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Abstract—We have developed a new algorithm based on the
extended Kalman filter in order to improve the resolution of a self-
mixing (SM) optical displacement sensor. This noncontact sensor,
which provides vibration measurement with a very high accuracy,
can be used for online quality control, for example, measuring the
damping of excited mechanical structures. This SM sensor subject
to weak feedback has been tested in comparison with a commercial
vibrometer in order to measure the frequency response function
(FRF) of a plate with a passive damping to be characterized, and
to show the efficiency of a damping treatment.

Index Terms—Displacement sensors, extended Kalman filter, op-
tical interferometry, structural analysis, vibration measurement.

I. INTRODUCTION

S TRUCTURAL vibrations are undesirable as they can create
disturbances like structural fatigue, transmission of vibra-

tions to another system, or generate noise due to the acoustical
radiation. However, vibrations and noise in a dynamic system
can be reduced by a number of means. Firstly, to reduce noise,
a negative noise from another source can be used. A second
method consists in isolating the vibration to avoid any transmis-
sion to another system.

The third technique, known as passive damping, enables us
to decrease the amplitude of vibrations. It has been the domi-
nant technology in the noncommercial aerospace industry since
the early 1960s [1], but the use of surface damping in the au-
tomotive, commercial airplane, appliance, and other industries
has only been effective in recent years. In the aerospace sector,
for example, it might be useful to test the efficiency of surface
damping treatments on mechanical structures submitted to vi-
bration online. This requires a modal analysis: 1) several points
of the structure have to be tested at the same time, so several
sensors must be used for a one-shot acquisition or 2) the sensor
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have to be placed at different locations and the measurement
repeated, which is time consuming. Commercial vibrometers
are excluded because they are too expensive to be duplicated
for a sensor network. Traditional accelerometers cannot be used
because contact measurements on a thin material modify the
eigenmodes and the resonance frequencies. Noncontact mea-
surements are required. Vibrometers with multiple probes using
gaz lasers have also been proposed to measure out-of-plane sur-
face velocities at different points of a structure surface [2]–[4].
But these setups are bulky due to the size of gaz laser configu-
rations and the optical components required.

In this paper, we describe a new low-cost optical sensor. It has
been tested to measure the frequency response function (FRF)
of a plate with passive damping [5] submitted to a sweep sine
excitation.

Generally, noncontact measurement of displacement and vi-
bration using a laser is a very efficient method. However, such
laser-based sensing systems require high-precision alignement
and optical components such as mirrors and beam splitters. On
the other hand, a displacement sensor based on the self-mixing
(SM) principle does not need these expensive components. In
such a sensor, a low-cost laser diode (LD) in its package (in-
cluding a photodiode) highlights the vibrating target, and a part
of the laser beam is then reinjected into the active cavity of the
laser, where it interferes with the standing wave [6]. Such an
interference generates a modulation of the optical output power
(OOP) [7]. This modulation is then monitored by the photodi-
ode included in the package of the LD, each fringe period being
related to an optical path difference of half a wavelength (λ/2).
The fringes are not a cosine function as in conventional interfer-
ometry but saw-tooth like, as interference occurs in the active
cavity with an imaginary refractive index. Such a sensor is very
user friendly; it is self-aligned as the emitted and the backscat-
tered laser beam follow the same optical path, and the entire de-
tection system is carried out in the compact package of the LD.

SM interference is a well-known effect studied extensively
during the last four decades. Presently, sensors based on this
physical phenomenon have been designed for a large number of
applications. Absolute distance [8], displacement [9], velocity
and vibration measurements [10], [11], modal analysis [12], as
well as velocity measurement of fluids [13], have notably been
demonstrated since the 80’s [14], [15]. Early signal-processing
simply involved performing a derivative of the SM signal and
counting the occurrence of the negative and positive pulses ob-
tained. By this means, the target displacement can be retrieved
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with a λ/2 resolution. Later, different techniques were proposed
in order to increase the resolution.

� A signal processing scheme based on the linearization of
the fringe of the saw-tooth-like optical power was pro-
posed. A resolution of λ/12, i.e., 70 nm with λ = 785 nm,
was obtained [16].

