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Abstract 

In recent years, in the post genomic era, more and more data is being generated by biological high throughput 

technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real 

challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables 

making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions 

can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical 

diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data 

integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as 

well as the solutions developed using these approaches in the past few years. 
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INTRODUCTION  

Exponential accumulation of biomedical data has the promise to improve the discovery of 

biomedical knowledge. This would permit the development of new generations of personalized 

biomedicine. The goal of a rational drug design is molecular modeling of certain diseases, 

prediction of specific molecules which interact with specific proteins, identification of a target 

genetic profile in population for a specific drug and absorption, distribution, metabolism and 

excretion prediction for a specific drug in silico. All these goals involve the rational use of 

biomedical knowledge, which is stored in distributed and heterogeneous biomedical data sources. 

Much of the currently available data is qualitative, noisy, inaccurate and incomplete. Effective data 

integration tools are a key component to reach this objective in system biology.  

 

There is a lot of literature [1-19] about data integration in the area of biomedical informatics. In 

this review, technologies that can be used to solve data integration problems (data related to 

“omics”) are described.  

 

Integrating data consists, essentially, in making queries to different data sources, which can be 

either related databases or semi-structured data sources connected to a network. Reference [9] 

proposes an orthogonal organization for data integration. This organization refers to, on one hand, 

where the metadata is stored and, on the other hand, to how the data is represented and to the data 

models. There are some works that deal with the problem of omics integration with clinical data 

[20-23].  

 

According to the 2010 update for the Bioinformatics Links Directory [24], there are nearly 

1500 publicly web-accessible links including databases and web servers, that aim to collect, 

organize, visualize, integrate and analyze biological data. For a given task, researchers in the field 

of bioinformatics often need to consult numerous databases and web servers.  

 

However, the integration of heterogeneous datasets from disparate databases associated with 

multiple web servers is daunting for researchers. It requires them to be proficient at 

computationally ‘surfing’ databases and web servers and algorithmically ‘skimming’ the requisite 

data. The challenge of decoding volumes of biological data from disparate sources underscores an 

imperative for greater data integration models.  

OMICS  

Determining the whole sequence of the human genome has been recognized as an important 

task more than two decades ago and was the precursor of genomics. From then on, human genetic 

diversity has been studied identifying different haplotypes present in the population, sequencing 

genomes of representative individuals.  

 

In the post-genomic era, different methods have appeared allowing simultaneous evaluation of 

a great number of “transcriptomes” (messenger RNA) (transcriptomics), RNAi/miRNAs 

(interferomics and microRNAomics), proteins (proteomics), protein interactions (interactomics), 

DNA modifiers and chromatin (epigenomics) and metabolites (metabolomics), trying to contribute 

to describing and understanding the model of life.  

 

The challenge in –omics research is to solve the problem of knowledge fragmentation, by 

integrating different heterogeneous information sources in a coherent entity. The integration of this 

data is essential for the omics community, as omic data is currently scattered in different databases 

and different formats all over the world. These formats have to be correctly integrated using, for 

this purpose, different techniques that will be described subsequently.  

  



ONTOLOGIES 

In the omics context, controlled vocabularies offer a form of data integration by enforcing 

naming conventions for data elements that lately appear in omics databases. In this type of 

technique, the integration of heterogeneous omics data sources is based mainly on ontologies [25-

27].  

 

The term ontology has its origin in classical philosophy. It is the name of the main branch of 

metaphysics and deals with being and existence. In the area of informatics, ontology can be 

defined as a data model that represents a set of concepts in a certain domain and the relationships 

among these concepts. An ontology is a specification of a conceptualization, being a 

conceptualization a simple and abstract model of the world. A specification is, thus, a declarative 

representation of a conceptualization in a specific format. It attempts to interpret knowledge in the 

same way a computer can process, without any ambiguity, and consequently encode concepts and 

relationships in a language that can be interpreted by a machine. The Ontology Web Language 

(OWL) is the standard recommended by the W3C to represent ontologies. OWL has a great 

interoperability with computers for the web, more than the Extensive Markup Language (XML) 

DARPA Agent Markup Language (DAML), Resource Description Language (RDF) or RDF 

Schema. OWL has three sublanguages: OWL Lite, OWL DL y OWL Full.  

