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Abstract 15 

The Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances 16 
(such as heating systems, ovens, blinds, etc.) using computers and mobile devices. This idea 17 
fascinated people and originated a boom of IoT devices together with an increasing demand that 18 
was difficult to support. Many manufacturers quickly created hundreds of devices implementing 19 
functionalities, but neglected some critical issues pertaining to device security. This oversight gave 20 
rise to the current situation where thousands of devices remain unpatched having many security 21 
issues that manufacturers cannot address after the devices have been produced and deployed. This 22 
article presents our novel research protecting IOT devices using Berkeley Packet Filters (BPFs) 23 
and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the 24 
development of BPF expressions that can be executed by GNU/Linux systems with a low impact 25 
on network packet throughput.  26 

1. Introduction and motivation 27 

The evolution of Internet and communication networks from their emergence in the sixties to today 28 
has enabled a revolution in the way people and businesses interact. People today communicate 29 
worldwide using mobile devices, which have a reliable broadband (4G) Internet connection. 30 
Despite these great advances, Aceto et al. [1] note that network outages are still a challenge to 31 
solve because they are frequent, hard to fix, expensive and, in particular, poorly understood by 32 
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users. Whilst there exists a variety of problems surrounding network availability (Aceto et al. [1]), 33 
this study presents a proposal to avoid or at least minimize the effects of problems caused by 34 
software attacks through networks, including worms [2], [3] and remote attacks to exploit server 35 
vulnerabilities [4].  36 
 37 
Patching avoids the compromise of target systems through e.g. malware and vulnerability exploits. 38 
However, the growth of Internet of Things) (IoT) applications running on devices, that frequently 39 
do not support patching, using Internet and TCP/IP networks for communication purposes limits 40 
this possibility. Moreover, software upgrades are not always immediately available when the 41 
vulnerability is discovered, as patch development and distribution depend on developer 42 
circumstances. The existence of proactive defense mechanisms [5] capable of mitigating risks 43 
associated with unpatched components within an otherwise trusted TCP/IP network would be very 44 
valuable. In this study, we take advantage of the firewall support of operating systems to develop 45 
a highly efficient mechanism to detect and bring together information about malicious network 46 
traffic. 47 

Firewalling support has become an essential feature of modern operating systems. The use of 48 
firewalls is one of the easiest mechanisms to manage network defense. However, its effectiveness 49 
is clearly limited to protect IoT devices against malware and vulnerability exploiting. [6]. In the 50 
well-known Linux operating system, firewall capabilities have been provided primarily through 51 
packet filtering technology, and have evolved from a Netfilter ipfw system port (included in Linux 52 
kernel 1.1) to netfilter/iptables (included in Linux 2.4 kernel series). This evolution entailed the 53 
introduction of significant innovations such as the tracking of TCP connections or the possibility 54 
of altering packets in transit (mangle table). Despite the popularity of these filters, netfilter/iptables 55 
firewalling subsystem will be replaced in order to speed up filtering process and increase the 56 
information achieved for each packet to filter (such as payload information). 57 

Wireshark [7] capture filters are defined by using libpcap filter language. Filter examples that are 58 
designed to detect some worms and exploits are available in Wireshark Wiki [8] showing the 59 
power of this filter syntax. The syntax of capture filters is commonly known as Berkeley Packet 60 
Filter (BPF) and is supported in the kernel of most UNIX-like operating systems. This syntax is 61 
also implemented by libpcap/Winpcap to be used at the user level in tools such as Wireshark. BPF 62 
[9] was first introduced in 1990 as a tool for capturing and filtering network packets that matched 63 
specific rules. BPF support was included in Linux Kernel by implementing a small virtual machine 64 
that runs compiled BPF programs injected from user-space [10]. Later, a BPF Just-In-Time (JIT) 65 
compiler was added to speed up the performance of the execution of bytecodes. Currently, BPF 66 
can be loaded for its execution into kernel with different tools to execute different tasks, such as 67 
system monitoring (trough using perf tool), network traffic control and quality of service (through 68 
tc tool), and packet filtering (through ip link tool included in iproute2 suite or iptables). 69 



