61 research outputs found

    Integr8 and Genome Reviews: integrated views of complete genomes and proteomes

    Get PDF
    Integr8 is a new web portal for exploring the biology of organisms with completely deciphered genomes. For over 190 species, Integr8 provides access to general information, recent publications, and a detailed statistical overview of the genome and proteome of the organism. The preparation of this analysis is supported through Genome Reviews, a new database of bacterial and archaeal DNA sequences in which annotation has been upgraded (compared to the original submission) through the integration of data from many sources, including the EMBL Nucleotide Sequence Database, the UniProt Knowledgebase, InterPro, CluSTr, GOA and HOGENOM. Integr8 also allows the users to customize their own interactive analysis, and to download both customized and prepared datasets for their own use. Integr8 is available at http://www.ebi.ac.uk/integr8

    04281 Abstracts Collection -- Integrative Bioinformatics - Aspects of the Virtual Cell

    Get PDF
    From 04.07.04 to 09.07.04, the Dagstuhl Seminar 04281 ``Integrative Bioinformatics - Aspects of the Virtual Cell\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Proteomics Databases and Websites

    Get PDF
    Information avalanche (overload or expansion) in various scientific fields is a novel issue turned out by a number of factors considered necessary to facilitate their record and registration. Though, the biological science and its diverse fields like proteomics are not immune of this event and even may be as the event’s herald. On the other hand, time as the most valued anxiety of human has encountered a huge mass of information. Therefore, in order to maintain access and ease the understanding of information in several fields some emprises have been prepared. Bioinformatics is an upshot of this anxiety and emprise. Interestingly, proteomics through studying proteins collection in alive things has covered a great portion of bioinformatics. Consequently, a noteworthy outlook on proteomics related databases (DBs) and websites not only can help investigators to face the upcoming archive of databases but also estimate the volume of the needed facilitates. Furthermore, enrichment of the DBs or related websites must be the priority of researchers. Herein, by covering the major proteomics related databases and websites, we have presented a comprehensive classification to simplify and clarify their understanding and applications

    Biomedical data integration in computational drug design and bioinformatics

    Get PDF
    [Abstract In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.Red Gallega de Investigación sobre Cáncer Colorrectal; Ref. 2009/58Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT- 0366Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Industria, Turismo y Comercio; TSI-020110-2009-

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data se

    Comparing the Similarity of Different Groups of Bacteria to the Human Proteome

    Get PDF
    Numerous aspects of the relationship between bacteria and human have been investigated. One aspect that has recently received attention is sequence overlap at the proteomic level. However, there has not yet been a study that comprehensively characterizes the level of sequence overlap between bacteria and human, especially as it relates to bacterial characteristics like pathogenicity, G-C content, and proteome size. In this study, we began by performing a general characterization of the range of bacteria-human similarity at the proteomic level, and identified characteristics of the most- and least-similar bacterial species. We then examined the relationship between proteomic similarity and numerous other variables. While pathogens and nonpathogens had comparable similarity to the human proteome, pathogens causing chronic infections were found to be more similar to the human proteome than those causing acute infections. Although no general correspondence between a bacterium’s proteome size and its similarity to the human proteome was noted, no bacteria with small proteomes had high similarity to the human proteome. Finally, we discovered an interesting relationship between similarity and a bacterium’s G-C content. While the relationship between bacteria and human has been studied from many angles, their proteomic similarity still needs to be examined in more detail. This paper sheds further light on this relationship, particularly with respect to immunity and pathogenicity

    QServer: A Biclustering Server for Prediction and Assessment of Co-Expressed Gene Clusters

    Get PDF
    BACKGROUND: Biclustering is a powerful technique for identification of co-expressed gene groups under any (unspecified) substantial subset of given experimental conditions, which can be used for elucidation of transcriptionally co-regulated genes. RESULTS: We have previously developed a biclustering algorithm, QUBIC, which can solve more general biclustering problems than previous biclustering algorithms. To fully utilize the analysis power the algorithm provides, we have developed a web server, QServer, for prediction, computational validation and analyses of co-expressed gene clusters. Specifically, the QServer has the following capabilities in addition to biclustering by QUBIC: (i) prediction and assessment of conserved cis regulatory motifs in promoter sequences of the predicted co-expressed genes; (ii) functional enrichment analyses of the predicted co-expressed gene clusters using Gene Ontology (GO) terms, and (iii) visualization capabilities in support of interactive biclustering analyses. QServer supports the biclustering and functional analysis for a wide range of organisms, including human, mouse, Arabidopsis, bacteria and archaea, whose underlying genome database will be continuously updated. CONCLUSION: We believe that QServer provides an easy-to-use and highly effective platform useful for hypothesis formulation and testing related to transcription co-regulation
    corecore