1,281 research outputs found

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large résolution spatiale (25-50 km) n’en font pas un outil adéquat pour des applications hydrologiques à une échelle locale telles que la modélisation et la prévision hydrologiques. Dans de nombreuses études, une désagrégation d’échelle de l’humidité du sol des produits satellites micro-ondes est faite puis validée avec des mesures in-situ. Toutefois, l’utilisation de ces données issues d’une désagrégation d’échelle n’a pas encore été pleinement étudiée pour des applications en hydrologie. Ainsi, l’objectif de cette thèse est de proposer une méthode de désagrégation d’échelle de l’humidité du sol issue de données satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) à différentes résolutions spatiales afin d’évaluer leur apport sur l’amélioration potentielle des modélisations et prévisions hydrologiques. À partir d’un modèle de forêt aléatoire, une désagrégation d’échelle de l’humidité du sol de SMAP l’amène de 36-km de résolution initialement à des produits finaux à 9-, 3- et 1-km de résolution. Les prédicteurs utilisés sont à haute résolution spatiale et de sources différentes telles que Sentinel-1A, MODIS et SRTM. L'humidité du sol issue de cette désagrégation d’échelle est ensuite assimilée dans un modèle hydrologique distribué à base physique pour tenter d’améliorer les sorties de débit. Ces expériences sont menées sur les bassins versants des rivières Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situés aux États-Unis. De plus, le modèle assimile aussi des données d’humidité du sol en profondeur issue d’une extrapolation verticale des données SMAP. Par ailleurs, les données d’humidité du sol SMAP et les mesures in-situ sont combinées par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilé dans le modèle hydrologique pour tenter d’améliorer la prévision hydrologique sur le bassin versant Au Saumon situé au Québec. Les résultats montrent que l'utilisation de l’humidité du sol à fine résolution spatiale issue de la désagrégation d’échelle améliore la représentation de la variabilité spatiale de l’humidité du sol. En effet, le produit à 1- km de résolution fournit plus de détails que les produits à 3- et 9-km ou que le produit SMAP de base à 36-km de résolution. De même, l’utilisation du produit de fusion SMAP/ in-situ améliore la qualité et la représentation spatiale de l’humidité du sol. Sur le bassin versant Susquehanna, la modélisation hydrologique s’améliore avec l’assimilation du produit de désagrégation d’échelle à 9-km, sans avoir recours à des résolutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la résolution spatiale la plus fine à 1- km qui offre les meilleurs résultats de modélisation hydrologique. L’assimilation de l’humidité du sol en profondeur issue de l’extrapolation verticale des données SMAP n’améliore que peu la qualité du modèle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon améliore la qualité de la prévision du débit, même si celle-ci n’est pas très significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting

    Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements-A case study in Chile

    Get PDF
    With high spatial-temporal resolution, Satellite-based Precipitation Estimates (SPE) are becoming valuable alternative rainfall data for hydrologic and climatic studies but are subject to considerable uncertainty. Effective merging of SPE and ground-based gauge measurements may help to improve precipitation estimation in both better resolution and accuracy. In this study, a framework for merging satellite and gauge precipitation data is developed based on three steps, including SPE bias adjustment, gauge observation gridding, and data merging, with the objective to produce high-quality precipitation estimates. An inverse-root-mean-square-error weighting approach is proposed to combine the satellite and gauge estimates that are in advance adjusted and gridded, respectively. The model is applied and tested with the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) estimates (daily, 0.04° × 0.04°) over Chile, for the 6 year period of 2009-2014. Daily observations from about 90% of collected gauges over the study area are used for model calibration; the rest of the gauged data are regarded as ground “truth” for validation. Evaluation results indicate high effectiveness of the model in producing high-resolution-precision precipitation data. Compared to reference data, the merged data (daily) show correlation coefficients, probabilities of detection, root-mean-square errors, and absolute mean biases that were consistently improved from the original PERSIANN-CCS estimates. The cross-validation evidences that the framework is effective in providing high-quality estimates even over nongauged satellite pixels. The same method can be applied globally and is expected to produce precipitation products in near real time by integrating gauge observations with satellite estimates

