1,525 research outputs found

    Polyphonic music information retrieval based on multi-label cascade classification system

    Get PDF
    Recognition and separation of sounds played by various instruments is very useful in labeling audio files with semantic information. This is a non-trivial task requiring sound analysis, but the results can aid automatic indexing and browsing music data when searching for melodies played by user specified instruments. Melody match based on pitch detection technology has drawn much attention and a lot of MIR systems have been developed to fulfill this task. However, musical instrument recognition remains an unsolved problem in the domain. Numerous approaches on acoustic feature extraction have already been proposed for timbre recognition. Unfortunately, none of those monophonic timbre estimation algorithms can be successfully applied to polyphonic sounds, which are the more usual cases in the real music world. This has stimulated the research on multi-labeled instrument classification and new features development for content-based automatic music information retrieval. The original audio signals are the large volume of unstructured sequential values, which are not suitable for traditional data mining algorithms; while the acoustical features are sometime not sufficient for instrument recognition in polyphonic sounds because they are higher-level representatives of raw signal lacking details of original information. In order to capture the patterns which evolve on the time scale, new temporal features are introduced to supply more temporal information for the timbre recognition. We will introduce the multi-labeled classification system to estimate multiple timbre information from the polyphonic sound by classification based on acoustic features and short-term power spectrum matching. In order to achieve higher estimation rate, we introduced the hierarchically structured cascade classification system under the inspiration of the human perceptual process. This cascade classification system makes a first estimate on the higher level decision attribute, which stands for the musical instrument family. Then, the further estimation is done within that specific family range. Experiments showed better performance of a hierarchical system than the traditional flat classification method which directly estimates the instrument without higher level of family information analysis. Traditional hierarchical structures were constructed in human semantics, which are meaningful from human perspective but not appropriate for the cascade system. We introduce the new hierarchical instrument schema according to the clustering results of the acoustic features. This new schema better describes the similarity among different instruments or among different playing techniques of the same instrument. The classification results show the higher accuracy of cascade system with the new schema compared to the traditional schemas. The query answering system is built based on the cascade classifier

    The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

    Get PDF
    The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.Comment: 29 pages, 7 figures, 6 tables, 128 reference

    Polyphonic Sound Event Detection by using Capsule Neural Networks

    Full text link
    Artificial sound event detection (SED) has the aim to mimic the human ability to perceive and understand what is happening in the surroundings. Nowadays, Deep Learning offers valuable techniques for this goal such as Convolutional Neural Networks (CNNs). The Capsule Neural Network (CapsNet) architecture has been recently introduced in the image processing field with the intent to overcome some of the known limitations of CNNs, specifically regarding the scarce robustness to affine transformations (i.e., perspective, size, orientation) and the detection of overlapped images. This motivated the authors to employ CapsNets to deal with the polyphonic-SED task, in which multiple sound events occur simultaneously. Specifically, we propose to exploit the capsule units to represent a set of distinctive properties for each individual sound event. Capsule units are connected through a so-called "dynamic routing" that encourages learning part-whole relationships and improves the detection performance in a polyphonic context. This paper reports extensive evaluations carried out on three publicly available datasets, showing how the CapsNet-based algorithm not only outperforms standard CNNs but also allows to achieve the best results with respect to the state of the art algorithms

    From heuristics-based to data-driven audio melody extraction

    Get PDF
    The identification of the melody from a music recording is a relatively easy task for humans, but very challenging for computational systems. This task is known as "audio melody extraction", more formally defined as the automatic estimation of the pitch sequence of the melody directly from the audio signal of a polyphonic music recording. This thesis investigates the benefits of exploiting knowledge automatically derived from data for audio melody extraction, by combining digital signal processing and machine learning methods. We extend the scope of melody extraction research by working with a varied dataset and multiple definitions of melody. We first present an overview of the state of the art, and perform an evaluation focused on a novel symphonic music dataset. We then propose melody extraction methods based on a source-filter model and pitch contour characterisation and evaluate them on a wide range of music genres. Finally, we explore novel timbre, tonal and spatial features for contour characterisation, and propose a method for estimating multiple melodic lines. The combination of supervised and unsupervised approaches leads to advancements on melody extraction and shows a promising path for future research and applications

    Towards the automated analysis of simple polyphonic music : a knowledge-based approach

    Get PDF
    PhDMusic understanding is a process closely related to the knowledge and experience of the listener. The amount of knowledge required is relative to the complexity of the task in hand. This dissertation is concerned with the problem of automatically decomposing musical signals into a score-like representation. It proposes that, as with humans, an automatic system requires knowledge about the signal and its expected behaviour to correctly analyse music. The proposed system uses the blackboard architecture to combine the use of knowledge with data provided by the bottom-up processing of the signal's information. Methods are proposed for the estimation of pitches, onset times and durations of notes in simple polyphonic music. A method for onset detection is presented. It provides an alternative to conventional energy-based algorithms by using phase information. Statistical analysis is used to create a detection function that evaluates the expected behaviour of the signal regarding onsets. Two methods for multi-pitch estimation are introduced. The first concentrates on the grouping of harmonic information in the frequency-domain. Its performance and limitations emphasise the case for the use of high-level knowledge. This knowledge, in the form of the individual waveforms of a single instrument, is used in the second proposed approach. The method is based on a time-domain linear additive model and it presents an alternative to common frequency-domain approaches. Results are presented and discussed for all methods, showing that, if reliably generated, the use of knowledge can significantly improve the quality of the analysis.Joint Information Systems Committee (JISC) in the UK National Science Foundation (N.S.F.) in the United states. Fundacion Gran Mariscal Ayacucho in Venezuela
    • …
    corecore