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Abstract

Performance Impact of Programmer-Inserted Data Prefetches for

Irregular Access Patterns with a Case Study of FMM VList Algorithm

Abhishek Tondon, M.S.E.

The University of Texas at Austin, 2013

Supervisor: Lizy K John

Abstract: Data Prefetching is a well-known technique to speed up applications

wherein hardware prefetchers or compilers speculatively prefetch data into caches closer

to the processor to ensure it’s readily available when the processor demands it. Since

incorrect speculation leads to prefetching useless data which, in turn, results in wasting

memory bandwidth and polluting caches, prefetch mechanisms are usually conservative

and prefetch on spotting fairly regular access patterns only. This gives the programmer

with a knowledge of application, an opportunity to insert fine-grain software prefetches in

the code to clinically prefetch the data that is certain to be demanded but whose access

pattern is not too obvious for hardware prefetchers or compiler to detect.

In this study, the author demonstrates the performance improvement obtained by

such programmer-inserted prefetches with the case study of an FMM (Fast Multipole

Method) VList application kernel run with several different configurations. The VList

computation requires computing the Hadamard product of matrices. However, the way

each node of the octree is stored in the memory, leads to indirect accessing of elements

where memory accesses themselves are not sequential but the pointers pointing to those
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memory locations are still stored sequentially. Since compilers do not insert prefetches

for indirect accesses, and to hardware, the access pattern appears random,

programmer-inserted prefetching is the only solution for such a case. The author

demonstrates the performance gain obtained by employing different prefetching choices

in terms of what all structures in the code to prefetch and which level of cache to prefetch

those to and also presents an analysis of the impact of different configuration parameters

on performance gain. The author shows that there are several prefetching combinations

which always bring performance gain without ever hurting the performance, and also

identifies prefetching to L1 cache and prefetching all data structures in question, as the

best prefetching recommendation for this application kernel. It is shown that this one

combination gets the highest performance gain for most run configurations and an

average performance gain of 10.14% across all run configurations.
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1 INTRODUCTION

Processors run faster than memories. And the processors cannot work unless they

have the data to work with. The data resides in memory, and therefore programs have

loads and stores. Clearly, if an instruction is waiting on a load from memory, even with

out-of-order processors, all instructions truly dependent on that, will have to wait as well.

The more loads we have in our applications, the more the number of dependent

instructions on those loads. Therefore, to have an idea of how severe is the impact of this

‘memory wall’ problem, we can look at the fraction of loads/stores versus computation

operations in the applications of concern.

Table 1, taken from the work by Phansalkar et. al. [1] lists the instruction mix of

SPECCPU2006 benchmarks. There also we see that the percentage of loads and stores as

a fraction of total instruction approaches 50% in few cases and is above 40% in many of

them.

Table 1 - SPECCPU2006 benchmarks instruction mix for combined inputs
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Figure 1 below from a talk given by John McCalpin [2] on an Industry

Perspective on Performance Characterization, presents a scatter plot of the same for most

common scientific applications. We see that this fraction is a good ~30%-50% for a good

population of applications.

Figure 1 - Fraction of memory instructions in Scientific applications (Source: [2])

The takeaway from the figure and the table above is that there are simply too

many memory instructions to take the problem lightly. But then, we have had a solution

in the form of caches. Owing to the growing gap between processor and memory speeds,

these days, we have up to 3 levels of those. So, should that not solve this problem?

The answer in this regard is a yes and a no. Caches are good when data is being

reused. We need some data, we bring it from memory, place a copy in the cache closer to

the processor, and work with this copy until an eviction is required, at which time, it is

written back to memory, assuming a simplistic single core view. But, for the first time we

need this data, it’s not in the cache, we have a cold miss and we wait for it to arrive from

the memory (or next level cache, as the case might be). We benefit only when the same
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data is accessed next time because of temporal locality, or we benefit when there is

spatial locality so that the cache line we brought into the cache at the previous miss, also

contains some data that we might need next.

While bringing more data than requested finds justification due to the property of

spatial locality, another way to look at it is, “bringing data before it is demanded”, which

is nothing but a form of data prefetching.

Thus, even without any hardware prefetchers or any compiler or software

prefetching, the very act of bringing a cache line which contains some data that is not yet

demanded, but, due to spatial locality, is likely to be demanded in near future, can be

termed as data prefetching. This underlines how fundamental Data Prefetching is to

caching itself.

However, there is a difference too. There has to be some finite granularity at

which the data will be brought from lower level memory to a higher level cache. That

granularity is the cache line size. Since the cache line does contain the data that was

requested, irrespective of whether the extra contiguous data that’s being brought in the

cache line, is used or not, that data would have to accompany the data that was actually

demanded. This is where data prefetching defers.

In data prefetching, we bring into cache a line that contains none of the data that

was demanded. Rather, we bring data closer to the processor on the basis of speculation

rooted in access patterns that that data would be demanded in near future. This

speculation can be performed either in hardware by hardware prefetchers or in software,

either by compiler at higher optimization levels or by programmers by inserting

prefetches in the application code.

Both hardware and software approaches have their pros and cons. We’ll look at

them in Chapter 2 while discussing briefly the previous work done in both fields.
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However, both the hardware prefetchers as well as the compilers can detect fairly

regular access patterns only. They tend to be conservative due to the reason that there is a

cost involved with prefetching. The cache space is limited and any data that’s being

prefetched into the cache, would evict some other data. If the speculation was incorrect

and prefetched data was not something that would be used in near future, it means

polluting the cache and also wasting the precious memory bandwidth. That could

potentially hurt the performance instead of helping. That’s why these prefetch

mechanisms get activated only when the access patterns are fairly regular and result in

high confidence level in terms of next accesses.

This is where this study comes into picture. Using the tools described in Chapter

3, this author works on an application kernel, FMM (Fast Multipole Method) VList

(described in Section 4.1), which has complex access patterns where hardware

prefetchers and compiler inserted prefetches are unlikely to help, and manually insert

fine-grain conditional prefetches. The goal is to corroborate the hypothesis that

programmer inserted prefetches are indeed likely to bring performance improvement in

an application having complex or irregular access patterns. In the course of this study,

this author inserts prefetches at strategic points in the FMM VList kernel, and profiles the

performance in terms of absolute number of processor cycles taken to execute that.

Hardware prefetchers remain on (default configuration) for all the experiments.

Compiler prefeching is turned off and on and does not seem to make any difference in

most cases. Several other knobs too are tweaked and the performance gains thus obtained,

are profiled. The details of those knobs are covered in Section 4.4 and their impact is

discussed through section 5.2 to 5.7. Section 5.8 presents the data and comparison results

and a conclusion is drawn on that basis which is presented in Chapter 6. The raw data of

these experiments is also included as Appendix C.1 to C.16.
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2 BACKGROUND DETAILS

In this chapter, in the first section, a general comparison of hardware and software

prefetching is presented, followed by a brief overview of previous work in the field of

hardware and software prefetching, the current state of the art and relevant details on

programmer inserted prefetches.

2.1 Hardware versus Software prefetching

Broad differences between the two flavors of prefetching are summarized in Table

2 below. Both have their own advantages and disadvantages based on which the preferred

one is employed as the use case might require. It’s evident from the table that for

applications involving irregular access patterns, software prefetching is the solution, that

too, programmer inserted ones, as will be clear from section 2.3.

Hardware Prefetchers Software Prefetchers

Regular access patterns Irregular access patterns

Start-up penalty, more wastage Doable for smaller ranges with no wastage

Won't cross page boundaries Page boundaries crossable

Works with existing applications Need source modification

Sequential and strided prefetch Compiler inserted, Programmer inserted

Prefetch into fixed cache levels Prefetch to L1, L2, L3, Non-Temporal

Aligned (NTA) buffers

Table 2 - Differences between Hardware and Software prefetching
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2.2 Previous Work

Anacker and Wang [4] were the earliest to show the improvements of fetching

sequential cache lines beyond just the required word. Their work became the basis of

variants like One Block Lookahead [11] and Sequential Prefetching [10] where a block

would be prefetched at every access versus at a miss. Another variant, called tagged

prefetching [7], involved prefetching a block only if the previously prefetched block was

used. A method for measuring the dynamic spatial locality of a program was also

proposed by Dahlgran [6] as a means to dynamically control the number of blocks to

prefetch ahead. Later called, Adaptive Sequential Prefetching, this scheme was

conservatively added to Intel’s NetBurst Microarchitecture [8] for prefetching to Unified

L2 cache.

Chen and Baer [5] went a step ahead and proposed Stride prefetching combined

with the adaptive property of Dahlgran’s design. A 2004 survey by Perez. et. Al [9]

showed that Stride Prefetching was superior to other mechanisms in terms of

performance and power both. Subsequently, this was added to Intel’s core

microarchitecture.

With regard to software prefetching, Callahan et. al. [13] were the first to propose

using a non-blocking prefetch instruction in 1991, and they were able to show >99% hit

ratio for demand requests with prefetching on, for their set of benchmarks. Subsequently,

an Integrated scheme for Hardware/Software Data prefetching was proposed [14] by

Edward Gornish of University of Illinois in 1994 for Shared Memory Multiprocessors.

They showed that an Integrated scheme performed better than plain hardware prefetching

because of its ability to handle more complex patterns and better than software only

approach as it required fewer instructions.
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Other prominent related work in this domain includes a study of the interaction of

Software prefetching with ILP processors in shared memory systems by Parthasarthy

et.al. [15] in 1997 and one studying its efficacy for future memory systems by Badawy et.

al. [16] in 2004, among others.

2.3 Current State of the art

Present day Intel processors have more than one type of hardware prefetchers.

Intel’s website says that the Core i7 and Xeon 5500 series processors have prefetchers

that can prefetch into either L2 only or both L1 and L2. They employ more than one

algorithms too, which include simpler ones such as fetching 2 cache lines instead of one,

when a demand is made, and more sophisticated ones that involve monitoring the access

patterns of a cache.

With regard to software prefetching, modern compilers come equipped with the

capability to insert prefetches on their own. Compiler prefetching is turned on by default

for Optimization level O2 and above for Intel C Compiler for the Knights’ Corner

platform being used in this experiment. The architecture supports several instructions.

Vprefetch1 instruction brings a 64 byte cache line into L2 cache and vprefetch0 pulls it

into L1 cache. Their corresponding variations vprefetchet1 and vprefetchet0 do the same

while additionally marking the prefetched line as exclusive [12].

The compiler can issue prefetches for all regular memory accesses inside loop

[12]. In the process of determining prefetch distances, the compiler takes into account the

latency of accessing the target level in memory hierarchy and the expected total latency

of the loop to complete its one iteration. Compiler can also generate initial value

prefetches before entering a loop to help even the first few iterations. However, compiler

does not issue any prefetching for indirect accesses of the form a[b[i]]. Such cases need
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to be handled by programmer inserted manual prefetches, which is what is exploited in

this work.

To avoid interfering with programmer inserted prefetches, the compiler

prefetching can be disabled by using the compile-time switch -no-opt-prefetch.