Due to its flexibility, BPF has been used by important technology companies such as Google, 70 
Facebook, Cloudflare and Netflix to address network security issues, load-balancing, traffic-71 
filtering and monitoring [11]–[14]. A comparison of the filtering performance achieved by a BPF-72 
based filter (BPFilter), iptables and nftables has also been provided in other studies [11], [15] 73 
showing that BPFilter runs up to 5 times faster than iptables. This scenario led to the consideration 74 
of BPF as a reliable candidate to replace iptables (and nftables) as the kernel firewall subsystem 75 
for Linux [11]. However, despite the fact that BPF syntax is more powerful than that offered by 76 
current Linux firewalls, BPFilter only takes advantage of the BPF virtual machine to speed up 77 
rules created by older tools. Majkowski [16], [17] demonstrated how to take advantage of BPF in 78 
conjunction with iptables to filter packages and define new chains. These works allowed system 79 
administrators to take advantage of the rich syntax and efficient execution of BPF expressions to 80 
filter packages in real environments and protect IoT devices against malware and vulnerability 81 
exploiting.  82 

We developed Filter.tk to work in conjunction with these tools. Filter.tk is a framework to complete 83 
the full lifecycle (creation, debugging and testing) of BPF iptables-compliant pattern design for 84 
mitigating both worm and exploit attacks. The development of patterns will be useful for the future 85 
creation of a BPF rules database usable in the form of well-known community collaboration 86 
products such as Ansible Galaxy [18], [19] or DockerHub [20], where users can share BPF to 87 
protect IoT devices, computers and software against worm and exploit attacks. Additionally, the 88 
information about harmful network packets can be uploaded to centralized repository for research 89 
purposes. Particularly, this data, if compiled worldwide, could allow the identification of security 90 
threats and help in the identification of new offensive packet patterns.  91 

The remainder of this paper is structured as follows: Section 2 introduces the state of the art in 92 
well-known worms, security vulnerabilities and IoT security. Section 3 introduces our proposal to 93 
address both the protection of devices against security vulnerabilities (and hence, worm attacks 94 
exploiting those vulnerabilities) and the compilation of security incident datasets in the context of 95 
IoT while Section 4 is centered on discovering the utility of the toolset through case studies. 96 
Finally, Section 5 presents the main conclusions of the work and outlines the directions for future 97 
research. 98 

2. State of art 99 

During the early 2000s, Internet Worms became very popular due to the effects of well-known 100 
worms such as Code Red (versions 1 and 2), Nimda, SQL Slammer or Blaster. Some of these 101 
worms are compiled in the work of Qing and Wen [2]. However, due to the heightened awareness 102 
of users and developers about the importance of security, this kind of malicious software is solely 103 
spread in P2P networks and operates in a passive form [21]. Instead of performing an active search 104 
to infect computers, passive worms require human intervention, i.e. by downloading an infected 105 
file from a P2P network, to replicate themselves. Despite the propagation of passive worms in P2P 106 



networks mainly connected with the illegal downloading of software and multimedia materials, 107 
the dissemination of these Internet worms and their mitigation has been fairly well discussed in 108 
previous literature [21]–[29]. The detection of new vulnerabilities allowing remote exploitation is 109 
a very active area as evidenced by the latest exploits published in exploit-db [4]. Although the 110 
existence of vulnerabilities allowing the execution of remote commands could provide a 111 
mechanism for the dissemination of worms, the quick response of software development teams to 112 
provide security patches discourage malware developers from designing new worms. With this in 113 
mind, the goal of this work is to mitigate attacks exploiting software vulnerabilities, with a special 114 
interest in those targeting an IoT device. 115 

Many IoT applications and devices have become available for smart home automation. Querying 116 
‘remote’ ‘hardware’ exploits in exploit-db and other similar databases resulted in a number of 117 
exploitable vulnerabilities in well-known products (such as intelligent TVs, cameras, etc.). This 118 
shows that IoT developers have been prioritizing the development and creation of functionalities 119 
for most demanding users while frequently neglecting security considerations.  120 

A few works have addressed issues in IoT security, such as the use of block-chain communications 121 
[30]–[33]. These usually refer to security issues pertaining to confidentiality, integrity, and 122 
availability in the communications between IoT devices and IoT. The work of Ammar et al. [34] 123 
provides a critical review of eight well known IoT frameworks with special emphasis on security 124 
issues (analyzing models and approaches provided for ensuring security and privacy, pros and cons 125 
of each framework in terms of fulfilling the security requirements and meeting the standard 126 
guidelines and identifying design flaws). Wood and Stankovic [35], [36] provide studies about 127 
network issues. Particularly, the former work is centered in security-related issues about IoT 128 
communication protocols whilst the later analyzes denial of service threats in IoT environments. 129 

Wack et al. [37] review the risk of platform Software/Firmware vulnerabilities that enable the 130 
reception of malicious attacks. To the best of our knowledge, there is no research work focused on 131 
the prevention, management and response to vulnerability exploiting and worm attacks in IoT. 132 
Closing this gap, we studied how to take advantage of firewalling schemes to implement these 133 
protections. 134 

