1,705 research outputs found

    Assessment of Access Methods for Mobile Maps for Individuals Who are Blind or Visually Impaired

    Get PDF
    When people go to a mall, museums, or other such locations they tend to rely on maps to find their way around. However, for people who are blind or visually impaired (BVI) maps are not easily accessible and they depend on other means, such as a guide, to get around. Research has only just begun to investigate providing maps for people who are BVI on touch screen devices. Many different types of feedback have been used: audio (sound), tactile (touch), audio-tactile, and multitouch. Some research has been conducted on the benefit of using multiple fingers (multitouch) and has found conflicting results. Yet, no known research has been conducted on the comparison of using audio feedback to that of tactile feedback. In this study, we look to try and answer two questions. 1.) Is audio equal to or better than tactile? As well as: 2.) Does multiple fingers help? Participants were asked to use seven different methods (4 audio, 3 tactile) to explore an overview map and an individual map and answer questions about them. Results showed that overall, audio cues are similar or better than tactile cues which is beneficial since it requires less battery to generate audio cues than tactile cues. It was also shown that the use of multiple fingers was more beneficial in tasks that are spatially demanding. While those who have tactile experience benefited when using two fingers with each finger represented by a different instrument played to separated ears

    Interactivity Improves Usability of Geographic Maps for Visually Impaired People

    Get PDF
    International audienceTactile relief maps are used by visually impaired people to acquire mental representation of space, but they retain important limitations (limited amount of information, braille text, etc.). Interactive maps may overcome these limitations. However, usability of these two types of maps had never been compared. It is then unknown whether interactive maps are equivalent or even better solutions than traditional raised-line maps. This study presents a comparison of usability of a classical raised-line map vs. an interactive map composed by a multi-touch screen, a raised-line overlay and audio output. Both maps were tested by 24 blind participants. We measured usability as efficiency, effectiveness and satisfaction. Our results show that replacing braille with simple audio-tactile interaction significantly improved efficiency and user satisfaction. Effectiveness was not related to the map type but depended on users' characteristics as well as the category of assessed spatial knowledge. Long-term evaluation of acquired spatial information revealed that maps, whether interactive or not, are useful to build robust survey-type mental representations in blind users. Altogether, these results are encouraging as they show that interactive maps are a good solution for improving map exploration and cognitive mapping in visually impaired people

    Cognitive map formation through tactile map navigation in visually impaired and sighted persons

    Get PDF
    The human brain can form cognitive maps of a spatial environment, which can support wayfinding. In this study, we investigated cognitive map formation of an environment presented in the tactile modality, in visually impaired and sighted persons. In addition, we assessed the acquisition of route and survey knowledge. Ten persons with a visual impairment (PVIs) and ten sighted control participants learned a tactile map of a city-like environment. The map included five marked locations associated with different items. Participants subsequently estimated distances between item pairs, performed a direction pointing task, reproduced routes between items and recalled item locations. In addition, we conducted questionnaires to assess general navigational abilities and the use of route or survey strategies. Overall, participants in both groups performed well on the spatial tasks. Our results did not show differences in performance between PVIs and sighted persons, indicating that both groups formed an equally accurate cognitive map. Furthermore, we found that the groups generally used similar navigational strategies, which correlated with performance on some of the tasks, and acquired similar and accurate route and survey knowledge. We therefore suggest that PVIs are able to employ a route as well as survey strategy if they have the opportunity to access route-like as well as map-like information such as on a tactile map

    Spatial representation and visual impairement - Developmental trends and new technological tools for assessment and rehabilitation