2.4 Programmer Inserted Prefetches

Programmer can insert prefetches using the _mm_prefetch() compiler intrinsic.

This takes 2 arguments, first of which is a character pointer pointing to the address to

start the prefetch from. The second argument can take one of the 4 following values.

_MM_HINT_T0 Prefetch into L0 cache

_MM_HINT_T1 Prefetch into L1 cache

_MM_HINT_T2 Prefetch into L2 cache

_MM_HINT_NTA Prefetch into Non-temporal aligned buffers

Table 3 - Prefetch destination for Programmer Inserted Prefetching

Since the caches are inclusive, prefetching to a higher level of cache essentially

means prefetching to all levels below it. Prefetching into Non-temporal aligned buffers is

useful when the prefetched data is not likely to exhibit temporal locality and therefore,

it’s not desired to occupy cache space for that data. The header file mmintrin.h needs to

be included to use this intrinsic.
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3 MEASUREMENT INFRASTRUCTURE

Since this research is about measuring performance gain, it becomes critical to

select the right tool(s) which provide(s) trustworthy results. Hardware Performance

Counter tools come to mind as natural choice. The tools considered for this research

included Intel VTune Amplifier XE 2013 and PAPI (Performance Application

Programming Interface) which are discussed in the sections 3.1 and 3.2. The last section

of the chapter covers information about validating the chosen tool.

3.1 Intel VTune

The foremost reason behind picking Intel VTune was the availability of a vast set

of processor events that are directly measurable with this tool. Coming from the

processor manufacturer Intel itself, there was little to doubt the accuracy of the numbers

provided by the tool. Moreover, the tool did not require changes in the source and just

launching the tool and running the application with command line arguments or with

GUI, let’s one obtain the events one wants.

However, in the case of this study, this author found severe inconsistencies in the

data obtained using VTune. The numbers were wildly fluctuating, often to the order of

30% or more. Clearly, such a high level of variability could not be tolerated.

There were a couple of reasons that this author suspected, were causing this

behavior. The first one is inherent to VTune which is that it’s based on sampling. It does

not keep an accurate count but samples the counters at regular intervals. The sampling

interval is chosen by the tool itself using its inbuilt algorithms and the number of events

that are being counted, although that can be overridden.

As a first measure, reducing the number of events to make way for finer sampling

interval, did not seem to make any difference. The variations remained as wide.
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As second measure, this author turned off power cycling, which were suspected to

be another reason behind wild variations as it could be causing error in multiplication

factors if processor changes its operating frequency in the middle of the run.

Unfortunately, even this change did not seem to help VTune numbers stabilize.

Consequently, this author had to abandon the tool and discard the datasets

obtained with VTune.

3.2 PAPI

After having an unsatisfactory experience with VTune, this author decided to

switch to PAPI [3]. PAPI, Performance Programming Application Interface, specifies a

standard API for accessing hardware counters available on the processor.

Evidently, PAPI requires changes in the source of the application. However, it

also easily facilitates measuring counters for a specific part of the application. This was a

requirement for this research the the FMM VList kernel that this research considers as a

Case Study for Programmer Inserted prefetches, is only a part of the complete FMM

algorithm.

In this research, the low level interface of PAPI was used. The low level interface

allows dealing with hardware events by creating EventSets. Low level functions such as

PAPI_add_event, PAPI_start and PAPI_stop are called in addition to

PAPI_create_eventset. The code added for PAPI profiling is only a few lines and is

included in Appendix A.

We measure the following preset events among others, PAPI_L1_DCM,

PAPI_L2_DCM, PAPI_L3_TCM, PAPI_TOT_CYC, PAPI_LD_INS, PAPI_TOT_INS

for one thread which, for our configurations, will cover 1/16th of the complete task.

Table 4 lists these events and its meanings.
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PAPI Preset Event Meaning of the event (all events per thread)

PAPI_L1_DCM L1 D-cache misses

PAPI_L2_DCM L2 D-cache misses

PAPI_L3_TCM L3 Total cache misses

PAPI_LD_INS Load instructions count

PAPI_TOT_INS Total instructions count

PAPI_TOT_CYC Total cycles taken

PAPI_DP_OPS Floating point operations

Table 4 - PAPI Event descriptions

Since there are only 5 hardware counters available on the processor, two runs are

required to get one set of all these events. Unlike VTune, PAPI numbers show very small

variations, of about 2%. To be accurate, 10 runs are made for each run configuration to

obtain 5 sets of all event values. Trimmed averages of each such groups are computed

and those raw datasets for all run configurations are reported in Appendices C.1 to C.16.

3.3 SPEC Validation of PAPI

As an additional check on the veracity of the numbers reported by PAPI, an

analysis of select SPEC CPU2006 benchmarks was undertaken. 15 Integer and Floating

point SPEC benchmarks were picked (the ones with code in C or C++) and PAPI calls

were inserted in them. The event set for this test comprised PAPI_BR_INS (branch

instruction count) and PAPI_SR_INS (store instruction count) in addition to

PAPI_LOAD_INS, and PAPI_TOT_INS so as to calculate Instruction mix. The

representative reference input sets for those benchmarks which had multiple input sets,
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were chosen based on [1]. The instruction mix of these benchmarks are plotted in Figure

2. Figure 3 plots the instruction mix for the same benchmarks as reported in [1] which we

use as reference. It is evident that our instruction mix of Figure 2 is visibly close to the

reference mix of Figure 3. The slight differences can be attributed to compiler

optimizations which have taken place over the duration since [1] was written and also to

the fact that for benchmarks with multiple inputs, our instruction mix relies on the

representative input sets, which, therefore, results in close but not identical instruction

mix.

Figure 2 - SPEC CPU2006 Instruction mix with PAPI

Figure 3 - SPEC CPU2006 Instruction mix reference as reported in [1]
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4 CASE STUDY DETAILS

In this chapter, an introduction of the FMM algorithm is presented in section 4.1

with an emphasis of VList computation, which is that step of the algorithm, which forms

the focus of this study. In section 4.2, the prefetching scenario is explained highlighting

how there is a case for programmer inserted prefetches in this application kernel. The

specification of the system on which all experiments are run, is covered in section 4.3 and

different experiment configurations are discussed in section 4.4.

4.1 Overview of FMM

FMM, or Fast Multipole Method, is an algorithm for computing volume potentials

used to construct spatially adaptive solvers for Poisson and Stokes’ equations.

Computation domain is partitioned hierarchically by using an Octree structure. Given a

set of M point sources with individual charge strengths and N target points, FMM

calculates the total potential at each target point. This is essentially an N-body problem

which involves pairwise interactions among system of N particles. The inherent

complexity for such a problem would be O(N2) but FMM reduces that by using

approximations for far interactions. A Far interaction is approximated by computing

multipole expansion, multipole-to-local translation, and evaluating local expansion. The

following paragraphs in this section, which draw an explanation from Malhotra et. al’s

paper [17], explain the concept.

Both the multipole expansion as well as the local expansion for a node are

represented by sets of source points on an equivalent surface around the node such that it

produces the same potential at the points on a check surface as the original source points.

To distinguish between the two, upward-equivalent and upward check surfaces are used

for multipole expansion and downward equivalent and downward check are used for
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local expansion. For a leaf node, potential at the check surface is computed due to source

points, while for non-leaf nodes, the check surface potential from points on the equivalent

surface of children is computed followed by computing the equivalent source intensities

for leaf nodes.

The FMM algorithm involves an upward pass followed by a downward pass. In

the upward pass, the octree is traversed postorder and multipole expansion of each node

is computed. For the leaf nodes, it’s computed directly from underlying source

distribution, and for the non-leaf nodes, it’s computed from the multipole expansion of its

children. In the downward pass, a preorder traversal is performed, and local expansion

are computed for each node. The local expansion of the parent node and the multipole

expansions of those nodes which are at the same level as the node in question, and

well-separated from it, but not well-separated from its parent node, are added to that. For

leaf nodes, the final potential at target points is computed by first computing direct

interactions from sources in adjacent leaf nodes and then adding contribution from local

expansion.

For non-uniform distribution of points, which translates to adaptive octrees, the

interactions are complex. Based on the type of interactions which in turn depend on the

relative positions of nodes, all interactions can be classified into 4 lists - U, V, W and X

lists. The U-list contains near interactions of the leaf nodes with itself or with an adjacent

leaf node. U-list interactions are not approximated and are always computed accurately.

The V-list includes contributions to the local expansion of a node from source nodes

which are at the same depth in octree, lie completely outside the downward equivalent

surface of the node and are within the equivalent surface of its parent node. The W-list

includes source nodes that are at a finer level than the target node and for which the target

node lies outside the upward check surface of their source octant, but which do not lie
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outside the downward equivalent surface of the target node. For such interactions,

multipole expansion of source node is used to evaluate the potential directly at target

points. The last list, X-list includes source nodes which are leaf nodes, and are at a

coarser level than the target node, and for which the target node is not outside its upward

check surface but the source nodes are outside the downward-equivalent surface of the

target node, allowing the local expansion to be constructed. For such interactions, the

downward check potential at the target node is evaluated directly from the points in the

source node.

It is difficult to graphically

explain this for Octrees as the

problem requires 3-dimensions,

however, the same can be explained

for quad-trees in 2-dimensions.

Figure 4, drawn from [17], marks the

nodes that’ll go in different list w.r.t

to the central node which is marked

with stars, based on their positioning

and level of granularity.

In this research, entire focus is on V-list computation step of the algorithm.

Complex Hadamard product computation between vectors in Fourier space is needed for

V-list computation. There are Interleaved source and target vectors for sibling octants. 8

elements are loaded from source and target vectors, one for each sibling, and then, all

interactions are computed among those as matrix-matrix multiplications. The same is

repeated for next octet. That is the kernel whose performance is targeted for optimization

Figure 4 - Interactions in a Quad-tree
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by custom inserting prefetches. The arrays and pointers of interest in this kernel and their

access patterns are discussed in the next section.

4.2 Prefetchability scenario

The V-list computation step involves the calculation of Hadamard product, which

is element by element product for two matrices. However, because of the nature of the

algorithm, the addressing is indirect. A simplified view of the same is shown in Figure 5.

Figure 5 - Simplified view of access patterns

As it’s clear from the figure, an array of pointers stores a set of pointers which

point to the some elements in an array. In the context of the attached code snapshot, IN

and OUT are pointers. The relevant excerpt of the code is available in Appendix B. From

the code in Figure 5, it’s clear how IN0, IN1 and OUT0, OUT1 point to some element

within IN and OUT which further point to some addresses. Since this assignment takes

place inside a loop, whose counter is j, each time j changes, IN0, IN1, OUT0, OUT1 end

up pointing to a new location. Since the subsequent code performs memory and

multiplication operations on IN0, IN1, OUT0 and OUT1, those are the ones which
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require prefetching. However, those are neither sequential, nor strided, so hardware

prefetchers cannot work on those. Since those are indirect accesses, compiler prefetching

won’t work on those either. In fact, an attempt to sequentially prefetch would only hurt

the performance as in the next iteration of the inner loop, the consecutive next location of

the IN0, IN1 or OUT0, OUT1 will not be accessed at all. As the Figure 5 depicts, the

locations which are pointed by the next location in IN and OUT, will be accessed.

