accessed in our blocking method is larger than the am ount of data of all the memory

pages tha t the TLB can hold, we will have TLB thrashing. In this section, we will discuss

and present blocking and padding methods for TLB cache optimizations.

4 .4 .1 B locking for a F u lly A ssociative TLB

Before giving a general model to show how blocking size is affected by TLB size, le t’s

go through an example to show tha t a moderate N for bit-reversals would easily lead to

TLB cache thrashing. The 64 pages in the TLB of the Sun UltraSparc-II processor hold

64 x 1024 = 65536 elements, which represents a 16-bit-reversal of N = 216. Since we have

two vectors X and Y , the TLB can hold a 15-bit-reversal of N = 215 elements. This is also

consistent with our experiments on this machine, where execution time per element was a

constant until n = 15, but sharply increased a t n = 16 bit-reversals caused by the TLB

misses.

In our cache-optimal methods, we include an outer loop to form a blocking for the

TLB, whose size is denoted as B t l b ■ The blocking size of B t l b for bit-reversals when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 56

N > Ts x P3 is

B t l b < T3,

where P3 is the page size in elements, and Ts is the number of entries of the TLB. On the

other hand, the B t l b should be chosen as large as possible to make effective use of the

page space. When N < Ts x P3, the d a ta size of a bit-reversal will be less than the data

size covered by the TLB. Thus there is no need for TLB optimizations.

4 .4 .2 P ad d in g for a S et-a sso cia tiv e T LB

Some processors’ TLBs are not fully associative, but set-associative. For example, the TLB

in the Pentium-II 400 processor is 4-way associative (K t l b — 4). A simple blocking based

on the number of TLB entries is not cache-optimal, because multiple pages within a TLB-

size-based blocking may map to the same TLB cache set and cause TLB cache conflict

misses.

If the size N of a bit-reversal vector is a multiple of Ts x P3, where Ts is the number

of TLB entries and P, is the page size in elements, and if K t l b < B t l b i then TLB

cache conflict misses will occur. This could easily happen in practice. For example, on the

Pentium-II 400, N is equal to 128A" elements (one element = 8 bytes) for a 17-bit-reversal.

and this N is two times of the value Ts x P3 of the machine, where Ts = 64, and P3 = 1024

elements.

In a way similar to the technique of padding for the data cache, we insert a page of

elements or a page of space starting a t the vector positions of N/ L, 2 x N/ L , ... and

(L - 1) x N / L to eliminate the conflict of TLB cache misses. Figure 4.3 gives an example

of the padding for a TLB, where the TLB is a direct-mapped cache of 8 entries, blocking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 57

Before padding

2-D memory layout o f array in bit-reversal

TLB

After Padding
 Ps

2-D memory layout of array in bit-reversal
___________ TLB

Figure 4.3: Padding for a TLB: the data layout is modified by inserting a page space at multiple
locations, where B t l b = 4, K t l b = l , T s = 8.

size is B t l b — 4, and the number of elements of a row is a multiple of 8 page elements.

Before padding, each of blocking row is mapped to the same cache line of the TLB. After

padding, these rows are mapped to different cache lines of the TLB.

Combining padding for data cache and padding for a TLB cache, we are inserting L + Ps

elements or a page plus a cache line space in L locations separated by a distance of N / L

elements.

In practice, we selected more than N / L points to insert the padding variables to elim­

inate both data cache and TLB conflict misses. This approach could effectively merge

two nested paddings (one for the data cache and the other one for the TLB) into a single

padding. An optimal number of inserting points can be easily determined experimentally

based on the size of the TLB cache. The padding optimizations are all based on the L2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 58

cache in our experiments.

Partial index mapping addresses of bit-reversals are pre-calculated and stored in a small

table as shown in the program in the Appendix. This approach further improves perfor­

mance because the table will be accessed in the cache during the computation, and the

pre-calculation overhead is trivial. The time for the pre-calculation is included in the total

execution time.

4.5 Experimental R esults and Performance Evaluation

We have implemented and tested all the bit-reversal methods discussed in the previous

sections on an SGI 0 2 workstation, a Sun Ultra-5 workstation, a Sun SMP server E-450.

a Pentium PC, and a Compaq XP1000 workstation. We will present and evaluate the

performance of different methods on different machines.

4.5 .1 E xperim ental E nvironm ent and E valuation M eth odology

We used “lmbench” [73] to measure the latencies of memory hierarchies at different levels

on each machine. The architectural parameters of the 5 machines are listed in Table 4.5.1.

We focus the performance evaluation on methods and implementations of bit-reversals

in this chapter. We compared all our methods with the method of blocking with a software

buffer which was recently published in [38]. We denote this method as “bbuf-br” — blocking

with buffer for bit-reversals. Two of our methods are experimentally compared: “breg-br"

— blocking with associativity and registers for bit-reversals, and “bpad-br” — blocking

with padding for bit-reversals. We have also applied blocking or padding techniques for the

TLB in these two methods based on the TLB associativity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 59

Workstations SGI 0 2 Sun Ultra 5 Sun E-450 Pentium XP1000
Processor type R10000 UltraS pare UltraSparc Pentium Alpha

Hi II II 400 21264
clock rate (MHz) 150 270 300 400 500

L l cache (KBytes) 32 16 16 16 64
L l block size (Bytes) 32 32 32 32 64

Ll associativity 2 1 1 4 2
Ll hit time (cycles) 2 2 2 2 3
L2 cache (KBytes) 64 256 2048 256 4096

L2 block size (Bytes) 64 64 64 32 64
L2 associativity 2 2 2 4 1

L2 hit time (cycles) 13 14 10 21 15
TLB size (entries) 64 64 64 64 128
TLB associativity 64 64 64 4 128

Memory latency (cycles) 208 76 73 68 92

Table 4.1: Architectural parameters of the 5 workstations we have used for the experiments. All
specifications on LI cache refer to the Ll data cache, and all L2s are uniform. Each L2 cache block
on UltraSPARC-IIi consists of 2 16-Byte sub-blocks. The hit times of Ll, L2 and the main memory
are measured by lmbench [73], and their units are converted from nanosecond (ns) to their CPU
cycles.

All the programs use a standard subroutine to calculate the bit-reversal value for a given

address. The execution times were collected by “gettimeofdayO” . a standard Unix timing

function. The resolution of this function is 1 /is on the machines being measured, which is

significantly smaller than the execution times of any programs we have measured. A small

bit-reversal table is pre-calculated, and we exclude this calculation time. The reported time

unit is cycles per element {CPE) :

 execution time x clock rate

where execution time is the measured time in seconds, clock rate is the CPU speed (cy­

cles/second) of the machine where the program is run, find N is the number of elements of

the bit-reversal program. Besides the different methods of bit reversals, we also measured

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 60

the execution time of a program copying elements between X and Y . This program has

the same number of d a ta copying operations with a continuous memory access patterns.

We use the execution time of this program to provide a base line reference for bit-reversal

programs and show how close a bit reversal execution is to its ideal time. We denote this

reference program as “base” . Each method is further divided into “float” data type using

4 bytes to represent an element, and “double” type using 8 bytes to represent an element.

The data type divisions will show the performance im pact of the cache line length.

For all experiments on different machines, the bit-reversal programs first call a routine

to flush the cache to make sure that all the data are allocated only in the memory. All

experiments were repeated a t least five times and the smallest execution times are reported.

4 .5 .2 Effects o f T L B and V irtual M em ory

Before measuring and comparing the performance of different bit-reversal methods, we

experimentally evaluated the effects of TLB and virtual memory to confirm our assumptions

and analyses.

Selection of TLB blocking size

The TLB blocking size is a sensitive performance parameter to be selected, which is

determined by the size of the TLB if it is fully associative. We executed program “bpad-br”

(blocking with padding for bit-reversals) with n = 20 on a single node of Sun El-450 by

changing the blocking sizes for the TLB from 8 to 128. The TLB of the El-450 is a fully

associative cache with 64 entries. Figure 4.4 shows the measured cycles per element of the

program of different blocking sizes on the node. O ur experimental results are consistent

with our analyses in the previous section. When the blocking size for the TLB was 64. the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 61

E450 (double)
70

bpad-br

60

/
/

/
/

10

0
8 16 32

Block size of TLB
64 128

F igure 4.4: Changing the TLB blocking sizes on a single node o f the Sun E450: when th e blocking
size for TLB was larger th an 32, the execution tim e curve was sharply increased.

execution time curve increased sharply. This is because arrays X and Y together demanded

more than 64 pages and caused TLB thrashing.

Virtual memory versus physical m emory addresses

All our analyses are based on cache mappings between memory pages in the virtual

address space and cache blocks in the physical memory address space. This assumes that

contiguous memory pages will be contiguously mapped to the cache. This assumption is

guaranteed for the virtual-address caches [18]. However, all our experiments have been per­

formed on machines with physical address L2 caches. Since the virtual-physical translations

for L2 caches are handled by operating systems, our assumptions may not be accurate some­

times. In order to show that many operating systems attem pt to map contiguous virtual

pages to cache blocks contiguously so that our virtual-address-based study is practically

meaningful and effective, we conducted a simulation by using the SimOS [91] and mea­

surements on different workstations to observe how an operating system makes translations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 62

SimOS (IRIX 5.3)

blocking only

>.
Im
s
s
S
E

0.125

2316 17 18 2215 19 20 21
n

Figure 4.5: Using the SimOS to observe the miss rates by changing th e th e size of the bit-reversal
arrays of a blocking-only program : when n > 18, the miss ra te was sharp ly increased to 100%.

from virtual memory addresses to their physical addresses.

The SimOS simulates a complete hardware of SGI machines and runs the IRIX 5.3

operating system in the simulation. We executed a blocking-only program of bit-reversals

using the cache line L as the blocking size. The bit-reversal vector size was changed from

n = 15 to n = 22. We measured the miss rates on array X . The cache size was set to 2

MBytes holding two double type arrays up to n = 18 in the virtual memory space. Figure

4.5 gives consistent results from the SimOS simulation: when n > 18. the miss rate on array

X was sharply increased to 100% from 12.5%. From this experiment, we have observed that

virtual-physical translations from the IRIX 5.3 operating system are quite consistent to our

assumption of “contiguous allocations” .

We have also run the similar experiments on different targeted workstations with differ­

ent operating systems, such as Linux and Solaris, to measure the changes of execution times

when the data size is changed. Our measurements are also consistent to the SimOS results,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 63

M|MO UtafOtaO
90
49

40

I -
I 3
! ”W 19

10
9
0

14 19n i* 17 14II

40

90

10

0 12 17II 14 15 tft II 14

F ig u re 4 .6 : Execution tim es of th e hybrid method on th e Pentium -II (left figure) and on th e U ltra-5
m achine (right figure).

and indicate that the larger the data arrays to be used, the more likely an operating system

will allocate the pages contiguously. Because our study targets large data sets, our analyses

based on the virtual memory space is reasonably accurate. In addition, our methods assume

tha t the operating system uses a uniform page size for page allocation, which is consistent

with most commercial and commonly used operating systems.

4 .5 .3 Perform ance o f th e H ybrid M ethod for B it-reversals

In order to show the effectiveness of our cache optimizations, we first plot the measured

execution times of the hybrid method [58] in “float” data types on the Pentium-II and the

Ultra-5 machines in Figure 4.6. Although the hybrid method did reasonably well for n < 16

on Pentium-II and n < 12 on Ultra-5, the execution times significantly increased due to

limited cache performance after the data size was further increased.

4 .5 .4 Perform ance C om parisons on th e SG I 0 2

The SGI 0 2 is a 1995 product using an R10000 processor of 150 MHz, 32 KB 2-way

associative LI cache, and 64 KB 2-way associative L2 cache. The cache line of L2 is 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 64

02M
«

S
1

2

2

15
10

5

fata
•*

-I- -i—

1916 17 18

n
70
■;

50

«

X

2

10

m

t

1 6 i 17 176 185 19 195 2

F ig u re 4 .7 : Execution com parisons on the SGI 0 2 w orkstation: “bbuf-br” represents th e m ethod
of blocking w ith software buffer; “bpad-br” represents th e m ethod of blocking w ith padding; and
“base” represents the ideal base line reference.

bytes. Since the associativity of L2 is low, and the cache line of L2 is relatively long, it is

difficult to do blocking with associativity and available registers. We only implemented the

blocking with padding method to compare with blocking with software buffer and the base

reference.

We scaled bit-reversal methods from n = 16 to n = 21. Figure 4.7 shows the comparisons

of cycles per element among the three programs of both “float” type and “double” type on

the SGI 0 2 machine. The measurements show th a t the padding method slightly reduced

the execution time compared with the method of blocking with software buffer. The time

reduction was up to 6%. The reason for the small performance improvement comes from the

extremely long memory latency (208 cycles) of the 0 2 machine. The reduction and saving

of instruction cycles for data copies from padding became less significant because memory

latencies caused by the required cold misses in both methods were dominant in execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 65

4 .5 .5 Perform ance C om parisons on th e S u n U ltra-5

The Sun Ultra-5 is a 1998 product using an UltraSparc-IIi processor of 275 MHz, 16 KB

direct-mapped LI cache, and 256 KB 2-way associative L2 cache. The cache line of L l is 32

bytes consisting of two 16 byte subblocks, and L2 is 64 bytes long. Similar to the SGI 02 ,

the associativity of L2 on the Ultra-5 is low. and the cache line of L2 is relatively long, so it

is difficult to do blocking with associativity and available registers. We only implemented

the blocking with padding method to compare with blocking with software buffer and the

base reference.

We scaled the bit-reversal methods from n = 16 to n = 23. Figure 4.8 shows the

comparisons of cycles per element among the three programs of both “float” type and

“double” type on the Ultra-5. The memory latency of the Ultra-5 (76 cycles) is significantly

lower than that of the 02 . We observed a more significant performance improvement

from the method of blocking with padding over tha t of blocking with software buffer. For

example, using “float” type, the padding program is 14% faster than that of blocking with

buffer for n = 20 or larger. A L2 cache line of the Ultra-5 holds 16 “float” type elements

(L = 16), and 8 “double” type elements (L = 8). The larger the L (the number of elements

in one cache line), the higher overhead the blocking with software buffer will have. This has

been confirmed by our comparative experiments between the “float” and “double” types on

the Ultra-5 shown in Figure 4.8.

4 .5 .6 Perform ance C om parisons on th e Sun E -450

The Sun El-450 is a 1998 4-processor SMP product. Each of the 4 nodes is an UltraSparc-2

processor of 300 MHz, 16 KB direct-mapped Ll cache, and 2 MB 2-way associative L2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 66

9
€
«
35:

H i
• 2
a2

is15
j 10

5

— »

16 17 2 2218 13

9

i - - - - - i

17 18 8 2 21 22 216
n n

Figure 4.8: Execution com parisons on th e Sun U ltra-5 workstation: “bbuf-br” represents the
m ethod of blocking with software buffer; “bpad-br” represents the method of blocking w ith padding:
and “base” represents the ideal base line reference.

cache. The cache line of Ll is 32 bytes consisting of two 16 byte subblocks, and L2 is 64

bytes long. Due to the limited associativity and a relatively long L2 cache line, we only

implemented the blocking with padding method to compare with blocking with software

buffer and the base reference.

We scaled the bit-reversal methods from n = 16 to n = 25. Figure 4.9 shows the com­

parisons of cycles per element among blocking with software buffer, blocking with padding,

and the base program on a single node of E-450, each of which has both “float” type and

“double” type. The memory latency of the Ultra-5 (73 cycles) is slightly lower than that of

Ultra-5. On this machine, we observed higher performance improvement from the method

of blocking with padding over that of blocking with software buffer. For example, using

“float” type, the padding program is 22% faster than that of blocking with buffer for n = 20

or larger. Our comparative experiments between the “float” and “double” types on El-450 in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 67

E40M E40(fafc)

m
i

* -

16 17 18 15 20 21 2 3 24 25

«

.35

{ 2 5
i 2D
• 15
°10

° 5

+-

16 1? 18 15 X 21 22 23 X
D II

F ig u r e 4 .9 : Execution comparisons on th e Sun E-450 SMP: “bbuf-br” represents th e method of
blocking with software buffer; “bpad-br” represents the m ethod of blocking w ith padding; and “base”
represents the ideal base line reference.

Figure 4.9 also confirms that the larger the L. the higher performance the padding method

would achieve.

4 .5 .7 Perform ance C om parisons on th e Pentium -II 400

The Pentium PC we used is a 1998 product using a Pentium-II 400 processor of 400 MHz. 8

KB direct-mapped Ll cache, and 256 KB 4-way associative L2 cache. The cache lines of of

both L l and L2 are 32 bytes. Since the L2 associativity is high, we are able to implement the

method of blocking with associativity and available registers, L2 cache line L = 8 elements

for a “float” type, and we need (L — K) (L — K) = 16 registers to supplement the 4-way

associative cache. An L2 cache line holds 4 “double” type elements (L = 4). Thus, we do

not need any registers to supplement, but simply make a 4 x 4 blocking. The TLB of the

Pentium processor is a 4-way associative cache of 64 entries. We used our padding for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 68

TLB technique to avoid TLB misses. We implemented the blocking with padding method

and the blocking with associativity and registers to compare with blocking with software

buffer and the base reference.

We scaled the bit-reversal methods from n = 16 to n = 24. Figure 4.10 shows the

comparisons of cycles per element among the four programs. As we expected, the paddings

for both cache and TLB were highly effective, and the padding program performed the

best. For example, using “float” type, the padding program is about 40% faster than th a t

of blocking with buffer for n = 22 or larger. We also show that the method using available

registers to supplement associativity is effective. Although it is not as good as the padding

program due to the increase of the instruction counts for additional data copies, it still

achieved up to 12% execution reduction over the blocking with software buffer program.

As we expected, the execution time of the method using the 4-way associative L2 cache

without the supplement of registers to form a 4 x 4 blocking was delayed mainly by the

longer L2 cache hit time. The performance of this m ethod still outperformed the method

of blocking with a software buffer.

4 .5 .8 Perform ance C om parisons on th e C om p aq X P -1000

The Compaq XP-1000 is a 1999 product using an Alpha 21264 processor of 500 MHz, 64

KB 2-way associative Ll cache, and 4 MB 2-way associative L2 cache. The cache lines of

both Ll and L2 are 64 bytes long. Similar to the SGI and Sun machines, the associativity

of L2 on the XP 1000 is low, and the cache line of L2 is relatively long, so it is difficult to do

blocking with associativity and available registers. We only implemented the blocking with

padding method to compare with blocking with software buffer and the base reference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 69

m
x
imci

Eii
2)

* *
-4-— ^ ;- - : -a:

S10
0
« 5

16 17 18 19 20 21 22 23 2<

I)

. *
• X
E
Is
i®a
i IS

fioo .

■i i
— 4-..................

I I--------1------

!CcX' ‘
i t * i

' i -I-........

J L J L

17 18 18 X 21 22 23

Figure 4.10: Execution comparisons on the Pentium-II 4000 PC: “bbuf-br” represents the method
of blocking with software buffer; “bpad-br” represents the method of blocking with padding; “breg-
br” represents the method of blocking with associativity and registers; and “base” represents the
ideal base line reference.

We scaled the bit-reversal methods from n = 16 to n = 25. Figure 4.11 shows the

comparisons of cycles per element among the three programs of both “float” type and

“double” type on the XP-1000 machine. As we expected, we achieved better or comparable

performance to the ones on the Sun machines. For example, using “float” type, for n = 24

or larger, the padding program is 30% faster than tha t of blocking with buffer; and 15%

faster for “double” type.

4.6 Performance Evaluation on SM P M ultiprocessors

We implemented the bit-reversal methods on two SMP multiprocessors: the The Sun E450

and the HP 9000 V2200. The parallel bit-reversal program on an SMP with M processors

is described using POSIX thread primitives [51] as follows;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 70

xpioqom mm

ci
£i
i
wia

+ * -

■i
0
X0

16 17 1 ! 19 2 21 22 23 8

•t-— *-— »— -i— t4.— »

16 17 IS 19 20 21 22 23 24 25
n ii

Figure 4.11: Execution comparisons on the Compaq XP-1000 workstation: “bbuf-br” represents
the method of blocking with software buffer; “bpad-br” represents the method of blocking with
padding: and “base” represents the ideal base line reference.

b it_reversal(id)

my.start = id* (N/M);

my_end = (id-l)*(N/M);

for i = 1, N

Y[i’] = XCi] ;

The bit-reversal operations are evenly distributed among A/ processors.

4.6.1 Perform ance C om parisons on th e Su n E -450

The Sun E450 is a 1998 4-processor SMP product. Each of the 4 nodes is an UltraSparc-2

processor of 300 MHz, 16 KB direct-mapped L l cache, and 2 MB 2-way associative L2

cache. The cache line of L l is 32 bytes consisting of two 16 byte subblocks, and L2 cache

line is 64 bytes. Due to the limited associativity and a relatively long L2 cache line, we only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 71

E-405 (4 processors, Ik*) E-405 (4 processors, double)

20

15

5

0
16 17 16 19 20 21 22 23 24

a

O

20

15

10

5
•t :

o
19 20 21 22 23 2416 17 18

F ig u re 4 .12 : Execution comparisons on Sun E450 SM P o f 4 processors: “bbuf-br” represents the
algorithm o f blocking w ith software buffer; “bpad -b r” represents the algorithm of blocking with
padding; and “base” represents the ideal base line reference.

implemented the blocking with padding algorithm to compare with blocking with software

buffer and the base reference.

We scaled the bit-reversal algorithms from n = 16 to n = 24. Figure 4.12 shows

the comparisons of cycles per element among blocking with software buffer, blocking with

padding, and the base program on the E-450 of 4 nodes, each of which has both “float” type

and “double” type. On this machine, we observed some performance improvement when

n < 18 from the algorithm of blocking with padding over that of blocking with software

buffer.

However, when n > 18 of double type or n > 19 of float type, each processor has

to process a data set larger than its cache capacity. Multiple processors simultaneously

accessing the memory through a shared data link would cause the contention to degrade

the performance. Since the data to be accessed from different processors are distributed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 72

Ottl*

r Q□

ubsruci

Man; tab

10

PABOO

2MMB

PABOO

BOMB

F ig u re 4 .13 : Architecture com parisons between Sun E450 SMP (left) and H P 9000 V2200 SM P
(right): th e memory d a ta link of the E450 may become a bottleneck w hen sim ultaneous memory
access requests from m ultiple processors; th e H yperPlane crossbar connected between th e mem ory
m odules and th e processors on the H P 9000 V2200 can effectively reduce th e contention.

in different locations, a crossbar interconnection network to link each processor to all the

memory modules would significantly reduce the contention. The E450 does have a 5 x 5

crossbar to connect 2 pairs of processors, 2 I/O ports and the memory. The communications

between the 4 processors the memory modules are connected through the single memory

data link. Figure 4.13 shows the crossbar interconnections of the E450 among the processors,

the shared-memory modules and the 2 1 /0 ports. The contention occurs in the memory

data link when the multiple processors request memory accesses simultaneously.

We have observed severe performance degradation caused by memory access contention.

Figure 4.12 shows that this contention makes the execution time curves of the three pro­

grams jump sharply and merge together when n > 18 of double type and n > 19 of float

type. In contrast, on a single processor of E-450. accesses to the the memory through the

memory bus has no contention so th a t the algorithms scale well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 73

4 .6 .2 Perform ance C om parisons on th e H P 9000 V 2200

HP 9000 V2200 is a 1997 SMP product with up to 16 processors. We used 4 processors

for performance comparisons. Each node is a HP PA-8200 processor of 200 MHz with a 2

MB direct-mapped Ll data cache. The cache line is 32 bytes. Due to limited associativity,

we only implemented the blocking with padding algorithm to compare with blocking with

software buffer and the base reference.

The HP SMP has a crossbar interconnection network, the HyperPlane crossbar, to

connect up to 8 pairs of processors to 8 memory modules. Multiple pairs of processors can

access different memory modules simultaneously. Each pair of the processors is connected

to the crossbar through an adapter called HyperPlane Runway Agent. Figure 4.13 gives

the interconnection structure of the HP 9000 v2200 of 4 processors.