    Get PDF
    It is well known that perception is mediated by the five sensory modalities (sight, hearing, touch, smell and taste), which allows us to explore the world and build a coherent spatio-temporal representation of the surrounding environment. Typically, our brain collects and integrates coherent information from all the senses to build a reliable spatial representation of the world. In this sense, perception emerges from the individual activity of distinct sensory modalities, operating as separate modules, but rather from multisensory integration processes. The interaction occurs whenever inputs from the senses are coherent in time and space (Eimer, 2004). Therefore, spatial perception emerges from the contribution of unisensory and multisensory information, with a predominant role of visual information for space processing during the first years of life. Despite a growing body of research indicates that visual experience is essential to develop spatial abilities, to date very little is known about the mechanisms underpinning spatial development when the visual input is impoverished (low vision) or missing (blindness). The thesis's main aim is to increase knowledge about the impact of visual deprivation on spatial development and consolidation and to evaluate the effects of novel technological systems to quantitatively improve perceptual and cognitive spatial abilities in case of visual impairments. Chapter 1 summarizes the main research findings related to the role of vision and multisensory experience on spatial development. Overall, such findings indicate that visual experience facilitates the acquisition of allocentric spatial capabilities, namely perceiving space according to a perspective different from our body. Therefore, it might be stated that the sense of sight allows a more comprehensive representation of spatial information since it is based on environmental landmarks that are independent of body perspective. Chapter 2 presents original studies carried out by me as a Ph.D. student to investigate the developmental mechanisms underpinning spatial development and compare the spatial performance of individuals with affected and typical visual experience, respectively visually impaired and sighted. Overall, these studies suggest that vision facilitates the spatial representation of the environment by conveying the most reliable spatial reference, i.e., allocentric coordinates. However, when visual feedback is permanently or temporarily absent, as in the case of congenital blindness or blindfolded individuals, respectively, compensatory mechanisms might support the refinement of haptic and auditory spatial coding abilities. The studies presented in this chapter will validate novel experimental paradigms to assess the role of haptic and auditory experience on spatial representation based on external (i.e., allocentric) frames of reference. Chapter 3 describes the validation process of new technological systems based on unisensory and multisensory stimulation, designed to rehabilitate spatial capabilities in case of visual impairment. Overall, the technological validation of new devices will provide the opportunity to develop an interactive platform to rehabilitate spatial impairments following visual deprivation. Finally, Chapter 4 summarizes the findings reported in the previous Chapters, focusing the attention on the consequences of visual impairment on the developmental of unisensory and multisensory spatial experience in visually impaired children and adults compared to sighted peers. It also wants to highlight the potential role of novel experimental tools to validate the use to assess spatial competencies in response to unisensory and multisensory events and train residual sensory modalities under a multisensory rehabilitation

    Graph accessibility and comprehension for the blind: A challenge of its own kind

    Get PDF
    The purpose of this dissertation is to explore graph accessibility and comprehension for students with visual impairments (SVI) in high school mathematics courses. The dissertation is comprised of three articles. In Paper One, I propose a conceptual framework to guide understanding around the approaches SVI use to access and comprehend graphical information. To do this, I draw from literature bases centered on the cognitive strategies individuals with visual impairments employ to understand spatial representations, tools and instruction to assist SVI in mathematics courses, and training of professionals serving SVI regarding their unique learning needs. In Paper Two, I report the results of a multistate survey on the perceptions of teachers of students with visual impairments (TVI) regarding the needs of SVI in high school mathematics courses to access and understand graphical information. Teacher perceptions suggested that (a) instructing SVI entails more than solely providing SVI with tactile graphics or verbal descriptions, (b) SVI access graphs in tactile form over sound or verbal descriptions, and (c) visual experience may affect the level of accuracy with which SVI perform graphing exercises. In Paper Three, I report the results of interviews with TVI and mathematics teachers regarding their perceptions of, and interviews with SVI regarding their experiences with, access to and comprehension of graphical information in high school mathematics courses. I also report the results of a classroom observation with a single SVI and the teachers that serve her needs to understand teacher support for SVI to access and comprehend graphical information. The results of this study suggest that (a) professionals who serve SVI with graphical information encompass more than mathematics teachers and TVI, (b) onset of visual experience carries weight when considering the types of assistive technology and instruction SVI utilize to access and comprehend graphical information, and (c) each SVI has a unique set of approaches and challenges with graphs, even those with similar onsets of visual impairment. While these studies provide insight into graph access and comprehension for SVI in high school mathematics courses, they also point to areas where future research is needed

    THE DEVELOPMENT OF MENTAL MODEL OF PEOPLE WITH VISUAL IMPAIRMENT

    Get PDF
    The Development of mental model of people with visual impairment in spatially-orientational and cultural-historical context, is longer Title of the Post. The ability to create mental models is, for people with visual impairment, one of the basic preconditions for the use of available information from the environment and in all areas of everyday life. Tactile graphics can provide one of the means for the development of imagination; they are particularly suitable for the creation of a complex picture of a given situation and its processing into supporting information. Their facilitating function in the development, refinement and consolidation of the imagination is indisputable and proven by empirical studies. The purpose of this paper is to present the application possibilities of three-dimensional displays of haptic information for the purposes of spatial orientation, as well as access to cultural and historical objects with emphasis on the formation of mutual relations and connections within the knowledge base of each individual with visual impairment

    Touch- and Walkable Virtual Reality to Support Blind and Visually Impaired Peoples‘ Building Exploration in the Context of Orientation and Mobility