    The hydrology of the Peruvian Amazon river and its sensitivity to climate change

    Get PDF
    This PhD thesis explores the utility of a land surface model (Joint UK Land-Environment Simulator, JULES) for large-scale hydrological modelling of the Peruvian Amazon - a humid tropical mountain basin where process understanding is poor and data are scarce. A sparse rain gauge network necessitates the use of large-scale data from satellite and global climate model reanalysis to complement ground observations, commanding a closer look at (1) the uncertainties (2) merging techniques to utilise multiple observations in the model forcing. A main outcome of the research is establishing the model’s sensitivity to precipitation error, and at the same time, demonstrating an increasing reliability of global remote sensing products as model forcing, specifically, with data from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis version 7 algorithm. Furthermore, satellite-rain gauge data assimilation techniques such as mean-bias correction, double smoothing residual blending, and Bayesian combination, are shown to reduce the mean errors in the satellite-based product. Secondly, with regional calibration and an offline runoff routing scheme, JULES is shown to be reasonably skillful at reproducing the observed streamflow dynamic and extremes. Representing the subgrid heterogeneity of soil moisture using the probability distributed model (PDM) was key to improving surface runoff generation. However, evapotranspirative fluxes in the lower basin remain poorly reproduced without an adequate floodplain system representation. Finally, under the Intergovernmental Panel for Climate Change’s RCP4.5 future climate scenario, which projects a warming and wetting up to the year 2035, the Peruvian Amazon basin is shown to respond nonlinearly to the increase in wet season precipitation with more than 40% increase in the peak flows compared to the baseline scenario. There is limited confidence in the projections due to climate projections uncertainty and the assumptions of model stationarity.Open Acces

    Integrating in-situ data with satellite-derived products to assess surface-groundwater interactions and sustainability of groundwater resources in semi-arid environment

    Get PDF
    In arid and semi-arid regions, water scarcity is nowadays a primary challenge, because of continuously increasing spatio-temporal rainfall variability and high evapotranspiration, both implying a decline of freshwater resources. Moreover, it is expected that this problem will worsen with the ongoing climate change. It is therefore important an in-depth investigations of the spatio-temporal surface-groundwater (SW-GW) interactions and sustainability of groundwater resources, which can be optimally realized through application of an integrated hydrological models (IHMs). This study proposes an approach to integrate satellite-derived products with in-situ measurements to assess the spatio-temporal SW-GW interactions and sustainability of groundwater resources in the data scarce Zamra catchment (ZC), northern Ethiopia. The research approach consists of four study chapters (chapter2-5). Chapter 2 focusses on the integration of daily satellite rainfall with in-situ rainfall. The study demonstrated that the Geographically Weighted Regression approach, could substantially reduce the daily biases between satellite and in-situ rainfall products in topographically complex areas, indicating further validation and improvement can be achieved by increasing in-situ gauge network and eventually considering more accuracy-effective explanatory variables. Chapter 3 focusses on the spatio-temporal estimate of interception loss (EI), characterized by various land use types and the overall estimated EI demonstrated high spatial and temporal variability, ranging on annual basis from zero at bare lands to 30% in forested areas. Chapter 4 focusses on derivation of PET as the product of RS-based, FAO-Penman-Monteith ETo and NDVI-based land use land cover factor (Kc). The NDVI-based Kc demonstrated high spatio-temporal variability, ranging from ~0.15 (bare land) to ~1.4 (forest), which resulted in higher PET values than the bias-corrected RS-based ETo in locations where Kc >1 and vice versa (i.e. in locations where Kc <1), which underlined substantial difference between ETo and PET. Chapter 5 focusses on IHM assessment of the spatio-temporal variability of SW-GW interactions and on sustainability of groundwater resources in the hydrologically complex ZC. RS approaches to estimate driving forces (Chapter 2-4) were applied as inputs of the MODFLOW 6 IHM (MOD6-IHM). The calibrated MOD6-IHM, showed high spatio-temporal water fluxes variability in the ZC, largely influenced by high spatio-temporal rainfall variability, in which the only source of water input. Throughout the MOD6-IHM solution, that rainfall (P) was partitioned into the two dominant sinks, evapotranspiration (ET=53.2% of P) and stream outflow (q= 46% of P). As the net recharge (1.6% of P) constrains groundwater resources sustainability, the issue of sustainability of ZC groundwater resources is crucial considering their future utilization for agricultural purposes

