5 research outputs found

    OLS Dialog: An open-source front end to the Ontology Lookup Service

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the growing amount of biomedical data available in public databases it has become increasingly important to annotate data in a consistent way in order to allow easy access to this rich source of information. Annotating the data using controlled vocabulary terms and ontologies makes it much easier to compare and analyze data from different sources. However, finding the correct controlled vocabulary terms can sometimes be a difficult task for the end user annotating these data.</p> <p>Results</p> <p>In order to facilitate the location of the correct term in the correct controlled vocabulary or ontology, the Ontology Lookup Service was created. However, using the Ontology Lookup Service as a web service is not always feasible, especially for researchers without bioinformatics support. We have therefore created a Java front end to the Ontology Lookup Service, called the OLS Dialog, which can be plugged into any application requiring the annotation of data using controlled vocabulary terms, making it possible to find and use controlled vocabulary terms without requiring any additional knowledge about web services or ontology formats.</p> <p>Conclusions</p> <p>As a user-friendly open source front end to the Ontology Lookup Service, the OLS Dialog makes it straightforward to include controlled vocabulary support in third-party tools, which ultimately makes the data even more valuable to the biomedical community.</p

    Systems Integration of Biodefense Omics Data for Analysis of Pathogen-Host Interactions and Identification of Potential Targets

    Get PDF
    The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic understanding of pathogenicity and target identification

    The Salivary Secretome

    Get PDF
    Recently, proteomics has emerged as an important tool for understanding biological systems, protein–protein interactions, and networks that ultimately lead to a deeper understanding of the underlying mechanisms of certain diseases. More recently, the study of secretomes, a type of proteomics, has also been highlighted as a potential next step in the field of diagnosis/prognosis. The secretome is the set of proteins expressed by an organism and secreted into the extracellular space, comprising 13–20% of all proteins. Since almost all, if not all, organs produce secretomes, this means that it is possible to study secretomes and trace these proteins back to their origin, supporting the idea that this could indeed be very important in diagnosing certain diseases. This is often combined with techniques such as mass spectrometry to measure the secretome of, for example, a particular tissue, and bioinformatics tools and databases to give us an idea of what to expect (prediction). In this paper, we will give a general overview of this world, but with a focus on the new bioinformatics tools and databases, their advantages and disadvantages, as well as a deeper look at isolation systems for proteomes, specifically salivary secretomes. Indeed, the salivary secretome represents a valuable new tool capable of providing insights into immunopathology and potentially aiding in diagnostics. Furthermore, we will explore applications of these methods and give an idea of what the future holds for such promising techniques: Salivary secretome in conjunction with bioinformatics tools/databases in the diagnosis of diseases (such as diabetes, Sjogren’s syndrome, and cardiovascular disease)

    XML-based approaches for the integration of heterogeneous bio-molecular data

    Get PDF
    Background: The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. Results: In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. Conclusion: XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources. </p
    corecore