122 research outputs found

    Workforce Capacity Planning Using Zero-One-Integer Programming

    Get PDF
    Non

    A framework for cots software evaluation and selection for COTS mismatches handling and non-functional requirements

    Get PDF
    The decision to purchase Commercial Off-The-Shelf (COTS) software needs systematic guidelines so that the appropriate COTS software can be selected in order to provide a viable and effective solution to the organizations. However, the existing COTS software evaluation and selection frameworks focus more on functional aspects and do not give adequate attention to accommodate the mismatch between user requirements and COTS software specification, and also integration with non functional requirements of COTS software. Studies have identified that these two criteria are important in COTS software evaluation and selection. Therefore, this study aims to develop a new framework of COTS software evaluation and selection that focuses on handling COTS software mismatches and integrating the nonfunctional requirements. The study is conducted using mixed-mode methodology which involves survey and interview. The study is conducted in four main phases: a survey and interview of 63 organizations to identify COTS software evaluation criteria, development of COTS software evaluation and selection framework using Evaluation Theory, development of a new decision making technique by integrating Analytical Hierarchy Process and Gap Analysis to handle COTS software mismatches, and validation of the practicality and reliability of the proposed COTS software Evaluation and Selection Framework (COTS-ESF) using experts’ review, case studies and yardstick validation. This study has developed the COTS-ESF which consists of five categories of evaluation criteria: Quality, Domain, Architecture, Operational Environment and Vendor Reputation. It also provides a decision making technique and a complete process for performing the evaluation and selection of COTS software. The result of this study shows that the evaluated aspects of the framework are feasible and demonstrate their potential and practicality to be applied in the real environment. The contribution of this study straddles both the research and practical perspectives of software evaluation by improving decision making and providing a systematic guidelines for handling issue in purchasing viable COTS software

    Development And Commercialization of Advanced Wood-Based Composites In Maine

    Get PDF
    This award is to the University of Maine to support the activity described below for 36 months. The proposal was submitted in response to the Partnerships for Innovation Program Solicitation (NSF 0179).PartnersThe partners for the award include the University of Maine (Lead Institution), Maine Technology Institute, Eastern Maine Development Corporation, State Department of Economic and Community Development, The Manufacturing Extension Partnership, Maine Department of Transportation, Louisiana Pacific, Dow Chemical, State Farm Insurance, Henderson and Bodwell, The Kenway Corporation, Market Development Alliance of the FRP Composites Industry, APA the Engineered Wood Association, National Institutes of Standards and Technology, USDA Forest Products Laboratory.Proposed ActivitiesThe award will support the following activities: (1) strengthen partnerships among the University of Maine, private industry, state organizations, forest product industry organizations, and national laboratories to foster commercialization of composite reinforced wood, (2) develop innovative strategies for commercializing composite reinforced wood hybrids that can become models for other university research centers, establish commercialization projects (reinforced wood composite beams using low-grade hardwoods, disaster-resistant housing using reinforced sheathing panels, novel long-strand composite lumber beams and columns).Proposed InnovationHousing industry in the US accounts for 28% of the total construction industry, and most of the wood used is high-grade conventional wood lumber. The supply of high-grade lumber is declining in the US. Reinforced composite wood will allow the use of low-grade lumber from other species of trees in more abundant supply, and provide skilled jobs in Maine. These products will lower the cost of wood products for housing in the US. Increasing the resistance of housing to disasters such as hurricanes and earthquakes will make a major impact on the economy of the nation.Potential Economic ImpactNinety percent of Maine is forested, and 25% of the state\u27s economy is based on forest resources. The forest economy has traditionally been based on export of raw lumber with unskilled labor and few value added timber products. Other manufacturing jobs have moved from the state recently, leaving unskilled jobs and service industries (e.g., tourism) as the major source of income. Successful commercialization of composite reinforced wood will play a large role in developing a growing state economy. Lower costs for wood products for housing construction will have a major economic impact in the US. Increasing the resistance of housing to disasters will lower the cost of repair, maintenance, and insurance for disasters.Potential Societal ImpactMaine ranks 29th in the nation in terms of advanced degree scientists/engineers and 50th in science/engineering graduate students. The job market for young scientists and engineers is bleak in Maine. The educational program will include entrepreneurial education as well as science and engineering to provide a skilled workforce for the economy surrounding the new wood-based technology/economy. The housing industry amounts to $800 billion/year in the US alone

    A Practical Approach to Protect IoT Devices against Attacks and Compile Security Incident Datasets

    Get PDF
    open access articleThe Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems, ovens, blinds, etc.) using computers and mobile devices. This idea fascinated people and originated a boom of IoT devices together with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing functionalities but neglected some critical issues pertaining to device security. This oversight gave rise to the current situation where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices have been produced and deployed. This article presents our novel research protecting IOT devices using Berkeley Packet Filters (BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions that can be executed by GNU/Linux systems with a low impact on network packet throughput

    An adaptive trust based service quality monitoring mechanism for cloud computing

    Get PDF
    Cloud computing is the newest paradigm in distributed computing that delivers computing resources over the Internet as services. Due to the attractiveness of cloud computing, the market is currently flooded with many service providers. This has necessitated the customers to identify the right one meeting their requirements in terms of service quality. The existing monitoring of service quality has been limited only to quantification in cloud computing. On the other hand, the continuous improvement and distribution of service quality scores have been implemented in other distributed computing paradigms but not specifically for cloud computing. This research investigates the methods and proposes mechanisms for quantifying and ranking the service quality of service providers. The solution proposed in this thesis consists of three mechanisms, namely service quality modeling mechanism, adaptive trust computing mechanism and trust distribution mechanism for cloud computing. The Design Research Methodology (DRM) has been modified by adding phases, means and methods, and probable outcomes. This modified DRM is used throughout this study. The mechanisms were developed and tested gradually until the expected outcome has been achieved. A comprehensive set of experiments were carried out in a simulated environment to validate their effectiveness. The evaluation has been carried out by comparing their performance against the combined trust model and QoS trust model for cloud computing along with the adapted fuzzy theory based trust computing mechanism and super-agent based trust distribution mechanism, which were developed for other distributed systems. The results show that the mechanisms are faster and more stable than the existing solutions in terms of reaching the final trust scores on all three parameters tested. The results presented in this thesis are significant in terms of making cloud computing acceptable to users in verifying the performance of the service providers before making the selection

    Routing Protocols in Wireless Sensor Networks

    Get PDF
    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks

    Prediction based task scheduling in distributed computing

    Full text link

    Use of negative information in positioning and tracking algorithms

    Get PDF
    To avoid additional hardware deployment, indoor localization systems have to be designed in such a way that they rely on existing infrastructure only. Besides the processing of measurements between nodes, localization procedure can include the information of all available environment information. In order to enhance the performance of Wi-Fi based localization systems, the innovative solution presented in this paper considers also the negative information. An indoor tracking method inspired by Kalman filtering is also proposed

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Cryptography Using Neural Network

    Get PDF
    The project is aimed to implement artificial neural network method in cryptography. Cryptography is a technique to encrypt simple message into cipher text for secure transmission over any channel. The training of the network has been done using the input output set generated by the cryptosystem, which include shift and RSA ciphers. The training patterns are observed and analyzed by varying the parameters of Levenberg Marquand method and the number of neurons in the hidden layer. Using the converged network, the model is first trained, and one may obtain the desired result with required accuracy. In this respect, simulations are shown to validate the proposed model. As such, the investigation gives an idea to use the trained neural network for encryption and decryption in cryptography
    corecore