123,830 research outputs found

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Limiting the influence of regulated electrical drainage on track circuits

    Get PDF
    For the past two years, the authors of this paper have been working on the development of a new regulated electrical drainage system for tram tracks, which may also be used on railways in the future. When this drainage is used on train tracks equipped with track circuits, it is necessary to make sure that the drainage does not generate current harmonics which may be dangerous for the correct functioning of the circuits. In the Czech Republic, requirements regarding the operation of track circuits are stated by Standard CSN 342613. When the drainage was tested on tram tracks, where there are no track circuits, it was found out that in certain operation modes, the drainage generates frequencies which collide with the frequencies of track circuits. Therefore, a passive filter was designed to solve this problem. With the use of computer simulation and measurements on a laboratory model, it was verified that this filter is able to suppress unwanted current harmonics, so that they are in agreement with the above mentioned Standard. These measurements and simulations are described in this paper.Web of Science245565

    Technology needs assessment of an atmospheric observation system for tropospheric research missions, part 1

    Get PDF
    The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles

    A self-mixing laser sensor design with an extended kalman filter for optimal online structure analysis and damping evaluation

    Get PDF
    We have developed a new algorithm based on the extended Kalman filter, in order to improve the resolution of an optical displacement sensor. This new non contact sensor which provides vibration measurement with a very good accuracy might be used for online quality control by measuring the damping of excited mechanical structure. This self-mixing sensor subject to weak feedback has been tested in comparison with a commercial vibrometer, to measure the frequency response function of a plate with a passive damping to be characterized, in order to show the efficiency of a damping treatment

    Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    Get PDF
    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements

    Vibration control strategies for proof-mass actuators

    Get PDF
    Proof-mass actuators have been considered for a broad range of structural vibration control problems, from seismic protection for tall buildings to the improvement of metal machining productivity by stabilizing the self-excited vibrations known as chatter. This broad range of potential applications means that a variety of controllers have been proposed, without drawing direct comparisons with other controller designs that have been considered for different applications. This article takes three controllers that are potentially suitable for the machining chatter problem: Direct velocity feedback, tuned-mass-damper control (or vibration absorber control), and active-tuned-mass-damper control (or active vibration absorber control). These control strategies are restated within the more general framework of Virtual Passive Control. Their performance is first compared using root locus techniques, with a model based on experimental data, including the low frequency dynamics of the proof-mass. The frequency response of the test structure is then illustrated under open and closed-loop conditions. The application of the control strategies to avoid machine-tool chatter vibrations is then discussed, without going into detail on the underlying physical mechanisms of chatter. It is concluded that virtual passive absorber control is more straightforward to implement than virtual skyhook damping, and may be better suited to the problem of machining chatter

    Navigation/traffic control satellite mission study. Volume 2 - Systems analyses

    Get PDF
    Systems analysis of spacecraft network for transoceanic traffic contro

    Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision

    Full text link
    Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of μrad/Hz\mu \textrm{rad}/\sqrt{\textrm{Hz}} at frequencies between 0.1 mHz0.1\,\textrm{mHz} and 1 Hz1\,\textrm{Hz}. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201
    • …
    corecore