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Abstract 
 

Nowadays, more people tend to use the Internet to search, listen, purchase, download and 

share music. Existing Music Information Retrieval (MIR) systems were either audio-

based or symbolic-based. Audio-based MIR systems were based on various audio formats, 

for example, MP3. These formats can represent continuous sound waves well but are 

limited in illustrating the content flow of the music melody and generating large files for 

high fidelity music. In addition, audio-based MIR systems use the audio fingerprints to 

find the exact music pieces, but they have difficulty in finding variances. On the other 

hand, symbolic-based formats have advantages in effectively representing the content of 

the music with small files, and in facilitating music pattern identifications, but they are 

not suitable for Electronic Music (EM), which considers a continuous sound wave set. 

This is because the symbolic-based representions limit themselves to discrete set 

modelling so that they may introduce extra dummy notes to EM, which can affect the 

main melody flow and lead to the increase of errors in symbolic-based retrieving 

including identifying the origins from its variations. As a consequence of these, people 

have been getting unsatisfied results from both audio and symbolic based music search 

engines, as well as find it difficult to carry out music plagiarism checks. Therefore, we 

need to find a new way to describe, model and analyse music. 

In this project, we aim to retain those advantages from both audio and symbolic sides 

while address their shortcomings, as briefly described above, by proposing a new 

architecture named E3MSD (Expressive, Efficient, and Extendable Music Similarity 

Detection). There are two contributions for E3MSD.  

The first contribution is a new data model that describes the music information using both 

the Music Definition Language (MDL) and the Music Manipulation Language (MML), 

which can effectively and efficiently encode and represent the music. For evaluation, we 

have tested the MDL&MML from the perspectives of music storage and music 

representation. In terms of storage efficiency, the required storage of a sampled audio 

encoded by the proposed coding scheme is smaller than other popular audio-based forms. 

More precisely, a melody, with approximately 316 KB of the file size using the MP3 

format, only requires 9 KB disk space when using the MDL&MML format. In terms of 
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music expressiveness, the proposed symbolic-based representation can model various 

timbre using less storage space without sacrificing the quality. Finally, E3MSD includes 

the automatic generation of MDL&MML file from the audio soundwaves. The derived 

MDL&MML file shares around 94% melodic and 100% rhythmic accuracy with 

manually generated one. 

The second contribution is the development of a hybrid mechanism on the proposed 

musical data model, named MUsic Classification And Similarity Measurement 

(MUCASM), which combines contour, rhythm and audio fingerprints. This method 

features a modified reinforcement-based ensemble learning classification mechanism, 

which includes a decision tree that maps variations of music pieces to their corresponding 

originals, with variation types as their attributes, for example, rhythm variation. The 

experimental results show a stable accuracy of 84% without taking into account the types 

of variations, and 96% by using our proposed ensemble learning.  

E3MSD can be extended to study its potentials in improving the performance of existing 

music search engines, building music version of plagiarism tools, and even generating 

remixes automatically based on the similarity scores. 
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1. Introduction 

Music, an art form, plays an important role in our daily life. Especially now, as the 

electronic and the computer technologies have become more powerful, more varieties of 

music can be generated, not just the classical music with traditional instruments. For 

example, Electronic Music (EM). On the other hand, as the Internet and the Cloud have 

become more popular, large repositories of music are available online for public to listen, 

share, store and download. For example, millions of official Music Videos can be found 

on YouTube and a lot of CDs can be bought on Amazon. However, due to the large 

amount of music pieces, people sometimes find it difficult to recognise music from the 

fragment pieces, or to avoid and detect music plagiarism, as you may find the music that 

you are listening to is somehow similar to other pieces of music. 

Further, from a scientific and philosophic point of view, music is a variety of sounds 

organized in time with tonalty and aesthetic, to distinguish between human speech and 

other non-musical sounds (Kania, 2017). More specifically, tonalty involves musical 

features such as pitch and rhythm whereas aesthetic is the interpretation of our feelings, 

judgement and understanding of music. Thus, there are two major approaches to deal with 

music. One is using the audio approach and the other one is using the symbolic approach. 

The audio approach directly represents the musical sound while the symbolic approach 

captures the musical features. These are the two major music data types which allow 

computers to store them and Music Information Retrieval (MIR) systems to process them.  

Therefore, music data analysis is a complicated but important and interesting topic to 

investigate. 

1.1. Research Backgrounds 

From the music storage and playback’s perspective, we mostly store the music in WAV, 

MP3, AAC format with different bit rate (Brandenburg, 1999) that can affect the quality 

of the music sound during playback and their file size. These kinds of formats have been 

classified as audio-based formats as they directly store their audio frequencies over time. 

Combination of the continuous frequencies with amplitudes can provide more music 

types and audio signals (Mesaros & Virtanen, 2008). Hence, human vocals are able to be 

covered. However, we sometimes have encounter problems when faced with these kinds 
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of music formats. For example, when we playback an audio file, to speed it up or down, 

the soundwaves will be squashed or loosened, leading to the pitch getting higher or lower 

accordingly. This problem occurs when we need to unify the tempo while generating a 

remix with two pieces of music which have slightly different tempos. 

Alternatively, we can store the music in Musical Instrument Digital Interface (MIDI) 

format (Rowe, 2009), which has been classified as a symbolic-based format. MIDI can 

be written from the music version of XML, named MusicXML, which codes the music 

sheet in the ways of programming code (Good, 2001). Most of the time, music sheets give 

a better representation of the music in order to allow musicians to compose and read them. 

However, there are several limits when applying either MusicXML or MIDI to modern 

Electronic Music. For example, the continuous frequency variation is hard to translate 

perfectly onto music sheets. When MIDI acts as a symbolic music storage media, it can 

correspond to Music sheets to reduce the file size compared to any audio format files (Yu, 

et al., 2002). However, this can only work well for classical music such as piano pieces, 

instead of modern pop music  (Hrušková & Hvolka, 2011). 

From the music application’s perspective, there are two scenarios, music search and 

music plagiarism. 

For the music search scenarios, there are three types of music search engines. Tag-based, 

or meta-data-based MIR systems provide search services by various categories, such as 

by title, by artist, by album etc., even Google, non-MIR systems sometimes can do the 

job for us. These tag-based search engines are effective, however they are based on an 

assumption that we have certain information about the music we want to find. This 

assumption does not always hold, e.g., if we are in a public area, or when we are watch 

TV shows at home, we may hear some backgound music for the first time. On the other 

hand, audio content-based music search engines, e.g., Kugou (Hu, 2018) and Shazam 

(Typke, et al., 2005), allow us to search for music based on the musical content rather 

than the prior information of meta-data. However, if the music piece we listened to is not 

the original piece, for example, a re-composite or re-performance version (e.g. live 

version), these kinds of systems are normally unable to find the original version, due to 

the uniqueness of the Audio Fingerprints method the systems use (Typke, et al., 2005). 

In some cases, such as in a disco club, the backgound music is often a remix. A remix is 
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* music track references in squre bracket is on page 111. 

 

Figure 1.1-1. Two news reports about music plagiarisms (Han, 2009; Sumanac-Johnson, 
2016). 

a combination of different music pieces with alternations, e.g., adding notes, removing 

notes or modifing melodies will make it harder to recognise the origin using an audio 

content-based music search. If you already know the symbolic melody for it, then 

symbolic content-based MIR systems such as Musipedia (Typke, et al., 2005) can allow 

you to search for the music pieces, even the variations, but majority of available symbolic-

based MIR systems are only for classical music. Therefore, there is more room for the 

existing content-based music search engines to improve, so the searching result or 

recommendations can be based on both audio and symbolic music contents, in contrast 

with the tag-based music seach engines (Song, et al., 2012; Knees & Schedl, 2013). 

For the music plagiarism scenario, there are a lot of worldwide news reports about music 

plagiarism. Figure 1.1-1 shows two worldwide news reports (Han, 2009; Sumanac-

Johnson, 2016) as examples. From Han’s report (Han, 2009), G-Dragon, Ji-yong Kwon 

as the original name, has released a new title track “Heartbreaker” [33]* from the album 

《Heartbreaker》 in 2009. This track has been pointed out to have similarities to Flo 

Rida’s “Right Round” [34] by netizens. After communication between the artists (and the 

companies/representatives), G-Dragon featured Flo Rida in his new version of the song 

titled “Heartbreaker” [35] in his 2010 album 《Shine a Life》 (Gaon Chart (2010.03.28-

2010.04.03), 2010). Similar to another track of his, “Butterfly” [36] under the same album, 

this song track was reported to have similarities to Oasis’s “She's Electric” [37]. This time, 
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however, the incident has been cited as a plagiarism example in high school textbooks 

despite all charges have been lifted against him (Esther, 2013). From Deana’s reports 

(Sumanac-Johnson, 2016), for one of the four historical songs, ‘Stay with me’ [38], was 

accused of music plagiarism in 2015, Sam Smith claimed that he has not heard Tom 

Petty’s song, “I Won't Back Down” [39] which was published before he was born. As 

there is a large increase in the amount of music around the world, it is difficult for people 

to listen to all the existent music before the release of their albums, to avoid plagiarism 

claims. Similar situations have been applied to the academic papers, e.g., conference 

papers, journal papers, and thesis. However, for academic papers, we have a system called 

‘Turn-it-in’, to identify and highlight the word patterns with the percentage of similarity 

scores as output, such that we can guide us to judge how the newly submitted paper is 

similar to the existing papers. Thus, there is a need to build a similar plagiarism detection 

system to the music area (Park, et al., 2005; Dittmar, et al., 2012; Shin, et al., 2016). We 

need to find a way to code the songs such that we can highlight the similar patterns based 

on the similarity scores between the codes. Every time a new song enters the music 

database, by using this approach, we can identify and highlight any similar musical 

patterns shared by other original musical tracks. Hence, the composer can pre-reference 

or be notified before being accused by other composers, and receive the copyright fee 

with confidence. In order to build this system, we need to analyse the core musical content. 

