
 Coventry University

DOCTOR OF PHILOSOPHY

E3MSD - a new music information retrieval architecture for an original music identifier

Li, Hanchao

Award date:
2020

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Aug. 2021

https://pureportal.coventry.ac.uk/en/studentthesis/e3msd--a-new-music-information-retrieval-architecture-for-an-original-music-identifier(e4ec1b30-5a1d-4697-a734-84734ffc0174).html

i

E3MSD – A New Music

Information Retrieval

Architecture for an Original

Music Identifier

Hanchao Li

May 2020

By

A thesis submitted in partial fulfilment of the University’s

requirements for the Degree of Doctor of Philosophy

ii

Content removed on data protection grounds

iii

Ethical Approval

iv

Abstract

Nowadays, more people tend to use the Internet to search, listen, purchase, download and

share music. Existing Music Information Retrieval (MIR) systems were either audio-

based or symbolic-based. Audio-based MIR systems were based on various audio formats,

for example, MP3. These formats can represent continuous sound waves well but are

limited in illustrating the content flow of the music melody and generating large files for

high fidelity music. In addition, audio-based MIR systems use the audio fingerprints to

find the exact music pieces, but they have difficulty in finding variances. On the other

hand, symbolic-based formats have advantages in effectively representing the content of

the music with small files, and in facilitating music pattern identifications, but they are

not suitable for Electronic Music (EM), which considers a continuous sound wave set.

This is because the symbolic-based representions limit themselves to discrete set

modelling so that they may introduce extra dummy notes to EM, which can affect the

main melody flow and lead to the increase of errors in symbolic-based retrieving

including identifying the origins from its variations. As a consequence of these, people

have been getting unsatisfied results from both audio and symbolic based music search

engines, as well as find it difficult to carry out music plagiarism checks. Therefore, we

need to find a new way to describe, model and analyse music.

In this project, we aim to retain those advantages from both audio and symbolic sides

while address their shortcomings, as briefly described above, by proposing a new

architecture named E3MSD (Expressive, Efficient, and Extendable Music Similarity

Detection). There are two contributions for E3MSD.

The first contribution is a new data model that describes the music information using both

the Music Definition Language (MDL) and the Music Manipulation Language (MML),

which can effectively and efficiently encode and represent the music. For evaluation, we

have tested the MDL&MML from the perspectives of music storage and music

representation. In terms of storage efficiency, the required storage of a sampled audio

encoded by the proposed coding scheme is smaller than other popular audio-based forms.

More precisely, a melody, with approximately 316 KB of the file size using the MP3

format, only requires 9 KB disk space when using the MDL&MML format. In terms of

v

music expressiveness, the proposed symbolic-based representation can model various

timbre using less storage space without sacrificing the quality. Finally, E3MSD includes

the automatic generation of MDL&MML file from the audio soundwaves. The derived

MDL&MML file shares around 94% melodic and 100% rhythmic accuracy with

manually generated one.

The second contribution is the development of a hybrid mechanism on the proposed

musical data model, named MUsic Classification And Similarity Measurement

(MUCASM), which combines contour, rhythm and audio fingerprints. This method

features a modified reinforcement-based ensemble learning classification mechanism,

which includes a decision tree that maps variations of music pieces to their corresponding

originals, with variation types as their attributes, for example, rhythm variation. The

experimental results show a stable accuracy of 84% without taking into account the types

of variations, and 96% by using our proposed ensemble learning.

E3MSD can be extended to study its potentials in improving the performance of existing

music search engines, building music version of plagiarism tools, and even generating

remixes automatically based on the similarity scores.

vi

Acknowledgements
This PhD project is 100% self-designed project, where I thought the idea around my Year

3 of Undergraduate in University of Warwick and Master in Coventry University in

2013~2014 by started to listen music around the world including Chinese, English,

German, Japanese and Korean music. Thus, with backgrounds from computing,

mathematical and music, this project was successfully planned, scheduled and submitted

to Coventry Univesity. Especially, the main concept and the motivation of this project

was from two ‘similar’ K-pop groups: BTS and GOT7.

First of all, I would like to express my sincere gratitude to my Director of Supervisor, Dr.

Xiang Fei, and my two top-class supervisors, Dr. Ming Yang and Prof. Kuo-Ming Chao,

for all their supports and suggestions to my idea. I would also like to thank Dr. Chaobo

He, from South China Normal University (Guangzhou, China), who give me some

funding when I’m attending any international conference in China. Next, thanks to all my

family members, especially my cousin, David Yee-Fan Zuo (Imperial College London,

UK), who helped me proof reading the whole thesis.

Moreover, I would also like to extend my thanks to all the staff, collegues, friends and

students who either have shown their interest or have been supported, more or less, to my

project. Some people were specially listed below, in ‘Surname’ alphabetic order:

Jung Choi (KAIST, South Korea); Miguel Francisco (Rubrik, USA); Dr. Olivier Haas

(Coventry University, UK); Yao Li (Coventry University, UK); Prof. David Mond

(University of Warwick, UK); Dr. John Moody ((ex-) University of Warwick, UK); Prof.

Juhan Nam (KAIST, South Korea); Dr. Dianabasi Nkantah (Coventry University, UK);

Dr. Vasile Palade (Coventry University, UK); Saebyul Park (KAIST, South Korea); Dr.

Sujan Rajbhandari (Coventry University, UK); Zhouhemu Tang ((ex-)Coventry

University, UK); Weihan Xue ((ex-)Coventry University, UK); Hongyu You (Coventry

University, UK).

Finally, thanks to all again. It was a brilliant PhD journey with excellent outputs, and I’m

truly glad to share the success with everyone.

Best wishes to all,

Hanchao Li

vii

List of Publications
Conference Papers
Towards A Hybrid Deep-Learning method for Music Classification and Similarity

Measurement – Hanchao Li, Xiang Fei, Kuo-Ming Chao, Ming Yang, Chaobo He

(Conference: ICEBE 2016)

A survey of Audio MIR systems, Symbolic MIR Systems and a MDL Demo-System –

Hanchao Li, Zhouhemu Tang, Xiang Fei, Kuo-Ming Chao, Ming Yang, Chaobo He

(Conference: ICEBE 2017)

MDL & MML: A Coding Scheme for Music Representation and Storage – Hanchao Li,

David Yee Fan Zuo, Xiang Fei, Kuo-Ming Chao, Ming Yang, Chaobo He Chen

(Conference: ICEBE 2017)

Automatic Note Recognition and Generation of MDL and MML using FFT – Hanchao

Li, Hongyu You, Xiang Fei, Ming Yang, Kuo-Ming Chao Chaobo He

(Conference: ICEBE 2018)

Theoretical Aspects of Music Definition Language and Music Manipulation Language –

Hanchao Li, Xiang Fei, Ming Yang, Kuo-Ming Chao, Chaobo He

(Conference: ICEBE 2019)

Extended Abstract
Music Data Representation and Information Retrieval Using Vectorbased Similarity

Scores – Hanchao Li

(Conference: ISMIR 2017)

Music Data Representation Using MDL/MML and Note Recognition Using FFT –

Hanchao Li

(Conference: ISMIR 2018)

Journal Paper
A Hybrid Ensemble-Learning Method for Music Classification and Similarity

Measurement – Hanchao Li, Xiang Fei, Kuo-Ming Chao, Ming Yang, Chaobo He

(Journal: pending) (Extension of the first conference paper)

viii

Table of Contents

ETHICAL APPROVAL III

ABSTRACT IV

ACKNOWLEDGEMENTS VI

LIST OF PUBLICATIONS VII

CONFERENCE PAPERS VII
EXTENDED ABSTRACT VII
JOURNAL PAPER VII

TABLE OF CONTENTS VIII

LIST OF ALGORITHM, DEFINITION, LEMMA, AND THEORY X

LIST OF FIGURES XI

LIST OF TABLES XIII

NOMENCLATURE & SYMBOLS XIV

1. INTRODUCTION 1

1.1. RESEARCH BACKGROUNDS 1
1.2. RESEARCH QUESTIONS 4
1.3. RESEARCH AIMS AND OBJECTIVES 5
1.4. NOVELTY, CONTRIBUTION AND CHALLENGE 5
1.5. THESIS STRUCTURE 6

2. LITERATURE REVIEW 7

2.1. MUSIC INFORMATION RETRIEVAL SYSTEMS FOR SEARCH ENGINES 7
2.1.1. Audio 8

2.1.1.1. Case Studies 9
2.1.1.2. Literature Critiques 11

2.1.2. Symbolic 15
2.1.2.1. Case Studies 16
2.1.2.2. Literature Critiques 19

2.2. AUDIO VS SYMBOLIC 22
2.3. AUTOMATIC MUSIC TRANSCRIPTION AND SIGNAL PROCESS 25

2.3.1. Automatic Music Transcription 25
2.3.2. Signal Processing 27

2.4. OTHER ACHIVEMENTS USING ML 27
2.5. BACKGROUND KNOWLEDGE OVERVIEW 29

2.5.1. Machine Learning 29
2.5.1.1. Decision Tree 29
2.5.1.2. Self-Organizing Map 30
2.5.1.3. Ensembled Learning and Reinforcement Learning 31

2.5.2. Music Notations and Terminologies 33
2.5.3. Signal Processing 35
2.5.4. Topology 37

2.6. SUMMARY 40

3. METHODOLOGY AND ARCHITECTURE DESIGN 41

ix

4. MUSIC DEFINITION LANGUANGE AND MUSIC MANIPULATION LANGUAGE 47

4.1. MUSIC DEFINITION LANGUAGE 47
4.2. MUSIC MANIPULATION LANGUAGE 54
4.3. GRAMMAR AND RULES 61
4.4. MUSIC REPRESENTATION USING THE MDL AND MML 62
4.5. CONVERT AUDIO INTO THE MDL AND MML USING SIGNAL PROCESSING 67
4.6. SUMMARY 74

5. ORIGINAL MUSIC IDENTIFIER USING MDL AND MML 75

5.1. MUCASM DESIGN 75
5.1.1. Self-Organizing Map 76

5.1.1.1. Similarity Calculations 77
5.1.1.2. Self-learning 80
5.1.1.3. Algorithm for SOM 83

5.1.2. RL-based EML 83
5.1.2.1. Audio fingerprinting 83
5.1.2.2. The Process Flow for EML 87

5.2. EXPERIMENT, RESULT AND DISCUSSION 94
5.2.1. Experiment I: SOM 95
5.2.2. Experiment II: RL-based EML 100

5.3. SUMMARY 104

6. FURTHER DISCUSSION AND EVALUATION 105

6.1. MDL&MML CONVERSIONS 105
6.2. MUCASM 106
6.3. EVALUATION 107

7. CONCLUSIONS AND FUTURE WORKS 111

7.1. CONCLUSION 111
7.2. FUTURE WORKS 112

MUSIC COPYRIGHT AND REFERENCES 113

MUSIC COPYRIGHT 113
REFERENCES 116

APPENDIX 127

APPENDIX A. DETAILED PROJECT METHODOLOGIES 127
APPENDIX B. CODES 130
APPENDIX C. PROJECT MANAGEMENT & OTHERS 138

x

List of Algorithm, Definition, Lemma, and Theory
ALGORITHM 1. MDL&MML PLAYBACK (SIMPLIFIED SPD VERSION) 64

ALGORITHM 2. MDL & T-MML GENERATION (SIMPLIFIED, ASSUMING ∆𝒇𝒑 = ∆𝑨 = 𝟎)

 ... 68

ALGORITHM 3. SIMILARITY EVALUATION BETWEEN MANUALLY AND AUTOMATIC

GENERATED (S-)MDL&MML FILES ... 69

ALGORITHM 4. SOM FOR S-MDL ... 82

ALGORITHM 5. AUDIO FINGERPRINT EXTRACTION .. 85

ALGORITHM 6. AUDIO FINGERPRINT MATCHING ... 86

ALGORITHM 7. SOM FOR MDL&MML .. 88

ALGORITHM 8. RL-BASED EML FOR MDL&MML ... 91

ALGORITHM 9. MIDI MDL CONVERSION ... 105

DEFINITION 1. FOURIER SERIES ... 35

DEFINITION 2. HOMEOMOPHISM .. 38

DEFINITION 3. HOMOTOPY .. 38

DEFINITION 4. HOMOTOPIC EQUIVALENCES .. 39

DEFINITION 5. SYMBOLIC-BASED MUSIC DEFINITION LANGUAGE (S-MDL). 49

DEFINITION 6. AUDIO-BASED MUSIC DEFINITION LANGUAGE (A-MDL). 50

DEFINITION 7. MUSIC DEFINITION LANGUAGE (MDL). ... 54

DEFINITION 8. OPERATIONAL MUSIC MANIPULATION LANGUAGE (O-MML). 55

DEFINITION 9. TOPOLOGICAL MUSIC MANIPULATION LANGUAGE (T-MML). 55

DEFINITION 10. MUSIC MANIPULATION LANGUAGE (MML). .. 61

DEFINITION 11. THE LINEAR MODEL. .. 127

DEFINITION 12. THE ITERATIVE MODEL. ... 127

DEFINITION 13. THE INCREMENTAL MODEL. ... 127

DEFINITION 14. THE EVOLUTIONARY MODEL. .. 127

LEMMA 1. THE A-MDL AND S-MDL CONVERSION FOR MONOPHONIC MELODY............. 52

LEMMA 2. THE A-MDL AND S-MDL CONVERSION FOR POLYPHONIC MUSIC. 53

LEMMA 3. THE C KEY TRANSFORMATION LEMMA .. 55

LEMMA 4. THE SET TRANSFORMATION LEMMA .. 57

LEMMA 5. THE VOLUME TUNING LEMMA ... 57

LEMMA 6. THE TEMPO TUNING LEMMA .. 57

LEMMA 7. THE EXTENDED A-MDL AND S-MDL CONVERSION LEMMA 57

THEOREM 1. A-S THEOREM ... 54

xi

List of Figures
FIGURE 1.1-1. TWO NEWS REPORTS ABOUT MUSIC PLAGIARISMS (HAN, 2009; SUMANAC-

JOHNSON, 2016). .. 3

FIGURE 2.1-1. HOME PAGE FOR AUDIO-BASED MIR SYSTEMS: KUGOU AND SHAZAM

(ANDROID APPLICATIONS SCREENSHOTS). ... 9

FIGURE 2.1-2. ARCHITECUTRE OF AUDIO FINGERPRINTING SYSTEM WITH THE FINGERPRINT

DESIGN (DUONG & DUONG, 2015). .. 14

FIGURE 2.1-3. WORK FLOW FOR AN AUDIO-BASED MUSIC RECOGNITION SYSTEM (FAN &

FENG, 2016). .. 14

FIGURE 2.1-4. MELODY SEARCH IN MUSIPEDIA FOR MELODY CONTAINING TURNING NOTE

[18]. ... 17

FIGURE 2.1-5. LINE SEGMENT REPRESENTATION FOR THE FIRST TWO BARS OF J.S. BACH,

INVENTION 1, C MAJOR, BWV 772 [44] (LUBIW & TANUR, 2004). 19

FIGURE 2.1-6. EXAMPLE MELODY AND ITS CORRESPONDING TREE DATA STRUCTURE

REPRESENTATION (VALERO & QUEREDA, 2010). ... 21

FIGURE 2.2-1. (8A-8D) SPECTRUM ANALYZER FOR THE INTRO OF [45]. 23

FIGURE 2.2-2. (9A-9C) SPECTRUM ANALYZER FOR THE INTRO OF [45A]. 23

FIGURE 2.3-1. FLOWCHART FOR THE AUDIO-TO-SCORE ALIGNMENT ALGORITHM (CHEN, ET

AL., 2016). ... 26

FIGURE 2.5-1. AN EXAMPLE OF DECISION TREE (LIU, ET AL., 2000). 30

FIGURE 2.5-2. ARCHITECTURE FOR 1-D AND 2-D SOM NEURAL NETWORKS (MILJKOVIC,

2017).. 31

FIGURE 2.5-3. EXAMPLE OF EMSEMBLED MACHINE LEARNING PROCESS (ZHANG & MA,

2012).. 32

FIGURE 2.5-4. ARCHITECTURE OF REINFORCEMENT LEARNING (SUTTON, ET AL., 2018). 33

FIGURE 2.5-5. CIRCLE OF FIFTHS (GEROU & LUSK, 1996). .. 34

FIGURE 2.5-6. ANALOGUE SIGNAL AND DIGITAL SIGNAL (ZAINUDDIN LUBIS, ET AL.,

2016).. 36

FIGURE 2.5-7. TOPOLOGICAL TRANSFORMATION FROM A DONUT RING TO A COFFEE MUG

(COELHO & ZIGELBAUM, 2011) ... 38

FIGURE 2.5-8. TWO PERPENDICULAR CIRCLES EACH FOR BOTH TORUS AND SPHERE.

CREATED IN MATLAB. ... 40

FIGURE 3-1. OVERALL WORKFLOW FOR THE E3MSD. ... 42

FIGURE 3-2. DETAILED WORKFLOW FOR THE E3MSD.. 44

FIGURE 4.1-1. PIANO KEYS, PIANO SHEETS AND S-MDL. ... 48

FIGURE 4.1-2. MUSIC SHEET AND S-MDL FOR THE FIRST FOUR BARS OF [27]. 49

FIGURE 4.1-3. MUSIC SHEET AND A-MDL FOR THE FIRST FOUR BARS OF [27]. 52

FIGURE 4.2-1. & TABLE 4.2-1. EXAMPLES OF MDL AND T-MML WITH MUSIC NOTATIONS.

 ... 59

FIGURE 4.4-1. SPECTRAL PITCH DISPLAY OF THE INTRODUCTION OF [45] USING ADOBE

AUDITION. .. 63

FIGURE 4.4-2. SIMPLIFIED SPD OF THE INTRODUCTION OF MUSIC TRACK [45] USING

MATLAB. ... 65

xii

FIGURE 4.4-3. SPECTRAL PITCH DISPLAY OF THE INTRODUCTION OF [45A] USING ADOBE

AUDITION. .. 66

FIGURE 4.5-1. MAIN TIME DOMAIN PLOT AND THE MUSIC INFORMATION FOR MUSIC TRACK

[27]. ... 71

FIGURE 4.5-2. PLOTS AND FEATURE OUTPUT FOR THE FIRST NOTE OF MUSIC TRACK [27]. 72

FIGURE 4.5-3. PLOTS AND FEATURE OUTPUT FOR THE LAST NOTE OF MUSIC TRACK [27]. 72

FIGURE 4.5-4. A-MDL AND T-MML OUTPUT FOR MUSIC TRACK [27]. 73

FIGURE 4.5-5. (S-)MDL AND T-MML OUTPUT FOR MUSIC TRACK [27]. 73

FIGURE 5.1-1. OVERALL FLOWCHART FOR MUCASM. ... 76

FIGURE 5.1-2. RL-BASED EML MECHANISM: ‘STACKED GENERALIZATION’. 90

FIGURE 5.1-3. RL-BASED EML MECHANISM: ‘COMPARISON BETWEEN ALGORITHMS’. .. 92

FIGURE 5.1-4. THE MECHANISM FOR THE SELF-SUPERVISED LEARNING. 93

FIGURE 5.1-5. RL-BASED EML MECHANISM: ‘SOM’ AND THE ‘PROCESS FLOW’ FOR THE

STRATEGY TREE. .. 93

FIGURE 5.2-1. STRATEGY TREE GENERATED BY THE RL-BASED EML MECHANISM. 104

FIGURE 6.3-1. PARK ET AL. (2019)’S EXAMPLE. .. 109

xiii

List of Tables
TABLE 0-1. MUSICAL NOTATIONS AND TEMINOLOGIES (GEROU & LUSK, 1996; KLAPURI &

DAVY, 2006). ... XVII

TABLE 2.1-1. RECOGNITION RESULT FOR AUDIO-BASED MIR SYSTEMS ([1]-[12]) (TANG,

2016).. 10

TABLE 2.1-2. CONTENT-BASED MIR SYSTEMS (TYPKE, ET AL., 2005). 12

TABLE 2.1-3. RECOGNITION RESULT FOR SYMBOLIC-BASED MIR SYSTEMS ([13]-[23]). . 16

TABLE 2.2-1. SUMMARY TABLE FOR THE AUDIO VS SYMBOLIC FILES. 25

FIGURE 4.2-1. & TABLE 4.2-1. EXAMPLES OF MDL AND T-MML WITH MUSIC NOTATIONS.

 ... 59

TABLE 5.2-1. PRILIMINARY SOM RESULT TABLE. ... 95

TABLE 5.2-2. SOM WITH 𝑘 AS A CONSTANT (CONTOUR MELODY ONLY). 96

TABLE 5.2-3. SOM WITH 𝜂 AS A CONSTANT (CONTOUR MELODY ONLY). 96

TABLE 5.2-4. SOM WITH 𝑘 AS A CONSTANT (CONTOUR MELODY AND RHYTHM,

𝑤𝑀:𝑤𝐷 = 0.7: 0.3). ... 97

TABLE 5.2-5. SOM WITH 𝜂 AS A CONSTANT (CONTOUR MELODY AND RHYTHM,

𝑤𝑀:𝑤𝐷 = 0.7: 0.3). ... 97

TABLE 5.2-6. COMPARISON AND SUMMARIZATION RESULT TABLE FOR THE AVERAGE

ACCURACY WITH AND WITHOUT THE RHYTHM FEATURE. ... 98

TABLE 5.2-7. COMPARISON AND SUMMARIZATION RESULT TABLE FOR DETAILED

VARIATIONAL TYPE BREAKDOWNS. .. 99

TABLE 5.2-8. SOM WITH 𝜂, 𝑘 AS A CONSTANT, CONSIDERED A-MDL ONLY AND MODIFIED

EQUATIONS. .. 100

TABLE 5.2-9. SOM WITH AUDIO FINGERPRINT APPROACH ONLY, CONSIDERED MDL & T-

MML. .. 102

TABLE 5.2-10. EML WITH MDL & T-MML. .. 103

TABLE 6.3-1. PROJECT EVALUATION SUMMARY TABLE. ... 108

TABLE A-1. PROS AND CONS FOR THE DEVELOPMENT MODELS (BHUVANESWARI &

PRABAHARAN, 2013). .. 128

TABLE A-2. PROS AND CONS FOR C, C++, JAVA, MATLAB AND PYTHON. 129

xiv

Nomenclature & Symbols
Data Science Techniques

A.I./AI Artificial Intelligence

ANN Artificial Neural Network

DL Deep Learning

DRL Deep Reinforcement Learning

DT Decision Tree(s)

EML Ensembled (Machine Learning)

ML Machine Learning

RL Reinforcement Learning

RNN Recurrent Neural Networks

SOM Self-Organized Map

SQL Structured Query Language

Mathematical Abbreviations, Varibles, Physical Terms and Units

A Amplitude

∀ for all

B Byte

ℂ Set of Complex Numbers

cts (function) continuous (function)

∃ exist

f, freq Frequency or pitch (in Hz)

Hz Hertz

iff if and only if

KB Kilo Bytes

Kbps Kilobits per second

MB Mega Bytes

MSD Mean Squred Distance (without square root)

ℕ Set of Natural Numbers (includes 0, whereas ℕ+ exclude 0)

ℚ Set of Rational Numbers

QED, ∎ Quod Erat Demonstrandum (end of a mathematical proof)

ℝ Set of Real Numbers

sec Seconds

sgn() Signum function

s.t. such that

t Time (in sec)

w.r.t. with respect to

ℤ Set of Integer Numbers

xv

Music, Computational Music Terminologies

AAC Advanced Audio Coding

AMT Automatic Music Transcription

CBR Constant bitrate

EM Electronic Music

MIDI Musical Instrument Digital Interface

MIR Music Information Retrieval

MP3 MPEG1/2 Audio Layer-3

MPEG Moving Pictures Experts Group

MTV/MV Music (Television) Video

SPD Spectral Pitch Display

WAV Waveform Audio File Format

Further music notations and terminologies have shown in Table 0-1.

Signal Processing Methods

DFT Discrete Fourier Transformation

DSP Digital Signal Processing

FFT Fast Fourier Transformation

FT Fourier Transformation

MFCC Mel Frequency Cepstral Coefficients

SP Signal Processing

STFT Short Time Fourier Transformation

Others

A-MDL Audio-based Music Definition Language

E3MSD (The architecture of) Expressive, Efficient, and Extendable

Music Similarity Detection

MDL Music Definition Language

MML Music Manipulation Language

MUCASM MUsic Classification And Similarity Measurement

OMI Original Music Identifier

O-MML Operational-based Music Manipulation Language

S-MDL Symbolic-based Music Definition Language

T-MML Topological-based Music Manipulation Language

xvi

Music Notations and

Terminologies

Descriptions Music Symbols

(if applicable)

Accent The note or chord is to be

played with slightly more

power, compare to unmarked

notes. This is one example of an

articulation marks.

Articulation marks This is a group of symbols used

to indicate how a note or chord

is played, alone or in relation to

other notes and chords.

n/a

Crotchet / Quarter note

(rest)

A note played for one quarter of

the duration of a whole note

(semibreve) or rest.
&

Dynamics Indicates the varying degree of

volume or intensity of a note,

phrase or section of music.

Flat Lower a note by one semitone.

Glissando Indicate the beginning and

ending notes of the glissando,

can be ascending or descending.

Key Scale: A-G, sharp or flat, major

or minor. (Circle of Fifths)

Details were in

Figure 2.5-5.

Key Signature A set of sharps or flats, to

represent what key the music is

in. The correponding note will

be raised higher or lower

accordingly.

xvii

Melody Linear tune, voice or line.

Series of musical meaningful

pitched sounds over the rhythm.

n/a

Natural Cancel any flat or sharp

previously applied to the note .

Pitch Perceptual attribute which

defines the frequency of the

sound wave for the musical

melody.

n/a

Rhythm Can use an X notehead to

represent the non-pitched

percussion music part.

Sharp Raise a note by one semitone.

Staccato The note or chord is to be

played as short as possible.

Tempo Can be defined by tempo marks.

For example, with expression;

with a metronome; tempo

variations. Determines the rate

of speed.

Timbre Also known as sound ‘colour’

(tone) related to the recognition

of the sound sources.

n/a

Time Signature Indicates the meter for a

measure(s) or an entire piece,

the upper number is the number

of beats per measure and the

lower number is the duration of

the note for one single beat.

Table 0-1. Musical notations and teminologies (Gerou & Lusk, 1996; Klapuri & Davy,
2006).

xviii

1

1. Introduction

Music, an art form, plays an important role in our daily life. Especially now, as the

electronic and the computer technologies have become more powerful, more varieties of

music can be generated, not just the classical music with traditional instruments. For

example, Electronic Music (EM). On the other hand, as the Internet and the Cloud have

become more popular, large repositories of music are available online for public to listen,

share, store and download. For example, millions of official Music Videos can be found

on YouTube and a lot of CDs can be bought on Amazon. However, due to the large

amount of music pieces, people sometimes find it difficult to recognise music from the

fragment pieces, or to avoid and detect music plagiarism, as you may find the music that

you are listening to is somehow similar to other pieces of music.

Further, from a scientific and philosophic point of view, music is a variety of sounds

organized in time with tonalty and aesthetic, to distinguish between human speech and

other non-musical sounds (Kania, 2017). More specifically, tonalty involves musical

features such as pitch and rhythm whereas aesthetic is the interpretation of our feelings,

judgement and understanding of music. Thus, there are two major approaches to deal with

music. One is using the audio approach and the other one is using the symbolic approach.

The audio approach directly represents the musical sound while the symbolic approach

captures the musical features. These are the two major music data types which allow

computers to store them and Music Information Retrieval (MIR) systems to process them.

Therefore, music data analysis is a complicated but important and interesting topic to

investigate.

1.1. Research Backgrounds

From the music storage and playback’s perspective, we mostly store the music in WAV,

MP3, AAC format with different bit rate (Brandenburg, 1999) that can affect the quality

of the music sound during playback and their file size. These kinds of formats have been

classified as audio-based formats as they directly store their audio frequencies over time.

Combination of the continuous frequencies with amplitudes can provide more music

types and audio signals (Mesaros & Virtanen, 2008). Hence, human vocals are able to be

covered. However, we sometimes have encounter problems when faced with these kinds

2

of music formats. For example, when we playback an audio file, to speed it up or down,

the soundwaves will be squashed or loosened, leading to the pitch getting higher or lower

accordingly. This problem occurs when we need to unify the tempo while generating a

remix with two pieces of music which have slightly different tempos.

Alternatively, we can store the music in Musical Instrument Digital Interface (MIDI)

format (Rowe, 2009), which has been classified as a symbolic-based format. MIDI can

be written from the music version of XML, named MusicXML, which codes the music

sheet in the ways of programming code (Good, 2001). Most of the time, music sheets give

a better representation of the music in order to allow musicians to compose and read them.

However, there are several limits when applying either MusicXML or MIDI to modern

Electronic Music. For example, the continuous frequency variation is hard to translate

perfectly onto music sheets. When MIDI acts as a symbolic music storage media, it can

correspond to Music sheets to reduce the file size compared to any audio format files (Yu,

et al., 2002). However, this can only work well for classical music such as piano pieces,

instead of modern pop music (Hrušková & Hvolka, 2011).

From the music application’s perspective, there are two scenarios, music search and

music plagiarism.

For the music search scenarios, there are three types of music search engines. Tag-based,

or meta-data-based MIR systems provide search services by various categories, such as

by title, by artist, by album etc., even Google, non-MIR systems sometimes can do the

job for us. These tag-based search engines are effective, however they are based on an

assumption that we have certain information about the music we want to find. This

assumption does not always hold, e.g., if we are in a public area, or when we are watch

TV shows at home, we may hear some backgound music for the first time. On the other

hand, audio content-based music search engines, e.g., Kugou (Hu, 2018) and Shazam

(Typke, et al., 2005), allow us to search for music based on the musical content rather

than the prior information of meta-data. However, if the music piece we listened to is not

the original piece, for example, a re-composite or re-performance version (e.g. live

version), these kinds of systems are normally unable to find the original version, due to

the uniqueness of the Audio Fingerprints method the systems use (Typke, et al., 2005).

In some cases, such as in a disco club, the backgound music is often a remix. A remix is

3

* music track references in squre bracket is on page 111.

Figure 1.1-1. Two news reports about music plagiarisms (Han, 2009; Sumanac-Johnson,
2016).

a combination of different music pieces with alternations, e.g., adding notes, removing

notes or modifing melodies will make it harder to recognise the origin using an audio

content-based music search. If you already know the symbolic melody for it, then

symbolic content-based MIR systems such as Musipedia (Typke, et al., 2005) can allow

you to search for the music pieces, even the variations, but majority of available symbolic-

based MIR systems are only for classical music. Therefore, there is more room for the

existing content-based music search engines to improve, so the searching result or

recommendations can be based on both audio and symbolic music contents, in contrast

with the tag-based music seach engines (Song, et al., 2012; Knees & Schedl, 2013).

For the music plagiarism scenario, there are a lot of worldwide news reports about music

plagiarism. Figure 1.1-1 shows two worldwide news reports (Han, 2009; Sumanac-

Johnson, 2016) as examples. From Han’s report (Han, 2009), G-Dragon, Ji-yong Kwon

as the original name, has released a new title track “Heartbreaker” [33]* from the album

《Heartbreaker》 in 2009. This track has been pointed out to have similarities to Flo

Rida’s “Right Round” [34] by netizens. After communication between the artists (and the

companies/representatives), G-Dragon featured Flo Rida in his new version of the song

titled “Heartbreaker” [35] in his 2010 album 《Shine a Life》 (Gaon Chart (2010.03.28-

2010.04.03), 2010). Similar to another track of his, “Butterfly” [36] under the same album,

this song track was reported to have similarities to Oasis’s “She's Electric” [37]. This time,

4

however, the incident has been cited as a plagiarism example in high school textbooks

despite all charges have been lifted against him (Esther, 2013). From Deana’s reports

(Sumanac-Johnson, 2016), for one of the four historical songs, ‘Stay with me’ [38], was

accused of music plagiarism in 2015, Sam Smith claimed that he has not heard Tom

Petty’s song, “I Won't Back Down” [39] which was published before he was born. As

there is a large increase in the amount of music around the world, it is difficult for people

to listen to all the existent music before the release of their albums, to avoid plagiarism

claims. Similar situations have been applied to the academic papers, e.g., conference

papers, journal papers, and thesis. However, for academic papers, we have a system called

‘Turn-it-in’, to identify and highlight the word patterns with the percentage of similarity

scores as output, such that we can guide us to judge how the newly submitted paper is

similar to the existing papers. Thus, there is a need to build a similar plagiarism detection

system to the music area (Park, et al., 2005; Dittmar, et al., 2012; Shin, et al., 2016). We

need to find a way to code the songs such that we can highlight the similar patterns based

on the similarity scores between the codes. Every time a new song enters the music

database, by using this approach, we can identify and highlight any similar musical

patterns shared by other original musical tracks. Hence, the composer can pre-reference

or be notified before being accused by other composers, and receive the copyright fee

with confidence. In order to build this system, we need to analyse the core musical content.

1.2. Research Questions

From the research background in Section 1.1, in order to improve the performance of the

existing MIR system or to implement a tool for music plagiarism idenfitication, there is

one fundamental research question which needs to be answered:

“How to improve the performance of detecting similar music pieces?”