� A fast modulation of the laser diode current causing a
wavelength shift, which produces a phase dithering, was
proposed. The resolution increased by sampling the SM
signal synchronously with the dither [17].

� The SM signal was sampled and processed with a function
inversion in order to extract the displacement included in
the expression of the optical signal [18].

These two last methods provide a resolution of 40 nm, but
require carefully controlled experimental conditions.

To our knowledge, “evolved” signal processing using adap-
tive algorithm applied to SM has never been reported, except for
the SM LD velocimetry, where a second-order autoregressive
(AR) estimation of the velocity [19] and maximum likelihood
doppler-frequency estimation [10] have been proposed. The
other example is the design of an SM displacement sensor based
on the unwrapping of the phase estimation [see (1)–(3)] [20]
and a wavelet transform when the signal is noisy due to hos-
tile industrial environnement [21]. Unfortunately, this method
is dedicated to moderate feedback at present.

For our application, we consider only the weak feedback
regime, i.e., the SM phenomenon when only a part of the light
reenters the active cavity. The signal is then slightly nonlinear,
but still allows a linearized model to be determined, hence,
enabling us to use the suboptimal extended Kalman filter.

The paper is organized as follows. Section II presents the
model behavior of the SM signal for C < 1 and its use with
an extended Kalman filter to extract the displacement from the
OOP. Our algorithm is tested in Section III. The application of
our sensor for online damping measurements is explained in
Section IV.

II. DISPLACEMENT RECONSTRUCTION ALGORITHM

A. Basic SM Principle

The theory of SM interferometry is now well known [22]. A
complete analysis of the optical feedback phenomenon in LDs is
given by the rate equations first derived by Lang and Kobayashi
[23]. This enables a behavioral model of an LD, which is subject
to SM, to be built [24]. The emitted light is backscattered by
the moving target, which modifies its frequency. The relation
between the optical frequency of the emitted and backscattered
waves is given by

x0(t) − xF (t) + Csin[xF (t) + arctan(α)] = 0 (1)

where xF (t) and x0(t) are the two phase signals with and with-
out feedback, respectively, which are functions of the wave-
lengths with feedback λF (t) and without feedback λ0(t), re-
spectively, given by

xF (t) = 2π
D(t)

λF (t)/2
= 2πνF (t)τ(t) (2)

x0(t) = 2π
D(t)

λ0(t)/2
= 2πν0(t)τ(t) (3)

where τ(t) = 2D(t)/c is the round trip time, c is the speed of
light. ν0(t) and νF (t) represent, respectively, the optical fre-
quencies under free running conditions and with optical feed-
back. α is the linewidth enhancement factor, a physical char-
acteristic of the laser. C is the feedback coupling factor, which
depends on the reflection coefficient of the target and the dis-
tance to the target.

The expression of the OOP of an LD subject to feedback is
given by

PF (t) = P0(1 + m cos(xF (t))) (4)

where P0 is the emitted optical power in the free running state
and m is the modulation index. After sampling and normal-
ization of PF (t), the discrete-time-measured signal is given by
y(kTe), where Te is the sampling period, written as

y(kTe) = y(k) = cos[xF (k)]. (5)

B. Model Behavior of the SM Signal

A lot of algorithms in signal processing require a model of the
signal, which can be generated using schematic block diagrams.
In our case, to represent the relation between the displacement
D(t) and the power P (t) of the SM sensor, (4) and (7) have to be
represented with elementary block diagrams, where (7) can be
seen as an injective nonlinear relation G[xF (t);C,α] between
xF (t) and x0(t) given by

x0(t) = xF (t) + C sin[xF (t) + arctan(α)] (6)

= G[xF (t);C,α]. (7)

However, the required function is the relationship between
x0(t) and xF (t), which can be defined as the “inverse” function
of G(.) given by

xF (t) = F [x0(t);C,α]. (8)

The LD behavior depends significantly upon parameter C,
whereas the OOP shape is only slightly affected by the value
of parameter α [24], hence, α is not a relevant parameter. Here,
we consider only the weak feedback, i.e., C < 1, F (.) is easy
to calculate numerically even if the inversion of the function
G(.) cannot be carried out analytically. An important property
must be considered: if x0(t) = kπ − arctan(α) for any integer
k, then

xF (t) = x0(t) = kπ − arctan(α) (9)

is a solution to (7).
A theoretical plot in Fig. 1 shows that the function F (.)