1.2. Research Questions 

From the research background in Section 1.1, in order to improve the performance of the 

existing MIR system or to implement a tool for music plagiarism idenfitication, there is 

one fundamental research question which needs to be answered: 

“How to improve the performance of detecting similar music pieces?” 

This can be further broken down into two questions, one of them concentrates on the 

music coding scheme, and the other one focuses on the similarity evaluation: 

1. “How to precisely and expressively code the music in such a way that we can keep 

the audio feature and reduce the file size?” 

2. “How to effectively measure the similarities in such a way that we can identify the 

original music from its variations?” 
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1.3. Research Aims and Objectives 

From the research questions stated in Section 1.2, below list the aims and objectives for 

this project: 

 Provide a better understanding for the musical content. 

o Evaluate the features and limitations for the audio (e.g. MP3) and 

symbolic (e.g. MIDI) approaches/formats. 

o Design a structured and expressive music data model that can be used to 

extract the musical features, e.g. melody, rhythm. 

o Develope prototypes for proof-of-concept. 

 Be able to identify original music tracks from the variations. 

o Design an algorithm which can evalute the similarities between two pieces 

of music pieces. This can be between two pieces of original music, or 

between one variation and one piece of original music. Based on which,  

we apply the algorithm to find the original tracks from the variations. 

o Develope prototypes which demonstrate the core functionalities including 

benchmarking. 

1.4. Novelty, Contribution and Challenge 

As described in the Section 1.1 - 1.3, our principal contribution is to retain the advantages 

from both audio and symbolic sides while address individual shortcomings, e.g., a high 

fidelity music but with a smaller file size. This is achieved by outlining a new architecture, 

named E3MSD (Expressive, Efficient, and Extendable Music Similarity Detection). This 

architecture consists of two music modelling languages, and one algorithm using the 

Ensembled Machine Learning (EML) method called MUCASM (MUsic Classification 

And Similarity Measurement). There are several prototypes that have been built which 

are used to demonstrate the three features of the proposed architecture. 

To the best of our knowledge, this is the first attempt to construct a general music data 

model, which is interdisciplinary between the three subject areas (Computer Science/Data 

Science, Mathematics, Music) and two systems (Audio and Symnolic), and further to 

apply modern machine learning techniques for the computers to understand the music in 

the similar ways human beings do. 
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1.5. Thesis Structure 

The rest of the thesis is structured as the following: 

 Chapter 2 summarizes the features and limitations for the existing technologies in 

the music area. This includes case studies and general literature reviews. It also 

provides a short overview for all the important techniques and terms in Computer 

Science, Mathematics and Music. These fundamental theories behind the 

techniques and terms will not be further described or explained in later chapters. 

 Chapter 3 outlines the methodology for the project and the main work flow for the 

architecture E3MSD. 

 Chapter 4 introduces the structured and extensible music data model, named 

Music Definition Language (MDL) and Music Manipulation Language (MML). 

This includes the example of MDL&MML, and any theoretical proofs; followed 

by demonstrations on how we can playback the MDL and MML files and 

automatically convert the audio into the MDL and MML, using Signal Processing 

techniques. 

 Chapter 5 covers the design, implementaiton and test of MUCASM for Original 

Music Identifier (OMI), where we classify music variations back to their origins 

using the Reinforcement Learning based EML method. 

 Chapter 6 further evaluates MUCASM and benchmarking. 

 Chapter 7 gives the final conclusion and provides general future works. 

At the end of the report, there is a ‘Music Copyright and References’ section. This section 

includes two lists of all the music/academic papers which have been mentioned/used in 

the report. Finally, all other relevant materials, including the project management, are 

inside the ‘Appendix’ section. 
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2. Literature Review 

In this chapter, we investigate existing MIR systems, include musical analysis & storage 

methods and other recent modern techniques which have been applied in the music related 

area, followed by a section of background knowledge overview. 

2.1. Music Information Retrieval Systems for Search Engines 

Music Information Retrieval (MIR) systems discover useful information from music 

pieces. Hence, the tasks for an MIR system can be pattern recognition, genre detection, 

mood evaluation, instrumentation, music recommendation, plagiarism detection tools 

based on similarity and music search engines (Casey, et al., 2008; Lamere, 2008). In other 

words, MIR can search unknown songs, maintain copyright and find similar style music 

pieces.  

For example, if ‘A’ is an original song, ‘B’ is a re-performance of ‘A’, ‘C’ is a re-

composite of ‘A’, ‘D’ is another original song which is completely different to ‘A’, ‘E’ is 

an original song that is somehow similar to ‘A’ and has not been categorized as plagiarism, 

‘F’ is a remix of ‘A’ and ‘E’. Then ideally, the following should happen for a music search 

engine or a plagiarism detection tool: 

If we input ‘B’ or ‘C’, ‘A’ should be our second output with a relatively high similarity 

score, as re-performance is a simple variation such that the main melody flow remains 

largely unchanged, whereas re-composite does vary the main melody flow although the 

main pattern is still recognizable. 

The overall similarity score between ‘A’ and ‘D’ should be much lower than ‘A’ and ‘E’. 

Moreover, ‘A’ and ‘E’ may have certain high similarity scores, e.g., rhythmic similarity. 

By having this property, we can make the remix song ‘F’ from ‘A’ and ‘E’. Thus, there 

are lots of mashup remix on Youtube. For example, Miguel Francisco (Youtube account 

name: Miggy Smallz, refer to acknowledgement) has a number of K-Pop mashup remix 

tracks (Francisco, 2013-2019), such as a combination of GOT7’s “Never Ever” [40] with 

BTS’s “Not Today” [41] and KARD’s “Don’t Recall” [42] (Francisco, 2017). The more 

features shared between two or more pieces of original songs, the smoother the mashup 

remix. Another good example of a mashup remix would be Green Day’s “Boulevard of 
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Broken Dreams” [43] with Oasis’s “Wonderwall” [28] (OasisIndie94, 2011). Thus, for 

an MIR system, both ‘A’ and ‘E’ should be the output if we are requesting song ‘F’. 

However, MIR systems can be tag-based or (music) content-based. A social-tag-based 

music recommendation system is an example of a tag-based MIR system, where the tags 

can be an artist, album or a song (Lamere, 2008). For (music) content-based MIR systems, 

there were several content-based MIR systems that exist, typical examples being Shazam 

and Musipedia. These two MIR systems use different input types with different methods. 

As previously mentioned, these can be categorized into the following two major 

categories: audio-based and symbolic-based (Typke, et al., 2005; Casey, et al., 2008). 

Audio-based systems primarily use a technique called Audio Fingerprint (Typke, et al., 

2005), while symbolic-based systems use several methods such as contour-based, 

melody-based and rhythm-based (Typke, et al., 2005) with music notation and symbolic 

representation (Casey, et al., 2008).  

Therefore, we start with reviewing the audio and symbolic approaches individually, 

which includes the traditional literature review and a case study based system 

investigation. This is followed by comparing these two approaches and outline their 

features and limitations. 

2.1.1. Audio 

For audio-based storage, the common file extension would be “.wav”, “.mp3” and “.aac”. 

For example, online songs (music with lyrics) can be downloaded and stored using those 

file formats. Based on these type of files, audio fingerprinting is an ideal approach as it 

can be deterministically generated from an audio signal. Hence, the key technique used 

in the system is the building of an audio fingerprint catalogue. Each music piece 

corresponds to a unique fingerprint by sampling the audio or digitized signals, which is 

used to identify the song by matching the fingerprint (Haitsma & Kalker, 2002; Haitsma 

& Kalker, 2003; Cano, et al., 2005; Duong & Duong, 2015). Shazam is one of the typical 

audio-based search engines for music recognition applications (Shazam Homepage, 

2019), whereas Kugou is a chinese audio-based music player (Kugou Homepage, 2019), 

but also has the funcionality of searching the song by listening to the music, naming 

‘tinggeshiqu (听歌识曲)’, as shown in Figure 2.1-1 (2.1-1a & 2.1-1b). Thus, we start by 

investigating these audio-based MIR systems (including Kugou, Shazam), 
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Figure 2.1-1a. Kugou       Figure 2.1-1b. Shazam 

Figure 2.1-1. Home page for audio-based MIR systems: Kugou and Shazam (Android 
Applications Screenshots). 

followed by analysing the features and limitations from several papers, and ending with 

a summarization derived from both case studies and literature review.  

2.1.1.1. Case Studies 

We have tested music tracks [1] to [12] from the music copyright list (page: 113) over the 

following systems: Baidu Music (BM) (Baidu Music Homepage & Qianqian Music 

Homepage, 2019), Kugou Music (KG) (Kugou Homepage, 2019), Kuwo Music (KW) 

(Kuwo Homepage, 2019), Music Radar (MR) (Musicradar Homepage, 2019), Netease 

Cloud Music (NC) (Netease Cloud Music Homepage, 2019), QQ Music (QM) (QQ Music 

Homepage, 2019), Shazam (SZ) (Shazam Homepage, 2019), SoundHound (SH) 

(SoundHound Homepage, 2019), and Track ID (TI) (TrackID Homepage, 2017). We play 

the music from a random starting point, and test whether the system can recognize the 

music or not. All those twelve songs have lyrics. The result is shown in Table 2.1-1.  

Note: “” represents correct matching; “∅” represents no result as it is not in the database; 

“” represents wrong matching and “A” stand for the overall accuracy. As we have 

tested ‘TrackID’ before it closed at 15 September 2017, we grayed out our last row. 
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Name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] A 

BM ∅ ∅   ∅ ∅ ∅ ∅ ∅ ∅   33 

KG ∅       ∅ ∅ ∅   58 

KW ∅            83 

MR ∅     ∅ ∅   ∅   67 

NC             100 

QM   ∅  ∅   ∅   ∅  58 

SZ          ∅   83 

SH  ∅   ∅   ∅ ∅ ∅   58 

TI ∅ ∅   ∅ ∅   ∅    58 

Table 2.1-1. Recognition result for audio-based MIR systems ([1]-[12]) (Tang, 2016). 