This can be further broken down into two questions, one of them concentrates on the

music coding scheme, and the other one focuses on the similarity evaluation:

1. “How to precisely and expressively code the music in such a way that we can keep

the audio feature and reduce the file size?”

2. “How to effectively measure the similarities in such a way that we can identify the

original music from its variations?”

5

1.3. Research Aims and Objectives

From the research questions stated in Section 1.2, below list the aims and objectives for

this project:

 Provide a better understanding for the musical content.

o Evaluate the features and limitations for the audio (e.g. MP3) and

symbolic (e.g. MIDI) approaches/formats.

o Design a structured and expressive music data model that can be used to

extract the musical features, e.g. melody, rhythm.

o Develope prototypes for proof-of-concept.

 Be able to identify original music tracks from the variations.

o Design an algorithm which can evalute the similarities between two pieces

of music pieces. This can be between two pieces of original music, or

between one variation and one piece of original music. Based on which,

we apply the algorithm to find the original tracks from the variations.

o Develope prototypes which demonstrate the core functionalities including

benchmarking.

1.4. Novelty, Contribution and Challenge

As described in the Section 1.1 - 1.3, our principal contribution is to retain the advantages

from both audio and symbolic sides while address individual shortcomings, e.g., a high

fidelity music but with a smaller file size. This is achieved by outlining a new architecture,

named E3MSD (Expressive, Efficient, and Extendable Music Similarity Detection). This

architecture consists of two music modelling languages, and one algorithm using the

Ensembled Machine Learning (EML) method called MUCASM (MUsic Classification

And Similarity Measurement). There are several prototypes that have been built which

are used to demonstrate the three features of the proposed architecture.

To the best of our knowledge, this is the first attempt to construct a general music data

model, which is interdisciplinary between the three subject areas (Computer Science/Data

Science, Mathematics, Music) and two systems (Audio and Symnolic), and further to

apply modern machine learning techniques for the computers to understand the music in

the similar ways human beings do.

6

1.5. Thesis Structure

The rest of the thesis is structured as the following:

 Chapter 2 summarizes the features and limitations for the existing technologies in

the music area. This includes case studies and general literature reviews. It also

provides a short overview for all the important techniques and terms in Computer

Science, Mathematics and Music. These fundamental theories behind the

techniques and terms will not be further described or explained in later chapters.

 Chapter 3 outlines the methodology for the project and the main work flow for the

architecture E3MSD.

 Chapter 4 introduces the structured and extensible music data model, named

Music Definition Language (MDL) and Music Manipulation Language (MML).

This includes the example of MDL&MML, and any theoretical proofs; followed

by demonstrations on how we can playback the MDL and MML files and

automatically convert the audio into the MDL and MML, using Signal Processing

techniques.

 Chapter 5 covers the design, implementaiton and test of MUCASM for Original

Music Identifier (OMI), where we classify music variations back to their origins

using the Reinforcement Learning based EML method.

 Chapter 6 further evaluates MUCASM and benchmarking.

 Chapter 7 gives the final conclusion and provides general future works.

At the end of the report, there is a ‘Music Copyright and References’ section. This section

includes two lists of all the music/academic papers which have been mentioned/used in

the report. Finally, all other relevant materials, including the project management, are

inside the ‘Appendix’ section.

7

2. Literature Review

In this chapter, we investigate existing MIR systems, include musical analysis & storage

methods and other recent modern techniques which have been applied in the music related

area, followed by a section of background knowledge overview.

2.1. Music Information Retrieval Systems for Search Engines

Music Information Retrieval (MIR) systems discover useful information from music

pieces. Hence, the tasks for an MIR system can be pattern recognition, genre detection,

mood evaluation, instrumentation, music recommendation, plagiarism detection tools

based on similarity and music search engines (Casey, et al., 2008; Lamere, 2008). In other

words, MIR can search unknown songs, maintain copyright and find similar style music

pieces.

For example, if ‘A’ is an original song, ‘B’ is a re-performance of ‘A’, ‘C’ is a re-

composite of ‘A’, ‘D’ is another original song which is completely different to ‘A’, ‘E’ is

an original song that is somehow similar to ‘A’ and has not been categorized as plagiarism,

‘F’ is a remix of ‘A’ and ‘E’. Then ideally, the following should happen for a music search

engine or a plagiarism detection tool:

If we input ‘B’ or ‘C’, ‘A’ should be our second output with a relatively high similarity

score, as re-performance is a simple variation such that the main melody flow remains

largely unchanged, whereas re-composite does vary the main melody flow although the

main pattern is still recognizable.

The overall similarity score between ‘A’ and ‘D’ should be much lower than ‘A’ and ‘E’.

Moreover, ‘A’ and ‘E’ may have certain high similarity scores, e.g., rhythmic similarity.

By having this property, we can make the remix song ‘F’ from ‘A’ and ‘E’. Thus, there

are lots of mashup remix on Youtube. For example, Miguel Francisco (Youtube account

name: Miggy Smallz, refer to acknowledgement) has a number of K-Pop mashup remix

tracks (Francisco, 2013-2019), such as a combination of GOT7’s “Never Ever” [40] with

BTS’s “Not Today” [41] and KARD’s “Don’t Recall” [42] (Francisco, 2017). The more

features shared between two or more pieces of original songs, the smoother the mashup

remix. Another good example of a mashup remix would be Green Day’s “Boulevard of

8

Broken Dreams” [43] with Oasis’s “Wonderwall” [28] (OasisIndie94, 2011). Thus, for

an MIR system, both ‘A’ and ‘E’ should be the output if we are requesting song ‘F’.

However, MIR systems can be tag-based or (music) content-based. A social-tag-based

music recommendation system is an example of a tag-based MIR system, where the tags

can be an artist, album or a song (Lamere, 2008). For (music) content-based MIR systems,

there were several content-based MIR systems that exist, typical examples being Shazam

and Musipedia. These two MIR systems use different input types with different methods.

As previously mentioned, these can be categorized into the following two major

categories: audio-based and symbolic-based (Typke, et al., 2005; Casey, et al., 2008).

Audio-based systems primarily use a technique called Audio Fingerprint (Typke, et al.,

2005), while symbolic-based systems use several methods such as contour-based,

melody-based and rhythm-based (Typke, et al., 2005) with music notation and symbolic

representation (Casey, et al., 2008).

Therefore, we start with reviewing the audio and symbolic approaches individually,

which includes the traditional literature review and a case study based system

investigation. This is followed by comparing these two approaches and outline their

features and limitations.

2.1.1. Audio

For audio-based storage, the common file extension would be “.wav”, “.mp3” and “.aac”.

For example, online songs (music with lyrics) can be downloaded and stored using those

file formats. Based on these type of files, audio fingerprinting is an ideal approach as it

can be deterministically generated from an audio signal. Hence, the key technique used

in the system is the building of an audio fingerprint catalogue. Each music piece

corresponds to a unique fingerprint by sampling the audio or digitized signals, which is

used to identify the song by matching the fingerprint (Haitsma & Kalker, 2002; Haitsma

& Kalker, 2003; Cano, et al., 2005; Duong & Duong, 2015). Shazam is one of the typical

audio-based search engines for music recognition applications (Shazam Homepage,

2019), whereas Kugou is a chinese audio-based music player (Kugou Homepage, 2019),

but also has the funcionality of searching the song by listening to the music, naming

‘tinggeshiqu (听歌识曲)’, as shown in Figure 2.1-1 (2.1-1a & 2.1-1b). Thus, we start by

investigating these audio-based MIR systems (including Kugou, Shazam),

9

Figure 2.1-1a. Kugou Figure 2.1-1b. Shazam

Figure 2.1-1. Home page for audio-based MIR systems: Kugou and Shazam (Android
Applications Screenshots).

followed by analysing the features and limitations from several papers, and ending with

a summarization derived from both case studies and literature review.

2.1.1.1. Case Studies

We have tested music tracks [1] to [12] from the music copyright list (page: 113) over the

following systems: Baidu Music (BM) (Baidu Music Homepage & Qianqian Music

Homepage, 2019), Kugou Music (KG) (Kugou Homepage, 2019), Kuwo Music (KW)

(Kuwo Homepage, 2019), Music Radar (MR) (Musicradar Homepage, 2019), Netease

Cloud Music (NC) (Netease Cloud Music Homepage, 2019), QQ Music (QM) (QQ Music

Homepage, 2019), Shazam (SZ) (Shazam Homepage, 2019), SoundHound (SH)

(SoundHound Homepage, 2019), and Track ID (TI) (TrackID Homepage, 2017). We play

the music from a random starting point, and test whether the system can recognize the

music or not. All those twelve songs have lyrics. The result is shown in Table 2.1-1.

Note: “” represents correct matching; “∅” represents no result as it is not in the database;

“” represents wrong matching and “A” stand for the overall accuracy. As we have

tested ‘TrackID’ before it closed at 15 September 2017, we grayed out our last row.

10

Name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] A

BM ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 33

KG ∅ ∅ ∅ ∅ 58

KW ∅ 83

MR ∅ ∅ ∅ ∅ 67

NC 100

QM ∅ ∅ ∅ ∅ 58

SZ ∅ 83

SH ∅ ∅ ∅ ∅ ∅ 58

TI ∅ ∅ ∅ ∅ ∅ 58

Table 2.1-1. Recognition result for audio-based MIR systems ([1]-[12]) (Tang, 2016).

From Table 2.1-1, we can immediately conclude that the Netease Cloud has the highest

music recognition accuracy of 100%, and only four wrong matchings exist in the table.

However, despite that there is no white box testing with those applications, the following

findings can be concluded with some further black box tests:

Firstly, all the systems can only find the songs if and only if the music track exists in the

database. This indicates that the audio-based music recognition applications have high

precision, whereas precision is the fraction of correctly recognitions over all cognitions.

Some systems have the a precision of 100% and others have 87.5% or 90.9%.

Secondly, for the same songs with variations, e.g., different singers, different musical

instruments, different tempo or contain background noises, it will be difficult for the

audio-based MIR systems to recognise them. For example, if another singer covers one

singer’s original song on a live TV show, then it is hard to find the original singer’s

version under the audio-based MIR systems, as the audio fingerprints are different.

Finally, all applications in this case study only support up to a maximum of 20 seconds.

This indicates the input length is another factor that affects the matching accuracy. For

example, if two songs share a similar audio fingerprint for partial melodies, then the

system may output a mismatched original song when inputting the shared melodies.

Moreover, with the same input length, the more distinctive features the music has, the

higher the likelihood of the original music to be correctly recognized.

11

2.1.1.2. Literature Critiques

In this section, we have chosen five papers to write a short critique about. These papers

were collected so that some of them are highly cited but older papers while others are

more recent ones that are less cited. Here are short critiques for those five papers,

including features and limitations of the audio-based method claimed by those papers:

Casey el al. (2008) have introduced that the current retrieval systems can handle millions

of music tracks. However, the systems need to aim at even larger online music collections.

It outlines the problems of content-based MIR, and explores the state-of-the-art methods

using audio cues (e.g., query by humming) and other cues (e.g., music notation and

symbolic representation). Moreoever, it identifies some of the major challenges in MIR

systems. However, this paper does not provide the resolving methods.

Typke el al. (2005) summarized all the existing content-based MIR systems, i.e., several

music search engines. This paper includes three methods for searching symbolic data and

four methods for searching the audio data from seventeen existing MIR systems.

Furthermore, it contains a summary table to show the type of input (audio/ symbolic), the

type (audio/ symbolic) and level of matching (exact/ approximate/ polyphonic), and

certain features each MIR system involves. We have quoted the summary table and shown

them in Table 2.1-2 and highlighted MIR systems in blue for audio-based, red for

symbolic-based, green for audio input with symbolic matching, and yellow when both

inputs are accepted.

From Table 2.1-2, only three MIR systems allow the input to be both audio and symbolic.

However, all of these three MIR systems can only apply to the monophonic approximate

matching. As a result of this, it is difficult for the system to search the exact polyphonic

music tracks.

One of the systems among the rest of the fourteen MIR systems can do polyphonic, exact

and approximate matching and is provided with nine algorithms. However, this MIR

system, C-Brahams, is not an audio-based MIR system. As a drawback, people who do

not know the symbolic version of the rhythm cannot find the exact songs. Hence, there is

a need to represent the music in a such a way that we can extract features from the audio

files directly with various matching methods.

12

Name Input Matching Features Indexing Collection

size

(Records)
A

u
d

io

S
y

m
b

o
li

c

A
u

d
io

S
y

m
b

o
li

c

E
x

ac
t

A
p

p
ro

x
im

at
e

P
o

ly
p

h
o

n
ic

A
u

d
io

-F
ig

er
p
ri

n
ts

P
it

ch

N
o

te
 D

u
ra

ti
o

n

T
im

b
re

R
h

y
th

m

C
o

n
to

u
r

In
te

rv
al

s

O
th

er

Audentify! • • • • • Inverted files 15,000

C-Brahms • • • • • • • • • None 278

CubyHum • • • • LET 510

Cuidado • • • • • • • Not descriped >100,000

GUIDO/ MIR • • • • • • • • Tree of

transition

matrices

150

Meldex/

Greenstone

• • • • • • None 9,354

Musipedia • • • • • Vantage

objects

>30,000

notify! Whistle • • • • • • Inverted files 2,000

Orpheus • • • • • • • • Vantage

objects

476,000

Probabilistic

“NameThatSong”

 • • • • • Clustering 100

PROMS • • • • • • Inverted files 12,000

Cornell’s “QBH” • • • • None 183

Shazam • • • • • Fingerprints

are indexed

>2.5 ∗ 106

SOMeJB • • • • • Tree 359

SoundCompass • • • • • Yes 11,132

Super MBox • • • • • Hierarchical

Filtering

12,000

Themefinder • • • • • • None 35,000

Table 2.1-2. Content-based MIR systems (Typke, et al., 2005).

13

Furthermore, this paper (Typke, et al., 2005) has introduced one typical example of audio-

based MIR systems, naming Shazam. Shazam uses an audio fingerprint method to find

the matching. This method generates reproducible landmarks and extracts features which

describe the short segments of recordings as fingerprint tags which also characterize its

location. However, as the landmarks and tags can be affected by low quality speakers,

microphones or background noise, thus, the accuracy would sometimes not be that high.

For some of the other audio-based MIR systems, this paper has mentioned that they use

either set-based or string-based methods for finding matchings in polyphonic music from

the audio input. One of the features for the set-based method is that the music is viewed

as an unordered set of events where each has its own properties described. However, an

unordered set will lead to a low accuracy search, as music is a sound sequence over time

and a set loses information from a sequence. On the other hand, the string-based method

treats musical notes as a string-based sequence, but only for monophonic melodies.

Thus, Sri Ranjani, et al. (2015) have tested audio-based MIR system: Shazam, with Indian

songs, and obtained a retrieval accuracy of 85% in their paper.

Duong & Duong (2015) have provided the architecture for the existing audio

fingerprinting method. The whole architecture consists of a feature extraction stage,

feature modeling stage and feature matching stage, as shown in Figure 2.1-2. For the

feature extraction stage, the paper introduced several audio-based features using various

methods from signal processing, whereas for the feature modeling stage, the paper

introduced several statistical models. Furthermore, the paper claimed that by combining

several features will benefit the system: obtaining a robust and compact audio signature.

On the other hand, the paper mentioned that, to use those statistical models, will reduce

the global statistical redundancy of feature vectors, which decreases the size of the

fingerprint. However, this paper does not comment on whether the reduction of

fingerprint size will affect the matching accuracy or not, i.e., the searching result for an

audio-based music search engine, as this paper concentrates on the audio fingerprint

design only.

14

Figure 2.1-2. Architecutre of audio fingerprinting system with the fingerprint design
(Duong & Duong, 2015).

Figure 2.1-3. Work flow for an audio-based music recognition system (Fan & Feng,
2016).

Finally, Fan & Feng (2016) have actually construct the work flow for an audio-based

music identification/recognition system, as shown in Figure 2.1-3. Furthermore, they

described the steps of fingerprint generation in detail: start with FFT transformation;

followed by peak extraction from frequency spectrogram; next, extract the time difference,

the starting frequency and the "fingerprint" data; and finally, ends with fingerprint

generation using hash algorithm. After comparing with the fingerprint database by

computing the similarity scores between two fingerprints, it outputs the songs with the

highest similarity scores. From their experiment and analysis, their music identification

system has strong robustness, fast identification with high recognition accuracy of 45

songs. However, they have pointed out that the longer the audio, the longer the time taken

for recognition.

15

From those case studies and critiques, here are some critical points about the main feature

and the major limitation for audio files and audio-based MIR systems:

 MIR systems can carry out various tasks involving genre, lyrics, mood, and timbre.

 For audio-based music search engines, each song has a unique fingerprint, similar

to the fingerprints of human beings. Thus, the music track can be correctly

recognized if the input song’s fingerprint matches with the one in the existing

MIR database.

 The approach is less tolerant to background noises and music variations. Re-

composite and re-performance, for example, were have difficulty in finding their

original music pieces for an audio-based MIR systems, even if the original piece

has been stored in the music database.

 The longer the audio length, the larger the fingerprint, the longer processing time

is required for recognition.

2.1.2. Symbolic

For the symbolic-based storage, the common file extension would be “.midi”, where, the

typical symbolic-based music melody search engine would be Musipedia (Typke, 2002).

Symbolic files, like MIDI, is different to an audio file in either analogue (e.g. WAV) or

digital (e.g. MP3) form, as we are using only the protocols to capture the details of a

musical note from the discrete set of the music signals rather than the signals themselves.

Hence, symbolic files can easily be stored and manipulated compared to any audio files

as storing those musical events and parameters only take less space (McKay & Fujinaga,

2006; Good & Mills, 2015). However, symbolic-based MIR systems only suitable for

music-sheet-convertible music tracks (Saxena, et al., 2018). Hence, the key step of

symbolic-based approaches is how to code music using various symbols (Loy, 1985;

Lubiw & Tanur, 2004; Valero & Quereda, 2010; Walder, 2016). Based on the type of

symbolization, various content-based similarity scores can be evaluated, e.g., based on

the contour, the melody, the rhythm, etc. (Typke, et al., 2005). Thus, we start by

investigating the cases of these symbolic-based MIR systems (including Musipedia),

followed by analysing the features and limitations from several papers, and ending up

with a summarization.

16

2.1.2.1. Case Studies

We have tested music tracks [13] to [23] from the music copyright list (page: 113) over

the following systems: Musipedia (M) (Typke, 2002), Best Classical Tunes (B)

(Gomersall & Clarke, n.d.), and Themefinder (T) (Huron, et al., n.d.). The result is shown

in Table 2.1-3.

N
a
m

e

T
y
p

e

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] A

M M 100

C 100

R 27

B T ∅ ∅ ∅ ∅ ∅ 55

T P ∅ ∅ ∅ ∅ ∅ 55

S ∅ ∅ ∅ ∅ ∅ 55

GC ∅ ∅ ∅ ∅ ∅ 55

RC ∅ ∅ ∅ ∅ ∅ 55

Table 2.1-3. Recognition result for symbolic-based MIR systems ([13]-[23]).

Note: “” represents correct matching; “∅” represents no result as it is not in the database;

“” represents wrong matching and “A” stands for the overall accuracy. For the ‘type’

column, ‘M’ stands for the Melody search; ‘C’ for the Contour search; ‘R’ for the Rhythm

search; ‘T’ for the Theme search; ‘P’ for the Pitch search; ‘S’ for the Scale search; ‘GC’

for the Gross Contour search; and ‘RC’ for the Refined Contour search.

Here are the detailed evaluations for each symbolic-based music search engine, including

their features and limitations.

For ‘Musipedia’, as shown in Table 2.1-1 and Table 2.1-3, it covers the melody search,

the contour search and the rhythm search. Contour search is where we input whether the

note is going up, down or remains the same with respect to the previous note. Rhythm

search is where we exclude the pitch information from the melody.

When carrying out the melody search, independent with the note duration and key

signature, the symbolic-based MIR system can output the melody in the key that the

17

Figure 2.1-4. Melody search in Musipedia for melody containing turning note [18].

original melody of the music track has stored in the Musipedia database with corrected

note durations, as we had input all the melodies in the C key and all the notes were quavers

(8th note). Furthermore, if the original melody contains notes with certain articulation

marks, e.g., turning notes, Musipedia would be able to find the corrected melody

independent to the input expansion of those music notations, as shown in Figure 2.1-4.

Thus, like Table 2.1-2 summarized, the matching type for Musipedia is approximate.

However, if the original melody contains multiple notes, e.g., chords, the search engine

can find the corrected melody occasionally, similar results were obtained when carrying

out the corresponding contour search.

Lastly, for the rhythm search, low rhythm retrieval rate, three out of eleven, have been

obtained. This suggests that for melodies, pitch information is much more important

compared to the rhythm information.

For ‘Best Classical Tunes’, it only covers theme search only, which corresponds to the

melody search in Musipedia. The theme input can be scale-free, i.e., all in C major or A

minor, set-free, i.e., narrowed down to twelve different symbols, and duration-free.

Moreover, this MIR system is capable for expansion of the turning notes. Thus, like

Musipedia, this symbolic-based MIR system is using approximate matching. However,

Best Classical Tunes obtained low accuracy rates compared to Musipedia. This is due to

the size of the music database, so if we look at both systems’ precision, they were both

100%.

18

As for ‘Themefinder’, it provides pitch search (similar to the melody search in Musipedia,

but without the duration information), interval search (detailed contour search), scale

search (similar to the pitch search, but using the modulo 7 system instead of 12), gross

contour search (same as the contour search in Musipedia) and refined contour search

(extension of the gross contour search). It also provided options that the input is from the

beginning of the theme or anywhere inside the theme. For all these searches, up to 100

songs are shown in the result list.

Firstly, for the pitch searches, the system is very sensitive to the key notation. For example,

despite F sharp and G flat sharing the same piano key, for a song in G key, G flat would

not output the original melody. This system, unlike Musipedia, does not allow the

expansion of the turning note. Furthermore, it is scale sensitive. For example, A minor is

different to C major, despite the fact that they were related. Therefore, Themefinder

provides exact matching only, the same conclusion that is shown in Table 2.1-2.

Secondly, interval search does not appear to work as we have input the example track

showed on the website. In fact, this search required users to have strong music knowledge.

Lastly, the difference between gross contour (GC) and refined contour (RC) were

melodies with different RC that may have they same GC. For example, the first two bars

of track [13] and track [15] having the same GC sub-sequence, ‘uuuuudud’, but track [13]

has the following RC sub-sequence ‘uuuuuDUd’, whereas track [15] has the following

RC sub-sequence ‘‘uuuuudUd’. In GC, ‘u’ stand for up; ‘d’ for down and ‘s’ for the same.

In RC, ‘u’, ‘d’ and ‘s’ stand for up by step, down by step, and remained the same

respectively, whereas ‘U’, ‘D’ stand for up by leap, down by leap respectively. Again, as

a drawback, these kinds of input require users to know the outline of the music melody

and have understood the rules.

Finally, for all these symbolic-based MIR systems, only pre-symbolically-stored

melodies can be searched. Thus, we need to carry out the transcription for those music

pieces, i.e., extract the melody from the audio files and convert into a sequence of piano-

roll-based symbols. Therefore, most of the tracks [13] to [23] were classical piano music

pieces, rather than pop songs.

19

Figure 2.1-5. Line segment representation for the first two bars of J.S. Bach, Invention 1,
C major, BWV 772 [44] (Lubiw & Tanur, 2004).

2.1.2.2. Literature Critiques

In this section, similar to Section 2.1.1.2, we have chosen five papers and provided short

critiques for each of them, where features and limitations of the symbolic-based method

claimed by those papers are included.

Based on MIDI representation, Lubiw & Tanur (2004) search for the similar patterns

inside the same piano music use line segments and highlights those patterns. The core of

this approach is using the mathematical term: Geometric Translation, in such a way that

once we have shifted the highlighted patterns up or down along the pitch axis, and

stretched or squashed along the time axis, the patterns became perfectly identical. They

have provided with an example to illustrate the relationship between the piano sheet and

the line segment, as well as bolded two line segments for similar melody patterns. This

has shown in Figure 2.1-5.

Despite this approach being able to deal with note with various articulation marks such

as dots, ties and syncopations and even polyphonic piano music pieces, this approach is

still limited to the discrete pitch set, as the glissando note for the modern (electronic)

music, where we consider the continuous pitch set, cannot be easily represented and

analyzed using it.

Further from the music representation, they have evaluated the computational time

complexity for their pattern matching algorithm to be 𝑂(𝑛𝑚(𝑑 + log𝑚)), where d is the

size of the pitch set, n is the score size and m is the pattern size. Hence, they have claimed

that this algorithm works faster only for small patterns, as the factor 𝑂(𝑛𝑚) is hard to

20

improve since it is at least as hard as the 3-SUM or Segments Containing Points problems.

Further details about those problems, please refer to the paper.

Two years later, McKay & Fujinaga (2006) have evaluated a software package that

extract features from the MIDI files, where the extracting language is known as the

jSymbolic. It analyses the library containing 160 high-level features which can be used

to classify music by evaluating the music similarity scores. These features can be

categorized into the following groups: instrumentation; texture; rhythm; dynamics; pitch

statistics; melody and chords. As jSymbolic is currently compatible with MIDI files, they

have mentioned that their target is to expand its functionality such that it can process other

symbolic formats. Later in 2016, they released jSymbolic2 in their newest article (McKay,

et al., 2016), which is a significant expansion of the first version of jSymbolic, as features

can also be extracted from MEI files and, if using a Rodan conversion workflow,

MusicXML.

From Music XML, Hrušková & Hvolka (2011) have introduced a melodic and rhythmic

vector format approach in representing and finding similarities between two monophonic

music files. This can be passed through a “Melody Comparator” function. Unfortunately,

this paper does not provide the details of the experiment for evaluating the similarities

between two music pieces, and the vector format they have introduced, has limited

information stored for the individual note.

However, Valero & Quereda (2010) have introduced the tree structure to represent the

music instead of the vector format. The layers of the tree define the duration length of

individual nodes from the melody and the root of the tree defines the value of the

individual nodes. An example is shown in Figure 2.1-6, where each note is using the

modulo 12 system and the dummy note has been shaded in grey. After a tree reduction

(propagation) step, we can evaluate the similarity between two monophonic melodies.

Moreover, it has extended the tree representation so that the approach is compatible with

polyphonic music, by using multiset labels, where each root defines the set of notes

(chords) that have been played during this time interval. Therefore, this approach can deal

with both monophonic and polyphonic music.

21

Figure 2.1-6. Example melody and its corresponding tree data structure representation
(Valero & Quereda, 2010).

The experiment was carried out and compared with existing MIR systems, some of which,

such as CBrahams, have appeared in Table 2.1-2. Moreover, CBrahams is the one which

can do all three types of the matching except taking audio as the system input. Thus, all

the music notes should spread out with the same time frame as the tree structure.

Otherwise, during the reduction step for approximate matching, melodies with variations

might be reduced to the same abstract melody, as only the important nodes from the leaves

nodes are kept onto the higher layer parent nodes. As a consequence of this, the limitation

of this approach is that it depends on the meter structure of the input resource and thus,

can be very difficult to represent ties, dots and syncopations. Even though, when the tree

representation applies to the more complex melodies of polyphonic music pieces, the

multiset label cannot distinguish the difference between whether the notes in this time

frame come from the right hand part or the left hand part, which will affect the actual

similarity scores. Therefore, it is necessary to find a new coding scheme so that more

types of music/music notes can be represented/encoded. For example, we can combine

Hrušková & Hvolka’s vector format (2011) and Valero & Quereda’s tree structure (2010).

Finally, Huang et al. (2013) developed the MidiFind system that deals with MIDI files

and uses a hybrid system that carries out the music similarity searching from piano music

pieces. They have shown the logic structure of MidiFind to illustrate the step of their

scalable system. Their system has achieved 99.5% in precision and 89.8% in recall by

using machine learning and music analysing. Even with that result, they have suggested

using more machine learning techniques. For example, build a ‘word’ based knowledge

system to implement a decision tree to add further control to the existing system. This

22

paper indicates that we need to use various machine learning techniques to compute music

similarity.

From those case studies and critiques, here are some critical points about the main features

and the major limitation for audio files and symbolic-based MIR systems:

 For the files used in symbolic-based MIR systems, such as MIDI files, they can

be easily stored and require less disk space, as only the core information about the

music is required, such as the pitch for the key, the time to press the key and the

time to release the key. Hence, they are faster in processing time.

 As the melody i.e., the flow of the music, has been well represented in various

symbolic-based approaches, we can recognize similar melody patterns and carry

out the exact and the approximate music content-based search for different

musical features. Thus, it is easy to do the task of identifying the original music

pieces given its variations.

 High retrieval accuracy has been obtained for the melody-based search.

 As the symbolic limits the pitch set and time resolution, music with continuous

pitch sets are hard to symbolize which means that not all music can carry out the

symbolic-based music search easily. Similarly, lyrics are difficult to incorporate.

 Music search purely based on the rhythm obtained low retrieval accuracy.

2.2. Audio VS Symbolic

From previous sections, we have already literally concluded that the symbolic files, such

as MIDI, require less disk space compared to the audio files, and possess limits to the

discrete pitch set and time resolution. This means that if we convert the audio to symbolic,

we have filtered out certain unimportant musical features and altered certain musical

properties, which will lead to a different real-time spectrum for the sound signal of the

symbolic music compared to the original audio music (Chen, et al., 2016), if we playback

the symbolic files.

Therefore, in this section, we further analyze the differences between the audio and the

symbolic files, from the concept of music representation and storage using the case

studies.

23

Figure 2.2-1. (8a-8d) Spectrum Analyzer for the intro of [45] 1.

Figure 2.2-2. (9a-9c) Spectrum Analyzer for the intro of [45a]1.

1 https://academo.org/demos/spectrum-analyzer/

8a 8b

8c 8d

9b 9a

9c

24

For our case study, we have chosen two versions for the intro part of “Zero For Conduct”

by Bastarz (of Block B) [45], as it contains music which consists of both continuous and

discrete pitches. The first version is the original song from their official music videos [45],

the second is the MIDI version of the piano cover [45a]. We used spectrum analyzer1 to

see the difference between those two versions, as shown in Figure 2.2-1 and Figure 2.2-2

respectively. In both figures, the hidden horizontal x-axis is the time in seconds (sec) and

the y-axis is the pitch in Hertz (Hz). The colour indicates the sound intensity of the

frequencies – the brighter the colour, the higher the intensity.

From Figure 2.2-1, we can see that the original music start with a steady-continuous-

increase-in-frequency siren-like sound, from approximately E4 to around C5 sharp,

followed by the instrumental melodies, before the main vocal melody starts. As the piano

only consists of 88 piano keys, the intro for the MIDI version in Figure 2.2-2 does not

include the first few seconds of the original intro. Moreover, none of the symbolic version

(MIDI, music sheet etc.) that is available on-line can manages to have the siren-like part.

On the other hand, the sound intensity for the MIDI version is on average lower than the

sound intensity for the original audio version, the colours in Figure 2.2-1 are much

brighter than in Figure 2.2-2 and includes some higher pitches. This was affected by the

different timbre between the original recordings and the MIDI piano synthesizer, for

example, each instrument has different harmonies and each singer has different tones.

However, the fundamental pitch, the tempo and the beat have been matched well among

the audio and the symbolic files.

From the storage perspective, the file size for the MIDI file is 6.53 KB, whereas the file

size for the MP3 file downloaded from the original music video is 4.51MB, consisting of

the following configurations: 44,100 Hz stereo, 32-bit, and 192 Kbps CBR. Despite the

fact that the MIDI version does not cover the whole song, but as 6.53 KB is much smaller

than 4.51 MB, we can still claim that the symbolic file is, in general, much smaller than

the audio file. This can be proven by converting the MIDI file back into an audio file of

the same music time length (the MP3 file size is 1.11 MB), as well as from the literature

review, e.g., (Holm, et al., 2005). Moreover, analogue audio needs more space than digital

audio.

Therefore, we can conclude into the follownig summary table, as shown in Table 2.2-1.

25

 Audio Symbolic

Advantages

(Features)

 Able to store and represent

sound consisting of

continuous pitch set, either

analogue or digital format.

 Lyrics for the vocal and

various tones are

representable.

 Small file size on average.

 Both human and computer

readable and understandable.

 Easy to convert back into the

audio file.

Disadvantages

(Limitations)

 Large file size in general,

and huge for top class sound

quality.

 Difficult to capture certain

melodic information, such

as the time and key

signature.

 Music limited to the discrete

pitch set and lyrics.

Table 2.2-1. Summary Table for the Audio VS Symbolic files.

2.3. Automatic Music Transcription and Signal Process

From the summary table in Section 2.2, we can see that it is easy to convert the symbolic

file back to the audio file, but difficult to convert the audio file into a ‘perfect’ symbolic

file or equivalent music sheet. This process is normally known as the Automatic Music

Transcription (AMT). Thus, we need to review the difficulties in the AMT process.

Therefore, we briefly introduce the modern technologies applied in music, speech, and

other related subject areas. These technologies have been grouped into AMT, Signal

Processing.