In our experiments, the 4 processors are divided into two pairs which are connected to

two memory modules by a 2 x 2 hyperplane crossbar. Each pair of processors may have

contention competing for the adapter, but the crossbar is able to allow simultaneous data

accesses among the memory modules. The negative performance effect due to the data link

contention observed on Sun E450 was significantly reduced on the HP SMP, which shows the

effectiveness of the crossbar. Figure 4.14 shows comparative execution time curves between

the “float” and “double” types on E450 in Figure 4.14. The execution times of the three

programs are quite stable and independent of the size of n. Both the padding programs of

the float type and of the double type outperformed the blocking methods with buffer up

to 40% and 18% respectively. Their execution curves almost merge together with the base

reference curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 74

V-2200 (4 processors, float) V-2200 (4 processors, doubte)

10

8

6

4

2

0
17 18 19 20 21 22 23 2416

10

8

.*----6

imt
I

4

2

0
17 18 19 20 21 22 23 2416

n n

F ig u re 4 .14 : Execution com parisons on H P 9000 V2200: “bbuf-br” represents the algorithm of
blocking w ith software buffer: “bpad-br” represents th e algorithm of blocking w ith padding: and
“base” represents the ideal base line reference.

4.7 Summary

We have examined and developed cache-optimal methods for bit-reversal data reorderings.

These methods have been tested on 5 representative uniprocessor workstations of 1995 to

1999 products to show their effectiveness. Different methods have their merits and limits.

The blocking only method is limited by data sizes. Although the blocking with software

buffer method is architecture independent, it increases cross interference, instruction count

and needs additional memory space. The blocking with a register buffer method is fast but

is limited by the number of available registers. Blocking with associativity and registers

works well on high associativity caches. We have shown tha t the methods of blocking with

padding, blocking for TLB and padding for TLB can effectively exploit cache locality, and

are almost independent of hardware. Thus, they could be widely used on many uniprocessor

workstations and SMP multiprocessors. We summarize different techniques and their merits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. FAST BIT-REVERSALS 75

methods cross
interference

Instruction
count

memory
space

program
complexity

comments

blocking only 0 limited by data sizes.
blocking with

software buffer
+ + + I system independent.

blocking with
register buffer

1 limited by the number
of available registers.

blocking with
associativity
and registers

2
works well on high

associativity caches.

blocking with
padding

+ I works well on
all systems.

blocking for TLB 0
a TLB size dependent

outer loop, effective for
fully associative TLBs.

padding for TLB + 1
paddings by using L
pages, effective for

set associative TLBs.

Table 4.2: Summary of the blocking methods and their impact on the three aspects of performance
(cross interference, instruction count, and memory space) and on the program complexity. The
performance of “blocking only” method is the base line for comparisons. Note: + means that the
method quantitatively increases the factor and hurt the performance; and blank means it has no
impact. The program complicity is subjective, and compared with the “block only” method, with 1
being a slightly more complex, and 2 a moderately more complex.

and limits in Table 4.2. which gives a guideline for application users to choose a technique

based on the size of the problem and the machines available.

The methods have also been tested on two commercial SMP multiprocessors. By ex­

ploiting cache locality of each processor, we have effectively eliminated the conflict misses

so tha t accesses to the shared memory and contention are minimized. However, another

potential bottleneck on SMPs is the data access contention to the shared-memory. We show

tha t crossbar interconnections between processors and memory modules play an im portant

role in parallel bit-reversal data reorderings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Reduce DRAM Row-buffer

Conflicts by Breaking Address

Mapping Symmetry

Chapter 4 presents software methods at the application level to reduce memory stall time.

In this chapter, we target directly reducing DRAM access latency using hardware methods.

Our focus is on DRAM row buffer, a cache structure existing in DRAM chips. We first

show that the address mapping symmetry between cache and DRAM is the inherent source

of row-buffer conflicts in a typical memory hierarchy. Breaking the symmetry to reduce

the conflicts and to retain the spatial locality, we propose and evaluate a permutation-

based page interleaving scheme. We have also evaluated and compared two representative

cache mapping schemes that break the symmetry a t the cache level. We show that the

proposed page interleaving scheme outperforms all other mapping schemes based on its

overall performance and on its implementation simplicity.

We have made three contributions in this study:

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 77

• We show tha t the address mapping symmetry between the cache level and the DRAM

level is the architectural source of row-buffer conflicts. Breaking the mapping sym­

m etry can remove this source of conflict. We propose a permutation-based page in­

terleaving scheme to break the mapping symmetry a t the DRAM level and retain the

spatial locality of the row buffer. Our performance results show that the new scheme

effectively reduces the row buffer miss rate and the memory stall time for SPEC2000

programs.

• We examine existing cache mapping schemes and their effects on reducing the conflicts

a t the DRAM row buffers, and show th a t breaking the address mapping symmetry at

the cache level is effective in reducing conflicts at both cache and DRAM row-buffer

levels. However, the reduction of average cache miss rates is insignificant, and the

increase of processor core complexity by this approach is nontrivial. The results of

this study show that our permutation-based page interleaving scheme has the lowest

row buffer miss rates and the best overall performance, while the increase of complexity

by this approach is trivial and is outside the processor core.

• We evaluate the effects of large cumulative DRAM row-buffer sizes on the effectiveness

of the permutation-based page interleaving scheme. We find that the scheme can still

be effective for large row buffers, even when the cumulative row-buffer size is larger

than the L2 cache size.

The rest of this chapter is organized as follows. Section 5.1 presents the existing address

mapping scheme. Section 5.2 provides insights into the address mapping symmetry, and

shows how conflicts are caused by the symmetry. Section 5.3 describes the permutation-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 78

ItseT̂I block offset

P-b
page offset Ibanfclndax | page offset

benk index page offset

cactie-reiated
representation tag

cache line
inteleaving t page index

page
inteleaving page index

F igu re 5.1: Bit representations of a memory address for both cache addressing and memory ad­
dressing with conventional cache-line and page interleaving schemes.

based page interleaving scheme. Section 5.4 describes the experimental environment. Sec­

tion 5.5 presents the performance results of using the permutation-based page interleaving

scheme. Section 5.6 evaluates the effectiveness of several cache mapping schemes on reduc­

ing row-buffer conflicts, and discusses their merits and limits. Section 5.7 investigates the

case that the cumulative row buffer size is very large. Finally, Section 5.8 discusses the

related work, and Section 5.9 summarizes this study.

5.1 Existing Address M apping Schemes

Almost all computer systems today use conventional interleaving schemes for both caches

and DRAM. Figure 5.1 shows the bit representations of a memory address for conventional

cache-line and page interleaving, and gives the relationship between the cache-related rep­

resentation and the memory-related representation for given memory hierarchical configu­

ration.

The cache-line interleaving scheme uses the k bits above the low order b bits (L2 block

offset) as the memory bank index. In the uniprocessor system, the processor usually requests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 79

data from the memory in a unit of an L2 cache line. The cache-line interleaving scheme

attem pts to access multiple memory banks uniformly (e.g. [25]). However, since continuous

cache lines are distributed in different memory banks, this scheme can not effectively exploit

the data locality in the row buffer.

The conventional page interleaving scheme uses the k bits above the low order p bits

(page offset) as the bank index. This balances between exploiting the data locality in row

buffer and referencing memory banks uniformly. However, it may cause severe row buffer

conflicts in some typical cases that we will discuss next.

The high order interleaving scheme uses the high order k bits as the bank index. This

exploits more data locality than low order interleaving, but also makes accesses to multiple

banks less uniform. In addition, continuous accesses in DRAMs crossing the page boundary

will incur precharge and row access penalty. Thus, there is no benefit to exploit spatial

locality beyond the page size.

5.2 M apping Sym m etry and Row Buffer Conflicts

We consider row buffer conflicts in the context of writeback caches with the conventional

cache address mapping and DRAM memory with the page-interleaving scheme. We define

th a t two addresses are cache-conflicting if they have the same cache index but different

cache tags. In other words, they are in different blocks that are mapped to the same cache

set. We define that two addresses are row-buffer-conflicting if they have the same bank

index but different page indices, i.e., they are in different pages of the same bank. We have

the following findings:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 80

• Two cache-conflicting addresses are row-buffer-conflicting, provided the cache size di­

vided by the cache associativity is larger than or equal to the cumulative row buffer

size. We call this condition as the large-cache condition. When the large-cache condi­

tion holds, the bits for selecting the bank index is a subset of the bits for selecting the

cache set index, and the bits for selecting the page index is a super set of the bits for

selecting the cache tag, as shown in Figure 7.2. Two cache-conflicting addresses have

the same cache set index, thus they have the same bank index. On the other hand,

they must have different cache tags, so their page indices are different. Therefore,

they are row-buffer-conflicting.

• Assume the large-cache condition holds. For writeback caches, the block address of a

writeback is row-buffer-conflicting with the block address of the miss that causes the

replacement. The two block addresses must be mapped onto the same cache set. and

thus are cache-conflicting. Thus, they are row-buffer-conflicting.

• Assume the large-cache condition holds. Cache conflict misses may possibly result in

row-buffer conflicts. We will use examples to explain this effect in Section 5.2.3.

Mapping symmetry refers to the fact that both cache and DRAM address mappings use

the simple interleaving scheme, and use many common bits for selecting the module to map

(cache set at cache level and bank at DRAM level). In particular, when the large-cache

condition holds, all bits for selecting DRAM bank are used in the bits for selecting cache

set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 81

5.2 .1 Large-cache C ond ition in C om puter S ystem s

The large-cache condition is common in today’s computers. For a given cache and DRAM

chip configuration, there is a threshold of memory size under which the large-cache condition

will hold, and this threshold is generally large. For example, assume a computer has a 2MB

2-way associative L2 cache, and its memory system uses DRAM chips tha t have 8192 rows

(pages) per bank1. For those chips, the ratio of row buffer size to DRAM capacity is 1:8192.

In this example, the large-cache condition holds until the memory size increases beyond

8 GBytes. In practice, it is possible that the memory size is larger than the threshold.

However, row buffer conflicts can still be severe. We will discuss this in Section 5.7.

5 .2 .2 E ffect o f C ache W ritebacks

The writeback policy is commonly used for an L2 cache to reduce memory bandwidth

demand, which has been a crucial issue as the processor speed increases [13]. When a

writeback happens, as discussed above, the addresses of the related miss and writeback are

row-buffer-conflicting. For a writeback and write-allocate cache, either a read miss or a write

miss results in a memory read request. The writeback results in a memory write request.

Normally, programs have spatial locality. When a sequence of replacements of a dirty cache

blocks happens, the read requests and the write requests conflict on the row buffer. This

causes frequent row-buffer conflict misses while the pages with the read addresses and the

write addresses are replaced and retrieved back and forth.

We will use the following example to show this effect:

'This is common for 256Mbit SDRAM chips commercially available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 82

double X[N], Y[N], sum = 0;

i n t i ;

for (i * 0; i < N; i ♦+)

X[i] = i;

for (i = 0; i < N; i ++)

sum ♦= Y[i] ;

We assume that the cache is direct-mapped, array X and array Y are mapped onto the

same cache sets, and array Y is not loaded into the cache at the beginning of execution.

At the time array Y is accessed, a sequence of misses happens and each miss causes a

writeback. From the DRAM point of view, a sequence of read requests and a sequence of

write requests come to different pages in the same bank during a short time frame when

the bank is accessed. In this worst case, each read or write results in a row buffer miss.

Write buffers can be used to reduce processor stalls waiting for memory writes [31, 100].

The write buffer can be implemented with read bypass (read misses have higher priority

than writes) or with no-bypass. The write buffer with no-bypass will not change the access

patterns causing row-buffer conflicts. The write buffer with read bypass can alleviate row

buffer conflicts by postponing the writebacks and grouping consecutive reads together. The

effectiveness of the write buffer depends not only on its size, but also on when the buffered

data are written to memory. One write policy for reducing row-buffer conflicts is to write

the buffered data to memory only when the number of pending writes reaches a threshold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 83

However, since writebacks are not issued immediately when the memory system is free,

the delayed writebacks may compete with subsequent reads and increase their latencies.

Another write policy is to write the buffered data to main memory whenever there are no

outstanding reads. However, the memory access patterns do not change so much in this

case. In Section 5.5.3, we will show with experiments that using write buffers may reduce

row-buffer miss rates but fails to reduce memory stall time.

5 .2 .3 T h e Effect o f C ache C onflict M isses

Some typical patterns of cache conflict misses will result in row buffer conflicts. For example,

double X[N];

double Y[N], sum, i;

for (i = 0; i < N; i ++)

sum += X[i] * Y[i] ;

W ithout losing generality, assume the cache is direct-mapped, the arrays are contiguous

in the physical memory space, and X[0] and K[0] are mapped to the same cache block.

Severe cache conflict will happen and each access to X[i] or K[i] will result in a cache miss.

From DRAM point of view, two sequences of read requests to the same bank are interleaved

during a short time frame while the bank is accessed. Each read request will result in a row

buffer miss.

Cache conflicts may be reduced by increasing cache associativity, by using a victim

cache [56], or using other hardware/software approaches. However, this does not alleviate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 84

the row-buffer conflicts due to writeback. In those cases, cache conflict misses can be a

secondary source of row buffer conflicts.

5.3 A Permutation-based Page Interleaving

In order to address the problem of row-buffer conflicts caused by cache writebacks and cache

conflict misses, we introduce a new memory interleaving scheme that generates different

bank indices in a way that retains spatial locality and reduces row-buffer conflicts.

5.3 .1 T h e Schem e and Its P roperties

Our memory interleaving scheme, called permutation-based page interleaving, is shown in

Figure 5.2. The low order k bits of the L2 tag and the original bank index are used as

the input to a fc-bit bitwise XOR logic to generate the new bank index. The page index

and the page offset are unchanged. The selection of k bits from the bank index under

the conventional page interleaving scheme keeps the same degree of data locality, while the

selection of k bits from the L2 tag attem pts to make a wide distribution of pages among

banks for exploiting concurrency. O ther design choices could be used with the same mapping

principle. We will discuss these later.

Let (<!„,_ iOfn- 2 • • • ao) be the binary representation of a memory address A. Then the

bank index under the conventional page interleaving, / , is (ak+p_ i • • • ap) . The new bank

index after applying the permutation-based page interleaving scheme, / ', is

a[= a, © aTn_t+,_p for i = p , . . ., k + p - 1 (5.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE D RAM ROW-BUFFER CONFLICTS 85

i li

k— k —-
mm i i

4k >✓
n

J &

,___________ 7 1 .__________________,
p a g a n M i I b M M K I p agaodw i I

Figure 5.2: The permutation-based page interleaving scheme.

This interleaving scheme has the following properties, which are useful in achieving the

objectives of exploiting both the concurrency and the data locality:

1. Cache-conflicting addresses are distributed onto different banks.

Given any two cache-conflicting addresses, their bank indices in conventional page

interleaving are identical, but their t-bit L2 tags are different. As long as the low order

k bits of the two tags are different, the k-bit XOR function will produce two different

bank indices. Figure 5.3 shows an example of mapping four L2-conflict addresses onto

16 banks. All the four addresses are mapped onto the same bank in conventional page

interleaving. After applying the permutation-based page interleaving scheme, they

are distributed onto four different banks.

2. The spatial locality o f memory references is preserved.

All addresses in the same page are still in the same page after applying our interleaving

scheme.

3. Pages are uniformly mapped onto multiple memory banks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 86

parmutatton
-based
page
jntsrtoaving

conventional
page
interleaving

memory space

Figure 5.3: An example of mapping four memory addresses with the conventional page interleaving
and the permutation-based page interleaving schemes. Only the fc-bit bank index and the low order
fc-bit of L2 tag are shown for each address.

The permutation-based page interleaving scheme still uniformly maps continuous

pages onto multiple memory banks, since the conventional bank index information

is used in the mapping. Figure 5.4 gives an example to show tha t continuous pages

are uniformly mapped onto four memory banks by both the conventional and the

permutation-based page interleaving schemes.

One would think that spatial locality of memory references could be maintained and

page conflicts could be reduced by using only the low order k bits of the L2 tag as the bank

index, thus avoiding the XOR operation. The limit of this approach is tha t it maps a large

fraction of the memory space (of the L2 cache size) onto the same bank. This would create

hot spots on some memory banks and introduce a new source of page conflicts.

There are several alternatives to the selection of k bits among the t-bit L2 tag. Since pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 87

conventional page Hiuriaavinglow order
2-Mot
L2 <*0 Bank 0 Bank 1 Bank 2 Bank 3

00

01

10

11

0 1 s 3

L U1 L*2 L*3

2L 2L*1 2Lft 2L«3

3L au i 3L*2 au3

pannutation-MMd page interleaving

Bank 0 Bank 1 Bank 2 Bank 3
0 1 2 3

U1 L L+3 L«2

2U2 2L+3 2L 2L+1

3U3 3U2 a> i SL

Figure 5.4: An example of mapping continuous pages onto four memory banks under the conven­
tional and the permutation-based page interleaving schemes, where L is the number of pages the L2
cache can hold.

grams have data locality, it is more likely that higher order bits of L2-conflict addresses are

the same. Our experiments show that choosing the low order k bits achieves or approaches

the lowest row-buffer miss rate for all the benchmark programs used.

We will later show that the risk for the XOR operation to cause more row-buffer conflicts

is very small in practice. A major reason for this is as follows. The memory space can be

divided into segments in the unit of the cache size. The XOR operation uses the same

fc-bit L2 tag for the addresses in each segment. Thus, it does not change the conflicting

relationship between any pair of addresses in each segment, which is defined as whether the

pair is mapped onto the same row buffer or not. Our analysis also shows that the XOR

operation may increase the chance of conflicts only for addresses in some specific segment

boundaries. Since the cache size is sufficiently large in current computer systems, these

addresses form a very small subset in the entire memory address space.

The mapping function of a memory interleaving scheme must satisfy the one-to-one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 88

property [84]. For a given memory address A , we can obtain its memory location A' using

the permutation-based interleaving scheme by computing its bank index I ' using equation

(5.1). Conversely, for a given memory location A ', we can obtain its address A by computing

(afc+p_i...Op) as a '© a(n_£+i_p for t = p , f c + p - 1. When the large-cache condition holds,

(s 4- b) > {k + p). Thus, for i = p , . . . , k 4- p — 1.

ai © am-t+i—p = (a « © am-t+i-p) © O-m-t+i-p — at■ (5.2)

Therefore, the permutation-based mapping function has the one-to-one property.

5 .3 .2 C om parisons w ith th e Sw apping Schem e

The swapping scheme is another interleaving scheme that is proposed to reduce the row

buffer conflicts. Zurawski, Murray, and Lemmon [127] present the scheme tha t swaps partial

bits of the L2 tag and partial bits of the page offset, which is used in the AlphaStation 600

5-series workstations. We call it the swapping scheme in this study. Wong and Baer [118]

study the performance of the swapping scheme for selected SPEC92 benchmark programs

by finding the optimal number of bits to be swapped for these programs.

Figure 5.5 describes the swapping scheme. This scheme maps every 2" L2 conflict

addresses (with the same (op_ i.. ,a p_n)) to the same page. Thus, if two L2 conflict misses

have the same high order n bits in their page offsets, they will cause page hits. However,

if two L2 conflict misses have different high order n bits in their page offsets, they will still

cause page conflicts. In addition, the swapping scheme may degrade the spatial locality of

memory references because the block size of continuous addresses inside a page is decreased

from 2P to 2p-n. The more bits th a t are swapped using this method, the more conflict misses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 89

F ig u r e 5 .5 : The swapping scheme.

can be removed, b u t the less spatial locality is retained. In contrast, the permutation-based

scheme reduces page conflicts and preserves data locality at the same time.

The swapping scheme attem pts to convert accesses to different pages in the same bank

into accesses to th e same page. The permutation-based scheme attem pts to convert accesses

to different pages in the same bank into accesses to different banks. The permutation-based

scheme not only reduces the row-buffer conflicts of current accesses, but also potentially

increases the row-buffer hit rates for subsequent accesses.

5.4 Experim ental Environment

We use our enhanced sim-outorder to configure an 8-way processor, to set the load/store

queue size to 32, and to set the register update unit size to 64 in the simulation. The

processor allows up to 8 outstanding memory requests, and the memory controller has

the ability to accept up to 8 concurrent memory requests. Reads are allowed to bypass

writes. The outstanding writes are scheduled to memory modules as soon as there are no

outstanding reads. Table 5.1 gives the major architectural parameters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 90

CPU Clock rate 1.6 GHz
LI inst. cache 32 Kbytes, 2-way, 32-byte block
LI data cache 32 Kbytes, 2-way, 32-byte block
LI cache hit time 2 processor cycles
L2 cache 2 Mbytes, 2-way, 64-byte block
L2 cache hit time 10 processor cycles
memory bus width 32 bytes
memory bus frequency rate 133 MHz
number of memory banks 4~256
row buffer size 1~8 Kbytes, and 64 KBytes
DRAM precharge time 24 ns
DRAM row access time 24 ns
DRAM column access time 24 ns
L2 MSHR 8 entries
Write buffer 8 entries

T a b le 5.1: A rchitectural param eters of simulation

We use the SPEC2000 [45] as workloads, which are more memory-intensive than

SPEC95. There are thirteen programs with significant memory stall times (measured by

the differences using two simulations, one with an infinite L2 cache and one with a 2-way

2-MByte L2 cache). We include all those programs in experiments, as shown in Table 5.2.

We use the precompiled SPEC2000 benchmarks provided by Weaver [117](ISA-Alpha). For

all programs, we fast-forward 4000M instructions and collect program execution statistics

on the next 200M instructions (here 1M = 106).

5.5 Performance Evaluation o f Permutation-based Page In­

terleaving Scheme

In this section, we evaluate the permutation-based page interleaving scheme by comparing

it with three other interleaving schemes: cache-line interleaving, page interleaving, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 91

Name Remarks
181.mcf Minimum cost netvork flov solver
197.parser Natural language processing
168.vupvise Quantum chromodynamics
171.swim Shallow water modeling
172.mgrid Multi-grid solver in 3D potential field
173.applu Parabolic/elliptic partial differential equations
178.galgel Fluid dynamics: analysis of oscillatory instability
179.art Neural network simulation; adaptive resonance theory
183.equake Finite element simulation; earthquake modeling
187.facerec Computer vision: recognizes faces
188.ammp Computational chemistry
189.lucas Number theory: primality testing
301.apsi Solves problems regarding temperature, wind,

Table 5.2: SPEC2000 programs used in performance evaluation.

swapping.

5.5 .1 R ed u ction s o f Row-buffer M iss R ates

Figure 5.6 shows the row buffer miss rates of SPEC2000 programs with the four interleaving

schemes: cache-line interleaving (cacheline). page interleaving (page), swapping interleaving

(swap), and our permutation-based page interleaving (page-xor) schemes. The memory

system contains 32 memory banks. The row-buffer size of each bank is 2KB. We use sim-

outorder in the Simplescalar toolset to collect the row buffer miss rate.

We have the following observations:

• All programs using cache-line interleaving have the highest row buffer miss rates

compared with the other three interleaving schemes. The average miss rate is 88.7%.

Since the cache-line interleaving is normally associated with the close-page mode, its

high row-buffer miss rates do not necessarily mean poor overall performance. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 92

ICachelinc BPage DSwap □ Page-xor

3 70%
3

k 50%
1

3 30%

Figure 5.6: Row buffer miss ra tes for different interleaving schemes w hen th e number of banks
is 32, and th e row buffer size is 2KB. Cacheline represents cache-line interleaving, page repre­
sents conventional page interleaving, swap represents the swap scheme, and page-xor represents
th e perm utation-based page interleaving.

other schemes are used with the open-page mode, where the high miss rates do mean

poor performance.

• All programs using page interleaving have lower miss rates than those using cache-

line interleaving. However, the miss rates are still very high. The average miss rate

(arithmetic mean) is 58.6%. O nly one program has a miss ra te less than 30.0%.

• The swapping scheme may reduce the row-buffer miss rates for some programs but

increase the miss rates for others. The average miss rate is 66.3%, higher than that

of the page interleaving scheme. The swapping scheme could make programs exploit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 93

less locality than page interleaving, as we have discussed in Section 5.3.

• For almost all programs, our permutation-based interleaving scheme obtains the lowest

row-buffer miss rates compared with the other three interleaving schemes. The only

exception is 178.galgel, whose miss rate is slightly higher than tha t using the swapping

scheme. The average miss rate is 26.8%. Six programs have miss rates less than 15.0%.

5.5 .2 Effects o f M em ory O rganization V ariations

Changing the number of memory banks and the row-buffer size of each memory bank, we

have evaluated the effects of memory system organization variations on the interleaving

schemes and on memory performance. We use the programs 171. swim and 173.applu as

examples, which is memory intensive and well representative for the group of workloads.

Figure 5.7 and Figure 5.8 show how the row-buffer miss rates of the two programs change

under the four interleaving schemes, as the number of banks varies from 4 to 256 and the

row-buffer size varies from 1 KBytes to 8 KBytes, respectively.