 

In the biomedical field, a large number of ontologies have been developed. The Unified 

Medical Language System (UMLS) is a great source of biomedical terminology, with a large 

vocabulary and international classifications. The National Center for Biomedical Ontology 

(NCBO) has built a library of biomedical ontologies known as Open Biomedical Ontologies 

(OBO) [28], which consists of more than 70 biomedical ontologies. The Ontology for Biomedical 

Investigations (OBI) has developed and integrated ontologies to describe life sciences and clinical 

research. The OBI Consortium is a member of the OBO Foundry. OBI is currently using the Basic 

Format Ontology (BFO), which is its high level ontology. The high level ontology captures most 

of the concepts that are basic to human understanding of the world. It also describes very general 

concepts which are identical in different domains. Ontologies have become crucial in the 

biomedical data integration field, especially since the semantic web irrupted into biomedical data 

annotation [16]. Promising applications of this can be found for drug design in reference [29]. 

Application of Ontologies in Data Integration  

In the area of databases and information systems, ontologies allow integrating data from 

multiple heterogeneous data sources, transforming this data into a common representation and 

transmitting the knowledge to the software. Semantic heterogeneity has been identified as one of 

the most important challenges in data integration as it requires understanding relationships 

between the real world and the data, which are often very subjective. Ontologies propose a 

solution to the semantic heterogeneity problem, providing formal definitions of terms used in the 

data sources, as well as providing an implicit meaning to the relationships among the different data 

terminologies explicitly. Many organizations are now exploring the use of Semantic Web 

technologies in the hope of easing the cost of data integration [30]. There are several authors that 

point out that semantic technologies are the next step in data integration [25-27, 31-36].  

  



LINK INTEGRATION APPROACHES  

Most public databases are connected to internet and can be accessed from web pages. Most of 

these databases provide hypertext links to entries of other databases. In most cases, the accession 

number (stable identifiers specific to a database, which are generated when a new instance is 

added to it) is used to interconnect database records from web pages.  

 

Normally, the mapping between two entries from different data sources has to be performed 

explicitly so that there exist links between them. For this reason, databases usually only provide 

links to the most used ones, as there are more than 500 databases of molecular biology and the 

organisms that maintain these databases have to take into account the most relevant databases to 

generate and maintain the links.  

 

Integrating data through direct navigation removes the relational data model applying a model 

in which data sources are defined as sets of pages, which have interconnection points in order to 

establish relationships between them.  

 

One of the major problems of this type of integration is that, frequently, information obtained 

in this phase may generate multiple links to other data sources to perform the following query. 

Web pages with links to other databases are the most common type of data integration, even 

though, usually, they are not as interconnected as desirable.  

Link Integration Examples  

This approach is probably one of the most popular and effective data integration in portals and 

keywords indexing systems. Examples of this approach are SRS, Entrez or Integr8. Goble [13] 

points out that in 2008, 40% of the EMBL-EBI traffic was from SRS queries. SRS [37, 38] 

(Sequence Retrieval System) was originally designed to access to biological sequence databases. 

Another important database for drug design developed by the EBI is ChEMBL [39], which 

contains binding, functional and ADMET information of a large collection of compounds. 

Currently one of the most important tools in biomedical research, providing access to more than 

400 databases, NCBI Entrez [40] is one of the most widely used interfaces for information 

retrieval in biomedical databases. Entrez maps relationships between individual entries in public 

databases. In drug design is also very important the role of cheminformatic databases of the NCBI 

as PubChem [41], which is divided into tree databases, substance database, compound database 

and bioassay database. Integr8 [42] provides access to the full genomes and proteomes of more 

than 190 species, including general information, publications, etc. and performs statistical 

analyses. Finally, DisaseCard [43] is a web collaborative tool that aims to integrate genetic and 

biomedical information related with rare diseases.  

  



DATA WAREHOUSING  

Unlike the previous integration model, the data warehouse approach provides an integration 

model specifically designed for this purpose. Data warehousing consists in storing all the data of a 

certain type from different databases in only one large database, with a general schema, using 

several technologies [44, 45] (see Fig.1). 

 
 

 
Fig. (1).Data warehouse approach.  

The process of extracting the data from different data sources and storing it in the central large 

database is named ETL (Extract, Transform and Load). It can be divided into the extraction of the 

different data sources using a wrapper structure, the transformation to the data model of the 

warehouse and loading the data into the warehouse.  

 

Data warehouse is considered to be a safe way to provide researchers a quick and effective way 

to answer to their queries. This is not trivial since the performance is normally one of the main 

requisites for biomedical researchers. However, this access system makes local control of data 

easy, which enables a better curation and filtering.  