2.3.1. Automatic Music Transcription

As automatic music transcription (AMT) is a sub-category of an MIR, where we convert

the acoustic audio into some symbolic-based music notation forms (Cogliati, et al., 2016;

Fournier-S’niehotta, et al., 2016). Here are the critiques on some AMT related papers.

26

Figure 2.3-1. Flowchart for the audio-to-score alignment algorithm (Chen, et al., 2016).

In Demopoulos & Katchabaw’s paper (2007), the majority of the paper was discussed

music representation and symbolic pattern matching, such as string matching. Most

importantly, they claim that the transcription from the audio can be complex depending

on the amount of musical information needed. Thus, it introduces two methods in order

to get the fundamental frequency and converting it into symbolic music representation,

which is known as AMT. This allows audio-based MIR systems to use the symbolic

approach, like those green MIR systems in Table 2.1-2, not just using the audio

fingerprinting approach. However, this paper claimed that for these kinds of systems,

getting the time and key signature information is much harder than getting the pitch and

rhythm information. Similar challenges for AMT were claimed in Benetos et. al.’s paper

(2013).

On the other hand, Chen et. al. (2016) proposes an innovative method to do the audio-to-

score alignment. Their task is to evaluate the matching similarity between the audio

recording and the music score. From their flowchart, as shown in Figure 2.3-1, their

approach were divided into four parts: onset detection and segmentation, constant Q

transform, note matching and dynamic programming. The onset detection stage is

covering the beat tracking and polyphonic music transcription, which relates to the

challenged tasks mentioned in previous papers. However, the difference is they were

using the music score as a guide to verify the audio recording by alignment, rather than

generating non-previous-determinated music score. Similarly, Kwon et. al. (2017) used

Recurrent Neural Network-based AMT to audio-to-score alignment on the piano

performances.

27

2.3.2. Signal Processing

Here are the transformations using several fourier transformation techniques in signal

processing that we can use for the music feature extraction stage for an MIR system.

The first typical fourtier transformation is the Short Time Fourier Transformation (STFT).

Ning’s team (Yang, et al., 2017) used STFT to separate vocal and background music,

whereas Simon (Dixon, 2000) applied STFT to recognise note on solo piano music

performance of Mozart piano sonatas. According to Simon’s paper, he obtained a

recognition accuracy of around 70% – 80%, and has emphasised the limitation of using

the synthesised data, the evaluation function and the issue with the accuracy of the

dynamics and the offset times.

Another typical fourier transformation will be the Fast Fourier Transformation (FFT),

which can be applied in Phase Vocoder (Portnoff, 1976), which is a system that provides

parametric representation for a speech waveform. As it describes, the representation is in

a sequence that has been discretised with optimized approximation. With the similar

approach, Nathan’s team (Lenssen & Needell, 2014) used FFT when dealing with chord

recognition.

As our final case, Sharma and Sardana (Sharma & Sardana, 2016) used another technique,

named Mel Frequency Cepstral Coefficients (MFCC), to recognize speech from ‘one’ to

‘nine’. It stores each individual word’s features into a database, and separates words from

a real-time speech by classify with the pre-recorded output. However, the paper has been

pointed out the system is very sensitive to noise and sometimes cannot cope with words

which sound similar. For example, ‘seven’ sound has contained ‘one’ sound. This speech

recognition task will be handy for the lyric-based MIR systems with non-text input.

We have the detailed overview of the theories behind those approaches in Section 2.5.3.

2.4. Other Achivements using ML

In this section, other achievements from other MIR sub-categories and music related

subject areas using various machine learning techniques, were briefly introduced.

Machine Learning (ML), by definition, is the scientific study of algorithms and

mathematical models which automatically learn programs from data. Instead of using

28

manually constructed instructions, ML relies on patterns and inference (reasoning)

generalised from data examples (Domingos, 2012). One subfield of ML concerning

algorithms inspired by the structure and function through a complex deep constructed

Neural Network (NN) system with feature learning, is the Deep Learning (DL) (Chen &

Lin, 2014). In other words, it is an extension of NNs that accurately assign credit across

many long casual chains of computation stages. Each computation stage transforms the

aggregate activation of the network using either supervised, semi-supervised or

unsupervised ML-based algorithms in order to carry out various tasks such as regression,

classification and clustering (Schmidhuber, 2015).

Thus, there are many applications from MIR which use ML techniques. For example,

Osmalskyj et al. (2012) have applied Artificial Neural Network (ANN) in the music chord

recognition for four instruments and achieved reasonable accuracy. Furthermore, they

have noticed that the error for piano is still large, and gave a possible reason, the noisy

nature of piano sounds. On the other hand, Matityaho and Furst (1995) have obtained 100%

success in classifying the music types, whereas Kim et. al. (2013) proposed an expanded

Emotion model (XEM) and defined the ontology (MEMO) based on XEM to carry out

the music content search using the Korean emotional words, which benefit korean music

recommendation systems.

For Natural Language Processing, a subject area which is related to MIR, the combination

of Recurrent Neural Networks (RNN) from DL and parallel computing have been used

widely in order to deal with large databases (Walder, 2016).

Beyond purely music or sound, Liao et al.’s (2009) used the vector sequence approach to

find the association between music/song and its Music Video (MV). The vector sequence

denotes the features of the music clip from the segment of sound frequency graph using

the Dual-Wing Harmonium model. Since the songs and its corresponding MTV have a

high correlation, then by considering the timing of the useful movements from the MTV,

the time frame of the music itself can be obtained with higher accuracy using feature

learning. Moreover, if there are more than one people singing the song, then by combining

the music and the MV, the melody line can be further grouped and acquire extra

information from individual singers. This extra information can be used for other

applications, e.g., re-performance, in theory, can be identified.

29

2.5. Background Knowledge Overview

So far, we have summarized the benefits and limitations of each audio or symbolic files

and analyzed audio and symbolic MIR systems. Majority of audio MIR systems have

used collections of wave samples as audio fingerprints to identify which music you are

currently listening to, whereas symbolic MIR systems have used pattern recognition from

stream sequences and similarity scores to let us search the song from various music

features. We have ended up with introducing several techniques which have been applied

in music and other related subject areas.

Therefore, before carrying on the methodology and the MUCASM design, this section

provides a brief discription of relevant topics, including important definitions,

mechanisms and theories, and groups in the following four topics: Machine Learning;

Music Notations and Terminologies; Signal Processing and Topology from mathematics.

2.5.1. Machine Learning

Due to the size of our dataset which leads to the small scale of feature learning, it is hard

to achieve the deep learning level at the start. However, we can still built a mechanism

that is DL-upgradable. Thus, in this section, the main concept of some particular machine

learning techniques and neural network, which have been used in our MUCASM design

(Section 5.1), were briefly described.

2.5.1.1. Decision Tree

Decision Tree (DT) classifier is one of the classic machine learning approaches that deals

with multistage decision making. This mechanism has been successfully used in various

areas that need classification, such as handwriting recognition, medical diagnosis etc.

(Safavian & Landgrebe, 1991).

For this classical classification technique, it consists of a set of data that is pre-classified

into n classes, where 𝑛 ≥ 2. A decision tree has decision nodes and leaf nodes, where the

decision node gives some constraint on one attribute and the leaf node outlines the class.

Hence, when constructing the DT, we need to know the series of cuts from the root node

to a leaf node, such that it can partition the data point. Most of the time, we tend to use a

binary cut, which divides the region into two halves (Liu, et al., 2000). Figure 2.5-1 shows

an example of a decision tree.

30

Figure 2.5-1. An example of Decision Tree (Liu, et al., 2000).

Moreover, the conditions or rules for each branch of the decision tree can be either

numeric (as shown in Figure 2.5-1) or non-numeric. Numeric normally consists of

continuous-valued attributes, whereas non-numeric can normally be pre-categorised with

fuzziness, or, in other words, categorised into discrete-valued attributes (Tan, et al., 2018).

Instead of partition the data point, we partite the similarity measurement methods in our

MUCASM system.

Detailed information about Decision Trees and other basic machine learning techniques

were in Tan et al. (2018)’s book.

2.5.1.2. Self-Organizing Map

Self-Organizing Map (SOM) is an unsupervised learning based Artificial Neural Network

(ANN). The main idea, as described in Kohonen’s 《The Self-Organizing Map》

(Kohonen, 1990), is that the dataset itself acts as a ‘teacher’ with appropriate hidden

neuron update formula. The mechanism is that each hidden neuron rearranges by itself.

The hidden neuron with the highest Kohonen map similarity, i.e., whose weight vector

lies closest to the input vector, known as the winning neuron (best match unit), determines

the final clustering category. Figure 2.5-2 shows two example of architectures of SOM

networks. This learning method has been adopted in our system, such that we are able to

treat each original music/melody as the hidden neuron. Moreover, it is possible to use

clustering algorithms to solve a classification problem (Evans, et al., 2011).

Detailed information about SOM and other neural networks were in the following

references: (Kohonen, 1990; Heaton, 2015; Miljkovic, 2017).

31

Figure 2.5-2. Architecture for 1-D and 2-D SOM Neural Networks (Miljkovic, 2017).

2.5.1.3. Ensembled Learning and Reinforcement Learning

Ensembled Learning (EML), by definition, is a supervised learning that uses various ML

algorithms to obtain better performance. When it comes to complex decision making, we

weigh different opinions and combine them on our final decision making (Zhang & Ma,

2012). This process is just like if we listen to the advice or informatiom from different

experts, which can happen via a human, a textbook, internet or any other media, and

combine them into our own practical problem. Our own problem may not be perfectly

solved by one single piece of advice, e.g., when the criteria is slightly different. Therefore,

EML can deal with large volumes of data, as well as too little data, with complex data

boundaries or even through dealing with data fusion (Polikar, 2006).

Figure 2.5-3 shows the relationship between having and not having ensembled learning.

There are various Ensemble Learning algorithms. E.g., Majority Voting, Stacked

Generalization etc. (Polikar, 2006; Wiering & van Hasselt, 2008). We applied the Stacked

Generalization (Polikar, 2006) idea to our MUCASM system.

32

Figure 2.5-3. Example of Emsembled Machine Learning process (Zhang & Ma, 2012).

For further details about Ensembled Learning, please refer to Cha’s 《Ensemble Machine

Learning – methods and applications》 (Zhang & Ma, 2012).

Reinforcement Learning (RL), from its definition, is a learning mechanism that controls

agents to take corresponding action(s), from the dynamic environmental state and

feedback reward (Sutton, et al., 2018), where theoretically, the reward value for the value-

based Reinforcement Learning comes from the environment, known as the interpreter.

The learning process can be based on model, policy or value-function. E.g., Q-learning,

policy iteration. This mechanism has been widely applied in multi-player games that

allows human against A.I., e.g. AlphaGo. Moreover, if we have a complex environment,

like in AlphaGo, EML can be combined onto RL (Wiering & van Hasselt, 2008).

Here are the descriptions for those terms related in RL (Sutton, et al., 2018):

 Action (A): the set of all the moves an agent can take.

 Iterative time (t): the iteration count for the current action.

 State (S): current environment situation.

 Reward (R): immediate feedback from the environment to evaluate the last action.

 Policy (π): the strategy that the agent employs in order to carry out the next action.

33

Figure 2.5-4. Architecture of Reinforcement Learning (Sutton, et al., 2018).

 Value (V): the expected long-term return, opposed to R.

 𝑉𝜋(𝑆): the expected long-term return of the current state under policy π.

Hence, we have the architecture of the RL, as shown in Figure 2.5-4.

There are various Reinforcement Learning techniques. ‘Comparison between algorithms’

is the RL technique which will be adopted in our MUCASM system (Wiering & van

Hasselt, 2008).

Detailed information about Reinforcement Learning were in Sutton et al. (2018)’s book.

Moreover, Wiering and Van Hasselt (2008) showed that it is possible to having RL-based

EML. Thus, our MUCASM system is one of the RL-based EML. Thus, for the individual

classifiers, against various variation types, can be integrated into one Mega-classifier,

based on CBA & SG. This allows us to choose which individual classifier is suitable for

each variation type.

2.5.2. Music Notations and Terminologies

From the point we have mentioned in Section 1.1, the music sheet allows the musicians

to easily read, understand, and compose the music, as various musical notations (music

symbols) and terminologies have been used, each of which has its own meaning. For

example, Figure 2.5-5 shows the circle of fifths. Thus, a summary table of some typical

music symbols and musical terminologies has been provided in Table 0-1 (Gerou & Lusk,

1996; Klapuri & Davy, 2006), in alphabetic order.

34

Figure 2.5-5. Circle of Fifths (Gerou & Lusk, 1996).

35

2.5.3. Signal Processing

Signal can be known as a function that represents information for a system or an attribute

of some phenomenon. There are several formats for a particular signal such as acoustic

wave, electromagnetic wave along with many other types (Priemer, 1991). Therefore,

more specifically, we are interested in analogue (audio) signal and digital signal in this

project. The difference is that one of them is a continuous wave signal with respect to

time along the time-domain, and the other is using a sequence of discrete values to

represent the original continuous quantities, sampled with time intervals, as shown in

Figure 2.5-6.

Signal Processing (SP) is to use certain algorithms or operations that input a signal and

output, either the resulting signal or the signal analytical result. For the typical examples

of the output being a signal, would be the audio-digital and digital-analog converter, and

the filter from the Digital Signal Processing (DSP) (Priemer, 1991; Spanias, et al., 2006;

Tan & Jiang, 2018). Moreover, these signals are represented in the time domain.

On the other hand, for the typical example of the output being the analytical result would

be the signal spectral analysis, by applying appropriate Fourier Transformation (FT)

(Tolstov, 2009; Zainuddin Lubis, et al., 2016). FT is used when representing signals in

the frequency domain. First, consider the definition of the fourier series (Kessler, 2007):

Definition 1. Fourier Series

A Fourier Series for a function f is defined as: :

𝑓(𝑥) ∶=
𝑎0
2
+∑(𝑎𝑛 cos

𝑛𝑥𝜋

𝑇
+ 𝑏𝑛 cos

𝑛𝑥𝜋

𝑇
)

∞

𝑛=1

, 𝑛 ∈ ℤ+

where

𝑎𝑛 ∶=
1

𝜋
∫ 𝑓(𝑥) cos (

𝑛𝑥𝜋

𝑇
)𝑑𝑥

𝜋

−𝜋

 and 𝑏𝑛 ∶=
1

𝜋
∫ 𝑓(𝑥) sin (

𝑛𝑥𝜋

𝑇
) 𝑑𝑥

𝜋

−𝜋

or alternatively, from the Euler formula, we can re-write as:

36

Figure 2.5-6. Analogue signal and digital signal (Zainuddin Lubis, et al., 2016).

𝑓(𝑥) ∶= ∑ 𝐶𝑛𝑒
𝑖𝑛𝑥

∞

𝑛=−∞

 𝑤ℎ𝑒𝑟𝑒 𝐶𝑛 =
1

2𝑇
∫𝑓(𝑡)𝑒−𝑛

𝜋
𝑇
𝑡

𝑇

−𝑇

Hence, the general Fourier Transform would be:

𝐹(𝑤) ∶= 𝐹(𝑓(𝑡)) ∶= ∫ 𝑒−𝑖𝜔𝑡𝑓(𝑡)𝑑𝑡
∞

−∞

whereas the corresponding Inverse Fourier Transform would be:

𝑓(𝑡) ∶= 𝐹−1(𝐹(𝑤)) ∶=
1

2𝜋
∫ 𝑒𝑖𝜔𝑡𝐹(𝑤)𝑑𝑤
∞

−∞

Therefore, for STFT, the main concept is to introduce a convolution-based sliding

window function w onto Equation (3), as shown in Equation (5). This can help improving

the evaluation of Signal-to-Interference Ratio and Signal-to-Distortion Ratio (Yang, et

al., 2017).

𝑆𝑇𝐹𝑇{𝑥(𝑡)}(𝑚,𝜔) ∶= ∫ 𝑥(𝑡)𝑤(𝑡 − 𝑚)𝑒−𝑖𝜔𝑡. 𝑑𝑡

∞

−∞

37

Moreover, Michael (Portnoff, 1976), Nathan and Deanna (Lenssen & Needell, 2014) have

illustrated the connection between STFT and Fast Fourier Transformation (FFT), a form

of Discrete Fourier Transformation (DFT), and claim that FFT can save log N versus N

per output value. I.e., O(N*logN) instead of O(N2) where N is the dataset size. However,

all DFTs were used only for discretised signals. Thus, unlike integration for STFT, we

use summation for FFT, which is shown in Equation (6).

𝐹𝐹𝑇{𝑋𝑘} ∶= ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

where k = 0, 1, …, N-1.

Furthermore, if we are using Equation (7), then we can map the powers of the spectrum

derived from the Fourier Transformation onto the ‘Mel’ scale (Sharma & Sardana, 2016).

This is known as the Mel Frequency Cepstral Coefficients (MFCC).

𝑀𝑒𝑙(𝑓) ∶= 2595 ∗ log10 (1 +
𝑓

700
)

In conclusion, STFT, FFT and MFCC are typical signal processing techniques which can

be applied when analysing musical, speech and other sound related data, depending on

whether we are dealing with continuous or discrete sound waves. Thus, FFT is choosen

in Section 4.5 as we have sampled the sound sinusoidal value. Detailed information about

signal processing were in the following references: (Priemer, 1991; Tolstov, 2009).

2.5.4. Topology

Topology is a mathematical field which studies different sorts of geometrical space under

continuous transformation or deformation (Hatcher, 2002). Therefore, it mainly uses

mathematical terms like ‘homotopy’, ‘homeomorphism’ and ‘isomorphism’, to find

relationships and similarities between the two objects, under the topological space. The

most famous example is that a normal coffee mug is homeomorphic (similar) to a donut

ring, both known as a torus, and is dissimilar to a ball, known as a sphere.

38

Figure 2.5-7. Topological transformation from a donut ring to a coffee mug (Coelho &

Zigelbaum, 2011)

Figure 2.5-7 shows the topological transformation from a donut ring shape to a coffee

mug, in order to illustrate the continuous transformation between the two homeomophic

objects (Coelho & Zigelbaum, 2011).

For the concept of two objects being ‘similar’ to each other under topological spaces, we

have the following definition:

Definition 2. Homeomophism

A function 𝑓: 𝑋 → 𝑌, between two topological spaces is homeomophism iff f is a bijection

and both 𝑓 and 𝑓−1 are continuous (cts).

Hence, given two distinct points (𝑣𝑠, 𝑣𝑡), with two different continuous paths joining

these two points, only the same starting point (𝑣𝑠) and the same finishing point (𝑣𝑡)

matters. We can find a one to one invertible mapping, such that for any arbitrary time

between (𝑣𝑠) and (𝑣𝑡), any single point from one path can be mapped to a point from the

other path (Farber, 2003). In other words, for 𝑣𝑠, 𝑣𝑡 ∈ 𝑝1(𝑡), 𝑝2(𝑡) where both 𝑝1, 𝑝2 are

functions maps 𝑋 ∶= 𝐼 ∈ [0,1] to the space Y, we have 𝑝1(0) = 𝑝2(0) = 𝑣𝑠 , 𝑝1(1) =

 𝑝2(1) = 𝑣𝑡 and there exists an invertible cts function f for all of 𝑡 ∈ [0,1], 𝑓(𝑝1(𝑡)) =

𝑝2(𝑡) & 𝑓
−1(𝑝2(𝑡)) = 𝑝1(𝑡). Sometimes, this is also known as isomorphsim.

If we treat these paths as two functions, instead of pointwise, then this leads to another

definition named homotopy:

Definition 3. Homotopy

Given two continuous functions f and g from topological space X and Y, then f and g are
homotopic, denote as 𝑓 ≃ 𝑔, iff ∃𝐻: 𝑋 ∗ [0,1] → 𝑌 s.t. 𝐻(𝑥, 0) = 𝑓(𝑥) 𝑎𝑛𝑑 𝐻(𝑥, 1) =
𝑔(𝑥) ∀𝑥 ∈ 𝑋. Thus, H is a homotopy between f and g.

This leads to a definition of homotopic equivalence:

39

Definition 4. Homotopic Equivalences

For a continuous map 𝑓: 𝑋 → 𝑌, if there exists a g s.t. 𝑔°𝑓 ≃ 𝐼𝑋 & 𝑓 ∘ 𝑔 ≃ 𝐼𝑌, where 𝐼 is
the identity, then we say X and Y were homotopic equivalent and f and g were homotopic
equivalences, where g is the homotopy inverse of f.

Hence, we can conlude that every homeomorphism is a homotopy equivalence, but not

the converse, as homotopic equivalences did not guarantee that g is exactly 𝑓−1.

For a quick proof of the most famous example, using the above descriptions, any torus

shape has one hole so that each point can form two ‘perpendicular’ circular paths that

intersect only once at the point itself. I.e., for two cts circular paths 𝑝1 𝑎𝑛𝑑 𝑝2 generated

from the point v, we only have one intersect point at 𝑝1(0) = 𝑝2(0) = 𝑣𝑠 = 𝑝1(1) =

 𝑝2(1) = 𝑣𝑡 = 𝑣. Thus, we can derive that a coffee mug is homeomorphic to a donut ring.

However, for the sphere shape, two intersect points can be formed. I.e., not only having

𝑝1(0) = 𝑝2(0) = 𝑣𝑠 = 𝑝1(1) = 𝑝2(1) = 𝑣𝑡 , but also having 𝑝1 (
1

2
) = 𝑝2 (

1

2
) . If we

remove the point v, then 𝑝1 𝑎𝑛𝑑 𝑝2 become disconnected for the torus, whereas

𝑝1 𝑎𝑛𝑑 𝑝2 remain connected for the sphere. In other words, the mapping function H from

𝑝1 + 𝑝2 𝑓𝑟𝑜𝑚 𝑓𝑡𝑜𝑟𝑢𝑠 to 𝑝1 + 𝑝2 𝑓𝑟𝑜𝑚 𝑔𝑏𝑎𝑙𝑙 is injective, but not surjective:

𝐻 ((𝑝1 (
1

2
)) , 0) = 𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝1 (

1

2
)) → 𝐻 ((𝑝1 (

1

2
)) , 1) = 𝑔𝑏𝑎𝑙𝑙 (𝑝1 (

1

2
))

𝐻((𝑝2 (
1

2
)) , 0) = 𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝2 (

1

2
)) → 𝐻 ((𝑝2 (

1

2
)) , 1) = 𝑔𝑏𝑎𝑙𝑙 (𝑝2 (

1

2
))

𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝1 (
1

2
)) ≠ 𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝2 (

1

2
)) 𝑏𝑢𝑡 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑏𝑎𝑙𝑙 (𝑝1 (

1

2
)) = 𝑔𝑏𝑎𝑙𝑙 (𝑝2 (

1

2
))

Therefore, the torus is not homeomorphic to the sphere.

Figure 2.5-8 illustrates the difference between the torus and the sphere.

As Figure 2.5-8 shown, the blue circular line is 𝑝1 and red circular line is 𝑝2, these only

intersect at one point, v, for the torus, but two points, v and w, for the sphere.

Detailed information about topology were in the following references: (Hatcher, 2002;

LaValle, 2006).

40

Figure 2.5-8. Two perpendicular circles each for both Torus and Sphere. Created in

MATLAB.

All these concepts (definitions, theorems, and proofs) from the topology overviewed

above, will be useful when dealing with the reasoning of the MML design in Section 4.2.

2.6. Summary

From Section 2.1 to 2.4, we have critically evaluated the existing music storage, music

representation and music information retrieval systems. We found out it is necessary to

combine both audio and symbolic approaches to retain each approach’s advantages. In

other word, we need to find a symbolic approach such that it is easy to store, access,

manipulate, and most importantly, the music representation for the new approach is closer

to the audio approach compare to existing symbolic approaches. Thus, with this new

approach, we can carry out the following task: identify the original music piece from its

musical variation using both audio fingerprint and symbolic pattern matching, so it can

be used in those applications or scenarios described in Section 1.1.

In order to achieve this, we have further overviewed some relevant backgound

knowledges in Section 2.5. These relevant knowledges will appear in the rest of the thesis.

Therefore, in Chapter 3, we start to design an architecture based on those findings and

knowledges, in an abstract level.

41

3. Methodology and Architecture Design

Based on those issues for the existing symbolic coding scheme and the MIR systems and

relevant background knowledge found by carrying out both primary and secondary

researches, we have designed a new architecture, named E3MSD, to make an alternative

approach for the Original Music Identifier (OMI), such that the positives were retained

and the negatives were addressed.

From those positive and negative findings for audio and symbolic approaches reviewed

in Chapter 2, we have derived the following concepts for the alternative approach of OMI:

it must include an alternative approach for the symbolic coding scheme and the OMI itself

with a appropriate machine learning technique. Detailed feature requirements for the

symbolic coding scheme (F1.1 - F1.4), as well as the data structure, are listed below:

F1.1. It improves the expressiveness for the symbolic representation of the audio music

pieces

F1.2. It allows the audio and symbolic conversion

F1.3. It allows various similarity measurements between songs, based on the similarity

scores, higher accuracy and efficiency can be obtained for the original music

identifier

F1.4. It is extendable to the music search engine and plagiarism detection applications.

Detailed feature requirements for the OMI (F2.1 - F2.4) are listed below:

F2.1. It is able to identify the original tracks from the variation.

F2.2. It should consider and balance the contour melody similarity and rhythmic

similarity.

F2.3. It should combine the search by the symbolic similarity score with the audio

fingerprint.

F2.4. It allows different variations to use different methods when identifying its origin.

In order to achieve these, we proposed one new architecture named E3MSD, Expressive,

Efficient, and Extendable Music Similarity Detection. Figure 3-1 shows the overall

workflow for the E3MSD.

42

Figure 3-1. Overall workflow for the E3MSD.

As shown in Figure 3-1, ‘Music’ indicates the music is in the audio form and ‘Code’ in

the symbolic form. By comparing the ‘Code’ from the query against the ‘Music Database’,

we can calculate ‘ ’, which gives us a guideline to several ‘Applications’.

Depending on the type of application, we may have some feedback for the current music

database to update with any relevant application outcomes.

At the ‘Code’ stage, we will design and define the alternative coding scheme (data

structure) such that it combines the features from audio and symbolic files and codes the

music in a better way, i.e., to cover F1.1 listed on page 41. From Chapter 2, we can see

that, for the existing symbolic coding, such as MIDI files, the following code tuple is

always used. The tuple includes a musical note’s frequency/notation, its starting time,

ending time and its velocity which determines the volume, where the frequency is kept

unchanged during consecutive tuples. I.e., the frequency is in the form of a discrete step.

Moreover, the new version of MIDI files, including the HD-MIDI, can accommodate

more notes’ effects from different varieties, such as the vibrato note, by increasing the

number of channels and signal controllers. However, this approach does not solve the

issue completely (Damm, 1993; Clarke, 2004; Saxena, et al., 2018). Therefore, our coding

scheme, should include two different ‘languages’ which describe the different features of

43

the music. One of the ‘languages’ represents what notes should be played and the other

one models how the notes were played. Hence, one of them is corresponding to the

existing MIDI files, and the other one tries to shape the audio waves to a stream file,

which addresses the limitations of existing symbolic files with a better approximation of

the continuous change in frequency and amplitude. In addition, as audio is hard to

compute content-based similarity, thus, by separating it into two ‘languages’, we can filter

the one that shapes the audio waves and carry out various content-based tasks, which

addresses the limitation of the existing audio-based MIR systems. The ‘Code’ will be

named Music Definition Language and Music Manipulation Language, which is defined

in Section 4.1 - 4.2.

The double headed arrow between ‘Audio’ and ‘Code’ in Figure 3-1 is the conversion

between the audio form and the symbolic form, which covers F1.2 listed on page 41.

From ‘Code’ to ‘Audio’, we need to examine that the code we have proposed is playable,

whereas from ‘Audio’ to ‘Code’, we need to examine that the proposed code is generable.

With these two properties, we have further confirmed that the proposed code has satisfied

the requirements from the music representation and music storage perspectives and it is

ready to move on to music application’s perspective (F1.3 ~ F2.4, page 41). The design

and the results for the bidirectional conversion are in Section 4.3 - 4.5.

With the proposed coding scheme, we should be able to compare the music track from

the input of the application and any other music track from the music database, and

generate a similarity score, as required by F1.3 and F1.4. This similarity score contains a

set of similarity scores which is based on different content-based scenarios, e.g., rhythm-

based, and thus, several numerical measurements between two music tracks can be

provided which in turn, porivdes us with a guideline. In order to achieve this, a self-

supervised ensembled learning method has been developed to improve the performance

of the Original Music Identifier (OMI) given one of its variations as an input. Self-

supervised suggested that the label is automatically generated from the data itself whereas

ensembled learning follows from the definition in Section 2.5.1. This learning method

has been named as MUsic Classification And Similarity Measurement (MUCASM),

which will be act as the core function (OMI) for various applications. It is included inside

the arrows around the ‘ ’ in Figure 3-1. The detailed design for the self-

44

Figure 3-2. Detailed workflow for the E3MSD.

supervised MUCASM were described in Section 5.1, followed by the results detailed in

Section 5.2.

Figure 3-2 is a slightly detailed overall workflow for the E3MSD, such that inside our

architecture E3MSD, MDL&MML involves the data type design and MUCASM involves

the systems design.

As this is a theoretical project, we need to have some functional and benchmarking tests

to the Audio-Symbolic birectional conversion and the self-supervised mechanism for the

E3MSD. Thus, we manually create some music tracks in MDL and MML (MDL&MML)

format for our ‘Music Database’ as some variationals might not even exist but we need

them for our tests, and based on Figure 3-2, we have divided our project into the following

four major stages with a list of functional testings and testing requirements for each

individual stage. Each requirement corresponds to a feature/features listed on page 41.

Stage.1. Code to Music

- The possibilities that the new code(s) can represent, includes the continuous

glissando (F1.1)

45

- The performance of the new code(s) playback into audio, using Spectral Pitch

Display (F1.1, F1.2)

Stage.2. Music to Code

- The possibilities and the performance of generating the code(s) from the audio

file (F1.2)

Stage.3. Code to

- The possibilities of evaluating the similarity scores from the code(s) using

various audio and symbolic approaches (F1.3; F2.2, F2.3)

Stage.4. Applications

- The result on the OMI and compared with some existing examples (F1.4; F2.1,

F2.4)

Furthermore, we have made a choice for the overall software development life cycle

model, which is the prototyping model from the evolutionary model (Definition 14 in

Appendix A) such that we can implement several prototypes (not a whole system) to

demonstrate the core ideas from those main stages of E3MSD. The design of those

prototypes will be inside the relevent sections: 4.3; 4.5; and 5.1. In addition, we have

made the decision to use MatLab when implementing those prototypes as MatLab has

several free build-in functions for us to use. All the relevant details are in Appendix A.

46

47

4. Music Definition Languange and Music Manipulation Language

In this Chapter, we are going to define the exact code(s), followed by two ‘systems’ which

demonstrate the requirements from Stage.1 and Stage.2 in Chapter 3.

4.1. Music Definition Language

As described in Chapter 3, we, first, need to define a ‘language’ that incorporates the

basic information/instructions about the musical notes that should be played, such that it

has a similar concept to the standard symbolic MIDI files (Rothstein, 1995). Therefore,

we define this kind of ‘language’ as Music Definition Language (MDL), which from the

linguistic meaning, ‘defines’ the music. Moreover, this has a similar purpose to the DDL

from Structured Query Language (SQL) (Elmasri & Navathe, 2014).

For computation purposes, MDL is designed to be in a vector format with all numeric

values. Furthermore, as MDL corresponds to the symbolic files from the initial design,

the following features of a single note should be incorporated into our symbolic-based

MDL format (Lubiw & Tanur, 2004; Valero & Quereda, 2010; Walder, 2016):

 The position of the musical note in a modulo 12 system, 𝑁𝑚𝑜𝑑 12. For example: Note

A is ‘0’, A sharp (or B flat) is ‘1’, and so on. This is illustrated in Figure 4.1-1.

 The set (index) number, 𝑆𝐼. This identifies which (modulo 12) set the note lays in. For

example: middle C (261.626 𝐻𝑧) lays in set ‘0’, upper C lays in ‘1’, and so on.

However, for computation purposes, the set from A to G# have been treated as the

same set rather than the traditional notation which is from C to B. This feature is

included in Figure 4.1-1.

 The relative amplitude, 𝐴𝑑. This indicates the volume of the note, according to the

dynamics.

 The bar number, 𝐵 . In terms of the bar number from the music sheet, this will

distinguish the musical notes that appears in different bars.

 The beat time number 𝐵𝑇. This refers to the specific beat time, the musical note is

played inside the bar number.

 The duration of the musical note 𝐷. This is a relative time value which relates to the

time signature.

4
8

Figure 4.1-1. Piano Keys, Piano Sheets and S-MDL.

Note 1: The vectors were using the format of: (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
).

Note 2: The middle C has been highlighted in blue.

49

Figure 4.1-2. Music Sheet and S-MDL for the first four bars of [27].

To conclude, the first two features together define the note we should play, followed by

the relative dynamic value. The next two identify the beginning time of the note. The final

feature represents how long the note should be held. Therefore, we have the following

mathematical definition for the symbolic based MDL.

Definition 5. Symbolic-based Music Definition Language (S-MDL).