    High-resolution precipitation datasets in South America and West Africa based on satellite-derived rainfall, Enhanced Vegetation Index and Digital Elevation Model

    Get PDF
    Mean Annual Precipitation is one of the most important variables used in water resource management. However, quantifying Mean Annual Precipitation at high spatial resolution, needed for advanced hydrological analysis, is challenging in developing countries which often present a sparse gauge network and a highly variable climate. In this work, we present a methodology to quantify Mean Annual Precipitation at 1 km spatial resolution using different precipitation products from satellite estimates and gauge observations at coarse spatial resolution (i.e., ranging from 4 km to 25 km). Examples of this methodology are given for South America and West Africa. We develop a downscaling method that exploits the relationship among satellite-derived rainfall, Digital Elevation Model and Enhanced Vegetation Index. At last, we validate its performance using rain gauge measurements: comparable annual precipitation estimates for both South America and West Africa are retrieved. Validation indicates that high resolution Mean Annual Precipitation downscaled from CHIRP (Climate Hazards Group Infrared Precipitation) and GPCC (Global Precipitation Climatology Centre) datasets present the best ensemble of performance statistics for both South America and West Africa. Results also highlight the potential of the presented technique to downscale satellite-derived rainfall worldwide.JRC.H.1-Water Resource

    Training on IRI Climate Data Tools and developing a method for integrating climate data in Kigali, Rwanda

    Get PDF
    For more than five years, the Rwanda Meteorological Agency (Météo Rwanda) and the International Research Institute for Climate and Society (IRI) have been working together to implement the IRI’s Enhancing National Climate Services initiative (ENACTS) in Rwanda. The ENACTS initiative brings climate knowledge into national decision- making by improving availability, access and use of climate information. Météo Rwanda staff have received a number of trainings on the different aspects of generating the datasets and developing climate information products. However, the tools used to generate ENACTS datasets have been evolving through addition of several new features. As a result, it is necessary to revise the training and to expose the staff to the new version of the tools. On the other hand, Météo Rwanda has started operating a network of automatic weather stations (AWS) and a weather radar. The integration of these datasets to ENACTS datasets is very important to improve the quality of climate data in Rwanda. Thus, the current training activities had three major components: (1) make a full use of the IRI Climate Data Tools (CDT) to create and analyze ENACTS datasets; (2) develop quality control procedures and create scripts to integrate data from the AWS network into ENACTS datasets; and (3) create scripts to process and adjust the radar-based precipitation estimates with data from the AWS network and integrate the processed data into ENACTS datasets

    High-Resolution Precipitation Datasets in South America and West Africa based on Satellite-Derived Rainfall, Enhanced Vegetation Index and Digital Elevation Model