From Table 2.1-1, we can immediately conclude that the Netease Cloud has the highest 

music recognition accuracy of 100%, and only four wrong matchings exist in the table. 

However, despite that there is no white box testing with those applications, the following 

findings can be concluded with some further black box tests:   

Firstly, all the systems can only find the songs if and only if the music track exists in the 

database. This indicates that the audio-based music recognition applications have high 

precision, whereas precision is the fraction of correctly recognitions over all cognitions. 

Some systems have the a precision of 100% and others have 87.5% or 90.9%.  

Secondly, for the same songs with variations, e.g., different singers, different musical 

instruments, different tempo or contain background noises, it will be difficult for the 

audio-based MIR systems to recognise them. For example, if another singer covers one 

singer’s original song on a live TV show, then it is hard to find the original singer’s 

version under the audio-based MIR systems, as the audio fingerprints are different. 

Finally, all applications in this case study only support up to a maximum of 20 seconds. 

This indicates the input length is another factor that affects the matching accuracy. For 

example, if two songs share a similar audio fingerprint for partial melodies, then the 

system may output a mismatched original song when inputting the shared melodies. 

Moreover, with the same input length, the more distinctive features the music has, the 

higher the likelihood of the original music to be correctly recognized. 
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2.1.1.2. Literature Critiques 

In this section, we have chosen five papers to write a short critique about. These papers 

were collected so that some of them are highly cited but older papers while others are 

more recent ones that are less cited. Here are short critiques for those five papers, 

including features and limitations of the audio-based method claimed by those papers: 

Casey el al. (2008) have introduced that the current retrieval systems can handle millions 

of music tracks. However, the systems need to aim at even larger online music collections. 

It outlines the problems of content-based MIR, and explores the state-of-the-art methods 

using audio cues (e.g., query by humming) and other cues (e.g., music notation and 

symbolic representation). Moreoever, it identifies some of the major challenges in MIR 

systems. However, this paper does not provide the resolving methods. 

Typke el al. (2005) summarized all the existing content-based MIR systems, i.e., several 

music search engines. This paper includes three methods for searching symbolic data and 

four methods for searching the audio data from seventeen existing MIR systems. 

Furthermore, it contains a summary table to show the type of input (audio/ symbolic), the 

type (audio/ symbolic) and level of matching (exact/ approximate/ polyphonic), and 

certain features each MIR system involves. We have quoted the summary table and shown 

them in Table 2.1-2 and highlighted MIR systems in blue for audio-based, red for 

symbolic-based, green for audio input with symbolic matching, and yellow when both 

inputs are accepted. 

From Table 2.1-2, only three MIR systems allow the input to be both audio and symbolic. 

However, all of these three MIR systems can only apply to the monophonic approximate 

matching. As a result of this, it is difficult for the system to search the exact polyphonic 

music tracks.  

One of the systems among the rest of the fourteen MIR systems can do polyphonic, exact 

and approximate matching and is provided with nine algorithms. However, this MIR 

system, C-Brahams, is not an audio-based MIR system. As a drawback, people who do 

not know the symbolic version of the rhythm cannot find the exact songs. Hence, there is 

a need to represent the music in a such a way that we can extract features from the audio 

files directly with various matching methods. 
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Audentify! •  •   • • •        Inverted files 15,000 

C-Brahms  •  • • • •  • •  •  •  None 278 

CubyHum •   •  •        •  LET 510 

Cuidado •  •   • •    • •   • Not descriped >100,000 

GUIDO/ MIR  •  •  •   • •  •  • • Tree of 

transition 

matrices 

150 

Meldex/ 

Greenstone 

• •  •  •       • •  None 9,354 

Musipedia • •  •  •       •   Vantage 

objects 

>30,000 

notify! Whistle • •  •  •   •   •    Inverted files 2,000 

Orpheus  •  •  • •  • •  •  •  Vantage 

objects 

476,000 

Probabilistic 

“NameThatSong” 

 •  •  •        • • Clustering 100 

PROMS  •  • • •   •   •    Inverted files 12,000 

Cornell’s “QBH” •   •  •       •   None 183 

Shazam •  •  •  • •        Fingerprints 

are indexed 

>2.5 ∗ 106 

SOMeJB •  •   • •        • Tree 359 

SoundCompass •   •  •    •  •    Yes 11,132 

Super MBox •   •  •    •  •    Hierarchical 

Filtering 

12,000 

Themefinder  •  • •     •   • •  None 35,000 

Table 2.1-2. Content-based MIR systems (Typke, et al., 2005). 
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Furthermore, this paper (Typke, et al., 2005) has introduced one typical example of audio-

based MIR systems, naming Shazam. Shazam uses an audio fingerprint method to find 

the matching. This method generates reproducible landmarks and extracts features which 

describe the short segments of recordings as fingerprint tags which also characterize its 

location. However, as the landmarks and tags can be affected by low quality speakers, 

microphones or background noise, thus, the accuracy would sometimes not be that high. 

For some of the other audio-based MIR systems, this paper has mentioned that they use 

either set-based or string-based methods for finding matchings in polyphonic music from 

the audio input. One of the features for the set-based method is that the music is viewed 

as an unordered set of events where each has its own properties described. However, an 

unordered set will lead to a low accuracy search, as music is a sound sequence over time 

and a set loses information from a sequence. On the other hand, the string-based method 

treats musical notes as a string-based sequence, but only for monophonic melodies. 

Thus, Sri Ranjani, et al. (2015) have tested audio-based MIR system: Shazam, with Indian 

songs, and obtained a retrieval accuracy of 85% in their paper. 

Duong & Duong (2015) have provided the architecture for the existing audio 

fingerprinting method. The whole architecture consists of a feature extraction stage, 

feature modeling stage and feature matching stage, as shown in Figure 2.1-2. For the 

feature extraction stage, the paper introduced several audio-based features using various 

methods from signal processing, whereas for the feature modeling stage, the paper 

introduced several statistical models. Furthermore, the paper claimed that by combining 

several features will benefit the system: obtaining a robust and compact audio signature. 

On the other hand, the paper mentioned that, to use those statistical models, will reduce 

the global statistical redundancy of feature vectors, which decreases the size of the 

fingerprint. However, this paper does not comment on whether the reduction of 

fingerprint size will affect the matching accuracy or not, i.e., the searching result for an 

audio-based music search engine, as this paper concentrates on the audio fingerprint 

design only. 
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Figure 2.1-2. Architecutre of audio fingerprinting system with the fingerprint design 
(Duong & Duong, 2015). 

 

Figure 2.1-3. Work flow for an audio-based music recognition system (Fan & Feng, 
2016). 

Finally, Fan & Feng (2016) have actually construct the work flow for an audio-based 

music identification/recognition system, as shown in Figure 2.1-3. Furthermore, they 

described the steps of fingerprint generation in detail: start with FFT transformation; 

followed by peak extraction from frequency spectrogram; next, extract the time difference, 

the starting frequency and the "fingerprint" data; and finally, ends with fingerprint 

generation using hash algorithm. After comparing with the fingerprint database by 

computing the similarity scores between two fingerprints, it outputs the songs with the 

highest similarity scores. From their experiment and analysis, their music identification 

system has strong robustness, fast identification with high recognition accuracy of 45 

songs. However, they have pointed out that the longer the audio, the longer the time taken 

for recognition. 
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From those case studies and critiques, here are some critical points about the main feature 

and the major limitation for audio files and audio-based MIR systems: 

 MIR systems can carry out various tasks involving genre, lyrics, mood, and timbre. 

 For audio-based music search engines, each song has a unique fingerprint, similar 

to the fingerprints of human beings. Thus, the music track can be correctly 

recognized if the input song’s fingerprint matches with the one in the existing 

MIR database. 

 The approach is less tolerant to background noises and music variations. Re-

composite and re-performance, for example, were have difficulty in finding their 

original music pieces for an audio-based MIR systems, even if the original piece 

has been stored in the music database. 

 The longer the audio length, the larger the fingerprint, the longer processing time 

is required for recognition. 

2.1.2. Symbolic 

For the symbolic-based storage, the common file extension would be “.midi”, where, the 

typical symbolic-based music melody search engine would be Musipedia (Typke, 2002). 

Symbolic files, like MIDI, is different to an audio file in either analogue (e.g. WAV) or 

digital (e.g. MP3) form, as we are using only the protocols to capture the details of a 

musical note from the discrete set of the music signals rather than the signals themselves. 

Hence, symbolic files can easily be stored and manipulated compared to any audio files 

as storing those musical events and parameters only take less space (McKay & Fujinaga, 

2006; Good & Mills, 2015). However, symbolic-based MIR systems only suitable for 

music-sheet-convertible music tracks (Saxena, et al., 2018). Hence, the key step of 

symbolic-based approaches is how to code music using various symbols (Loy, 1985; 

Lubiw & Tanur, 2004; Valero & Quereda, 2010; Walder, 2016). Based on the type of 

symbolization, various content-based similarity scores can be evaluated, e.g., based on 

the contour, the melody, the rhythm, etc. (Typke, et al., 2005). Thus, we start by 

investigating the cases of these symbolic-based MIR systems (including Musipedia), 

followed by analysing the features and limitations from several papers, and ending up 

with a summarization. 
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2.1.2.1. Case Studies 

We have tested music tracks [13] to [23] from the music copyright list (page: 113) over 

the following systems: Musipedia (M) (Typke, 2002), Best Classical Tunes (B) 

(Gomersall & Clarke, n.d.), and Themefinder (T) (Huron, et al., n.d.). The result is shown 

in Table 2.1-3. 