Symbolic-based Music Definition Language (for a music melody) is a stream of vector
sequences which describes the (symbolic) flow of the music. Each 6 × 1 vector has stored
the main six-tuple features of any single musical note in the melody sequence, relates to
the music notations. S-MDL can be expressed as follows:

𝑆-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦 ∶= (𝑆-𝑀𝐷𝐿𝑁𝑜𝑡𝑒)𝑖 ∶=

(

(

𝑁𝑚𝑜𝑑 12

𝑆𝐼
𝐴𝑑
𝐵
𝐵𝑇
𝐷)

)

𝑖

, 𝑖 ∈ ℕ+

where 𝑁𝑚𝑜𝑑 12 ∈ {0, 1, … , 11}, 𝑆𝐼 ∈ ℤ, 𝐴𝑑 , 𝐵𝑇 , 𝐷 ∈ ℚ+ and 𝐵 ∈ ℕ.

For example, Figure 4.1-2 shows the linkage between the music sheet and the S-

MDLMelody of a simple melody, “Twinkle, Twinkle, Little Star” [27].

However, like the existing symbolic codings, similar limitations exist for our S-MDL.

The most important one is that the first two entries of the S-MDL belongs to the integer

number. I.e., 𝑁𝑚𝑜𝑑 12 ∈ {0, 1, … , 11} ⊆ ℕ ⊆ ℤ and 𝑆𝐼 ∈ ℤ. Thus, we define Audio-based

Music Definition Language (A-MDL) as containing the following features:

50

 The fundamental frequency of the sound, 𝑓𝑝 . Each musical note has its own

fundamental frequency (pitch), thus allowing it to extend from the discrete frequency

set.

 The amplitude of the sound, 𝐴. Unlike S-MDL, it is unaffected from the dynamic

notations. However, this can vary due to the volume, hence we treat 𝐴 = 10 ∗ 𝐴𝑑.

 The beginning time plays, 𝑡. By default, it will last until the next A-MDL. Thus, we

do not need to code the duration nor the ending time.

These three fundamental features can define a simple sound wave, as all simple

soundwaves can be generated from the following sinusoid equation to get its audio

waveform (Guillaume, 2006; Kessler, 2007).

𝑓(𝑡) = 𝐴 sin(2𝜋𝑓𝑝𝑡 + 𝜑)

where 𝜑 is phase in radians. In our case, 𝜑 = 0.

Hence, we know what pitch we are making, its volume, and the starting time. The ending

time is when we see the next A-MDL, either corresponding to another note, or a rest,

where in this case, 𝑓𝑝 = 0. Therefore, we have the following mathematical definition for

the audio based MDL.

Definition 6. Audio-based Music Definition Language (A-MDL).

Audio-based Music Definition Language (for a music melody) is a stream of vector
sequences which describes the flow of the music in its acoustic waveform (sinusoidal
wave equation). Each 3 × 1 vector has stored the main three-tuple features from the
sinusoidal wave equation (9). Thus, A-MDL can be expressed as follows:

𝐴-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦 ∶= (𝐴-𝑀𝐷𝐿𝑁𝑜𝑡𝑒)𝑖 ∶= ((
𝑓𝑝
𝐴
𝑡

))

𝑖

, 𝑖 ∈ ℕ+

where 𝑓𝑝, 𝐴, 𝑡 ∈ {0} ∪ ℝ+.

Using the following equations, we can transfer between the 88 piano key number, 𝑛𝑝, and

its corresponding frequency, 𝑓, in Hertz (Bello, et al., 2000).

51

𝑓 = 440 ∗ 2
(
𝑛𝑝−49

12
)

𝑛𝑝 = 12 log2 (
𝑓

440
) + 49

Similarly, for the key numbers in MIDI, 𝑛𝑀, simply replace the 49 in Equation (11) and

(12) with 69 (Viitaniemi, et al., 2003). This indicates without 49 (or 69 for MIDI), all

frequencies have been converted into the key number, 𝑛, such that the A note with 440

Hz is defined to be the key number zero. Therefore, Equation (13) and (14) illustrate the

conversion between our 𝑁𝑚𝑜𝑑 12 and 𝑆𝐼 from S-MDL and 𝑓𝑝 from A-MDL.

𝑓𝑝 = 440 ∗ 2
(
12(𝑆𝐼−1)+𝑁𝑚𝑜𝑑 12

12
)

{

 𝑁𝑚𝑜𝑑 12 = (12 log2 (

𝑓𝑝

440
))𝑚𝑜𝑑 12

𝑆𝐼 =
12 log2 (

𝑓𝑝
440) − 𝑁𝑚𝑜𝑑 12

12
+ 1

On the other hand, according to the tempo measurement in Figure 4.1-2, known as

metronome marks (Joutsenvirta & Perkiömäki, 2010), there are 80 crotchets per minute.

Thus, one crotchet lasts 60/80 = 0.75 seconds.

Therefore, Figure 4.1-3 shows the music sheet and its corresponding A-MDLMelody, for

the same track [27].

Note: frequencies were rounded to three decimal places.

52

Figure 4.1-3. Music Sheet and A-MDL for the first four bars of [27].

Further from the example, we can derive the following lemma.

Lemma 1. The A-MDL and S-MDL Conversion for monophonic melody.

Given the standard amplitude, tempo measurement and the time signature, every S-MDL
for a monophonic melody can be converted into A-MDL. The opposite direction holds

iff 𝑙𝑜𝑔2 (
𝑓𝑝

440
) ∈ ℤ & 𝑡 ∈ ℚ.

Proof:

Firstly, Equation (13) and (14) shows the conversion between the 𝑁𝑚𝑜𝑑 12 and 𝑆𝐼 from S-

MDL and the 𝑓𝑝 from A-MDL. Since 𝑆𝐼 ∈ ℤ by defnition, then we need log2 (
𝑓𝑝

440
) ∈ ℤ

for Equation (14). Moreover, a rest means a note with 0 Hz (𝑓𝑝 = 0), no sound. Thus, in

theory, (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

0
−∞

) is the rest. However, if we provide a filter such that any

frequency below a value will be filtered out, i.e., treated as a rest, then we can simply

define the corresponding S-MDL as a rest, in other words, 𝑓𝑝 ≠ 0 & (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) ≠ (

0
−∞

)

for a rest.

Secondly, 𝐴 = 𝑘 ∗ 𝐴𝑑 for some non-zero constant 𝑘, can convert the relative amplitude

into the real amplitude with respect to the standard amplitude, and vice versa. In our case,

𝑘 = 10. Moreover, for a rest, 𝐴 = 𝑘 ∗ 𝐴𝑑 = 0.

Finally, Equation (15) and (16) shows the conversion between the 𝐵, 𝐵𝑇 and 𝐷 from S-

MDL and the 𝑡 from A-MDL, given the duration of a standard note from the tempo

measurement (metronome marks) and the time signature. More specifically, 𝑥 beat per

minute means 60/𝑥 seconds for one relative duration length,
1

𝑙
, and define 𝐷 = 1 for one

53

standard duration length,
1

𝛽
. The time signature is given in the form of

𝛼

𝛽
. Note both 𝛽 and

𝑙 were in powers of 2. Thus, for perfectly on time, t ∈ ℚ ⊆ ℝ.

{

 𝑡 = (

60

𝑥
) ∗ (

𝑙

𝛽
) ∗ ((𝐵 − 1) ∗ 𝛼 + 𝐵𝑇)

𝑜𝑟

𝑡𝑖 = (
60

𝑥
) ∗ (

𝑙

𝛽
) ∗∑𝐷𝑗

𝑖−1

𝑗=0

, ∀𝑖 ∈ ℕ+ 𝑓𝑜𝑟 𝑚𝑜𝑛𝑜𝑝ℎ𝑜𝑛𝑖𝑐 𝑚𝑒𝑙𝑜𝑑𝑦

{

𝐵 =
𝑡 ∗ (

𝑥
60) ∗ (

𝛽
𝑙
) − 𝐵𝑇

𝛼
+ 1

𝐵𝑇 = (𝑡 ∗ (
𝑥

60
) ∗ (

𝛽

𝑙
))𝑚𝑜𝑑 𝛼

 𝐷𝑖 = (𝑡𝑖+1 − 𝑡𝑖) ∗ (
𝑥

60
) ∗ (

𝛽

𝑙
) , ∀𝑖 ∈ ℕ+ 𝑓𝑜𝑟 𝑚𝑜𝑛𝑜𝑝ℎ𝑜𝑛𝑖𝑐 𝑚𝑒𝑙𝑜𝑑𝑦

where 𝑥, 𝑙, 𝛼, 𝛽 ∈ ℕ+ 𝑎𝑛𝑑 𝐷0 = 0.

∎

Lemma 2. The A-MDL and S-MDL Conversion for polyphonic music.

Given the standard amplitude, tempo measurement and the time signature, every S-MDL

can be converted into A-MDL. The opposite direction holds iff 𝑙𝑜𝑔2 (
𝑓𝑝

440
) ∈ ℤ & 𝑡 ∈ ℚ.

Proof

Similar proof follows once we break down the polyphonic music into multi-channelled

monophonic melodies with a lot of ‘dummy’ rests in the format of (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) ≠ (

0
−∞

)

for S-MDL and 𝑓𝑝 ≠ 0 for A-MDL.

∎

From Lemma 1 and Lemma 2, the following theorem holds:

54

Theorem 1. A-S Theorem

S-MDL is a subset of A-MDL in terms of music descriptivity.

Proof

From the proof of Lemma 1 and 2, every S-MDL can be converted into A-MDL, which

means every vector of S-MDL can be transferred into a vector of A-MDL. On the other

hand, for the opposite direction, we require the vector of A-MDL to satisfy the property:

log2 (
fp

440
) ∈ ℤ . However, the range of log2 (

fp

440
) is ℝ for 𝑓𝑝 ∈ {0} ∪ ℝ+ . Thus, the

condition log2 (
fp

440
) ∈ ℤ ⊆ ℝ indicates that S-MDL is a subset of A-MDL. Similarly for

t ∈ ℚ ⊆ ℝ.

∎

Based on S-MDL and A-MDL, here is the general definition of MDL.

Definition 7. Music Definition Language (MDL).

Music Definition Language is a collection of vector sequences which represents the basic
stream flow of the melody. It contains the fundamental frequency, the volume and the
beginning time of the sound in either A-MDL or S-MDL form.

4.2. Music Manipulation Language

Once we have described the basic sound features, we need to consider some extra

information about the individual sound. Thus, as described in Chapter 3, this ‘language’

considers the extra information about how the individual notes should be played. In music

notations, this ‘language’ is related to the articulation marks applied on the music note.

From the reality, different artists might treat the same note differently. Especially, the live

performance version might be different to album recording version. Moreover, this made

the symbolic music closer to the audio music in terms of sound fidelity. Once again,

similar to the concept of DML (Elmasri & Navathe, 2014), we have defined this ‘language’

as Music Manipulation Language (MML), literally meaning ‘manipulate the music’.

As stated in Section 2.5.4, the homeomophism concept from Topology has been used in

our MML design, such that it can further group the similar treatments. Therefore, there

are two (major) types of MML for our coding scheme.

55

The first type of MML is Operational Music Manipulation Language (O-MML) and the

second one is Topological Music Manipulation Language (T-MML).

Definition 8. Operational Music Manipulation Language (O-MML).

Operational Music Manipulation Language is a ‘meaningful’ function, either in matrix,
vector or the combination form, such that it can be applied to those consecutive MDL
vectors to perform linear transformations, even the A-MDL & S-MDL conversion.

Definition 9. Topological Music Manipulation Language (T-MML).

Topological Music Manipulation Language is a sequence of vectors, such that it can
describe how, topologically, the notes were played under the defined MDL interval.

From the two definitions, O-MML is aiming to identify the manipulation under similar

linear transformations, for example, an entire song speeded up or slowed down. Adjusting

the volume would not affect the main flow of the music. On the other hand, T-MML is

aiming to identify similar music manipulation techniques applied on the single notes, such

as various articulation marks.

The rest of Chapter 4 is concentrated on the T-MML. Before that, we briefly give some

examples and ideas about the O-MML.

Lemma 3. The C Key Transformation Lemma

There exists O-MML which allows music in any key to change into the C major (or A minor)
key.

Proof

From Equation (11-14), we can see that the conversion is respect to the 440 Hz where the

note number is 0 and similarly, from Figure 2.5-5, A minor corresponds to C major. Then

wherever we start counting, we just add or minus the number of extra keys between the

new starting key and that of A. Similarly, if we define C as the base key, then, to transform

music to a different key, we just need to shift the base key. For example, an S-MDL was

in the G Key, which means that every time we see (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

10
0
), it is in fact (

3
0
).

In other words, the base key has been shifted by the vector (
−7
0
).

56

𝑆-𝑀𝐷𝐿𝑀 𝑖𝑛 𝐶 = 𝑆-𝑀𝐷𝐿𝑀 𝑖𝑛 𝐺 . +

(

−7
0
0
0
0
0)

=

(

𝑆-𝑀𝐷𝐿𝑁 𝑖𝑛 𝐺 +

(

−7
0
0
0
0
0)

)

𝑖

, ∀𝑖 ∈ ℕ+

As 𝑁𝑚𝑜𝑑 12 ∈ {0, 1, … , 11} by definition, we just need to do the following mapping:

(
−𝑎
𝑏
) → (

−𝑎 + 12
𝑏 − 1

) , 𝑎 ∈ ℕ+ & 𝑏 ∈ ℤ

Thus, in this case, we name

(

−7
0
0
0
0
0)

𝑚𝑜𝑑 12

 as the O-MML, as this resembles the

conversion as Equation (17).

As a summary,

(

±𝑘
0
0
0
0
0)

𝑚𝑜𝑑 12

, 𝑘 ∈ {0,… ,11} is the required O-MML which transfers the

music in any key back to the C key, which ensembles the following conversion mapping:

{
(
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

𝑎
𝑏
) → (

𝑎 − 12
𝑏 + 1

) , 13 ≤ 𝑎 ≤ 23 & 𝑏 ∈ ℤ

(
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

𝑎
𝑏
) → (

𝑎 + 12
𝑏 − 1

) , −11 ≤ 𝑎 ≤ −1 & 𝑏 ∈ ℤ

∎

Similarly, we have the Set Transformation Lemma, Volume Tuning Lemma, Tempo

Tuning Lemma, Extended A-MDL and S-MDL Conversion, and others. However, we

have omitted the proof.

57

Lemma 4. The Set Transformation Lemma

There exists O-MML which allows the music to change tone while staying in the same
key.

Lemma 5. The Volume Tuning Lemma

There exists O-MML which allows the music to change the dynamic/volume.

Lemma 6. The Tempo Tuning Lemma

There exists O-MML which allows the music to change the tempo.

Lemma 7. The Extended A-MDL and S-MDL Conversion Lemma

Given the standard amplitude, tempo measurement and the time signature, there exists
non-linear O-MML such that every S-MDL can be converted into A-MDL. The opposite

direction holds iff 𝑙𝑜𝑔2 (
𝑓𝑝

440
) ∈ ℤ & 𝑡 ∈ ℚ.

As these O-MMLs, from the definition, can be applied on the whole music or partial

melodies. Therefore, similar or repeated patterns inside a music can be identified easily.

Moreover, these would be benefit our music applications. For example, we can alter the

key in a similar way to many karaoke systems.

Going back to T-MML, every MDL should follow at least one T-MML, to record the

actual ‘manipulation’ inside that MDL interval. Hence, we have the following features

for T-MML with respect to A-MDL:

 The continuous change in frequency (∆𝐹) inside the duration time of one single A-

MDL vector. Thus, notes like Glissando, Turning notes, Arpeggiated chords, and even

the continuous Glissando from EM can be coded with higher fidelity.

 The continuous change in amplitude (∆𝐴) inside the duration time of one single A-

MDL vector. Thus, notes like Accented notes and most musical dynamics can be

encoded.

 The continuous change in time (∆𝑡), allows users to record the time of any short note

or break inside the duration time of one single A-MDL. Thus, notes like Staccato

notes, and riffed notes from EM can be coded.

Similar T-MML features can be obtained for S-MDL. Thus, it can be summarized into

the following equations, where ‘∆’ indicates the difference between the start and the end

of the MDL intervals:

58

{

𝑇-𝑀𝑀𝐿𝐴−𝑀𝐷𝐿 ∶= ((
∆𝑓𝑝
∆𝐴
∆𝑡

))

𝑗

𝑇-𝑀𝑀𝐿𝑆−𝑀𝐷𝐿 ∶=

(

(

∆𝑁𝑚𝑜𝑑 12

∆𝑆𝐼
∆𝐴𝑑
∆𝐵
∆𝐵𝑇
∆𝐷)

)

𝑗

, ∀ 𝑗 ≥ 1

Figure 4.2-1 has shown the examples of the different uses of T-MML.

From Figure 4.2-1, Examples 1 and 2 have shown that the normal notes and the musical

rests are coded differently in A-MDL/S-MDL, where they have the same T-MML. From

the proof of Lemma 1, we allow the minimum capture pitch to be 6.875 𝐻𝑧, as the first

MIDI note is around 8.18 𝐻𝑧.

From Examples 3 and 4, we can see the advantage of using T-MML to clarify the

difference between the main melody flow and the extras from the turning note and the

glissando note example. Moreover, S-MDL with T-MML is used for the traditional

glissando note whereas M-MDL with T-MML is used for the continuous glissando note

from EM.

From Example 5 and 6, we can see that T-MML is capable of representing the volume

change and the accent note. This exemplifies the second feature of A-MDL (𝐴) and T-

MML (∆𝐴).

Finally, Examples 7 and 8 illustrate two similar sounded melodies with different

meanings and representations using musical notations. Example 7 is a demisemiquaver

note with a demisemiquaver rest whereas example 8 is a staccato semiquaver note. From

Figure 4.2-1, without T-MML, they have to have the same MDL (A-MDL or S-MDL).

However, with T-MML, these two situations are no longer distinguishable.

5
9

 S-MDL without T-MML S-MDL/A-MDL with T-MML

1

(

𝟎
𝟎
𝟏
𝟏
𝟎
𝟏)

(

𝟎
𝟎
𝟏
𝟏
𝟎
𝟏)

 &

(

𝟎
𝟎
𝟎
𝟎
𝟏
−𝟏)

 𝒐𝒓(

𝟐𝟐𝟎
𝟏𝟎
𝟎

) & (
𝟎
𝟎

𝟎. 𝟕𝟓
)

2

(

𝟎
−𝟓
𝟎
𝟏
𝟎
𝟏)

[𝟏]

(

𝟎
−𝟓
𝟎
𝟏
𝟎
𝟏)

[𝟏]

 &

(

𝟎
𝟎
𝟎
𝟎
𝟏
−𝟏)

 𝒐𝒓 (

𝟎
𝟎
𝟎
) & (

𝟎
𝟎

𝟎. 𝟕𝟓
)

3

(

𝟐
𝟎
𝟏
𝟏
𝟏

𝟎. 𝟐𝟓

𝟎
𝟎
𝟏
𝟏

𝟏. 𝟐𝟓
𝟎. 𝟐𝟓

𝟏𝟎
−𝟏
𝟏
𝟏
𝟏. 𝟓
𝟎. 𝟐𝟓

𝟎
𝟎
𝟏
𝟏

𝟏. 𝟕𝟓
𝟎. 𝟐𝟓)

[𝟐]

(

𝟎
𝟎
𝟏
𝟏
𝟏
𝟏)

 &

(

𝟐
𝟎
𝟎
𝟎
𝟎
𝟎

−𝟐
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓

−𝟐
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓

𝟐
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓

𝟎
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓)

[𝟐]

𝒐𝒓 (
𝟐𝟐𝟎
𝟏𝟎
𝟎. 𝟕𝟓

) & (
𝟐𝟔. 𝟗𝟒𝟐

𝟎
𝟎

−𝟐𝟔. 𝟗𝟒𝟐

𝟎
𝟎. 𝟏𝟖𝟕𝟓

−𝟐𝟒. 𝟎𝟎𝟐

𝟎
𝟎. 𝟏𝟖𝟕𝟓

𝟐𝟒. 𝟎𝟎𝟐

𝟎
𝟎. 𝟏𝟖𝟕𝟓

𝟎
𝟎

𝟎. 𝟏𝟖𝟕𝟓
)

[𝟐]

4

(

𝟎
𝟎
𝟏
𝟏
𝟏
𝟏 𝟕⁄

𝟏𝟎
−𝟏
𝟏
𝟏
𝟖 𝟕⁄

𝟏 𝟕⁄

𝟖
−𝟏
𝟏
𝟏
𝟗 𝟕⁄

𝟏 𝟕⁄

𝟕
−𝟏
𝟏
𝟏

𝟏𝟎 𝟕⁄

𝟏 𝟕⁄

𝟓
−𝟏
𝟏
𝟏

𝟏𝟏 𝟕⁄

𝟏 𝟕⁄

𝟑
−𝟏
𝟏
𝟏

𝟏𝟐 𝟕⁄

𝟏 𝟕⁄

𝟐
−𝟏
𝟏
𝟏

𝟏𝟑 𝟕⁄

𝟏 𝟕⁄

𝟎
−𝟏
𝟏
𝟏
𝟐
𝟏)

[𝟐]

(

𝟎
𝟎
𝟏
𝟏
𝟏
𝟐)

 &

(

𝟎
−𝟏
𝟎
𝟎
𝟏
−𝟏

𝟎
𝟎

−𝟎. 𝟓
𝟎
𝟏
−𝟏)

[𝟐]

 𝒇𝒐𝒓 𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 𝒈𝒍𝒊𝒔𝒔𝒂𝒏𝒅𝒐

𝒐𝒓 (
𝟐𝟐𝟎
𝟏𝟎
𝟎. 𝟕𝟓

) & (
−𝟏𝟏𝟎
𝟎

𝟎. 𝟕𝟓

𝟎
−𝟓
𝟎. 𝟕𝟓

)

[𝟐]

 𝒇𝒐𝒓 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒈𝒍𝒊𝒔𝒔𝒂𝒏𝒅𝒐

5

(

𝟎
𝟎
𝟏
𝟏
𝟐
𝟏)

(

𝟎
𝟎
𝟏
𝟏
𝟐
𝟏)

 &

(

𝟎
𝟎

−𝟎. 𝟓
𝟎
𝟏
−𝟏)

 𝒐𝒓 (

𝟐𝟐𝟎
𝟏𝟎
𝟏. 𝟓

) & (

𝟎
−𝟓
𝟎. 𝟕𝟓

)

6

(

𝟎
𝟎
𝟏. 𝟓
𝟏
𝟐
𝟏)

(

𝟎
𝟎
𝟏. 𝟓
𝟏
𝟐
𝟏)

 &

(

𝟎
𝟎
−𝟏
𝟎
𝟏
−𝟏)

 𝒐𝒓 (

𝟐𝟐𝟎
𝟏𝟓
𝟏. 𝟓

) & (

𝟎
−𝟏𝟎
𝟎. 𝟕𝟓

)

7

(

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟏𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟑𝟕𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓

𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟔𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟖𝟕𝟓
𝟎. 𝟏𝟐𝟓)

[𝟏][𝟐]

(

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟏𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟑𝟕𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓

𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟔𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟖𝟕𝟓
𝟎. 𝟏𝟐𝟓)

[𝟏][𝟐]

 &

(

𝟎
𝟎
𝟎
𝟎

𝟎. 𝟏𝟐𝟓
−𝟎. 𝟏𝟐𝟓)

𝒐𝒓 (

𝟐𝟐𝟎
𝟓

𝟐. 𝟐𝟓

𝟎
𝟎
𝟕𝟓
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟕𝟖
𝟑𝟐

𝟎
𝟎
𝟖𝟏
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟖𝟒
𝟑𝟐

𝟎
𝟎
𝟖𝟕
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟗𝟎
𝟑𝟐

𝟎
𝟎
𝟗𝟑
𝟑𝟐

)

[𝟐]

 & (

𝟎
𝟎
𝟑
𝟑𝟐

)

8

(

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟏𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟑𝟕𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓

𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟔𝟐𝟓
𝟎. 𝟏𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟏𝟐𝟓

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟖𝟕𝟓
𝟎. 𝟏𝟐𝟓)

[𝟏][𝟐]

(

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓
𝟎. 𝟐𝟓

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟐𝟓)

[𝟐]

 &

(

𝟎
𝟎

−𝟎. 𝟓
𝟎

𝟎. 𝟐𝟓
−𝟎. 𝟏𝟐𝟓)

 𝒐𝒓(

𝟐𝟐𝟎
𝟓

𝟐. 𝟐𝟓

𝟐𝟐𝟎
𝟓
𝟕𝟖
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟖𝟒
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟗𝟎
𝟑𝟐

)

[𝟐]

& (

𝟎
−𝟓
𝟑
𝟑𝟐

)

Figure 4.2-1. & Table 4.2-1. Examples of MDL and T-MML with music notations.

[1] Assume the minimum capture pitch is 6.875 Hz. By default and definition, this represents the rest note in S-MDL form.

[2] To save space, we grouped the S-MDL, A-MDL & T-MML vector sequences into one matrix respectively.

1

2

3

4

5

6

7
Key:

S-MDL & T-MML A-MDL & T-MML

(

𝑁𝑚𝑜𝑑 12

𝑆𝐼
𝐴𝑑
𝐵
𝐵𝑇
𝐷)

 &

(

∆𝑁𝑚𝑜𝑑 12

∆𝑆𝐼
∆𝐴𝑑
∆𝐵
∆𝐵𝑇
∆𝐷)

(
𝑓𝑝
𝐴
𝑡

)&(
∆𝑓𝑝
∆𝐴
∆𝑡

)

6
0

Fold along this line

Cut along this line

Make sure this page is evenly numbered.

61

From these examples, we can conclude that the T-MML is necessary to be added onto the

MDL in representing the music, where MDL corresponds to our existing symbolic coding

schemes, such that both the fidelity is closer to the actual audio and the coding is closer

to the actual music sheet. For example, if we want to have a higher fidelity for a non-

linear continuous glissando note, we can just add more T-MMLs to a A-MDL to get a

better linear approximation. However, for certain musical content analysis, it does not

matter whether it is a linear approximation or non-linear original glissando note, as long

as they are homeomorphic, i.e., 𝑝𝑙𝑖𝑛.𝑎𝑝𝑝𝑟𝑜𝑥(𝑡 = 0) = 𝑝𝑛𝑜𝑛−𝑙𝑖𝑛.𝑜𝑟𝑖(𝑡 = 0)

 & 𝑝𝑙𝑖𝑛.𝑎𝑝𝑝𝑟𝑜𝑥(𝑡 = 1) = 𝑝𝑛𝑜𝑛−𝑙𝑖𝑛.𝑜𝑟𝑖(𝑡 = 1) where p is the pitch function against time, t,

𝑡 = 0 is the start of the A-MDL and 𝑡 = 1 is the end of the A-MDL (ref: Section 2.5.4).

Based on O-MML and T-MML, we have derived the following definition for MML.

Definition 10. Music Manipulation Language (MML).

Music Manipulation Language is used to describe how different artists performed the
MDL in more technical details, either in the collection of topological vector form or as a
mapping function.

4.3. Grammar and Rules

For the completion of the language setting, this section briefly introduce some typical

grammar or rules for MDL and MML.

Since the main concepts of MDL and MML were come from DDL and DML respectively,

we can use similar instructions as SQL to further modify the MDL and MML sequences

while we transfer from theories to applications. Here are some theoretical examples:

 To create a new MDL sequence, we may use the syntax ‘create … as’. E.g., Create

(Sequence_number) as S-MDL or Create (Sequence_number) as A-MDL.

 To insert any instrumental setting, we may use the syntax ‘ins-set’. E.g., Create

(Sequence_number) as S-MDL ins-set (Instrument). Similar syntax can be defined

for other settings, for example, tempo setting would be ‘tem-set’.

 To adjust any existing settings, simply replace ‘create’ with ‘modify’ and ‘set’ with

‘adj’. E.g., Modify ins-adj (Instrument)

 To remove an existing MDL sequence, we may use the syntax ‘remove’. E.g., Remove

S-MDL (Sequence_number) (Sequence_number)

62

 To insert or delete any individual MDL, we may use the syntax ‘insert … to … at …’

or ‘delete … from … of …’. E.g., Insert S-MDL (S-MDL parameters) to

(Sequence_number) at (Position_number). Similarly, we can insert or delete any

individual T-MML.

 To adjust any existing MDL from the sequence, we may use the syntax ‘adjust’. E.g.,

Adjust S-MDL (new S-MDL parameters) for (Sequence_number) (Position_number).

Similarly, we can adjust any existing T-MML.

 To define O-MML, we may use the syntax ‘def-omml’. E.g., def-omml (O-MML

parameters).

The syntax described here can be adjusted if any confusion is found. Moreover, we can separate

MDL (A-MDL or S-MDL) and T-MML by forcing all numerical entries in T-MML to be

signed. E.g., Example 1 in Figure 4.2-1, (
𝟎
𝟎

𝟎. 𝟕𝟓
) becomes (

+𝟎
+𝟎

+𝟎. 𝟕𝟓
). Therefore, we can run

a systematic check to validate whether the MDL or MML is inserted individually.

4.4. Music Representation using the MDL and MML

With MDL and (T-)MML, a proof-of-concept prototype has been built that illustrates the

way of generating music or soundwaves using the defined coding scheme, in order to

show some features claimed previously about music representation (Dannenberg, 1993).

Refering to the case study in Section 2.2, we use this typical example, the introduction

part of “Zero For Conduct” by Bastarz (of Block B) [45], to illustrate the potential of

MDL and MML, as at this stage we manually implemented MDL and MML. Figure 4.4-1

has shown the Spectral Pitch Display (SPD) for the official music track using Adobe

Audition.

From Figure 4.4-1, we can see that the introduction can be split into two channels.

The first one is the audio channel that covers the continuous change in the frequency (𝑓 ∈

ℝ) and the ‘real’ time (t ∈ ℝ) that is hard for the existing symbolic approach to cover.

The second one is the symbolic channel that involves polyphonic music, multiple sound

channels and sound resources, which is able to be covered by the existing audio and

symbolic approaches.

63

Figure 4.4-1. Spectral Pitch Display of the introduction of [45] using Adobe Audition.

From Lemma 2 and Definition 10, we can see that both MDL and MML can extend to

polyphonic music. Thus, better sound quality can be achieved by ensembling the harmony

channel. Therefore, for simplicity, we demonstrate the SPD with fundamental frequencies

only, using the manually implemented MDL and T-MML for the intro of [45]. For the

same reason, every MDL follows one T-MML for every note. Thus, several ‘dummy’

MDL and one extra channel for the chord have been manually added. More specifically,

for the audio channel, we have used the A-MDL structure and the corresponding T-MML.

On the other hand, for the symbolic channel, we have also used the A-MDL structure and

the last three entries of S-MDL as bonus features for separation, and the corresponding

T-MML.

I.e., (
𝑓𝑝
𝐴
𝑡

∆𝑓𝑝
∆𝐴
∆𝑡

) &

(

𝑓𝑝
𝐴
𝑡
𝐵
𝐵𝑇
𝐷

∆𝑓𝑝
∆𝐴
∆𝑡
∆𝐵
∆𝐵𝑇
∆𝐷)

 respectively.

The manual MDL and MML were stored in Excel format of the file size of 15 KB, as it

would be easy for the MatLab to load. Therefore, Algorithm 1 shows the procedure of

reading the MDL and MML file and generating the SPD.

64

Algorithm 1. MDL&MML Playback (simplified SPD version)

Input: MDL and MML (Excel Format)

Output: Spectral Pitch Display

1. Read MDL and T-MML and relevant parameter initializations.

2. Split into corresponding channels.

3. 𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 (
𝟏

𝒓
) ∶= 𝒕𝒊𝒎𝒆 𝒑𝒆𝒓 𝒃𝒆𝒂𝒕 (

𝟔𝟎

𝒙
) ∗ 𝒎𝒊𝒏. 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 (

𝒍

𝜷𝒎𝒊𝒏
).

4. 𝒓𝒕(𝒊), 𝒊 ∈ {𝟎, (
𝟏

𝒓(𝒕𝒎.𝒆𝒏𝒅−𝒕𝒎.𝒃𝒆𝒈𝒊𝒏)
) … , 𝟏} where 𝒓𝒕(𝟎) = 𝒕𝒎.𝒃𝒆𝒈𝒊𝒏, 𝒓𝒕(𝟏) =

 𝒕𝒎.𝒆𝒏𝒅.