For each memory system variation, our experiments show that the permutation-based

page interleaving scheme reduces the row-buffer miss rate effectively. Furthermore, the

permutation-based scheme reduces row-buffer miss rate more closely proportioned to the

increase in the number of memory banks or the row buffer size than the conventional page

interleaving schemes. The reason behind this fact is tha t the permutation-based bank index

generation can widely distribute the conflicted pages among the memory banks. The larger

the number of memory banks, the more effective of the permutation-based bank index

generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 94

100%

90%

80%

a 70%

j j 60%

h 50%

1
® 40%

SL 30%

20%

10%

0%
Swim Swim-xor Applu Applu-xor

F ig u r e 5.7: Row buffer miss rates of program 171.sw im and 173.applu under conventional page
interleaving scheme (w ithou t ”-xor”) and perm utation-based page interleaving (with "-xor") as th e
num ber of bank changes from 4 to 256 with a fixed 2-K B yte row buffer size.

5 .5 .3 Effects o f W rite Buffers

For the thirteen programs, the ratios of the number of memory writes to the number of

memory reads range from 0.10 to 0.76. Using SPEC2000 programs 172.m grid as an example,

we show the effects of write buffer2 with different write policies on the row-buffer miss rates.

The performance of the other workloads is similar. We have compared the following two

write policies: w rite a f te r reaching threshold (writes are issued together only when the

number of writes reaches a threshold), and w rite w h e n m e m o r y is id le (writes are scheduled

2This write buffer is located between the L2 cache and the main memory and is used to hold writebacks.

■ 4 banks
■ 8 banks
□ 16 banks
□ 32 banks
■ 6 4 banks
■ 128 banks
■ 256 banks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 95

■ I KB
■ 2KB
□ 4 K B
□ SKB

Sw m -xnr Applu Appiu-xor

Figure 5.8: Row buffer miss rates of program 171.swim and 173.applu using the conventional page
interleaving scheme (without ”-xor”) and the permutation-based page interleaving (with ”-xor”) as
the row buffer size changes from 1-KBytes to 8-KBytes with fixed 32 banks.

to memory banks whenever there are no outstanding reads). We have used the la tter policy

through all other experiments.

Although workloads scheduled by the write after reaching threshold policy normally get

lower row-buffer miss rates than those scheduled by the policy of write when memory is

idle, the write after reaching threshold policy may cause higher total execution tim e due to

longer memory stall time. For example, our experiments show that the program 172. mgrid

scheduled by the write after reaching the threshold policy has a 23% row-buffer miss rate

with the page interleaving scheme, compared with a 56% row-buffer miss rate using the

policy of write when memory is idle, however, the CPI is increased from 0.68 to 0.92.

This is because buffered write requests will stall read requests when those requests are

■an

9 0 *

ao*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 96

issued together, and in turn they stall the processor. For this reason, the policy of write

when memory is idle is used for comparing the overall performance of different interleaving

schemes in our study.

A major function of the write buffer is to allow memory reads to bypass memory writes

so that write requests will not stall the processor. To improve bus utilization, write requests

should be issued as long as the bus is idle and there is no pending read. To avoid row buffer

conflicts, however, write requests should be held until no future reads will access the same

pages. To design a scheduling policy to meet those two conflicting goals is difficult, and

may significantly increase the size requirement for the write buffer. In contrast, using our

interleaving scheme to avoid such conflicts is much simpler.

5.5 .4 O verall Perform ance Im provem ent

Figure 5.9 gives the CPI of twelve SPEC2000 programs (excluding 181.mcf) using the four

schemes. We exclude 181.m cf because its CPI values are much higher than other programs

which would distort the other bars. The close-page mode is used for cache line interleaving,

while the open-page mode is used for the other three schemes. We also show the CPI of

a base system, which is a system with an infinitely large L2 cache to eliminate all main

memory accesses. The CPI of the base system provides a lower bound for any performance

improvement on DRAM memory systems. We use CPI instead of IPC in order to show how

much the permutation-based mapping reduces the memory stall time, which is represented

by the difference between the CPI of the base scheme and those of other schemes. We will

use the harmonic means of IPC to compare average performance.

Among the three mapping schemes, except our permutation-based page interleaving,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE D RAM ROW-BUFFER CONFLICTS 97

B Cache line BPage DSwap □ Page-xor BBase

3.0

2.0

1.5

1.0

0.5

0.0
■o•c
00

e 3 3S -3O00Q .

Figure 5.9: CPI of the twelve SPEC2000 programs using the four interleaving schemes. The number
of memory banks is 32, and the row buffer size is 2KB.

the average performance of cache-line interleaving is better than the other two. This is

because it uses close-page mode, and because the row buffer miss rates for the other two

schemes are very high. The permutation-based page interleaving is better than the cache-

line interleaving on all programs except 181.mcf, which is not shown in Figure 5.9. The CPI

values of 181.mcfaie 7.3 and 7.0 for permutation-based mapping and cache-line interleaving,

respectively. This program is bandwidth-bounded. Except 181.mcf, the permutation-based

scheme outperforms all other schemes on all programs. The harmonic mean of IPC for

cache-line interleaving, page interleaving, the swapping scheme, and permutation-based

interleaving are 0.70, 0.61, 0.57, 0.77, respectively (including 181.mcf). Using this metric,

the average improvement of the permutation-based scheme over the cache-line scheme is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 98

11%.

5.6 Breaking M apping Symmetry at Cache Level

Researchers have studied cache mapping schemes to reduce cache conflict misses. Two

representative schemes are bitwise-XOR [40] and polynomial mapping [83, 40, 95]. Those

cache mapping schemes also break the address mapping symmetry but at the cache level.

Thus, they may also reduce the row buffer conflicts. For this purpose, the effectiveness

of those schemes is determined by how successfully they reduce the possibility that two

cache-conflicting addresses are row-buffer-conflicting.

In this section, we examine cache mapping schemes aiming at reducing row buffer miss

rates, and discuss the tradeoffs between using cache mapping schemes and using DRAM

interleaving schemes.

5.6.1 B itw ise-X O R and Polynom ial M apping

In the bitwise-XOR scheme, the least significant s bits of the tag are XORed with s set

index bits to form the new cache set index, where s is the number of bits in cache set index.

The polynomial mapping scheme [83] uses equation R{x) = A(x) mod P(x) to map a given

address onto a module (here a cache set), where R(x), A(x), P(x) are polynomials over the

Galois Field GF(2). In the equation, A(x) is the polynomial associated with the address

to be mapped, R(x) is the polynomial associated with the cache set index, and P(x) is an

irreducible polynomial of order s. The polynomial mapping is effective in avoiding conflicts

for strided access patterns. It has been proven tha t any sub-sequence of length M within

strides of form 2* will be evenly mapped onto M module, where k is a positive integer. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 99

bitwise-XOR scheme can be implemented using single-level XOR gates with two inputs.

The polynomial mapping can be implemented using single-level XOR gates with multiple

inputs.

5.6 .2 R ed u ction o f M iss R ates

We first compare the cache miss rates of the two cache m apping schemes with conventional

cache mapping. We use those schemes only for L2 caches but not for Ll caches. For the

polynomial mapping, we choose arbitrarily the polynomial P{x) associated with prime num­

ber 1572821, as there is no theory yet on “good” prime numbers used with the polynomial

mapping. We have experimented with a few other random ly chosen prime numbers for a

subset of the programs, and found the results are consistent with the reported ones.

Table 5.3 shows the L2 cache miss rates for the th irteen SPEC2000 programs. The

cache-xor2 represents a revised bitwise-XOR that we will discuss soon in this section. The

miss rates of the two cache mapping schemes are almost identical with the conventional

mapping schemes except for program 178.galgel, 179. art, 188.ammp, and 189.lucas. For

178.galgeL, the polynomial mapping scheme reduces the cache miss rate dramatically, but

the bitwise-XOR does not. For 179.art. both schemes increase the cache miss rates by

almost two times. For 188.ammp, both schemes reduce th e miss rates and the bitwise-XOR

does better. For 189.lucas, the bitwise-XOR increases the miss rate by almost 35%, but the

polynomial mapping reduces the miss rate by more than 20%. On average, the polynomial

mapping reduces the miss rate from 23.5% to 22.0%, and the bitwise-XOR increases the

miss rate to 25.0%. The increase or decrease of the average miss rate is not significant,

which confirms the previous studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 100

Programs Default Cache-xor Cache-poly Cache-xor2
mcf 44.1% 43.2% 44.1% 44.0%
parser 8.4% 8.5% 8.6% 8.4%
wupwise 39.7% 39.7% 39.8% 39.7%
swim 27.9% 27.9% 28.0% 27.9%
mgrid 22.8% 22.8% 22.9% 22.8%
applu 37.2% 37.2% 37.1% 37.2%
galgel 18.2% 18.3% 1.7% 1.4%
art 3.2% 11.8% 11.5% 12.0%
equake 10.6% 10.6% 10.8% 10.6%
facerec 22.7% 22.3% 23.0% 22.8%
ammp 6.5% 2.9% 3.9% 7.0%
lucas 43.5% 58.6% 33.3% 33.3%
apsi 21.2% 21.2% 21.2% 21.2%
Average 23.5% 24.0% 22.0% 22.2%

T&ble 5.3: L2 cache miss rates for the conventional cache mapping (default), the bitwise-XOR
(cache-xor), the polynomial mapping (cache-poly), and the revised bitwise-XOR (cache-xor2).

We show the row-buffer miss rates of the two cache mapping schemes in Figure 5.10. We

also include the row-buffer miss rates of the permutation-based DRAM page interleaving for

comparison, where the conventional cache mapping is used. The bitwise-XOR scheme has

the highest row buffer miss rates for all programs. If we compare it with the conventional

DRAM mapping (in Figure 5.6). we will find this scheme only moderately reduces the row

buffer miss rate. The row buffer miss rates using the polynomial mapping are close to those

of the permutation-based DRAM page interleaving. However, the latter one is still better

for all applications. The average row buffer miss rates are 47.6%. 34.4%, and 26.8% for the

bitwise-XOR cache mapping, the polynomial cache mapping, and the permutation-based

DRAM mapping, respectively.

Here is why the bitwise-XOR scheme results in high row buffer miss rates. In this scheme,

the k tag bits tha t are XORed with the k bank index bits are not the least significant k bits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 101

B Page-xor B C ache-xor □ Cache-poly D C ache-»or2

100%

90%

80%

a 70%
K
a 60%

I
OB 40%

I
X 30%

20%

10%

0%

ic.

E
5

•o•c
00
E

Cl

E

Figure 5.10: Row-buffer miss rates for the permutation-based mapping (page-xor). the bitwise-
XOR mapping (cache-xor), the polynomial mapping (cache-poly), and the revised bitwise-XOR
(cache-xor2).

in the tag. In the program memory space, cache-conflicting addresses tha t differ only in the

least significant k bits have a shorter distance than other cache-conflicting addresses. Thus,

because of program locality, the least significant k bits change more frequently than other

bits in the access stream generated by a program. Under this scheme, the least significant

k bits are XORed with bits for selecting DRAM page offset, and the k bits XORed with

the bank index changes less frequently. Consequently, from the DRAM point of view, two

cache-conflicting addresses appearing within a short time frame are likely to have the same

bank index, causing conflicts a t the row buffer.

To confirm this, we switch the two portions of the tag bits such tha t the least significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 102

MPage-xor BCache-xor □ Cache-poly DCache-xor2 i

4.5 r

4.0

2.5

5

0.0
8 Se T3

'C00
3 i o•s i/:C.

Figure 5.11: CPI of twelve SPEC2000 programs using the permutation-based DRAM mapping
(page-xor)), the bitwise-XOR cache mapping (cache-xor), the polynomial cache mapping (cache-
poly]), and the revised bitwise-XOR cache mapping (cache-xor2).

k bits are XORed with the bits for selecting the bank index. This revised bitwise-XOR

is labeled as cache-xor2. The new scheme significantly reduces the row buffer miss rates,

and is slightly better than polynomial cache mapping. The average row buffer miss rate is

30.0%. The cache miss rates of this scheme are also shown in Table 5.3.

5.6 .3 C om parisons o f O verall Perform ance

Figure 5.11 shows the CPI of the programs (again 181.m cf is excluded). For the cache

mapping schemes, we do not consider in the simulation the possible delay of a critical path

by using the mapping. The bitwise-XOR cache mapping has the worst performance for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 103

most programs because of the severe row buffer conflicts and the slightly higher average

cache miss rate compared with other schemes. Its performance for 189.lucas is worse than

the other schemes because the other schemes have both lower cache miss rate and lower row

buffer miss rate. The permutation-based DRAM mapping has the best performance for most

programs because it has the lowest row buffer miss rates. It is much better than the others

for 179.art because the other three schemes increase the cache miss rate. However, it is

worse than the polynomial mapping and the revised bitwise-XOR for 178.ga.lgel because the

two cache mapping schemes reduce the cache miss rate dramatically. When being successful

in reducing cache miss rates, the polynomial cache mapping and the revised bitwise-XOR

cache mapping perform better than the permutation-based DRAM mapping. Otherwise,

the permutation-based DRAM mapping performs slightly better than the revised bitwise-

XOR cache mapping, and the latter one performs slightly better than the polynomial cache

mapping, because of the difference in row buffer miss rates.

The harmonic means of IPC are 0.77, 0.60, 0,74, and 0.75 for the permutation-based

DRAM mapping, the bitwise-XOR cache mapping, the polynomial cache mapping, and the

revised bitwise-XOR cache mapping, respectively. The result indicates tha t the advantage

of the permutation-based DRAM mapping in reducing the row buffer miss rate is so effective

tha t its disadvantage of not considering of cache miss reduction becomes insignificant.

5 .6 .4 Tradeoffs betw een C ache M apping Schem es a n d D R A M Interleav­

ing Schem es

As discussed in the previous subsection, using different cache mapping schemes (for exam­

ple, the polynomial one or the revised bitwise-XOR) may significantly reduce the row buffer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 104

miss rate. However, our performance results have shown tha t the average performance im­

provement from reducing cache conflict misses is insignificant. Compared with conventional

cache mapping and DRAM interleaving, almost the entire overall performance gain comes

from the reduction of row buffer conflict misses. Nevertheless, using a polynomial cache

mapping scheme may have the advantage of good predictability of cache behavior [95]. If

the predictability of cache behavior is important, cache mapping schemes like the polyno­

mial mapping are attractive because they can reduce conflicts a t both cache and row buffer

levels.

However, the implementations of these cache mapping schemes are nontrivial [95]. They

should not increase the delay in the critical path. When multiple-level caches maintain the

property of inclusion, i.e., the d a ta cached at a higher level must be cached at the lower level,

it is necessary to enforce explicit invalidation in the higher level cache when a cache block

in the lower level cache is replaced. Although those issues are addressable, the solutions

do increase the complexity of the processor core. In comparison, the permutation-based

page interleaving scheme does not have such implementation concerns, and the logic is

implemented outside the processor core. In short, the scheme is much more cost-effective

by considering both the significant performance gain and its simplicity.

5.7 Considerations o f Large Cumulative Row Buffer Sizes

All of our analyses of row buffer conflicts so far have been based on the large-cache condition,

which is normally realistic. However, if the memory size is very large, the cumulative row

buffer size may be larger than the cache size divided by the cache associativity. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 105

section, we examine a memory size threshold for the large-cache condition to hold, and

investigate how the increase of memory size beyond the threshold will affect the effectiveness

of the permutation-based scheme.

Assume IV is the value of the cache size divided by the cache associativity. In a DRAM

memory system, the ratio of DRAM capacity to the row buffer size is usually a constant R

for all DRAM chips. Thus, the ratio of the memory size, m, to the row buffer size is R. The

product of IV and R, denote as M , is a threshold for m. The large-cache condition holds

when and only when m < M . R is large in practice, for example. 8192 for today’s 256Mbit

SDRAM chips. In other words, the threshold M is 8 GBytes with a 2-way set associative.

2-MByte L2 cache and a DRAM system with such chips.

When m > M, we are specially interested in the cases when m is a small multiple of

M , for example, 2M, AM, or 8M , for practical reason. As m increases, eventually the

row buffer miss rate will be close to zero even under the conventional DRAM mapping.

However, this requires a very large memory size. The advantage of the permutation-based

scheme is still obvious when m /M is small. Under the conventional DRAM mapping, any

two cache-conflicting addresses can now be distributed to m /M row buffers instead of one

row buffer (assume m /M is less than the number of row buffers). Thus, the increase of

m /M will reduce the row buffer miss rate. However, the permutation-based scheme can

distribute those addresses onto all row buffers, whose number can be much larger than m /M

in practice.

When m > M , the tag bits and the k bits of bank index are partially overlapped.

We slightly change the permutation-based scheme as follows: instead of using the least

significant k bits in the tag for XORing, we use the least significant k bits in the tag portion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE D RA M ROW-BUFFER CONFLICTS 106

that are not overlapped with the bank index. This is necessary to guarantee the correctness

of the scheme because XORing overlapping bits will make the scheme lose the one-to-one

property.

Figure 5.12 shows the row buffer miss rates for all the thirteen programs for different

numbers of banks and a fixed row buffer size, each with the conventional page interleaving

and with the permutation-based page interleaving. The number of banks is 32, 64. or 128.

and the row buffer size is 64KB. The W here is 1MB. and the cumulative row buffer size

is 2, 4, and 8 times W, respectively. With r = 8192, the memory size threshold M is 16

GBytes, 32 GBytes, and 64 GBytes respectively. W ith the conventional page interleaving,

the average row-buffer miss rates are 30.0%, 14.1%, and 17.1%, respectively. W ith the

permutation-based page interleaving, the average row-buffer miss rates are 14.5%, 8.1%.

and 5.1%, respectively. In summary, using the permutation-based page interleaving is still

effective in improving the application performance even when the memory size is beyond

the threshold.

Using memory access scheduling techniques to exploit row-buffer locality and concur­

rency is another attractive approach (e.g. [90]). We believe the combination of access

scheduling and the permutation-based interleaving scheme can further improve memory

performance.

5.8 Other R elated Work

Hsu and Smith propose and evaluate several memory interleaving schemes that can both

increase data locality and avoid generating hot banks in vector supercomputers with cached

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 107

■ 32x64KB ■ 3 2 x 6 4 KB-xor 0 6 4 x 6 4 KB □ 64x64K B -xor ■ 128x64KB ■ 128x64KB-xor

70%

40%

30%

i 20%

10%

0%

s i g !E ■ ox
BO

a u
BO

3

Figure 5.12: T he row buffer miss rates of conventional and perm utation-based page interleaving
schemes when th e cum ulative row buffer size is larger th an cache size divided by cache associativity.
In th e legend, 32, 64, or 128 before the “x” represents the num ber of bank, 64K B represents the size
of the row buffer, and th e “xor” indicates using th e perm utation-based page interleaving.

DRAM [49], where processors do not have data caches. Our study targets superscalar

processors with DRAM memory systems. The large caches in our targeted systems make

the memory access patterns significantly different from those in the vector system without

caches.

There are several other research papers dealing with the bank conflict problem of vector

accesses in vector supercomputers. Authors in [37] and [96] attem pt to use prime memory

systems to address the conflict issues. Other papers focus on memory interleaving schemes

on vector systems [19, 84, 93, 99, 104, 114]. Authors in [42], [19], and [93] study skew

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 108

schemes. Rau, Schlansker, and Yen propose a pseudo-random interleaving technique using

the XOR function to randomize the mapping of references to memory modules in [84]. Their

scheme can eliminate the occurrence of long clusters due to structured data access. Sohi

studies permutation-based interleaving schemes that can improve memory bandwidth for a

wide range of access patterns for vector computers [104]. Valero, Lang, and Ayguade [114]

divide the memory address into severed portions according to the width of bank index, then

XOR all the address portions to generate the bank index. Their method can avoid bank

conflict due to power-of-two strides in vector machines. Seznec and Lenfant [99] propose

the Interleaved Parallel Scheme, which uses the XOR operation and parameters related to

the numbers of processors, logical memory banks, and physical memory banks to induce

more equitable distribution over memory banks for a wider set of vectors than the normal

mappings.

The above cited studies are based on vector supercomputers with SRAM memory sys­

tems. Besides different memory access patterns on those machines, the sources of access

conflicts in our targeted systems are also different from those in the vector machines without

DRAM memory systems. For example, elimination of DRAM row buffer conflicts without

reducing the available locality is a m ajor issue in our study. Therefore, our study has a

different objective with a different focus.

Besides memory bank interleaving techniques, there are other approaches to address the

memory latency problem, such as a blocking-free cache, prefetching, thread changing, and

data prediction and speculation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE D RAM ROW-BUFFER CONFLICTS 109

5.9 Conclusion

We have shown that the address mapping symmetry is the inherent source of row buffer

conflicts under conventional cache and DRAM address mapping. Breaking the mapping

symmetry, the proposed permutation-based page interleaving scheme can eliminate or signif­

icantly reduce severe row buffer conflicts and retain spatial locality. Conventional schemes,

such as cache-line and page interleaving, can not effectively exploit both DRAM concur­

rency and spatial locality in the row buffer. Our execution-driven simulations show that

the permutation-based scheme can significantly reduce row buffer miss rates and improve

the overall performance.

We have also shown that mapping symmetry can be broken at the cache-level to remove

this source of row buffer conflicts. We have evaluated two representative cache mapping

schemes, bitwise-XOR and polynomial mapping, which are proposed originally for avoiding

cache conflict misses. The polynomial mapping can reduce the row buffer miss rate close to

tha t of the permutation-based page interleaving, but the bitwise-XOR must be modified to

avoid conflicts. Our results indicate that, conflict-avoiding cache mapping schemes should

also consider the conflicts a t the row buffer. We show tha t almost all performance gains

come from reductions of row buffer miss rates, and the permutation-based page interleaving

scheme has the best overall performance. Considering the scheme does not increase the

complexity of processor core, it is also the most cost-effective approach.

In Table 5.4, we give a sum m ary of the three cache mapping and memory interleaving

schemes, namely, the bitwise-XOR cache mapping, the polynomial cache mapping, and our

permutation-based page interleaving scheme. We present their impacts on three aspects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. REDUCE DRAM ROW-BUFFER CONFLICTS 110

Mapping
Scheme

Cache conflict
reduction

Row-buffer
conflict reduc­
tion

Overall per­
formance
improvement

implementation
complexity

Bitwise-XOR
cache mapping

moderate low low moderate

Polynomial
cache mapping

moderate high high high

Permutation-
based DRAM
page interleav­
ing

N /A highest highest low

Table 5.4: Sum m ary o f th e th ree cache mapping and m em ory interleaving schemes, and their
im pact on th ree aspects o f perform ance, and on im plem entation complexity.

of performance, namely, cache conflict reduction, row-buffer conflict reduction, and overall

performance improvement, and their impacts on increasing implementation complexity. Our

study shows tha t the permutation-based page interleaving scheme outperforms all other

schemes based on its performance improvement and on its implementation simplicity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Cached DRAM: A Simple and

Effective Technique for Memory

Access Latency Reduction on ILP

Processors

In the previous study on the permutation-based page interleaving scheme, we have used the

existing DRAM row buffers to reduce DRAM access latency. In this chapter, we further

study a hardware method to enhance the DRAM row buffer with a small on-memory SRAM

cache, which is integrated into each DRAM chip and is attached to the DRAM banks. We

call it an on-memory cache. Like the previous method, this approach exploits the spatial

locality in cache miss streams. The SRAM cache outperforms the existing row buffers for

two reasons. First, the access time of SRAM cache is shorter than tha t of the row buffer.

With the current manufacturing technology, the hit time of the on-memory cache is roughly

half of the row access time. Second, the on-chip cache can be set-associative with DRAM

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 112

banks. In contrast, the row buffer is always direct-mapped with DRAM banks. Thus, the

on-memory cache is likely to have lower miss rates than the row buffers. Third, the on-

memory cache can be accessed independently from DRAM core. Even if a DRAM bank is in

precharge or in a row access, its cached data in the SRAM can be accessed simultaneously.

Because of those advantages, the on-memory cache can reduce more accesses to the DRAM

core and can return cached data faster them the row buffer.

Hsu and Smith [49] classify cached DRAM organizations into two groups: (1) the on-

memory cache contains only a single large line buffering an entire row of the memory array:

and (2) the on-memory cache contains multiple regular data cache lines that are organized

as direct mapped or set associative structures. A combination of (1) and (2) forms the third

class: the on-memory cache contains multiple large cache lines buffering multiple rows of

the memory array, which are organized as direct mapped or set associative structures. Our

work and some other related studies (e.g., [61] and [118]) belong to the third class.