N
a
m

e
 

T
y
p

e 

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] A 

M M            100 

C            100 

R            27 

B T   ∅ ∅ ∅  ∅  ∅   55 

T P    ∅ ∅   ∅ ∅  ∅ 55 

S    ∅ ∅   ∅ ∅  ∅ 55 

GC    ∅ ∅   ∅ ∅  ∅ 55 

RC    ∅ ∅   ∅ ∅  ∅ 55 

Table 2.1-3. Recognition result for symbolic-based MIR systems ([13]-[23]). 

Note: “” represents correct matching; “∅” represents no result as it is not in the database; 

“” represents wrong matching and “A” stands for the overall accuracy. For the ‘type’ 

column, ‘M’ stands for the Melody search; ‘C’ for the Contour search; ‘R’ for the Rhythm 

search; ‘T’ for the Theme search; ‘P’ for the Pitch search; ‘S’ for the Scale search; ‘GC’ 

for the Gross Contour search; and ‘RC’ for the Refined Contour search. 

Here are the detailed evaluations for each symbolic-based music search engine, including 

their features and limitations. 

For ‘Musipedia’, as shown in Table 2.1-1 and Table 2.1-3, it covers the melody search, 

the contour search and the rhythm search. Contour search is where we input whether the 

note is going up, down or remains the same with respect to the previous note. Rhythm 

search is where we exclude the pitch information from the melody. 

When carrying out the melody search, independent with the note duration and key 

signature, the symbolic-based MIR system can output the melody in the key that the  
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Figure 2.1-4. Melody search in Musipedia for melody containing turning note [18]. 

original melody of the music track has stored in the Musipedia database with corrected 

note durations, as we had input all the melodies in the C key and all the notes were quavers 

(8th note). Furthermore, if the original melody contains notes with certain articulation 

marks, e.g., turning notes, Musipedia would be able to find the corrected melody 

independent to the input expansion of those music notations, as shown in Figure 2.1-4. 

Thus, like Table 2.1-2 summarized, the matching type for Musipedia is approximate. 

However, if the original melody contains multiple notes, e.g., chords, the search engine 

can find the corrected melody occasionally, similar results were obtained when carrying 

out the corresponding contour search.  

Lastly, for the rhythm search, low rhythm retrieval rate, three out of eleven, have been 

obtained. This suggests that for melodies, pitch information is much more important 

compared to the rhythm information. 

For ‘Best Classical Tunes’, it only covers theme search only, which corresponds to the 

melody search in Musipedia. The theme input can be scale-free, i.e., all in C major or A 

minor, set-free, i.e., narrowed down to twelve different symbols, and duration-free. 

Moreover, this MIR system is capable for expansion of the turning notes. Thus, like 

Musipedia, this symbolic-based MIR system is using approximate matching. However, 

Best Classical Tunes obtained low accuracy rates compared to Musipedia. This is due to 

the size of the music database, so if we look at both systems’ precision, they were both 

100%. 
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As for ‘Themefinder’, it provides pitch search (similar to the melody search in Musipedia, 

but without the duration information), interval search (detailed contour search), scale 

search (similar to the pitch search, but using the modulo 7 system instead of 12), gross 

contour search (same as the contour search in Musipedia) and refined contour search 

(extension of the gross contour search). It also provided options that the input is from the 

beginning of the theme or anywhere inside the theme. For all these searches, up to 100 

songs are shown in the result list. 

Firstly, for the pitch searches, the system is very sensitive to the key notation. For example, 

despite F sharp and G flat sharing the same piano key, for a song in G key, G flat would 

not output the original melody. This system, unlike Musipedia, does not allow the 

expansion of the turning note. Furthermore, it is scale sensitive. For example, A minor is 

different to C major, despite the fact that they were related. Therefore, Themefinder 

provides exact matching only, the same conclusion that is shown in Table 2.1-2. 

Secondly, interval search does not appear to work as we have input the example track 

showed on the website. In fact, this search required users to have strong music knowledge. 

Lastly, the difference between gross contour (GC) and refined contour (RC) were 

melodies with different RC that may have they same GC. For example, the first two bars 

of track [13] and track [15] having the same GC sub-sequence, ‘uuuuudud’, but track [13] 

has the following RC sub-sequence ‘uuuuuDUd’, whereas track [15] has the following 

RC sub-sequence ‘‘uuuuudUd’. In GC, ‘u’ stand for up; ‘d’ for down and ‘s’ for the same. 

In RC, ‘u’, ‘d’ and ‘s’ stand for up by step, down by step, and remained the same 

respectively, whereas ‘U’, ‘D’ stand for up by leap, down by leap respectively. Again, as 

a drawback, these kinds of input require users to know the outline of the music melody 

and have understood the rules. 

Finally, for all these symbolic-based MIR systems, only pre-symbolically-stored 

melodies can be searched. Thus, we need to carry out the transcription for those music 

pieces, i.e., extract the melody from the audio files and convert into a sequence of piano-

roll-based symbols. Therefore, most of the tracks [13] to [23] were classical piano music 

pieces, rather than pop songs. 
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Figure 2.1-5. Line segment representation for the first two bars of J.S. Bach, Invention 1, 
C major, BWV 772 [44] (Lubiw & Tanur, 2004). 

2.1.2.2. Literature Critiques 

In this section, similar to Section 2.1.1.2, we have chosen five papers and provided short 

critiques for each of them, where features and limitations of the symbolic-based method 

claimed by those papers are included.  

Based on MIDI representation, Lubiw & Tanur (2004) search for the similar patterns 

inside the same piano music use line segments and highlights those patterns. The core of 

this approach is using the mathematical term: Geometric Translation, in such a way that 

once we have shifted the highlighted patterns up or down along the pitch axis, and 

stretched or squashed along the time axis, the patterns became perfectly identical. They 

have provided with an example to illustrate the relationship between the piano sheet and 

the line segment, as well as bolded two line segments for similar melody patterns. This 

has shown in Figure 2.1-5. 

Despite this approach being able to deal with note with various articulation marks such 

as dots, ties and syncopations and even polyphonic piano music pieces, this approach is 

still limited to the discrete pitch set, as the glissando note for the modern (electronic) 

music, where we consider the continuous pitch set, cannot be easily represented and 

analyzed using it.  

Further from the music representation, they have evaluated the computational time 

complexity for their pattern matching algorithm to be 𝑂(𝑛𝑚(𝑑 + log𝑚)), where d is the 

size of the pitch set, n is the score size and m is the pattern size. Hence, they have claimed 

that this algorithm works faster only for small patterns, as the factor 𝑂(𝑛𝑚) is hard to 
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improve since it is at least as hard as the 3-SUM or Segments Containing Points problems. 

Further details about those problems, please refer to the paper. 

Two years later, McKay & Fujinaga (2006) have evaluated a software package that 

extract features from the MIDI files, where the extracting language is known as the 

jSymbolic. It analyses the library containing 160 high-level features which can be used 

to classify music by evaluating the music similarity scores. These features can be 

categorized into the following groups: instrumentation; texture; rhythm; dynamics; pitch 

statistics; melody and chords. As jSymbolic is currently compatible with MIDI files, they 

have mentioned that their target is to expand its functionality such that it can process other 

symbolic formats. Later in 2016, they released jSymbolic2 in their newest article (McKay, 

et al., 2016), which is a significant expansion of the first version of jSymbolic, as features 

can also be extracted from MEI files and, if using a Rodan conversion workflow, 

MusicXML. 

From Music XML, Hrušková & Hvolka (2011) have introduced a melodic and rhythmic 

vector format approach in representing and finding similarities between two monophonic 

music files. This can be passed through a “Melody Comparator” function. Unfortunately, 

this paper does not provide the details of the experiment for evaluating the similarities 

between two music pieces, and the vector format they have introduced, has limited 

information stored for the individual note. 

However, Valero & Quereda (2010) have introduced the tree structure to represent the 

music instead of the vector format. The layers of the tree define the duration length of 

individual nodes from the melody and the root of the tree defines the value of the 

individual nodes. An example is shown in Figure 2.1-6, where each note is using the 

modulo 12 system and the dummy note has been shaded in grey. After a tree reduction 

(propagation) step, we can evaluate the similarity between two monophonic melodies. 

Moreover, it has extended the tree representation so that the approach is compatible with 

polyphonic music, by using multiset labels, where each root defines the set of notes 

(chords) that have been played during this time interval. Therefore, this approach can deal 

with both monophonic and polyphonic music.  
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Figure 2.1-6. Example melody and its corresponding tree data structure representation 
(Valero & Quereda, 2010). 

The experiment was carried out and compared with existing MIR systems, some of which, 

such as CBrahams, have appeared in Table 2.1-2. Moreover, CBrahams is the one which 

can do all three types of the matching except taking audio as the system input. Thus, all 

the music notes should spread out with the same time frame as the tree structure. 

Otherwise, during the reduction step for approximate matching, melodies with variations 

might be reduced to the same abstract melody, as only the important nodes from the leaves 

nodes are kept onto the higher layer parent nodes. As a consequence of this, the limitation 

of this approach is that it depends on the meter structure of the input resource and thus, 

can be very difficult to represent ties, dots and syncopations. Even though, when the tree 

representation applies to the more complex melodies of polyphonic music pieces, the 

multiset label cannot distinguish the difference between whether the notes in this time 

frame come from the right hand part or the left hand part, which will affect the actual 

similarity scores. Therefore, it is necessary to find a new coding scheme so that more 

types of music/music notes can be represented/encoded. For example, we can combine 

Hrušková & Hvolka’s vector format (2011) and Valero & Quereda’s tree structure (2010). 

Finally, Huang et al. (2013) developed the MidiFind system that deals with MIDI files 

and uses a hybrid system that carries out the music similarity searching from piano music 

pieces. They have shown the logic structure of MidiFind to illustrate the step of their 

scalable system. Their system has achieved 99.5% in precision and 89.8% in recall by 

using machine learning and music analysing. Even with that result, they have suggested 

using more machine learning techniques. For example, build a ‘word’ based knowledge 

system to implement a decision tree to add further control to the existing system. This 
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paper indicates that we need to use various machine learning techniques to compute music 

similarity. 