5. For each channels (audio or symbolic)

a. Calculate the A-MDL frame (the number of notes or the number of

MDL and MML pair).

b. For each 𝑨-MDL frame

i. 𝒕𝒎𝒊𝒏 = 𝑨-MDL(𝟑); 𝒕𝒎𝒂𝒙 = 𝑨-𝑴𝑫𝑳(𝟑) + 𝑻- MML(𝟑)

ii. 𝒔𝒕(𝒋), 𝒋 ∈ {𝟎, (
𝟏

𝒓(𝒕𝒎𝒂𝒙−𝒕𝒎𝒊𝒏)
) … , 𝟏} where 𝒔𝒕(𝟎) = 𝒕𝒎𝒊𝒏, 𝒔𝒕(𝟏) = 𝒕𝒎𝒂𝒙,

𝒔𝒕(𝒋) ⊆ 𝒓𝒕(𝒊) and ⊕∀ 𝑨-𝑴𝑫𝑳 𝒇𝒓𝒂𝒎𝒆 𝒔𝒕 = 𝒓𝒕.

iii. 𝑮𝑨,𝒔𝒕 =
𝑻-𝑴𝑴𝑳(𝟐)

𝑻-𝑴𝑴𝑳(𝟑)
; 𝑰𝑨,𝒔𝒕 = 𝑨-MDL(𝟐) − 𝑨-MDL(𝟑) ∗ 𝑮𝑨,𝒔𝒕

iv. 𝑨(𝒔𝒕) = 𝑮𝑨,𝒔𝒕 × 𝒔𝒕 + 𝑰𝑨,𝒔𝒕

v. Rescale into dBs (−𝟏 dB ≈ 0.891 Amp. & −∞ dB = 0 Amp.).

vi. 𝑮𝒇,𝒔𝒕 =
𝑻-𝑴𝑴𝑳(𝟏)

𝑻-𝑴𝑴𝑳(𝟑)
; 𝑰𝒇,𝒔𝒕 = 𝑨-MDL(𝟏) − 𝑨-MDL(𝟑) ∗ 𝑮𝒇,𝒔𝒕

vii. 𝒇(𝒔𝒕) = 𝑮𝒇,𝒔𝒕 × 𝒔𝒕 + 𝑰𝒇,𝒔𝒕

viii. Convert 𝒇(𝒔𝒕) to 𝒏𝒑 using Equation (12), regardless of 𝒏𝒑 ∈ ℤ.

c. End

6. End

7. Concatenate 𝒏𝒑 & 𝑨(𝒔𝒕) across all the channels.

8. Plot SPD in real-time, including Amplitude-time graph (𝑨(𝒔𝒕) 𝒊𝒏 𝒅𝑩𝒔

against 𝒕), Pitch-time graph (𝒏𝒑 against 𝒕).

65

Figure 4.4-2. Simplified SPD of the introduction of music track [45] using MatLab.

Based on the Algorithm 1, the following simplified SPD has been generated, as shown in

Figure 4.4-2.

In Figure 4.4-2, the green line is the amplitude for the individual channel whereas the

blue line is the concatenated amplitude. The magenta line is the fundamental frequency,

in terms of 𝑛𝑝, generated from the audio channel whereas the yellow line is generated

from the symbolic channel. More specifically, the magenta line represents the continuous

glissando using the linear line.

By comparing Figure 4.4-1 and Figure 4.4-2 with Figure 4.4-1 and Figure 4.4-3, we can

see that the main melody flow of the music almost matches in terms of fundamental pitch,

amplitude, and time, as those lines fit the original music’s SPD much better than using

the MIDI cover’s SPD against the original SPD. In Figure 4.4-3, only the symbolic part

has been transferred into the piano cover (MIDI version).

66

Figure 4.4-3. Spectral Pitch Display of the introduction of [45a] using Adobe Audition.

From a file storage perspective, our file is only 15 KB for the first 18 seconds that covers

almost all of the sound, apart from the harmonies, whereas the whole song ([45]) is 3.01

MB in ‘M4A’ format, 2.96 MB in ‘MP3’ format and the short (symbolic) MIDI cover

([45a]) is 6.53 KB. Thus, with appropriate estimation, we can claim that the file size of

the MDL and MML file lays in between of the audio and the symbolic files as expected.

On the other hand, the MIDI cover is not included the audio channel. Hence, from the

music representation, we can claim that MDL and MML is an improvement of existing

symbolic files and towards the audio files. In fact, even if we try to ensemble the audio

channel into the MIDI cover, it would be a number of step functions, rather than a linear

function.

Therefore, based on this slightly complicated case, the MDL and MML file is claimed to

lay in between audio and symbolic files in terms of music storage and representation.

67

However, unlike SPD, music is a real-time event and the soundwave is generated as time

goes on. Despite Algorithm 1 providing a real-time SPD, we still need to see the actual

synthezised accoustic sound of the MDL and MML.

As this is not the main concept of the project, Xue (2018) has helped complete the

simplified relevant work as his final year project . He obtained a result of that, with human

listeners and cosidering the normal version, the version with continuous glissando and

the version with chord for the music track [27] by applying Equation (20) using Python,

MDL and MML has correctly represented the melody flow. However, the sound quality

is not particularly high quality as if only considers the fundamental frequencies (Xue,

2018).

𝜔(𝑡) = (𝐴 +
∆𝐴

∆𝑡
𝑡𝑠) sin (2𝜋 (𝑓𝑝 +

∆𝑓𝑝

∆𝑡
𝑡𝑠) 𝑡)

where 𝑡𝑠 ∈ {0,… ,1}, linear spacing the range [0,1] for sound sampling within one MDL.

Therefore, in the section, we have shown that by using MDL and MML to store the music

data, it is more capacity-efficient in terms of file size and has better sound retrieval where

sound waveforms are concerned. More importantly, it can handle a greater variety of

audio signals compared to the existing MIDI format. However, the sound quality

possesses a lot of room for improvement.

4.5. Convert Audio into the MDL and MML using Signal Processing

In order to show the one-to-one mapping from the coding and the accoustic sound

(Fremerey, et al., 2008), we now need to prove the converse, from music to the code. I.e.,

convert into MDL and MML from the audio like MIDI (Derrien, 2014). For a similar

reason, we build a proof-of-concept prototype for a simple case.

The input is the MP3 file implemented in Section 4.4, the normal version of music track

[27], i.e., ∆𝑓𝑝 = ∆𝐴 = 0, as we generate the sound using the manually noted S-MDL and

T-MML file, in Excel format. The recording has a sample rate of 44.1 kHz and consists

of two channels with equal sinusoidal values, which is similar to recording without a

microphone or downloading online music. The output is the similarity score between the

68

 Algorithm 2. MDL & T-MML Generation (simplified, assuming ∆𝒇𝒑 = ∆𝑨 = 𝟎)

Input: MP3 File

Output: A-MDL/(S-)MDL & T-MML Files

1. Read MP3 file and parameter initializations (e.g., 𝜽).

2. Display basic MP3 information.

3. Generate the sequence of the sinusoidal value, 𝝎(𝒕𝒊).

4. Plot the time-domain figure (𝝎(𝒕𝒊) against 𝒕).

5. 𝒔𝒊𝒍𝒆𝒏𝒕𝒍𝒆𝒇𝒕(𝒌) = 𝒕𝒊, where 𝝎(𝒕𝒊−𝟏) ≠ 𝟎 & 𝝎(𝒕𝒊) = 𝝎(𝒕𝒊+𝟏) = 𝟎, ∀𝒌.

6. 𝒔𝒊𝒍𝒆𝒏𝒕𝒓𝒊𝒈𝒉𝒕(𝒌) = 𝒕𝒋, where 𝝎(𝒕𝒋−𝟏) = 𝝎(𝒕𝒋) = 𝟎 & 𝝎(𝒕𝒋+𝟏) ≠ 𝟎, ∀𝒌.

7. 𝒍𝒔(𝒌) = 𝒔𝒊𝒍𝒆𝒏𝒕𝒓𝒊𝒈𝒉𝒕(𝒌) − 𝒔𝒊𝒍𝒆𝒏𝒕𝒍𝒆𝒇𝒕(𝒌), ∀𝒌.

8. Filter 𝒍𝒔(𝒌) into 𝒍𝒔(𝒌
′) s.t. 𝒍𝒔(𝒌

′) ≥ 𝜽.

9. 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒕𝒆 = 𝒌′.

10. For each note (m = 1 to 𝒌′)

a. Apply FFT on the sinusoidal value. % Discrete sound waves (Section

2.5.3)

b. Extract 𝒇𝒑(𝒎) & 𝑨(𝒎).

c. Transfer 𝒍𝒔(𝒌
′) into time in seconds, ∆𝒕(𝒎).

d. 𝒕(𝒎) = ∑ ∆𝒕(𝒏)𝒌′−𝟏
𝒏=𝟏

e. Plot all the relevant graphs and display the four features.

f.

{

𝐀-𝐌𝐃𝐋 (𝐦, 𝟏) = 𝒇𝒑(𝒎)

𝐀-𝐌𝐃𝐋 (𝐦, 𝟐) = 𝑨(𝒎)

𝐀-𝐌𝐃𝐋 (𝐦, 𝟑) = 𝒕(𝒎)

𝐓-𝐌𝐌𝐋𝑨 (𝐦, 𝟏) = 𝟎

𝐓-𝐌𝐌𝐋𝑨 (𝐦, 𝟐) = 𝟎

𝐓-𝐌𝐌𝐋𝑨 (𝐦, 𝟑) = ∆𝒕(𝒎)

, based on Equation (10) and (19)

g. Convert into (S-)MDL(m) and the corresponding T-MMLS(m) using

‘similar’ steps from Lemma 1, i.e., Equation (21).

11. End

12. Concatenate 𝐀-𝐌𝐃𝐋 (𝐦)/(𝑺-)𝐌𝐃𝐋 (𝐦) & 𝐓-𝐌𝐌𝐋 (𝐦) , for all m.

13. Output A-MDL/(S-)MDL & T-MML Files as Excel format.

69

Algorithm 3. Similarity Evaluation Between Manually and Automatic Generated

(S-)MDL&MML Files

Input: Manually and Automatic Generated (S-)MDL & T-MML File from

Algorithm 2.

Output: Similarity Scores, 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹 or 𝐒𝐢𝐦𝒍𝒆𝒏𝒈𝒕𝒉.

1. Read both files and any parameter initializations (e.g., 𝝑).

2. Extract both melody and rhythm line:

𝐦𝟏(𝐭) = (𝐒-)𝐌𝐃𝐋𝒎𝒂𝒏(𝟏) & 𝐫𝟏(𝐭) = (𝐒-)𝐌𝐃𝐋𝒎𝒂𝒏(𝟓)

𝐦𝟐(𝐭) = (𝐒-)𝐌𝐃𝐋𝒂𝒖𝒕𝒐(𝟏) & 𝐫𝟐(𝐭) = (𝐒-)𝐌𝐃𝐋𝒂𝒖𝒕𝒐(𝟓)
[1]

3. If 𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)) == 𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟐(𝐭)), similar for 𝐫𝟏(𝐭) and 𝐫𝟐(𝐭)

a. 𝒍 = 𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭))

4. Else

a. 𝐒𝐢𝐦𝒍𝒆𝒏𝒈𝒕𝒉 =
𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟐(𝐭))−𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)),

𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)),
 [2]

b. Output 𝐒𝐢𝐦𝒍𝒆𝒏𝒈𝒕𝒉

5. End If

6. For 𝐦𝟏(𝐭) & 𝐦𝟐(𝐭) % with Equation (22)

a. Count the number of allowed captured pitches against 𝝑, |𝑨|.

b. Count the number of disallowed captured pitches against 𝝑, |𝑩|.

c. Count the number of perfectly captured pitches, |𝑪|.

7. End

8. For 𝐫𝟏(𝐭) & 𝐫𝟐(𝐭) % with Equation (24)

a. Count the number of perfectly matched duration length, |𝑹|.

9. End

10. 𝐒𝐢𝐦𝑪 =
|𝑨|

𝒍
∗ 𝒆−𝑴𝑺𝑫 =

|𝑨|

𝒍
∗ 𝒆−(|𝑨|+|𝑩|−|𝑪|)

−𝟏∗∑ (𝐦𝟐(𝐭)−𝐦𝟏(𝐭))
𝟐𝒍

𝒕=𝟏 , Equation (23)

11. 𝐒𝐢𝐦𝑹 =
|𝑹|

𝒍
, % with Equation (24)

12. Output 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹.

[1]: Equation (21) will allow the rest of (S-)MDL & T-MML elements to match iff these

two lines match.

[2]: At a later stage, will call the normalization function to make sure the comparison

melody lengths were the same.

70

manually noted S-MDL and T-MML file against the file converted from the audio using

signal processing. The whole process is split into Algorithm 2 and Algorithm 3.

As any noise will affect the FFT process, the fundamental pitch will not be identical to

the actual pitch. Hence, in order to convert into S-MDL at Algorithm 2 line 10.g, we need

to use the rounding function to make sure the note output (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) is, by definition, in

integer. Therefore, to measure the error of the full process, frequency is stored in the

(S-)MDL file instead. I.e., (S-)MDL & T-MMLS(m) in Algorithm 2 & Algorithm 3 is in

the format of

(

𝑓𝑝
𝐴𝑑
𝐵
𝐵𝑇
𝐷

∆𝑓𝑝
∆𝐴𝑑
∆𝐵
∆𝐵𝑇
∆𝐷)

, where ∆fp = ∆A𝑑 = 0.

On the other hand, the recording volume will affect the actual amplitude in the time-

domain figure, whereas the duration of the note, ∆𝑡(𝑚), can be irrational.

Thus, Algorithm 2 line 10.g considered the following instead:

{

(S-)MDL(m, 1) ∶= 𝑓𝑝 = 𝑓𝑝(𝑚) ∈ ℝ

(S-)MDL(m, 2) ∶= 𝐴𝑑 = 𝑟𝑜𝑢𝑛𝑑(
𝐴(𝑚)

𝐴(1)
) ∈ ℚ+

(S-)MDL(m, 3) ∶= 𝐵 =
∑ 𝐷(𝑛)𝑚−1
𝑛=1 − 𝐵𝑇(𝑚)

𝛽
+ 1 ∈ ℕ

(S-)MDL(m, 4) ∶= 𝐵𝑇 = ∑ 𝐷(𝑛)

𝑚−1

𝑛=1

 𝑚𝑜𝑑 𝛽 ∈ ℚ+

(S-)MDL(m, 5) ∶= 𝐷(𝑚) = 𝑟𝑜𝑢𝑛𝑑 (
𝑡(𝑚)

𝑡(1)
) ∈ ℚ+, 𝑤. 𝑟. 𝑡.

1

𝛽
𝑚𝑖𝑛

T-MML𝑆(m, 3) ∶= ∆𝐵(𝑚) = 0

T-MML𝑆(m, 4) ∶= ∆𝐵𝑇(𝑚) = 𝐷(𝑚)

T-MML𝑆(m, 5) ∶= ∆𝐷(𝑚) = −𝐷(𝑚)

, ∀m ∈ {1,… , 𝑘′}

where letting the first note’s amplitude is 1 and defining the duration of the first note

(𝑡(1)) is equal to 1 as it starts with a crotchet note in the time signature of
4

4
, 𝛽 = 4.

In Algorithm 3, the following equations were considered:

71

Figure 4.5-1. Main time domain plot and the music information for music track [27].

{

𝐴 = {𝑖||𝑚1(𝑖) − 𝑚2(𝑖)| ≤ 𝜗, 𝑖 ∈ {1,… , 𝑙}}

𝐵 = {𝑖||𝑚1(𝑖) − 𝑚2(𝑖)| > 𝜗, 𝑖 ∈ {1, … , 𝑙} }

𝐶 = {𝑖||𝑚1(𝑖) − 𝑚2(𝑖)| = 0, 𝑖 ∈ {1, … , 𝑙}}

 (line 6)

𝑀𝑆𝐷 =
1

|𝐴| + |𝐵| − |𝐶|
∑(𝑚2(𝑡) − 𝑚1(𝑡))

2
𝑙

𝑡=1

 (line 10)

where MSD is known as the mean squared distance (without square root).

𝑅 = {𝑖||𝑟1(𝑖) − 𝑟2(𝑖)| = 0} (line 8. a, 11)

After running the proof-of-concept prototype with the sample track [27], the following

results have been obtained. Figure 4.5-1 is the main plot for the whole MP3 file at

Algorithm 2 line 4. Figure 4.5-2 and Figure 4.5-3 are the sample plots for the first and the

last note, containing the frequency domain figure, time domain figure and the four

features extracted at Algorithm 2 line 10.e. Figure 4.5-4 shows the output of the A-MDL

and T-MML file in Excel format. Figure 4.5-5 shows the output of the (S-)MDL and T-

MML file.

72

Figure 4.5-2. Plots and feature output for the first note of music track [27].

Figure 4.5-3. Plots and feature output for the last note of music track [27].

73

Figure 4.5-4. A-MDL and T-MML output for music track [27].

Figure 4.5-5. (S-)MDL and T-MML output for music track [27].

Let 𝜗 = 0.5 𝐻𝑧 (𝑎𝑝𝑝𝑟𝑜𝑥. 8.66 − 8.18) , then the (S-)MDL and T-MML file and the

initial file gave 93.63% accuracy for the contour melody and 100% accuracy for the

rhythm. More specifically, it proves the following features of MDL and MML that was

described at the design stage:

74

Firstly, if we allow small errors, then everything would be 100% accurate as we will

round to the nearest integer when converting into the proper S-MDL and T-MML file.

This means the 6.37% error is all due to the background noise when recording, as all the

frequencies extracted are within 0.5 𝐻𝑧.

Secondly, we can see that each crotchet lasts about 0.95 seconds. This means that we can

change the time setting to make the music play faster or slower without affecting the

fundamental pitch value using O-MML.

Thirdly, if the first note is not the standard duration, crotchet in our example, we can use

O-MML to make the modification. For example, if the first note is a quaver instead, then

mulitiply all duration by 0.5 and you can obtain the corrected duration value. Thus, the

bar number and the beat number can be modified.

The above two points would be useful when proving Lemma 6. The Tempo Tuning

Lemma.

Finally, we have made the similar assumption that the amplitude of the first note is 1,

whereas the real amplitude is approximately 0.305, which may be due to the volume

reduction when recording. The amplitudes of all the rest of the notes are the relative

values compared to the first note. For a similar reason, by defining the first note to a

certain dynamic value, the volume for the entire music can be controlled by an O-MML.

Similarly, this helps to prove Lemma 5. The Volume Tuning Lemma.

4.6. Summary

We have introduced the MDL and MML with various examples, including the potential

of using MDL and MML to model the music with various articulation marks. We have

outlined several mathematical theories relevant to the new coding scheme. Most

importantly, we have illustrated the one-to-one mapping between the acoustic sound and

the coding scheme and showed the advantages of using the MDL and MML with proof-

of-concept prototypes, from both music storage and music representation perspectives.

75

5. Original Music Identifier using MDL and MML

Given the good result previously, the one to one mapping between the music and

MDL&MML, we now move towards the main MUCASM for OMI. We, first design the

similarity measurement and the mechanism for MUCASM, followed by various

experimental studies to see how the ensembled learning can improve the OMI’s accuracy.

Moreover, it will further prove that MDL and MML lays in between the audio and the

traditional symbolic coding schemes.

5.1. MUCASM Design

According to prototype and the test requirements in Chapter 3, we want to see the

difference between just using unsupervised SOM and the supervised RL-based ensembled

learning. Thus, with the defined MDL and the the corresponding T-MML, we design our

MUsic Classification And Similarity Mesurement (MUCASM) system.

From Chapter 4, we are assuming that MDL & T-MML can be well used to represent and

store music melodies. Thus, the input melody to MUCASM is encoded with the proposed

scheme MDL, which includes S-MDL and A-MDL with the corresponding T-MML.

Then we compare the input with those in the original music (melody) database following

both audio and symbolic based similarity measurement methods to identify matched ones

based on given criteria (i.e. the highest similarity score). After sorting the outputs, the

system retrieves the most matched original music (melody) track IDs and relevant

information. The output can either be unique, multiple or none depending on the criteria.

Moreover, the melody database does not only store original melodies, but also their

variations, in order to provide a rich data set to train the proposed classification algorithms.

Figure 5.1-1 shows the overall MUCASM architecture.

Apart from MML and MDL, the similarity calculation and classification (i.e. self-

supervised reinforcement-based ensemble learning for the musical origin classification)

also play pivotal roles in the proposed system. The first subsection describes various

similarity calculation methods based on SOM (Self-Organize Map), and the second

subsection explains the proposed classification approaches based on Ensemble Machine

Learning (EML) which includes several learning mechanisms and these are various

SOMs.

76

* https://www.smartdraw.com/flowchart/flowchart-symbols.htm

Figure 5.1-1. Overall flowchart for MUCASM.

In Figure 5.1-1, ⊕ is the ‘Or’ symbol, which indicates that the process flow continues in

more than two branches; ⊗ is the ‘Summing Junction’ Symbol, which indicates a point

in the flowchart where multiple branches converge back into a single process*.

5.1.1. Self-Organizing Map

SOM, a self-learning method, can produce different effectiveness on clustering according

to the selection of embedded similarity calculations, activation functions for the best

match unit and the update formulae. In order to maximise the SOM performance, and find

their correlation and optimum combination, the activation function is fixed, but the

methods for similarity calculation and update formula are varied.

https://www.smartdraw.com/flowchart/flowchart-symbols.htm

77

5.1.1.1. Similarity Calculations

For S-MDL-based SOM, the two important features extracted from the sextuple S-MDL

are the contour melody and the rhythm. The contour melody differs from the Parsons

code for melodic contours (Müllensiefen & Wiggins, 2011), and is the sequence of the

key number derived from (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) against the duration (𝐷). The rhythm part is purely

derived from (𝐷) . Theoretically, 𝐴𝑑 , 𝐵, 𝐵𝑇 should be taken into account at the pre-

processing stage. However, as they were either identical in our dataset or can be derived

from the duration, we have excluded them at this time. Therefore, we have designed the

following three equations for the contour melody and one for the rhythm given that the

two melodies have the same length.

Similarity Calculation 1 for Contour Melody (SC1):

𝑆𝑖𝑚𝐶 (𝑀𝐷𝐿1,𝑖(𝑗),𝑀𝐷𝐿2,𝑖(𝑗)) =
|𝐴|

6 ∗ 𝑙
 𝑤ℎ𝑒𝑟𝑒 𝐴 = {(𝑖, 𝑗)||𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗)| = 0}

Similarity Calculation 2 for Contour Melody (SC2):

𝑆𝑖𝑚𝐶 =
|𝐴|

6 ∗ 𝑙
∗ 𝑒−𝑀𝑆𝐷 𝑤ℎ𝑒𝑟𝑒

{

𝐴 = {(𝑖, 𝑗)||𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗)| = 0}

𝐵 = {(𝑖, 𝑗)||𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗)| ≠ 0}

𝑀𝑆𝐷 =
1

|𝐵|
∗ ∑ (𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗))

2

𝑖,𝑗∈𝐵

Similarity Calculation 3 for Contour Melody (SC3):

𝑆𝑖𝑚𝐶 = 𝑤𝑀 ∗ 𝑆𝑖𝑚𝑀 + 𝑤𝐷 ∗ 𝑆𝑖𝑚𝐷 + 𝑏 𝑤ℎ𝑒𝑟𝑒

{

𝑀𝑒𝑙1,𝑖 = 𝑀𝐷𝐿1,𝑖(1) + 12 ∗ 𝑀𝐷𝐿1,𝑖(2)

𝑀𝑒𝑙2,𝑖 = 𝑀𝐷𝐿2,𝑖(1) + 12 ∗ 𝑀𝐷𝐿2,𝑖(2)

𝐴 = {𝑖||𝑀𝐷𝐿1,𝑖(6) − 𝑀𝐷𝐿2,𝑖(6)| = 0}

𝐵 = {𝑖||𝑀𝑒𝑙1,𝑖 −𝑀𝑒𝑙2,𝑖| ≠ 0}

𝑀𝑆𝐷 =
1

|𝐵|
∗∑(𝑀𝑒𝑙1,𝑖 −𝑀𝑒𝑙2,𝑖)

2

𝑖∈𝐵

𝑆𝑖𝑚𝑀 = 𝑒−𝑀𝑆𝐷

𝑆𝑖𝑚𝐷 =
|𝐴|

𝑙

78

Rhythm Coding (RC):

{
1 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑛𝑜𝑡𝑒 𝑝𝑟𝑒𝑠𝑠𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

in the resolution of
1

𝑠
∈
1

2𝑛
and the time signature of

𝛼

𝛽
.

Similarity Calculation for Rhythm (SR):

𝑆𝑖𝑚𝑅 (𝑀𝐷𝐿1,𝑖(𝑗),𝑀𝐷𝐿2,𝑖(𝑗)) =
|𝐴|

𝑙
 𝑤ℎ𝑒𝑟𝑒

{

 𝑅ℎ𝑦1,𝑖

(28)
← 𝑀𝐷𝐿1,𝑖(6)

𝑅ℎ𝑦2,𝑖
(28)
← 𝑀𝐷𝐿2,𝑖(6)

𝐴 = {𝑖||𝑅ℎ𝑦1,𝑖 − 𝑅ℎ𝑦2,𝑖| = 0}

SC1 is simply the ratio between the number of identical entries and the total number of

entries. In Equation (25), 𝑖 indicates that it is the ith MDL in the sequence, 𝑗 is the column

index of the vector-based MDL and 𝑙 is the length of the 𝑀𝐷𝐿1,𝑖(𝑗), or 𝑀𝐷𝐿2,𝑖(𝑗), as they

have normalized into the same length. However, this method has a limitation that it cannot

distinguish between a melody with small variance and a melody with big variance, as

they might give the same similarity output. For example, one original melody consists of

five notes, but Variance 1 and Variance 2 both have one note different. Despite the

musical note distance between the original melody and Variance 1 is closer than with

Variance 2, SC1 will give both case 80% similarity scores.

Thus, SC2 made an improvement. It used Mean Squared Distance (MSD) to capture the

possible detailed difference. As this is primarily for symbolic MDL, thus unlike the

equation in Algorithm 3 line 10, only two sets were defined, either the entries from two

melodies were identical, set A, or different, set B. This means, despite the fact that we

might have the same fraction
|𝐴|

𝑙
, as we multiply a different factor of 𝑒−𝑀𝑆𝐷, the final

similarity score will vary. Notice that, in Equation (26), 𝑖, 𝑗 𝑎𝑛𝑑 𝑙 have the same meaning.

For SC3, we made another improvement. As the musical melody is frequency against

time, we split the contour melodic similarity scores into two parts, using the idea of

perceptron neural network (Widrow & Lehr, 1990; Heaton, 2015). One for the similarity

79

in terms of melody and one in terms of the duration such that the overall similarity is the

sum of those two similarities with two weights, 𝑤𝑀 𝑎𝑛𝑑 𝑤𝐷 , where 𝑤𝑀 + 𝑤𝐷 = 1, and

a bias, 𝑏, where we set it to be 0. For the melodic similarity, we only use the exponential

of the negative MSD to capture the detailed difference. Thus, we need to convert into the

melody lines, 𝑀𝑒𝑙1,𝑖 𝑎𝑛𝑑 𝑀𝑒𝑙2,𝑖, from the first two entries of S-MDL, and define set B.

For the rhythmic similarity, we just use the simple fraction as there is no detailed

difference. Thus, set A is defined using 𝑗 = 6. Notice that, in Equation (27), 𝑖 𝑎𝑛𝑑 𝑙

have the same meaning.

For all those three equations, firstly, 𝑀𝐷𝐿() was meant to be 𝑆-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦 at this stage.

Secondly, they are for comparing two vector sequences of the equal length. Therefore,

most of the time, we need Equation (30) to normalize two melodies with unequal length.

{

𝑀𝐷�̃�1,�̃�𝑖…�̃�𝑖+1−1(𝑗) ← 𝑀𝐷𝐿1,𝑖(𝑗) 𝑓𝑜𝑟 𝑗 = 1,… ,4

𝑀𝐷�̃�1,�̃�𝑖…�̃�𝑖+1−1(5) ←𝑀𝐷𝐿1,𝑖(5) +
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿1,𝑖(5))1

𝑠

𝑀𝐷�̃�1,�̃�𝑖…�̃�𝑖+1−1(6) ←𝑀𝐷𝐿1,𝑖(6) −
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿1,𝑖(5))1

𝑠

𝑀𝐷�̃�2,�̃�𝑖…�̃�𝑖+1−1(𝑗) ← 𝑀𝐷𝐿2,𝑖(𝑗) 𝑓𝑜𝑟 𝑗 = 1,… ,4

𝑀𝐷�̃�2,�̃�𝑖…�̃�𝑖+1−1(5) ← 𝑀𝐷𝐿2,𝑖(5) +
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿2,𝑖(5))1

𝑠

𝑀𝐷�̃�2,�̃�𝑖…�̃�𝑖+1−1(6) ← 𝑀𝐷𝐿2,𝑖(6) −
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿2,𝑖(5))1

𝑠

,

in the resolution of
1

𝑠
∈
1

2𝑛
 and the time signature of

𝛼

𝛽
.

where 𝑖̃ is the index where the whole melody duration with time signature of
𝛼

𝛽
 has evenly

distributed in the resolution of
1

𝑠
. 𝑖̃ = {1,… ,

𝑠

𝛽
∗ 𝛼 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟𝑠}, where

1

𝑠
 must be

less than the minimum duration of two melodies. For example, four bars with time

signature,
4

4
, in the resolution of

1

16
, 𝑖̃ = {1, . . ,256}. In this example, neither of the two

melodies should contain a duration less than
1

16
. However, it is possible that melody A’s

minimum duration is
1

16
 and melody B’s minimum duration is

1

8
.

80

Moreover, 𝑑𝑖𝑠𝑡(𝑀𝐷𝐿)1
𝑠

 is the evenly distributed set of the duration of the MDL under the

resolution
1

𝑠
, and 𝐷 = 1 if the note is crotchet when 𝛽 = 4. From the same example above,

if the value of 𝑀𝐷𝐿1,𝑖=1(6) = 1 , then 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿1,𝑖(6))1
𝑠

= {0,1,2,3} as
𝑠

𝛽
= 4.

Thus, 𝑀𝐷�̃�1,�̃�=1(6) = 1 + 0.25 ∗ 0 =1, 𝑀𝐷�̃�1,�̃�=2(6) = 1 + 0.25 ∗ 1 =1.25 and so on

until when 𝑀𝐷�̃�1,�̃�=5(6) = 𝑀𝐷𝐿1,𝑖=2(6). This means we can create an index subsequence

𝑖̃𝑖 such that 𝑖̃𝑖 ∈ 𝑖̃ and 𝑖 is the index of the original MDL. Thus, from the same example

above, 𝑖1̃ = 1; 𝑖̃2 = 5 etc.

Similarly, for RC, the rhythm pattern is in the resolution of
1

𝑠
. Therefore, after we have

extended the 𝑀𝐷𝐿 into 𝑀𝐷�̃�, we code 1 in every position 𝑖̃𝑖, which indicates that this is

the time that the note has been pressed, and 0 otherwise, as these were the ‘dummy’ notes.

For the same example, the rhythm will become (1,0,0,0,1,…) using Equation (28).

As the rhythm pattern is either 0 or 1, Mean Squared Distance is no longer needed. Hence,

Equation (29) is sufficient to evaluate the similarity score.

Finally, Equation (31) evaluates the final similarity scores:

𝑆𝑖𝑚 (𝑀𝐷𝐿1,𝑖(𝑗),𝑀𝐷𝐿2,𝑖(𝑗)) = 𝑤𝐶 ∗ 𝑆𝑖𝑚𝐶 + 𝑤𝑅 ∗ 𝑆𝑖𝑚𝑅 + 𝑏

where 𝑆𝑖𝑚𝐶 use either SC1, SC2 or SC3, and 𝑏 has set to be zero.

5.1.1.2. Self-learning

The first approach when updating the weight at the self-training stage is to follow the

traditional SOM self-learning (Section 2.5.1.2). This means we treat the MDL sequence

as ‘weights’ and the melody itself as hidden neuron. Thus, Equation (32) has been

considered:

Self-Learning 1 (SL1):

𝑇𝑛(𝑖, 𝑗, 𝑡 + 1) = 𝑇𝑛(𝑖, 𝑗, 𝑡) − η(𝑇𝑛(𝑖, 𝑗, 𝑡) − 𝐶(𝑖, 𝑗, 𝑡))

81

where 𝑇𝑛() represents the value of the selected 𝑛𝑡ℎ hidden neuron, 𝑖 is the index of the

MDL melody sequence, 𝑗 is the column index of the individual MDL, 𝑡 is the iteration

time, 𝜂 is the learning rate and 𝐶() is the current input.

However, as the duration is normally in the form of
𝑎

2𝑛
, for some integer 𝑎 and 𝑛, it would

be sensible to update the relevant field in a similar way, such that it would benefit for the

rhythmic similarity calculation. Equation (33) allows the relevant value of the hidden

neuron approach to value of the selected input much faster, thus the similarity will make

a significant change. Otherwise, as an example, 0.95 would still not match with the target

input 0.5 after one iteration, where 𝜂 = 0.1 and the original value of the hidden value is

1.

{

𝑇𝑛(𝑖, 𝑗, 𝑡 + 1) = 𝑇𝑛(𝑖, 𝑗, 𝑡) − η(𝑇𝑛(𝑖, 𝑗, 𝑡) − 𝐶(𝑖, 𝑗, 𝑡)), 𝑗 = 1,2,3,4

𝑇𝑛(𝑖, 5, 𝑡 + 1) = 𝑇𝑛(𝑖, 5, 𝑡) +
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 5, 𝑡) − 𝐶(𝑖, 5, 𝑡)))

𝑇𝑛(𝑖, 6, 𝑡 + 1) = 𝑇𝑛(𝑖, 6, 𝑡) −
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 6, 𝑡) − 𝐶(𝑖, 6, 𝑡)))

 ,

𝑤ℎ𝑒𝑟𝑒
1

𝑠
∈
1

2𝑛
 is the resolution and

𝛼

𝛽
 is the time signature.