 

Creating a repository where all the data will be stored also presents a series of problems. The 

volume of the data is generally too large to be managed using a data warehouse. Updating data of 

a data warehouse may cause difficulties in its maintenance. Thus, problems may arise. For 

example, queries might be only as relevant as the last update of the data warehouse. Moreover, 

creating a global schema which reflects the reality of all the data types is complicated. Normally, 

the richness of each individual data source is lost when only the common elements are reflected in 

the global schema or, on the contrary, if all the data from all the data sources are maintained then 

the global model becomes unmanageable. Despite all these problems, data warehouse is usually 

the most adequate solution to create sets of highly curated data, focused on a specific research 

area.  

  



Data Warehouse Examples  

One of the main reasons that justify the Data Warehouse approach in the data integration 

problem is the quality of the data [46]. The curation and filtering features of this model make it the 

most suitable choice when data quality is essential.  

 

Examples of data warehouse are the IGD (Integrated Genomic Database) [47], which stores 

human genetic, protein, structural and bibliographical data, the Adaptable Clinical Trial Database 

ACT/DB [48], which stores data related to cancer clinical trials using entity-attribute-value form. 

DataFoundry [49] uses a wrapper-mediator architecture to store in the warehouse data from PDB, 

SWISS-PROT, SCoP and dbEST. GIMS (Genome Information Management System) [50] is 

based on an object database that integrates genome sequence data with functional data on the 

transcriptome and on protein-protein interactions. The BIOMOLQUEST [49, 51] is a search 

engine that uses a data warehouse which integrates PDB, SWISS-PROT, ENZIME and CATH 

data.  

 

Target Informatics Net (TINet) [52] is an approach for data integration that uses a federated 

model but with a judicious use of a local data warehouse. Ensembl [53] was considered by some 

authors as a data warehouse because it stores annotation data of the human genome with 

confirmed gene predictions that have been integrated with external data sources. The University of 

California Santa Cruz Genome Browser Database [53-56] is a warehouse that stores genome 

sequence data integrated with a large collection of related annotations.  

 
 

 
Fig. (2).Biomart example  

Originally developed for the Ensemble Genome Browser as EnsMart data warehouse [57], 

Biomart [58] is a fully generic data integration solution that integrates the most important 

biological databases (see Fig.2). The LIMBO Architecture [59] is a light-wave approach for 

molecular database integration that uses a warehouse. The Atlas warehouse [60, 61] integrates data 

from GenBank, RefSeq, UniPrt, HPRD, BIND, DIP, MINT, IntAct, NCBI Taxonomy, Gene 

Ontology, OMIM, LocusLink, Entrez Gene and HomoloGene.  

 

The Atlas architecture develops the integration in two levels. The first level uses a common 

data model to integrate similar types of data and the second level uses ontologies to cross-

reference disparate types of data. This architecture provides high-throughput, flexible and complex 

queries on biological data. Columba [62] integrates databases of annotation of protein structures 



like PDB, SWISS-PROT or ENZIME, oriented to structural research. BioWarehouse [63], an open 

source toolkit for constructing data warehouses, defines a global relational data model for the most 

important bioinformatics data types. BIOZON [64] integrates heterogeneous data types such as 

proteins, structures, domain families, protein–protein interactions and cellular pathways. It allows 

complex queries over interrelated data sources, extending these queries to accommodate fuzzy 

relationships between proteins and extending the results to sets based on homology instead of 

direct reference.  

 

The Cancer Research Database [65] uses a mediator to store the data in the warehouse, 

developed with the aim of finding small molecules that can restore native functions to the p53 

cancer mutant genes. E-Fungi [66] is a fungi specific warehouse that integrates a large number of 

diverse fungal genomes, like the Comparative Fungal Genomics Platform (CFGP) [67], which 

incorporates fungal genomic data and several analysis tools into a data warehouse. The objective 

of PharmGKB [68] is to study how genetic variation contributes to drug response, integrating in a 

warehouse not only pharmacogenomics data but also drug pathways, annotated pharmacogene 

summaries and relationships among genes, drugs and diseases. In the same line that 

BioWarehouse, BioDWH [69] aims to provide a java-based kit to construct a biomedical data 

warehouse using object-relational mapping. GeNS [70] integrates in a warehouse the most 

representative biological databases (see Fig.3). Finally, bioDBnet [71] is a data warehouse that 

integrates more than 20 different databases, recognizing more than 100 different types of database 

types using cross-reference mapping. DW4TR [72] (Data Warehouse for translational Research), 

is an example of hybrid approach which combines, with a semantic model, a warehouse for the 

integration of clinical data, that includes clinical data, medical image, genomic analyses, etc., and 

a federation for the inclusion of external data. Some examples of cheminformatics that follow this 

approach are Chemspider [73], that integrates molecules of more than 400 chemical data sources. 