From those case studies and critiques, here are some critical points about the main features 

and the major limitation for audio files and symbolic-based MIR systems: 

 For the files used in symbolic-based MIR systems, such as MIDI files, they can 

be easily stored and require less disk space, as only the core information about the 

music is required, such as the pitch for the key, the time to press the key and the 

time to release the key. Hence, they are faster in processing time. 

 As the melody i.e., the flow of the music, has been well represented in various 

symbolic-based approaches, we can recognize similar melody patterns and carry 

out the exact and the approximate music content-based search for different 

musical features. Thus, it is easy to do the task of identifying the original music 

pieces given its variations. 

 High retrieval accuracy has been obtained for the melody-based search. 

 As the symbolic limits the pitch set and time resolution, music with continuous 

pitch sets are hard to symbolize which means that not all music can carry out the 

symbolic-based music search easily. Similarly, lyrics are difficult to incorporate. 

 Music search purely based on the rhythm obtained low retrieval accuracy. 

2.2. Audio VS Symbolic 

From previous sections, we have already literally concluded that the symbolic files, such 

as MIDI, require less disk space compared to the audio files, and possess limits to the 

discrete pitch set and time resolution. This means that if we convert the audio to symbolic, 

we have filtered out certain unimportant musical features and altered certain musical 

properties, which will lead to a different real-time spectrum for the sound signal of the 

symbolic music compared to the original audio music (Chen, et al., 2016),  if we playback 

the symbolic files. 

Therefore, in this section, we further analyze the differences between the audio and the 

symbolic files, from the concept of music representation and storage using the case 

studies.   
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Figure 2.2-1. (8a-8d) Spectrum Analyzer for the intro of [45] 1. 

 

Figure 2.2-2. (9a-9c) Spectrum Analyzer for the intro of [45a]1. 
  

                                                           
1 https://academo.org/demos/spectrum-analyzer/ 

8a 8b 

8c 8d 

9b 9a 

9c 
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For our case study, we have chosen two versions for the intro part of “Zero For Conduct” 

by Bastarz (of Block B) [45], as it contains music which consists of both continuous and 

discrete pitches. The first version is the original song from their official music videos [45], 

the second is the MIDI version of the piano cover [45a]. We used spectrum analyzer1 to 

see the difference between those two versions, as shown in Figure 2.2-1 and Figure 2.2-2 

respectively. In both figures, the hidden horizontal x-axis is the time in seconds (sec) and 

the y-axis is the pitch in Hertz (Hz). The colour indicates the sound intensity of the 

frequencies – the brighter the colour, the higher the intensity. 

From Figure 2.2-1, we can see that the original music start with a steady-continuous-

increase-in-frequency siren-like sound, from approximately E4 to around C5 sharp, 

followed by the instrumental melodies, before the main vocal melody starts. As the piano 

only consists of 88 piano keys, the intro for the MIDI version in Figure 2.2-2 does not 

include the first few seconds of the original intro. Moreover, none of the symbolic version 

(MIDI, music sheet etc.) that is available on-line can manages to have the siren-like part. 

On the other hand, the sound intensity for the MIDI version is on average lower than the 

sound intensity for the original audio version, the colours in Figure 2.2-1 are much 

brighter than in Figure 2.2-2 and includes some higher pitches. This was affected by the 

different timbre between the original recordings and the MIDI piano synthesizer, for 

example, each instrument has different harmonies and each singer has different tones. 

However, the fundamental pitch, the tempo and the beat have been matched well among 

the audio and the symbolic files. 

From the storage perspective, the file size for the MIDI file is 6.53 KB, whereas the file 

size for the MP3 file downloaded from the original music video is 4.51MB, consisting of 

the following configurations: 44,100 Hz stereo, 32-bit, and 192 Kbps CBR. Despite the 

fact that the MIDI version does not cover the whole song, but as 6.53 KB is much smaller 

than 4.51 MB, we can still claim that the symbolic file is, in general, much smaller than 

the audio file. This can be proven by converting the MIDI file back into an audio file of 

the same music time length (the MP3 file size is 1.11 MB), as well as from the literature 

review, e.g., (Holm, et al., 2005). Moreover, analogue audio needs more space than digital 

audio. 

Therefore, we can conclude into the follownig summary table, as shown in Table 2.2-1. 
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 Audio Symbolic 

Advantages 

(Features) 

 Able to store and represent 

sound consisting of 

continuous pitch set, either 

analogue or digital format.  

 Lyrics for the vocal and 

various tones are 

representable. 

 Small file size on average. 

 Both human and computer 

readable and understandable. 

 Easy to convert back into the 

audio file. 

 

Disadvantages 

(Limitations) 

 Large file size in general, 

and huge for top class sound 

quality. 

 Difficult to capture certain 

melodic information, such 

as the time and key 

signature. 

 Music limited to the discrete 

pitch set and lyrics. 

Table 2.2-1. Summary Table for the Audio VS Symbolic files. 

2.3. Automatic Music Transcription and Signal Process 

From the summary table in Section 2.2, we can see that it is easy to convert the symbolic 

file back to the audio file, but difficult to convert the audio file into a ‘perfect’ symbolic 

file or equivalent music sheet. This process is normally known as the Automatic Music 

Transcription (AMT). Thus, we need to review the difficulties in the AMT process.  

Therefore, we briefly introduce the modern technologies applied in music, speech, and 

other related subject areas. These technologies have been grouped into AMT, Signal 

Processing. 

2.3.1. Automatic Music Transcription 

As automatic music transcription (AMT) is a sub-category of an MIR, where we convert 

the acoustic audio into some symbolic-based music notation forms (Cogliati, et al., 2016; 

Fournier-S’niehotta, et al., 2016). Here are the critiques on some AMT related papers.  
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Figure 2.3-1. Flowchart for the audio-to-score alignment algorithm (Chen, et al., 2016). 

In Demopoulos & Katchabaw’s paper (2007), the majority of the paper was discussed 

music representation and symbolic pattern matching, such as string matching. Most 

importantly, they claim that the transcription from the audio can be complex depending 

on the amount of musical information needed. Thus, it introduces two methods in order 

to get the fundamental frequency and converting it into symbolic music representation, 

which is known as AMT. This allows audio-based MIR systems to use the symbolic 

approach, like those green MIR systems in Table 2.1-2, not just using the audio 

fingerprinting approach. However, this paper claimed that for these kinds of systems, 

getting the time and key signature information is much harder than getting the pitch and 

rhythm information. Similar challenges for AMT were claimed in Benetos et. al.’s paper 

(2013). 

On the other hand, Chen et. al. (2016) proposes an innovative method to do the audio-to-

score alignment. Their task is to evaluate the matching similarity between the audio 

recording and the music score. From their flowchart, as shown in Figure 2.3-1, their 

approach were divided into four parts: onset detection and segmentation, constant Q 

transform, note matching and dynamic programming. The onset detection stage is 

covering the beat tracking and polyphonic music transcription, which relates to the 

challenged tasks mentioned in previous papers. However, the difference is they were 

using the music score as a guide to verify the audio recording by alignment, rather than 

generating non-previous-determinated music score. Similarly, Kwon et. al. (2017) used 

Recurrent Neural Network-based AMT to audio-to-score alignment on the piano 

performances. 
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2.3.2. Signal Processing 

Here are the transformations using several fourier transformation techniques in signal 

processing that we can use for the music feature extraction stage for an MIR system. 

The first typical fourtier transformation is the Short Time Fourier Transformation (STFT). 

Ning’s team (Yang, et al., 2017) used STFT to separate vocal and background music, 

whereas Simon (Dixon, 2000) applied STFT to recognise note on solo piano music 

performance of Mozart piano sonatas. According to Simon’s paper, he obtained a 

recognition accuracy of around 70% – 80%, and has emphasised the limitation of using 

the synthesised data, the evaluation function and the issue with the accuracy of the 

dynamics and the offset times. 

Another typical fourier transformation will be the Fast Fourier Transformation (FFT), 

which can be applied in Phase Vocoder (Portnoff, 1976), which is a system that provides 

parametric representation for a speech waveform. As it describes, the representation is in 

a sequence that has been discretised with optimized approximation. With the similar 

approach, Nathan’s team (Lenssen & Needell, 2014) used FFT when dealing with chord 

recognition. 

As our final case, Sharma and Sardana (Sharma & Sardana, 2016) used another technique, 

named Mel Frequency Cepstral Coefficients (MFCC), to recognize speech from ‘one’ to 

‘nine’. It stores each individual word’s features into a database, and separates words from 

a real-time speech by classify with the pre-recorded output. However, the paper has been 

pointed out the system is very sensitive to noise and sometimes cannot cope with words 

which sound similar. For example, ‘seven’ sound has contained ‘one’ sound. This speech 

recognition task will be handy for the lyric-based MIR systems with non-text input. 

We have the detailed overview of the theories behind those approaches in Section 2.5.3. 

2.4. Other Achivements using ML 

In this section, other achievements from other MIR sub-categories and music related 

subject areas using various machine learning techniques, were briefly introduced. 

Machine Learning (ML), by definition, is the scientific study of algorithms and 

mathematical models which automatically learn programs from data. Instead of using 
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manually constructed instructions, ML relies on patterns and inference (reasoning) 

generalised from data examples (Domingos, 2012). One subfield of ML concerning 

algorithms inspired by the structure and function through a complex deep constructed 

Neural Network (NN) system with feature learning, is the Deep Learning (DL) (Chen & 

Lin, 2014). In other words, it is an extension of NNs that accurately assign credit across 

many long casual chains of computation stages. Each computation stage transforms the 

aggregate activation of the network using either supervised, semi-supervised or 

unsupervised ML-based algorithms in order to carry out various tasks such as regression, 

classification and clustering (Schmidhuber, 2015). 