Therefore, programmer inserted prefetches are the only way to perform

prefetching at all. Also, because this all is inside nested loops and j values keep getting

reset at each iteration of the outer loop, it becomes important to take care of bound

violations. Therefore, the prefetches need to be inserted conditionally and the prefetches

need to be performed on IN and OUT instead of IN0, IN1, OUT0, OUT1, as those are the

ones which move sequentially, at least within the inner loop iteration.

Other than IN and OUT, there is another pointer, M, which exhibits similar access

pattern, albeit at an outer loop, thereby becoming a candidate for prefetch. This gives us

several choices in terms of which all arrays to prefetch, and which all levels of cache to

prefetch it to. Additionally, there is choice about in how much advance the prefetches

should be made. For that, a cursory inspection of the code makes it clear that prefetching

for the next iteration is the best. Reason being, there are lots of operations that take place

within the inner most loop, which are sufficient to hide the latency of a prefetch. It is also

worth mentioning that the code uses Intel AVX extensions and operates on a chunk of

128 byte data at a time. Since the size of a cache line is only 64 bytes, it becomes

imperative to prefetch 2 cache lines each for IN0, IN1 and OUT0, OUT1, and M, if at all

prefetching is being done for those. These configuration choices and several others are

discussed and tabulated in section 4.4. A brief specification of the Stampede machine on

which the experiments are conducted, is presented next.
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4.3 System specification

All the experiments are carried out on the Stampede Supercomputer of the Texas

Advanced Computing Center (TACC). Each node of Stampede consists of 2 Xeon

E5-2680 processors and a Xeon Phi SE 10P Coprocessor (referred as MIC). Each Xeon

processor has 8 cores running at the frequency of 2.7 GHz. There is 32 KB of L1I Cache

and L1D cache per core, and 256 KB of unified L2 Cache per core. There is 20 MB of

shared L3 cache per processor (8 cores). Thus, each node has 16 cores and 32 GB

memory per node.

4.4 Experiment configurations

In addition to the choice of which all locations to prefetch and which cache levels

to prefetch those to, there are several other configuration knobs that need attention.

Since this is a multi-threaded code, there is parallelism available in terms of MPI

tasks and OpenMP threads. Since this kernel is a part of a complete algorithm, and cannot

be made to run standalone, and the fact that there is only OpenMP parallelism within the

VList kernel but number of MPI tasks determine how many of those kernels will run in

parallel, also make the number of MPI tasks and OpenMP threads a variable to sweep.

Since the algorithm has differences in terms of uniform versus non-uniform distribution,

that’s yet another variable. Also, while compiler prefetching apparently should not kick

in within the kernel of concern, it can certainly affect other portions of the overall

algorithm and the cache utilization therefore can affect the kernel too. So, keeping

Compiler prefetching on versus keeping it off, is another configuration setting. Finally,

the platform where this code is run, also has a coprocessor and parts of the complete

algorithm (though not the VList kernel itself) can be offloaded to the coprocessor. That is

another knob which can affect the impact of inserted prefetches. Therefore, all these
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knobs are varied and the impact of inserted prefetches in profiled across the design space.

Table 5(a) below summarizes all these configuration choices that’re exercised in this

experiment.

What to prefetch No

prefetch

Prefetch

IN

Prefetch

IN, M

arrays

Prefetch

IN, OUT

arrays

Prefetch IN,

OUT, M

arrays

Where to prefetch To L1 To L2 To L3 To NTA

Distribution Uniform Non-uniform

Parallel threads setting 1 MPI task, 16

OMP threads/task

4 MPI tasks, 4

OMP threads/task

16 MPI tasks, 1

OMP thread/task

Coprocessor offloading OFF ON

Compiler prefetching OFF ON

Table 5(a) - Experiment Configurations

Some of these combinations are not allowed. For example, “What to prefetch”

and “Where to prefetch” together result in 17 different prefetching combinations, 4

“What to prefetch” times 4 “Where to prefetch” and 1 “No prefetch”. Note that the IN

array is always prefetched if unless it’s a no prefetch case. That’s because the code

cannot proceed until IN0 and IN1 are loaded. Also, with Coprocessor offloading ON,

only one parallel thread setting, involving 1 MPI tasks and 16 OMP threads, is used.

That’s because of the way the overall code is structured, and each task needs parts of it

offloaded to coprocessor. Thus, it results in 16 different run configurations. Those run

configurations are listed in Table 5(b) below. That, multiplied with 17 prefetching

combinations, i.e. 272 sets of values, multiplied with 10 runs made for each set.

Several scripts were written to make required code changes to build the binaries

and launch the batch run scripts with required settings, generate the performance logs.

The results are presented and analyzed in the next chapter.



20

Sr.

No.

Configuration details Section 5.8

Table/Fig.

1.
No coprocessor offloading; 1 MPI task,16 OMP threads/task;

Uniform distribution; Compiler prefetching off
6

2.
No coprocessor offloading; 1 MPI task,16 OMP threads/task;

Uniform distribution; Compiler prefetching on
7

3.
No coprocessor offloading; 1 MPI task,16 OMP threads/task;

Non-uniform distribution; Compiler prefetching off
8

4.
No coprocessor offloading; 1 MPI task, 16 OMP threads/task;

Non-uniform distribution; Compiler prefetching on
9

5.
No coprocessor offloading; 4 MPI tasks, 4 OMP threads/task;

Uniform distribution; Compiler prefetching off
10

6.
No coprocessor offloading; 4 MPI tasks, 4 OMP threads/task;

Uniform distribution; Compiler prefetching on
11

7.
No coprocessor offloading; 4 MPI tasks, 4 OMP threads/task;

Non-uniform distribution; Compiler prefetching off
12

8.
No coprocessor offloading; 4 MPI tasks, 4 OMP threads/task;

Non-uniform distribution; Compiler prefetching on
13

9.
No coprocessor offloading; 16 MPI tasks,1 OMP threads/task;

Uniform distribution; Compiler prefetching off
14

10.
No coprocessor offloading; 16 MPI tasks, 1 OMP threads/task;

Uniform distribution; Compiler prefetching on
15

11.
No coprocessor offloading; 16 MPI tasks, 1 OMP threads/task;

Non-uniform distribution; Compiler prefetching off
16

12.
No coprocessor offloading; 16 MPI tasks, 1 OMP threads/task;

Non-uniform distribution; Compiler prefetching on
17

13.
Coprocessor offloading on; 1 MPI task,16 OMP threads/task;

Uniform distribution; Compiler prefetching off
18

14.
Coprocessor offloading on; 1 MPI task,16 OMP threads/task;

Uniform distribution; Compiler prefetching on
19

15.
Coprocessor offloading on; 1 MPI task,16 OMP threads/task;

Non-uniform distribution; Compiler prefetching off
20

16.
Coprocessor offloading on; 1 MPI task,16 OMP threads/task;

Non-uniform distribution; Compiler prefetching on
21

Table 5(b) - Run configurations and corresponding tables/figures in section 5.8
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5 RESULTS AND ANALYSIS

The 272 sets of values obtained as trimmed averages from 2720 runs are

organized as sets of 17 prefetching options under 16 run configurations. All experiments

were run for 150000 points in the N-body FMM problem. The raw datasets of trimmed

averages are included in Appendix C.1 to C.16. Section 5.8 in this chapter includes the

cycle count as the measure of performance and Tables 6 to 21 present those numbers.

Absolute number of cycles are plotted for all 17 prefetching options for each of the 16

run configurations in Figure 6(a) to 21(a). The percentage gain/loss for each of the 16

prefetch combination against the ‘no prefetch’ baseline is plotted for each run

configuration as well, in Figure 6(b) to 21(b). The broader results are summarized and

analyzed in section 5.1. Sections 5.2 to 5.7 analyze the impact of each configuration or

prefetching choice.

5.1 Broader results

Looking at the graphs 6(b) to 21(b), it is evident that in programmer inserted

prefetches in general bring significant gains to the performance as manifested in the

reduction in absolute number of processor cycles recorded in corresponding tables. There

are few run configurations for which some prefetch combinations end up hurting

performance, but those are those combinations which are never among the best

performers for any run configurations. That is to say, the best prefetching choices never

hurt the performance across any run configurations, and consistently bring significant

gains across all.

In terms of prefetch destination, prefetching the data to either L1 cache or to NTA

buffers brings the most gains. In fact, prefetching to L1 or prefetching to NTA buffers

brings nearly the same performance gains for most run configurations which leads the
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author to believe that NTA buffers have the same access latency as the L1 cache. Strictly

counting, prefetching to L1 cache is found to be the best for 10 out of 16 run

configurations, while prefetching to NTA buffers is found to be the best for 5. There’s an

outlier in that regard for which prefetching to L2 yields the most benefit followed by

prefetching to NTA buffers or L1 cache.

In terms of prefetch choices, prefetching all 3 arrays, IN, OUT and M turns out

to be the best decision for 12 out of 16 run configurations. There are only 4

configurations for which not prefetching M array proves slightly better than prefetching

M. Since M array is prefetched in an outer loop, there are fewer prefetches for it, and the

impact is, either way, not substantial.

In general, it can be recommended that the programmer, for this application

kernel, should insert prefetches on all 3 structures, IN, OUT and M, and should prefetch

those into L1 cache. This, as per the results of this study, would ensure highest

percentage performance gain for 8 out of 16 run configurations and second highest

percentage performance gain for 4 out of the remaining. This combination of

what-to-prefetch and where-to-prefetch performs better than any other combination

across different run configurations. On an average, it provides 10.14% of performance

gain across all run configurations which is only marginally lower than the average of the

individual best prefetching combinations for each run configuration, that comes out to be

10.86%.

The Appendices C.1 to C.16 contain other useful data such as the absolute number

of loads, total instructions, and cache misses at different levels. An important thing to

note in this regard is that the absolute number of load instructions and consequently total

instructions increases as more data is prefetched. The Xeon processor events to which

PAPI cache miss preset events map to, are the ones which include both demand misses
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and prefetch misses. The same is reflected in increased number of absolute cache misses.

Unfortunately, while Intel VTune offered events to separately count demand and prefetch

misses, the same is not included in PAPI preset events which count both separately. Since

unlike demand misses, prefetch misses do not cause the processor to keep waiting for the

data, those prefetch misses do not harm the performance. On the contrary, prefetching

ensures data is available for the next iteration at the right time, and the same is reflected

in the reduction observed in the number of cycles required with prefetching versus no

prefetching.