This is an excellent example of “crowdsourcing”, because it allows users to contribute in curating 

the database, in the same way as Wikipedia and similarly to the Distributed Annotation Server [74] 

philosophy. The use of data sources that can be curtated, both with the crowdsourcing paradigm 

and for professionals, will improve the integration process. Another solution is Chemistry Connect 

[75], which was developed by AstraZeneca and integrates several public and private databases into 

a warehouse with more than 45 million of chemical structures.  

 
 

 
Fig. (3).Gens example.  

  



FEDERATED APPROACHES  

Unlike data warehouse, in federated databases, data remains in the original data source. The 

original databases are autonomous and may be distributed over the net. The federation maintains a 

common model and the integration is performed mapping data from each source onto this common 

model using a middleware named wrapper. The federation is shown to the final user as if there was 

a simple database. This type of integration model solves the updating issue of the data warehouse 

approach, since the data is always in the original source, so the query always obtains updated data. 

Biokleisli [76] was a pioneer in the application of this integration model to biological data, in 

order to answer to questions such as “sample for each gene located in a specific cytogenetic band 

at a specific human chromosome, as non-human homologues as possible”.  

 

The problem of filtering data in federated databases is a complex task, since no data is stored 

locally. Thus, this has to be done on the fly. Performance is usually also a problem in this model, 

since it depends on the performance of each data source, to which the integration time must be 

added. Federated databases use a common model, so it presents the same problems as data 

warehouse in relation to the representation of different data types.  

 

Database federation is adequate when the researcher requires updated information, or when the 

researcher must integrate a large amount of data both from private and public databases.  

Mediator Schema Approaches  

One of the problems of federated databases arises when dealing with several different schemas 

from different databases. A mediator schema would solve this problem. Federated databases can 

have relational or semi-structured schemas. One of the first proposals of the mediator schema were 

The Stanford-IBM Manager of Multiple Information Sources (TSIMMIS) [77] and the SIMS [78].  

 

In general, a mediator schema is a graphical representation of all of the entities and 

relationships of a specific domain, with the entities as nodes and the relationships as edges. The 

mediator schemas act as a middleware in a federation of databases, in which data sources are 

mapped onto the schema of the mediator, defining the entities contained. Queries are performed on 

the mediator schema, instead of on the common schema of all the databases (see Fig.4). This 

allows the user to perform more general queries that cannot be answered using a relational 

database. In addition, it offers the advantage that the mediator schema can be focused on a specific 

type of user or on a specific set of queries. Given a collection of data sources to integrate, a user 

can develop a mediator schema focused on his/her data of interest. This would result in a very rich 

model of a specific subset of the whole data in which he/she is interested without having to 

develop a global model which has to take into account all the possible queries or data of interest of 

all the potential users.  

  



 
 

 
Fig. (4). Federated model with wrapper/mediator.  

Mediator schemas can be modular, that is, they can be created and exchanged when necessary. 

Mediator schemas may be a good selection when researchers need to answer very complex queries 

from different knowledge domains.  

 

Rather than data integration in the traditional sense where overlapping data elements are 

transformed into one structure, genomic, transcriptomic and proteomic data need to be linked 

together using a scaffold that represents their relatedness.  

 

Semantic technologies offer exactly this scaffold. Since genomics provides data on genes, 

transcriptomic experiments provide data on the transcription of genes (in particular tissues or 

under specific conditions), and proteomics provides identified peptides, this is not a simple case of 

transforming different data types and data formats. In this situation there are no common data 

elements between the data sets.  

 

As we deal here with data relationships which do not involve equality but different degrees of 

similarity or physical overlap, it is clear that traditional integration methods cannot match these 

data in a simple manner. However, since these data are mutually related, integration can be 

achieved by using specific meta-data. Delivering computer understandable meta-data is the basis 

on which semantic technologies were developed.  