2.1. OS firewalling support 135 

Common OS firewalls, such as those that can be implemented through GNU/Linux kernel 136 
firewalling subsystem, are usually implemented as packet filters [37], [38], which consist of a 137 
default policy for packets and a sequence of rules that define the actions performed on packets 138 
when they satisfy certain conditions. Specifically, each firewalling rule contains a triggering 139 
condition, usually a simple condition or the logical AND of simple conditions, together with an 140 
action to execute when the rule is triggered. Triggering conditions are defined over the second, 141 
third and fourth TCP/IP layers. The support for stateful inspection of connections is available for 142 
kernel versions 2.4 and above [39]. 143 



The first GNU/Linux firewall generation was included on 1.1 kernel through an implementation 144 
of ipfw functionalities contributed by Alan Cox [40]. The ipfwadm user-space tool was used to 145 
configure the ipfw services offered by the kernel [41]. These kernels allowed defining three 146 
different firewall filters to handle (i) input packets (-I ipfwadm argument), (ii) output packets (-O) 147 
and (iii) forwarded packets (-F, used in conjunction with ip_forwarding feature). Accept, deny 148 
(discard the packet) and reject actions were used either for rules (-a command parameter) or as 149 
default policy (-p). In order to create and design the trigger condition of each rule, the system 150 
administrator can test for the protocol (TCP, UDP, ICMP or IP), the port (for TCP and UDP) or 151 
the ICMP type. Logging is supported through the -o modifier. 152 

The support for ipfw was replaced by ipchains in the 2.2 version of the kernel [42]. One of the 153 
most important changes in the ipchains scheme was the introduction of chains to help reduce the 154 
computational cost and facilitate its design [43]. As opposed to the others, ipchains firewalls 155 
include INPUT, OUTPUT and FORWARD chains, which bring together filtering rules applied to 156 
packets where the current computer is the destination, the origin or a router for the packet 157 
respectively. Each firewall chain is composed of a ruleset and a default policy. The default policy 158 
is applied to packets that do not match any rule. The existence of default policies allows defining 159 
firewalls using two different schemes: (i) accept all except those packets explicitly denied or (ii) 160 
deny all except those packets explicitly accepted. Of these, the latter is advisable for security 161 
reasons. 162 

New functionalities offered by ipchains with regard to ipfw were quite limited so it was quickly 163 
replaced by iptables (in Linux 2.4 series) [44]. Iptables/netfilter included the table concept to bring 164 
together chains with similarities. Iptables included the firewall tables filter, nat, and mangle. The 165 
first one included three chains to support the filtering of input, output and forwarded connections 166 
(INPUT, OUTPUT and FORWARD respectively). The NAT table is composed of PREROUTING 167 
and POSTROUTING chains to add rules to change destination or source addresses respectively. 168 
To this end, rules included in these chains could only use DNAT, SNAT, REDIRECT or 169 
MASQUERADE actions. Finally, MANGLE table allows marking packages for further processing 170 
and modifying some parameters of packets including TOS or TTL. These actions could be 171 
executed by using MARK, TOS and TTL actions. Finally, iptables brought the stateful packet 172 
inspection to Linux firewalls making it possible to determine whether a packet belongs to an 173 
established TCP connection (-m state --state=ESTABLISHED) or, conversely, is connected with 174 
other previous packets (-m state --state=RELATED).   175 

Iptables have been widely used to implement packet filters on Linux for many years [45]. 176 
However, some limitations of iptables, such as the existence of a unique action for a rule or the 177 
complexity of the syntax, led to the creation of other filtering frameworks. Hence, nftables 178 
emerged as an iptables replacement on kernel version 3.13 (2013) [44]. Nftables included a 179 
completely new and fresh syntax that avoided the need to use hyphens and the uppercase/lowercase 180 



flags. The use of nftables allows tables and chains to be created with specific names and associated 181 
with hooks, thus avoiding the strict tables/chains structure defined by iptables.  182 

Despite the new functionalities of nftables, most Linux users continue using the old iptables 183 
framework, in part due to the numerous changes in the syntax which hindered adoption. Some 184 
translation utilities were introduced to aid in the migration from iptables to nftables [46]. In 185 
addition, nftables work as a sequential filter whereby every packet is matched one by one against 186 
a list of rules. The speed of checking the rules is quite limited (up to three times slower than using 187 
BPF) [11], which led to the emergence of bpfilter as a new Linux firewalling subsystem [47] able 188 
to outperform the speed of previous filtering alternatives [11]. Bpfilter has been added 189 
experimentally to Linux Kernel 3.18, now allowing nftables and iptables rules to be executed by 190 
Linux kernel as BPF. 191 