5.2 Impact of prefetch choices

Other than no prefetching, there are 4 prefetching choices that’re studied and

profiled in these experiments as listed in Table 5(a). A cursory look at the graphs 6 (b) to

21 (b) reveals that for 13 out of 16 run configurations, the best performance comes when

all these 3 are being prefetched. In many cases, prefetching M or not prefetching it makes

less difference than not prefetching OUT, and the reason lies in the fact that M is at a

much outer loop in the nesting order, as compared to IN and OUT and therefore,

undergoes far fewer prefetches. There are also 3 configurations where not prefetching M

while still prefetching IN and OUT arrays proves slightly better than prefetching M. A

possible reason for that could be destructive interference between the prefetches. There is

no economical way to check if two prefetches are interfering in mutually destructive

manner on an access by access basis, as even for a fixed configuration, there could be sets

of accesses that could interfere constructively, and some other sets destructively.

Repeated empirical runs are the only way to ascertain that, because all the address layout

changes with so many factors including parallelization settings, type of distribution etc.
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Since the idea behind tweaking all the prefetching choices and destination

essentially was to come up with the best and consistent combination across all run

configurations, it can be safely concluded, that prefetching all 3 locations, IN, OUT and

M is the preferred choice.

5.3 Impact of prefetch destination

In terms of prefetch destination, again looking at Figure 6(b) to 21(b) shows that

the choice is between prefetching to either L1 cache or to the non-temporal aligned

buffers. Prefetching to L2 or L3 yields less performance gains across all runs. Between

prefetching to L1 and prefetching to NTA, in 10 out of 16 run configurations, prefetching

to L1 gives the best performance along with corresponding prefetch data choice. Among

the remaining, 5 have prefetching to NTA performing better but except one of them, the

difference is marginal. It is only intuitive that prefetching the data closest to the processor

would result in minimal latency and hence maximal performance gain as long as the

prefetching choices are correct. Therefore, these results too make sense. Prefetching to

NTA buffers for some configurations proves slightly better than prefetching to L1 cache

as it would utilize L1 cache’s limited space better. However, an important thing to keep

in mind here is the fact that while the data brought into IN and OUT arrays is used only

for one iteration, the data prefetched into M array is used for several iterations, and

therefore, prefetching M array to NTA buffers contributes to lower gains. Again, since

the objective is to find the general best prefetching combination across all runs which

never hurts performance and provides consistent performance gain, it can be safely said

that prefetching to L1 cache is the best bet.
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5.4 Impact of Uniform/Non-uniform distribution

Since there is significant difference in the way interactions behave in uniform

versus non-uniform distribution of points, the vast difference between baseline

performance is understandable. The distribution simply affects the net amount of work to

be done and that reflects in the absolute number of cycles. That is inherent in the

algorithm and has nothing to do with prefetches.

However, the difference in the relative performance gain due to prefetches should

not be significant, as prefetches still work the same way. In that regard, the general trend

is that the performance gain observed for uniform distribution is slightly but consistently

higher than that observed for non-uniform distribution. An intuitive explanation for that

could lie in the count of inner loops. Since the prefetches inserted are conditional, to

avoid bound violations, no prefetching is done in the last iteration of the inner loop.

Consequently, during the next iteration of the outer loop, the data needed for the first

iteration of the inner loop is not prefetched. Since a non-uniform distribution results in

inner loops having fewer iterations, that would decrease the impact of prefetching as

there will be more prefetch skips per total number of prefetches. That appears to be the

reason behind the prefetch performance gain for non-uniform case for best performing

combinations a notch lower than the uniform distribution.

For 1 MPI, 16 OMP run configurations without coprocessor offloading, the

non-uniform case also exhibits negative gains for those prefetching choices which were

low performing for uniform distribution, i.e. Cases when OUT is not prefetched. While a

general lower value is explained in the previous paragraph, not prefetching OUT array

would further wash away any gains because of more frequently skipping prefetches and a

constant branch check overhead. This effect is more pronounced when 16 openMP

threads because of the way an outer loop work is divided among openMP threads. Higher
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number of threads would mean lesser work per thread and that would make the overhead

more pronounced resulting in performance hurt for the unpreferred prefetching choices.

In a nutshell, since the objective is to deal with best and consistent prefetching

choices, it can be said that this prefetching methodology performs slightly better for

uniform distribution as compared to non-uniform one.

5.5 Impact of MPI/OpenMP configuration

The number of MPI tasks and OpenMP threads per task is a vital choice. This

complete affects what addresses a thread will get to work upon and consequently affects

both, the baseline performance as well as the prefetching gains.

One clear trend is that MPI parallelism results in better performance as compared

to equivalent openMP parallelism for uniform distribution. For non-uniform distribution,

it’s a totally different case. Clearly, for non-uniform distribution, distributed memory

parallelism of using moe MPI threads proves to be a bad way as it results in 4-5 times as

many cycles. This is something that deals with the surrounding code, as the kernel of

concern for these experiments gets launched as a single task, and has only OpenMP

parallelism within it. Hence, it’s out of scope of this study to explain this peculiarity with

regard to non-uniform distribution having such baseline performance when run with more

than 1 MPI tasks.

What is in the scope of this study is to analyze the impact of these run choices on

the performance gain caused by the inserted prefetches. And that comparison reveals that

more or less the relative performance improvement brought by inserted prefetches

remains the same irrespective of the parallelization choice. This is expected too as in each

case, there are 16 threads sharing the total work and prefetching works the same way, so

should lead to similar performance gains.
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5.6 Impact of Co-processor offloading

This is an interesting run configuration choice because of the reason that it deals

with the indirect impact of the surrounding code on the kernel performance. No part of

the VList kernel in question gets to offload on the coprocessor but parts of rest of the

algorithm’s steps do. Also, due to the way the overall code is structured, it is only

possible to run it with 1 MPI task while coprocessor offloading in on, so for apples to

apples comparison, it should be compared against the corresponding no processor

offloading, 1 MPI task, 16 OMP thread run cases.

In terms of baseline performance, for uniform distribution, having coprocessor

offloading improves the performance of kernel by about 2%. This can totally be

attributed to indirect effects of having parts of surrounding code getting accelerated on

MIC, resulting in possibly more cache and resources for the kernel. This difference is less

pronounced with non-uniform distribution. This baseline shift causes a similar effect in

terms of prefetch gains too, which are slightly more pronounced for uniform distribution

without offloading than with offloading, and almost the same for non-uniform

distribution.

In terms of the absolute number of cycles taken for the best prefetching

combination for both uniform and non-uniform distribution, the numbers are almost the

same for both co-processor offloading and no offloading. Therefore, it can be said that

programmer inserted prefetches remain largely unaffected due to the indirect effects of

coprocessor offloading on non-uniform distribution, and while they’re affected nominally

on uniform distribution, an improved baseline compensates for the change.
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5.7 Impact of Compiler prefetching

With regard to the compiler prefetching, the most important thing to check is the

baseline cycles, i.e. the no prefetch cycles. Out of 8 pairs of runs, there is only one pair

which exhibits a significant difference in that baseline. That happens with Uniform

distribution run with 16 MPI tasks without coprocessor offloading where with compiler

prefetching on, the baseline performs 5% better. There is no apparent reason for this

behavior as to why compiler prefetching becomes helpful for this particular

configuration. It could possibly be an indirect effect of prefetching improving the

performance of the surrounding code. That is also apparent from the fact that this run

configuration pair is also the only one where the programmer inserted prefetches make a

different impact in compiler prefetching off versus on case. Looking at Figure 14(b) and

15(b), while all the prefetching combinations improve the performance over baseline in

varying degree complying with the general trend across runs, when compiler prefetching

is off, when it’s on, for some combinations, the performance is hurt. The reduction in

performance can be attributed to higher than usual baseline. This shifted baseline also

results in the preferred prefetching combinations registering less performance gains as

compared to the compiler prefetching off case. There is no certain explanation for the

shifted baseline but since all numbers are trimmed averages over 10 runs, there is no

reason to doubt the veracity of the data either. It’s an outlier.

However, except this one case, in general, compiler prefetching does not seem to

make any difference to either the baseline numbers, or to the performance gain caused by

programmer inserted prefetches against the baseline.

In the next section, the results for all these 16 run configurations are tabulated and

plotted.
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5.8 Result tables and graphs

Table 6 - No. of cycles/thread for run configuration 1

Figure 6(a) - No. of cycles/thread for run configuration 1

Figure 6(b) - Percentage gain (reduction in no. of cycles) for run configuration 1

Uniform Distribution, Compiler prefetching off, 1 MPI task,

16 OMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

910690228

890187105 904994736 813382025 805577876

To L2 872184914 894746093 827706953 838120182

To L3 871359035 863538677 843003230 863370050

To NTA 885392530 869261588 814912617 837429676
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Table 7 - No. of cycles/thread for run configuration 2

Figure 7(a) - No. of cycles/thread for run configuration 2

Figure 7(b) - Percentage gain (reduction in no. of cycles) for run configuration 2

Uniform Distribution, Compiler prefetching on

1 MPI task, 16 OpenMP threads/task, No coprocessor offloading

Prefetch None IN array only IN, M arrays
IN, OUT

arrays

IN, OUT, M

arrays

To L1

923121459

886954686 865685085 828099237 806611975

To L2 870189954 869126026 825903477 823958212

To L3 899146662 864530659 829791047 836722495

To NTA 870962281 877236662 832166812 808844077
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Non-uniform Distribution, Compiler prefetching off

1 MPI task, 16 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

585525548

585410370 589778331 536397631 536415413

To L2 567900933 591813417 548788574 541069085

To L3 591012437 593237952 554709976 560555564

To NTA 581841270 589551645 529840825 533794800

Table 8 - No. of cycles/thread for run configuration 3

Figure 8(a) - No. of cycles/thread for run configuration 3

Figure 8(b) - Percentage gain (reduction in no. of cycles) for run configuration 3
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Non-uniform Distribution, Compiler prefetching on

1 MPI task, 16 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

580158527

581782884 581419167 537565610 524479564

To L2 569617045 567717723 544640816 541850677

To L3 580541427 590075549 544634967 527423338

To NTA 581159757 577361946 544242122 522934693

Table 9 - No. of cycles/thread for run configuration 4

Figure 9(a) - No. of cycles/thread for run configuration 4

Figure 9(b) - Percentage gain (reduction in no. of cycles) for run configuration 4
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Uniform Distribution, Compiler prefetching off

4 MPI tasks, 4 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

861552943

828071103 822131540 770931280 770829800

To L2 834141983 821182869 794805420 791047907

To L3 831186364 822954890 789903764 776795429

To NTA 824474602 822783422 779644684 762068794

Table 10 - No. of cycles/thread for run configuration 5

Figure 10(a) - No. of cycles/thread for run configuration 5

Figure 10(b) - Percentage gain (reduction in no. of cycles) for run configuration 5
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Uniform Distribution, Compiler prefetching on

4 MPI tasks, 4 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

856304163

825329581 807386664 763337044 765418328

To L2 823979100 816563058 788341661 785329449

To L3 828714417 821044614 788136555 792211088

To NTA 828540243 812495344 779148500 764570545

Table 11 - No. of cycles/thread for run configuration 6

Figure 11(a) - No. of cycles/thread for run configuration 6

Figure 11(b) - Percentage gain (reduction in no. of cycles) for run configuration 6
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Non-uniform Distribution, Compiler prefetching off