Federated Workflows Approaches  

Workflow systems have been very used in the last few years to generate complex processes of 

data processing using web services. These systems have a great capacity of module reuse, allowing 

a person with little experience in development to visually create complex processing workflows 

and to automate tasks that previously took weeks. Although there exists certain controversy in 

relation to naming the workflow systems “federated integration systems”, in this case those that 

present the following characteristics were considered: 1) a set of services associated to a data 

source that retrieve its data and transform it according to a common model. These services act like 

wrappers; 2) a mediator service that divides the queries created by the client to send them to the 

previously mentioned wrapper services. Subsequently, this service will integrate the data and 

present it to the client.  

  



Multi-Agent Systems Approaches  

Multi-agent systems (MAS) have received considerable attention during recent years. This 

field has emerged due to the benefits offered by applications or systems that can decide by 

themselves what they must do in order to satisfy their working principles. An agent is a 

computational system located in an environment and capable of performing autonomous actions to 

achieve its design objectives [79]. Woolridge [80] adds to this the following requirements that an 

agent must meet to be called intelligent: reactivity (i.e., if an agent is capable of perceiving its 

environment and answering to changes in it), proactivity (the capacity to exhibit behaviors in order 

to meet objectives having initiative) and social ability (the capacity to interact with other agents). 

According to this definition, a multi-agent system is a group of agents that collaborate and interact 

with each other. MAS have certain advantages over isolated agents: reliability, robustness, 

modularity, scalability, adaptability, concurrence, parallelism and dynamism.  

 

Information integration processes can be considered as complex distributed systems. As 

postulated in reference [81], multi-agent systems are a great solution to this type of complex 

distributed systems [82, 83]. In most cases the agent acts as a mediator, normally named mediator 

agent, representing data following a common model. In addition, a certain number of agents can 

act as a wrapper. Some agent-based platforms have been developed to carry out information 

integration tasks, like KRAFT [84].  

Federated Examples  

In this section we present an overview of all the federated database approaches, including 

wrapper-only models, wrapper-mediator, agents and semantic integration-based models. 

BioKleisli [76] [85] was the pioneer in applying the federated approach to biomedical data. The 

idea of using agents for biomedical data integration problems was proposed by Imai et al.[86], 

based on the TSMIIS [83] scheme and on the proposal of Bayardo et al.[82] who use agents to 

solve integration issues. TAMBIS [87, 88] (Transparent Access to Multiple Bioinformatics 

Information Sources) provides transparent access to several heterogeneous sources. The user 

queries the biological concept model and this model is mapped onto the source model of each 

specific data source. DiscoveryLink [89] is a middleware offered by IBM that provides users with 

a virtual database that allows the user to retrieve data from other databases and offers a query 

optimizer to retrieve the data. Mork et al.[55] proposes a mediated schema approach to integrate 

genetic databases. ISYS [90] is a component-based approach that uses a mediated schema and a 

distributed data model. Karasawas [91] proposes a multi-agent system for data integration, using a 

wrapper-mediator architecture over a multi-agent system. Information Integration [92] is an 

extension of the database management system DB2 from IBM, to integrate heterogeneous 

databases. Semeda (Semantic Metadata Database) [93] is a semantic database integration system 

that uses a wrapper/mediator schema. BioMediator [94] is a data integration system based on 

federated databases which uses a mediator schema to answer queries from different data sources. 

Robinson et al.[95] presents a mediation-based integration system based on the BSML format. The 

QIS (Query Integrator System) [96, 97] is a database mediator system, that includes 

OntoMediator, an automatic mediator that uses ontological metadata mappings (see Fig.5) 

OntoFusion [98] is a mediator architecture that uses Multi Agent Systems to perform the 

integration. AlzPharm [99] uses RDF (Resource Description Framework) and RDFS (Resource 

Description Framework Schema) to create a standard data model in order to integrate neuroscience 

data. SWEDI (Semantic Web Enabled Data Integration) [100] uses ontologies and controlled 

vocabularies to construct RDF models onto which the data are mapped. Then can run semantic 

queries over the model. LinkHub uses semantic relations to connect data using a federated 

approach. It has been tested using Uniprot and East Structural Genomics Consortium. DebugIT 

[101, 102] is a 7th European Framework Project that aims to improve the detection and 

elimination of bacteria using IT technologies. One of the scopes of the project was to integrate 

heterogeneous clinical and biological sources, using a semantic infrastructure. Anwar et al.[103] 

also applied semantic technologies using RDF to integrate data related with Francisella tularensis 

novicida. The Prostate Cancer Information System (PCIS) [104] uses ontologies to develop the 

integration applied to prostate cancer research. The Khaos Ontology-based mediator Framework 



[105] is a federated integration architecture that uses a Semantic Directory to register and manage 

ontologies. This Semantic Directory is used to build a common model represented by ontologies. 