Previous studies [46, 43. 61, 118] have shown that cached DRAM can improve memory

access efficiency for technical workloads on a relatively simple processor model with small

data caches (and in some cases, even without data caches). In a modern computer system,

the CPU is a complex ILP processor, and caches are hierarchical and large. Thus, the

architectural context of a cached DRAM has dramatically changed and evolved. Koganti [62]

investigated the performance potential of cached DRAM in systems with ILP processors, and

found it is effective as well. Aiming at further investigating the ILP effects and comparing

cached DRAM with other advanced DRAM organizations and interleaving techniques, we

present a study of cached DRAM in the context of processors with full ILP capabilities and

large data caches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 113

We have compared cached DRAM with several commercially available DRAM schemes:

SDRAM, Enhanced SDRAM, Rambus DRAM, and Direct Rambus DRAM. We find that a

cached DRAM has limited benefits for SPECint95 programs, but can significantly improve

the performance of most SPECfp95 programs and the TPC-C workload, which are more

data-intensive. A small on-memory cache of 16 x 4 KBytes can reduce the execution time

by 10% to 39% for eight selected SPECfp95 programs and 14% for the TPC-C workload, re­

spectively. The comparison is done with a conventional four-bank SDRAM. Our results also

show that the cached DRAM outperforms other DRAM architectures for these applications.

Our study provides three new findings: (1) cached DRAM consistently shows its per­

formance advantage as the ILP degree increases; (2) other contemporary DRAM schemes,

such as SDRAM, Enhanced SDRAM, Rambus DRAM, and Direct Rambus DRAM, do not

exploit memory access locality of data-intensive workloads as effectively as a cached DRAM

does; and (3) compared with a highly effective permutation-based DRAM interleaving tech­

nique, cached DRAM can still gain substantial performance improvement.

The rest of this chapter is organized as follows. Section 6.1 describes the structure and

the operations of cached DRAM. Section 6.2 describes the experiment environment. Sec­

tion 6.3 presents the performance of cached DRAM with a 4-way issue processor. Section 6.4

presents the performance of cached DRAM as the ILP degree of the processor increases.

Section 6.5 compares cached DRAM with the previous approach tha t exploits the row buffer

locality. Finally, Section 6.6 summarizes the study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 114

CPU
LI Cache

~T l S m S ------ 1

L2 Cache |
f Memory Bus

On-memory Cache

Cached DRAM

DRAM Core

F ig u re 6.1: General concept o f cached DRAM.

6.1 Structure and Operations o f Cached DRAM

C a c h e d D R A M is an existing technology tha t adds a small SRAM cache onto the DRAM

core. It takes advantage of the huge internal bandwidth existing in the DRAM core, so that

the cache block can be as large as a page. The processor usually has large-size caches but

the cache block is much smaller because of the limited bandwidth between the processor and

main memory. In general, a small cache with large block size can get a miss rate comparable

to that of a large cache with a small block size [43]. In addition, the cached DRAM has a

higher hit rate of its cache than other DRAM architectures because of its fully-associative

cache organization. Figure 6.1 shows the general concept of cached DRAM.

Contemporary processors aggressively exploit instruction-level parallelism by using su­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 115

perscalar, out-of-order execution, branch prediction, and non-blocking caches. As a result,

the processor may issue multiple memory requests before the previous request is finished.

Although the processor can keep running before the memory requests are finished, its ability

to tolerate long memory latency is limited.

A cached DRAM is an integrated memory unit consisting of an on-memory cache and

a DRAM core. Inside the cached DRAM, the on-memory cache is connected to the DRAM

core by a wide internal bus for moving d a ta between the cache and the DRAM core. Cached

DRAM can give fast response for a single memory request, and pipeline multiple requests

to achieve a high throughput.

The processor sends memory requests to the memory controller when am L2 cache miss

happens. In order to take advantage of the low access latency of the on-memory cache

in cached DRAM, the memory controller maintains the tag of the on-memory cache, and

compares each tag with the tag portion of the address for every memory request. The mem­

ory controller also maintains a dirty flag for each on-memory cache block, which indicates

whether the block has been modified after it is loaded from the DRAM core.

For the on-memory cache, a memory request is either (1) a read hit, (2) a write hit, (3)

a read miss, or (4) a write miss. Each case is handled by memory controller as follows:

1. Read Hit: The memory controller sends to the on-memory cache a read command

along with the block index and the column address via the address/command bus.

which will arrive at the cached DRAM after one bus cycle. The row address is not

needed because the DRAM core is not accessed. In one bus cycle, the on-memory

cache outputs the data which is sent back to the memory controller/processor after

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED D RAM 116

Bus cycle 0 1 2 3 4 5 6 7 8
Address/command bus R l R2 R3
Cached DRAM data Dl D l D2 D2 D3 D3
Processor data D l Dl D2 D2 D3 D3

T a b le 6 .1 : An example of pipelining th ree continual read hits. An “R l” o n th e “Address/com m and
bus” indicates the block index an d the column address of th e first read is sent on the ad­
dress/com m and bus. A “D l” on th e “Cached DRAM d a ta” indicates a block of d a ta for the first
read is available in the cached D RA M . A “D l” on the “Processor d a ta ” m eans a block of d a ta for
th e first read is available for th e processor. “R2” and “R3” in the tab le correspond to the second
and the th ird read com m ands/addresses, respectively; and “D2” and “D 3” correspond to the d ata
item s for th e second read and the th ird read, respectively.

another bus cycle. If the memory controller receives consecutive memory requests

that are read hits, it processes them in a pipelined mode.

2. Read Miss: There are two separate processing steps. In the first step, the row in the

DRAM core that contains the data is read and transferred to the on-memory cache.

In the second step, the d a ta is read from the on-memory cache as if it were a read

hit. For the first step, the memory controller sends the DRAM a read command

along with the row address and the replaced block index on the command/address

bus. This activates the row access of the DRAM core. The memory controller uses a

modified LRU policy (which will be discussed in detail later) to find the block for a

replacement. The second step of processing is the same as th a t of a read hit. A read

miss can be overlapped with read hits.

3. Write Hit: The write-back policy is enhanced and the data will only be written into

the on-memory cache. The memory controller sends the w rite command along with

the block index and the column address on the address/command bus, and sends the

data on the data bus. At the same time, the dirty flag is se t for tha t block on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 117

Bus cycle 0 1 2 3 4 5 6 7 8 9
Address/command bus R l R2 R l R3
Cached DRAM data D2 D2 D l Dl D3 D3
Processor data D2 D2 Dl Dl D3 D3

Tbble 6.2: An exam ple of pipelining a read miss (R l) and tw o read h its (R2 and R3). T he first
“R l” in th e “A ddress/com m and bus” indicates th a t the D RA M read command along w ith th e row
address and the block index a re sent on th e address/com m and bus. T he second “R l” indicates th a t
a cache read command along w ith the column address and th e block index are sent; “R2” and UR 3”
are signals of the two read h its on th e bus. “D l” , “D2” , an d “D3” on th e “Cached DRAM d a ta ”
indicate th e d a ta for the reads are available on the cached DRAM . “D l” , “D2” , and “D3” on th e
“Processor d a ta” mean the d a ta for these reads are available for th e processor.

memory controller. The row address is not needed because the DRAM core is not

accessed. The processing of a sequence of write hits can overlap with each other, and

can overlap with read requests.

4. Write Miss: The memory controller uses the modified LRU policy to select a block

for replacement. The write-allocate policy is enhanced with two steps as follows. In

the first step, the memory controller sends the DRAM read command along with the

block index and the row address onto the address/command bus. Then the row in the

DRAM core that contains the writing address is first read from the DRAM core and

transferred to the on-memory cache. The second step is to write the data into the

on-memory cache, operated as a write hit. These two steps can overlap with other

read or write requests.

Table 6.1 shows an example of pipelining three continual read hits. Table 6.2 shows an

example of a read miss that is overlapped with two read hits. The pipelining operations of

write hits and write misses are similar.

The replacement policy of on-memory cache is a modified LRU policy that avoids choos­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 118

ing a dirty block for replacement. If a dirty block were chosen for replacement, the block

would have to be written back into the DRAM core first, which would increase the latency

of the memory request tha t causes the replacement. To increase the number of clean blocks

available for replacement, the memory controller will schedule write back requests for the

dirty cache blocks as soon as the DRAM core is not busy.

ILP processors do not stall for a single L2 miss so they may issue more memory requests

when a previous request is in processing. An outstanding read request may prevent depen­

dent instructions in the instruction window from being issued to execution units, which is

likely to reduce the instruction-level parallelism or make the instruction window full. On

the other hand, outstanding writes do not influence ILP processors as long as the write

buffer is not full. Therefore, the memory controller should schedule read requests prior to

write requests.

As we have discussed, the processing of read misses or write misses consists of two steps:

DRAM operations th a t move data between the on-memory cache and the DRAM core, and

on-memory cache accesses, which do not involve the DRAM core. Because the DRAM

operations are slow, they should be issued as soon as possible.

6.2 Experimental Environment

We use SPEC95 and TPC-C as the workloads, and use SimpleScalar [14] as the base simula­

tor. The database system used to support the TPC-C workload is the PostgreSQL (version

6.5). This is the most advanced open source database system for basic research. We run

the complete set of SPECint95 and SPECfp95 in our experiment, using the precompiled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 119

SPEC95 programs in the SimpleScalar tool set.

We have used sim-outorder to configure an 8-way processor, set the load/store queue

size to 32, and set the register update unit size to 64 in the simulation. The processor

allows up to 8 outstanding memory requests, and the memory controller can accept up to 8

concurrent memory requests. Table 6.3 gives other architectural parameters. The 500 MHz

processor and the 256-bit (32 Bytes), 83 MHz data bus are used in Compaq Workstation

XP1000. The on-memory cache access tim e is set to 12 ns which is the same as tha t in [43].

The on-memory cache hit time is the sum of the time for transferring the command/address

to the cached DRAM (1 bus cycle), the on-memory cache access time, and the time for the

first chunk of data to be sent back (1 bus cycle). The on-memory cache miss time is the

sum of the time for transferring the command/address to the cached DRAM, the DRAM

precharge time if the accessed memory bank needs precharge, the DRAM row access time,

the time to transfer a row from the DRAM core to the on-memory cache (1 bus cycle), the

on-memory cache access time, and the tim e for the first chunk of data to be sent back.

The Rambus DRAM is connected to the processor by a one-byte wide, high-speed bus.

The Direct Rambus DRAM is connected to the processor by a one-byte wide address bus

and a two-byte wide data bus, and the bus speed is 400MHz. D ata is transferred on both

edges of the block signal. For single channel Direct Rambus DRAM, the effective bandwidth

is 1.6 GBytes/second, which is not so large as the 2.6 GBytes/second bandw idth of the bus

used in our simulation. To make a fair comparison, we simulate the internal structure of

the Rambus DRAM and the Direct Rambus, but set their bus simulation the same as other

DRAMs. We will show that the advantage of the cached DRAM is on its on-memory cache

structure, not on its bus connection. In fact, the cached DRAM could also be connected to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 120

CPU Clock rate 500 MHz
LI inst. cache 32 KBytes, 2-way, 32-byte block
LI data cache 32 KBytes, 2-way, 32-byte block
LI cache hit time 6 ns
L2 cache 2 MBytes, 2-way, 64-byte block
L2 cache hit time 24 ns
memory bus width 32 Bytes
memory bus clock rate 83 MHz
on-memory cache block number 1-128
on-memory cache block size 2-8 KBytes
on-memory cache associativity 1-full
on-memory cache access time 12 ns
on-memory cache hit time 36 ns
on-memory cache miss time 84 ns
DRAM precharge time 36 ns
DRAM row access time 36 ns
DRAM column access time 24 ns

Table 6.3: A rchitectural param eters of sim ulation

the processor by a high-speed narrow bus.

6.3 Comparisons o f Overall Performance

We have measured the memory access portion of CPIs of the TPC-C workload and all the

SPEC95 programs. In order to show the memory stall portion in each benchmark program,

we used a method similar to the one presented in [13] and [25]. We simulated a system with

an infinitely large L2 cache to eliminate all memory accesses. The application execution

time on this system is called the base execution time. We also simulated a system with a

perfect memory bus as wide as the L2 cache line, which is used to separate out the memory

stall portion due to the limited bandwidth. The CPI is divided into three portions: the

base portion which is the number of cycles spent for CPU operations and cache accesses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 121

the latency portion which is the number of cycles spent for accessing the main memory, and

the bandwidth portion which is the number of cycles lost due to the limited bus bandwidth.

The memory access portion of the CPI is the sum of the latency portion and the bandwidth

portion.

We have compared the cached DRAM with four DRAM architectures: SDRAM. En­

hanced SDRAM, Rambus DRAM, and Direct Rambus DRAM. We use the TPC-C workload

and eight SPECfp95 programs: tomcatv, swim, su2cor, hydro 2d, mgrid, applu, turb3<L and

waved. We found that the memory access portions of the CPI of all SPECint95 programs

and the two other SPECfp95 programs are very small. As a result, the performance of these

programs is not sensitive to the improvement of the main memory system. Although the

memory access time reduction by using cached DRAM is also significant on those programs,

it is not well rewarded in the overall performance.

6.3 .1 O n-m em ory C ache O rganizations

We have investigated the effects of changing the cache size and the cache associativity on

the performance of the TPC-C workload and the eight selected SPECfp95 programs. Our

experiments show that a small cache block size is not effective for the on-memory cache.

The miss rates for TPC-C workload on a fully associative on-memory cache of 32 KBytes

with cache block size of 128 Bytes, 256 Bytes, and 512 Bytes are 62%, 36%, and 22%.

respectively. On the other hand, a small number of blocks are also not effective for the

on-memory cache. The miss rate for su2cor on a fully associative on-memory cache having

four blocks with size of 4 KBytes is as high as 80%. When the number of cache blocks

increases to eight, the miss rate is still more than 40%. Only after the number of cache

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 122

blocks increases to sixteen, the miss rate is effectively reduced to 5%. The experiments

also show that the advantage of using a full associativity is significant. Direct mapped on-

memory caches, even with a large number of blocks, still have high miss rates. The finding

is important because most commercial DRAMs use the direct mapped structure. O ur study

of the effects of cache size and associativity on the on-memory cache performance confirms

the results reported in [62]. Since increasing the block size and the number of blocks will

increase the space requirement of the on-memory cache on the memory chip, it is a tradeoff

between performance and cost. We find that a fully associative on-memory cache of 16 x 4

KBytes is very effective for all workloads. The on-memory cache miss rates of the TPC-

C workload and six SPECfp95 programs are below 5%, and the miss rates of two other

programs are below 20%. Thus, this on-memory cache configuration is used in the rest of

the experiments.

6 .3 .2 Perform ance Im provem ent o f C ached D R A M over S D R A M

Figure 6.2 presents the CPIs and their decompositions for the TPC-C workload and the

eight SPECfp95 programs on both the cached DRAM and the SDRAM. The CPI reductions

by using the cached DRAM range from 10% to 39%. The effectiveness of the cached DRAM

for reducing the CPI is mainly determined by the percentage of memory access portion in

the total CPI of each program, which is listed in Table 6.4. We show that the CPI reduction

by the cached DRAM mainly comes from the reduction of the latency portion of the CPI,

and the bandwidth portion of the CPI is almost unchanged in each program.

Table 6.5 further presents the reductions of the latency portions of the CPIs by the

cached DRAM. For all the selected SPECfp95 programs, the latency portions of the CPIs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 123

Figure 6.2: The C P Is of th e T PC -C workload and the selected SPECfp95 program s

Program TPC-C tomcatv swim su2cor hydro2d
Memory portion 27% 39% 47% 21% 52%

Program mgrid applu turb3d wave5
Memory portion 37% 35% 20% 15%

Table 6.4: T h e percentage of m em ory access portion in the C PI

are reduced by more than 71%. The reduction rate for the TPC-C workload is 62%. The

latency reduction rates of the programs are mainly determined by the hit rates of the on-

memory cache in the cached DRAM, and of the row buffer in the SDRAM. For example,

the on-memory cache hit rate of the cached DRAM for the TPC-C workload is 93%. while

the row-buffer hit rate of the SDRAM is 50%. For the case of tomcatv, the on-memory hit

rate of the cached DRAM is 98%, while the row-buffer hit rate of the SDRAM is as low as

8%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 124

Program TPC-C tomcatv swim su2cor hydro2d
Reduction 62% 84% 83% 75% 83%
Program mgrid applu turb3d wave5

Reduction 79% 87% 71% 72%

I b b l e 6 .5 : T h e reduction o f the latency portion of C P I by using th e cached DRAM

6.3 .3 P erform ance C om parisons o f Cached D R A M an d O ther D R A M

A rch itectu res

Figure 6.3 shows the memory access portions of the CPIs of the TPC-C workload and five

selected SPECfp95 programs on the cached DRAM, Enhanced SDRAM, Rambus DRAM,

and Direct Rambus DRAM. The performance values are normalized to the memory access

portion of the CPI of the SDRAM. The cached DRAM outperforms other DRAMs signifi­

cantly on all programs. The Enhanced SDRAM performs better than the Rambus DRAM

and the Direct Rambus DRAM because of the low latency accessing the on-memory cache.

The cached DRAM outperforms the Enhanced SDRAM because the large number of blocks

and the fully associate structure in the cached DRAM make the hit rate very high.

The Rambus DRAM and the Direct Rambus DRAM have the ability to support high

bandwidth by overlapping accesses among different banks. However, this is little help in

reducing the access latency. Although both the Rambus DRAM and the Direct Rambus

DRAM have a large number of row buffers, the hit rates are still low because of the direct

mapped structure. In contrast, when the number of accesses to the DRAM core is very low.

the cached DRAM acts almost as an SRAM main memory, providing both low latency and

high bandwidth. As a result, the performance differences between the cached DRAM and

the other DRAM architectures are large.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 125

Vi

1.2

1

0.8 h
e
E
S 06
■©«»
£ 0.4
m
E
e 0.2
z

SDRAM

CDRAM

ESDRAM

RAMBUS

TPC-C tom catv swim hydro2d mg rid applu

Figure 6.3: T he comparisons of m em ory sta ll tim e o f cached DRAM , Enhanced SDRAM, Rambus
DRAM , and Direct Rambus DRAM. T he m em ory stall times are norm alized by th e stall tim e of
SDRAM.

We show that the performance of some programs on the Rambus DRAM or the Di­

rect Rambus DRAM can be significantly different (for the programs shown in Figure 6.3,

the worst one is mgrid, and the best one is applu). Both DRAMs perform better for pro­

grams with a large number of concurrent memory requests because they can effectively

overlap these memory accesses. Figure 6.4 compares the distributions of concurrent mem­

ory requests of mgrid and applu on the SDRAM when the memory system is busy. Our

experiments show that the memory access concurrency degree of applu is much higher than

tha t of mgrid. For example, 27% of the memory accesses in applu have the concurrency

degree of 8, and the percentages of the memory accesses with concurrency degrees of 3 to 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 126

Figure 6.4: The distributions of the number of concurrent memory requests for programs mgrid
and applu on the SDRAM system when the memory is busy.

range from 5% to 13%. In contrast, the majority of memory accesses in m grid have low con­

currency degrees of 1 (which is 48% in the total memory accesses), and 2 (which is 29% in

the total memory accesses). This explains why the Rambus DRAM and the Direct Rambus

DRAM are more effective to applu than mgrid although both programs have comparable

memory access portions in their CPIs (see Table 6.4).

6.4 Cached D R A M w ith Increasing ILP Degree

When the ILP degree (issue width) of the processor increases, the processor will increase

the demand on the main memory system. Thus, it is interesting to observe how cached

DRAM will perform as ILP degrees change. In this section, we compare the performance

of the cached DRAM and the SDRAM with 4-way issue, 8-way issue, and 16-way issue

processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 127

ILM D M art* IL K IL R U TI* ILM I lM ILPM ILM D M D M i ILM I lM HMD I lM ILID ILFIt
TFC-C l i r a . n t a M n D a * M *»*»

Figure 6.5: CPIs as the ILP degree changes

Figure 6.5 shows the CPIs and their decompositions for the TPC-C workload and four

SPECfp95 programs: tomcatv, hydm2d, mgrid, and applu. The base portion of CPI de­

creases proportionally for all programs as the ILP degree increases, which means that, with

an ideal main memory system, the performance always improves as ILP degree increases.

For the TPC-C workload, increasing ILP degree from 8 to 16 only causes the base portion

of CPI decreases slightly, which indicates that the increase of ILP is not so effective for the

TPC-C workload as for SPECfp95 programs.

Our experiments show tha t the CPIs of all the programs on the 16-way issue processor

with the SDRAM are higher than that of the 8-way issue processor with the SDRAM.

The performance degradation mainly comes from the heavy demand on the main memory

system, which results in reducing the execution throughput of instructions. The heavy

demand also causes congestion a t the main memory system, and enlarges the memory access

latency due to queuing effects. Consequently, the number of instructions retiring from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED D RAM 128

instruction window is reduced, which slows down the speed of new instructions entering the

instruction window. We find tha t, for example, the instruction dispatch rate on the 16-way

issue processor is 30% less than th a t of the 8-way issue processor for hydro2dL. The average

time tha t an instruction stays in the instruction window is 43 processor cycles for the 8-way

issue processor, but increases to 88 processor cycles for the 16-way issue processor.

In contrast, the cached DRAM performs well as the ILP degree increases. W hen the

on-memory cache hit rate is high, the cached DRAM can support high bandwidth accesses,

thus the congestion at the memory system is not as severe as with SDRAM. The memory

stall time does not increase as the ILP degree increases from 8 to 16.

The benefit of reducing computing time due to the increase of ILP degree will eventu­

ally be offset by not effectively tolerating long memory access latency on the SDRAM. In

contrast, the effectiveness of the cached DRAM will increase as the ILP increases to a much

larger degree.

6.5 Comparisons w ith Approaches Exploiting Row Buffer

Locality

Figure 6.6 compares the performance improvements by cached DRAM and by the

permutation-based interleaving scheme over SDRAM systems, using the identical simulation

configuration (see Table 6.3) except the difference described as follows. The cached DRAM

has 16 x 4 KByte on-memory cache, while the permutation-based interleaving scheme are

used for 32 banks and 32 x 2 KByte row buffers. We show that cached DRAM reduces the

CPI by 23% on average, while the average CPI reduction by the permutation-based scheme

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 129

su2cor hydro2d mend applu curb 3d wave5

Figure 6.6: CPI reduction by cached DRAM and by XOR-based interleaving scheme,

is 10%.

The performance results show clearly that using on-chip memory outperforms using

the permutation-based interleaving scheme. However, the permutation-based interleaving

scheme requires little additional cost, and does not require any change in the DRAM chip. In

contrast, cached DRAM requires an additional chip area for the SRAM cache and additional

circuits for cache management.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. CACHED DRAM 130

6.6 Summary

Using technical and commercial workloads, we have evaluated the cached DRAM technique

in the context of processors with full ILP capabilities and large d a ta caches. A small and

fully associative on-memory cache in the cached DRAM effectively exploits the locality of

memory access streams missing the L2 cache, and takes advantage of the high bandwidth in

its connection to the DRAM core. This study indicates that commercially available DRAM

schemes, such as SDRAM, ESDRAM, RDRAM, and DRDRAM, do not exploit memory

access locality of data-intensive workloads as effectively as a cached DRAM does. The

main reason for this is related to the direct mapped structures on the memory banks/row-

buffers of these commercial DRAM organizations. This study further indicates that cached

DRAM can consistently show its advantages as the ILP degree increases, and that cached

DRAM can outperform the permutation-based interleaving technique with a justifiable cost

increase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Fine-grain Priority Scheduling on

M ulti-channel Memory Systems

In Chapters 5 and 6, we have discussed techniques to reduce memory access latency by

exploiting row buffers and on-memory caches. Another approach to reduce memory access

latency is memory access scheduling. In this chapter, we focus on memory access scheduling

on multi-channel memory systems.

Configurations of contemporary DRAM memory systems has become increasingly com­

plex. Those memory systems, such as Direct Rambus DRAM systems, can support multiple

memory channels, while each channel can connect multiple devices (chips). Each chip con­

sists of multiple banks, where concurrent accesses to different banks can be pipelined. For

memory-intensive applications running on contemporary computer systems, the occurrence

of multiple outstanding memory requests is frequent. Memory access scheduling can reorder

the sequence of concurrent accesses to reduce access latency and improve memory band­

width utilization [75, 71, 48, 89, 90, 70]. In addition, a memory request for a cache miss

can be further split into several sub-requests that can be processed separately. Normally, a

cache miss causes a cache line fill request, which fetches more data than tha t is immediately

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 132

required to resume processor execution. This provides an opportunity to improve perfor­

mance by splitting the request into multiple sub-requests with smaller sizes and serving

the critical ones (containing immediately required data) first. On a multi-channel memory

system, such a scheduling method requires a number of considerations, such as how to split

a single reference, how to assign sub-requests to channels, and how to schedule concurrent

accesses.