4 MPI tasks, 4 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

2692200736

2607237244 2586955006 2476054782 2452162642

To L2 2604391502 2598818781 2522211248 2509300542

To L3 2619871098 2589067698 2519774272 2500372906

To NTA 2605647314 2600025509 2459153446 2450824145

Table 12 - No. of cycles/thread for run configuration 7

Figure 12(a) - No. of cycles/thread for run configuration 7

Figure 12(b) - Percentage gain (reduction in no. of cycles) for run configuration 7
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Non-uniform Distribution, Compiler prefetching on

4 MPI tasks, 4 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

2686209580

2600029065 2585300081 2458011688 2443226047

To L2 2604692366 2588299467 2519532033 2503456685

To L3 2604080247 2613487092 2529253910 2517189108

To NTA 2612387307 2577576503 2457885961 2460558988

Table 13 - No. of cycles/thread for run configuration 8

Figure 13(a) - No. of cycles/thread for run configuration 8

Figure 13(b) - Percentage gain (reduction in no. of cycles) for run configuration 8
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Uniform Distribution, Compiler prefetching off

16 MPI tasks, 1 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

818590707

780420295 788755148 676736573 726061328

To L2 784199460 778057876 746167243 757623671

To L3 804639318 792194888 762975476 715500402

To NTA 785157955 796414733 735356392 727481281

Table 14 - No. of cycles/thread for run configuration 9

Figure 14(a) - No. of cycles/thread for run configuration 9

Figure 14(b) - Percentage gain (reduction in no. of cycles) for run configuration 9
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Uniform Distribution, Compiler prefetching on

16 MPI tasks, 1 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

778079949

799506258 777568677 720362061 724550227

To L2 803117329 782626923 726324415 705618299

To L3 783115452 742796331 746999163 753926871

To NTA 750622889 793244770 729227175 720189404

Table 15 - No. of cycles/thread for run configuration 10

Figure 15(a) - No. of cycles/thread for run configuration 10

Figure 15(b) - Percentage gain (reduction in no. of cycles) for run configuration 10
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Non-uniform Distribution, Compiler prefetching off

16 MPI tasks, 1 OpenMP thread/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

2574794528

2447734995 2453215485 2306941143 2267227094

To L2 2482538144 2454004520 2375136413 2365039945

To L3 2494890141 2483171305 2376823089 2405799508

To NTA 2507980368 2440409433 2282875881 2286068814

Table 16 - No. of cycles/thread for run configuration 11

Figure 16(a) - No. of cycles/thread for run configuration 11

Figure 16(b) - Percentage gain (reduction in no. of cycles) for run configuration 11
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Non-uniform Distribution, Compiler prefetching on

16 MPI tasks, 1 OpenMP threads/task, No coprocessor offloading

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

2600228519

2469273119 2429393288 2313591094 2296131604

To L2 2499694563 2477001727 2377432739 2388893188

To L3 2503980170 2468614226 2364781199 2376956848

To NTA 2474802184 2442371445 2283756840 2314909771

Table 17 - No. of cycles/thread for run configuration 12

Figure 17(a) - No. of cycles/thread for run configuration 12

Figure 17(b) - Percentage gain (reduction in no. of cycles) for run configuration 12
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Uniform Distribution, Compiler prefetching off

1 MPI task, 16 OpenMP threads/task, Coprocessor offloading on

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

894213325

870450169 865500577 813513471 808726915

To L2 872397249 866834890 825470097 823003772

To L3 870717836 865200227 827762715 822946564

To NTA 870830833 867296145 817165217 809265066

Table 18 - No. of cycles/thread for run configuration 13

Figure 18(a) - No. of cycles/thread for run configuration 13

Figure 18(b) - Percentage gain (reduction in no. of cycles) for run configuration 13
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Uniform Distribution, Compiler prefetching on,

1 MPI task, 16 OpenMP threads/task, Coprocessor offloading on

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

899033490

872957902 865795490 813663817 806967848

To L2 871871483 865754737 830842283 821663403

To L3 870607904 867115921 828467887 822120071

To NTA 871732007 870604436 814345490 808450165

Table 19 - No. of cycles/thread for run configuration 14

Figure 19(a) - No. of cycles/thread for run configuration 14

Figure 19(b) - Percentage gain (reduction in no. of cycles) for run configuration 14
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Non-uniform Distribution, Compiler prefetching off

1 MPI task, 16 OpenMP threads/task, Coprocessor offloading on

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

581649228

569310928 569989899 526162707 525968804

To L2 567457437 580449652 529019240 530701060

To L3 577516425 567070481 539134956 531184698

To NTA 580574981 567215305 531632753 528823809

Table 20 - No. of cycles/thread for run configuration 15

Figure 20(a) - No. of cycles/thread for run configuration 15

Figure 20(b) - Percentage gain (reduction in no. of cycles) for run configuration 15
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Non-uniform Distribution, Compiler prefetching on

1 MPI task, 16 OpenMP threads/task, Coprocessor offloading on

Prefetch None
IN array

only
IN, M arrays

IN, OUT

arrays

IN, OUT, M

arrays

To L1

579562037

566738786 566669405 529775230 522980038

To L2 568893065 569328925 541889106 535481411

To L3 581155112 571147202 533073555 527217520

To NTA 570478481 568829708 533495562 528143228

Table 21 - No. of cycles/thread for run configuration 16

Figure 21(a) - No. of cycles/thread for run configuration 16

Figure 21(b) - Percentage gain (reduction in no. of cycles) for run configuration 16
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6 CONCLUSION

In this study, this author presented a case for programmer inserted prefetches. An

introduction of hardware and prefetching techniques was given and a case for

programmer inserted prefetches was identified for programs where access patterns are

such which cannot be identified by hardware prefetchers and/or they’re indirect so they

cannot be identified by compiler either. With the help of an FMM VList case study, it

was demonstrated that for cases like this, programmer inserted prefetches are a great

solution. Several prefetching choices were explored and empirically compared across 16

different run configurations. The author was able to attain consistent performance gain of

9-12% across most run configurations, and exceeding 12% for some run configurations

for their respective best prefetching combinations. Prefetching all 3 data structures and

prefetching those to L1 cache, was identified as the one prefetching combination that

performed best for majority of run configurations, and second best for majority of the

rest. This combination resulted in a performance gain of 10.14% averaged across all run

configurations. The broader trends with regard to prefetching gains were listed and

analyzed along with variations caused by different run configuration parameters.

In conclusion, it can be said that scientific applications such as the one taken as a

case study for this research, do have irregular access patterns where both hardware

prefetchers and compilers fail to help, and it is in such applications, that programmer

inserted prefetches can make a significant positive difference and bring about precious

performance gains.
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Appendix A PAPI EventSet Creation and Calls

#include "/opt/apps/papi/5.2RC/include/papi.h"
#include "/opt/apps/papi/5.2RC/include/papiStdEventDefs.h"
int EventSet = PAPI_NULL;
long_long values[3];
int main () {

PAPI_event_info_t evinfo;
int eventlist[] =
{

#if X // NOT MORE THAN 5 EVENTS CAN BE MEASURED AT ONCE
PAPI_L1_DCM, PAPI_L2_DCM, PAPI_L3_TCM,

#else
PAPI_LD_INS, PAPI_TOT_CYC, PAPI_TOT_INS,

#endif
0

};

int retval = PAPI_library_init(PAPI_VER_CURRENT);
if (PAPI_thread_init(omp_get_thread_num) != PAPI_OK) std::cout <<

"handle_error0" << std::endl;
if (retval != PAPI_VER_CURRENT && retval > 0) std::cout << "PAPI library

version mismatch!\n";
if (retval < 0) std::cout << "Initialization error!\n";
if (PAPI_create_eventset(&EventSet) != PAPI_OK) std::cout <<

"handle_error1" << std::endl;
for (int i=0; eventlist[i] != 0; i++) {
if (PAPI_add_event(EventSet, eventlist[i]) != PAPI_OK) std::cout <<

"handle_error2." << i << std::endl;
}

/* PAPI EVENTSET CREATION CODE ABOVE */
/* MAIN FUNCTION CODE HERE */
/* PAPI EVENTSET PRINT CODE BELOW */

std::ofstream out("out.txt");
std::streambuf *coutbuf = std::cout.rdbuf();
std::cout.rdbuf(out.rdbuf()); //redirect std::cout to out.txt!
for (int i=0; eventlist[i] != 0; i++) {
PAPI_get_event_info(eventlist[i], &evinfo);
std::cout << evinfo.symbol << "=\t" << values[i] << "\n";

}
std::cout.rdbuf(coutbuf);

} // end of main

if (PAPI_start(EventSet) != PAPI_OK) std::cout << "handle_error3" <<
std::endl;
/* CALL TO KERNEL TO BE PROFILED */
if (PAPI_stop(EventSet, values) != PAPI_OK) std::cout << "handle_error4" <<
std::endl;



47

Appendix B Programmer Inserted Prefetches

for(size_t blk1=0; blk1<blk1_cnt; blk1++)
for(size_t k=a; k< b; k++)

for(size_t mat_indx=0; mat_indx< mat_cnt;mat_indx++){
size_t interac_blk1 = blk1*mat_cnt+mat_indx;

size_t interac_dsp0 =
(interac_blk1==0?0:interac_dsp[interac_blk1-1]);

size_t interac_dsp1 = interac_dsp[interac_blk1 ] ;
size_t interac_cnt = interac_dsp1-interac_dsp0;
Real_t** IN = IN_ + 2*V_BLK_SIZE*interac_blk1;

Real_t** OUT= OUT_+ 2*V_BLK_SIZE*interac_blk1;
Real_t* M = precomp_mat[mat_indx] + k*chld_cnt*chld_cnt*2;

#if PREF_M
if (mat_indx +1 < mat_cnt) {
_mm_prefetch(((char *)(precomp_mat[mat_indx+1] +

k*chld_cnt*chld_cnt*2)), _MM_HINT_NTA);
_mm_prefetch(((char *)(precomp_mat[mat_indx+1] +

k*chld_cnt*chld_cnt*2) + 64), _MM_HINT_NTA);
}

#endif
for(int in_dim=0;in_dim<ker_dim0;in_dim++)
for(int ot_dim=0;ot_dim<ker_dim1;ot_dim++){
for(size_t j=0;j<interac_cnt;j+=2){

Real_t* M_ = M;
Real_t* IN0 = IN [j+0] + (in_dim*M_dim+k)*chld_cnt*2;

Real_t* IN1 = IN [j+1] + (in_dim*M_dim+k)*chld_cnt*2;
Real_t* OUT0 = OUT[j+0] + (ot_dim*M_dim+k)*chld_cnt*2;
Real_t* OUT1 = OUT[j+1] + (ot_dim*M_dim+k)*chld_cnt*2;

#if PREF_IN
if (j+2 < interac_cnt) {
_mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2)),