    Get PDF
    [EN] Mean Annual Precipitation is one of the most important variables used in water resource management. However, quantifying Mean Annual Precipitation at high spatial resolution, needed for advanced hydrological analysis, is challenging in developing countries which often present a sparse gauge network and a highly variable climate. In this work, we present a methodology to quantify Mean Annual Precipitation at 1 km spatial resolution using different precipitation products from satellite estimates and gauge observations at coarse spatial resolution (i.e., ranging from 4 km to 25 km). Examples of this methodology are given for South America and West Africa. We develop a downscaling method that exploits the relationship among satellite-derived rainfall, Digital Elevation Model and Enhanced Vegetation Index. Finally, we validate its performance using rain gauge measurements: comparable annual precipitation estimates for both South America and West Africa are retrieved. Validation indicates that high resolution Mean Annual Precipitation downscaled from CHIRP (Climate Hazards Group Infrared Precipitation) and GPCC (Global Precipitation Climatology Centre) datasets present the best ensemble of performance statistics for both South America and West Africa. Results also highlight the potential of the presented technique to downscale satellite-derived rainfall worldwide.This work was supported by EUROCLIMA and RALCEA projects, funded by European Commission EuropeAid Co-operation Office.Ceccherini, G.; Ameztoy, I.; Romero Hernández, CP.; Carmona Moreno, C. (2015). High-Resolution Precipitation Datasets in South America and West Africa based on Satellite-Derived Rainfall, Enhanced Vegetation Index and Digital Elevation Model. Remote Sensing. 7(5):6454-6488. https://doi.org/10.3390/rs70506454645464887

    A study of the structure of radar rainfall and its errors

    Get PDF
    Els objectius principals d’aquesta tesi són dos: d’una banda estudiar l’estructura de la variabilitat de la precipitació a diferents escales espacials i temporals, i de l’altra, estudiar l’estructura dels errors en les estimacions quantitatives de precipitació a través de radar. Pel que fa a l’estudi de l’estructura de la precipitació es proposa un marc de comparació per a mètodes de downscaling basat en valorar el grau amb què cada mètode és capaç de reproduir la variabilitat observada a les diferents escales de la pluja i la seva estructura multifractal. Finalment es proposa un mètode de downscaling tridimensional per a generar camps de precipitació d’alta resolució. Partint de dades mesurades amb radar, és capaç de reproduir la variabilitat a totes les escales de la pluja, i a la vegada, conservar l’estructura vertical de la precipitació observada pel radar. En aquesta tesi s’estudia també l’estructura dels errors associats a les mesures de radar, tant terrestre com embarcat en satèl·lit, que queden després de la cadena de correcció. Es realitza un estudi mitjançant simulació física de les observacions del radar, sobre un camp de precipitació d’alta resulució, per caracteritzar l’error relacionat amb la distància d’observació. També es caracteritza l’error total en les estimacions quantitatives de pluja dels radars terrestres mitjançant comparació contra un producte de referència basat en la combinació de radar i pluviòmetres. L’estructura de l’error trobada ha estat usada per generar un ensemble d’estimacions de pluja, que representa la incertesa en les estimacions, i pot ser emprat per aplicacions probabilístiques. Pel que fa a l’estudi de l’estructura de l’error associat a les estimacions de radar embarcat en satel·lit, s’han realitzat comparacions del radar embarcat en el satèl·lit TRMM contra equipament terrestre, per tal de caracteritzar, sota diverses condicions, les diferències en les mesures de precipitació.The principal objectives of this thesis are two: on one hand study the structure of the precipitation’s variability at different spatial and temporal scales, and on the other hand study the structure of the errors in the quantitative precipitation estimates by radar. In relation to the precipitation structure, a comparison framework for downscaling methods is proposed. Within this framework, the capability of each method reproducing the variability and multifractal behaviour observed in rainfall can be tested. A three-dimensional downscaling method to generate high-resolution precipitation fields from radar observations is proposed. The method is capable to reproduce the variability of rainfall at all scales and, at the same time, preserve the vertical structure of precipitation observed by the radar. In this thesis the structure of the errors that remain after the correction chain in radar measurements (both ground- and space-borne) is also studied. Simulation of the radar physical measurement process over high-resolution precipitation fields is performed to characterize the error related with range. The overall error in quantitative precipitation estimates by radar is characterized through comparison of radar estimates with a reference product based on a radar-raingauges merging. The error structure is used to generate a radar ensemble of precipitation estimates that represents the uncertainty in the measurements and can be used in probabilistic applications. Regarding the study of the errors associated to spaceborne radar measurements, comparisons of TRMM Precipitation Radar with ground equipment are performed to characterize the discrepancies between the precipitation estimates under different conditions
    corecore