consists of the juxtaposition of small segments of curves C(k −
2),C(k),C(k + 2), . . ., with k being even. Each C(k) can be
obtained from a translated nonlinear graph for a function y =
f(x;C), which is defined for x ∈ [π,−π]. Equation (10) shows
that the calculation of a set of samples xs from a set of linearly
equally spaced points ys between −π and π is relatively simple.
Then, ys can be plotted as a function of xs. The calculation of

x = y + C sin(y) (10)
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Fig. 1. Plot of xF (t) = F [x0(t);C;k] with C < 1. This graph consists of a
juxtaposition of curves C(k − 2), C(k), C(k + 2), for even k.

with x = x0(t) + arctan(α) and y(t) = xF (t) + arctan(α)
gives a set of point ys between [−π, π] for a set of samples
xs. The direct calculation of y = f(x;C) has been carried out
through a linear interpolation of data set xs, ys for a given x,
which is expressed as

y = f(x;C) ≈ fINTERP(x;xs, ys, C). (11)

This interpolation procedure has been achieved with a simple
lookup table [24].

Moreover, the even integer number k with 2π intervals be-
tween 0 and x0(t) has to be determined. This number satisfies
the inequality

(k − 1)π − arctan(α) ≤ x0(t) ≤ (k + 1)π − arctan(α) (12)

where k ∈ N is even. The solution to (12) is given by

k (even) = 2 round

(
x0(t) + arctan(α)

2π

)
(13)

where round is the rounding function toward the nearest integer.
The interpolation procedure described in (11) and the calculation
of k given in (13) can be represented with a simple and exact
functional block diagram shown in Fig. 2 [24].

C. Extended Kalman Filter

The Kalman filter is a traditional efficient recursive filter that
estimates the state of a dynamic system (here, the displacement
of the target) from a series of incomplete and noisy measure-
ments (like the OOP) [25]. For this purpose, a state model (or
signal model) and an observation model are required. The dis-
placement of the moving target is sinusoidal with a known fre-
quency. This will be used in Section IV in order to find the FRF
of the material.

For the signal model, we assume that the displacement in-
creases and decreases quite gently, as in a mechanical vibration.
The state vector X(k) is composed of three elements: the dis-
placement x1(k), the velocity x2(k) and x3(k), which is the
unknown constant position within an error of 2πλ/2. x3(k) is

a slowly varying process, which models the initial position as
x3(k + 1) = x3(k) + w3(k). w3(k) is a white gaussian noise.
Amplitude fluctuations of x3(k) are controlled by the variance
of w3, σ2

w3
. If σ2

w3
= 0, x3(k + 1) = x3(k), and the position is

constant, whereas if σ2
w3

> 0, x3(k) is then a random walk, the
amplitude of which increases with w3(k). The state model can
then be written as

X(k + 1) = AX(k) + W (k) (14)

with the state vector X(k) = [x1(k), x2(k), x3(k)]T where T
is the transposition of the vector, and

A =




cos(2πf0) − sin(2πf0) 0

sin(2πf0) cos(2πf0) 1

0 0 1


 (15)

is the state transition matrix and W (k) = [0 0 w3(k)]T is the
state noise, which is white and zero-mean statistically indepen-
dent, with variance σ2

w3
. f0 is the normalized frequency defined

as the ratio of the frequency applied to the moving target and
the sampling frequency.

The state vector is linked to the observation, i.e., the experi-
mental data as

Y (k) = H[k,X(k)] + V (k) (16)

where H is the theoretical relation between Y (k) and X(k), and
V (k) is the measurement noise, which is white and zero-mean
statistically independent, with variance σ2

v . The principle of the
extended Kalman filter is based on the observation equation
linearization around the current prediction of the state vector.
If H is a linear relation, the traditional optimal Kalman filter is
used instead. If H is nonlinear, the Kalman filter still can be used
with a linearization of H between the state and the observation.