Standard definitions within BPF only allow current packet filtering firewall [48] schemes to 192 
analyze some information from packet headers (such as IP and MAC addresses, ports, TCP flags, 193 
ICMP types, etc.) and packet state. Additional new features would improve the firewalling 194 
performance, such as analyzing the payload of the packet or the information about application 195 
layer protocols. These features are frequently included in deep packet inspection techniques [49], 196 
[50] but are often too slow to be included in standard firewalls. In order to provide a deep 197 
description of packets on the firewall layer and quickly evaluate them, the use of BPF language 198 
together with the BPF virtual machine subsystem included in the current versions of Linux kernel 199 
seems to be an elegant solution, especially as BPF had been used before to accomplish similar 200 
difficult network tasks with low computational effort [11]. 201 

Despite its performance and low computational costs, developing a BPF-based firewall able to 202 
exploit full packet data (headers and payload) is a hard task that would require both the existence 203 
of tools to aid in the development of conditions, and packet datasets. Caploader [51] and 204 
Wireshark/tcpdump [7], which can also be integrated with NDPI [52], are capable of loading and 205 
analyzing packets included in PCAP files and check whether a BPF expression match them. These 206 
tools can be successfully executed with large collections of packets, such as the shared by Netresec 207 
[53]. However, the design of BPF filters is not easy and should be simplified to impact on real-208 
world firewall applications. Similarly, the evaluation of BPF filters should be automated to 209 
improve performance. Both the simplification and automation have been addressed by our 210 
Filter.tlk toolset and are the main contribution of this work. Both Filter.lk functionality and its 211 
practical use is described in the next section.   212 

3. Filter.tlk 213 

This section provides a comprehensive description of the design architecture of  Filter.tlk [54] tool 214 
and documents the process of creating customized filters to classify network traffic according to 215 
the content of the packets.  216 



Filter.tlk comprises three different utilities to aid in the creation of BPF filters: (i) an interface to 217 
design BPF filtering conditions, (ii) a Wireshark LUA plugin to automate the testing of BPF filters 218 
with PCAP packet datasets and (iii) a script to easily compile BPF filters and create iptables rules. 219 
Figure 1 shows the different components included in Filter.tlk and their use in a real environment. 220 

 221 
Figure 1.  Filter.tlk architecture 222 

As we can deduct from Figure 1, the design of a firewall rule with Filter.tlk comprises three stages 223 
that are made with different tools included in the package. We begin by taking advantage of the 224 
BDAT (BPF Design Aid Tool) to design a filtering condition to detect a certain kind of packet. 225 
The designed BPF filters can then be tested with different packet sets (a set of packets matching 226 
the pcap filter and others mismatching the pcap filter) using BPF Testing tool (BTT). BTT is able 227 
to easily assess the quality of an input filter by using different datasets. Once BPF rules have been 228 
tested, they can be easily transformed into iptables rules using IPTables Rule Builder (IPTRB) 229 
script.  230 

BDAT is responsible for creating BPF filters as conditions defined from transport and network 231 
layers (see Figure 1). By using BDAT through a simple graphical interface, we can create a 232 
Boolean BPF filter evaluating expressions related to network or transport headers and payloads 233 
(UDP, TCP, IP, ICMP). In order to create header conditions, users must select the field of the 234 
header on which they want to establish the condition that the filter must fulfill. Once the condition 235 
has been defined, the user can continue adding new conditions for the same filter or create a new 236 



one. Once all filters are defined, they can be exported to a file for testing in BTT (BPF Testing 237 
Tool). As an example, Figure 2 shows how administrators can easily incorporate a condition about 238 
a HTTP POST request by specifying conditions about TCP payload. 239 

 
a) Select TCP payload octets 

 
b) Establish values for octets 



Figure 2. BPF rule definition process. 240 

As depicted in Figure 2a, we selected the first four octets from TCP payload for comparison 241 
purposes. BDAT allows selecting one, two or four octets from each word (32bits) to check the 242 
condition. The next step of the wizard (see Figure 2b) allows to easily define the value using 243 
Hexadecimal, ASCII or Decimal notations. In order to compare any octet from payload (and 244 
options/padding), the offset value (highlighted in red in Figure 2a) can be edited to the desired 245 
value. Please note that the designed condition is provided as example and should be complemented 246 
with a “header length” value of five to ensure the absence of options/padding field. In the next step 247 
of the wizard, the current BPF condition rule is added to the whole BPF filter, allowing the 248 
generation of filters comprising multiple tests. 249 