Now, for the same example above, the hidden value 1 will become 0.5 after two iterations,

for 𝜂 = 0.1, the resolution is
1

16
 and the time signature is

𝛼

𝛽
=

4

4
.

82

Algorithm 4. SOM for S-MDL

Input: S-MDL self-training sets, 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 .

Output: Accuracy for the self-testing, 𝒂𝒄𝒄

1. Read 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 and parameter initializations (e.g., learning rate,

𝜼 and number of iterations 𝒌).

2. Define hidden neurons from 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, 𝒉𝒑, where p is the

original melody’s index.

𝓗 = {𝒉𝒑, ∀𝒑 ∈ ℕ} ⊆ 𝓜 = {𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, ∀𝒐𝒓𝒊, 𝒗𝒂𝒓 ∈ ℕ}

% For Self-training.

3. For iteration = 1 to k

a. For each input from 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊=𝒙,𝒗𝒂𝒓=𝒚
.

i. Normalization over all 𝒉𝒑 using Equation (30) respectively.

ii. Evaluate Similarity score over all 𝒉𝒑 using Equation (31) (Equation

(26)/Equation (27) only when 𝒘𝑹 = 𝟎).

iii. 𝑺𝒊𝒎𝒎𝒂𝒙 = 𝑺𝒊𝒎(𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑𝒎𝒂𝒙

) =

𝒎𝒂𝒙 {𝑺𝒊𝒎(𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑) , ∀𝒑 ∈ ℕ} (as the activation

function)

iv. Return index 𝒑𝒎𝒂𝒙.

v. Update 𝒉𝒑𝒎𝒂𝒙
 using Equation (32) or Equation (33) where 𝑻𝒏 =

𝒉𝒑𝒎𝒂𝒙
, 𝒏 = 𝒑𝒎𝒂𝒙 𝒂𝒏𝒅 𝑪 = 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚

, and the learning rate 𝜼.

b. End for

4. End for

% For Self-testing.

5. Repeat step 3.a.i upto 3.a.iv for all 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the training sets

to obtain a confusion matrix.

6. 𝒂𝒄𝒄 =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓), 𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix.

7. Output 𝒂𝒄𝒄

83

5.1.1.3. Algorithm for SOM

Based on the idea and mechanism of SOM and those similarity calculations and learning

methods, we have constructed Algorithm 4. The input is the melody training set in S-

MDL format, 𝑆-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦𝑜𝑟𝑖,𝑣𝑎𝑟 using Equation (8), where 𝑜𝑟𝑖 is index of the original

track and 𝑣𝑎𝑟 is the index for the variational type. The initial hidden neurons were set to

be those original melodies, where the index for the varitional type is 0. The output is the

index number, 𝑖, of most likely to be an original melody from variational melodies after

clustering.

5.1.2. RL-based EML

At this stage, we need to maintiain the advantages of audio-based MIRs, an audio

approach for A-MDL and T-MML is implemented, i.e., audio fingerprinting. With all the

components, we outline the process flow for our EML approach on MUCASM for OMI.

5.1.2.1. Audio fingerprinting

Similar to the existing audio fingerprinting, we, firstly, need to create an audio fingerprint

hash table. Thus, after evaluating several existing audio-fingerprint approaches, we

designed the following process flow such that the proposed hybrid system can use both

symbolic (Algorithm 4) and audio approaches. The process flow considers A-MDL and

T-MML. For simplicity, the amlitude and the frequency remain constant.

This process was inserted before the self-training stage, and contains a fingerprint

extraction function in order to create a fingerprint database that corresponds to Shazam

fingerprint catalog (Haitsma & Kalker, 2002; Haitsma & Kalker, 2003; Wang, 2003;

Cano, et al., 2005; Duong & Duong, 2015). Therefore, similar to most audio

fingerprinting methods, it involves the following stages:

 Pre-processing:

We create different samples with size 50%, 200%, 500% or 1000% by extracting or

interpolating the original data. For example, if the original data contains 10 MDL, we

implement a sequence of 5, 20, 50 and 100 vectors respectively, which consider either

the pitch and the duration for S-MDL or the Shazam-like fingerprint catalogue for A-

MDL.

84

 Feature Extraction:

We extract the distinct frequencies from previous vector sequences into our audio

fingerprint hash table.

 Post-processing:

We count the appearence time either using the tally count or using the actual duration

time. However, only the original music has been stored at this stage, as we need

different songs to have distinctive high peak pitches and less affected by the variations.

 Feature Modelling:

The numbers of distinctive frequencies stored in our hash table is defined by the

compression ratio, 50% or 100%. For example, a 50% compression ratio means we

only the use top five frequencies and the scores in our final table, when we have found

ten distinct frequencies. The final table were sorted in the appearance of time order,

from high to low.

Once we have the hash table, we outlined the following equation for evaluating the

similarity score between the two hash tables, the hash table for the current input, 𝑇𝐶, and,

either the ith originals or the ith hidden neurons after SOM, 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖
.

𝑆𝑖𝑚𝐻 =
|𝐴|

|𝐴| + |𝐵|
+ 𝑒−𝑀𝑆𝐷 𝑤ℎ𝑒𝑟𝑒

{

𝐴 = {𝑖||𝑇𝐶(𝑖, 1) − 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖
(𝑖, 1)| = 0}

𝐵 = {𝑖||𝑇𝐶(𝑖, 1) − 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖
(𝑖, 1)| ≠ 0}

𝑀𝑆𝐷 =
1

|𝐵|
∗∑(𝑇𝐶(𝑖, 1) − 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖

(𝑖, 1))
2

𝑖∈𝐵

For the same reason as Equation (25) – (27), we need to modify the two hash tables such

that they have the same number of rows. Thus, we choose the comparison length that is

the minimum of the hash tables. I.e. |𝐴| + |𝐵| = min
𝑖
{|𝑇𝐶(𝑖, 1)|, |𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖

(𝑖, 1)|}.

Thus, Algorithm 5 and Algorithm 6 have shown the process flow for the fingerprint

extraction and the fingerprint matching for our MUCASM respectively, which relates to

Figure 2.1-2.

85

Algorithm 5. Audio Fingerprint Extraction

Input: S-MDL and corresponding T-MML, 𝑺-𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚.

Output: Audio Hash Table, 𝑻.

1. Read 𝑺-𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚, based on Equation (8) & (19) and parameter

initializations (E.g., the Sampling Rate, 𝑹, and the Compression Rate, 𝑪)

% Pre-processing

2. 𝑳 = 𝒍𝒆𝒏𝒈𝒕𝒉(𝑺-𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚)

3. For i = 1 to R*L

a. Get the current frequency, 𝒇𝒊, and the current calculated duration

time, 𝑫𝒊, based on the information from the corresponding T-MML.

% Feature Extraction

b. If 𝒇𝒊 ≠ 𝒇𝒋, ∀𝒋 < 𝒊

i. Initialize 𝒕(𝒇𝒊) = 𝟎

ii. 𝑯(𝒙, 𝟏) ← 𝒇𝒊 , 𝒙 = 𝟏, 𝟐, 𝟑, … 𝒓𝒆𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆𝒍𝒚. Add 𝒇𝒊 at the new 𝒙𝒕𝒉

row of 𝑯.

% Post-processing

iii. 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝟏 𝑶𝑹 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝑫𝒊, 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒔𝒂𝒎𝒆 𝒙.

c. Else If 𝒇𝒊 = 𝒇𝒋, 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒋 < 𝒊

i. 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) + 𝟏 𝑶𝑹 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) +

𝑫𝒊, 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒙 𝒘𝒉𝒆𝒓𝒆 𝑯(𝒙, 𝟏) = 𝒇𝒋.

d. End If

4. End For

5. 𝑻
↓𝑯(𝒙,𝟐)
← 𝑯, sort 𝑯 in order of 𝒕(𝒇𝒊), from high to low.

% Feature Modelling

6. Given 𝑪, filter 𝑻.

86

Algorithm 6. Audio Fingerprint Matching

Input: Hash tables generated by Algorithm 5, 𝑻𝑪, 𝑻𝑶𝒊 𝒂𝒏𝒅 𝑻𝑯𝒊
, ∀𝒊.

Output: Similarity Scores, 𝑺𝒊𝒎𝑯 and the original melody index, 𝒊.

1. Read Hash Tables and parameter initialization.

2. For i = 1 to n

a. Evaluate 𝑺𝒊𝒎𝑯,𝒊,𝟏 for 𝑻𝑪 and 𝑻𝑶𝒊 using Equation (34).

b. Evaluate 𝑺𝒊𝒎𝑯,𝒊,𝟐 for 𝑻𝑪 and 𝑻𝑯𝒊
 using Equation (34).

3. End For

4. Find 𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 and 𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐

5. If 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐

a. 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐

b. 𝑺𝒊𝒎𝑯 = 𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏

6. Else If 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 ≠ 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐

a. 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐 iff the confusion matrix improves in terms of the

overall accuracy, while training.

b. 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

(𝑺𝒊𝒎𝑯,𝒊,𝟏, 𝑺𝒊𝒎𝑯,𝒊,𝟐) & 𝑺𝒊𝒎𝑯 = 𝐦𝐚𝐱
𝒊
(𝑺𝒊𝒎𝑯,𝒊,𝟏, 𝑺𝒊𝒎𝑯,𝒊,𝟐),

otherwise.

7. End For

87

5.1.2.2. The Process Flow for EML

As we now need both MDL and T-MML, Algorithm 4 has been modified with the

following changes:

 The input is MDL (either S-MDL or A-MDL or the combination form in Section 4.5)

and the corresponding T-MML.

 As T-MML is only involved when using the audio fingerprint, and combined with the

symbolic-based similarity measurement, we may call Algorithm 6 when necessary.

 For A-MDL or the combination form, the melody equation in Equation (27) changes

to
𝑀𝑒𝑙1,𝑖 = 𝐴-𝑀𝐷𝐿1,𝑖(1)

𝑀𝑒𝑙2,𝑖 = 𝐴-𝑀𝐷𝐿2,𝑖(1)
, whereas for the combination form only, the duration index

has changed to 5 instead of 6 (3 instead of 6 for A-MDL). We labelled as ‘modified

Equation (27)’. Similar modification and labelling applied to Equation (29) and

Equation (30). Moreover, when evaluating symbolic-based similarity scores, only

MDL is considered. In other words, we filtered out the T-MML. Therefore, nothing

needs to be added for Equation (25) ~ (31).

 The following were added to Equation (33) when self-learning from the definition of

𝑇-𝑀𝑀𝐿𝑆-𝑀𝐷𝐿, was labelled ‘modified Equation (33)’:

{

𝑇𝑛(𝑖, 𝑗, 𝑡 + 1) = 𝑇𝑛(𝑖, 𝑗, 𝑡) − η(𝑇𝑛(𝑖, 𝑗, 𝑡) − 𝐶(𝑖, 𝑗, 𝑡)), 𝑗 = 1,2,3,4

𝑇𝑛(𝑖, 5, 𝑡 + 1) = 𝑇𝑛(𝑖, 5, 𝑡) −
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 5, 𝑡) − 𝐶(𝑖, 5, 𝑡)))

𝑇𝑛(𝑖, 6, 𝑡 + 1) = 𝑇𝑛(𝑖, 6, 𝑡) +
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 6, 𝑡) − 𝐶(𝑖, 6, 𝑡)))

, 𝑓𝑜𝑟 𝑇-𝑀𝑀𝐿

Algorithm 7 shows the modified version of Algorithm 4, where

𝑀𝐷𝐿&𝑇-𝑀𝑀𝐿𝑀𝑒𝑙𝑜𝑑𝑦𝑜𝑟𝑖,𝑣𝑎𝑟 is defined as (𝑀𝐷𝐿𝑁𝑜𝑡𝑒 𝑇-𝑀𝑀𝐿𝑀𝐷𝐿)𝑖 over the index of the

original melody and the index of the variation type, and i is the note index of the melody:

88

Algorithm 7. SOM for MDL&MML

Input: MDL&MML self-training sets, 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 .

Output: Accuracy for the self-testing, 𝒂𝒄𝒄

1. Read 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 and parameter initializations (e.g., learning

rate, 𝜼 and number of iterations 𝒌).

2. Define hidden neurons from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, 𝒉𝒑, where p is the

original melody’s index.

𝓗 = {𝒉𝒑, ∀𝒑 ∈ ℕ} ⊆ 𝓜 = {𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, ∀𝒐𝒓𝒊, 𝒗𝒂𝒓 ∈ ℕ}

% For Self-training.

3. For iteration = 1 to k

a. For each input from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊=𝒙,𝒗𝒂𝒓=𝒚
.

i. Normalization over all 𝒉𝒑 using Equation (30) respectively.

ii. Evaluate Similarity score over all 𝒉𝒑 using Equation (31) (Equation

(26)/modified Equation (27) only when 𝒘𝑹 = 𝟎) or Algorithm 6.

iii. 𝑺𝒊𝒎𝒎𝒂𝒙 = 𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑𝒎𝒂𝒙

) =

𝒎𝒂𝒙 {𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑) , ∀𝒑 ∈ ℕ} (Activation func.)

iv. Return index 𝒑𝒎𝒂𝒙.

v. Update 𝒉𝒑𝒎𝒂𝒙
 using Equation (32) or modified Equation (33) where

𝑻𝒏 = 𝒉𝒑𝒎𝒂𝒙
, 𝒏 = 𝒑𝒎𝒂𝒙 𝒂𝒏𝒅 𝑪 = 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚

, and the

learning rate 𝜼.

b. End for

4. End for

% For Self-testing.

5. Repeat step 3.a.i upto 3.a.iv for all 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the training

sets to obtain a confusion matrix.

6. 𝒂𝒄𝒄 =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓), 𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix.

7. Output 𝒂𝒄𝒄

89

From this modified SOM mechanism, a Self-supervised Reinforcement-based Ensemble

Learning mechanism is proposed.

As each SOM with different combination of the equations may give different effects

against different variation types, an Ensemble Learning mechanism is proposed, so we

can merge the Audio-Fingerprinting-based approach described above and those

Symbolic-based approaches. We treat each SOM with different similarity calculations

and updating formulae as individual Tier 1 classifier, so we can form the final Tier 2

mega-classifier, where each Tier 1 classifiers has combined together to optimize the

performance against each variation type. As we are currently dealing with small size data,

we have removed the ‘bootstrap’ & ‘jackknife’ resampling stages. Thus, Figure 5.1-2

shows the ‘Stacked Generalization’ ensemble learning method used in our MUCASM.

Normally, music comes with certain labels, not just the music itself. This means we can

use the labels, variation types in our case, to make unsupervised learning mechanism

supervised. In other words, we can let the system learn which Tier 1 classifier (Algorithm

1 with different similarity calculations and update formulae) is the most suitable one for

each variation type. Hence, during the training stage, we compare the performance against

individual variation type after each epoch, by the accuracy of the confusion matrix. We

may duplicate the Tier 1 classifiers from the previous epoch, as we cannot guarantee that

the accuracy will improve after training for all the SOM algorithms. Therefore, we define

those accuracies as rewards. After applying the ‘Comparison between algorithms’ from

RL to those rewards, a decision tree, more specifically, a strategy tree, is generated. Hence,

the mega-classifier will follow the strategy tree and optimize all the Tier 1 classifiers.

Therefore, the RL-based learning mechanism allows the system to learn how the

variations classify back to its origin, as well as which measurement is needed for different

variation types, which has shown in Figure 5.1-3.

Figure 5.1-4 shows the mechanism for self-supervised learning. Self-supervised learning

is a supervised learning where the data labels (e.g., variation type) were determined from

the input data, not from environment.

Figure 5.1-5 shows the diagram of the SOM and the possible process flow the strategy

tree may follow.

90

Figure 5.1-2. RL-based EML Mechanism: ‘Stacked Generalization’.

The upper part of Figure 5.1-5 is the SOM-based Neural Network where we treat each

original music melody (MDL and T-MML) as a hidden neuron, 𝑇𝑛(), and the input

melody, 𝐶(), which either be the melody from the Training Data in Figure 5.1-2 & Figure

5.1-3 or as a general melody. The original music with highest similarity score will be the

output. I.e., the one highlighted in yellow.

During each comparison between the current input, 𝐶(), and the hidden neurons, 𝑇𝑛(),

denoted as “*”, different routes may have been chosen for evaluating the most ‘suitable’

similarity score, in other words, this is the different actions MUCASM takes against

different variation type labels. The lower part of Figure 5.1-5 illustrates the process flow.

The ones highlighted in red correspond to the ‘Similarity-based similarity measurement’

from Figure 5.1-1 and the ones highlighted in blue correspond to the ‘Audio-based

similarity measurement’ from Figure 5.1-1. The strategy tree generated in Figure 5.1-3 is

based on this process flow.

Finally, Algorithm 8 shows the EML using MDL and MML where

𝑀𝐷𝐿&𝑇-𝑀𝑀𝐿𝑀𝑒𝑙𝑜𝑑𝑦𝑜𝑟𝑖,𝑣𝑎𝑟 is defined as (𝑀𝐷𝐿𝑁𝑜𝑡𝑒 𝑇-𝑀𝑀𝐿𝑀𝐷𝐿)𝑖 over the index of the

original melody and the index of the variation type, and i is the note index of the melody.

Again, MDL is either defined as S-MDL, A-MDL, or the combination form in Section

4.5.

91

Algorithm 8. RL-based EML for MDL&MML

Input: MDL&MML self-training sets, 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 .

Output: Accuracy for the self-testing, 𝒂𝒄𝒄

1. Read 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 and parameter initializations (e.g., learning

rate, 𝜼 and number of iterations 𝒌).

2. Define hidden neurons from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, 𝒉𝒑, where p is the

original melody’s index.

𝓗 = {𝒉𝒑, ∀𝒑 ∈ ℕ} ⊆ 𝓜 = {𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, ∀𝒐𝒓𝒊, 𝒗𝒂𝒓 ∈ ℕ}

% Self-training.

3. For iteration = 1 to k

a. For each input from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊=𝒙,𝒗𝒂𝒓=𝒚
.

i. Normalization over all 𝒉𝒑 using modified Equation (30).

ii. Evaluate Similarity score over all 𝒉𝒑.

𝑺𝒊𝒎(𝑴𝑫𝑳𝟏,𝒊(𝒋),𝑴𝑫𝑳𝟐,𝒊(𝒋)) ∶= {
𝒘𝑪 ∗ 𝑺𝒊𝒎𝑪 +𝒘𝑹 ∗ 𝑺𝒊𝒎𝑹 + 𝒃

𝒐𝒓
𝑺𝒊𝒎𝑯

where 𝑺𝒊𝒎𝑪 can choose either SC1, SC2 or SC3, 𝑺𝒊𝒎𝑹 is RC

followed by SR and 𝑺𝒊𝒎𝑯 is using AF & Algorithm 6.

iii. 𝑺𝒊𝒎𝒎𝒂𝒙 = 𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑𝒎𝒂𝒙

) =

𝒎𝒂𝒙 {𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑) , ∀𝒑 ∈ ℕ}

(Activation function)

iv. Return index 𝒑𝒎𝒂𝒙.

v. Update 𝒉𝒑𝒎𝒂𝒙
 using SL1 or modified SL2

where 𝑻𝒏 = 𝒉𝒑𝒎𝒂𝒙
, 𝒏 = 𝒑𝒎𝒂𝒙 𝒂𝒏𝒅 𝑪 = 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚

, and the

learning rate 𝜼.

b. End for

4. End for

92

% For Value Generation after each epoch (Self-testing).

5. For each variation type

a. For each route from the process flow (Figure 5.1-5)

i. Repeat step 3.a.i upto 3.a.iv for all 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the

training sets to obtain a confusion matrix.

ii. 𝒂𝒄�̃� =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓), 𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix.

iii. Output 𝒂𝒄�̃�

iv. Compare and get the max accuracy and the corresponding route

index.

v. Strategy Tree generation.

b. End for

6. End for

% (Self-)testing.

7. Repeat step 3.a.i upto 3.a.iv for all 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the training

sets to obtain a confusion matrix, based on the strategy tree.

8. 𝒂𝒄𝒄 =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓), 𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix.

9. Output 𝒂𝒄𝒄

Figure 5.1-3. RL-based EML Mechanism: ‘Comparison between algorithms’.

93

Figure 5.1-4. The mechanism for the self-supervised learning.

Figure 5.1-5. RL-based EML Mechanism: ‘SOM’ and the ‘process flow’ for the Strategy
Tree.

94

5.2. Experiment, Result and Discussion

With the design of MUCASM, we carried out several experiments to evaluate the

possibility and potentialbility of the proposed MUCASM mechanism. The experiments

are all based on ten original monophornic melodies, music track [23] to [32]. We selected

the melodies such that they are representative.

Each original melody considered four bars. We have manually generated the following

four variation types: ‘Rhythm Variation’, where we have altered the rhythm; ‘Key

Variation’, where we have altered the musical key; ‘Expansion’, where we have expanded

melody by inserting some extra notes onto the original melody; ‘Reduction’ where we

have reduced the melody which is literally by removing some notes. In future, these labels

would be automatically generated by the computer to satisfy the self-supervised learning

setting. However in this section, we manually input these labels using numbers without

let the computer know the exact meaning to test the mechanism.

In addition, Track [24] has modified to
4

4
, rather than

5

4
. Hence, there are 50 S-MDL

sequences in total to start with, i.e., the input of the MUCASM is the 50 vector-based

sequences which have been treated as matrices. In other words, with the resolution of
1

16
,

3,200 vectors are considered. Alternatively, 250 streams (time series) are generated, as

we removed 𝐴𝑑 from the definition of S-MDL, because they are all 1s. We believe they

are representative. At later stage, there are 50 MDL (combination of A-MDL and S-MDL,

refer to Section 4.5) and T-MML sequences where by the A-S Theorem, the data is

theoretically equivalent. Thus, the file doubled to 50 two-column matrix sequence. We

manually created both files in Excel format as we are focused on the impact of

MDL&MML on MUCASM for OMI at this point, and it would be easier for MatLab to

import.

The first experiment is based on the SOM, where we evaluate the best choice of similarity

calculation and updating formula, so we tested with various combinations of those

equations. The second experiment is based on the EML, where we evaluate how much

advantage we can have by combining those methods, as well as through generating a

strategy tree to describe the relationship between the variation type and the choice of

those equations.

95

5.2.1. Experiment I: SOM

This section discusses the experiments based on the Kohonen Self-Organized Map

Unsupervised Neural Network only for the OMI.

Our first experiment was carried out as follows: using SC1, SC2, SC3 with SL1 and SL2.

Modify any factor that could affect the performance of the Self-Organized Map.

Let 𝑘 = 100 , 𝜂 = 0.0001 , 𝑤𝑀 = 𝑤𝐷 = 0.5 and 𝑏 = 0 , we have Table 5.2-1 for the

accuracies from the confusion matrix of the 50 melodies.

Similarity

Calculation

Self-Learning

Method

Accuracy (Rating)

(Before SOM)

Accuracy (Rating)

(After SOM)

SC1 SL1 0.84 0.40

SC1 SL2 0.84 0.24

SC2 SL1 0.62 0.74

SC2 SL2 0.62 0.72

SC3 SL1 0.82 0.62

SC3 SL2 0.82 0.76

Table 5.2-1. Priliminary SOM result table.

From these preliminary results, we filtered SC1 as the accuracy drops massively (over

50%) after SOM and does not have much advantages without SOM. We also filtered the

combination: SC3 and SL1 for the same reason. However, we keep the combination: SC3

and SL2 because it has obtained the highest accuracy after SOM, despite the accuracy

dropping after SOM. Hence, we rename the remaining three combinations as following:

S21, S22 and S32 repectively.

Next, we tested the effectiveness of using SOM.

Let 𝑘 = 1000 and keep k as a constant, we have altered 𝜂 to be 0.0001, 0.001, 0.01, and

0.05. Similarily, let 𝜂 = 0.001 and keep η as a constant, we have altered 𝑘 to be 100,

1000, 5000 and 10000. In theory, 𝑤𝑀 and 𝑤𝐷 will be updated after each epoch, another

loop outside the existing iteration loop in Algorithm 4. However, we have captured the

accuracies for the following ratios for the explanation purpose: 0.1: 0.9; 0.3: 0.7; 0.5: 0.5;

0.7: 0.3; and 0.9: 0.1 (𝑤𝑀: 𝑤𝐷). The results have shown in Table 5.2-2 and Table 5.2-3.

96

Equation

(𝒘𝑴: 𝒘𝑫)

Initial

Accuracy

Accuracy After SOM (𝒌 = 𝟏𝟎𝟎𝟎)

𝜼 = 𝟎. 𝟎𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟏 𝜼 = 𝟎. 𝟎𝟓

S21 0.62 0.74 0.74 0.74 0.74

S22 0.62 0.72 0.74 0.74 0.74

S32(𝟎. 𝟏: 𝟎. 𝟗) 0.86 0.14 0.02 0.12 0.20

S32(𝟎. 𝟑: 𝟎. 𝟕) 0.84 0.72 0.40 0.34 0.68

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.82 0.64 0.64 0.66 0.68

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.78 0.68 0.62 0.66 0.66

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.74 0.70 0.64 0.64

Table 5.2-2. SOM with 𝑘 as a constant (contour melody only).

Equation

(𝒘𝑴: 𝒘𝑫)

Initial

Accuracy

Accuracy After SOM (𝜼 = 𝟎. 𝟎𝟎𝟏)

𝑘 = 100 𝑘 = 1000 𝑘 = 5000 𝑘 = 10000

S21 0.62 0.74 0.74 0.74 0.74

S22 0.62 0.72 0.74 0.74 0.74

S32(𝟎. 𝟏: 𝟎. 𝟗) 0.86 0.24 0.02 0.02 0.08

S32(𝟎. 𝟑: 𝟎. 𝟕) 0.84 0.72 0.40 0.40 0.52

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.82 0.64 0.64 0.66 0.64

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.78 0.68 0.64 0.66 0.66

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.74 0.70 0.64 0.64

Table 5.2-3. SOM with 𝜂 as a constant (contour melody only).

From these two tables, we have made the following observations:

 With SC2, Self-Organized Map helps to improve the accuracy by
(0.74−0.62)

0.62
= 19.4%.

 For SC3, high accuracy obtained with pre-defined original music melodies as hidden

neurons. However, the accuracy drops after the training. This is due to the fact that

we have altered the melody itself. On the other hand, theoretically, there is no

guarantee that the exact original theme has been chosen for the hidden layer neurons.

 Despite the drop in accuracy with SC3, we can still observe that, for different weight

ratio (𝑤𝑀: 𝑤𝐷), the melody preference similarity measurement, 𝑤𝑀 > 𝑤𝐷, can give

more stable accuracy. Overall, 𝑤𝑀: 𝑤𝐷 = 0.7: 0.3 is the most stable one, with an

initial accuracy rating of 0.78 and 0.66 after applied SOM.

97

Stable means changing in the learning rate or the number of iterations has less effect on

the accuracy after the self-training. This matches our musical knowledge, contouric

melody flow affects more than the duration of the music.

With these findings, our next experiment has been set up such that we can see the

performance of SOM by introducing another feature: the rhythm (RC, SR).

Equation

（𝒘𝑪: 𝒘𝑹）

Initial

Accuracy

Accuracy After SOM (𝒌 = 𝟏𝟎𝟎𝟎)

𝜼 = 𝟎. 𝟎𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟏 𝜼 = 𝟎. 𝟎𝟓

S21(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.84 0.84 0.84 0.84

S21(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.84 0.84 0.82 0.84

S21(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.82 0.82 0.78 0.78

S22(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.72 0.62 0.70 0.62

S22(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.82 0.76 0.76 0.78

S22(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.72 0.62 0.70 0.62

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.80 0.70 0.60 0.58 0.56

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.68 0.58 0.58 0.58

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.66 0.56 0.66 0.66

Table 5.2-4. SOM with 𝑘 as a constant (contour melody and rhythm, 𝑤𝑀: 𝑤𝐷 =
0.7: 0.3).

Equation

（𝒘𝑪: 𝒘𝑹）

Initial

Accuracy

Accuracy After SOM (𝜼 = 𝟎. 𝟎𝟎𝟏)

𝑘 = 100 𝑘 = 1000 𝑘 = 5000 𝑘 = 10000

S21(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.84 0.84 0.84 0.84

S21(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.84 0.84 0.84 0.84

S21(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.82 0.82 0.82 0.82

S22(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.72 0.62 0.60 0.60

S22(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.82 0.76 0.76 0.76

S22(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.82 0.80 0.80 0.80

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.80 0.58 0.60 0.60 0.60

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.68 0.58 0.58 0.58

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.66 0.56 0.60 0.62

Table 5.2-5. SOM with 𝜂 as a constant (contour melody and rhythm, 𝑤𝑀: 𝑤𝐷 =
0.7: 0.3).

98

Contour

Rhythm

Contour

Rhythm

S21

(n/a)

(𝟎. 𝟓: 𝟎. 𝟓)

0.74

(𝑚𝑎𝑥 = 0.74)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.62)

0.84

(𝑚𝑎𝑥 = 0.84)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.90)

S21

(n/a)

(𝟎. 𝟕: 𝟎. 𝟑)

0.8375

(𝑚𝑎𝑥 = 0.84)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.92)

S21

(n/a)

(𝟎. 𝟗: 𝟎. 𝟏)

0.81

(𝑚𝑎𝑥 = 0.82)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.94)

S22

(n/a)

(𝟎. 𝟓: 𝟎. 𝟓)

0.735

(𝑚𝑎𝑥 = 0.74)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.62)

0.65

(𝑚𝑎𝑥 = 0.72)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.90)

S22

(n/a)

(𝟎. 𝟕: 𝟎. 𝟑)

0.7775

(𝑚𝑎𝑥 = 0.82)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.92)

S22

(n/a)

(𝟎. 𝟗: 𝟎. 𝟏)

0.8125

(𝑚𝑎𝑥 = 0.86)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.94)

S32

(𝟎. 𝟕: 𝟎. 𝟑)

(𝟎. 𝟓: 𝟎. 𝟓)

0.66

(𝑚𝑎𝑥 = 0.68)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.78)

0.6025

(𝑚𝑎𝑥 = 0.70)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.80)

S32

(𝟎. 𝟕: 𝟎. 𝟑)

(𝟎. 𝟕: 𝟎. 𝟑)

0.605

(𝑚𝑎𝑥 = 0.68)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.80)

S32

(𝟎. 𝟕: 𝟎. 𝟑)

(𝟎. 𝟗: 𝟎. 𝟏)

0.6225

(𝑚𝑎𝑥 = 0.66)

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.78)

Table 5.2-6. Comparison and summarization result table for the average accuracy with
and without the Rhythm feature.

Features Accuracy

Summary
Equation

(𝒘𝑴:𝒘𝑫)(𝒘𝑪: 𝒘𝑹)

99

For this experiment, we concentrated on the ratio 𝑤𝐶: 𝑤𝑅 while maintaining 𝑤𝑀: 𝑤𝐷 =

0.7: 0.3 and filtered out the results with 𝑤𝐶 < 𝑤𝑅. Thus, in Table 5.2-4, 𝑘 has been kept

as a constant value of 1000 and altered 𝜂 to be 0.0001, 0.001, 0.01, and 0.05, whereas in

Table 5.2-5, 𝜂 has been kept as a constant value of 0.001 and altered 𝑘 to be 100, 1000,

5000 and 10000. Based on Table 5.2-2 ~ Table 5.2-5, Table 5.2-6 summarizes the

accuracy with or without the rhythm feature.

From these tables, we have made the following observations:

 By adding a new musical feature, the accuracy for the MUCASM increases.

Especially, with SC2 and pre-defined original music melodies, the maximum

potential accuracy is 0.94.

 The optimal weight ratio 𝑤𝐶: 𝑤𝑅 is around 0.7:0.3 and 0.9:0.1. In other words, the

melody flow is much more important compared to the rhythm. This is the reason that

we can mashup two original music tracks which have similar tempo in Section 1.1,

and does not escalate them up to a plagiarism cases.

Additionally, Table 5.2-7 has shown some further analysis on the type of variations which

will mostly like benefit from SOM, based on two typical results from Table 5.2-2 ~ Table

5.2-5.

 S21(n/a)(𝟎. 𝟕: 𝟎. 𝟑) S32(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑)

Intial

Accuracy

Accuracy After

SOM

(𝜂 = 0.001)

(𝑘 = 1000)

Initial

Accuracy

Accuracy After

SOM

(𝜂 = 0.001)

(𝑘 = 1000)

Original 1.00 1.00 1.00 0.70

Rhythm Variation 0.70 0.90 0.90 0.80

Key Variation 1.00 0.40 0.30 0.10

Expansion 1.00 1.00 1.00 0.70

Reduction 0.90 0.90 0.80 0.60

Overall 0.92 0.84 0.80 0.58

Table 5.2-7. Comparison and summarization result table for detailed variational type
breakdowns.

Equation

SOM Status

Variation Type

100

Table 5.2-7 has shown that ‘Rhythm Variation’ is more likely to be benefit from the SOM

mechanism, as the accuracy increased to 0.90 from 0.70. This suggests that if we consider

different route for each variation type, i.e., some variation type using the pre-training data

and some using the post-training data, the overall performance will be increased as we

combined the maximum accuracy of individual type with different route.