BioXM [106] uses an object-oriented semantic integration model to build a knowledge 

management system. This uses semantic networks to link “elements”, “relations”, “annotations” 

and “context” concepts with the aim of build the model or can use previously created ontologies. 

These semantic networks of relationships allow detecting connections, extracting patterns and 

answering complex questions. To optimize performance, data can be managed alternatively within 

a relational database or integrated from external data sources, combining the advantages of the 

data warehouse and the federated approach. The federation of external data sources uses the 

Biomax software BioRS [107].  

 
 

 
Fig. (5). Ontology Server and QIS architecture.  

DISCUSSION  

Many of the approaches discussed above are very close to solving the data integration problem 

in a generic context, or even solve correctly some of the phases part of the integration process. 

However, none of the analyzed solutions solve completely the biomedical data integration problem 

in a generic context. Regarding the choice of the most adequate architecture, the link integration 

approach, although it is one of the most used options to present biomedical databases, is not really 

considered a type of integration architecture [108]. This is because it does not provide enough 

functionality regarding the queries and it does not adapt well to great amounts of data and the 

changing nature both of the data and the interfaces of the data sources. Furthermore, it is very 

vulnerable to name conflicts and ambiguities. The federated approach presents several advantages 

over warehouse, such as not requiring a high investment on hardware. However, the federated 

approach always provides the last version of the data, since the data is always retrieved from the 

original data source. In contrast, warehouses must be updated frequently in order to provide the 

most recent data. The main advantages of the warehouses lie in their centralization, allowing an 

easier scalability, better performance in queries, great availability and greater control over the data. 

On the contrary, federated approaches present a more complicated solution, more latency in 

retrieving the data and loss of control over these as they belong to the original data source. In 

addition, the availability of the whole system depends on the availability of all the data sources. 

Regarding the data models, the federated approach shows a clear advantage over the warehouse 

approach: since the data models of the latter were created ad-hoc, this generally implies that part of 

this data and its relationships, which are present in the original data sources, have been lost. In the 

federated approach, however, access mechanisms are usually more sophisticated, allowing directly 

querying the data bases (as long as the interface allows it), thus making possible to access not only 

the data but also the existing relationships.   



CONCLUSIONS AND FUTURE TRENDS  

In this review we analyze most of the existing approaches to integrate biomedical data. These 

solutions can be used in a lot of contexts, such as drug discovery, clinical issues, system biology, 

etc. As far as we are aware of, no current integration solution addresses completely the 

overlapping nature of integrated data in a generic context. The majority of the existing solutions 

achieve horizontal integration; data sources are treated as complementary to one another, and 

issues associated with data aggregation are ignored.  

 

After analyzing the pros and cons of the different types of architecture, we could assert that the 

federated approach, in general, provides a better solution to the biomedical data integration 

problem, as long as the integration problem is not a monolithic application, the requisites are 

known in advance, access to the whole database is possible and the data must not be completely up 

to date. On the contrary, this approach is not recommended when a total control over the data and 

great performance are required.  

 

As said in reference [64], ”Data integrity, consistency, redundancy, connectivity, updatability, 

expandability and complex and ‘fuzzy’ queries are the problems associated with data integration, 

which arise from the nature of heterogeneous data and the lack of unified ontology”. Therefore, 

there is a need for integration systems that are able to recognize different ontologies and semantics 

of the data. Yet integration systems should also provide an environment that allows users to 

integrate their own data and customize the system. After analyzing this solution, we noted that 

there is a clear trend towards the use of semantic technologies. The semantic annotation, mapping 

and querying process is increasingly being used and offers a very suitable approach in data 

integration. Ontologies and other semantic technologies are a great tool; however, their quality 

should be improved, as well as their correct use in the data source annotation process. In Goble’s 

work [13], in order to defend the idea of light integration using mashups, it is argued that, for 

better or worse, in bioinformatics, application development is based on the “just in time, just 

enough” mantra. Moreover, it is also said that biology is what really matters, not engineering, 

because this last one presents too complex solutions that take too long to be developed and are not 

adequate to the user’s needs. After analyzing the existing approaches on biomedical data 

integration, it can be concluded that instead of basing the development of integration systems on a 

specific architecture or model, developing a methodology for biomedical data integration, which 

allows providing dimensioned, correct and adapted solutions to the problem’s needs, would be 

more adequate.  
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