BTT is a plugin for Wireshark that applies a filter or set of filters over a pcap file. As a result, we 250 
obtain information for each applied filter -about the number of packages analyzed, accepted and 251 
rejected. A set of pcaps with the packets accepted by the filter grouped by the destination IP is also 252 
provided for debugging purposes. In order to detect errors, each rule should be tested using a pcap 253 
database containing only the packets that should be captured (ensuring a result of 0 rejected is 254 
achieved) and another one containing normal network traffic (guaranteeing a result of 0 accepted 255 
is achieved). 256 

Finally, IPTRB (IPTables Rule Builder) script can transform the BPF uncompiled filters into full 257 
featured IPTables rules. The process is guided by an intuitive libncurses-based graphical user 258 
interface that allows customizing the generated rule. The rule can be generated for filtering and/or 259 
harmful packet logging purposes. A scheduled task (i.e. crontab) could be periodically executed 260 
(for instance once a day) to upload the compiled information (logs) to a centralized repository for 261 
its further analysis.  262 

3.1. Filter.tlk implementation 263 

This subsection provides a brief description of the most relevant implementation issues for the 264 
development of each tool included in Filter.tlk. 265 

BDAT was designed as a Java standalone application, which can easily be executed using any Java 266 
Virtual Machine implementation. The interface was designed using JFC/Swing library [55].  267 

BTT is a Wireshark plugin that was implemented using the Lua programming language [56], which 268 
is supported by Wireshark for the development of new functionalities, such as the creation of 269 
dissectors or listeners [57]. The dissectors are intended to analyze part of the data of a packet, 270 
while the listeners are used to count the number of occurrences of an event; for example, the 271 
number of packets matching a filter. In this study, we used Lua language to implement a Wireshark 272 
listener to evaluate filters and count packets fitting the target BPF condition (accepted) or not 273 
(rejected).  274 



IPTRB is a bash script that combines the use of dialog command [58] to provide an easy-to-use 275 
intuitive graphical user interface. Moreover, the compilation of BPF rules into bytecode is done 276 
by using tcpdump [59] functionalities. 277 

Finally, we used Ansible [19] (a well-known IT Automation tool) to automate the installation of 278 
Filter.tlk in all supported platforms. Ansible is a popular IT automation tool whose main features 279 
are: (i) avoiding the need of scripts and/or custom code to deploy and update applications, and (ii) 280 
replacing agents on remote systems by standard SSH tools. The installation script was provided 281 
for Debian-based GNU Linux distributions.  282 

3.2. Deployment of generated filters 283 

To take advantage of expressions (iptables rules and BPF) generated using our BPF framework, 284 
we consider two different scenarios: (i) IoT devices using a GNU Linux-based software/firmware 285 
(ii) and other IoT devices with no BPF/iptables support. In the first scenario, iptables rules can be 286 
directly integrated into the firmware to protect them against malicious attacks. We are working on 287 
the development of a service to share BPFs together with a tool able to automatically download 288 
and upgrade BPFs for different IoT devices.  289 

Although GNU/Linux is present in some devices, there are many appliances running other 290 
Operating Systems where the execution of BPF is not possible. Taking this into account, we are 291 
working on the design of a small bridge router (brouter) [60] device running GNU/Linux and 292 
ebtables. A brouter is a device that is able to transparently forward all traffic between two ethernet 293 
interfaces, and that allows the inclusion of filtering rules for network interfaces. This solution 294 
would be applicable for IoT devices connected to the network through an ethernet connection. 295 

The main weakness of using BPF filters to protect devices against attacks is that we are unable to 296 
protect 802.11-based (WLAN, Wireless Local Area Network) IoT devices that do not run 297 
GNU/Linux. 298 

Next section presents a comprehensive practical example describing the process of using the 299 
Filter.tlk tool to design a filter capable of detecting and filtering two important vulnerabilities 300 
recently discovered on well-known IoT devices. 301 

4. Experiments 302 

In this section, we test the filter designed to detect and filter attacks using two vulnerabilities in 303 
two well-known IoT devices that allow the remote execution of arbitrary commands: (i) LG 304 
Supersign TVs, and (ii) ASUS ADSL Router DSL-N12E_C1. The next subsection shows the work 305 
environment prepared in order to generate high quality BPF patterns. Moreover, subsection 4.2 306 
presents the experimental protocol and results of our case studies while subsection 4.3 measures 307 
the impact of the use of these filters in the performance of IoT devices. Finally, subsection 4.4 308 



shows how to compile and take advantage of the information gathered by IoT devices using 309 
Filter.tlk for scientific purposes. 310 

4.1. Configuring the working environment 311 

In order to generate high quality BPF expressions that describe the pattern of a vulnerability 312 
exploitation, the use of a large packet database for testing purposes is advisable. Fortunately, many 313 
publicly available packet datasets can be freely downloaded from the Internet. Table 1 compiles a 314 
list of useful datasets. 315 