A recent study [24] finds that program performance is highly sensitive to the DRAM

system configuration, and suggests tha t tuning burst (sub-block) sizes and channel configu­

rations is an effective way to optimize the DRAM system performance for a given memory-

intensive workload. Specifically, they evaluate the performance effect of sub-block size on

burst ordering, where each cache block is split into multiple sub-blocks and critical sub­

blocks are served before non-critical ones. In their study, all sub-blocks from a cache line

are mapped to the same channel and the same page. Thus, in order to exploit concurrency

within a single channel, the choice of sub-block size becomes a trade-off between reducing

latency of critical data access and lowering system overhead. They find that different ap­

plications have optimal performance on different sub-block sizes and the optimal sub-block

sizes scale with the channel width.

In this study we show that, by utilizing fine-grain priority access scheduling, we are able

to find a workload independent configuration that achieves optimal performance on a multi­

channel memory system. In order to fully utilize the available bandwidth and concurrency,

our approach splits a memory reference into sub-blocks with minimal granularity, and maps

sub-blocks from a reference into different channels. All channels can be used to process a

single cache line fill request. In order to increase the parallelism between processor execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIORITY SCHEDULING 133

and memory accesses, fine-grain priority scheduling is exploited. Sub-blocks that contain

the desired data are marked as critical ones with higher priorities and are returned earlier

than non-critical sub-blocks. This approach is similar to th e method of “critical word first” ,

but it also allows critical sub-blocks of one cache block to bypass non-critical sub-blocks

from other cache blocks. By combining with existing DRAM scheduling policies, choosing

the minimum sub-block size allows faster access to critical da ta without increasing the

memory system overhead.

Figure 7.1 gives an example that shows the performance potential of fine-grain priority

scheduling. In this example, a 4-channel memory system is processing four cache misses

concurrently. Each cache block is split into eight sub-blocks, and the four critical sub­

blocks are mapped to different channels. With fine-grain priority scheduling, all the critical

sub-blocks finish earlier than non-critical sub-blocks, saving seven time units in fetching

all critical data. In this example, the clustering of th e four cache misses provides the

scheduling opportunity. Our study will show that the cache miss clustering is frequent, i.e..

the burstiness of cache misses is high. As a result, queuing delay can be a major component

of access time. Fine-grain priority scheduling can reduce th e memory stall time by reducing

the queuing delay of critical data.

In this study, we quantitatively investigate the miss burstiness for memory-intensive

applications from the SPEC2000 benchmark suite on IL P processors with multi-channel

Direct Rambus DRAM systems. We also analyze the combination of fine-grain priority

scheduling with other DRAM access scheduling techniques, and compare the performance

with tha t of gang scheduling [67] and burst scheduling [24]. O ur study provides the following

performance results and findings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIORITY SCHEDULING 134

A! A5 81
, 85 C l C5 Dl D5

A2 A6 B2 B6 C2 C6 D2 D6

A3 A7 B3 B7 C3 C7 D3 0 7

A4 A8 B4 B8 C4 C8 D4 D8

Finish

A5 A l Bl B5 C l CJ Dl OS

B6 A2 A6 B2 C2 C6 } D2 D6

C7 A3 A7 B3 B7 C3 D3 D7

D8 A4 AS B4 B8 C< C8 D4

Finish time

(a)

Saved time -

1
(b)

Channel [] Data packet

Figure 7.1: The order of transferring sub-blocks on a system with four memory channels: (a)
without priority scheduling and (b) using fine-grain priority scheduling. The letters A-D represent
cache blocks, each of which is split into eight sub-blocks. The boxes with bold letters represent the
critical sub-blocks that contain the desired data.

• Fine-grain priority scheduling is effective in reducing memory stall time and increasing

IPC (Instructions Per Cycle). Compared with gang scheduling th a t serves a single

cache miss request with multiple channels grouped together, the IPC improvement is

13% on average (up to 34%) for fifteen selected SPEC2000 programs on a 2-channel

Direct Rambus DRAM memory system, and 8% on average (up to 22%) on a 4-channel

memory system. Compared with burst scheduling that serves multiple sub-requests

of a single cache miss with one channel but critical sub-requests first, the average

IPC improvement is 16% and 14% on the 2-channel and 4-channel memory systems,

respectively. The processor is 2 GHz and 4-way issue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 135

• Combined with other scheduling policies, fine-grain priority scheduling is able to ef­

fectively utilize the memory system resource. For six of the programs, the 2-channel

system with fine-grain priority scheduling can achieve performance comparable to that

on the 4-channel system with gang scheduling or with burst scheduling.

• We suggest that a DRAM system configuration and its optimization be emphasized

on access scheduling and DRAM mapping schemes. Taking this approach, we are able

to find an optimal memory configuration that is workload independent.

The rest of this chapter is organized as follows. The next section briefly introduces the

background of multi-channel memory systems. Section 7.2 discusses the issues in fine-grain

priority scheduling and its combination with other DRAM scheduling policies. Section 7.3

discusses the design and implementation complexity of fine-grain priority scheduling. Sec­

tion 7.4 describes the experimental method. Section 7.5 presents the experimented results.

Finally, Section 7.6 discusses the related work, and Section 7.7 summarizes the study.

7.1 M emory System Considerations

7 .1 .1 M ulti-channel M em ory S y stem s

Multi-channel memory systems have been used with high performance processors that re­

quire high bandwidth DRAM memories. Each channel can be scheduled independently.

Direct Rambus DRAM is such a representative memory system. A Direct Rambus DRAM

system generally consists of multiple channels, where each channel supports 1.6 G B/s band­

width. Each channel has its own row control bus, column control bus, and two-byte wide

d a ta bus. The separation of row and column control buses eliminates the contention in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PR IO RITY SCHEDULING 136

address bus between row operations (precharges and row activations) and column accesses.

The bus clock rate is 400 MHz and the data is transferred on both edges of the clock. The

row and column addresses/commands and the data are transferred in packets, each taking

four bus cycles. The minimal d a ta packet length is 16-byte. Each channel can connect mul­

tiple devices (chips). Each device can have 32 banks and 33 half-page row buffers (this may

be different according to the configuration). Those banks may be operated independently,

which provides high concurrency a t the bank level. The Intel Pentium 4 processor supports

two channels, and the Compaq Alpha 21364 processor supports up to eight channels.

7 .1 .2 D R A M M apping S ch em e

The DRAM mapping scheme determines how to map a physical address to a location in

the DRAM system. The choice of DRAM mapping scheme directly affects the row buffer

hit rate and the memory system performance [124].

A word in a Direct Rambus DRAM system is addressed by the channel index, the

device index, the bank index, the row address, and the column address. The first mapping

consideration is how to map the sub-blocks in a cache line onto multiple channels. We

use a method interleaving the sub-blocks onto all channels, which is the same as that used

in [67]. This interleaving scheme allows the aggregate bandwidth of all channels to be

used to transfer a single cache line (assume the number of sub-blocks in a cache line is

no less than the number of channels). The mapping scheme in [24] maps all cache lines

in a DRAM page-sized block on a single channel. The requests on different channels are

scheduled independently. However, this scheme cannot fully utilize the available bandwidth

of all channels for a single cache line fill request. In addition, program access locality within

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 137

right loop shift by 1 bit
H cache set cache block offset

column

Physical address

Figure 7.2: The mapping from th e physical address to th e address in Direct Rambus address space.

the DRAM page-sized block may cause unbalanced usage of memory channels. In contrast,

our method groups channels together to serve each cache line fill request, but schedules

operations on each channel independently to return critical sub-blocks earlier.

Another mapping consideration is how to map continuous addresses to multiple

banks. Our approach interleaves page-sized blocks onto banks using the XOR-based page-

interleaving scheme [124, 67]. It maps a continuous DRAM page-sized block onto a DRAM

bank to exploit the locality in the row buffer, and XOR two portions of address bits (conven­

tional bank index and cache tag) to permute the mapping of pages to banks. Consequently,

accesses causing row buffer conflicts in the conventional page-interleaving scheme are dis­

tributed to different banks without changing the locality in the row buffer. The studies

in [124, 67] show that the scheme can significantly improve the row buffer hit rate. Fig­

ure 7.2 describes the mapping scheme used in our experiments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIORITY SCHEDULING 138

7.2 Fine-grain Priority Scheduling

7.2.1 G ranularity o f Scheduling

Current ILP processors have the ability to generate multiple cache misses before stalling.

This provides an opportunity for performance improvement by scheduling concurrent mem­

ory requests for those cache misses. In general, only a portion of a cache line contains the

currently required da ta (although other portions may be needed in the near future). The

fine-grain priority scheduling tries to exploit this opportunity. It issues multiple DRAM

requests for a single cache miss, where each request fetches a sub-block of the cache line.

Sub-blocks that contain the desired data are critical sub-blocks. The requests for critical

sub-blocks are given higher priority over those requests for non-critical ones.

Each DRAM system has a limit on the minimal request length. Thus, the sub-block size

should be no less than tha t minimal length. Using smaller sub-block size allows the current

request to finish faster and makes newly arrived requests to be issued earlier. However, it is

a concern that a small sub-block size may reduce the burst length of DRAM accesses and

thus increase the system overhead [24]. Nevertheless, we will show that if fine-grain priority

scheduling is combined with other scheduling techniques and suitable mapping schemes,

the overhead will not exceed that of coarse-grain scheduling on the Direct Rambus DRAM

platform. For this reason, we choose the smallest granularity available for Direct Rambus

DRAM system as the sub-block size, which is 16 bytes, in this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 139

7.2.2 Schedu ling P olicies

In this chapter, we discuss three scheduling policies: fine-grain priority scheduling, gang

scheduling, and burst scheduling. Each term actually represents a combination of several

basic access scheduling policies, a channel configuration, a DRAM mapping scheme, and

a choice of scheduling granularity. We assume a scheduler architecture similar to that

presented in [90] (see Section 7.3) is used to enforce the three policies.

• Pending requests on a DRAM bank are queued in a bank scheduler. Each bank

scheduler has an arbiter to determine the next operation on the associated bank.

• Each independent channel has a channel scheduler, which includes a row arbiter and

a column arbiter. The row arbiter selects a precharge or a row access (if any) to use

the row control bus, based on the selections of bank schedulers. The column arbiter

selects which column access (if any) to use the column control bus and the data bus.

All the three scheduling policies are combined with four basic scheduling policies that are

enforced in the following order: read-bypass-write, hit-first, explicit priority, and in-order.

For example, a non-critical read request that requires a column access is issued first even

when there is another critical read request that requires a precharge to the same bank. The

hit-first policy is enforced before the explicit priority scheduling so tha t fine-grain priority

scheduling would not cause severe row buffer thrashing when multiple requests are mapped

onto the same bank. In contrast, enforcing only explicit priority scheduling may cause more

precharges when bank conflicts occur.

There are three levels of explicit priorities for read requests, namely critical priority,

load priority, and store priority, from highest to lowest. The critical priority is assigned to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 140

critical sub-blocks of read misses, and load priority is assigned to non-critical sub-blocks of

read misses. The store priority is assigned to read requests for write misses, as a write-back

and write-allocate L2 cache is used in this study.

In fine-grain priority scheduling, each L2 cache miss results in multiple DRAM requests

th a t are mapped to multiple channels evenly; each DRAM request is associated with an

explicit priority; and concurrent requests are scheduled based on the policies discussed

above. It uses a fixed 16-byte as the sub-block size, which is the smallest granularity with

current Direct Rambus technology. Each physical channel is configured as an independent

unit and has its own channel scheduler. Instructions stalled for a critical sub-block are

resumed when the data of the sub-block is returned.

Gang scheduling uses the cache block size as the burst size. All channels are grouped

together as one logical channel, and there is only one channel scheduler. Instructions stalled

for a missed block are resumed when the whole block is returned.

In burst scheduling, each L2 cache miss results in multiple DRAM requests that are

mapped to the same independent channel; each DRAM request is associated with an explicit

priority. In this study, the sub-block size is set to 32-byte. For a 2-channel system, each

physical channel is an independent channel. For a 4-channel system, two physical channels

are grouped together. There are two channel schedulers in both cases.

W hen a miss on a cache block happens, the sub-block containing the desired data is

marked critical. Due to program locality, it is very likely tha t when the requests of this

miss are being processed, more misses happen on other sub-blocks of the same cache block.

In this case, the sub-blocks containing the newly arrived requests become critical ones and

gain higher priority. Both fine-grain priority scheduling and burst scheduling will consider

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 141

this change and update the priority information dynamically.

The read-bypass-write and hit-first policies not only improve the performance by them­

selves but also help fine-grain priority scheduling avoid the potential increase of system

overhead. There is one case that the system overhead may still increase. When the number

of banks is very small, the bank conflicts can be severe, and thus fine-grain priority schedul­

ing may cause more precharges than burst scheduling. Fine-grain priority scheduling always

balances the utilization of multiple channels, however, which scheduling performs better will

depend on application access patterns. In practice, Direct Rambus memory systems have a

sufficient number of banks to avoid severe bank conflicts. SDRAM memory systems usually

have large size row buffers which lead to less precharges when the locality in row buffer

is good. In addition, large size SDRAM memory systems may also have enough banks to

avoid severe bank conflicts. The DRAM mapping scheme used in our study produces high

row buffer hit rates. Thus, open page mode is used in our experiments.

7.3 Com plexity Analysis

7.3 .1 C om plexity insid e Processor

Cache and Cache Controller One concern on fine-grain priority scheduling is that

the scheduling might change the internal of L2 cache and/or its controller, because data

returns from the memory in a unit of sub-block instead of cache block. Such a change

is definitely undesirable. Fortunately, there are existing mechanisms on high-performance

processors that can address this issue. For example, the MIPS R10000 has a four-entry

incoming buffer that can accept returning da ta a t any rate and in any order [120]. Up to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 142

four outstanding read requests to memory are supported, thus each outstanding request is

guaranteed to have one allocated incoming buffer entry. The Power-PC 604 has a similar

Iine-fill buffer [105]. The incoming buffer can be used to merge out-of-order returning sub­

blocks with only trivial changes. Future high-performance processors that support multiple

outstanding memory requests will likely have such kind of mechanisms.

Address Path to Memory Controller There will be additional lines for transferring

priority information. Priority information can be transferred as a bitmap or the position

index of a sub-block. Using a bitmap requires additional lines, but allows prioritizing

multiple sub-blocks simultaneously, which helps the case when multiple cache misses happen

to the same cache line at the same cycle.

Priority U pdates The MSHR needs to send priority update to the memory controller

when a read miss happens on a non-prioritized sub-block of a cache block th a t is already

missed. A bitmap can be used with each MSHR entry to memorize which sub-blocks have

been prioritized1. The contention due to priority updates on the address path between the

processor and the memory controller is negligible because the speed of the path is much

faster than the service rate of the memory system.

7.3 .2 C om p lex ity in M em ory C ontroller

The basic function of memory controller is to issue DRAM operations (precharge, row acti­

vation, or column access) to DRAM banks under the DRAM timing constraints for DRAM

access requests. W ith high-performance processors and high-bandwidth memory systems,

the memory controller must have the access scheduling ability to order DRAM operations

'W e assum e th a t th e M SHR im plem entation in [34] is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN P R IO R ITY SCHEDULING 143

for multiple outstanding requests. Without this ability, the opportunity to exploit the mem­

ory access concurrency allowed by the processor and the memory system will be wasted,

and the performance penalty is unacceptable for memory-intensive applications.

A memory access scheduler architecture is proposed in [90], which can enforce a num­

ber of scheduling policies. A fine-grain priority scheduling policy can be implemented on

tha t architecture. The scheduler architecture organizes incoming requests by DRAM banks.

Each bank has its own arbiter to determine its next operation. A global arbiter determines

which bank gets the shared resources, such as the address bus and the data bus. This

scheduler architecture can be adapted to work with Direct Rambus memory systems. Each

independent channel needs a channel scheduler, and each channel scheduler needs two ar­

biters, one for the row control bus and the other for the column control bus. Although

Direct Rambus memory systems cam have a large number of banks, the bank schedulers can

be assigned to busy banks dynamically, thus only a limited number of bank schedulers are

needed.

W ith fine-grain priority scheduling on an n-channel system, n channel schedulers are

needed. In comparison, gang scheduling requires one channel scheduler because there will be

one logical channel. On the other hand, fine-grain priority scheduling does not complicate

the structure of each individual bank scheduler or channel scheduler. Another change is

tha t the memory controller may split one memory reference request into multiple requests

onto those channels, and need to accept priority updates. In this aspect, burst scheduling

has almost the same complexity as fine-grain priority scheduling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 144

Speed 2GHz, 4-way issue
RUU size 64
LSQ size 32
MSHR size 16
write buffer size 8
LI cache 4-way 64KB inst./data , 2-cycle hit

latency, 64B cache line, write-back
L2 cache unified 4-way 1MB, 8-cycle hit

latency, 128B cache line, write-back

T a b le 7 .1 : Key processor param eters .

Parameters Values
Precharge delay 8 bus cycles
Row access delay 8 bus cycles
Column access delay 8 bus cycles
Length of packets 16 bytes
Banks per device 32
Page size 2KB
Row buffer 33 half-page size

T a b le 7 .2 : Key param eters of the Direct Rambus DRAM used in the simulation. T he bus cycle
tim e is 2.5 ns (400 MHz).

7.4 Experim ental Environment

We use SimpleScalar 3.0b [14] to simulate an out-of-order execution processor. An event-

driven simulation of a multi-channel Direct Rambus DRAM system is incorporated into the

original simulator. Table 7.1 gives the key parameters of the processor model.

We use the parameters of 256 Mbit Direct Rambus DRAM [82] as the parameters of

DRAM memory system simulated in our experiments. Table 7.2 describes the key parame­

ters of this DRAM. We configure the simulated system as 2-channel and 4-channel systems,

where each channel has four devices.

We use the pre-complied SPEC CPU2000 Alpha binaries in [117]. Fifteen programs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 145

(five integer programs and ten floating point ones) are selected, which have relatively large

memory access demands. For all the applications, we fast-forward 4000M instructions and

collect program execution statistics on the next 200M instructions.

7.5 Experimental Results

7.5 .1 B urstiness in M iss Stream s

We first measure the fraction of program execution time with bursty memory accesses.

Figure 7.3 shows the fraction of program execution time with two or more outstanding

memory references on a 2-channel system with gang scheduling for the selected SPEC2000

programs. We can see that the fraction of bursty phase is highly application dependent,

which ranges from about 6% to 90%.

Figure 7.4 further presents the distribution of the number of concurrent accesses in the

bursty phase. Figure 7.4(a) contains programs with the fraction of bursty phase higher than

40% and Figure 7.4(b) contains programs with the lower bursty phase fraction. In general,

programs with a higher fraction of bursty phase tend to have higher probabilities of a large

number of concurrent accesses. For all the programs presented in the left figure, more than

40% of bursty references are grouped with a t least three other references. Even for some

programs with a small bursty phase fraction, the burstiness inside the bursty phase is still

high. For example, program 256.bzip2 only spends 6% of its execution time in the bursty

phase, however, more than 60% of concurrent accesses are clustered as groups with a t least

eight references.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PR IO RITY SCHEDULING 146

Execution Time Fraction of Multiple Mcaory Ai

100 2-Channel Gang
Scheduling

40

Figure 7.3: FYactions of b u rsty phase in execution for SPEC 2000 program s.

7 .5 .2 P oten tia ls o f F ine-grain P riority Scheduling

Fine-grain priority scheduling targets a t reducing the latency for critical sub-blocks by

serving the critical ones before the non-critical ones. However, if all sub-blocks are critical,

fine-grain priority scheduling will not make any difference. To evaluate the potential of

fine-grain priority scheduling, we measure the percentage of critical sub-blocks in a cache

line when the whole cache line fill request completes. Our experiments indicate that on the

2-channel system, for the fifteen programs, this percentage ranges from 15.3% to 57.7%.

On average, 33.8% of sub-blocks are critical ones. This indicates th a t there is a large space

left for fine-grain scheduling to reorder requests based on their priorities.

Figure 7.5 shows the waiting tim e distribution of critical sub-blocks and non-critical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN P R IO R ITY SCHEDULING 147

0.8

£
0.6i

i
3o

0.4

2 166 324
Number of Concurrent Accesses

(a)

1.2

0.8

0.6

13o
0 .4

2 168 324
Number of Concurrent Accesses

(b)

Figure 7.4: D istribu tion of th e num ber of concurrent accesses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIORITY SCHEDULING 148

sub-blocks of read misses. We can see that critical sub-blocks have much shorter queuing

delay than non-critical ones. We use two programs 179. art and 256.bzip2 as examples

here. Program 179.art has very high bursty phase fraction (about 90%) and high burstiness

within the bursty phase. For this application, the waiting time is a significant portion of

the total access time. Fine-grain priority scheduling effectively reduces the waiting time for

critical sub-blocks. Compared with burst scheduling, the average waiting time for critical

sub-blocks reduces from 133 cycles to 104 cycles, and the average waiting time for non-

critical load sub-blocks reduces from 1157 cycles to 1070 cycles. W ith fine-grain priority

scheduling, 60% of critical sub-blocks have waiting time less than 36 cycles. In comparison,

with burst scheduling, 40% of critical sub-blocks have waiting time longer than 80 cycles.

Compared with gang scheduling, the average waiting time for critical sub-blocks reduces

from 557 cycles to 104 cycles, but the average waiting time for non-critical load sub-blocks

increases from 557 cycles to 1070 cycles. 256.bzip2 has low bursty phase fraction (only

6%) but high burstiness in the bursty phase. Compared with gang scheduling and burst

scheduling, the average waiting time for critical sub-blocks is reduced from 42 cycles and

32 cycles, respectively, to 27 cycles.

Figure 7.6 shows the probability that multiple critical sub-blocks are mapped to the

same channel under fine-grain priority scheduling. We can see that for most programs,

fine-grain priority scheduling can evenly distribute critical requests to different channels.

However, for applications with high burstiness, it is still possible that multiple critical

requests are mapped to the same channel. The existence of multiple critical requests in the

same channel indicates that fine-grain priority scheduling can reduce the processor waiting

time for currently required data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING

1
bum -

0.8

0.6

0.4

0
64 2561 4 16 1024

Wailing Tima (cycles)

(a)

1.2
256.bzip2

critical fine-grim ------
non-cnbca) load fina-gram ------

critical SIS
non-cnbca! load bum -----

0.8

| 0.6

i

K

i 16 64 2564 1024
Wailing Tune (cycles)

(b)

Figure 7.5: Waiting time distribution of critical and non-critical load sub-blocks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN P R IO R IT Y SCHEDULING

0.6

| 0.6

0.4
179.a(t —

181.mcf —
171 .seen ■■■■
189.lucas
173.applu -
30l .aps - -

I87t*car*c
176.9*1961

0 2 3 81 5 74 6
Number of Critical Sector* per Channel

(a)

0.8

• 0.6

I
0.4

0.2

0 2 31 4 5 e6 7
Number of Cntocai Sectors per Cbenoel

(b)

Figure 7.6: Probabilities of multiple critical sub-blocks mapping to the same channel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 151

IB uc ■ 2-Oufmel Fine-gran □2-Charaicl Gmg □ 2-Channel Bunu B4-Chinnel Fine-grain B*-Channel Gang B4-Channel Bum

3.30

Figure 7.7: IPC on 2-channel and 4-channel Direct Rambus DRAM systems.

7.5 .3 Perform ance Im provem ent o f Fine-grain P r io r ity Scheduling

Figure 7.7 presents the performance improvement of fine-grain priority scheduling in terms

of IPC for 2-channel and 4-channel Direct Rambus DRAM systems. In this figure, the base

IPC of each application is the IPC on a system with the perfect DRAM configuration that

has the latency of L2 cache hit and an infinite bandwidth. The base IPC reflects the ideal

performance after eliminating the memory stall time.

Compared with gang scheduling, fine-grain priority scheduling can increase the IPC by

up to 34% for the 2-channel DRAM system. For the fifteen selected programs, the average

IPC increase is 13%. Four programs (172.mgrid, 173.applu, 181.mcf, and 300.twolf) have

performance improvement higher than 15%. This implies tha t fine-grain priority scheduling

effectively increases the parallelism between processor execution and DRAM accesses by

reducing the latency for critical accesses.

Compared with burst scheduling, fine-grain priority scheduling can increase the IPC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 152

by 16.3% on average (up to 38.7%) for the 2-channel DRAM system. This indicates that

fine-grain priority scheduling can better utilize the available concurrency of DRAM systems

by spreading requests evenly onto multiple channels.