Using (5) and (8), the relation (16) can be rewritten as

Y (k) = cos[F [x1(k);C;α] + V (k). (17)

The observation Y (k) is the normalized experimental OOP. In
order to use an extended Kalman filter, this equation is linearized
using a first-order Taylor development around X(k) given by

C0(k + 1) =
∂H[k + 1,X(k)]

∂X(k)
|X(k)=X̂(k+1|k) (18)

C0(k + 1) = [− sin[F (x1(k + 1))]
∂F

∂k
(x1(k + 1)) 0 0] (19)

where ∂F
∂k (x1(k + 1)) can be obtained from the numerical

derivative of functional operator F [x0(t);C;α]. Using this lin-
earization approach, the extended Kalman filter is suboptimal.

Based on the state model (14) and (16), we can then re-
cursively calculate the estimation of the current state vector
X̂(k|k), which is the output of the algorithm, and its estima-
tion error covariance P (k|k), via the Kalman filter recursions:
k = 1, 2, 3, . . . [26].

For each k, X̂(k + 1|k) is the state vector at k + 1, know-
ing the other data at k. P (k + 1|k) is the covariance matrix
of the state prediction error, i.e., the estimated error between
the experimental value of Y (k) at k and its prediction by the
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Fig. 2. Block diagram representation of signal transformations in an LD SM sensor. Behavioral representation of the functional operator F [x0(t);C;α] for the
SM LD sensor in the case of C < 1. The lookup table uses a set of samples {xs , ys} to interpolate function y = f(x;C). It gives the calculation of the OOP for
a given displacement D(t).

algorithm at k − 1. Y (k|k − 1) = C0(k)X̂(k|k − 1) has to be
determined in order to minimize this error. However, the data
at k = −1, k = −2 are unknown. X̂(0| − 1) = X0, the initial
value of the state vector is roughly estimated from realistic ex-
perimental conditions. P (0| − 1) = P0, the confidence of this
initial estimation, is evaluated according to how X0 can be far
from the real value (the higher the value of P0, the less reliable
the value of X0).

The Kalman gain L(k) at k is calculated first, using P (k|k −
1), which is the prediction of the estimation error covariance
calculated at k − 1 as

L(k) = P (k|k − 1)CT
0 (k)[C0(k)P (k|k − 1)

CT
0 (k) + RV (k, k)]−1.

The current state vector X̂(k|k), (i.e., the output of the algo-
rithm) is next calculated as the roughly predicted state vector at
k − 1, X̂(k|k − 1), corrected by a term using the Kalman gain
L(k):

X̂(k|k) = X̂(k|k − 1) + L(k)[Y (k) − C0(k)X̂(k|k − 1)].

The current estimation error covariance is then computed as
its predicted value at k − 1 also corrected by a term using the
Kalman gain L(k):

P (k|k) = P (k|k − 1) − L(k)C0(k)P (k|k − 1). (22)

Estimated predictions of X and P at k + 1 are given by

X̂(k + 1|k) = A(k)X̂(k|k) (23)

and

P (k + 1|k) = A(k)P (k|k)AT (k) + RW (k, k) (24)

where RV (k, k) and RW (k, k) are the autocorrelation matrices
of the process noise and the measurement noise, respectively.

III. SIMULATIONS

The extended Kalman filter algorithm has been tested with
a simulated optical power. For a given simulated sinusoidal
displacement [Fig. 3(a)] the corresponding optical output power
is calculated [Fig. 3(b)], according to the method explained
previously in Fig. 2.

Fig. 3. (a) Simulated displacement of the target. (b) Simulated optical power
of an LD focused on this moving target. (c) Reconstruction of the displacement
using the extended Kalman filter. (d) Theoretical error, i.e., difference between
(a) and (c).

For this example, the frequency displacement is 300 Hz, and
its amplitude is 10λ/2 (i.e., 4 µm), the sampling frequency is
240 kHz. The OOP is simulated with the values C = 0.4 and
α = 4.

The error of our algorithm is calculated as the difference
between the simulated and the reconstructed displacement
[Fig. 3(d)]. After a short time, the error is around 0.06λ/2, i.e.,
around 30 nm for the semiconductor laser we use (λ = 785 nm).