Table 1: Publicly available datasets 316 
Dataset Number of 

packets 
Number 
of files 

Format Short description 

contagiodump[61] 988898 1154 pcap 
zipped 

Collect malicious and exploit pcaps 
from various public resources (2013-
2015) 

Malware Traffic 
Analysis [62]  

2445211 1291 pcap 
zipped 

Malicious network traffic (2013-
2018) 

GTISK PANDA 
Malrec [63] 

100201 373 pcap Malware samples run in PANDA 
(2018) 

From the datasets included in Table 1 and other sources, we built up a group of packets that would 317 
be used to ensure that inoffensive network requests are not captured by the designed BPF 318 
expression.  319 

We decided to study and generate BPF filters for two vulnerabilities of well-known IoT devices. 320 
In order to determine the quality of the BPF expressions created using a BTT Lua script, we used 321 
as negative samples the conjunction of all packets from sources introduced in Table 1 and other 322 
legitimate packet sets compiled by us. In order to aggregate all negative samples in a single pcap 323 
file, we combined all sources using the mergecap [64] tool provided by Wireshark.  324 

4.2. Executing the experiment 325 

Recently, a vulnerability allowing remote execution of arbitrary commands appeared on LG 326 
SuperSign TVs (CVE-2018-17173) [65], [66]. These smart TVs include a CMS running on the top 327 
of LG webOS 3.3 (a Linux-based OS). The discovered vulnerability allows remote code execution 328 
(by achieving a reverse shell connection) by taking advantage of the URL used to see thumbnails 329 
of the user images. We used the exploit versions to generate a pcap file capturing the attacks. The 330 
Filter.tk comprises a three stages operation. The first step designs the filtering condition to detect 331 
the packets, the second step tests the BPF filter with a set of packets captured in a pcap filter and 332 
with a set of normal packets. The third step converts the BPF into iptables rules. The generated 333 
BPF expression is shown in Table 2. These BPF expressions could be directly included in LG 334 
webOS to protect the TV. 335 

Table 2. BPF expression to mitigate CVE-2018-17173 vulnerability 336 



BPF expression ip[2:2] > 0x008A and ip[9]==0x06 and tcp[2:2]==0x2378 and tcp[32]==0x47 and 
tcp[77:4]==0x3d253237 and tcp[81:4]==0x2532302d and tcp[85]==0x3b 

BPF assembler code Bytecode 
(000) ldh 
(001) jeq 
(002) ldh 
(003) jgt 
(004) ldb 
(005) jeq 
(006) jeq 
(007) ldh 
(008) jset 
(009) ldxb 
(010) ldh 
(011) jeq 
(012) ldb 
(013) jeq 
(014) ld 
(015) jeq 
(016) ld 
(017) jeq 
(018) ldb 
(019) jeq 
(020) ret       
(021) ret 

[12] 
#0x800 
[16] 
#0x8a 
[23] 
#0x6 
#0x6 
[20] 
#0x1fff 
4*([14]&0xf) 
[x + 16] 
#0x2378 
[x + 46] 
#0x47 
[x + 91] 
#0x3d253237 
[x + 95] 
#0x2532302d 
[x + 99] 
#0x3b 
#262144  
#0 

 
jt 2 jf 21 
 
jt 4 jf 21 
 
jt 6 jf 21 
jt 7 jf 21 
 
jt 21 jf 9 
 
 
jt 12 jf 21 
 
jt 14 jf 21 
 
jt 16 jf 21 
 
jt 18 jf 21 
 
jt 20 jf 21 

22 
40 0 0 12 
21 0 19 2048 
40 0 0 16 
37 0 17 138 
48 0 0 23 
21 0 15 6 
21 0 14 6 
40 0 0 20 
69 12 0 8191 
177 0 0 14 
72 0 0 16 
21 0 9 9080 
80 0 0 46 
21 0 7 71 
64 0 0 91 
21 0 5 1025847863 
64 0 0 95 
21 0 3 624046125 
80 0 0 99 
21 0 1 59 
6 0 0 262144 
6 0 0 0 