Fine-grain priority scheduling is especially effective for applications with a relative large

memory stall portion, modest memory bandwidth demand2, and high burstiness in miss

streams. For applications with small memory bandwidth demand and relatively fewer cache

misses, the performance improvement from fine-grain priority scheduling is modest. For

example, the memory bandwidth demand of 256.bztp2 is only 0.8 GB/s, the fraction of

bursty phase is only 6%, and the number of L2 cache misses per 100 instructions is only 0.11.

For this application, the memory stall time is not a significant portion of the total execution

time. The fine-grain priority scheduling scheme improves the performance modestly by 5%

and 3% compared with gang scheduling and burst scheduling, respectively.

For applications with extremely high memory bandwidth demands, such as 179.art.

fine-grain priority scheduling improves performance modestly (6.0%) compared with gang

scheduling. This is not surprising. The bandwidth demand of the program is so high

(64.0 GB/s) compared with the available bandwidth (3.2 G B/s). Returning critical data

earlier does not provide a large improvement in this case. Compared with burst scheduling,

the performance improvement is promising (13%). This indicates that fine-grain priority

scheduling can better utilize the available bandwidth and concurrency by evenly distributing

sub-requests to multiple channels.

As the number of channels increases to four, the congestion at the maun memory sys­

2We use the m em ory ban d w id th achieved by th e application on th e perfect DRAM system as the b an d ­
w id th dem and o f th e app lication .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIORITY SCHEDULING 153

tem is reduced because of the increasing bandwidth and concurrency. As expected, the

speedup by using fine-grain priority scheduling drops for most applications. For the fif­

teen programs, fine-grain priority scheduling increases the IPC by 8% on average (up to

22%) compared with gang scheduling. However, the speedup for some programs with high

memory bandwidth demands increases. For example, the performance improvement for

171.swim increases from 9% to 19% as the number of channels doubles. It indicates that,

when the bandwidth pressure is alleviated for bandwidth-bounded applications, the perfor­

mance potential of fine-grain priority scheduling increases. Compared with burst scheduling,

the average performance improvement of the fifteen programs is 14%. As the number of

channels increases, the imbalance of request distribution on multiple channels may also in­

crease for burst scheduling. Burst scheduling does not utilize the available bandwidth and

concurrency as well as fine-grain priority scheduling does.

It is interesting to observe that for six of the fifteen programs, the performance on the

2-channel DRAM system after applying fine-grain priority scheduling is comparable or even

better than that on the 4-channel DRAM system with gang scheduling. For 168.wupwise.

176.gcc, and 256.bzip2, the IPC on the 2-channel DRAM system with fine-grain priority

scheduling is within 3% lower than that on the 4-channel DRAM system with gang schedul­

ing. For 172.mgrid, 175.vpr, and 300.twolf, the IPC on the 2-channel DRAM system with

fine-grain priority scheduling is higher than that on the 4-channel DRAM system with gang

scheduling by up to 10%. Compared with burst scheduling on the 4-channel DRAM sys­

tem, fine-grain priority scheduling gains comparable or better performance on the 2-channel

DRAM system for these six programs.

Compared with the 2-channel system, the 4-channel system not only doubles the avail­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 154

able bandwidth, but also doubles the number of memory chips. Fine-grain priority schedul­

ing can better utilize the existing resources and achieve performance comparable to that

on a system with much higher cost. Of course, for those applications whose performance

is limited by the available bandwidth, paying more to increase the bandwidth is the most

effective way to improve performance.

For all applications on both the 2-channel and the 4-channel systems, fine-grain priority

scheduling always achieves the best performance. In comparison, for gang scheduling and

burst scheduling, which one performs better is application find configuration dependent.

7.6 Other Related Work

There are two reasons why DRAM memories cause performance degradation: long la­

tency and limited bandwidth. From the performance viewpoint, all approaches targeting

a t DRAM performance improvements work a t one or more of the following four aspects:

increasing the peak bandwidth of the memory bus/channel and/or DRAM chips: reducing

the access latency of DRAM chip: improving the bandwidth utilization: and increasing the

parallelism between processor execution and DRAM operation.

Peak bandwidth can be improved by increasing the data transfer rate, the total

bus/channel width, or both. SDRAM has improved the data transfer rate to 100MHz,

to 133MHz, and now to 166 MHz. The DDR technique allows SDRAM to transfer data at

both clock edges, and thus doubles the data transfer rate. Buses as wide as 256 bits or more

have been used in high-end workstations [22]. Direct Rambus DRAM [82] uses narrow buses

and increases the data transfer rate to 800 MHz. Multiple memory channels are supported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 155

not only in high-end servers but also in workstations. Currently, the Pentium-4 processor

can support two Direct Rambus channels, and the Compaq Alpha 21364 can support up to

eight channels.

Most approaches to reduce the access latency of DRAM chips take advantage of the

locality available in the miss stream from the processor. Cached DRAM [46] integrates

SRAM cache into DRAM chips. Enhanced DRAM incorporates a single line of SRAM

cache with each row buffer of DRAM banks. Virtual Channel DRAM contains multiple

SRAM lines tha t is one fourth of the row buffer size. A hit to the SRAM caches can save

the DRAM row access time. Because of the huge bandwidth available inside DRAM chips,

the block size of the SRAM caches can be much larger than those of LI and L2 caches.

Thus, the hit rate on the SRAM caches can be as high as 90%. Some recent studies proposed

XOR-based mapping schemes to improve the hit rate of DRAM row buffers, thus improve

the performance without the cost of adding SRAM caches [124, 67].

Peak bandwidth may not be fully utilized due to limited available concurrency or bus

overhead. Today, high-performance processors can support multiple outstanding loads and

stores, and DRAMs can serve multiple requests in a pipelined manner. The limitation of

concurrency still comes from bank conflicts, i.e., when multiple requests ask for data in

different pages located in the same bank. Access scheduling [75, 71, 48, 89, 90. 70] that

groups accesses to the same pages together has been proven to be effective for streaming

applications. The above approaches that utilize data locality at the DRAM side also reduce

the bank conflicts. The bus overhead includes the turnaround time that appears between

read and writes. This overhead can be reduced by using write buffer [100] to delay writes

and group them together. Another overhead is the asymmetry of the timings of read and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7. FINE-GRAIN PRIO RITY SCHEDULING 156

write operations. This can be removed by changing the write tim ing so that they are

symmetric with read timing [24].

Out-of-order execution processors have the ability to overlap the processor execution

and DRAM memory accesses to some extent. Hardware or software prefetching [115] is

an effective approach to increase the parallelism between processor execution and DRAM

operations. Most prefetching studies do not consider DRAM properties, however. [67]

shows th a t combining prefetching and DRAM access scheduling can effectively improve the

performance.

7.7 Summary

Although careful tuning of DRAM parameters can effectively improve memory performance,

its workload dependent feature may limit its usage in practice. In order to address this limit,

we present a workload independent approach by focusing on optimizing fine-grain priority

scheduling, and show its effectiveness using SPEC2000 benchmark programs. In addition to

supporting workload independent configurations, fine-grain priority scheduling can increase

the parallelism between processor execution and DRAM memory accesses, and improve the

resource utilization of the memory system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Constructing Large Size and Low

Overhead Off-Chip Caches by

Cached DRAM

Large off-chip caches are beneficial to memory-intensive applications whose working sets

cannot fit into caches. In this chapter, we present a new design of off-chip cache that uses

cached DRAM presented in Chapter 6 to construct a large and low-overhead off-chip cache.

Off-chip caches are normally made by SRAM, the same technology used for on-chip

caches. SRAM is fast, but has two major limitations being off-chip cache. First, the size

of an SRAM cache is usually limited to less than ten megabytes due to the low density

and high cost of SRAM. This size is not large enough for holding the working sets of many

memory-intensive applications. Second, because the volume of L3 tags is large and the

tags are usually stored off-chip, the L3 tag checking overhead is significant and increases

the penalty of cache misses. The performance of some memory-intensive applications can

be even harmed by the existence of SRAM off-chip cache due to increased memory access

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 158

L1 inst L1 data
cache cache

£
Unified L2

cache

£

On-chip

memory bus

DRAM main memory

Off-chip

Figure 8.1: A Diagram of Memory Hierarchy using CDC.

latency. For instance, a previous study [26] reported that adding a 2MB off-chip L3 SRAM

cache to AlphaServer 4100 can degrade the performance of some applications by up to 10%.

To address these two problems, we present CDC (Cached-DRAM Cache) as a substitute

of SRAM off-chip cache. In cached DRAM, a small SRAM cache is integrated with the

DRAM to exploit the spatial locality that appears in miss streams from the upper level

cache [46, 49, 61, 125]. In a CDC, the DRAM storage is called CDC-DRAM, and the

SRAM cache is called CDC-cache. Figure 8.1 presents a memory hierarchy with two-level

on-chip caches and an off-chip CDC. We highlight the CDC design here and will discuss the

details in Section 8.1:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 159

• CDC-DRAM has the structure of sector cache, where each CDC-DRAM page can

hold dozens of on-chip cache blocks.

• Recently accessed CDC-DRAM pages are cached in the CDC-cache, and their tags

are stored in the on-chip CDC tag cache.

• The CDC is connected to the processor by high-bandwidth da ta paths. We assume

that they are put in the same module by using the multi-chip module (MCM) tech­

nology.

Besides providing a much larger storage than an SRAM off-chip cache, the proposed

CDC constructing the L3 off-chip cache has following additional advantages:

• Minimizing on-chip space overhead. The CDC tags are stored with data pages in the

CDC-DRAM. Only the tags of pages cached in the CDC-cache are stored on-chip.

The storage requirement for the on-chip tag cache is less than 1KB in the default

configuration. The on-chip predictor for predicting CDC-DRAM hit/miss is very

simple and occupies a very little space.

• Minimizing cache miss overhead. Since the on-chip CDC tag cache is very small

and the CDC-DRAM hit/miss prediction is very simple, the CDC tag checking and

the prediction can be performed in parallel with the L2 cache access for every LI

cache miss. When an L2 cache miss is detected, the results of the CDC tag checking

and the prediction are already available. There is no additional miss overhead for

correctly predicted CDC-DRA M misses. The performance results show that the pre­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 160

diction accuracy is very high and the miss overhead related to incorrect predictions is

insignificant.

In contrast, the tag directory of the SRAM L3 cache is much larger than th a t of the

L2 cache, and has longer latency and cycle time than those of the L2 cache. Thus,

there will be a significant overhead for cache misses to the main memory.

• Exploiting the locality in the CDC-Cache. Many recent studies have shown th a t the

locality in the cache miss streams is very high [61, 118. 25. 124. 67]. Because of the

large block size, the CDC-cache is able to effectively utilize this locality to speedup

accesses to the CDC.

We use SimpleScalar to simulate a CDC of 128KB SRAM cache and 64MB DRAM,

attached to an 8-way issue 2GHz processor th a t has a 32KB instruction cache, a 32KB data

cache and a 1-MByte unified L2 cache on chip. We compare the performance of the CDC

with an 8-MByte SRAM L3 cache with the same processor configuration, using nineteen

memory-intensive SPEC CPU2000 benchmark programs. The underlying assumption that

the density of the CDC-DRAM is eight times tha t of the SRAM is conservative. T he CDC

outperforms the L3 SRAM cache for most programs by up to 64%. Unlike the off-chip

SRAM cache, the CDC does not degrade the performance of any programs. The average

IPC (harmonic mean) of the system with the cached-DRAM off-chip cache is 11% higher

than th a t of the system with the L3 SRAM cache.

The rest of this chapter is organized as follows. Section 8.1 presents the details of

our CDC design. Section 8.2 describes the experiment setup. Section 8.3 presents the

performance results. Finally, Section 8.4 summarizes the study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 161

8.1 The CDC Design

Figure 8.2 shows a detailed structure of CDC and the data paths connecting the CDC-

cache, the CDC-DRAM, the L2 cache, and the tag cache. Each CDC-DRAM page contains

a page of data, address tags, and an array of the selection and valid bits. For simplicity,

the collection of the address tags and the selection and valid bits of one CDC-DRAM page

is called the page tag of that page. Inside the CDC, the page tag is stored and transferred

together with the associated data blocks. Outside the CDC, the da ta blocks are selected

and transferred to and from the L2 cache, and the tags are transferred to and from the tag

cache.

For convenience of discussion, the following configurations and parameters are are as­

sumed if they are not mentioned specifically. The CDC-DRAM is 64-MByte and the page

size is 4KB. Each page is a sector holding 32 128-Byte L2 cache blocks. The CDC-cache

is 4-way associate with 128KB. For the calculation of storage requirement, we assume the

physical address in the system is 48-bits long.

8 .1 .1 O n-chip C D C C ontroller, Tag Cache, and P red ictor

The tag cache stores the tags of pages tha t are cached in the CDC-cache. For each LI

cache miss, the address is compared with the associated address tags in the tag cache in

parallel with the L2 cache access. Since the tag cache is very small, the comparison can

be done before the L2 cache access finishes. If a match is found and the valid bit is set.

the demanded data block exists in CDC-cache, and its set index and block index in the

CDC-cache are known. The CDC controller sends a request to fetch the block from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 162

Li miss address

data command, index,
address and tag

L2
controller
and tag

CDC controller,
tag cache and

predictor
12 data

bank index
and row
addresses

CDC-
DRAM
banks

Figure 8.2: The CDC structure and the data paths between the CDC-cache, the CDC-DRAM, the
L2 cache, and the on-chip tag cache. CL represents a block of the cache line size. T represents the
address tags of a page, S represents the selection bits of a page, and V represents the valid bits of
a page.

CDC-cache to the L2 cache (the CDC-DRAM is not involved). Although the CDC-cache is

set associative, it is accessed as a direct mapped cache because the set index and the block

index are known at the time of the access.

If a match cannot be found, the data block may exist (1) in the CDC-DRAM. or (2) only

in the main memory. The predictor then makes a prediction, directing an access to the CDC-

DRAM or to the main memory (we will discuss the predictor design in Section 8.1.4). In the

case of a CDC-DRAM access, the CDC-DRAM page is first transferred to the CDC-cache.

The page tag is then transferred to the on-chip tag cache to compare with the miss address.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 163

and the demanded d a ta block is selected and transferred simultaneously. The data block is

written into the L2 cache if data is actually found in the CDC-DRAM; otherwise, the block

is discarded and the d a ta block is read from the main memory.

In the case of a main memory access, both the CDC-DRAM and the main memory are

accessed simultaneously. If the block is not found in the CDC, the data fetched from the

main memory is sent to the L2 cache, and is also w ritten into the CDC-cache. If the block

is found in the CDC-DRAM, the data fetched from the main memory is discarded.

The predictor enables exploiting the locality in the high-bandwidth CDC-DRAM even

if the data is not found in the CDC-cache. From another point of view, the predictor filters

out unnecessary traffic to the main memory, which could cause congestion on the memory

bus and stall the follow-up accesses. Working together, the controller, the tag cache, and

the predictor ensure fast tag checking, fast CDC-cache accesses, and low memory bus traffic.

8.1 .2 C D C -D R A M M apping

The CDC-DRAM has a sector cache structure [76], where the data part of a page is a sector

holding 32 L2 cache blocks. We consider two mapping methods. The first one is the direct

mapping scheme of the sector cache, in which each cache block is mapped onto a single

location (page and block) in the CDC-DRAM. This m ethod is simple and requires only one

tag for each page. However, a potential drawback for this scheme is that the CDC-DRAM

storage may not be efficiently used. The selection bit array S is not needed for this method.

The second method is to use two different mapping schemes for the da ta and for the

tag, as used in the decoupled sector cache [97]. We still use the direct mapping for the

data part, because a set associative mapping would require accessing more than one CDC-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 164

DRAM page simultaneously. However, the mapping for the tag part is set associative. Each

CDC-DRAM page is associated with K tags, and blocks from up to K pages in the physical

memory can be cached in the same page. For each block, log K selection bits determine the

tag th a t the block is associated with. In the default configuration, K = 4. In this way. we

reduce the chance of page thrashing when two pages conflict in the CDC. For the details of

the decoupled sector cache, interested readers may refer to [97]. This decoupled mapping

is used in the default configuration.

Although the decoupled cache structure is complex, the major complexity lies in the

on-chip tag cache. The only changes in the off-chip CDC are the additional tags and the

selection bit array, which do not change the manufacturing process of the underlying cached

DRAM. Because the tag cache is very small compared to the L2 cache, the tag cache access

time is faster than L2 cache access time, and does not affect the CDC access times. In the

default configuration, the tag cache consists of only 32 entries of 208 bits each. The total

storage is 832 bytes. For each CDC-DRAM page, the page tag occupies less than 1% of

storage.

8 .1 .3 C D C -cache M apping

The CDC-cache mapping decides how the CDC-DRAM pages are mapped to the cache

blocks in the CDC-cache. It is actually decided by the organization of the underlying

cached DRAM. Recent studies have shown tha t set associative cached DRAMs have sig­

nificant lower cache miss rates than those of the direct mapped ones when used as main

memories [118, 61, 125]. Thus, we only consider set associative CDC-cache in this study. It

is 4-way associative in the default configuration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 165

8 .1 .4 T he P redictor

Cache hit/miss prediction has been used for a variety of purposes. Authors in [122] use

cache hit/miss prediction for improving load instruction scheduling. In order to reduce

the memory bandwidth requirement, authors in [113] use miss prediction to dynamically

mark which load instruction is cacheable/non-allocatable. We want to apply the prediction

technique to predict CDC-DRAM hit/m iss for CDC-cache misses, so that accesses to the

main memory will be not delayed when the CDC-DRAM miss is correctly predicted.

We adopt a two-level adaptive predictor using a global history register and a global

pattern history table (GAg) [121]. The original predictor design is used for dynamic branch

predictions. It has a two level structure. The first level is a branch history register which

records the current branch pattern. The second level is a pattern history table that uses

saturating up-down counters to record the branch history for th a t pattern. When a branch

is encountered, the saturating counter indexed by the current pattern is used to predict

whether the branch should be taken or not. The real branch behavior will be fed back to

the history register and the counter.

We adapted the prediction mechanism so that the miss pattern instead of the branch

pattern is used to train the predictor. The predictor is simple with a low implementation

cost. For example, a predictor with an 8-bit history register, a 256-entry pattern history

table, and 2-bit saturating counters requires only 520-bit storage. The additional cost to

implement the logic is also small. The predictor is fast enough so that the prediction will

finish sooner than the L2 cache access.

There may be other predictor design alternatives. However, we have found this simple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 166

scheme is very effective to predict the CDC-DRAM hit/m iss, as will be shown in Section 8.3.

For this reason, we have not explored other alternatives.

8 .1 .5 W rite P olicy

The CDC can be organized as a write-through cache or a writeback cache. The write-

through policy is simple to implement for the CDC, but it increases the traffic to the main

memory. The writeback policy is more complicated for the CDC. When a CDC-cache miss

is encountered, the CDC-DRAM must be accessed for correctness no m atter whether the

access is predicated a hit or miss (the predictor still works to filter out unnecessary accesses

to the main memory). Furthermore, replacing a CDC-DRAM page with multiple dirty

blocks will cause a burst of writebacks to the main memory. Additional buffers may be

needed to hold those dirty blocks.

We believe the write policy has little influence on the CDC performance for the follow­

ing reasons. Writeback L2 cache has been extensively used to reduce the memory traffic.

Furthermore, a recent study shows that eager wrriteback [65] can minimize the effect of write

traffic on the overall system performance (this technique may also be applied to writeback

CDC to avoid the bursts of writebacks). Thus, we only consider write-through CDC in our

study.

8 .1 .6 C ache C oherence in M ultiprocessor Environm ent

The CDC design can be used in multiprocessor systems with large main memories as well,

in which cache coherence must be maintained. For simplicity, we only discuss the cache

coherence issue for bus-based shared-memory symmetric multiprocessors (SMPs) with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 167

write invalidate, snooping protocol. M aintaining cache coherence for CDC is simplified by

using the write-through policy. Because the main memory has a consistent copy for data

cached in CDC, one processor does n o t need to check its CDC for read requests from another

processor. Invalidations may take a longer time for data blocks in a CDC than those in an

on-chip cache. A queue can be used to buffer those invalidation requests when the CDC

is updated. Every access to CDC should be checked with the queue to avoid accessing

stale data. After the CDC is updated, the related request can be released from the queue.

Currently, the simulator only simulates a uniprocessor system without the maintenance of

cache coherence.

8.2 Experimental Setup

The simulation parameters are listed in Table 8.1. We use SimpleScalar 3.0 [14] to simulate

an 8-way issue, 2GHz processor, an d use the SPEC CPU2000 benchmark [107] as the

workload. We add the simulations of th e CDC, the MSHR (miss inform ation/status holding

register), the writeback buffer, and th e DRAM maun memory system. T he LI and L2 cache

latencies axe estimated using the C acti model [85], assuming the 0.13pm technology is used.

The latency of the L3 SRAM cache is estimated as follows. We assume tha t the L3

SRAM cache is on a separate die b u t in the same module with the CPU , using multichip

module technology. The cache is connected to the CPU through a 1GHz, 32-byte wide

internal bus (this is not aggressive as the IA-64 Itanium processor cartridge has a 16-

byte internal bus that operates at th e full CPU speed [94]). The access latency is 9.12ns,

estimated by using the Cacti model, which is nineteen CPU cycles. Adding two bus cycles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 168

Processor speed 2GHz, 8-way issue
RUU (register update unit) 128-entry
LSQ (load/store queue) 32-entry
LI inst. cache 32KB, 4-way associative

64-byte block, 2 cycle latency
LI d a ta cache 32KB, 4-way associative

64-byte block, 2 cycle latency
Unified L2 cache 1MB, 8-way associative

128-byte block, 8 cycle la tency
MSHR 32 entries
W riteback buffer 16 entries
Memory bus bandwidth 6.4 G B /s
DRAM latency (excluding d a ta
transfer time)

50ns (100 cycles)

Off-chip cache bandw idth 25.6GB/S
L3 SRAM cache 8MB, direct mapped, 128-byte block, 23 cycle la­

tency
CDC-cache 16 block, 4-way associative, 20 cycle latency
CDC-DRAM 64MB, 4KB page size, 16 banks. 20ns (40 cycles)

row access latency
CDC hit/m iss predictor G A g w ith 8-bit history register and 2-bit sa tu ra t­

ing counter

Table 8 .1 : Sim ulation parameters.

for bus delay, the total latency for transferring the first trunk is 23 CPU cycles. Adding

three more bus cycles for transferring the following trunks, the total latency to fetch a

128-byte L2 block is 29 CPU cycles.

The latency of the CDC-cache is estimated as follows. Since the CDC-cache tag checking

is decoupled from a CDC-cache access, the block index is known before accessing the CDC-

cache. Thus, the CDC-cache is accessed like a direct mapped cache. The access time is

estimated as 4.7ns by the Cacti model. However, the layout of CDC-cache may not be

optimized as the Cacti model expects. Nevertheless, the Enhanced DRAM product has

achieved an on-chip SRAM access time of 10.6ns [32]. Thus, we assume that the CDC-

cache access time is 8ns (16 CPU cycles), which should be a conservative value. The total

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 169

latency to fetch a 128-byte L2 block from the CDC-cache is 26 CPU cycles.

We simulate a DRAM main memory system tha t supports split bus transactions and

can schedule reads prior to earlier writes. At the DRAM level, we assume the close-page

mode and auto-precharge are used, and the bank conflict is negligible because of the large

number of banks in today’s DRAM. The memory parameters are based on an 800MHz 4-

channel Direct Rambus DRAM system. Each channel has 1.6GB/s bandwidth find the total

bandwidth is 6.4GB/s. The initial DRAM latency is the delay from the time of sending the

request to DRAM to the time of receiving the first bit of data. The delay includes 20ns row

access time, 20ns column access, and 10ns bus delay. The total delay to fetch a 128-byte

block from the main memory is 70ns (140 processor cycles).

We use the precomplied SPEC CPU2000 binaries [117]. All programs are fast forwarded

by four billion instructions and axe executed for 200 million instructions.

8.3 Performance Results

We present the performance improvements of the four L3 cache variations, the SRAM-L3.

the CDC-basic, the CDC-predict, and the CDC-perfect, by their speedups over a system

that has only the DRAM main memory below the on-chip caches in the memory hierarchy.

The SRAM-L3 represents the 8MB SRAM off-chip L3 cache. The CDC-basic. the CDC-

predict, and the CDC-perfect behave differently when CDC-cache misses happen. In the

CDC-basic, the CDC controller always fetches the data from the main memory. It is used

to show the performance by exploiting only the locality in the CDC-cache. In CDC-perfect,

the CDC controller magically knows whether the valid block is in the CDC-DRAM or not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 170

i
i 301.apsi

I 200.sixtrack

189.lucas

188. anunp

I 187.facerec

183.equake

179.art

178.galgel

173.applu

! 17 2.mg r i d

I 171.swim

i 168.wupwise

| 0.00 1.00 2.00 3.00 4.00 5.00 6.00 i

SpM dup

F igu re 8.3 : Speedup for SPECfp2000 program s.