_MM_HINT_NTA);
_mm_prefetch(((char *)(IN[j+2] + (in_dim*M_dim+k)*chld_cnt*2) +

64), _MM_HINT_NTA);
_mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2)),

_MM_HINT_NTA);
_mm_prefetch(((char *)(IN[j+3] + (in_dim*M_dim+k)*chld_cnt*2) +

64), _MM_HINT_NTA);
}

#endif
#if PREF_OUT

if (j+2 < interac_cnt) {
_mm_prefetch(((char *)(OUT[j+2] +

(ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_NTA);
_mm_prefetch(((char *)(OUT[j+2] + (ot_dim*M_dim+k)*chld_cnt*2) +

64), _MM_HINT_NTA);
_mm_prefetch(((char *)(OUT[j+3] +

(ot_dim*M_dim+k)*chld_cnt*2)), _MM_HINT_NTA);
_mm_prefetch(((char *)(OUT[j+3] + (ot_dim*M_dim+k)*chld_cnt*2) +

64), _MM_HINT_NTA);
}

#endif
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Appendix C.1

Dataset for Uniform Distribution with Compiler prefetching off, run with 1 MPI

task, 16 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 39382047 11437715 6558779 257580012 890187105 1138851100 2508531367 2.25%

L1_IOM101 40219367 11721880 6522710 267467736 904994736 1170275155 2510431460 0.63%

L1_IOM110 41414027 11609441 6428982 266173560 813382025 1134407195 2503626513 10.69%

L1_IOM111 41482088 11464788 6350162 267599810 805577876 1136974888 2504262669 11.54%

L2_IOM100 38275314 11366451 6099773 248369202 872184914 1116333230 2506846016 4.23%

L2_IOM101 38706669 11638370 5986141 261414000 894746093 1155475165 2506761156 1.75%

L2_IOM110 38427992 11523267 5915361 266196959 827706953 1134462756 2504159044 9.11%

L2_IOM111 38382712 11521751 5730941 273346205 838120182 1151021690 2504393921 7.97%

L3_IOM100 38187334 11361401 6117797 248871756 871359035 1117561517 2506323551 4.32%

L3_IOM101 38646289 11583941 5985405 249889085 863538677 1127300449 2506830436 5.18%

L3_IOM110 38387912 11487766 5913674 272812426 843003230 1150635351 2504046640 7.43%

L3_IOM111 38387299 11429113 5717579 284057859 863370050 1177208744 2504360813 5.20%

NTA_IOM100 39774206 11888200 6625212 254453987 885392530 1131207764 2508196652 2.78%

NTA_IOM101 40369874 12065690 6578188 251558686 869261588 1131382056 2509086301 4.55%

NTA_IOM110 41037275 15238248 6655987 265956929 814912617 1133876120 2503848484 10.52%

NTA_IOM111 40896919 15250271 6642499 275053984 837429676 1155194813 2504494973 8.04%

No Prefetch 38490819 11528379 6670958 242159177 910690228 1121749584 2505497753 0.00%
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Appendix C.2

Dataset for Uniform Distribution with Compiler prefetching on, run with 1 MPI

task, 16 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 39592667 11450847 6562843 251245483 886954686 1123361726 2509517431 3.92%

L1_IOM101 40122583 11675547 6546864 250053663 865685085 1127703001 2509720963 6.22%

L1_IOM110 41645833 11519698 6426834 272568242 828099237 1150040116 2503552328 10.29%

L1_IOM111 41574496 11609308 6375550 267091724 806611975 1135732735 2504201993 12.62%

L2_IOM100 38257414 11399007 6128831 247864345 870189954 1115099248 2506164089 5.73%

L2_IOM101 38821122 11638651 5971871 250557437 869126026 1128933295 2507158269 5.85%

L2_IOM110 38625679 11556748 5915276 266414688 825903477 1134994945 2503845613 10.53%

L2_IOM111 38444391 11467983 5728579 267629316 823958212 1137044462 2504232225 10.74%

L3_IOM100 38415806 11383630 6099012 259866825 899146662 1144441088 2507029464 2.60%

L3_IOM101 38760227 11578680 5973563 249855274 864530659 1127218031 2506879425 6.35%

L3_IOM110 38563928 11500320 5907023 266116758 829791047 1134266984 2504029605 10.11%

L3_IOM111 38424645 11457504 5724795 272727795 836722495 1149509415 2504393199 9.36%

NTA_IOM100 39813209 11886604 6630120 248509918 870962281 1116677865 2508864587 5.65%

NTA_IOM101 40536825 12123140 6582487 256037947 877236662 1142333348 2510005636 4.97%

NTA_IOM110 41078186 15268807 6660511 273204497 832166812 1151595515 2503825472 9.85%

NTA_IOM111 41137099 15304813 6640645 267278203 808844077 1136187522 2504458763 12.38%

No Prefetch 38488646 11625507 6689717 241523244 923121459 1120195427 2505796045 0.00%
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Appendix C.3

Dataset for Non-uniform Distribution with Compiler prefetching off, run with 1

MPI task, 16 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 25695761 6612366 4100117 175004633 585410370 767842617 1675143688 0.02%

L1_IOM101 26114454 6682556 4099480 171076551 589778331 763084620 1676022699 -0.73%

L1_IOM110 26870326 6666680 4011723 183418493 536397631 771307620 1671784119 8.39%

L1_IOM111 27007589 6614928 3989914 183102004 536415413 769922857 1672220071 8.39%

L2_IOM100 24765734 6453888 3778545 166369492 567900933 746732416 1673638581 3.01%

L2_IOM101 25155128 6618529 3736379 178994615 591813417 782443389 1674152439 -1.07%

L2_IOM110 25020788 6498100 3533919 181834560 548788574 767434506 1672007168 6.27%

L2_IOM111 24913921 6534554 3450125 182478978 541069085 768398704 1672219216 7.59%

L3_IOM100 24709892 6449675 3807649 174740157 591012437 767196136 1673753572 -0.94%

L3_IOM101 25107467 6646783 3742869 182195760 593237952 790269149 1674062884 -1.32%

L3_IOM110 24969223 6561181 3523360 186624468 554709976 779145222 1672001415 5.26%

L3_IOM111 24897180 6532418 3440464 188218721 560555564 782429589 1672192504 4.26%

NTA_IOM100 25811514 6779401 4152355 174334773 581841270 766204996 1674924011 0.63%

NTA_IOM101 26386018 6941601 4124487 175718086 589551645 774432135 1675575271 -0.69%

NTA_IOM110 26595637 9025100 4189122 178058174 529840825 758204057 1671825039 9.51%

NTA_IOM111 26751488 9057964 4180787 178392654 533794800 758408059 1672326765 8.83%

No Prefetch 25056523 6621272 4172231 156755492 585525548 737072658 1673456467 0.00%
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Appendix C.4

Dataset for Non-uniform Distribution with Compiler prefetching on, run with 1

MPI task, 16 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays

P
A
P
I_
L
1
_
D
C
M

P
A
P
I_
L
2
_
D
C
M

P
A
P
I_
L
3
_
T
C
M

P
A
P
I_
L
D
_
IN

S

P
A
P
I_
T
O
T
_
C
Y
C

P
A
P
I_
T
O
T
_
IN

S

P
A
P
I_
D
P
_
O
P
S

P
refetch

g
ain

L1_IOM100 25621656 6633261 4098441 173523493 581782884 764221714 1675147564 -0.28%

L1_IOM101 26108491 6756615 4107644 178721852 581419167 781776300 1676363364 -0.22%

L1_IOM110 26926311 6637828 4016483 182711443 537565610 769580491 1671778241 7.34%

L1_IOM111 26918681 6596263 3993383 181463088 524479564 765915675 1672292207 9.60%

L2_IOM100 24829979 6480055 3798617 167329735 569617045 749078537 1673880756 1.82%

L2_IOM101 25186153 6674722 3746167 169056524 567717723 758147334 1674288189 2.14%

L2_IOM110 25023492 6626141 3554062 181981151 544640816 767793792 1672052693 6.12%

L2_IOM111 24901785 6527208 3465305 182706363 541850677 768954693 1672350163 6.60%

L3_IOM100 24752809 6496051 3798298 172086843 580541427 760709680 1673698605 -0.07%

L3_IOM101 25234489 6634956 3732110 176093727 590075549 775351342 1674265847 -1.71%

L3_IOM110 24992097 6526048 3537258 185428001 544634967 776220778 1671973193 6.12%

L3_IOM111 24918077 6503766 3443714 179482937 527423338 761075054 1672124889 9.09%

NTA_IOM100 25833397 6779981 4144530 172551482 581159757 761845277 1674851900 -0.17%

NTA_IOM101 26253504 6881928 4143657 170041328 577361946 760554960 1675706124 0.48%

NTA_IOM110 26562484 9017609 4187411 181859900 544242122 767497646 1671876087 6.19%

NTA_IOM111 26730900 9013035 4172751 180662672 522934693 763959197 1672349983 9.86%

No Prefetch 25018068 6662494 4191812 161521262 580158527 748723369 1673709476 0.00%
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Appendix C.5

Dataset for Uniform Distribution with Compiler prefetching off, run with 4 MPI

tasks, 4 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 40413648 12959641 6937841 256038503 828071103 1154438745 2594605491 3.89%

L1_IOM101 41044428 13577617 6977240 258370630 822131540 1167388278 2600547597 4.58%

L1_IOM110 42718631 13250215 6858948 272939838 770931280 1166304152 2603071501 10.52%

L1_IOM111 42304172 12866936 6686728 276120928 770829800 1175018081 2574370551 10.53%

L2_IOM100 39148419 12873718 6479170 257089936 834141983 1157004153 2591241667 3.18%

L2_IOM101 40118267 13427611 6316641 258068737 821182869 1167509801 2597054695 4.69%

L2_IOM110 39408805 12981382 6296023 275286148 794805420 1176354964 2602242616 7.75%

L2_IOM111 39850010 13102308 6006727 277177804 791047907 1177742881 2605178036 8.18%

L3_IOM100 39138143 12934766 6472509 255745956 831186364 1154839756 2592002709 3.52%

L3_IOM101 40107565 13446408 6283942 258332267 822954890 1167889682 2607660287 4.48%

L3_IOM110 39835096 13674395 6378851 275010613 789903764 1175853736 2607892403 8.32%

L3_IOM111 39736447 13668126 6175728 273118861 776795429 1165050981 2608185235 9.84%

NTA_IOM100 40631275 13152087 6969650 255478535 824474602 1153586709 2589159477 4.30%

NTA_IOM101 41878004 13791031 6993544 258331636 822783422 1168759699 2608589407 4.50%

NTA_IOM110 42080198 16695752 7066892 275393993 779644684 1176393462 2603138943 9.51%

NTA_IOM111 41592419 16566806 6973256 274638635 762068794 1170846054 2594194123 11.55%

No Prefetch 39557837 12838951 7023312 243015330 861552943 1144450218 2601710639 0.00%
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Appendix C.6

Dataset for Uniform Distribution with Compiler prefetching on, run with 4 MPI

tasks, 4 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 40592014 13223226 7005302 256137514 825329581 1155872456 2609423560 3.62%