IV. ANALYSIS FOR SURFACE DAMPING TREATMENT

A. Introduction

A damping layer is often used to solve a variety of resonant
noise and vibrations problems, especially those associated with
sheet metal structure vibrations. Such treatments can easily be
applied to existing structures, and provide high damping capa-
bility over wide temperature and frequency ranges. These coat-
ing layer treatments are usually classified into two categories
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Fig. 4. (a) Free-layer damping. (b) Constrained-layer damping.

Fig. 5. Photograph of the experimental setup: the shaker excites the plate, a
PZT accelerometer measures the input acceleration, and the SM sensor measures
the vibrations amplitude.

according to whether the damping material is subject to exten-
sional or shear deformation.

Fig. 4(a) shows a section of the target structure with a free
layer damping (i.e., extensional damping). The damping ma-
terial is sprayed on the structure or bonded using a pressure-
sensitive core. The treatment can be coated on one or both sides
of the structure.

When the base structure is deflected in bending, the viscoelas-
tic damping material deforms primarily in extension and com-
pression in planes parallel to the base structure. The hysteresis
loop of the cyclic stress and strain thus, dissipates energy, while
the degree of damping is limited by thickness and weight re-
strictions.

Fig. 4(b) shows the arrangement of a constrained-layer damp-
ing treatment (i.e., shear damping treatment). This consists of
a sandwich of two outer elastic layers with a viscoelastic ma-
terial as the core. When the base structure undergoes bending
vibration, the viscoelastic material is forced to deform in shear
because of the stiff upper layer. Constrained-layer damping is
more efficient than the free-layer damping as more energy is
dissipated and converted into heat during the work done by the
shearing mode within the viscoelastic adhesive.

A typical constrained layer arrangement consists of a thin
metal foil covered with a viscoelastic adhesive that can be used
on an existing structure. The major difference between free and

Fig. 6. Block diagram of the setup. Computer drives the shaker with a sweep
sinusoidal signal, and records the data from the PZT acceleration sensor and the
SM sensor or the commercial vibrometer. The proposed data are then postpro-
cessed to plot the FRF.

constrained layers is the influence of the thickness of the coating.
For a constrained layer, the structural damping increases with
the thickness till a maximum value, and remains constant when
the thickness is more important while it still linearly increases
with the thickness for a free layer.

The FRF is a method that allows the measurement of the
efficiency of the surface damping treatment. It is calculated as
the ratio of the displacement of the structure (i.e., the output
displacement) to the input displacement at which the structure
is subjected, on a logarithmic scale. This function enables us
to know the performance of the structure at resonance, and to
measure the structural damping [27]–[29].

The damping is determined through the comparison of the
average vibration level (AVL); the higher the level, the weaker
is the damping (see the Appendix).

B. Experimental Setup

The schematic of the measurement system for FRF is il-
lustrated in Fig. 6. A shaker, which is driven by a sweeping
sinusoidal signal using a Labview program, excites the plate
under test (Fig. 5). The dimensions of the plates used are
350 mm × 350 mm × 2 mm, and the boundary conditions are
free–free. A piezoelectric transducer (PZT) sensor positioned
between the shaker and the plate measures the acceleration.
Our SM sensor using an LD with a 785-nm wavelength then
measures the response displacement. A commercial calibrated
vibrometer (Polytec CLV-700) was used as the reference sensor.

Two signals from the PZT sensor and the SM sensor (or the
commercial vibrometer) were digitized by a data acquisition
card. After postprocessing of the SM signal with the proposed
extended Kalman filter algorithm written using Matlab, the dis-
placement of the plate was obtained. Numerical integration of
the signal of the vibrometer results in a reference measurement
of the target displacement. The ratio of the displacement of the
structure (i.e., the output displacement) to the input displace-
ment (given by a double integration of the PZT accelerometer)
is then calculated for each excitation frequency.

The joint between the shaker and the plate is realized with a
piece having a T-form, which is bonded onto the plate. Hence,
excitation of the shaker can be applied on every part of the plate.
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Fig. 7. FRF of an EAR plate subject to sinusoidal excitation (a) from SM
sensor, (b) from commercial vibrometer, and (c) error calculated as the difference
between (a) and (b).