    Get PDF
    Der Zugang zu digitalen Inhalten und Informationen wird immer wichtiger fĂŒr eine erfolgreiche Teilnahme an der heutigen, zunehmend digitalisierten Zivilgesellschaft. Solche Informationen werden meist visuell prĂ€sentiert, was den Zugang fĂŒr blinde und sehbehinderte Menschen einschrĂ€nkt. Die grundlegendste Barriere ist oft die elementare Orientierung und MobilitĂ€t (und folglich die soziale MobilitĂ€t), einschließlich der Erlangung von Kenntnissen ĂŒber unbekannte GebĂ€ude vor deren Besuch. Um solche Barrieren zu ĂŒberbrĂŒcken, sollten technische Hilfsmittel entwickelt und eingesetzt werden. Es ist ein Kompromiss zwischen technologisch niedrigschwellig zugĂ€nglichen und verbreitbaren Hilfsmitteln und interaktiv-adaptiven, aber komplexen Systemen erforderlich. Die Anpassung der Technologie der virtuellen RealitĂ€t (VR) umfasst ein breites Spektrum an Entwicklungs- und Entscheidungsoptionen. Die Hauptvorteile der VR-Technologie sind die erhöhte InteraktivitĂ€t, die Aktualisierbarkeit und die Möglichkeit, virtuelle RĂ€ume und Modelle als Abbilder von realen RĂ€umen zu erkunden, ohne dass reale Gefahren und die begrenzte VerfĂŒgbarkeit von sehenden Helfern auftreten. Virtuelle Objekte und Umgebungen haben jedoch keine physische Beschaffenheit. Ziel dieser Arbeit ist es daher zu erforschen, welche VR-Interaktionsformen sinnvoll sind (d.h. ein angemessenes Verbreitungspotenzial bieten), um virtuelle ReprĂ€sentationen realer GebĂ€ude im Kontext von Orientierung und MobilitĂ€t berĂŒhrbar oder begehbar zu machen. Obwohl es bereits inhaltlich und technisch disjunkte Entwicklungen und Evaluationen zur VR-Technologie gibt, fehlt es an empirischer Evidenz. ZusĂ€tzlich bietet diese Arbeit einen Überblick ĂŒber die verschiedenen Interaktionen. Nach einer Betrachtung der menschlichen Physiologie, Hilfsmittel (z.B. taktile Karten) und technologischen Eigenschaften wird der aktuelle Stand der Technik von VR vorgestellt und die Anwendung fĂŒr blinde und sehbehinderte Nutzer und der Weg dorthin durch die EinfĂŒhrung einer neuartigen Taxonomie diskutiert. Neben der Interaktion selbst werden Merkmale des Nutzers und des GerĂ€ts, der Anwendungskontext oder die nutzerzentrierte Entwicklung bzw. Evaluation als Klassifikatoren herangezogen. BegrĂŒndet und motiviert werden die folgenden Kapitel durch explorative AnsĂ€tze, d.h. im Bereich 'small scale' (mit sogenannten Datenhandschuhen) und im Bereich 'large scale' (mit einer avatargesteuerten VR-Fortbewegung). Die folgenden Kapitel fĂŒhren empirische Studien mit blinden und sehbehinderten Nutzern durch und geben einen formativen Einblick, wie virtuelle Objekte in Reichweite der HĂ€nde mit haptischem Feedback erfasst werden können und wie verschiedene Arten der VR-Fortbewegung zur Erkundung virtueller Umgebungen eingesetzt werden können. Daraus werden gerĂ€teunabhĂ€ngige technologische Möglichkeiten und auch Herausforderungen fĂŒr weitere Verbesserungen abgeleitet. Auf der Grundlage dieser Erkenntnisse kann sich die weitere Forschung auf Aspekte wie die spezifische Gestaltung interaktiver Elemente, zeitlich und rĂ€umlich kollaborative Anwendungsszenarien und die Evaluation eines gesamten Anwendungsworkflows (d.h. Scannen der realen Umgebung und virtuelle Erkundung zu Trainingszwecken sowie die Gestaltung der gesamten Anwendung in einer langfristig barrierefreien Weise) konzentrieren.Access to digital content and information is becoming increasingly important for successful participation in today's increasingly digitized civil society. Such information is mostly presented visually, which restricts access for blind and visually impaired people. The most fundamental barrier is often basic orientation and mobility (and consequently, social mobility), including gaining knowledge about unknown buildings before visiting them. To bridge such barriers, technological aids should be developed and deployed. A trade-off is needed between technologically low-threshold accessible and disseminable aids and interactive-adaptive but complex systems. The adaptation of virtual reality (VR) technology spans a wide range of development and decision options. The main benefits of VR technology are increased interactivity, updatability, and the possibility to explore virtual spaces as proxies of real ones without real-world hazards and the limited availability of sighted assistants. However, virtual objects and environments have no physicality. Therefore, this thesis aims to research which VR interaction forms are reasonable (i.e., offering a reasonable dissemination potential) to make virtual representations of real buildings touchable or walkable in the context of orientation and mobility. Although there are already content and technology disjunctive developments and evaluations on VR technology, there is a lack of empirical evidence. Additionally, this thesis provides a survey between different interactions. Having considered the human physiology, assistive media (e.g., tactile maps), and technological characteristics, the current state of the art of VR is introduced, and the application for blind and visually impaired users and the way to get there is discussed by introducing a novel taxonomy. In addition to the interaction itself, characteristics of the user and the device, the application context, or the user-centered development respectively evaluation are used as classifiers. Thus, the following chapters are justified and motivated by explorative approaches, i.e., in the group of 'small scale' (using so-called data gloves) and in the scale of 'large scale' (using an avatar-controlled VR locomotion) approaches. The following chapters conduct empirical studies with blind and visually impaired users and give formative insight into how virtual objects within hands' reach can be grasped using haptic feedback and how different kinds of VR locomotion implementation can be applied to explore virtual environments. Thus, device-independent technological possibilities and also challenges for further improvements are derived. On the basis of this knowledge, subsequent research can be focused on aspects such as the specific design of interactive elements, temporally and spatially collaborative application scenarios, and the evaluation of an entire application workflow (i.e., scanning the real environment and exploring it virtually for training purposes, as well as designing the entire application in a long-term accessible manner)