Thus, there are many applications from MIR which use ML techniques. For example, 

Osmalskyj et al. (2012) have applied Artificial Neural Network (ANN) in the music chord 

recognition for four instruments and achieved reasonable accuracy. Furthermore, they 

have noticed that the error for piano is still large, and gave a possible reason, the noisy 

nature of piano sounds. On the other hand, Matityaho and Furst (1995) have obtained 100% 

success in classifying the music types, whereas Kim et. al. (2013) proposed an expanded 

Emotion model (XEM) and defined the ontology (MEMO) based on XEM to carry out 

the music content search using the Korean emotional words, which benefit korean music 

recommendation systems.  

For Natural Language Processing, a subject area which is related to MIR, the combination 

of Recurrent Neural Networks (RNN) from DL and parallel computing have been used 

widely in order to deal with large databases (Walder, 2016). 

Beyond purely music or sound, Liao et al.’s (2009) used the vector sequence approach to 

find the association between music/song and its Music Video (MV). The vector sequence 

denotes the features of the music clip from the segment of sound frequency graph using 

the Dual-Wing Harmonium model. Since the songs and its corresponding MTV have a 

high correlation, then by considering the timing of the useful movements from the MTV, 

the time frame of the music itself can be obtained with higher accuracy using feature 

learning. Moreover, if there are more than one people singing the song, then by combining 

the music and the MV, the melody line can be further grouped and acquire extra 

information from individual singers. This extra information can be used for other 

applications, e.g., re-performance, in theory, can be identified. 
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2.5. Background Knowledge Overview 

So far, we have summarized the benefits and limitations of each audio or symbolic files 

and analyzed audio and symbolic MIR systems. Majority of audio MIR systems have 

used collections of wave samples as audio fingerprints to identify which music you are 

currently listening to, whereas symbolic MIR systems have used pattern recognition from 

stream sequences and similarity scores to let us search the song from various music 

features. We have ended up with introducing several techniques which have been applied 

in music and other related subject areas. 

Therefore, before carrying on the methodology and the MUCASM design, this section 

provides a brief discription of relevant topics, including important definitions, 

mechanisms and theories, and groups in the following four topics: Machine Learning; 

Music Notations and Terminologies; Signal Processing and Topology from mathematics. 

2.5.1. Machine Learning 

Due to the size of our dataset which leads to the small scale of feature learning, it is hard 

to achieve the deep learning level at the start. However, we can still built a mechanism 

that is DL-upgradable. Thus, in this section, the main concept of some particular machine 

learning techniques and neural network, which have been used in our MUCASM design 

(Section 5.1), were briefly described.  

2.5.1.1. Decision Tree 

Decision Tree (DT) classifier is one of the classic machine learning approaches that deals 

with multistage decision making. This mechanism has been successfully used in various 

areas that need classification, such as handwriting recognition, medical diagnosis etc. 

(Safavian & Landgrebe, 1991).  

For this classical classification technique, it consists of a set of data that is pre-classified 

into n classes, where  𝑛 ≥ 2. A decision tree has decision nodes and leaf nodes, where the 

decision node gives some constraint on one attribute and the leaf node outlines the class. 

Hence, when constructing the DT, we need to know the series of cuts from the root node 

to a leaf node, such that it can partition the data point. Most of the time, we tend to use a 

binary cut, which divides the region into two halves (Liu, et al., 2000). Figure 2.5-1 shows 

an example of a decision tree. 
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Figure 2.5-1. An example of Decision Tree (Liu, et al., 2000). 

Moreover, the conditions or rules for each branch of the decision tree can be either 

numeric (as shown in Figure 2.5-1) or non-numeric. Numeric normally consists of 

continuous-valued attributes, whereas non-numeric can normally be pre-categorised with 

fuzziness, or, in other words, categorised into discrete-valued attributes (Tan, et al., 2018). 

Instead of partition the data point, we partite the similarity measurement methods in our 

MUCASM system. 

Detailed information about Decision Trees and other basic machine learning techniques 

were in Tan et al. (2018)’s book. 

2.5.1.2. Self-Organizing Map 

Self-Organizing Map (SOM) is an unsupervised learning based Artificial Neural Network 

(ANN). The main idea, as described in Kohonen’s 《The Self-Organizing Map》 

(Kohonen, 1990), is that the dataset itself acts as a ‘teacher’ with appropriate hidden 

neuron update formula. The mechanism is that each hidden neuron rearranges by itself. 

The hidden neuron with the highest Kohonen map similarity, i.e., whose weight vector 

lies closest to the input vector, known as the winning neuron (best match unit), determines 

the final clustering category. Figure 2.5-2 shows two example of architectures of SOM 

networks. This learning method has been adopted in our system, such that we are able to 

treat each original music/melody as the hidden neuron. Moreover, it is possible to use 

clustering algorithms to solve a classification problem (Evans, et al., 2011).  

Detailed information about SOM and other neural networks were in the following 

references: (Kohonen, 1990; Heaton, 2015; Miljkovic, 2017). 
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Figure 2.5-2. Architecture for 1-D and 2-D SOM Neural Networks (Miljkovic, 2017). 

2.5.1.3. Ensembled Learning and Reinforcement Learning 

Ensembled Learning (EML), by definition, is a supervised learning that uses various ML 

algorithms to obtain better performance. When it comes to complex decision making, we 

weigh different opinions and combine them on our final decision making (Zhang & Ma, 

2012). This process is just like if we listen to the advice or informatiom from different 

experts, which can happen via a human, a textbook, internet or any other media, and 

combine them into our own practical problem. Our own problem may not be perfectly 

solved by one single piece of advice, e.g., when the criteria is slightly different. Therefore, 

EML can deal with large volumes of data, as well as too little data, with complex data 

boundaries or even through dealing with data fusion (Polikar, 2006). 

Figure 2.5-3 shows the relationship between having and not having ensembled learning. 

There are various Ensemble Learning algorithms. E.g., Majority Voting, Stacked 

Generalization etc. (Polikar, 2006; Wiering & van Hasselt, 2008). We applied the Stacked 

Generalization (Polikar, 2006) idea to our MUCASM system. 
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Figure 2.5-3. Example of Emsembled Machine Learning process (Zhang & Ma, 2012). 

For further details about Ensembled Learning, please refer to Cha’s 《Ensemble Machine 

Learning – methods and applications》 (Zhang & Ma, 2012). 

Reinforcement Learning (RL), from its definition, is a learning mechanism that controls 

agents to take corresponding action(s), from the dynamic environmental state and 

feedback reward (Sutton, et al., 2018), where theoretically, the reward value for the value-

based Reinforcement Learning comes from the environment, known as the interpreter. 

The learning process can be based on model, policy or value-function. E.g., Q-learning, 

policy iteration. This mechanism has been widely applied in multi-player games that 

allows human against A.I., e.g. AlphaGo. Moreover, if we have a complex environment, 

like in AlphaGo, EML can be combined onto RL (Wiering & van Hasselt, 2008).  

Here are the descriptions for those terms related in RL (Sutton, et al., 2018): 

 Action (A): the set of all the moves an agent can take. 

 Iterative time (t): the iteration count for the current action. 

 State (S): current environment situation. 

 Reward (R): immediate feedback from the environment to evaluate the last action. 

 Policy (π): the strategy that the agent employs in order to carry out the next action. 
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Figure 2.5-4. Architecture of Reinforcement Learning (Sutton, et al., 2018). 

 Value (V): the expected long-term return, opposed to R. 

 𝑉𝜋(𝑆): the expected long-term return of the current state under policy π. 

Hence, we have the architecture of the RL, as shown in Figure 2.5-4. 

There are various Reinforcement Learning techniques. ‘Comparison between algorithms’ 

is the RL technique which will be  adopted in our MUCASM system (Wiering & van 

Hasselt, 2008). 

Detailed information about Reinforcement Learning were in Sutton et al. (2018)’s book. 

Moreover, Wiering and Van Hasselt (2008) showed that it is possible to having RL-based 

EML. Thus, our MUCASM system is one of the RL-based EML. Thus, for the individual 

classifiers, against various variation types, can be integrated into one Mega-classifier, 

based on CBA & SG. This allows us to choose which individual classifier is suitable for 

each variation type. 

2.5.2. Music Notations and Terminologies 

From the point we have mentioned in Section 1.1, the music sheet allows the musicians 

to easily read, understand, and compose the music, as various musical notations (music 

symbols) and terminologies have been used, each of which has its own meaning. For 

example, Figure 2.5-5 shows the circle of fifths. Thus, a summary table of some typical 

music symbols and musical terminologies has been provided in Table 0-1 (Gerou & Lusk, 

1996; Klapuri & Davy, 2006), in alphabetic order. 
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Figure 2.5-5. Circle of Fifths (Gerou & Lusk, 1996). 
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2.5.3. Signal Processing 

Signal can be known as a function that represents information for a system or an attribute 

of some phenomenon. There are several formats for a particular signal such as acoustic 

wave, electromagnetic wave along with many other types (Priemer, 1991). Therefore, 

more specifically, we are interested in analogue (audio) signal and digital signal in this 

project. The difference is that one of them is a continuous wave signal with respect to 

time along the time-domain, and the other is using a sequence of discrete values to 

represent the original continuous quantities, sampled with time intervals, as shown in 

Figure 2.5-6. 

Signal Processing (SP) is to use certain algorithms or operations that input a signal and 

output, either the resulting signal or the signal analytical result. For the typical examples 

of the output being a signal, would be the audio-digital and digital-analog converter, and 

the filter from the Digital Signal Processing (DSP) (Priemer, 1991; Spanias, et al., 2006; 

Tan & Jiang, 2018). Moreover, these signals are represented in the time domain. 