L1_IOM101 41430998 13149098 6939471 255260323 807386664 1155812470 2610249463 5.71%

L1_IOM110 42684168 13866352 6923727 273098486 763337044 1168239147 2607331207 10.86%

L1_IOM111 42336092 13431104 6826895 275481991 765418328 1175274680 2602637943 10.61%

L2_IOM100 39374639 12994468 6541648 255042360 823979100 1150875697 2605648225 3.77%

L2_IOM101 39858747 13076902 6271759 256553596 816563058 1162123458 2592344832 4.64%

L2_IOM110 39530424 13518099 6321919 273252525 788341661 1169214588 2602261332 7.94%

L2_IOM111 39801616 13554874 6091890 276509641 785329449 1177622121 2592707549 8.29%

L3_IOM100 39645328 12945886 6496673 254815217 828714417 1148335425 2611839684 3.22%

L3_IOM101 39963109 13395545 6314529 257921463 821044614 1167860567 2607955225 4.12%

L3_IOM110 39650791 13225170 6268943 272613091 788136555 1166577523 2604810332 7.96%

L3_IOM111 40057694 13567664 6060131 277086278 792211088 1177672614 2610806992 7.48%

NTA_IOM100 41002223 13370847 6989443 256470448 828540243 1155939737 2583176451 3.24%

NTA_IOM101 41891211 13732572 7038479 256488133 812495344 1161411405 2612779735 5.12%

NTA_IOM110 42656882 16891206 7084274 275548042 779148500 1175584221 2608618777 9.01%

NTA_IOM111 42338598 16749848 6998449 276083235 764570545 1177586697 2592388864 10.71%

No Prefetch 39487872 13133504 7096340 242857608 856304163 1144838338 2594081649 0.00%
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Appendix C.7

Dataset for Non-uniform Distribution with Compiler prefetching off, run with 4

MPI tasks, 4 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 136742323 33182934 17453713 900829329 2607237244 4068449033 9132952257 3.16%

L1_IOM101 140892904 33001652 17409747 902584730 2586955006 4090006257 9233027981 3.91%

L1_IOM110 146081615 33935377 17133867 965057306 2476054782 4118696686 9187499971 8.03%

L1_IOM111 146487566 33426033 16881852 966748264 2452162642 4113607528 9198608487 8.92%

L2_IOM100 132845537 33019001 15710984 898676476 2604391502 4058671365 9127170548 3.26%

L2_IOM101 135801131 33451639 15508242 907315851 2598818781 4117667296 9199834293 3.47%

L2_IOM110 134444718 32911622 14478233 964959774 2522211248 4121235227 9154124203 6.31%

L2_IOM111 133843678 33309898 14474301 969112551 2509300542 4119750471 9188936544 6.79%

L3_IOM100 133803235 33611965 16125927 896882405 2619871098 4043360654 9249352580 2.69%

L3_IOM101 134981155 33262712 15461551 907137217 2589067698 4117149427 9198241295 3.83%

L3_IOM110 134879150 32457943 14540733 968870685 2519774272 4132282656 9214731261 6.40%

L3_IOM111 133853479 33226375 14390624 968654268 2500372906 4118262479 9188828560 7.13%

NTA_IOM100 140158160 34590671 17777343 900481831 2605647314 4062911450 9203819175 3.21%

NTA_IOM101 142208296 34862365 17723845 903474973 2600025509 4097690738 9239530813 3.42%

NTA_IOM110 145346099 48348379 18098190 968677038 2459153446 4136177747 9240871695 8.66%

NTA_IOM111 144951488 47492704 17936533 968555637 2450824145 4126472550 9190070904 8.97%

No Prefetch 133584719 33394209 18000462 845271691 2692200736 3990041447 9160682940 0.00%
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Appendix C.8

Dataset for Non-uniform Distribution with Compiler prefetching on, run with 4

MPI task, 4 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 139102380 32991618 17466174 896085289 2600029065 4045196763 9240316973 3.21%

L1_IOM101 141113789 34182826 17569009 899676392 2585300081 4071997286 9207186393 3.76%

L1_IOM110 145711282 34029917 17106952 960130803 2458011688 4094977516 9107587184 8.50%

L1_IOM111 145585659 33465318 16664266 967754185 2443226047 4116069702 9173652789 9.05%

L2_IOM100 132814544 32600960 15627233 898961977 2604692366 4060644123 9127783387 3.03%

L2_IOM101 134096909 33876921 15427341 907341593 2588299467 4117788525 9128517277 3.64%

L2_IOM110 134226795 32582877 14327997 969673602 2519532033 4138949567 9154041365 6.20%

L2_IOM111 134064121 33327584 14395165 970806473 2503456685 4133640109 9224401135 6.80%

L3_IOM100 133408545 32163065 15472408 902968743 2604080247 4077933298 9196714156 3.06%

L3_IOM101 134872074 32887518 15418920 906052996 2613487092 4110952004 9153165333 2.71%

L3_IOM110 135116104 33201042 14607751 968300898 2529253910 4133499610 9143806371 5.84%

L3_IOM111 134760389 34003279 14446783 969903334 2517189108 4121319206 9199250535 6.29%

NTA_IOM100 139917466 34358667 17795058 900438472 2612387307 4061015422 9201559579 2.75%

NTA_IOM101 140668618 35885907 17827760 903633655 2577576503 4101691108 9134972491 4.04%

NTA_IOM110 145021439 47825906 17997150 961296556 2457885961 4098219575 9153835737 8.50%

NTA_IOM111 144678315 48076342 18028620 969828572 2460558988 4127841361 9164135793 8.40%

No Prefetch 133077245 33241931 17921641 848032189 2686209580 4006220922 9150751817 0.00%
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Appendix C.9

Dataset for Uniform Distribution with Compiler prefetching off, run with 16 MPI

task, 1 OpenMP thread/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 39869919 12729473 6682434 262996568 780420295 1188544072 9240316973 4.66%

L1_IOM101 39942144 12841108 6657561 272251659 788755148 1235483798 9207186393 3.64%

L1_IOM110 43516437 14238426 6776488 252706990 676736573 1081855400 9107587184 17.33%

L1_IOM111 44090028 13590464 6578830 289449926 726061328 1235021668 9173652789 11.30%

L2_IOM100 40820126 12988096 6097767 259834677 784199460 1174164627 9127783387 4.20%

L2_IOM101 38881862 12506508 6107691 265352266 778057876 1203926481 9128517277 4.95%

L2_IOM110 40985722 14388639 6356384 281316264 746167243 1203602309 9154041365 8.85%

L2_IOM111 38881730 13228516 6062462 293649226 757623671 1252828864 9224401135 7.45%

L3_IOM100 40105145 13195797 6157674 270184308 804639318 1221086985 9196714156 1.70%

L3_IOM101 39184672 13025942 6193066 273977628 792194888 1243298378 9153165333 3.22%

L3_IOM110 40965871 15310930 6612941 287690244 762975476 1230687531 9143806371 6.79%

L3_IOM111 41381375 14223983 6000192 269237742 715500402 1149029721 9199250535 12.59%

NTA_IOM100 39739081 12818618 6739319 263859609 785157955 1192416155 9201559579 4.08%

NTA_IOM101 41669843 13667640 6757732 269664931 796414733 1223621159 9134972491 2.71%

NTA_IOM110 43121389 18012825 6981495 290487836 735356392 1242629386 9153835737 10.17%

NTA_IOM111 42898130 17399903 6829983 287584495 727481281 1227031194 9164135793 11.13%

No Prefetch 39004274 12760305 6764767 249267780 818590707 1178036946 9150751817 0.00%
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Appendix C.10

Dataset for Uniform Distribution with Compiler prefetching on, run with 16 MPI

task, 1 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 41558116 13680827 6906309 270184044 799506258 1221051762 2720265785 -2.75%

L1_IOM101 43229496 14280956 6816259 263339588 777568677 1194727395 2767840765 0.07%

L1_IOM110 43293598 13217451 6566910 276650348 720362061 1183757874 2680590291 7.42%

L1_IOM111 40591495 12501069 6369190 291781329 724550227 1244926245 2543138867 6.88%

L2_IOM100 41145338 14290980 6358006 268027886 803117329 1211265944 2767855559 -3.22%

L2_IOM101 37275219 12285955 5942915 266214603 782626923 1207833775 2451546513 -0.58%

L2_IOM110 41379818 13773184 6063793 268410785 726324415 1148717317 2760582845 6.65%

L2_IOM111 38919174 13211486 6028191 263329837 705618299 1123911276 2595300276 9.31%

L3_IOM100 39769214 13168469 6229848 254803443 783115452 1151354630 2669869319 -0.65%

L3_IOM101 39532032 13980151 6387170 242928040 742796331 1101405002 2617506424 4.53%

L3_IOM110 40547212 13402852 6058748 282248349 746999163 1207606330 2688577644 3.99%

L3_IOM111 39448272 13206565 5955230 290383156 753926871 1238990548 2622419208 3.10%

NTA_IOM100 40465058 13477006 6825794 243161069 750622889 1098589110 2615047437 3.53%

NTA_IOM101 43835122 14544434 6816377 267508477 793244770 1213747332 2766502955 -1.95%

NTA_IOM110 43160028 17220040 6817357 279449282 729227175 1195664457 2674432057 6.28%

NTA_IOM111 40844676 16418801 6786776 285717850 720189404 1219163840 2541440889 7.44%

No Prefetch 39807132 13673038 6936308 227946765 778079949 1076322134 2660856783 0.00%
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Appendix C.11

Dataset for Non-uniform Distribution with Compiler prefetching off, run with 16

MPI task, 1 OpenMP threads/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 137709486 39115581 17919249 886090280 2447734995 4006154416 9250874856 4.93%

L1_IOM101 139682524 39172347 17736453 915756167 2453215485 4161657728 9254352151 4.72%

L1_IOM110 144913198 39223591 17709796 954980966 2306941143 4080234259 9199556863 10.40%

L1_IOM111 146280627 39260638 17371145 963466992 2267227094 4107589474 9289662781 11.95%

L2_IOM100 133835243 37987716 16369905 899030010 2482538144 4064745507 9162810275 3.58%

L2_IOM101 135060569 39094659 16088407 903968523 2454004520 4107777526 9248781256 4.69%

L2_IOM110 133256836 39376756 15562161 958083566 2375136413 4093462487 9165398835 7.75%

L2_IOM111 133891694 39018354 15041096 968507099 2365039945 4128696412 9149485128 8.15%

L3_IOM100 134411804 37847874 16121799 895003658 2494890141 4046652619 9360070487 3.10%

L3_IOM101 134848115 39092997 15921175 902100641 2483171305 4099200240 9238953833 3.56%

L3_IOM110 133894608 39454579 15632558 959484870 2376823089 4098745071 9201218319 7.69%

L3_IOM111 133442686 39439752 15035666 984399889 2405799508 4196189070 9125137509 6.56%

NTA_IOM100 138789039 39703705 17961652 904922661 2507980368 4091580221 9285939559 2.59%

NTA_IOM101 141111865 40805627 17844744 912449546 2440409433 4146515507 9232910988 5.22%

NTA_IOM110 143443126 53358911 18035640 959326483 2282875881 4098083538 9181339968 11.34%

NTA_IOM111 144227427 53440013 18159488 968658505 2286068814 4129357892 9226750011 11.21%

No Prefetch 133656337 39080029 18453594 847889721 2574794528 4016065272 9228734705 0.00%
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Appendix C.12