Both the CDC-basic and the CDC-perfect do not incur an overhead for main memory

accesses when CDC-cache misses happen. The CDC-predict uses the predictor (discussed

in Section 8.1) to predict where to fetch the data. There is an overhead for a wrongly

predicated CDC-DRAM hit.

Figure 8.3 shows the speedups of the L3 variants for the twelve SPECfp2000 programs,

and Figure 8.4 for the seven SPECint2000 programs. Table 8.2 shows the hit rates of those

L3 variants for all the nineteen programs. To show how effectively the CDC-DRAM holds

the working sets of programs, we also present the hit rates of a 64-MByte SRAM L3 cache.

The CDC-DRAM hit rates are almost the same as those of the 64-MByte L3 cache.

■ CDC-pred
□ CDC-perfect
■ CDC-basic
■ SRAM L3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 171

300.twolf

25 6.bzip2

255.vortex

197.parser

181.mcf

176.gcc

175.vpr

1 . 10

1 . 0 1
1 . 0 1

i . « c

1 . 2 8

OCDC-pred
□CDC-perfect
■CDC-basic
■SRAM L3

0 . 0 0 0.50 1 . 0 0 1.50
SpM dup

2 . 0 0 2.50 3 . 00

F ig u re 8.4: Speedups for SPEC int2000 programs.

8 .3 .1 Perform ance o f SR A M -L3

The SRAM-L3 provides at least 10% speedups (see Figure 8.3 and Figure 8.4) for ten of

the nineteen programs. The average speedup (harmonic mean [44]) is 45% for the ten

programs, and 19% for sill the nineteen programs. This confirms the effectiveness of large

off-chip cache for memory-intensive applications. The SRAM-L3 hit rates range from 38%

to 99.8%. For four programs, 175.vpr, 300.twolf, 178.galgel, and 179.art, the SRAM-L3 hit

rates are as high as 97% or more.

However, the speedups of SRAM-L3 for four programs, 171.swim, 172.mgrid, 189.lucas.

and 301.apsi, are negative (—3% ~ —5%). The hit rates for those programs (see Table 8.2)

range from 0.2% to 1.0%, which means the SRAM-L3 is almost useless for those programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 172

[P r o q r a n ^ ^ _ ^ ^ _ ^ C D C - D R A J ^ ^ ^ _ _ C D C - c a c h e _ ^ 8 J ^ R A J ^ 3 ^ 6 4 t ^ S R A t ^ L ^ |

| l 7 6 . g c c 95.0% 80.5% 95.0% 1

11 9 7 . p a r s e r ^ 6 7 ^ 3 % ^ 51.5% 66.6% 67.3% |

| 2 5 6 . b z i p 2 68.9% 43.5% 68.8% 68.9% 1

11 6 8 . w u p w i s e 25 .5% 23.9% 17.8% 25 .5% 1

| l 7 2 . m g r i d 40.7% 38.5% 1.0% 40.7% |

117 8 . g a l g e l 97.6% 71.7% 97.5% 97.6% 1

| l 8 3 . e q u a k e 17.7% 1 0 . 6% 11.1% 17.7% 1

118 8 . ammp________ 94 ,3% 37.6% 79.7% 94.3% 1

12 0 0 . s i x t r a c k 72.9% 57.5% 72.9% 72.9% 1

1A v e r a g e 63.8% 42.1% 49.6% 63.8% |

T ab le 8.2: H it rates o f th e selected SPEC CPU2000 program s.

Furthermore, the miss overhead increases the main memory access latency, causing the

performance losses. The five other programs have miss rates from 10% to 18%. and the

speedups are from 1% to 4%. The SRAM-L3 is not big enough for those programs, and the

miss overhead hinders the performance improvement. Only five programs in all the nineteen

programs have hit rates more than 80%, indicating a large room for further improvement.

The SRAM-L3 is more effective for the SPECint2000 programs than the SPECfp2000

programs. The average speedup of SRAM-L3 for the seven SPECint2000 programs is 31%,

and 13% for the twelve SPECfp2000 programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 173

8 .3 .2 Com parisons b etw een C D C -predict and SR A M -L 3

The CDC-predict provides a t least 10% speedups (see Figure 8.3 and Figure 8.4) for fourteen

programs. The average of the ten most significant speedups is 56%, and the average speedup

for all the nineteen programs is 29%. Thus, the CDC-predict is beneficial to more programs

than the SRAM-L3, and provides a higher average speedup. The average harmonic mean of

IPC for all the nineteen programs using the CDC-predict is 11% higher than that of using

the SRAM-L3. As expected, it causes no performance loss for all the programs.

The CDC-predict does not outperform the SRAM-L3 on every program. For the four

programs, 175. vpr, 300. twolf, 178.galgel. and 179. art, the SRAM-L3 hit rates range from

97.5% to 99.8%, while the performance of CDC-predict is 2.3% ~ 8.8% lower than tha t

of SRAM-L3. However, the CDC-predict outperforms the SRAM-L3 by 6.1% ~ 59.6% for

eight programs, and the average speedup over the SRAM-L3 for the eight programs is 23%.

For the three programs 171.swim, 172.mgrid, and 189.lucas th a t the SRAM-L3 hit rates

are only 0.2% ~ 1.0%. the CDC performs much better than the SRAM-L3.

The SPECint2000 programs tend to have smaller working sets and less spatial locality

than the SPECfp2000 programs. The average speedups of the CDC-predict for both the

SPECfp2000 and the SPECint2000 programs are 30%, while the same speedups of the

SRAM-L3 are 13% and 31%, respectively. The CDC-predict performs significantly better

than the SRAM-L3 for the twelve SPECfp2000 programs, and very close for the seven

SPECint2000 programs '.

In general, the SRAM L3 cache outperforms the CDC-predict only when the applica-

'W e include all programs in th e S P E C CPU2000 suite th a t the m em ory s ta ll time is a large portion of
th e to ta l execution time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 174

tion ’s working sets can fit in the L3 cache. However, only four in all the nineteen programs

belong to this category, and the CDC-predict can perform comparably with the SRAM-L3

even for those programs. The SRAM L3 cache performs poorly for programs with large

working sets, and the CDC-predict outperforms the SRAM-L3 significantly. For the other

programs, the CDC-predict performs the same well or slightly better than the SRAM-L3.

8 .3 .3 C om parisons o f th e C D C Variants

We compare the performance of CDC-basic. CDC-perfect, CDC-predict, and SRAM-L3

to distinguish (1) the effectiveness of exploiting CDC-DRAM locality, and (2) the effec­

tiveness of using the prediction. As discussed in Section 8.1, if the data can be found in

th e CDC-DRAM but not in the CDC-cache, it is still performance-beneficial to access the

CDC-DRAM instead of the main memory. This is especially true for bandwidth-bound ap­

plications. The difference between CDC-prefect and CDC-basic shows this effect. We use

the GAg two-level adaptive prediction to predict CDC-DRAM hits. The difference between

CDC-predict and CDC-perfect shows the effectiveness of this prediction.

CDC-perfect outperforms CDC-basic significantly for programs that have high CDC-

DRAM hit rates but relatively low CDC-cache hit rates (see Table 8.2). All programs that

th e SRAM L3 cache outperforms CDC-basic are in this category, because CDC-DRAM can

hold a working set if the SRAM L3 cache can hold it. For example, 179.art is a program

th a t SRAM-L3 achieves a 99.8% hit rate and CDC-basic achieves a 95.7% CDC-cache hit

rate. Because it is very memory-intensive and bandwidth-bound, the program runs 28%

slower on CDC-basic than on SRAM-L3. With CDC-perfect, those misses are directed

to CDC-DRAM, making the program run only 8% slower on the CDC-predict than on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 175

Program 175.vpr 176.gcc 181.mcf 197.parser 255.vortex
Accuracy 99.2% 95.4% 98.4% 97.8% 80.7%
Program 256.vortex 300.twolf 168.wupwise 171.swim 172.mgrid
Accuracy 80.7% 81.2% 81.2% 98.4% 98.6%
Program 173.applu 178.galgel 179.art 183.equake 187.facerec
Accuracy 98.2% 99.4% 99.9% 84.6% 97.8%
Program 188.ammp 189.1ucas 200.sixtrack 301.apsi
Accuracy 99.2% 93.0% 98.3% 99.9%

T a b le 8 .3 : T he accuracies of the CD C-D RA M hit/m iss prediction.

SRAM-L3. Program 181.mcf performs worse on the CDC-basic than on SRAM-L3. but

performs better on CDC-perfect than on SRAM-L3. CDC-basic achieves a 52.5% cache-hit

rate for this program, and SRAM-L3 achieves a relatively better hit rate, 76.9%. However,

CDC-DRAM hit rate is 99.0%, thus CDC-perfect can avoid almost all accesses to the main

memory and outperform SRAM-L3.

CDC-predict achieves almost the same performance as CDC-perfect for all the programs,

as shown in Figure 8.3 and Figure 8.4. Table 8.3 shows the prediction accuracies of the

predictor, which is more than 90% for sixteen programs, and more than 95% for thirteen

applications. The lowest accuracy is 80.7%. For three applications with prediction accuracy

lower than 90% {255.vortex, 168.wupwise, and 183.equake), the performance of CDC-basic

is already very close to CDC-perfect, which indicates the accuracy of the prediction is

insignificant for the overall performance of the three programs.

8.4 Summary

We have presented the design and performance evaluation by constructing CDC (cached

DRAM cache) as the L3 off-chip cache. We show tha t the CDC effectively addresses two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8. CACHED-DRAM CACHE 176

major concerns of the SRAM off-chip cache: the relatively small size and the miss overhead.

More applications can benefit from the CDC than from the SRAM off-chip cache and no

applications will lose performance due to the existence of CDC.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

9.1 .1 M em ory L aten cy B ottlen eck

The performance of computer systems has been rapidly advanced by the improvement of

critical systems technologies of processor, interconnect, storage, and memory. In fact, the

processor speed has been improved in a pace exceeding the prediction of Moore’s Law. It

is predicted tha t a standard processor will be as fast as 3-5 GHz in the year of 2004, and

10-15 GHz in the year of 2010. A CPU cycle time will soon be reduced to less than 0.1 ns.

Meanwhile, the unit price for one MIPS (million instructions per second) will be no more

than 10 cents.

With the advancement of networking technology, the interconnection speed measured

by link bandwidths (GByte per second) has improved more than 100% per year. These

interconnection switches are used for different interconnections of different components of

computer systems, such as CPU-memory interconnects and local area networks. The ad­

vancement of networking technology continues to improve the data communication speeds

of inter-computers and intra-computers.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 178

The technology of disk storage has also improved rapidly. The storage density doubles

every year. The unit price per giga bytes of disk space has improved in an even faster pace.

In other words, disk space for computer systems become increasingly large and cheap.

Unfortunately, memory technology is the slowest improving technology compared with

the other three technologies. On the positive side, memory bandwidth is improving quickly

due to the advancement of networking technology. For example, memory bandwidth now is

up 8.5 G B/s, and it is predicted that bandwidth will reach to 40 G B/s in the year of 2010.

In addition, the price of DRAM is also dropping rapidly. For example, the unit price for one

MByte DRAM is more than $1,000 in 1976, while the price for the same size memory space is

less than $1.00 now. We will continue to see increasingly large memories and improved data

transfer speed between the memory and caches. However, memory latency has improved in

a much slower pace (5-7% per year) compared with the CPU speed. The relative memory

latency will at least double every 3 to 4 years. Although the unit price of DRAMs alone

decreases consistently, the improvement still lags behind the cost improvement of other

system components. Thus, the cost of memory in a typical system grows relatively at

about 30% per year! The memory system has been characterized as the “single most costly

single component of system excluding storage subsystem” . and the “single most costly single

component of storage subsystem (including disks themselves)” [102].

In this dissertation, we have addressed this im portant issue of computer systems: mem­

ory latency reduction. We have proposed several software and hardware methods to achieve

the goal of reducing memory stall time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 179

9 .1 .2 O ur A pproaches and T heir Effectiveness

In a typical computer system, a multi-level caching organization has become standard,

which provides fast data accesses before the data have to be accessed in DRAM core. The

existence of these caches in a computer system, such as Ll, L2, L3, TLB, and DRAM row

buffers, does not mean that data locality will be automatically exploited. The effective

usage of the memory hierarchy mainly depends on how data is allocated and how memory

accesses are scheduled, which is the major theme of this dissertation.

In the first part of the dissertation, we have presented a case study of optimizing cache

performance of bit-reversals. We have shown that a program can be effectively reconstructed

based on its specific data access patterns and cache structures of the systems to reduce cache

miss rates. This software-library oriented approach is cost- and execution-effective for those

commonly and routinely used programs.

Although the next three DRAM memory projects presented in the dissertation attem pt

to reduce the memory latency by using different technical approaches, they are related and

can complement each other.

In order to reuse the data in the DRAM row buffer, the da ta must stay there for

a reasonable period of time. Our study shows that a conventional memory interleaving

scheme causes severe row buffer conflicts so that the data is frequently replaced, and the

locality in the access stream cannot be exploited. We propose a simple and effective memory

interleaving scheme to reduce or even eliminate those row buffer conflicts. The hardware

cost of this scheme is trivial. This technique can maximize d a ta reuse in the row buffer

and significantly reduce the access frequency to the DRAM core, effectively shortening the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE W ORK 180

average memory access latency.

Another approach to reduce memory latency is to make the processor get the required

data as quickly as possible. As we have discussed earlier, the processor has increasingly

long memory stall time waiting for relative slow memory accesses. One method to reduce

memory latency in this direction is to effectively reorder the memory accesses by giving

more urgently required data a higher priority. We propose a fine-grain priority scheduling

scheme for data accesses on multi-channel memory systems, effectively exploiting available

bandwidth and concurrency and significantly reducing overall memory latency. The mem­

ory interleaving technique can be integrated with fine-grain priority scheduling, e.g., the

scheduling prioritizes accesses to data which is already in the row buffer.

In the final part of the dissertation, we first evaluate the performance of cached DRAM

and its design alternatives with ILP processors. Compared with DRAM row buffers, the

on-memory cache in the cached DRAM can further reduce miss rates and allow faster

accesses to cached data. We have shown that the performance improvement is significant for

memory-intensive workloads running on ILP processors. However, the better performance

comes with an increase in the manufacturing cost. Therefore, memory system architects

should consider the trade-off between cost-effectiveness and high performance gains in their

designs.

We then propose a new memory hierarchy organization that uses the cached DRAM to

construct a very large off-chip cache. We show th a t this structure outperforms a standard

memory system with an off-chip L3 cache for memory-intensive applications. This organiza­

tion is particularly beneficial to the applications whose working sets are larger than the L3

cache. The interleaving technique is complementary to this organization because exploiting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 181

row buffer locality will further improve the memory performance.

Table 9.1 presents the relationships among the four techniques. The sign of **+” means

the two techniques are complementary to each other, while the sign of — means the two

techniques may conflict. All the techniques are complementary to each other, except for

the permutation-based interleaving technique and the cached DRAM. W hen the cumulative

row buffer size increases to a certain threshold, the row buffer conflicts in the DRAM will

be minimized. Under such a condition, the permutation-based interleaving technique will

no longer be effective.

Interleaving CDRAM Scheduling CDC
Interleaving - + +
CDRAM - + +
Scheduling + + +
CDC + + +

Table 9.1: Relationship of the four techniques: permutation-based page-interleaving (Interleaving).
Cached DRAM (CDRAM), fine-grain memory access scheduling (Scheduling), and CDC (cached-
DRAM cache).

9.2 Future Work

9 .2 .1 E ffective M em ory A ccess S ch ed u lin g for Future P rocessors

The memory access scheduling has been an increasingly complex issue for processors that

exploit instruction-level parallelism (ILP) aggressively. As more aggressively speculative

techniques are used in ILP processors, we believe that memory access scheduling should

consider more information from the processor. Processors have extensively exploited spec­

ulative execution techniques to boost instruction-level parallelism. One example is branch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 182

prediction [121], which allows the processor to guess the output of a conditional branch

instruction and to speculatively execute the program along the predicted path. Another

example is value prediction [68], which allows the processor to reuse the previous compu­

tation of a block of instructions. Although speculative execution is necessary and effective,

it introduces speculative memory references tha t may cause false cache misses and increase

memory traffic. Memory access scheduling can reduce or eliminate this negative effect.

One approach is to prioritize accesses from non-speculative memory references over those

from speculative references. Another approach is to hold memory accesses from speculative

memory references for a certain amount of time until the related speculation is resolved.

The recent introduction of precomputation-based prefetching techniques [4, 8. 21] ex­

poses much more memory access concurrency to the scheduling. Those techniques can

accurately predict future memory accesses by executing a large amount of instructions in

a speculative mode. They can also provide the information about critical memory blocks

so that the fine-grain memory access scheduling which we have proposed can be applied to

memory accesses in the speculative execution. On the other hand, memory access schedul­

ing can improve the accuracy of the speculative execution because it shortens the latency

of critical memory blocks and reduces the time length of speculative execution. We believe

tha t the performance can be further improved by combining the two approaches.

The complexity of memory access scheduling lies in the interconnection and interactions

between the processor and the memory controller. The processor will need to pass more

information associated with each access request. This information may be updated dynam­

ically, for example, when an instance of speculation is resolved. Our study on the fine-grain

memory access scheduling has included preliminary discussions on the complexity issue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 183

However, further and more detailed study must be done the determine the best trade-off

between complexity and performance improvement.

9 .2 .2 Im proving th e Perform ance o f C D C

Our CDC design uses cached-DRAM to construct a large, low-overhead off-chip cache. We

believe this design meets the future needs of memory-intensive applications, which cannot

be met by SRAM off-chip caches. In our preliminary study, we have shown that the CDC

outperforms SRAM cache for most workloads. There are two approaches to further improve

the performance of CDC. The first approach is to identify frequently used data of spatial

locality and to use CDC as the preferable place to cache the data. The benefit is two-fold.

First, it improves the spatial locality of the data cached in CDC. Consequently, the data is

more likely to be found in CDC-cache. Second, more space in the relatively small on-chip

SRAM caches is spared for data of poor spatial locality but of good temporal locality. This

type of da ta is common in programs using dynamically-allocated da ta structures. Thus,

those programs will benefit from the approach when on-chip caches are not large enough to

hold both types of data.

Another approach is to use aggressive prefetch techniques with CDC. There can be three

forms of prefetch. First, prefetch can be done to prompt da ta from the CDC-DRAM to the

CDC-cache, utilizing the huge internal bandwidth inside the CDC. Unlike prefetching from

DRAM main memory to on-chip caches, the waste of bandwidth due to inaccurate prefetch

has a negligible impact on performance. Prefetch can also be done from the CDC to on-

chip caches, further reducing the latency of accessing da ta stored in CDC. The bandwidth

between the on-chip caches and the CDC is several times higher than the bandwidth between

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9. CONCLUSIONS AND FUTURE W O RK 184

the on-chip caches and the DRAM main memory. Thus, the possible waste of bandwidth

has a much smaller impact on the overall performance. The third choice is to prefetch

da ta from the DRAM main memory to the CDC. Since the CDC is much larger than on-

chip caches, this type of prefetching causes much less cache pollution than prefetching data

directly into on-chip caches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

The Bit-reversal Program Using

the Padding M ethod

void b i t . r e v e r s a lO

{

in t b lk , b lk _ re v , i , i_ r e v , j , j ump = PAD.LENGTH, k ;

in t D = N » 2*b, d = n - 2*b;

DATA.TYPE *Xp[B];

DATA.TYPE *Yp, fO, f l , f2 , f3 ;

fo r (i * 0; i < B; i ++)

X pti] = fcX [b itrev _ tb l[i]* ju m p];

fo r (b lk = 0; b lk < D; b lk ++) {

b i t r e v (b lk , b lk .r e v , d) ;

fo r (i = 0; i < B; i ++) {

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A. BIT-REVERSAL PROGRAM

i_ re v * b i t r e v _ t b l [i] ;

k * (b lk « b) + i ;

Yp = k Y [(b lk _ rev « b) ♦ (i _ r e v « (n - b))] ;

fo r (j = 0; j < B; j += 4) {

f0 = Xp[j] [k] ;

f l = Xp [j+1] [k] ;

f2 = Xp[j + 2][k] ;

f3 = Xp[j+3] [k] ;

YpCjD = fO;

Yp[j+1] = f l ;

YpCj+2] = f2 ;

Yp[j+3] = f 3;

>

>

>

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. A G A RW A L AND S. P U D A R . Column-associative caches: a technique for reducing the
miss rate for direct-mapped caches. In Proceedings o f the 20th Annual International
Symposium on Computer Architecture, pages 179-190, San Diego, CA, 1993.

[2] A . A g a r w a l , M. H o r o w i t z , a n d J . H e n n e s s y . Cache performance of operating
systems and multiprogramming workloads. ACM Transactions on Computer Systems,
6(4):393-431, November 1988.

[3] G. M. A m d a h l , G. A. B l a a u w , a n d F. J. B r o o k s , J r . Architecture of the IBM
system/360. IBM Journal o f Research and Development, 8(2):87—101, 1964.

[4] M. M. A n n a v a r a m , J. M. P a t e l , a n d E. S. D a v i d s o n . D ata prefetching by
dependence graph precomputation. In Proceedings o f the 28th Annual International
Symposium on Computer Architecture, pages 52-61, Goteborg. Sweden, 2001.

[5] J .-L . B a e r a n d W .-H. W a n g . Architectural choices for multi-level cache hierarchies.
In Proceedings o f the International Conference on Parallel Processing, pages 258-261,
1987.

[6] J .-L . B a e r AND W .-H. W a n g . On the inclusion properties for multi-level cache
hierarchies. In Proceedings o f the 15th Annual International Symposium on Computer
Architecture, pages 73-80, Honolulu. Hawaii, 1988.

[7] D . H. B a il e y . F F T s in e x te rn a l o r h ie ra rch ica l m em ory . The Journal o f Supercom­
puting, 4(l):23-35, M arch 1990.

[8] R. B a l a s u b r a m o n i a n , S. D w a r k a d a s , a n d D. H. A l b o n e s i . Dynamically allo­
cating processor resources between nearby and distant ILP. In Proceedings of the 28th
Annual International Symposium on Computer Architecture, pages 26-37, Goteborg,
Sweden, 2001.

[9] F. B a s k e t t a n d A. S m i t h . Interference in multiprocessor computer systems with
interleaving memory. Communications of the ACM, 19(6):327-334. June 1976.

[10] B . B A T S O N a n d T . N . V i j a y k u m a r . Reactive-associative caches. In Proceedings
of the International Symposium on Parallel Architectures and Compiler Techniques,
Barcelona, Spain, 2001.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 188

[11] B . B E R S H A D , D. L e e , T . R o m e r , AND B . C h e n . Avoiding conflict misses dynami­
cally in large direct-mapped caches. In Proceedings o f the 6th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
158-170, San Jose, CA, 1994.

12] B. B l a c k , B. R y c h l i k , a n d J . P . S h e n . The block-based trace cache. ACM
SIGARCH Computer Architecture News, 27(2): 196-207, May 1999.

13] D. B u r g e r , J. R. G o o d m a n , a n d A. K a g i . Memory bandwidth limitations of
future microprocessors. In Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 78-89, Philadelphia, PA, 1996.

14] D. B U R G E R . System-level implications of processor-memory integration. Technical
Report CS-TR-1997-1349, University of Wisconsin, Madison, June 1997.

15] D. C. B u r g e r a n d T. M. A u s t i n . The SimpleScalar Tool Set, Version 2.0. Technical
Report CS-TR-1997-1342, University of Wisconsin, Madison, June 1997.

16] B . C A L D E R , D . G RU N W A L D , a n d J. E m e r . Predictive sequential associative cache.
In Proceedings o f the 2nd International Symposium on High-Performance Computer
Architecture, pages 244-253, San Jose, C A , 1996.

17] D. C a l l a h a n , K. K e n n e d y , a n d A. P o r t e r f i e l d . Software prefetching. In
Proceedings of the 4th International Conference on Architectural Support for Pro­
gramming Languages and Operating Systems, pages 40-52, Santa Clara, CA, 1991.

18] M. C e k l e o v a n d M. D u b o i s . Virtual-address caches, part 1: Problems and solu­
tions in uniprocessors. IEEE Micro, 17(5):64-71, September/October 1997.

19] C.-L. C h e n a n d C.-K . L i a o . Analysis of vector access performance on skewed
interleaved memory. In Proceedings o f the 16th Annual International Symposium on
Computer Architecture, pages 387-394, Jerusalem, Israel. 1989.