On the other hand, for the typical example of the output being the analytical result would 

be the signal spectral analysis, by applying appropriate Fourier Transformation (FT) 

(Tolstov, 2009; Zainuddin Lubis, et al., 2016). FT is used when representing signals in 

the frequency domain. First, consider the definition of the fourier series (Kessler, 2007): 

Definition 1. Fourier Series 

A Fourier Series for a function f is defined as: :
 

𝑓(𝑥) ∶= 
𝑎0
2
+∑(𝑎𝑛 cos

𝑛𝑥𝜋

𝑇
+ 𝑏𝑛 cos

𝑛𝑥𝜋

𝑇
)

∞

𝑛=1

, 𝑛 ∈ ℤ+

where 

𝑎𝑛 ∶=
1

𝜋
∫ 𝑓(𝑥) cos (

𝑛𝑥𝜋

𝑇
)𝑑𝑥

𝜋

−𝜋

 and 𝑏𝑛 ∶=
1

𝜋
∫ 𝑓(𝑥) sin (

𝑛𝑥𝜋

𝑇
) 𝑑𝑥

𝜋

−𝜋

 

 

or alternatively, from the Euler formula, we can re-write as: 
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Figure 2.5-6. Analogue signal and digital signal (Zainuddin Lubis, et al., 2016). 

𝑓(𝑥) ∶= ∑ 𝐶𝑛𝑒
𝑖𝑛𝑥

∞

𝑛=−∞

 𝑤ℎ𝑒𝑟𝑒 𝐶𝑛 =
1

2𝑇
∫𝑓(𝑡)𝑒−𝑛

𝜋
𝑇
𝑡

𝑇

−𝑇

 

 

Hence, the general Fourier Transform would be: 

𝐹(𝑤) ∶=  𝐹(𝑓(𝑡)) ∶= ∫ 𝑒−𝑖𝜔𝑡𝑓(𝑡)𝑑𝑡
∞

−∞

 

 

whereas the corresponding Inverse Fourier Transform would be: 

𝑓(𝑡) ∶= 𝐹−1(𝐹(𝑤)) ∶=
1

2𝜋
∫ 𝑒𝑖𝜔𝑡𝐹(𝑤)𝑑𝑤
∞

−∞

 

 

Therefore, for STFT, the main concept is to introduce a convolution-based sliding 

window function w onto Equation (3), as shown in Equation (5). This can help improving 

the evaluation of Signal-to-Interference Ratio and Signal-to-Distortion Ratio (Yang, et 

al., 2017). 

𝑆𝑇𝐹𝑇{𝑥(𝑡)}(𝑚,𝜔) ∶= ∫ 𝑥(𝑡)𝑤(𝑡 − 𝑚)𝑒−𝑖𝜔𝑡. 𝑑𝑡

∞

−∞
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Moreover, Michael (Portnoff, 1976), Nathan and Deanna (Lenssen & Needell, 2014) have 

illustrated the connection between STFT and Fast Fourier Transformation (FFT), a form 

of Discrete Fourier Transformation (DFT), and claim that FFT can save log N versus N 

per output value. I.e., O(N*logN) instead of O(N2) where N is the dataset size. However, 

all DFTs were used only for discretised signals. Thus, unlike integration for STFT, we 

use summation for FFT, which is shown in Equation (6). 

𝐹𝐹𝑇{𝑋𝑘} ∶= ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0



 

where k = 0, 1, …, N-1. 

Furthermore, if we are using Equation (7), then we can map the powers of the spectrum 

derived from the Fourier Transformation onto the ‘Mel’ scale (Sharma & Sardana, 2016). 

This is known as the Mel Frequency Cepstral Coefficients (MFCC). 

𝑀𝑒𝑙(𝑓) ∶=  2595 ∗  log10 (1 +
𝑓

700
)

 

In conclusion, STFT, FFT and MFCC are typical signal processing techniques which can 

be applied when analysing musical, speech and other sound related data, depending on 

whether we are dealing with continuous or discrete sound waves. Thus, FFT is choosen 

in Section 4.5 as we have sampled the sound sinusoidal value. Detailed information about 

signal processing were in the following references: (Priemer, 1991; Tolstov, 2009). 

2.5.4. Topology 

Topology is a mathematical field which studies different sorts of geometrical space under 

continuous transformation or deformation (Hatcher, 2002). Therefore, it mainly uses 

mathematical terms like ‘homotopy’, ‘homeomorphism’ and ‘isomorphism’, to find 

relationships and similarities between the two objects, under the topological space. The 

most famous example is that a normal coffee mug is homeomorphic (similar) to a donut 

ring, both known as a torus, and is dissimilar to a ball, known as a sphere.  
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Figure 2.5-7. Topological transformation from a donut ring to a coffee mug (Coelho & 

Zigelbaum, 2011) 

Figure 2.5-7 shows the topological transformation from a donut ring shape to a coffee 

mug, in order to illustrate the continuous transformation between the two homeomophic 

objects (Coelho & Zigelbaum, 2011). 

For the concept of two objects being ‘similar’ to each other under topological spaces, we 

have the following definition: 

Definition 2. Homeomophism 

A function 𝑓: 𝑋 → 𝑌, between two topological spaces is homeomophism iff f is a bijection 

and both 𝑓 and 𝑓−1 are continuous (cts). 

Hence, given two distinct points (𝑣𝑠, 𝑣𝑡), with two different continuous paths joining 

these two points, only the same starting point (𝑣𝑠) and the same finishing point (𝑣𝑡)  

matters. We can find a one to one invertible mapping, such that for any arbitrary time 

between (𝑣𝑠) and (𝑣𝑡), any single point from one path can be mapped to a point from the 

other path (Farber, 2003). In other words, for 𝑣𝑠, 𝑣𝑡 ∈ 𝑝1(𝑡), 𝑝2(𝑡) where both 𝑝1, 𝑝2 are 

functions maps 𝑋 ∶= 𝐼 ∈ [0,1]  to the space Y, we have 𝑝1(0) = 𝑝2(0) = 𝑣𝑠 , 𝑝1(1) =

 𝑝2(1) = 𝑣𝑡 and there exists an invertible cts function f for all of 𝑡 ∈ [0,1], 𝑓(𝑝1(𝑡)) =

𝑝2(𝑡) & 𝑓
−1(𝑝2(𝑡)) = 𝑝1(𝑡). Sometimes, this is also known as isomorphsim. 

If we treat these paths as two functions, instead of pointwise, then this leads to another 

definition named homotopy:  

Definition 3. Homotopy 

Given two continuous functions f and g from topological space X and Y, then f and g are 
homotopic, denote as 𝑓 ≃ 𝑔, iff ∃𝐻: 𝑋 ∗ [0,1] → 𝑌 s.t. 𝐻(𝑥, 0) = 𝑓(𝑥) 𝑎𝑛𝑑 𝐻(𝑥, 1) =
𝑔(𝑥) ∀𝑥 ∈ 𝑋. Thus, H is a homotopy between f and g. 

This leads to a definition of homotopic equivalence:  
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Definition 4. Homotopic Equivalences 

For a continuous map 𝑓: 𝑋 → 𝑌, if there exists a g s.t. 𝑔°𝑓 ≃ 𝐼𝑋 & 𝑓 ∘ 𝑔 ≃ 𝐼𝑌, where 𝐼 is 
the identity, then we say X and Y were homotopic equivalent and f and g were homotopic 
equivalences, where g is the homotopy inverse of f. 

Hence, we can conlude that every homeomorphism is a homotopy equivalence, but not 

the converse, as homotopic equivalences did not guarantee that g is exactly 𝑓−1. 

For a quick proof of the most famous example, using the above descriptions, any torus 

shape has one hole so that each point can form two ‘perpendicular’ circular paths that 

intersect only once at the point itself. I.e., for two cts circular paths 𝑝1 𝑎𝑛𝑑 𝑝2 generated 

from the point v, we only have one intersect point at 𝑝1(0) = 𝑝2(0) = 𝑣𝑠 = 𝑝1(1) =

 𝑝2(1) = 𝑣𝑡 = 𝑣. Thus, we can derive that a coffee mug is homeomorphic to a donut ring. 

However, for the sphere shape, two intersect points can be formed. I.e., not only having 

𝑝1(0) = 𝑝2(0) = 𝑣𝑠 = 𝑝1(1) =  𝑝2(1) = 𝑣𝑡 , but also having 𝑝1 (
1

2
) = 𝑝2 (

1

2
) . If we 

remove the point v, then 𝑝1 𝑎𝑛𝑑 𝑝2  become disconnected for the torus, whereas 

𝑝1 𝑎𝑛𝑑 𝑝2 remain connected for the sphere. In other words, the mapping function H from 

𝑝1 + 𝑝2 𝑓𝑟𝑜𝑚 𝑓𝑡𝑜𝑟𝑢𝑠 to 𝑝1 + 𝑝2 𝑓𝑟𝑜𝑚 𝑔𝑏𝑎𝑙𝑙 is injective, but not surjective: 

𝐻 ((𝑝1 (
1

2
)) , 0) = 𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝1 (

1

2
))  →  𝐻 ((𝑝1 (

1

2
)) , 1) = 𝑔𝑏𝑎𝑙𝑙 (𝑝1 (

1

2
)) 

𝐻((𝑝2 (
1

2
)) , 0) = 𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝2 (

1

2
))  →  𝐻 ((𝑝2 (

1

2
)) , 1) = 𝑔𝑏𝑎𝑙𝑙 (𝑝2 (

1

2
)) 

𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝1 (
1

2
)) ≠ 𝑓𝑡𝑜𝑟𝑢𝑠 (𝑝2 (

1

2
))  𝑏𝑢𝑡 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑏𝑎𝑙𝑙 (𝑝1 (

1

2
)) = 𝑔𝑏𝑎𝑙𝑙 (𝑝2 (

1

2
)) 

Therefore, the torus is not homeomorphic to the sphere. 

Figure 2.5-8 illustrates the difference between the torus and the sphere.  

As Figure 2.5-8 shown, the blue circular line is 𝑝1 and red circular line is 𝑝2, these only 

intersect at one point, v, for the torus, but two points, v and w, for the sphere.  