Fig. 8. FRF of a SMAC plate submitted to sinusoidal excitation (a) from
SM sensor, (b) from commercial vibrometer, and (c) error calculated as the
difference between (a) and (b).

We chose to apply the excitation at the center of an aluminum
plate (base structure-AU4G) with a thickness of 2 mm.

C. Results and Discussion

Fig. 7 represents the FRF measurement for the aluminium
plate studied with a free layer [an EAR (composite material)
plate of thickness 5 mm], using first the SM sensor [Fig. 7(a)]
and the commercial vibrometer [Fig. 7(b)]. The same experi-
ment has been achieved with a constrained layer [a SMAC R©

(composite material) plate thickness of 4 mm] (Fig. 8). In both
cases, the maximum error is approximately ±4 dB. There is a
good agreement between both methods.

Fig. 9 shows the experimental results for the 2 mm-excited
aluminium plate. The damping is very small due to shape peaks.
Figs. 7 and 8 when compared to Fig. 9 show the effect of the

Fig. 9. FRF of a plate without surface damping treatment from the SM sensor
using the extended Kalman filter and from the vibrometer.

added layer on the vibration. The FRF is decreased to 20 dB,
and a damping is present.

These results show that the EAR plate seems to have the
best performance, i.e., the lower vibration amplitudes. This can
be explained by the thicknesses and the densities of both plates
being different. Both coating permit an important damping of the
structure. The amplitude of the output displacement is strongly
decreased, reducing at the same time, the problem of noise
transmission to other structures.

The frequency limit of this SM sensor cannot be determined
easily because it depends on the mechanical displacement fre-
quency and the amplitude of this displacement. Indeed, the num-
ber of OOP fringes generated is proportional to the amplitude
of this displacement. The larger the amplitude, the higher the
sampling frequency of the OOP will have to be increased, in
order to sample every fringe.

V. CONCLUSION

An SM displacement sensor with the LD under weak feed-
back was designed in order to achieve accurate vibration dis-
placement measurements. For this purpose, an extended Kalman
filter was computed by using a behavioral model of the SM sig-
nal. This simple sensor was tested on plates in order to measure
the FRF when coated and uncoated with a passive damping layer.
Experimental results were successfully compared to those ob-
tained with a calibrated commercial vibrometer, which is far
more costly. Due to its relatively low cost, our sensor can be
duplicated in order to achieve several data acquisitions on the
considered plate for each frequency simultaneously.

In this paper, we measured the FRF at one point in order to
demonstrate the efficiency of a damping treatment. However,
10 points of measurements are required to determine the per-
formance characteristics of a plate (see Appendix). A network
of SM sensors can, thus, allow the AVL to be measured rapidly,
in order to determine the global performance of the plate. Such
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Fig. 10. Results for a plate with a layer of EAR coating.

a network can use, for example, ten sensors simultaneously,
since a single sensor coupled with a scanning XY mirror is
more costly and less robust mechanically. This SM sensor net-
work can be cost effective and of great interest to achieve online
modal analysis of mechanical pieces.

APPENDIX

AVL

The AVL is a global parameter required to determine the be-
havior of a mechanical piece subject to vibration. AVL takes into
account the acceleration for an eigenvalue, i.e., corresponding
to a peak on the FRF, which can be given by

AVLj =
1
n

√√√√ n∑
i=1

γ2
i

where n is the number of measured points, and γi is the accel-
eration at the point i for eigenvalue j.

This parameter allow the performance of a structure to be
quantified. In fact, if the measurements were realized at an
insufficient number of points, the FRF can be truncated, as
some points can be an antinode of a mode shape.

The lager the number of measured points, the more accurate
the AVL value will be (i.e., closed to the theoretical value).
However, to measure the performance of a plate, it has been
proved experimentally that 10 points of measurement results in
an AVL value with sufficient precision. As an example, Fig. 10
represents the respective responses of a plate without damping
and with a layer of EAR for the first seven modes. For each
frequency, ten measurements have been performed at different
points of the plate, the laser sensor being translated manually
between each FRF acquisition. By averaging the results obtained
from a given sample of ten measurements, the eigen frequencies
of the coated plate can be determined with a better accuracy.
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