Dataset for Non-uniform Distribution with Compiler prefetching on, run with 16

MPI task, 16 OpenMP thread/task with no coprocessor offloading

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 138281481 38369291 17801630 901758389 2469273119 4077047978 9279885808 5.04%

L1_IOM101 140679955 38956781 17625757 889597640 2429393288 4041987846 9341129772 6.57%

L1_IOM110 143849606 39384244 17501171 967317231 2313591094 4132534810 9124116127 11.02%

L1_IOM111 145382206 39054871 17235664 971006174 2296131604 4139988752 9178287924 11.70%

L2_IOM100 132628220 38340678 16457407 890404517 2499694563 4025902132 9103284312 3.87%

L2_IOM101 133985169 39122913 15911338 894336794 2477001727 4063871068 9222118455 4.74%

L2_IOM110 133997523 39877164 15555266 965057316 2377432739 4122571409 9205415983 8.57%

L2_IOM111 134539165 38302429 14987991 977617384 2388893188 4167713543 9195133411 8.13%

L3_IOM100 133476461 37911602 16170588 894286636 2503980170 4043590391 9238485491 3.70%

L3_IOM101 135327119 39013179 16104361 894049378 2468614226 4062492255 9215075291 5.06%

L3_IOM110 133610167 38216818 15095218 953002390 2364781199 4072295453 9212482756 9.05%

L3_IOM111 134080752 38922296 15327733 963625180 2376956848 4108251024 9302576211 8.59%

NTA_IOM100 138309697 39167407 18109919 907510654 2474802184 4103137354 9197377509 4.82%

NTA_IOM101 141069149 41063807 17957127 889741725 2442371445 4042644957 9233834007 6.07%

NTA_IOM110 144503733 54070574 18120126 959328104 2283756840 4098083539 9230272004 12.17%

NTA_IOM111 141911255 53710411 18078251 973666514 2314909771 4151201692 9122294488 10.97%

No Prefetch 133198815 37516235 18027918 854412648 2600228519 4047112374 9201101156 0.00%
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Appendix C.13

Dataset for Uniform Distribution with Compiler prefetching off, run with 1 MPI

task, 16 OpenMP threads/task with coprocessor offloading on

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 39326057 11384210 6580143 249223404 870450169 1118421734 2508404119 2.66%

L1_IOM101 40182507 11641990 6531039 250611427 865500577 1129067829 2510569549 3.21%

L1_IOM110 41305771 11511111 6467555 267154769 813513471 1136806505 2503681639 9.02%

L1_IOM111 41472107 11491061 6378786 267073587 808726915 1135687693 2504257835 9.56%

L2_IOM100 38321199 11440606 6156133 249446833 872397249 1118967329 2506740804 2.44%

L2_IOM101 38547149 11512445 5973964 251360853 866834890 1130900178 2507015220 3.06%

L2_IOM110 38452562 11510531 5955610 265710090 825470097 1133267458 2504092264 7.69%

L2_IOM111 38465018 11516421 5749134 267270900 823003772 1136168080 2504267311 7.96%

L3_IOM100 38188928 11326024 6129539 248638798 870717836 1116991471 2506755848 2.63%

L3_IOM101 38817903 11604762 5993919 251285774 865200227 1130715730 2507798987 3.24%

L3_IOM110 38286251 11524948 5962121 266751505 827762715 1135818958 2504162864 7.43%

L3_IOM111 38408691 11495668 5749968 268369136 822946564 1138851481 2504203925 7.97%

NTA_IOM100 39788942 11876217 6649109 248415916 870830833 1116446967 2509354321 2.61%

NTA_IOM101 40214985 12058515 6612664 251797585 867296145 1131967269 2509222733 3.01%

NTA_IOM110 40954073 15213541 6665919 266696800 817165217 1135682922 2503781473 8.62%

NTA_IOM111 40915970 15288667 6657971 268425221 809265066 1138991793 2504516683 9.50%

No Prefetch 38229381 11562147 6692965 235803110 894213325 1106211009 2506115931 0.00%
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Appendix C.14

Dataset for Uniform Distribution with Compiler prefetching on, run with 1 MPI

task, 16 OpenMP threads/task with coprocessor offloading on

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays

P
A
P
I_
L
1
_
D
C
M

P
A
P
I_
L
2
_
D
C
M

P
A
P
I_
L
3
_
T
C
M

P
A
P
I_
L
D
_
IN

S

P
A
P
I_
T
O
T
_
C
Y
C

P
A
P
I_
T
O
T
_
IN

S

P
A
P
I_
D
P
_
O
P
S

P
refetch

g
ain

L1_IOM100 39347543 11492752 6588420 249795688 872957902 1119819957 2508973924 2.90%

L1_IOM101 40072417 11634519 6536480 251067480 865795490 1130179658 2509970717 3.70%

L1_IOM110 41340158 11530726 6455411 266295401 813663817 1134704512 2503723004 9.50%

L1_IOM111 41330702 11530405 6405914 268504991 806967848 1139187783 2504249499 10.24%

L2_IOM100 38252031 11411494 6144504 249404789 871871483 1118865057 2506801420 3.02%

L2_IOM101 38875972 11564824 5988105 250726084 865754737 1129346971 2507428744 3.70%

L2_IOM110 38444930 11553492 5945828 266728294 830842283 1135761840 2503965295 7.58%

L2_IOM111 38366237 11521293 5728955 268279319 821663403 1138635134 2504477848 8.61%

L3_IOM100 38080652 11322326 6143705 249028841 870607904 1117947219 2506586296 3.16%

L3_IOM101 38903531 11559014 5954816 251224756 867115921 1130567428 2507348415 3.55%

L3_IOM110 38442647 11526112 5931299 266568646 828467887 1135372062 2503916736 7.85%

L3_IOM111 38363049 11465487 5717646 267803640 822120071 1137471549 2504308861 8.56%

NTA_IOM100 39767711 11868170 6634840 249299619 871732007 1118607297 2508707013 3.04%

NTA_IOM101 40297857 12042923 6606708 252482684 870604436 1133641785 2509231735 3.16%

NTA_IOM110 41019266 15204088 6688119 267119414 814345490 1136720213 2503724157 9.42%

NTA_IOM111 40993561 15253685 6661047 268203697 808450165 1138451573 2504599809 10.08%

No Prefetch 38359035 11565603 6704552 236896663 899033490 1108884665 2506114604 0.00%
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Appendix C.15

Dataset for Non-uniform Distribution with Compiler prefetching off, run with 1

MPI task, 16 OpenMP threads/task with coprocessor offloading on

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 25844361 6570189 4084231 170349264 569310928 756460916 1675037744 2.12%

L1_IOM101 26257830 6733252 4101129 169772662 569989899 759898409 1675866285 2.00%

L1_IOM110 27054512 6679034 4010244 178034833 526162707 758146494 1671833147 9.54%

L1_IOM111 27160469 6654830 3989767 178007002 525968804 757466141 1672237581 9.57%

L2_IOM100 24959563 6484565 3772862 168510237 567457437 751966481 1673774232 2.44%

L2_IOM101 25229408 6615626 3725066 171302255 580449652 763637551 1673977403 0.21%

L2_IOM110 25128135 6580242 3512271 177918480 529019240 757860920 1672047327 9.05%

L2_IOM111 25280426 6562229 3418126 178077222 530701060 757636118 1672280321 8.76%

L3_IOM100 25124110 6512749 3765702 168364989 577516425 751608021 1674109784 0.71%

L3_IOM101 25473340 6627203 3718980 172095853 567070481 765578797 1674448609 2.51%

L3_IOM110 25188609 6530186 3525213 178546233 539134956 759397227 1672088945 7.31%

L3_IOM111 25120078 6546665 3450671 181547423 531184698 766121781 1672251263 8.68%

NTA_IOM100 26107652 6811373 4107766 171203880 580574981 758550891 1674974821 0.18%

NTA_IOM101 26334314 6918521 4122845 169650871 567215305 759600585 1675494541 2.48%

NTA_IOM110 26771945 9035574 4154988 179985691 531632753 762916916 1671908201 8.60%

NTA_IOM111 26870187 9107617 4168875 183494896 528823809 770882656 1672328625 9.08%

No Prefetch 25312472 6658391 4144493 157484659 581649228 738831964 1673410161 0.00%
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Appendix C.16

Dataset for Non-uniform Distribution with Compiler prefetching on, run with 1

MPI task, 16 OpenMP threads/task with coprocessor offloading on

Numbers are trimmed averages over 5 runs. Numbers are per thread.

IOM100 - Prefetching IN array only, IOM101 - Prefetching IN, M arrays,

IOM110 - Prefetching IN, OUT arrays, IOM111 - Prefetching IN, OUT, M arrays
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L1_IOM100 25755225 6599969 4091290 166722114 566738786 747594764 1675148177 2.21%

L1_IOM101 26380303 6774305 4068216 166685900 566669405 752351974 1676063817 2.22%

L1_IOM110 27150004 6656631 3992091 180053598 529775230 763083029 1671839107 8.59%

L1_IOM111 27492895 6707476 3951116 183542920 522980038 770999745 1672293120 9.76%

L2_IOM100 24988559 6497612 3779750 168949846 568893065 753039937 1673503308 1.84%

L2_IOM101 25280140 6638207 3728487 170491689 569328925 761654749 1674190417 1.77%

L2_IOM110 25106749 6529255 3530695 180737100 541889106 764739463 1672099813 6.50%

L2_IOM111 25061896 6553661 3441206 184231101 535481411 772682889 1672310120 7.61%

L3_IOM100 24960462 6489325 3766112 172331483 581155112 761308085 1673892111 -0.27%

L3_IOM101 25337825 6639032 3705833 176911242 571147202 777351288 1674086439 1.45%

L3_IOM110 25171973 6492936 3535261 180150488 533073555 763315499 1672066081 8.02%

L3_IOM111 25079870 6544388 3458265 180300029 527217520 763071430 1672200183 9.03%

NTA_IOM100 25933078 6797736 4125741 166890273 570478481 748006360 1674844933 1.57%

NTA_IOM101 26381635 6991657 4116820 169992098 568829708 760435292 1675393131 1.85%

NTA_IOM110 26796349 8995639 4156893 178564316 533495562 759442075 1672001267 7.95%

NTA_IOM111 27018264 9137754 4166579 183877978 528143228 771821006 1672321788 8.87%

No Prefetch 25231926 6659171 4148647 157637066 579562037 739228355 1673221889 0.00%
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