    The Role of Vision on Spatial Competence

    Get PDF
    Several pieces of evidence indicate that visual experience during development is fundamental to acquire long-term spatial capabilities. For instance, reaching abilities tend to emerge at 5 months of age in sighted infants, while only later at 10 months of age in blind infants. Moreover, other spatial skills such as auditory localization and haptic orientation discrimination tend to be delayed or impaired in visually impaired children, with a huge impact on the development of sighted-like perceptual and cognitive asset. Here, we report an overview of studies showing that the lack of vision can interfere with the development of coherent multisensory spatial representations and highlight the contribution of current research in designing new tools to support the acquisition of spatial capabilities during childhood

    From sensory perception to spatial cognition

    Get PDF
    To interact with the environmet, it is crucial to have a clear space representation. Several findings have shown that the space around our body is split in several portions, which are differentially coded by the brain. Evidences of such subdivision have been reported by studies on people affected by neglect, on space near (peripersonal) and far (extrapersonal) to the body position and considering space around specific different portion of the body. Moreover, recent studies showed that sensory modalities are at the base of important cognitive skills. However, it is still unclear if each sensory modality has a different role in the development of cognitive skills in the several portions of space around the body. Recent works showed that the visual modality is crucial for the development of spatial representation. This idea is supported by studies on blind individuals showing that visual information is fundamental for the development of auditory spatial representation. For example, blind individuals are not able to perform the spatial bisection task, a task that requires to build an auditory spatial metric, a skill that sighted children acquire around 6 years of age. Based these prior researches, we hypothesize that if different sensory modalities have a role on the devlopment of different cognitive skills, then we should be able to find a clear correlation between availability of the sensory modality and the cognitive skill associated. In particular we hypothesize that the visual information is crucial for the development of auditory space represnetation; if this is true, we should find different spatial skill between front and back spaces. In this thesis, I provide evidences that spaces around our body are differently influenced by sensory modalities. Our results suggest that visual input have a pivotal role in the development of auditory spatial representation and that this applies only to the frontal space. Indeed sighted people are less accurated in spatial task only in space where vision is not present (i.e. the back), while blind people show no differences between front and back spaces. On the other hand, people tend to report sounds in the back space, suggesting that the role of hearing in allertness could be more important in the back than frontal spaces. Finally, we show that natural training, stressing the integration of audio motor stimuli, can restore spatial cognition, opening new possibility for rehabilitation programs. Spatial cognition is a well studied topic. However, we think our findings fill the gap regarding how the different availibility of sensory information, across spaces, causes the development of different cognitive skills in these spaces. This work is the starting point to understand the strategies that the brain adopts to maximize its resources by processing, in the more efficient way, as much information as possible
    • 

    corecore