Iptables 
commands 

iptables -t filter -A INPUT -m bpf --bytecode "22,40 0 0 12,21 0 19 2048,40 0 0 16,37 0 17 
138,48 0 0 23,21 0 15 6,21 0 14 6,40 0 0 20,69 12 0 8191,177 0 0 14,72 0 0 16,21 0 9 9080,80 0 0 
46,21 0 7 71,64 0 0 91,21 0 5 1025847863,64 0 0 95,21 0 3 624046125,80 0 0 99,21 0 1 59,6 0 0 
262144,6 0 0 0" -j DROP 
iptables -t filter -A INPUT -m bpf --bytecode "22,40 0 0 12,21 0 19 2048,40 0 0 16,37 0 17 
138,48 0 0 23,21 0 15 6,21 0 14 6,40 0 0 20,69 12 0 8191,177 0 0 14,72 0 0 16,21 0 9 9080,80 0 0 
46,21 0 7 71,64 0 0 91,21 0 5 1025847863,64 0 0 95,21 0 3 624046125,80 0 0 99,21 0 1 59,6 0 0 
262144,6 0 0 0" -j LOG --log-prefix "Filter.tlk" 

The second analysis is about a remote code execution vulnerability in ASUS DSL-N12E_C1 337 
router, specifically in firmware version 1.1.2.3_345 (CVE-2018-15887) [67]. This vulnerability 338 
has been classified as critical because it allows the execution of arbitrary code using an unknown 339 
function of the file ‘Main_Analysis_Content.asp’. A remote attacker can then access the router as 340 
a privileged user via telnet application and run OS commands. Again, we take advantage of our 341 
framework to generate BPF expressions to filter this type of attack. The generated BPF is shown 342 
in Table 3. 343 

Table 3. BPF expression to mitigate CVE-2018-15887 vulnerability 344 



BPF expression ip[2:2] > 0x0174 and ip[9]== 0x06 and tcp[2:2]== 0x0050 and tcp[32]==0x47 and 
tcp[326:4]==0x3d253630 

BPF assembler code Bytecode 
(000) ldh 
(001) jeq 
(002) ldh 
(003) jgt 
(004) ldb 
(005) jeq 
(006) jeq 
(007) ldh 
(008) jset 
(009) ldxb 
(010) ldh 
(011) jeq 
(012) ldb 
(013) jeq 
(014) ld 
(015) jeq 
(016) ret 
(017) ret 

[12] 
#0x800 
[16] 
#0x174 
[23] 
#0x6 
#0x6 
[20] 
#0x1fff 
4*([14]&0xf) 
[x + 16] 
#0x50 
[x + 46] 
#0x47 
[x + 340] 
#0x3d253630 
#262144 
#0 

 
jt 2 jf 17 
 
jt 4 jf 17 
 
jt 6 jf 17 
jt 7 jf 17 
 
jt 17 jf 9 
 
 
jt 12 jf 17 
 
jt 14 jf 17 
 
jt 16 jf 17 

18 
40 0 0 12 
21 0 15 2048 
40 0 0 16 
37 0 13 372 
48 0 0 23 
21 0 11 6 
21 0 10 6 
40 0 0 20 
69 8 0 8191 
177 0 0 14 
72 0 0 16 
21 0 5 80 
80 0 0 46 
21 0 3 71 
64 0 0 340 
21 0 1 1025848880 
6 0 0 262144 
6 0 0 0 

Iptables 
commands 

iptables -t filter -A INPUT -m bpf --bytecode "18,40 0 0 12,21 0 15 2048,40 0 0 16,37 0 13 372,48 
0 0 23,21 0 11 6,21 0 10 6,40 0 0 20,69 8 0 8191,177 0 0 14,72 0 0 16,21 0 5 80,80 0 0 46,21 0 3 
71,64 0 0 340,21 0 1 1025848880,6 0 0 262144,6 0 0 0" -j DROP 
iptables -t filter -A INPUT -m bpf --bytecode "18,40 0 0 12,21 0 15 2048,40 0 0 16,37 0 13 372,48 
0 0 23,21 0 11 6,21 0 10 6,40 0 0 20,69 8 0 8191,177 0 0 14,72 0 0 16,21 0 5 80,80 0 0 46,21 0 3 
71,64 0 0 340,21 0 1 1025848880,6 0 0 262144,6 0 0 0" -j LOG --log-prefix "Filter.tlk" 

As shown in Tables 2 and 3, an iptables command can be easily generated from a BPF expression 345 
to drop and log packets that match it. Although iptables can only check expressions in the header 346 
of network packets, BPF expressions make it possible to examine information included in both 347 
packet headers and payload in order to find any potential exploitation of vulnerabilities. The 348 
second generated iptables rule allows for storing security information that can be uploaded to a 349 
centralized repository for its further analysis. In next section, we evaluate the performance impact 350 
on the IoT devices when using these filters. 351 

4.3. The impact on filter throughput 352 

We assessed the impact of using BPF filters on IoT devices in order to determine if they could be 353 
successfully used to protect IoT devices against network vulnerability exploitation. To perform 354 
this analysis we used an Apache web server installed on a Raspberry Pi 2 Model B [68]. 355 