Moreover, the ‘Key Variation’ can achieve 1 for SL21, which is an improvement from

the existing audio-based MIR system. Meanwhile, the ‘Expansion’ and ‘Reduction’

variation types obtained a potential accuracy of 1 and 0.9 respectively, which improves

from the existing symbolic-based MIR system. On the other hand, a high accuracy rate

of 0.90 has obtained for the ‘Rhythm Variation’ by altering the similarity measurement

and the learning method. This suggested various similarity measurements and learning

methods can be the route options too.

5.2.2. Experiment II: RL-based EML

This section shows the results from the experiments which is based on the RL-based

Ensembled Machine Learning for the OMI.

Our first test only considered A-MDL with the modified Equation (25) ~ (31) described

in Section 5.1.2.2. Table 5.2-8 shows two typical results.

 Initial

Accuracy

Accuracy After SOM

(𝜼 = 𝟎. 𝟎𝟎𝟏)(𝒌 = 𝟏𝟎𝟎𝟎)

S21(n/a)(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.40

S22(n/a)(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.14

S31(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 0.86 0.52

S32(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 0.86 0.20

Table 5.2-8. SOM with 𝜂, 𝑘 as a constant, considered A-MDL only and modified
equations.

From Table 5.2-8 and comparing with Table 5.2-6, we can made the following

observarions:

 For A-MDL, SL1 is better than SL2 when SOM is applied, whereas SC3 is better than

SC2 for similarity measurement.

101

 SCs and SLs gave better overall good measurements and learning mechanisms for S-

MDL rather than A-MDL. For example, the two accuracies for S21(n/a)(0.7: 0.3) with

S-MDL were 0.92 and 0.84, but 0.80 and 0.40 for A-MDL.

These comparisons suggested that SCs and SLs were both designed for symbolic-based

similarity measurement.

Our next test considered the combination form of MDL and its corresponding T-MML,

as described in Section 4.5, and the audio fingerprint approach, 𝐴𝐹. The results have

shown in Table 5.2-9 where ‘A’ corresponds to {
𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝟏

𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) + 𝟏
 and ‘B’

corresponds to {
𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝑫𝒊

𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) + 𝑫𝒊
 from Algorithm 5.

From these results, we have made the following observations:

 On average, use the compression ratio of 50% is better than using 100% as in Table

5.2-9 most accuracy rating with 𝐶 = 50% is larger than 𝐶 = 100%.

 If the sampling rate is less than 1, the hash table calculation method ‘B’ is better than

‘A’ and if is greater than 1, currently, ‘A’ is better than ‘B’. However, there is a

conjectured trend of increasing in accuracy for ‘B’ whereas ‘A’ almost obtained a

stable accuracy of 0.66.

Therefore, we pick the sampling rate of 1000%, i.e., enlarge the original MDL length to

10 times longer, the compression rate of 50% and ‘B’ for our final test.

Our final experiment tests the RL-based EML where we combined both audio and

symbolic approaches, and the value is based on the accuracy from the confusion matrix.

We have adapted different similarity measurements for different variation types and

generated a strategy tree, to increase the overall accuracy. After 1000 iterations with 𝜂 =

0.001 (defined to be one epoch), we run a self-testing to evaluate the strategy tree, to see

which route for different type of variations maximizes the final accuracy. Thus,

theoretically, this change of routing information will affect the choice of maximum

hidden neurons for the next epoch.

Typical results have shown in Table 5.2-10 with the comparison of using single (audio or

symbolic) approach and using both (audio and symbolic) approaches.

102

Initial

Accuracy

Accuracy After SOM

(𝜼 = 𝟎. 𝟎𝟎𝟏)

(𝒌 = 𝟏𝟎𝟎𝟎)

AF-SL1/2

(𝑹 = 𝟓𝟎%)

(𝑪 = 𝟓𝟎%)

A 0.64 0.56

B 0.70 0.54

AF-SL1/2

(𝑹 = 𝟓𝟎%)

(𝑪 = 𝟏𝟎𝟎%)

A 0.64 0.48

B 0.68 0.52

AF-SL1/2

(𝑹 = 𝟐𝟎𝟎%)

(𝑪 = 𝟓𝟎%)

A 0.72 0.66

B 0.72 0.62

AF-SL1/2

(𝑹 = 𝟐𝟎𝟎%)

(𝑪 = 𝟏𝟎𝟎%)

A 0.66 0.66

B 0.68 0.56

AF-SL1/2

(𝑹 = 𝟓𝟎𝟎%)

(𝑪 = 𝟓𝟎%)

A 0.72 0.66

B 0.72 0.62

AF-SL1/2

(𝑹 = 𝟓𝟎𝟎%)

(𝑪 = 𝟏𝟎𝟎%)

A 0.66 0.66

B 0.68 0.56

AF-SL1/2

(𝑹 = 𝟏𝟎𝟎𝟎%)

(𝑪 = 𝟓𝟎%)

A 0.72 0.66

B 0.74 0.64

AF-SL1/2

(𝑹 = 𝟏𝟎𝟎𝟎%)

(𝑪 = 𝟏𝟎𝟎%)

A 0.66 0.66

B 0.68 0.58

Table 5.2-9. SOM with audio fingerprint approach only, considered MDL & T-MML.

SOM Status

A/B

AF-Equation

(Sampling Rate)

(Compression Rate)

103

Initial Accuracy

Accuracy After

SOM

(𝜼 = 𝟎. 𝟎𝟎𝟏)

(𝒌 = 𝟏𝟎𝟎𝟎)

(AF+SC2)*SL1

1000%&50%&B

(n/a)(𝟎. 𝟕: 𝟎. 𝟑)

Audio 0.74 0.64

Symbolic 0.92 0.84

EML 0.96 0.84

(AF+SC2)*SL2

1000%&50%&B

(n/a)(𝟎. 𝟕: 𝟎. 𝟑)

Audio 0.74 0.64

Symbolic 0.92 0.76

EML 0.96 0.76

(AF+SC3)*SL1

1000%&50%&B

(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑)

Audio 0.74 0.64

Symbolic 0.80 0.64

EML 0.80 0.68

(AF+SC3)*SL2

1000%&50%&B

(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑)

Audio 0.74 0.64

Symbolic 0.80 0.58

EML 0.80 0.66

AF*SL2+(SC2+SC3)*SL1

1000%&50%&B

(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑)

Audio 0.74 0.64

Symbolic
0.92 0.84

0.80 0.64

EML 0.96 0.84

Table 5.2-10. EML with MDL & T-MML.

SOM Status

Method

Equation Labels

(𝑅)&(𝑪)&A/B

(𝒘𝑴:𝒘𝑫)(𝒘𝑪: 𝒘𝑹)

104

From these results, we have made the following observations:

 By using the ‘Stacked Generalization’ and ‘Comparison between algorithms’, the

accuracy can be improved.

 It will be better for ‘Original’ and ‘Rhythm Variation’ to use the Audio Fingerprint

approach, whereas the Tier 1 SOM classifier using SL2 at training. In the meanwhile,

‘Key Variation’ and ‘Reduction’ to use the symbolic approach with SC2 and

‘Expansion’ is with SC3, whereas the Tier 1 SOM classifiers using SL1 at training.

Figure 5.2-1 shows the hidden strategy tree for the final mega-classifier, learned from our

RL-based EML MUCASM mechanism.

Figure 5.2-1. Strategy tree generated by the RL-based EML Mechanism.

5.3. Summary

From all the experiments in this chapter, we have illustrated that the proposed MUCASM

mechanism allows Original Music Identifier more accurate, as by adding features,

ensembling different algorithms (with various similarity measurements and update

formulae) and introducing self-supervised learning mechanism, there is an increase in the

accuracy rating of the classification problem, from 74% to 96%.

Thus, the next chapter evalutes the performance against existing MIR systems.

105

6. Further Discussion and Evaluation

With those proof-of-concept prototypes for the proposed coding scheme and the

MUCASM mechanism, we now need to further evaluate the E3MSD architecture, based

on the summaries from the literature review and the research objectives.

6.1. MDL&MML Conversions

We have modified Algorithm 2 and Algorithm 3 such that the input is a MIDI file instead.

Hence, we can evaluate our signal processing prototype implemented in Section 4.5 as

well as demonstrate the relationship between MDL and MIDI files described in Section

4.1, by comparing the parameter values of the melody in MIDI format and in the

converted (S-)MDL format. The procedure outline is shown in Algorithm 9.

Algorithm 9. MIDI MDL Conversion

Input: MIDI File

Output: A-MDL/(S-)MDL Files, Similarity scores: 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹.

1. Read MIDI files and parameter initializations (e.g., 𝜽 and 𝝑)

2. Fetch the acoustic value.

% line 3-6 were based on Algorithm 2.

3. Extract relevant features using FFT.

4. Convert into A-MDL file.

5. Convert into S-MDL file, rounding when necessary.

6. Output A-MDL and S-MDL files.

% line 7-8 were based on Algorithm 3.

7. Extract the melody line, 𝐦𝟏(𝐭) & 𝐦𝟐(𝐭), and the rhythm line, 𝐫𝟏(𝐭) & 𝐫𝟐(𝐭),

from the relevant parameter values of the MIDI file and the converted S-

MDL file, respectively.

8. Evaluate and output 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹 using line 693-12 of Algorithm 3.

106

After input track [27], in MIDI format, to Algorithm 9 and set 𝜃 = −1, 𝜗 = 1.0 𝐻𝑧,

Sim𝐶 = 85.93% for A-MDL and Sim𝐶 = 100% for S-MDL, whereas Sim𝑅 = 100%

for both MDL files. This result has further indicated that S-MDL is corresponding to

MIDI, and hence the assumption made in Section 5.1 is reasonable.

On the other hand, as already mentioned in Section 4.3, the further evaluation for the

effectiveness of MDL and T-MML to the audio sound is included in Xue’s project (Xue,

2018).

6.2. MUCASM

To evaluate MUCASM, we input twenty melodies onto the trained MUCASM after first

epoch. Half of them were those origin pieces and the remaining half were ‘new’ melodies,

such that the first half were used to test the exact search and the second half were used to

test the approximate search. Those ten ‘new’ melodies do not belong to our training

dataset and randomly covers each variation type from those ten origins. They were

manually implemented and converted into the MDL and MML format.

For the exact search, from original to original, it has obtained 100% accuracy for all Tier-

1 classifiers and the final mega-classifier, which can be achieved by the audio-based MIR

systems using the same melody segment. However, the existing audio-based MIR

systems were limited in approximate search, from variation to original, which has

described in Section 2.1.1, but our MUCASM is capable, as we have found out that

approximately 80% of those ‘new’ melodies have successfully found its origin by our

MUCASM.

Furthermore, we also compared with Musipedia, a symbolic-based MIR system. Due to

the limitation of the music that is stored in Musipedia, more importantly, some of the

melodies in our database are ‘fake’ variation music melodies. It is hard to get a direct

comparison for benchmarking. Therefore, we evaluate the melodies that exist in both

database.

After testing the music data on Musipedia by translating our MDL to their input, we found

out that the music piece “Canon” and “Twelve Variations On "Ah Vous Dirai-Je, Maman”

were stored in the Musipedia Database. For the “Canon” melody, Musipedia failed to

retrieve the origin from the ‘Expansion’ and ‘Reduction’ variations. Meanwhile, for the

107

“Twelve Variations On "Ah Vous Dirai-Je, Maman” melody, instead of “Twinkle,

Twinkle, Little Star”, we cannot retrieve the complex version from the simplified melody,

which further confirmed that Musipedia cannot deal with the ‘Reduction’ variation. By

comparing the result with those ten ‘new’ melodies, MUCASM has obtained a relative

higher retrieval accuracy.

Finally, for the processing time for our MUCASM, it is going to be 𝑂(𝑒 ∗ 𝑘 ∗ 𝑛 ∗ 𝑚 ∗ 𝑡)

for training as in Algorithm 8, we loop melodies which either are the origin or the

variations, 𝑛 , and the number of origin melodies, 𝑚 with respect to the number of

variation types , 𝑡, for 𝑒 ∗ 𝑘 times, where 𝑒 is the number of epoches and 𝑘 is the number

of iterations. For well-trained MUCASM, the search order is just 𝑂(𝑚). However, we

have not considered the search using the melody segement from a long melody that is

stored in the database.

6.3. Evaluation

Table 6.3-1 shows how much we have covered in our E3MSD prototypes against the

features and limitations summarized in Section 2.1.1 and 2.1.2, and the designed features

in Chapter 3, which also correspond to the research objectives described in Section 1.3.

The followings are the notes for Table 6.3-1 where there is no space underneath the table:

[1] In Excel format.

[2] (Xue, 2018).

[3] Almost no variations and noise sensible.

[4] Not good at ‘Expansion’ and ‘Reduction’.

[5] Potentially High.

108

Research Objectives/Features/Limitations Audio-based
Symbolic-

based

E3MSD-

based

Code

↓

Music

Literature Review n/a

Fedility of

Music

Normal note

Glissando Continuous Discrete Continuous

Lyrics

File Size Large Small Medium[1]

Proof-of-concept n/a n/a

,

SPD

Player[2]

Music

↓

Code

Extract/Represent

musical features

Melody Indirect Direct Direct

Rhythm Indirect Direct Direct

Conversion from Audio n/a

Proof-of-concept n/a n/a
,

FFT

Code

↓

Similarity

Scores

Similarity Calculation methods

Audio-

Fingerprint

(I.e., AF)

Various

methods

Combined

(AF, SL1,

SL2, SL3,

SR)

Applications

Proof-of-concept n/a n/a
,

RL-EML

Benchmark n/a n/a Indirect

Size of dataset, for training and

testing
Huge Large Small

Retrieving Types

Genre,

Melody/Lyrics,

Mood,

Timber

Melody,

Rhythm,

Scale,

Contour

Melody,

Rhythm

Process Time Long Short Medium

Retrieving

Accuacy

Exact High High High

Approximate Low[3] Medium[4] High[5]

Table 6.3-1. Project Evaluation Summary Table.

109

* https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/Presentation/4c035b43fe5b4272a89dc222da1485271d

Figure 6.3-1. Park et al. (2019)’s example.

In addition, we use an example from Park et al. (2019), Figure 6.3-1, to illustrate the

advantages of using MDL&MML. By using Park’s approach, the melody pair 1 gave a

similarity score of 0.7755 and the melody pair 2 gave 0.6815. i.e., the melody pair 1 has

a higher similarity score than the melody pair 2. However, when she presented her paper

in the ISMIR conference*, majority of the audience thought the opposite. If using

MDL&MML with different types of MDL (S-MDL or A-MDL) and similarity

measurements, both results can be obtained under different scenarios. For example, by

comparing 𝑆𝑖𝑚𝑀, we may obtain 𝑒−751 against 𝑒−512 using SrC3 or 𝑒−175 against 𝑒−320

if we ignore 𝑀𝐷𝐿1,𝑖(2) from SC3 resepectively. Moreover, by comparing 𝑆𝑖𝑚𝑅, both

melody pairs give
26

32
 using SR, where the resolution is

1

8
. Equal similarity scores suggest

that the music search purely based on the rhythm obtained low retrieval accuracy (Section

2.1.2 on page 22).

Finally, here are the limitations of our project on E3MSD:

 From Table 6.3-1, the most critical limitation for our MUCASM is the amount of

variation types and the size of music dataset, for training and testing.

 Despite we have use Figure 6.3-1 as an example, a large-scale benchmarking with

well-recognized music tracks is still needed to provide a much stronger evidence that

using MDL&MML is better than using other symbolic formats, as well as using

MUCASM on OMI is better than using other mechanisms.

https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/Presentation/4c035b43fe5b4272a89dc222da1485271d

110

111

7. Conclusions and Future Works

7.1. Conclusion

We have proposed a musical data model named Music Definition Language and Music

Manipulation Language. MDL has a similar concept with existing symbolic coding

schemes whereas MML is introduced such that we can obtain a closer sound waveform

without affecting the musial melody flow.

For completion, we have shown the relationship between the audio format, symbolic

format and MDL&MML, theoretically and practically. The file size of an MDL and MML

file is smaller than the audio file whereas the fidelity of the music using the MDL and

MML format is better than using those symbolic formats.

It has been demonstrated that by using the proposed data model (MDL&MML), we can

employ a Self-supervised Reinforcement-based Ensemble Learning to improve the

performance of MUCASM for OMI. By introducing a weighted similarity measurements

which combines the contouric melody and rhythm, and by altering the updating formula,

we have achieved similarity accuracy of 84%. By introducing the RL-based EML that

schedules different routes for different variation types of the origins, a potential similarity

accuracy of 96% can be reached.

In addition, we have compared with Park et al. (2019)’s example and shown that our

approach can provide various results under different scenarios.

All the results indicate that E3MSD can maintain high symbolized music fidelity, lead to

extensibility in searchability and improved search performance by integrating the audio-

based and the symbolic-based approaches on the music data model and the learning

mechanism. Hence, we believe that our research outcomes will benefit the off-line or on-

line Music Search and the Plagiarism Protection, as well as music data storage and data

representation.

112

7.2. Future Works

Here are some suggested future works:

 For the representation of the MDL&MML files, we can add a stochastic function such

that the sound wave generated will be closer to the audio sounds, as well as

considering the harmony of the music note.

 For MUCASM, we can add more musical features onto the process flow in Figure

5.1-5, resulting in more Tier 1 classifiers for the mega-classifier. We can increase the

music length and depth to make the MUCASM work for complex music pieces, e.g.,

EM, and further integrate with Policy-based Reinforcement Learning. Moreover, we

can upgrade MUCASM by incoperating Generative Adversarial Network (GAN),

introduced by Ian Goodfellow (Goodfellow, et al., 2014), or Recurrent Generative

Adversarial Network (RGAN), introduced by Briot et. al. (2017). GAN and RGAN

have been applied to general image processing and signal processing to improve the

robustness of the classifications (Reed, et al., 2016; Briot, et al., 2017; Pascual, et al.,

2017). Their idea is to generate several ‘fake’ images from the real ones whereas we

generated ‘fake’ melodies, as previously mentioned.

 For applications, we need to design more syntax and rules of MDL and MML.

 For project evaluation, we need to increase the amount of music for training and

testing, as well as carry out some large-scale benchmarking from well-recognized

music tracks.

 For more industrial uses, we can extend to remix music generation based on various

similarity scores as well as implement an MDL&MML player, with or without videos.

113

Music Copyright and References

Music Copyright

[1] Aurora (2015) Runaway. [online] available from

<https://www.youtube.com/watch?v=d_HlPboLRL8> (©AURORA) [5 March 2019]

[2] Gemie and SawanoHiroyuki[nZk] (2015) X.U.. [online] available from

<https://www.youtube.com/watch?v=s7Kg-bpFX5k> (©SawanoHiroyuki[nZk] Official

YouTube Channel) [5 March 2019]

[3] Gruttmann, J. (2004) Schnappi, Das Kleine Krokodil. [online] available from

<https://www.youtube.com/watch?v=ony4W9pDzbI> (©fritz51242) [5 March 2019]

[4] Lim Kim (2013) All Right. [online] available from

<https://www.youtube.com/watch?v=ZJMWhJdjlpg> (©MYSTIC Entertainment) [5 March

2019]

[5] Lynnsha (2008) Si Seulement. [online] available from

<https://www.youtube.com/watch?v=Iku5WvjFwBA> (©Elaine C.) [5 March 2019]

[6] Manson, M. (2001) The Nobodies. [online] available from

<https://www.youtube.com/watch?v=qi5nTb-NRFU> (©Marilyn Manson) [5 March 2019]

[7] Mizuki, N. and SawanoHiroyuki[nZk] (2014) Aliez. [online] available from

<https://www.youtube.com/watch?v=UGraUyuDcwU> (©Hiroyuki Sawano Works by Nigel)

[5 March 2019]

[8] Shin (Outsider), O. and Deffinite Of Sunday 2pm (2009) Value Of The Man. [online]

available from <https://www.youtube.com/watch?v=KU6iD6e9GAY> (©Mog Tempest) [5

March 2019]

[9] Shivaree (2002) Snake Eyes. [online] available from

<https://www.youtube.com/watch?v=QbGUOoEDbQI> (©George) [5 March 2019]
[10] Sung, S. (2003) Life's A Struggle. [online] available from

<https://www.youtube.com/watch?v=M_RXZ5DvbSE> (©quan) [5 March 2019]

[11] Wong, L. (2003) Can You Feel My World. [online] available from

<https://www.youtube.com/watch?v=3JSmWvRUCUY> (©王力宏 Wang Leehom) [5 March

2019]

[12] Yui (2010) Again. [online] available from

<https://www.youtube.com/watch?v=2DYYVp4QXew> (©Anime Is Life)[5 March 2019]

[13] Bach, J. S. (1723) Two-Part Inventions No.4 (D Minor, BWV 775). [online] available from

<https://www.youtube.com/watch?v=J3Hj38wuom0> (©David Magyel) [14 March 2019]

[14] Beethoven, L. van (1810) Für Elise (Bagatelle No. 25 In A Minor). [online] available from

<https://www.youtube.com/watch?v=8UJAol7ndfM> (©HSCC MUSIC, Piano Sheet Music) [14

March 2019]

[15] Chopin, F. F. (1829) Etude Op. 10 No. 9 (F Minor). [online] available from

<https://www.youtube.com/watch?v=A0umohcLS1I> (©newFranzFerencLiszt) [14 March

2019]

[16] Coldplay (Martin, C., Buckland, J., Berryman, G., Champion, W. and Harvey, P.)

(2002) Clocks. [online] available from <https://www.youtube.com/watch?v=d020hcWA_Wg>

(©Coldplay) [14 March 2019]

[17] Joplin, S. (1899) Maple Leaf Rag. [online] available from

<https://www.youtube.com/watch?v=_TEbZMfYsLo> (©Paul Barton) [14 March 2019]

114

[18] Mozart, W. A. (1788) Piano Sonata No.16 (C Major, KV545). [online] available from

<https://www.youtube.com/watch?v=dNbqRC4xtEg> (©The Great Repertoire) [14 March

2019]

[19] Mozart, W. A. (1786) Rondo In D Major (K.485). [online] available from

<https://www.youtube.com/watch?v=kOcpscSWIno> (©Classical Piano) [14 March 2019]

[20] Pierpont, J. L. (1857) Jingle Bells. [online] available from

<https://www.youtube.com/watch?v=3PgNPc-iFW8> (©Kids Music) [18 March 2019]

[21] Steiner, M. (1939) Gone With The Wind (Tara Theme). [online] available from

<https://www.youtube.com/watch?v=PgF-rcHcPqE> (©EternalLveStory08) [18 March 2019]

[22] Tchaikovsky, P. I. (1876) Swan Lake (Op. 20, First Movement, Intro). [online] available from

<https://www.youtube.com/watch?v=surrZsh9rZo> (©HSCC MUSIC, Piano Sheet Music)

[18 March 2019]

[23] Pachelbel, J. (1653-1706) Canon (In D). [online] available from

<https://www.youtube.com/watch?v=jQDMDQuGrVc> (©HSCC MUSIC, Piano Sheet Music)

[18 March 2019]

[24] Akeboshi, Y. (2002) Wind (Naruto Ed. 01). [online] available from

<https://www.youtube.com/watch?v=IcseamG7ReY> (©MinecraftN00B67) [18 March 2019]

[25] GOT7 (Tuan, Y. (Mark), Im, J. (JB), Wang, K. (Jackson), Park, J., Choi, Y., Bhuwakul, K.

(Bambam) and Kim, Y.) (2015) Just Right. [online] available from

<https://www.youtube.com/watch?v=vrdk3IGcau8> (©jypentertainment) [18 March 2019]

[26] Hee, M. (1995) Moonlight In The City (城里的月光). [online] available from

<https://www.youtube.com/watch?v=zAfmXlv9ff4> (©hknstiu) [18 March 2019]

[27] Mozart, W. A. and Taylor, J. (1806) Twinkle, Twinkle, Little Star (Twelve Variations On "Ah

Vous Dirai-Je, Maman", K.265). [online] available from

<https://www.youtube.com/watch?v=8A9GJ734nGs> (©Solángel !) and

<https://www.youtube.com/watch?v=yCjJyiqpAuU> (©Super Simple Songs - Kids Songs)

[18 March 2019]

[28] Oasis (Gallagher, L., Gallagher, N., Arthurs, P. and White, A.) (1995) Wonderwall. [online]

available from <https://www.youtube.com/watch?v=6hzrDeceEKc> (©Oasis) [18 March

2019]

[29] T-ara (Jeon, B., Lee (Qri), J., Park, S., Hahm, E., Park (Hyomin), S., Park, J. and Lee, A.)

(2012) Sexy Love. [online] available from

<https://www.youtube.com/watch?v=ShVRP09NCO4> (©1theK (원더케이)) [18 March

2019]

[30] Trouble Maker (Jang, H. and Kim, H.) (2011) Trouble Maker. [online] available from

<https://www.youtube.com/watch?v=s-zRAQmKUkI> (©Trouble Maker (Official YouTube

Channel)) [18 March 2019]

[31] Wang, L. (2011) Still In Love With You (依然爱你). [online] available from

<https://www.youtube.com/watch?v=sU_ByeHJtw8> (©王力宏 Wang Leehom) [18 March

2019]

[32] Wu, C. (Wu Bai) (2006) (You Are My) Flower (妳是我的花朵). [online] available from

<https://www.youtube.com/watch?v=FXg4LXsg14s> (©愛貝克思 avex taiwan) [18 March

2019]

[33] Kwon, J. (G-Dragon) (2009) Heartbreaker. [online] available from

<https://www.youtube.com/watch?v=LOXEVd-Z7NE> (©YG ENTERTAINMENT) [26 March

2019]

[34] Dillard, T. L. (Flo Rida) feat. Sebert, K. R. (Kesha) (2009) Right Round. [online] available

from <https://www.youtube.com/watch?v=CcCw1ggftuQ> (©Flo Rida) [26 March 2019]

115

[35] Kwon, J. (G-Dragon) feat. Dillard, T. L. (Flo Rida) (2010) Heartbreaker. [online] available

from <https://www.youtube.com/watch?v=1V7AeACaXpk> (©BinladiN EntertainmenT) [26

March 2019]

[36] Kwon, J. (G-Dragon) feat. Jung, J. (Jin Jung) (2009) Butterfly. [online] available from

<https://www.youtube.com/watch?v=_k0GsfWrNh0> (©YG ENTERTAINMENT) [26 March

2019]

[37] Oasis (Gallagher, L., Gallagher, N., Arthurs, P., McGuigan, P. and White, A.) (1995) She's

Electric. [online] available from <https://www.youtube.com/watch?v=h9JZWhjQDvc>

(©OasisVEVO) [26 March 2019]

[38] Smith, S. (2014) Stay With Me. [online] available from

<https://www.youtube.com/watch?v=pB-5XG-DbAA> (©SAM SMITH) [26 March 2019]

[39] Petty, T. and The Heartbreakers (1989) I Won't Back Down. [online] available from

<https://www.youtube.com/watch?v=nvlTJrNJ5lA> (©tompetty) [26 March 2019]

[40] GOT7 (Tuan, Y. (Mark), Im, J. (JB), Wang, K. (Jackson), Park, J., Choi, Y., Bhuwakul, K.

(Bambam) and Kim, Y.) (2017) Never Ever. [online] available from

<https://www.youtube.com/watch?v=IZ1t7CwfvEc> (©jypentertainment) [26 March 2019]

[41] BTS (Kim, S. (Jin), Min, Y. (Suga), Jung, H. (J-Hope), Kim, N. (RM), Park, J., Kim, T. (V)

and Jeon, J.) (2017) Not Today. [online] available from

<https://www.youtube.com/watch?v=9DwzBICPhdM> (©ibighit) [26 March 2019]

[42] KARD (Kim, T. (J.Seph), Kim, M. J. (BM), Jeon, S. and Jeon, J.) (2017) Don't Recall.

[online] available from <https://www.youtube.com/watch?v=41Dp7Q-SM1Y> (©KARD) [26

March 2019]

[43] Green Day (Armstrong, B., Pritchard, M. (Mike Dirnt), Wright III, F. (Tré Cool)) feat. Cavallo,

R. and Freese, J. (2004) Boulevard Of Broken Dreams. [online] available from

<https://www.youtube.com/watch?v=Soa3gO7tL-c> (©Green Day) [26 March 2019]

[44] Bach, J. S. (1723) Two-Part Inventions No.1 (C Major, BWV 772). [online] available from

<https://www.youtube.com/watch?v=8kW27KTLVLo> (©David Magyel) [26 March 2019]

[45] BASTARZ (Block B) (Lee, M., Kim, Y. and Pyo, J.) (2015) 품행제로 (Zero For Conduct).