20] S. C ho, P .-C . Y e w , a n d G. L e e . Decoupling local variable accesses in a wide-issue
superscalar processor. In Proceedings of the 32st IE E E /A C M International Sympo­
sium on Microarchitecture, pages 100-110. Haifa, Israel, 1999.

21] J. D. C o l l i n s , H . W a n g . D. M . T u l l s e n , C . H u g h e s , Y .-F. L e e . D. L a v e r y .

AND J. P . S h e n . Speculative precomputation: Long-range prefetching of delinquent
loads. In Proceedings of the 28th Annual International Symposium on Computer
Architecture, pages 14-25, Goteborg, Sweden, 2001.

22] Compaq Computer Corp. Technology for performance: Compaq professional worksta­
tion XP1000, January 1999. W hite paper (document number ECG050/0199).

23] J. W. C o o l e y a n d J. W. T u k e y . An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19(90):297-301, April 1965.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 189

[2 4] V . C u p p u A N D B . J a c o b . Concurrency, latency, or system overhead: Which has
the largest impact on uniprocessor DRAM-system performance? In Proceedings of
the 28th Annual International Symposium on Computer Architecture, pages 6 2 - 7 1 ,
Goteborg, Sweden, 2 0 0 1 .

[25] V. C u p p u , B. J a c o b , B. D a v i s , a n d T. M u d g e . A performance comparison of
contemporary DRAM architectures. In Proceedings of the 26th Annual International
Symposium on Computer Architecture, pages 222-233, Atlanta, GA, 1999.

[26] Z. C v e t a n o v i c AND D. D. D o n a l d s o n . AlphaServer 4100 performance character­
ization. Digital Technical Journal, 8 (4):3 -2 0 , 1996.

[27] B. T. D a v i s . Modem D RAM Architectures. PhD thesis, University of Michigan,
Department of Computer Science and Engineering, 2001.

[28] R. D e s i k a n , D. B u r g e r , a n d S. W . K e c k l e r . Measuring experimental error in
microprocessor simulation. In Proceedings of the 28th Annual International Sympo­
sium on Computer Architecture, pages 266-277, Goteborg, Sweden. 2001.

[29] A. E d e l m a n . Optimal matrix transposition and bit reversal on hypercubes: all-
to-all personalized communication. Journal of Parallel and Distributed Computing,
11(4):328 -331 , April 1991.

[30] J . E d m o n d s o n , P . R u b i n f e l d , R . P r e s t o n , a n d V. R a j a g o p a l a n . Superscalar
instruction execution in the 21164 Alpha microprocessor. IEEE Micro, 1 5 (2):33 -43 .
April 1995.

[31] J . S. E m e r a n d D. W . C l a r k . A characterization of processor performance in
the VAX-11/780. In Proceedings of the 11th Annual International Symposium on
Computer Architecture, pages 301-310, Ann Arbor, MI, 1984.

[32] Enhanced Memory Systems Inc. 64 Mit ESD RAM Components, Product Brief rl.8.
2000. product manual.

[33] D. M. W . E v a n s . An improved digit-reversal permutation algorithm for the fast
fourier and hartley transforms. IEEE Transactions on Acoustics, Speech, Signal Pro­
cessing, ASSP-35:1120-1125, 1987.

[34] K. I. F a r k a s , P. C h o w , N. P. J o u p p i , a n d Z. V r a n e s i c . Memory-system de­
sign considerations for dynamically-scheduled processors. In Proceedings o f the 24 th
Annual International Symposium on Computer Architecture, pages 1 3 3 -1 4 3 , Denver,
Colorado, 1997.

[35] K. I. F a r k a s a n d N. P. J o u p p i . Complexity/Performance tradeoffs with non-
blocking loads. In Proceedings of the 21st Annual International Symposium on Com­
puter Architecture, pages 211-222, Chicago, IL, 1994.

[36] D. H. F r i e n d l y , S. J . P a t e l , a n d Y. N. P a t t . Alternative fetch and issue
policies for the trace cache fetch mechanism. In Proceedings o f the 30th IEEE /AC M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 190

International Symposium on Microarchitecture, pages 24-33, Research Triangle Park.
NC, 1997.

[37] Q. S. G a o . The Chinese remainder theorem and the prime memory system. In
Proceedings of the 20th Annual International Symposium on Computer Architecture.
pages 337-340, San Diego, CA, 1993.

[38] K. S. G a t l i n a n d L. C a r t e r . Memory hierarchy considerations for fast trans­
pose and bit-reversals. In Proceedings o f the 5th International Symposium on High-
Performance Computer Architecture, pages 33-43, Orlando, FL, 1999.

[39] J . G i b s o n , R . K u n z , D. O f e l t , M . H o r o w i t z , J. H e n n e s s y , a n d M . H e i n r i c h .

FLASH vs. (simulated) FLASH: closing the simulation loop. In Proceedings o f the 8th
International Conference on Architectural Support fo r Programming Languages and
Operating Systems, pages 49-58, San Jose, CA, 1998.

[40] A. G o n z a l e z , M. V a l e r o , N. T o p h a m , a n d J . M. P a r c e r i s a . Eliminating cache
conflict misses through XOR-based placement functions. In Proceedings o f the 11th
International Conference on Supercomputing, pages 76-83, Vienna, Austria, 1997.

[41] G . G r o h o s k i AND C . M o o r e . In s tru c tio n buffer to s u p p o r t m u ltip le fe tches a n d
d isp a tc h e s . IBM Technical Disclosure, 21(12):25 -40 , S e p te m b e r 1989.

[42] D . T . H a r p e r III a n d J . R . Ju m p . Performance evaluation of vector accesses in
parallel memories using a skewed storage scheme. In Proceedings o f the 13th Annual
International Symposium on Computer Architecture, pages 3 2 4 -3 2 8 , Tokyo, Japan.
1986.

[43] C. A. H a r t . CDRAM in a unified memory architecture. In Proceedings of CompCon
’94, pages 261-266, Los Alamitos, CA, 1994.

[44] J . L. HENNESSY a n d D. A. P a t t e r s o n . Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo. CA, second edition, 1996.

[45] J . L. H e n n i n g . SPEC CPU2000: measuring CPU performance in the new millen­
nium. IEEE Computer, 33(7):28-35, July 2000.

[46] H . H id a k a , Y . M a t s u d a , M . A s a k u r a , a n d K . F u j i s h im a . T h e cach e DRAM
a rc h ite c tu re : a DRAM w ith a n o n -ch ip cache m em ory . IE E E Micro. 10(2): 14-25.
A p ril 1990.

[47] M. D. H i l l . A case for direct-mapped caches. IEEE Computer. 21(12):25-40. De­
cember 1988.

[48] S . I . H o n g , S . A . M c K e e , M . H. S a l i n a s , R. H . K l e n k e , J . H. A y l o r . a n d

W. A. WULF. Access order and effective bandwidth for stream s on a direct Rambus
memory. In Proceedings o f the 5th International Symposium on High-Performance
Computer Architecture, pages 8 0 -8 9 , Orlando, FL, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 191

[49] W .-C. Hsu AND J. E . S m ith . Performance of cached DRAM organizations in vec­
tor supercomputers. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 327-336, Los Alamitos, CA, 1993.

[50] C. J . H u g h e s , V. S. Pai, P . R a n g a n a t h a n , a n d S. V. A d v e . RSIM: Simulating
shared-memory multiprocessors with ILP processors. IEEE Computer, 35(2):40-49,
2002.

[51] IEEE, Piscataway, NJ. PO SIX Pi003.4a: Threads Extension fo r Portable Operating
Systems, 1994.

[52] Q . J a c o b s o n , E. R o t e n b e r g , a n d J . E. S m ith . Path-based next trace prediction.
In Proceedings of the 30th IE E E /A C M International Symposium on Microarchitecture,
pages 14-23, Research Triangle Park, NC, 1997.

[53] T . E . JEREMIASSEN a n d S . J . E g g e r s . Reducing false sharing on shared memory
multiprocessors through compile time data transformations. In Proceedings of the
5thACM SIGPLAN Symposium on Principles and Practice of Parallel Progmmming,
pages 179-188, Santa Barbara, California, 1995.

[54] S. L. J o h n s o n a n d C .-T . H o . Algorithms for m atrix transposition on boolean
n-cube configured ensemble architectures. SIAM Journal on Matrix Analysis and
Applications, 9(3), July 1988.

[55] T . L. J o h n s o n a n d W .-M . H w u . Run-time adaptive cache hierarchy management
via reference analysis. In Proceedings of the 24th Annual International Symposium on
Computer Architecture, pages 315-326, Denver, Colorado, 1997.

[56] N . P. J o u p p i . Improving direct-mapped cache performance by the addition o f a
small fully-associative cache and prefetch buffers. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 36 4 -3 7 3 , Seattle, WA.
1990.

[57] T . J u a n , T. L a n g , AND J. J . N a v a r r o . The difference-bit cache. In Proceedings o f
the 23rd Annual International Symposium on Computer Architecture, pages 114-120.
Philadelphia, PA, 1996.

[58] A. H. K a r p . Bit reversal on uniprocessors. SIAM Review, 38(1):1—26, March 1996.

[59] Y. K a ta y a m a . Trends in semiconductor memories. IEEE Micro, 17(6): 10—17, Novem­
ber/December 1997.

[60] R. KESSLER AND M. D. H ill . Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems, 10(4):338-359, November 1992.

[61] R. P . K o g a n t i AND G . K e d e m . WCDRAM: a fully associative integrated Cached-
DRAM with wide cache lines. In Proceedings of the 4th IEEE Workshop on the
Architecture and Implementation o f High Performance Communication Systems, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 192

[62] R. P. K O G A N T I . WCDRAM: a fully associative integrated Cached-DRAM with wide
cache lines. M aster’s thesis, Department of Electrical and Computer Engineering,
Duke University, 1997.

[63] D. K r o f t . Lockup-free instruction fetch/prefetch cache organization. In Proceedings
of the 8th Annual International Symposium on Computer Architecture, pages 81-87.
Minneapolis, MN, 1981.

[64] M. S. L a m , E. E. R o t h b e r g . AND M. E. W o l f . The cache performance and op­
timizations of blocked algorithms. In Proceedings o f the 4 th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
94-105, Santa Clara. CA, 1991.

[65] H.-H. L e e , G. T y s o n , a n d M. F a r r e n s . Eager writeback - a technique for im­
proving bandwidth utilization. In Proceedings o f the 33rd IEEE/ACM International
Symposium on Microarchitecture, Monterey, CA. 2000.

[66] D. LEIBHOLZ a n d R. R a z d a n . The Alpha 21264: A 500 mhz out-of-order execution
microprocessor. In Proceedings of CompCon ’97, pages 28-36. 1997.

[67] W . L in , S. R e i n h a r d t , a n d D. B u r g e r . Reducing dram latencies with an inte­
grated memory hierarchy design. In Proceedings o f the 7th International Symposium
on High-Performance Computer Architecture, Monterrey, Mexico, 2001.

[68] M. H. L lP A S T I . Value Locality and Speculative Execution. PhD thesis. Carnegie
Mellon University, Department of Electrical and Computer Engineering, May 1997.

[69] L. Liu. Cache designs with partial address matching. In Proceedings of the 27th
IEEE /AC M International Symposium on Microarchitecture, pages 128-136, San Jose,
CA, 1994.

[70] B. K. M a t h e w , S. A. M c K e e , J. B. C a r t e r , a n d A. D a v is . Design of a par­
allel vector access unit for SDRAM memory systems. In Proceedings o f the 6th In­
ternational Symposium on High-Performance Computer Architecture, pages 39-48,
Toulouse, France. 2000.

[71] S. A. M c K e e a n d W . A. W u l f . Access ordering and memory-conscious cache
utilization. In Proceedings of the 1st International Symposium on High-Performance
Computer Architecture, pages 253-262, Raleigh, NC, 1995.

[72] K . S. M c K i n l e y AND O . T em am . A quantitative analysis of loop nest locality.
In Proceedings o f the 7th International Conference on Architectural Support fo r Pro­
gramming Languages and Operating Systems, pages 94-104, Cambridge, MA, 1996.

[73] L. M c V o y a n d C. S t a e l i n . lmbench: Portable tools for performance analysis. In
Proceedings o f USENIX 1996 annual technical conference, pages 279-294, San Diego,
California, 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 193

[74] T . C. M o w r y , M. S. L a m , a n d A. G u p t a . Design and evaluation of a compiler
algorithm for prefetching. In Proceedings o f the 5th International Conference on Ar­
chitectural Support for Programming Languages and Operating Systems, pages 62-73,
Boston, MA, 1992.

[7 5] S. A. M O Y E R . Access Ordering and Effective Memory Bandwidth. PhD thesis. Univer­
sity of Virginia, Department of Computer Science, April 1993. Also as TR CS-93-18.

[76] J .-K . PEIR , W. W. H s u , a n d A . J . S m ith . Functional implementation techniques
for CPU cache memories. IEEE Transactions on Computers, 48(2): 100-110, February
1999.

[77] J .-K . P e ir , W. W. H s u , H. Y o u n g , a n d S. O n g . Improving cache performance
with balanced tag and data paths. In Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
268-278, Cambridge, MA, 1996.

[78] J .-K . PE IR , Y . L e e , a n d W . W . H s u . Capturing dynamic memory reference behav­
ior with adaptive cache topology. In Proceedings of the 8th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
240-250, Sam Jose, CA, 1998.

[79] PostgreSQL Inc. PostgreSQL 6.5. http://www.postgresql.org.

[80] S. P r z y b y l s k i . The performance impact of block sizes and fetch strategies. In
Proceedings o f the 17th Annual International Symposium on Computer Architecture,
pages 160-169, Seattle, WA, 1990.

[81] J . M. R a b a e y . Digital Integrated Circuits, A Design Perspective. Prentice Hall. Inc..
1996.

[82] Rambus Inc. 256/288-Mbit Direct RD RAM (32 Split Bank Architecture, 2000.
http://www.rambus.com/developer/downloads/rdram.256d.0105-l. 1 .book.pdf.

[83] B. R. R au . Pseudo-randomly interleaved memory. In Proceedings o f the 18th Annual
International Symposium on Computer Architecture, pages 74-83, Toronto, Canada.
1991.

[84] B. R. R a u , M. S. S c h l a n s k e r , a n d D. W . L. Y e n . The CYDRA 5 stride-
insensitive memory system. In Proceedings o f the 1989 International Conference on
Parallel Processing, volume 1, pages 242-246, 1989.

[85] G. R e in m a n a n d N. J o u p p i . An integrated cache timing and power model. Technical
report, COMPAQ Western Research Lab, 1999.

[86] G. R i v e r a a n d C.-W . TSENG. D ata transformations for eliminating conflict misses.
In Proceedings of the ACM SIG P LA N ’98 Conference on Programming Language De­
sign and Implementation, pages 38-49, Montreal Canada, 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.postgresql.org
http://www.rambus.com/developer/downloads/rdram.256d.0105-l

BIBLIOGRAPHY 194

[87] J . R i v e r s a n d E. D a v id s o n . Reducing conflicts in direct-mapped caches with a
temporality-based design. In Proceedings o f the International Conference cn Parallel
Processing, pages 151-162, Bloomingdale. IL, 1996.

[88] J . A. R i v e r s , G. S. T y s o n , E. S. D a v id s o n , a n d T . M. A u s t i n . On high-
bandwidth data cache design for multi-issue processors. In Proceedings o f the 30th
IE E E /A C M International Symposium on Microarchitecture, pages 46-56, Research
Triangle Park, NC, 1997.

[89] S. R i x n e r , W. J. D a l l y , U. J . K a p a s i , B. K h a i l a n y . A. L o p e z - L a g u n a s .
P. R. M a t t s o n , a n d J . D. O w e n s . A bandwidth-efficient architecture for me­
dia processing. In Proceedings of the 31st IEEE/AC M International Symposium on
Microarchitecture, pages 3-13, Los Alamitos, 1998.

[90] S . R i x n e r , W . J . D a l l y , U . J . K a p a s i , P . M a t t s o n , a n d J . D . O w e n s . Memory
access scheduling. In Proceedings o f the 27th Annual International Symposium on
Computer Architecture, pages 128-138, Vancouver, Canada, 2000 .

[91] M. R o s e n b lu m , E. B u g n io n , S. D e v in e , a n d S. A. H e r r o d . Using the SimOS
machine simulator to study complex computer systems. AC M Transactions on Mod­
eling and Computer Simulation, 7(1):78-103, January 1997.

[92] E. R o t e n b e r g , S. B e n n e t t , a n d J . E. S m i t h . TVace cache: A low latency ap­
proach to high bandwidth instruction fetching. In Proceedings o f the 29th IEEE/ACM
International Symposium on Microarchitecture, pages 24-35, Paris, Prance. 1996.

[93] T . S a k a k i b a r a , K . K i t a i , T . I s o b e , S. Y a z a w a , T. T a n a k a , Y. I n a g a m i . a n d
Y. T a m a k i . Scalable parallel memory architecture with a skew scheme. In Proceedings
o f the 7th International Conference on Supercomputing, pages 1 5 7 -1 6 6 . Tokyo. Japan.
1993.

[94] W . A. S a m a r a s , N. C h e r u k u r i , a n d S. V e n k a t a r a m a n . The IA-64 Itanium
processor cartridge. IEEE Micro, 21(1):82—89, January/February 2001.

[95] F . J . SANCHEZ a n d A . GONZALEZ. Cache sensitive modulo scheduling. In Proceed­
ings o f the 30th IEEE/ACM International Symposium on Microarchitecture, pages
338-348, Research Triangle Park, NC, 1997.

[96] A. S E Z N E C . A case for two-way skewed-associative caches. In Proceedings of the
20th Annual International Symposium on Computer Architecture, pages 169-178. San
Diego, CA, 1993.

[97] A. S E Z N E C . Decoupled Sectored Caches: conciliating low tag implementation cost
and low miss ratio. In Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 384-393, Chicago, IL, 1994.

[98] A. S E Z N E C . DASC cache. In Proceedings of the 1st International Symposium on
High-Performance Computer Architecture, pages 134-143, Raleigh, NC, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 195

[99] A. SEZNEC a n d J. L e n f a n t . Interleaved parallel schemes: Improving memory
throughput on supercomputers. In Proceedings o f the 19th Ar.nual International Sym ­
posium on Computer Architecture, pages 246-255, Toronto, Canada, 1992.

[100] K. SKADRON AND D. W . C l a r k . Design issues and tradeoffs for write buffers.
In Proceedings o f the 3rd International Symposium on High-Performance Computer
Architecture, pages 144-155, Monterey, Mexico, 1997.

[101] A. J . S m i t h . Cache memories. ACM Computing Surveys, 14(3):473-530, September
1982.

[102] T . B. SMITH. W hat will have the greatest impact in 2010: the processor, the memory,
or the interconnect? Panel in the 8th International Symposium on High-Performance
Computer Architecture, 2002.

[103] K. So a n d R. R e c h t s c h a f f e n . Cache operations by MRU change. In Proceedings
of the 1986 International Conference on Computer Design, pages 584-586, 1986.

[104] G. S. S o h i . High-bandwidth interleaved memories for vector processors - a simula­
tion study. Technical Report CS-TR-1988-790, University of Wisconsin - Madison,
September 1988.

[105] S. P. S o n g , M. D e n m a n , a n d J. C h a n g . The PowerPC-604 RISC microprocessor.
IEEE Micro, 14(5):8-17, October 1994.

[106] F . SPARACIO. D a ta p ro c e ss in g sy s te m w ith seco n d level cache. IBM Technical Dis­
closure, 21(6):2 4 6 8 -2 4 6 9 , N o v em b er 1978.

[107] Standard Performance Evaluation Corporation, http://www.spec.org.

[108] Standard Performance Evaluation Corporation. SPE C CPU95 Version 1.10. May
1997.

[109] P. N. SWARZTRAUBER. FFT algorithms for vector computers. Parallel Computer.
l(l):45-63, August 1984.

[110] J . M. T e n d l e r , J . S. D o d s o n , J . S. F i e l d s J r . , , H. L e , a n d B. S i n h a r o y .
POWER4 system microarchitecture. IBM Systems Journal, 46(l):5-26, 2002.

[111] J . T o r r e l l a s , M . S . L a m , AND J. L . H e n n e s s y . False sharing and spatial locality
in multiprocessor caches. IEEE Transactions on Computers, 43(6):651-663. June
1994.

[112] Transaction Processing Performance Council. TPC Benchmark C Standard Specifica­
tion , Revision 3.3.3, April 1998.

[113] G. T y s o n , M. F a r r e n s , J . M a t t h e w s , a n d A. R. P l e s z k u n . A modified ap­
proach to data cache management. In Proceedings o f the 28th IEEE /AC M Interna­
tional Symposium on Microarchitecture, pages 93-103, Ann Arbor, MI, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.spec.org

BIBLIOGRAPHY 196

114] M . V ALERO , T . L a n g , a n d E . AYG UA De. Conflict-free access of vectors with power-
of-two strides. In Proceedings o f the 6th International Conference on Supercomputing,
pages 149-156, Washington, D.C., 1992.

115] S. P. V a n d e r w i e l AND D. J . LlLJA. D ata prefetch mechanisms. AC M Computing
Surveys, 32(2):174-199, June 2000.

116] W.-H. W a n g , J.-L . B a e r , a n d H. M . L e v y . Organization and performance o f a

two-level virtual-real cache hierarchy. In Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 140-148, Jerusalem, Israel. 1989.

117] C. W e a v e r , http://www.simplescalar.org/spec2000.html. SPEC2000 binaries.

118] W. W o n g a n d J .-L . B a e r . DRAM on-chip caching. Technical Report UW CSE
97-03-04, University of Washington, February 1997.

119] Y . Y a n , X . Z h a n g , a n d Z. Z h a n g . C ach em in er: A ru n tim e a p p ro a c h to exp lo it
cache lo c a lity on SMP. IEEE Transactions on Parallel and Distributed Systems.
11 (4) :357—374, A p ril 2000 .

120] K. C. Y e a g e r . The MIPS R10000 superscalar microprocessor: Emphasizing concur­
rency and latency-hiding techniques to efficiently run large, real-world applications.
IEEE Micro, 16(2):28-40, April 1996.

121] T.-Y. Y e h a n d Y. N. P a t t . Alternative implementations of two-level adaptive
branch prediction. In Proceedings o f the 19th Annual International Symposium on
Computer Architecture, pages 124-134, Toronto, Canada, 1992.

122] A. Y o a z , M. E r e z , R. R o n e n . a n d S. J o u r d a n . Speculation techniques for
improving load related instruction scheduling. In Proceedings o f the 26th Annual
International Symposium on Computer Architecture, pages 42-53, A tlanta. GA, 1999.

123] C. Z h a n g , X. Z h a n g , a n d Y. Y a n . T w o fast and high-associativity cache schemes.
IEEE Micro, 17(5):40-49, September/October 1997.

124] Z. Z h a n g , Z. Z h u , a n d X . Z h a n g . A permutation-based page interleaving scheme
to reduce row-buffer conflicts and exploit da ta locality. In Proceedings of the 33rd
IEEE/ACM International Symposium on Microarchitecture, pages 3 2 -4 1 , Monterey,
CA, 2000.

125] Z. Z h a n g , Z. Z h u , a n d X. Z h a n g . Cached DRAM: A simple and effective technique
for memory access latency reduction on ILP processors. IEEE Micro, 21(4):22-32,
July/August 2001.

.26] Z. Z h u , Z. Z h a n g , a n d X. Z h a n g . Fine-grain priority scheduling on multi­
channel memory systems. In Proceedings o f the 8th International Symposium on
High-Performance Computer Architecture, pages 107-116, Cambridge, MA, 2002.

127] J. H. Z u r a w s k i , J . E. M u r r a y , a n d P. J . L e m m o n . The design and verification
of the AlphaStation 600 5-series workstation. Digital Technical Journal, 7(l):89-99,
1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.simplescalar.org/spec2000.html

VITA

Zhao Zhang

Zhao Zhang is bom in Changsha, Hunan, China, in 1970. He received his B.S. and M.S.

degrees in Computer Science from Huazhong University of Science and Technology (HUST),

Wuhan, Hubei, China, in 1991 and 1994, respectively. He entered the Ph.D. program in

Computer Science at the College of William and Mary in Fall 1997. He was a research intern

in the Hewlett-Packard Labs, Palo Alto, California, in the summer of 2000, participating

in a project of improving resource management in Web servers. His research interests are

computer architecture and parallel and distributed computing. He is a member of the IEEE,

the ACM, and the USENDt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Software and hardware methods for memory access latency reduction on ILP processors
	Recommended Citation

	tmp.1539734415.pdf.WgYxH