We leveraged the functionalities of Apache HTTP server benchmarking [69] and GNU parallel 356 
[70] tools to evaluate the impact of using BPF firewalls in IoT hardware. Using these tools, we 357 
benchmarked the execution of two parallel tests making 10000 HTTP requests distributed in 10 358 
threads, with 1000 requests per thread. The average of measurements made for parallelized tests 359 
is provided as result. For comparison purposes, we used the generated BPF expressions for the two 360 
case studies shown before. Table 4 compares the performance between the absence of attack 361 
protections and the usage of two BPF filtering rules. 362 
 363 



Table 4. Performance impact when using BPF filters 364 
 No protection With BPF (2 rules) 
HTML transferred (bytes) 107010000 107010000 
Concurrent Time per request (ms) 1.9345 1.937 
Time per request (ms) 19.3465 19.367 
Time taken for tests (seconds) 19.3465 19.367 
Total transferred (bytes) 109750000 109750000 
Transfer rate (Kbytes/sec) 5539.905 5534.1 

The results compiled in Table 4 show that the performance impact when using BPF filters is quite 365 
limited and will not severely affect the overall operation of IoT devices. We analyzed the impact 366 
of progressively adding BPF rules to the filter by adding up to 100 new rules and measured the 367 
transfer rate after each BPF expression was added (see Figure 3). As long as the performance is 368 
highly influenced by the presence of additional traffic in network and other processes consuming 369 
CPU, we plotted a trend line to observe the degradation. 370 

 371 
Figure 3. Analysis of the impact of BPF rules in throughput 372 

As can be seen from Figure 3, the throughput degradation is close to zero when using up to 50 373 
(non-fitting) BPF rules. However, the inclusion of more than 50 rules clearly damages the 374 
performance of GNU/Linux firewalling system and would require the usage of additional iptables 375 
speedup strategies, such as the creation of additional chains [71] and counters-based optimizations 376 
[72].  377 

One of the most interesting features of Filter.tlk framework is the compilation of information about 378 
worldwide IoT security incidents. The information gathered could be successfully analyzed using 379 



Machine Learning techniques to provide worthwhile knowledge about: (i) the origin of the threat, 380 
(ii) better patterns for traffic filtering or (iii) the threat scale. Studying information about systems 381 
from which the attack is performed, we can successfully identify worms exploiting a certain 382 
vulnerability, the presence of an individual hacker, the execution of Distributed Denial of Service 383 
attacks or botnets. 384 

Offering IoT users a product to protect their devices against attacks, whilst at the same time 385 
achieving information about dangerous offensive network packets targeting IoT products, will 386 
replicate a threat response model undertaken by traditional antivirus products. This knowledge 387 
allows the identification of better and perhaps simpler BPF patterns that can be used for network 388 
intrusion detection.  389 

5. Conclusions and future work 390 

In this paper, we have introduced an easy-to-use framework designed to aid in the development of 391 
fast firewalls based on using BPF, which can be executed by using standard firewall capabilities 392 
included in the Linux kernel (IPTables/Netfilter). These firewalls have been specifically conceived 393 
to protect IoT devices against the exploitation of remote vulnerabilities. Since the use of BPF 394 
bytecode can drastically speed up the execution of firewalls, we designed a collection of tools to 395 
facilitate the inclusion of BPF into firewalling rules. An experiment was carried out for the 396 
application of the introduced toolset. 397 

Since BPF is one of the most efficient forms of filtering traffic, it provides a reliable solution for 398 
filtering in the context of IoT. Although, the use of specific BPF filters allows using payload 399 
information included in packets, it can only be directly implemented in devices using a GNU/Linux 400 
based firmware. We are currently working on the design of specific hardware to overcome the 401 
limitations of non-GNU/Linux Ethernet IoT devices and on the development of a package manager 402 
to automatically download BPF filtering strings and configure the firewall. 403 

One of the most relevant functionalities of this scheme is the ability to easily build a dataset with 404 
the security incidents occurred in worldwide IoT devices, such as VizSec [73]. Future work will 405 
include mechanisms for analyzing them to achieve valuable security knowledge. We consider 406 
evolutionary computation as a candidate method for automatic filter generation through packet 407 
captures and consider DPI (Deep Packet Inspection [52]) to be a reliable way of simplifying 408 
filtering conditions, since it allows access to Application Layer information to define matching 409 
expressions. While DPI expressions cannot be directly included in BPF filters, we believe that they 410 
could be automatically transformed into simple BPF expressions to simplify the generation of BPF 411 
filters.  412 
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