[online] available from <https://www.youtube.com/watch?v=-C7vxJ8cB-Y> (©Stone Music

Entertainment)

[45a] D.J.S 137 (covers Bastarz of Block B) (2015) BASTARZ (Block b) - Zero For Conduct

품행제로 (Piano Tutorial) [Sheets + MIDI]. [online] available from

<https://www.youtube.com/watch?v=4TTk-ptKauM> (©D.J.S 137) [26 March 2019]

116

References

Anon. (n.d.) CHAPTER 3 – PROCESS MODELS. - Wikistudent, Unisa Student Wiki [online]

available from <https://studylib.net/doc/8239232/chapter-3-%E2%80%93-process-

models.---wikistudent--unisa-student-...> [12 April 2019]

Baidu Music Homepage and Qianqian Music Homepage (2019) 千千音乐-听见世界 (©2015-

2019, Merged In 2015) [online] available from <http://music.taihe.com/> [12 March

2019]

Bello, J. P., Monti, G. and Sandler, M. (2000) "Techniques For Automatic Music

Transcription". Proc. 1St International Symposium On Music Information Retrieval

(MUSIC IR 2000) [online] 1-8. available from <https://ismir2000.ismir.net/> [14 May

2019]

Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H. and Klapuri, A. (2013) "Automatic Music

Transcription: Challenges And Future Directions". Journal Of Intelligent Information

Systems [online] 41 (3), 407-434. available from

<http://openaccess.city.ac.uk/2524/1/JIIS-MIRrors-AMT-postprint.pdf> [3 April 2019]

Bhuvaneswari, T. and Prabaharan, S. (2013) "A Survey On Software Development Life Cycle

Models". International Journal Of Computer Science And Mobile Computing [online] 2

(5), 262 – 267. available from

<http://d.researchbib.com/f/2nq3q3YzydL3AgLl5wo20iMT9wpl9jLKOypaZiGJS5ZwNkZl

9JZxx1ZwNkZmt0YaOxMt.pdf> [12 April 2019]

Boisvert, R., Moreira, J., Philippsen, M. and Pozo, R. (2001) "Java And Numerical

Computing". Computing In Science & Engineering [online] 3 (2), 18-24. available from

<https://ieeexplore.ieee.org/abstract/document/908997> [23 April 2019]

Brandenburg, K. (1999) "MP3 And AAC Explained." in The Proceedings Of the 17Th

International Conference: High-Quality Audio Coding (September 1999) [online] held

1999. Audio Engineering Society, 17-009. available from <http://www.aes.org/e-

lib/browse.cfm?elib=8079> [24 January 2019]

Briot, J., Hadjeres, G. and Pachet, F. (2017) "Deep Learning Techniques For Music Generation-

A Survey". arXiv Preprint, arXiv:1709.01620 [online] available from

<https://arxiv.org/abs/1709.01620> [22 September 2019]

Cano, P., Batlle, E., Gómez, E., de C.T.Gomes, L. and Bonnet, M. (2005) "Audio Fingerprinting:

Concepts And Applications". Computational Intelligence For Modelling And

Prediction [online] 2, 233-245. available from

<https://link.springer.com/chapter/10.1007/10966518_17#citeas> [27 February 2019]

Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C. and Slaney, M. (2008) "Content-

Based Music Information Retrieval: Current Directions And Future

Challenges". Proceedings Of The IEEE[online] 96 (4), 668-696. available from

<https://ieeexplore.ieee.org/abstract/document/4472077> [27 February 2019]

Chen, C., Jang, J., Liu, W. and Weng, C. (2016) "An Efficient Method For Polyphonic Audio-To-

Score Alignment Using Onset Detection And Constant Q Transform". 2016 IEEE

International Conference On Acoustics, Speech And Signal Processing

(ICASSP) [online] 2802-2806. available from

<https://ieeexplore.ieee.org/abstract/document/7472188> [28 March 2019]

Chen, X. and Lin, X. (2014) "Big Data Deep Learning: Challenges And Perspectives". IEEE

Access [online] 2, 514-525. available from

117

<https://s3.amazonaws.com/academia.edu.documents/37708688/BigDataDeepLearnin

gChallengesand.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=154938

7877&Signature=Wt5cVH4SHHH0cgMVNR62Mv2C%2BPw%3D&response-content-

disposition=inline%3B%20filename%3DBig_Data_Deep_Learning_Challenges_and_Pe

.pdf> [5 February 2019]

Clarke, E. (2004) "Empirical Methods In The Study Of Performance." in Empirical Musicology:

Aims, Methods, Prospects [online] ed. by Clarke, E. and Cook, N. New York, USA:

Oxford University Press, 77-102. available from

<https://s3.amazonaws.com/academia.edu.documents/31772787/58264440-Clarke-

Cook-Empirical-Musicology-Aims-Methods-Prospects-Oxford-2004-

1.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1556291577&Signatur

e=utkYY%2BIjopw2fOLOXax4x4NX%2FGs%3D&response-content-

disposition=inline%3B%20filename%3DEmpirical_Musicology_-

_Aims_Methods_Pros.pdf#page=86> [26 April 2019]

Coelho, M. and Zigelbaum, J. (2011) "Shape-Changing Interfaces". Personal And Ubiquitous

Computing [online] 15 (2), 161-173. available from

<https://dl.acm.org/citation.cfm?id=1938295> [6 February 2019]

Cogliati, A., Temperley, D. and Duan, Z. (2016) "Transcribing Human Piano Performances Into

Music Notation". In Proc. 17Th International Conference On Music Information

Retrieval [online] 758-764. available from <http://m.mr-

pc.org/ismir16/website/articles/088_Paper.pdf> [19 June 2019]

Damm, B. (1993) The Development Of A Piano-Recorder System. Ph.D. Cape Technikon

Dannenberg, R.B. (1993) "Music Representation Issues, Techniques, And Systems". Computer

Music Journal [online] 17 (3), 20. available from

<https://www.jstor.org/stable/3680940?seq=1#metadata_info_tab_contents> [19 June

2019]

Demopoulos, R. and Katchabaw, M. (2007) Music Information Retrieval: A Survey Of Issues

And Approaches [online] Technical Report #677. Ontario, Canada: The University of

Western Ontario. available from

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3353&rep=rep1&type=p

df> [12 March 2019]

Derrien, O. (2014) "A Very Low Latency Pitch Tracker For Audio To MIDI Conversion". Proc. Of

17Th International Conference On Digital Audio Effects (Dafx-14) [online] 1-6. available

from

<https://pdfs.semanticscholar.org/225a/2660887ebb9b62f3892429c65b95806325f0.pdf

> [19 June 2019]

Dittmar, C., Hildebrand, K., Gaertner, D., Winges, M., Müller, F. and Aichroth, P. (2012) "Audio

Forensics Meets Music Information Retrieval — A Toolbox For Inspection Of Music

Plagiarism." in Proceedings Of The 20Th European Signal Processing Conference

(EUSIPCO) [online] held 2012. IEEE, 1249-1253. available from

<https://ieeexplore.ieee.org/abstract/document/6333813> [30 January 2019]

Dixon, S. (2000) "On The Computer Recognition Of Solo Piano Music". Proceedings Of

Australasian Computer Music Conference [online] 31-37. available from

<http://www.eecs.qmul.ac.uk/~simond/pub/2000/acmc.pdf> [13 February 2019]

Domingos, P. (2012) "A Few Useful Things To Know About Machine

Learning". Communications Of The ACM [online] 55 (10), 78-87. available from

<https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf> [10 February 2020]

118

Duong, N. and Duong, H. (2015) "A Review Of Audio Features And Statistical Models Exploited

For Voice Pattern Design". Seventh International Conferences On Pervasive Patterns

And Applications (PATTERNS 2015, Nice, France) [online] available from

<https://arxiv.org/abs/1502.06811> [4 March 2019]

Elmasri, R. and Navathe, S. (2014) Fundamentals Of Database Systems. 6th edn. (Pearson

New International Edition) Boston: Addison wesley

Esther. (2013) Korean Boyband BIGBANG Cited for Plagiarism in High School

Textbook [online] available from < https://soranews24.com/2013/02/27/korean-boyband-

bigbang-cited-for-plagiarism-in-high-school-textbook/> [30 January 2020]

Evans, R., Pfahringer, B. and Holmes, G. (2011) "Clustering For Classification". 2011 7Th

International Conference On Information Technology In Asia 1-8

Fan, Y. and Feng, S. (2016) "A Music Identification System Based On Audio Fingerprint". 2016

4Th Intl Conf On Applied Computing And Information Technology/3Rd Intl Conf On

Computational Science/Intelligence And Applied Informatics/1St Intl Conf On Big Data,

Cloud Computing, Data Science & Engineering (ACIT-CSII-BCD) [online] 363-367.

available from <https://ieeexplore.ieee.org/abstract/document/7917011> [13 March

2019

Farber, M. (2003) "Topological Complexity Of Motion Planning". Discrete And Computational

Geometry [online] 29 (2), 211-221. available from

<https://link.springer.com/content/pdf/10.1007%2Fs00454-002-0760-9.pdf> [6 February

2019]

Fournier-S’niehotta, R., Rigaux, P. and Travers, N. (2016) "Is There A Data Model In Music

Notation?". In Intl. Conf. On Technologies For Music Notation And Representation

(TENOR’16) [online] 85-91. available from <http://tenor2016.tenor-

conference.org/papers/12_Fournier_tenor2016.pdf> [19 June 2019]

Francisco, M. (2013-2019) Miggy Smallz Youtube Homepage [online] available from

<https://www.youtube.com/channel/UC5XWNylwy4efFufjMYqcglw> [6 March 2019]

Francisco, M. (Miggy Smallz) (2017) GOT7 X BTS X K.A.R.D - Never Ever / Not Today / Don't

Recall MASHUP [online] available from

<https://www.youtube.com/watch?v=Xz__aAyOAB4> [26 March 2019]

Fremerey, C., Müller, M., Kurth, F. and Clausen, M. (2008) "Automatic Mapping Of Scanned

Sheet Music To Audio Recordings". In Proc. 9Th International Conference On Music

Information Retrieval [online] 413-418. available from

<http://ismir2008.ismir.net/papers/ISMIR2008_116.pdf> [19 June 2019]

Gaon Chart (2010.03.28-2010.04.03) (2010) 국내 대표 음악 차트 가온차트! (Korean

Representative Music Chart Gaon Chart!) [online] available from

<http://gaonchart.co.kr/main/section/chart/online.gaon?nationGbn=T&serviceGbn=ALL

&targetTime=15&hitYear=2010&termGbn=week> [31 January 2019]

Gerou, T. and Lusk, L. (1996) Essential Dictionary Of Music Notation. Los Angeles, CA: Alfred

Pub.

Gomersall, V. and Clarke, H. (n.d.) Tune Or Melody Lookup - Dictionary Of Musical

Themes[online] available from <http://bestclassicaltunes.com/DictionaryPiano.aspx> [13

March 2019]

Good, M. (2001) "Musicxml For Notation And Analysis." in The Virtual Score: Representation,

Retrieval, Restoration [online] ed. by Hewlett, W. and Selfridge-Field, E. Cambridge:

119

MIT Press, 113-124. available from

<http://www.ccarh.org/publications/books/cm/vol/12/> [28 January 2019]

Good, M. and Mills, S. (2015) Distribution Of Audio Sheet Music As An Electronic Book. US

8,933,312 B2. U.S.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.

and Bengio, Y. (2014) "Generative Adversarial Nets". Advances In Neural Information

Processing Systems 2672-2680

Guillaume, P. (2006) Music And Acoustics. London: ISTE

Haitsma, J. and Kalker, T. (2002) "A Highly Robust Audio Fingerprinting System." in Proc. 3Rd

International Conference On Music Information Retrieval [online] held 2002 at Paris,

France. 107-115. available from <http://ismir2002.ircam.fr/proceedings/02-FP04-2.pdf>

[4 March 2019]

Haitsma, J. and Kalker, T. (2003) "A Highly Robust Audio Fingerprinting System With An

Efficient Search Strategy". Journal Of New Music Research [online] 32 (2), 211-221.

available from <https://www.tandfonline.com/doi/abs/10.1076/jnmr.32.2.211.16746> [4

March 2019]

Han, S. (2009) Big Bang Leader Accused Of Plagiarism [online] available from

<http://m.koreatimes.co.kr/pages/article.asp?newsIdx=50616> [30 January 2019]

Hatcher, A. (2002) Algebraic Topology. New York: Cambridge University Press

Heaton, J. (2015) Artificial Intelligence For Humans, Volume 3: Deep Learning And Neural

Networks. St. Louis, MO, USA: Heaton Research, Inc.

Holm, J., Havukainen, K. and Arrasvuori, J. (2005) "Personalizing Game Content Using Audio-

Visual Media". ACM International Conference Proceeding Series [online] 265, 298-301.

available from

<https://www.researchgate.net/profile/Juha_Arrasvuori/publication/220982728_Persona

lizing_game_content_using_audio-visual_media/links/543ce7f10cf20af5cfbf870b.pdf>

[2 April 2019]

Hong, L. and Cai, J. (2010) "The Application Guide Of Mixed Programming Between MATLAB

And Other Programming Languages". 2010 The 2Nd International Conference On

Computer And Automation Engineering (ICCAE) [online] 185-189. available from

<https://ieeexplore.ieee.org/abstract/document/5452058> [18 April 2019]

Hrušková, N. and Hvolka, J. (2011) "Representing, Comparing And Evaluating Of Music Files."

in The Proceedings Of the International Conference On E-Learning And The Knowledge

Society [online] held 2011. ASE Publishing House, 978-606. available from

<https://pdfs.semanticscholar.org/2c62/24ada67e794a2ca37b12067c266ebd9a9d09.pd

f> [29 January 2019]

Hu, X. (2018) "Evaluating Mobile Music Services In China: An Exploration In User

Experience". Journal Of Information Science [online] 45 (1), 16-28. available from

<https://journals.sagepub.com/doi/pdf/10.1177/0165551518762070> [22 January 2019]

Huang, T., Xia, G., Ma, Y., Dannenberg, R. and Faloutsos, C. (2013) "Midifind: Fast And

Effective Similarity Searching In Large MIDI Databases". Proc. Of The 10Th

International Symposium On Computer Music Multidisciplinary Research [online] 209-

224. available from

<http://www.cs.cmu.edu/afs/cs.cmu.edu/user/rbd/www/papers/MidiFind-CMMR-

2013.pdf> [20 March 2019]

120

Huron, D., Sapp, C., Kornstädt, A., van Handel, L., Chafe, Z., Heifitz, M., Leistikow, K., Hewlett,

W., Selfridge-Field, E., Wiering, F. and Aarden, B. (n.d.) Themefinder [online] available

from <http://www.themefinder.org/> [13 March 2019]

Joutsenvirta, A. and Perkiömäki, J. (2010) Music Theory 1 [online] available from

<http://www2.siba.fi/muste1/index.php?id=2&la=en> [14 May 2019]

Kania, A. (2017) "The Philosophy Of Music." in The Stanford Encyclopedia Of Philosophy (Fall

2017 Edition) [online] ed. by Zalta, E. Metaphysics Research Lab, Stanford University.

available from <https://plato.stanford.edu/archives/spr2014/entries/music/#toc> [17

January 2019]

Kessler, B. (2007) "Und" Approach To Fourier Transforms: Using Music To Teach

Trigonometry". Mathematics Faculty Publications & 2007 Bridges Donostia

Conference [online] 135-142. available from

<https://digitalcommons.wku.edu/cgi/viewcontent.cgi?referer=https://scholar.google.co.

uk/&httpsredir=1&article=1012&context=math_fac_pub> [30 May 2019]

Kim, S., Kim, J. and Shin, P. (2013) "Designing A Music Content Retrieval System Supporting

Korean". 2013 International Conference On Information Science And Applications

(ICISA) [online] 1-4. available from

<https://ieeexplore.ieee.org/abstract/document/6579492> [9 April 2019]

Klapuri, A. and Davy, M. (2006) Signal Processing Methods For Music Transcription. New York:

Springer

Knees, P. and Schedl, M. (2013) "A Survey Of Music Similarity And Recommendation From

Music Context Data". ACM Transactions On Multimedia Computing, Communications,

And Applications[online] 10 (1), 1-21. available from

<https://dl.acm.org/citation.cfm?id=2542206> [30 January 2019]

Kohonen, T. (1990) "The Self-Organizing Map". Proceedings Of The IEEE 78 (9), 1464-1480

Kugou Homepage (2019) 酷狗音乐 - 就是歌多 (©2004-2019) [online] available from

<http://www.kugou.com/> [5 March 2019]

Kuwo Homepage (2019) 酷我音乐_无损音乐正版在线试听网站 (©2005-2019) [online] available

from <http://www.kuwo.cn/> [12 March 2019]

Kwon, T., Jeong, D. and Nam, J. (2017) "Audio-To-Score Alignment Of Piano Music Using

RNN-Based Automatic Music Transcription". Proceedings Of The 14Th Sound And

Music Computing Conference [online] (SMC2017-)380-385. available from

<https://arxiv.org/abs/1711.04480> [16 April 2019]

Lamere, P. (2008) "Social Tagging And Music Information Retrieval". Journal Of New Music

Research [online] 37 (2), 101-114. available from

<https://www.tandfonline.com/doi/abs/10.1080/09298210802479284> [27 February

2019]

LaValle, S. (2006) "The Configuration Space." in Planning Algorithms [online] ed. by LaValle, S.

Cambridge university press, 127-184. available from

<http://planning.cs.uiuc.edu/node1.html> [6 February 2019]

Lenssen, N. and Needell, D. (2014) "An Introduction To Fourier Analysis With Applications To

Music". Journal Of Humanistic Mathematics [online] 4 (1), 72-91. available from

<https://www.researchgate.net/profile/Nathan_Lenssen/publication/314918556_An_Intr

oduction_to_Fourier_Analysis_with_Applications_to_Music/links/595d431c0f7e9b3aefa

121

df009/An-Introduction-to-Fourier-Analysis-with-Applications-to-Music.pdf> [13 February

2019]

Liao, C., Wang, P. and Zhang, Y. (2009) "Mining Association Patterns Between Music And

Video Clips In Professional MTV". Lecture Notes In Computer Science [online] 5371,

401-412. available from <https://link.springer.com/chapter/10.1007/978-3-540-92892-

8_41> [9 April 2019]

Liu, B., Xia, Y. and Yu, P. (2000) "Clustering Through Decision Tree Construction". Proceedings

Of The Ninth International Conference On Information And Knowledge

Management [online] 20-29. available from

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.4310&rep=rep1&type=pd

f> [26 February 2019]

Loy, G. (1985) "Musicians Make A Standard: The MIDI Phenomenon". Computer Music

Journal [online] 9 (4), 8-26. available from

<https://www.jstor.org/stable/pdf/3679619.pdf> [4 March 2019]

Lubiw, A. and Tanur, L. (2004) "Pattern Matching In Polyphonic Music As A Weighted

Geometric Translation Problem." in Proc. 5Th International Conference On Music

Information Retrieval [online] held 2004 at Barcelona, Spain. 289--296. available from

<http://ismir2004.ismir.net/proceedings/p054-page-289-paper154.pdf> [4 March 2019]

Matityaho, B. and Furst, M. (1995) "Neural Network Based Model For Classification Of Music

Type". Eighteenth Convention Of Electrical And Electronics Engineers In Israel [online]

4.3.4.1-5. available from <https://ieeexplore.ieee.org/abstract/document/514161> [9

April 2019]

MATLAB and Simulink Homepage (2019) Mathworks - Makers Of MATLAB And Simulink

(©1994-2019) [online] available from <https://uk.mathworks.com/> [24 April 2019]

McKay, C. and Fujinaga, I. (2006) "Jsymbolic: A Feature Extractor For MIDI Files". Proceedings

Of International Computer Music Conference [online] 302-305. available from

<https://www.semanticscholar.org/paper/jSymbolic%3A-A-Feature-Extractor-for-MIDI-

Files-McKay-Fujinaga/9d3ca8a8b5c5bc0e7bc7d22d13b83f8c60f155cf> [4 March 2019]

McKay, C., Tenaglia, T. and Fujinaga, I. (2016) Jsymbolic2: Extracting Features From Symbolic

Music Representations [online] Late-Breaking Demo Session of the 17Th International

Conference On Music Information Retrieval. New York City, USA: ISMIR. available from

<https://pdfs.semanticscholar.org/e67e/2091d5b2f9bcecfb89940b9d725ecc022098.pdf

> [20 March 2019]

Mesaros, A. and Virtanen, T. (2008) "Automatic Alignment Of Music Audio And Lyrics."

in Proceedings Of The 11Th Int. Conference On Digital Audio Effects (Dafx-08) [online]

held 2008. available from

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.6683&rep=rep1&type=p

df> [29 January 2019]

Miljkovic, D. (2017) "Brief Review Of Self-Organizing Maps". 2017 40Th International

Convention On Information And Communication Technology, Electronics And

Microelectronics (MIPRO) [online] available from

<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7973581> [12 February

2019]

Müllensiefen, D. and Wiggins, G. (2011) "Polynomial Functions As A Representation Of Melodic

Phrase Contour." [online] in Systematic Musicology: Empirical And Theoretical Studies,

Vol 28 Of Hamburger Jahrbuch Für Musikwissenschaft. ed. by Schneider, A. and von

Ruschkowski, A. Peter Lang, 63-88. available from

122

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.410.3479&rep=rep1&type=p

df> [20 June 2019]

Musicradar Homepage (2019) Musicradar: The No.1 Website For Musicians (©2007-2019)

[online] available from <https://www.musicradar.com/> [12 March 2019]

Netease Cloud Music Homepage (2019) 网易云音乐 (©1997-2019) [online] available from

<https://st.music.163.com/c/gdpr/index.html> [12 March 2019]

OasisIndie94 (2011) Green Day Feat. Oasis - Boulevard Of Broken Dreams & Wonderwall

[online] available from <https://www.youtube.com/watch?v=z-PdV61Z8Mg> [6 March

2019]

Osmalsky, J., Embrechts, J., Van Droogenbroeck, M. and Pierard, S. (2012) "Neural Networks

For Musical Chords Recognition". Journées D'informatique Musicale [online] 39-46.

available from <http://hdl.handle.net/2268/115963> [9 April 2019]

Park, J., Kim, S. and Shin, M. (2005) "Music Plagiarism Detection Using Melody

Databases". Lecture Notes In Computer Science [online] 684-693. available from

<https://link.springer.com/chapter/10.1007/11553939_98> [30 January 2019]

Park, S.B., Kwon, T.G., Lee, J.P., Kim, J.H. and Nam, J.H., 2019. A Cross-scape Plot

Representaion for Visulizing Symbolic Melodic Similarity. In Proc. 20th International

Conference on Music Information Retrieval. 4-8 Nov 2019, Delft, Netherland. available

from < http://archives.ismir.net/ismir2019/paper/000050.pdf > [23 March 2020]

Pascual, S., Bonafonte, A. and Serra, J. (2017) "SEGAN: Speech Enhancement Generative

Adversarial Network". Arxiv Preprint Arxiv:1703.09452

Polikar, R. (2006) "Ensemble Based Systems In Decision Making". IEEE Circuits And Systems

Magazine [online] 6 (3), 21-45. available from

<https://ieeexplore.ieee.org/document/1688199> [26 February 2019]

Portnoff, M. (1976) "Implementation Of The Digital Phase Vocoder Using The Fast Fourier

Transform". IEEE Transactions On Acoustics, Speech, And Signal Processing [online]

24 (3), 243-248. available from

<https://pdfs.semanticscholar.org/4d37/0876b843d5c8fcca151e548939b8744ce8bc.pdf

> [13 February 2019]

Prechelt, L. (2003) "Are Scripting Languages Any Good? A Validation Of Perl, Python, Rexx,

And Tcl Against C, C++, And Java." in Advances In Computers: Information

Repositories (Vol. 57) [online] 1st edn. ed. by Zelkowitz, M. Great Britain: Academic

Press, 205-270. available from <http://www.inf.fu-berlin.de/inst/ag-

se/pubs/jccpprt2_advances2003.pdf> [24 April 2019

Priemer, R. (1991) Introductory Signal Processing. Singapore: World Scientific

QQ Music Homepage (2019) QQ 音乐-千万正版音乐海量无损曲库新歌热歌天天畅听的高品质音

乐平台！(©1998-2019) [online] available from <https://y.qq.com/> [12 March 2019]

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee, H. (2016) "Generative

Adversarial Text To Image Synthesis". Arxiv Preprint Arxiv:1605.05396

Rothstein, J. (1995) Midi: A Comprehensive Introduction (Vol. 7). 2nd edn. Madison, WI: A-R

Editions, Inc

Rowe, R. (2009) "Split Levels: Symbolic To Sub-Symbolic Interactive Music

Systems". Contemporary Music Review [online] 28 (1), 31-42. available from

123

<https://www.tandfonline.com/doi/full/10.1080/07494460802664015?scroll=top&needAc

cess=true> [24 January 2019]

Safavian, S. and Landgrebe, D. (1991) "A Survey Of Decision Tree Classifier

Methodology". IEEE Transactions On Systems, Man, And Cybernetics [online] 21 (3),

660-674. available from <https://ieeexplore.ieee.org/abstract/document/97458> [26

February 2019]

Saxena, A., Jasola, S., Barik, K., Joshi, A., Dubey, A. and Jauhari, M. (2018) "Unit-9: The

Computer System: Hardware For Educational Computing." in Block-3: Introduction To

Computers In Education [online] IGNOU, 5-18. available from

<http://www.egyankosh.ac.in/bitstream/123456789/47080/1/Unit-9.pdf> [26 April 2019]

Schmidhuber, J. (2015) "Deep Learning In Neural Networks: An Overview". Neural

Networks [online] 61, 85-117. available from

<https://www.sciencedirect.com/science/article/pii/S0893608014002135> [5 February

2019]

Sharma, N. and Sardana, S. (2016) "Designing A Real Time Speech Recognition System Using

MATLAB". International Journal Of Computer Applications (0975 – 8887) National

Conference On Latest Initiatives& Innovations In Communication And Electronics (Lice

2016) [online] 1-5. available from

<https://pdfs.semanticscholar.org/ea23/5ca13b4884c5d0b00a65e3782faed76a6883.pdf

> [13 February 2019]

Shazam Homepage (2019) Shazam (©1999-2019) [online] available from

<https://www.shazam.com/> [5 March 2019]

Shin, M., Kim, E., Seo, S. and Kim, Y. (2016) "Similarity Measurement System Design Of Music

Contents". International Information Institute (Tokyo). Information [online] 19 (1), 67-72.

available from

<https://search.proquest.com/openview/9f866b5258c2a7be4e7b4d9c7449452e/1?pq-

origsite=gscholar&cbl=936334> [30 January 2019]

Song, Y., Dixon, S. and Marcus, P. (2012) "A Survey Of Music Recommendation Systems And

Future Perspectives." in 9Th International Symposium On Computer Music Modelling

And Retrieval (CMMR 2012) [online] held 2012 at London, United Kingdom. available

from

<https://www.researchgate.net/profile/Yading_Song/publication/277714802_A_Survey_

of_Music_Recommendation_Systems_and_Future_Perspectives/links/5571726608aef8

e8dc633517.pdf> [30 January 2019]

SoundHound Homepage (2019) Soundhound Inc. (©2005-2019) [online] available from

<https://soundhound.com/> [12 March 2019]

Spanias, A., Painter, T. and Atti, V. (2006) Audio Signal Processing And Coding. Canada: John

Wiley & Sons

Sri Ranjani, S., Abdulkareem, V., Karthik, K. and Bora, P. (2015) "Application Of SHAZAM-

Based Audio Fingerprinting For Multilingual Indian Song Retrieval". Lecture Notes In

Electrical Engineering[online] 81-92. available from

<https://link.springer.com/chapter/10.1007/978-81-322-2464-8_6> [4 March 2019]

Sumanac-Johnson, D. (2016) You Stole My Song! 4 Historical Examples Of Music Plagiarism |

CBC News [online] available from <https://www.cbc.ca/news/arts/music-plagiarism-

analysis-1.3634429> [17 January 2019]

124

Sutton, R., Barto, A. and Bach, F. (2018) Reinforcement Learning: An Introduction. 2nd edn.

MIT Press

Tan, L. and Jiang, J. (2018) Digital Signal Processing: Fundamentals And Applications. 3rd edn.

Academic Press

Tan, P., Steinbach, M., Karpatne, A. and Kumar, V. (2018) Introduction To Data Mining (Second

Edition). 2nd edn. India: Pearson Education [online] available from < https://www-

users.cs.umn.edu/~kumar001/dmbook/index.php> [26 February 2019]

Tang, Z. (2016) Study And Evaluation Of Current Music Information Retrieval System.

Undergraduate. Coventry University

Tolstov, G. (2009) Fourier Series. New York: Dover Publ.

TrackID Homepage (2017) Trackid™ - Music Discovery, Recognize The Music Around You

(©2015-2017) [online] available from <https://trackid.sonymobile.com/> [before 15

September 2017]

Typke, R. (2019) Musipedia: Musipedia Melody Search Engine [online] available from

<https://www.musipedia.org/> [5 March 2019]

Typke, R., Wiering, F. and Veltkamp, R. (2005) "A Survey Of Music Information Retrieval

Systems." in Proc. 6Th International Conference On Music Information Retrieval [online]

held 2005 at Queen Mary, University of London. 153-160. available from

<https://www.researchgate.net/profile/Remco_Veltkamp/publication/220723096_A_Surv

ey_of_Music_Information_Retrieval_Systems/links/0deec51df16a5d53e6000000/A-

Survey-of-Music-Information-Retrieval-Systems.pdf> [30 January 2019]

Valero, D. and Quereda, J. (2010) Symbolic Music Comparison With Tree Data Structures.

Ph.D. Universidad de Alicante

Viitaniemi, T., Klapuri, A. and Eronen, A. (2003) "A Probabilistic Model For The Transcription Of

Single-Voice Melodies". Proceedings Of The 2003 Finnish Signal Processing

Symposium (FINSIG’03) [online] 59-63. available from

<http://www.ee.columbia.edu/~dpwe/papers/ViitKE03-melodies.pdf> [14 May 2019]

Walder, C. (2016) "Modelling Symbolic Music: Beyond The Piano Roll." in Proc. Of The 8Th

Asian Conference On Machine Learning (ACML) [online] held 2016 at Hamilton, New

Zealand. JMLR: Workshop and Conference Proceedings, 174-189. available from

<http://proceedings.mlr.press/v63/walder88.pdf> [4 March 2019]

Wang, A. L. (2003) "An Industrial Strength Audio Search Algorithm". In Proc. 4Th International

Conference On Music Information Retrieval [online] 7-13. available from

<http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf> [5 July 2019]

Widrow, B. and Lehr, M.A. (1990) "30 Years Of Adaptive Neural Networks: Perceptron,

Madaline, And Backpropagation". Proceedings Of The IEEE [online] 78 (9), 1415-1442.

available from <http://isl-www.stanford.edu/~widrow/papers/j199030years.pdf> [1 July

2019]

Wiering, M. and van Hasselt, H. (2008) "Ensemble Algorithms In Reinforcement

Learning". IEEE Transactions On Systems, Man, And Cybernetics, Part B

(Cybernetics) [online] 38 (4), 930-936. available from

<https://ieeexplore.ieee.org/document/4509588> [26 February 2019]

Xue, W. (2018) Implementation Of A Player For MDL & MML Musical Pieces. Undergraduate.

Coventry University

125

Yang, N., Usman, M., He, X., Jan, M. and Zhang, L. (2017) "Time-Frequency Filter Bank: A

Simple Approach For Audio And Music Separation". IEEE Access [online] 5, 27114-

27125. available from <https://ieeexplore.ieee.org/abstract/document/8063868> [13

February 2019]

Yu, W., Reid, D. and Brewster, S. (2002) "Web-Based Multimodal Graphs For Visually Impaired

People Universal Access And Assistive Technology [online] 97-108. available from

<https://link.springer.com/chapter/10.1007/978-1-4471-3719-1_10#citeas> [28 January

2019]

Zainuddin Lubis, M., Munandar Manik, H. and Wulandari, P. (2016) Signal Processing For

Marine Acoustic And Dolphin Using Matlab. LAP LAMBERT Academic Publishing

Zhang, C. and Ma, Y. (2012) Ensemble Machine Learning. New York: Springer

126

127

Appendix

Appendix A. Detailed Project Methodologies

Our project starts with relevant primary and secondary research, the results have shown

in Chapter 2. Next, we analysed some typical software development life cycle models

(Bhuvaneswari & Prabaharan, 2013; Anon., n.d.), to decide how the rest of the project

should proceed. Here are the definitions of the four different types of the development

models:

Definition 11. The Linear Model.

The Linear Model is also known as the Waterfall Model. This classic model requires the
developer to work on a very organized schedule, the plan is in a sequential order and the
developer completes the individual tasks one by one. (e.g., define-before-design and
design-before-code). The complete solution only appears at the end of the process.

Definition 12. The Iterative Model.

Unlike the linear model, this model does not require with the full specification of
requirements. During each iteration, we followed the process from the linear model.
Further requirement could be identified. By repeating this process, we can get different
version of the final product.

Definition 13. The Incremental Model.

This model involves several developing stages, and the final product is produced after
finishing all the increments. We can see the partial core product after one increment
stage, and after every increment stage, new function can be added to satisfy user’s
requirement.

Definition 14. The Evolutionary Model.

Deal with complex systems, normally a comination of iterative and incrementl model.
Typical examples would be the Prototyping, Spiral models.

Based on (Bhuvaneswari & Prabaharan, 2013), Table A-1 summarizes the pros and cons

for those models. According to Section 1.3, our project involves certain general aims and

objectives. Moreover, it is not a large project, and have a three years time limitation.

Therefore, the prototyping model is a reasonable choice for our project.

The next decision is the choice for the programming language through out the project.

Table A-2 shows the pros and cons of several typical programming languages (Boisvert,

et al., 2001; Prechelt, 2003; Hong & Cai, 2010). According to Section 1.3, our project is

majorly to evaluate music similarity scores by converting music data into mathematical

128

 Pros Cons

Linear

(Waterfall)

 Easy to understand and

implement.

 Fault fixed before carrying out

any implementation.

 Possible to estimate the

development and the time

cost.

 Hard to get accurate

requirements.

 Errors may be discovered at

later stages.

 Expensive to make any

alternations.

 Difficult for risk

management integration.

Iterative Improve the product step by

step.

 Possible to get reliable and

useful user feedback.

 Less documentation time and

more design time.

 No overlap for each

iteration.

 May not get full

requirements, and thus,

inaccurate design of system

architectures.

Incremental Problem can be detected

earlier and able to made

changes after each cycle.

 Fast core product production.

 Heavy documentations.

 Difficult for partitioning the

functions and features

 Long time period.

Evolutionary:

Prototyping

(leads to Rapid

Application

Developement)

 Quick plan and quick design.

 Reduces the development

time. So faster production.

 Components can be reused.

 Fuzzy requirements.

 Inefficiency algorithm.

 Fail for large project with

lacked commitment or poor

project modularization.

Evolutionary:

Spiral

 High amount of risk analysis.

 Adaptive and allow alteration

for funcionalities and

requirements.

 More completed version of

the software can be produced.

 Need to consider all major

risks at all stages.

 Can be a costly model to

use.

 Does not work well for

small projects.

Table A-1. Pros and Cons for the Development Models (Bhuvaneswari & Prabaharan,
2013).

129

 Pros Cons

C/C++/

Java

 C allows to implement extreme

efficient programs (Compiled).

 C++ is somehow super set of C,

by adding object-oriented

features, extensions etc.

 Java, resembles C, is object

oriented (with important

features), and has a higher

portability and safety. It allows

incorporate into documents

describing the behaviour of the

architecture.

 C/C++ reliant on well-written

programs.

 C/C++ are not machine

independent and lack of certain

high-level language features.

 Java needs longer simulation

run times.

 Java has difficulty for certain

coordination components of a

large numerical application,

e.g., complex number and true

multidimensional arrays.

MATLAB

 Simple and useful with friendly

working platform.

 Powerful capability of

processing mathematical and

scientific computer data.

 Exellent function of processing

graphics.

 Widely used toolkit modules.

 Low operating efficiency.

 Non cross-platform, low

portability.

 Relatively poor capability of

access to hardware.

 Graphical User Interface

functions were not flexible

enough.

Python Resembles Java with many

built-in functions. No special

rule when combining them.

 Easier for programmer to read

and study.

 Slow speed of execution as

Python is interpreted, instead of

using compilers.

 Design restrictions and may

raise run-time errors.

Table A-2. Pros and Cons for C, C++, Java, MATLAB and Python.

data. I.e., more theoretical than application practical. Thus, from the summary table,

MATLAB is the reasonble programming language choice for our project. In addition, it

is possible to interface with other programs written in C, C++, Java, Python etc.

(MATLAB and Simulink Homepage, 2019).

130

Appendix B. Codes

Certain functions and important steps from those Algorithms and Equations were shown

in here:

Algorithm 1

Line 5b:

Algorithm 2, 9

Extra lines for Algorithm 9, related functions were from http://kenschutte.com/midi:

http://kenschutte.com/midi

131

FFT:

Algorithm 3-4,7-8

SC1:

132

SC2:

133

SC3:

134

RC&SR:

135

SL1&SL2:

Strategy Tree Generation for RL-EML:

136

Algorithm 5-6

AF-Extraction:

137

AF-Matching:

138

Appendix C. Project Management & Others
Project Milestone & Gantt Chart for Time Management:

139

140

141

Risk Assessment Form:

Content removed on data protection grounds

142

Content removed on data protection grounds

143

Content removed on data protection grounds

144