Detailed information about topology were in the following references: (Hatcher, 2002; 

LaValle, 2006). 
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Figure 2.5-8. Two perpendicular circles each for both Torus and Sphere. Created in 

MATLAB. 

All these concepts (definitions, theorems, and proofs) from the topology overviewed 

above, will be useful when dealing with the reasoning of the MML design in Section 4.2. 

2.6. Summary 

From Section 2.1 to 2.4, we have critically evaluated the existing music storage, music 

representation and music information retrieval systems. We found out it is necessary to 

combine both audio and symbolic approaches to retain each approach’s advantages. In 

other word, we need to find a symbolic approach such that it is easy to store, access, 

manipulate, and most importantly, the music representation for the new approach is closer 

to the audio approach compare to existing symbolic approaches. Thus, with this new 

approach, we can carry out the following task: identify the original music piece from its 

musical variation using both audio fingerprint and symbolic pattern matching, so it can 

be used in those applications or scenarios described in Section 1.1. 

In order to achieve this, we have further overviewed some relevant backgound 

knowledges in Section 2.5. These relevant knowledges will appear in the rest of the thesis.  

Therefore, in Chapter 3, we start to design an architecture based on those findings and 

knowledges, in an abstract level. 
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3. Methodology and Architecture Design 

Based on those issues for the existing symbolic coding scheme and the MIR systems and 

relevant background knowledge found by carrying out both primary and secondary 

researches, we have designed a new architecture, named E3MSD, to make an alternative 

approach for the Original Music Identifier (OMI), such that the positives were retained 

and the negatives were addressed. 

From those positive and negative findings for audio and symbolic approaches reviewed 

in Chapter 2, we have derived the following concepts for the alternative approach of OMI: 

it must include an alternative approach for the symbolic coding scheme and the OMI itself 

with a appropriate machine learning technique. Detailed feature requirements for the 

symbolic coding scheme (F1.1 - F1.4), as well as the data structure, are listed below: 

F1.1. It improves the expressiveness for the symbolic representation of the audio music 

pieces 

F1.2. It allows the audio and symbolic conversion 

F1.3. It allows various similarity measurements between songs, based on the similarity 

scores, higher accuracy and efficiency can be obtained for the original music 

identifier 

F1.4. It is extendable to the music search engine and plagiarism detection applications. 

Detailed feature requirements for the OMI (F2.1 - F2.4) are listed below: 

F2.1. It is able to identify the original tracks from the variation. 

F2.2. It should consider and balance the contour melody similarity and rhythmic 

similarity. 

F2.3. It should combine the search by the symbolic similarity score with the audio 

fingerprint. 

F2.4. It allows different variations to use different methods when identifying its origin. 

In order to achieve these, we proposed one new architecture named E3MSD, Expressive, 

Efficient, and Extendable Music Similarity Detection. Figure 3-1 shows the overall 

workflow for the E3MSD. 
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Figure 3-1. Overall workflow for the E3MSD. 

As shown in Figure 3-1, ‘Music’ indicates the music is in the audio form and ‘Code’ in 

the symbolic form. By comparing the ‘Code’ from the query against the ‘Music Database’, 

we can calculate ‘ ’, which gives us a guideline to several ‘Applications’. 

Depending on the type of application, we may have some feedback for the current music 

database to update with any relevant application outcomes. 

At the ‘Code’ stage, we will design and define the alternative coding scheme (data 

structure) such that it combines the features from audio and symbolic files and codes the 

music in a better way, i.e., to cover F1.1 listed on page 41. From Chapter 2, we can see 

that, for the existing symbolic coding, such as MIDI files, the following code tuple is 

always used. The tuple includes a musical note’s frequency/notation, its starting time, 

ending time and its velocity which determines the volume, where the frequency is kept 

unchanged during consecutive tuples. I.e., the frequency is in the form of a discrete step. 

Moreover, the new version of MIDI files, including the HD-MIDI, can accommodate 

more notes’ effects from different varieties, such as the vibrato note, by increasing the 

number of channels and signal controllers. However, this approach does not solve the 

issue completely (Damm, 1993; Clarke, 2004; Saxena, et al., 2018). Therefore, our coding 

scheme, should include two different ‘languages’ which describe the different features of 
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the music. One of the ‘languages’ represents what notes should be played and the other 

one models how the notes were played. Hence, one of them is corresponding to the 

existing MIDI files, and the other one tries to shape the audio waves to a stream file, 

which addresses the limitations of existing symbolic files with a better approximation of 

the continuous change in frequency and amplitude. In addition, as audio is hard to 

compute content-based similarity, thus, by separating it into two ‘languages’, we can filter 

the one that shapes the audio waves and carry out various content-based tasks, which 

addresses the limitation of the existing audio-based MIR systems. The ‘Code’ will be 

named Music Definition Language and Music Manipulation Language, which is defined 

in Section 4.1 - 4.2. 

The double headed arrow between ‘Audio’ and ‘Code’ in Figure 3-1 is the conversion 

between the audio form and the symbolic form, which covers F1.2 listed on page 41. 

From ‘Code’ to ‘Audio’, we need to examine that the code we have proposed is playable, 

whereas from ‘Audio’ to ‘Code’, we need to examine that the proposed code is generable. 

With these two properties, we have further confirmed that the proposed code has satisfied 

the requirements from the music representation and music storage perspectives and it is 

ready to move on to music application’s perspective (F1.3 ~ F2.4, page 41). The design 

and the results for the bidirectional conversion are in Section 4.3 - 4.5. 

With the proposed coding scheme, we should be able to compare the music track from 

the input of the application and any other music track from the music database, and 

generate a similarity score, as required by F1.3 and F1.4. This similarity score contains a 

set of similarity scores which is based on different content-based scenarios, e.g., rhythm-

based, and thus, several numerical measurements between two music tracks can be 

provided which in turn, porivdes us with a guideline. In order to achieve this, a self-

supervised ensembled learning method has been developed to improve the performance 

of the Original Music Identifier (OMI) given one of its variations as an input. Self-

supervised suggested that the label is automatically generated from the data itself whereas 

ensembled learning follows from the definition in Section 2.5.1. This learning method 

has been named as MUsic Classification And Similarity Measurement (MUCASM), 

which will be act as the core function (OMI) for various applications. It is included inside 

the arrows around the ‘ ’ in Figure 3-1. The detailed design for the self- 
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Figure 3-2. Detailed workflow for the E3MSD. 

supervised MUCASM were described in Section 5.1, followed by the results detailed in 

Section 5.2. 

Figure 3-2 is a slightly detailed overall workflow for the E3MSD, such that inside our 

architecture E3MSD, MDL&MML involves the data type design and MUCASM involves 

the systems design. 

As this is a theoretical project, we need to have some functional and benchmarking tests 

to the Audio-Symbolic birectional conversion and the self-supervised mechanism for the 

E3MSD. Thus, we manually create some music tracks in MDL and MML (MDL&MML) 

format for our ‘Music Database’ as some variationals might not even exist but we need 

them for our tests, and based on Figure 3-2, we have divided our project into the following 

four major stages with a list of functional testings and testing requirements for each 

individual stage. Each requirement corresponds to a feature/features listed on page 41. 

Stage.1. Code to Music 

- The possibilities that the new code(s) can represent, includes the continuous 

glissando (F1.1) 
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- The performance of the new code(s) playback into audio, using Spectral Pitch 

Display (F1.1, F1.2) 

 

Stage.2. Music to Code  

- The possibilities and the performance of generating the code(s) from the audio 

file (F1.2) 

Stage.3. Code to   

- The possibilities of evaluating the similarity scores from the code(s) using 

various audio and symbolic approaches (F1.3; F2.2, F2.3) 

Stage.4. Applications 

- The result on the OMI and compared with some existing examples (F1.4; F2.1, 

F2.4) 

Furthermore, we have made a choice for the overall software development life cycle 

model, which is the prototyping model from the evolutionary model (Definition 14 in 

Appendix A) such that we can implement several prototypes (not a whole system) to 

demonstrate the core ideas from those main stages of E3MSD. The design of those 

prototypes will be inside the relevent sections: 4.3; 4.5; and 5.1. In addition, we have 

made the decision to use MatLab when implementing those prototypes as MatLab has 

several free build-in functions for us to use. All the relevant details are in Appendix A. 
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4. Music Definition Languange and Music Manipulation Language 

In this Chapter, we are going to define the exact code(s), followed by two ‘systems’ which 

demonstrate the requirements from Stage.1 and Stage.2 in Chapter 3. 

4.1. Music Definition Language 

As described in Chapter 3, we, first, need to define a ‘language’ that incorporates the 

basic information/instructions about the musical notes that should be played, such that it 

has a similar concept to the standard symbolic MIDI files (Rothstein, 1995). Therefore, 

we define this kind of ‘language’ as Music Definition Language (MDL), which from the 

linguistic meaning, ‘defines’ the music. Moreover, this has a similar purpose to the DDL 

from Structured Query Language (SQL) (Elmasri & Navathe, 2014). 

For computation purposes, MDL is designed to be in a vector format with all numeric 

values. Furthermore, as MDL corresponds to the symbolic files from the initial design, 

the following features of a single note should be incorporated into our symbolic-based 

MDL format (Lubiw & Tanur, 2004; Valero & Quereda, 2010; Walder, 2016): 

 The position of the musical note in a modulo 12 system, 𝑁𝑚𝑜𝑑 12. For example: Note 

A is ‘0’, A sharp (or B flat) is ‘1’, and so on. This is illustrated in Figure 4.1-1. 

 The set (index) number, 𝑆𝐼. This identifies which (modulo 12) set the note lays in. For 

example: middle C (261.626 𝐻𝑧) lays in set ‘0’, upper C lays in ‘1’, and so on. 

However, for computation purposes, the set from A to G# have been treated as the 

same set rather than the traditional notation which is from C to B. This feature is 

included in Figure 4.1-1. 

 The relative amplitude, 𝐴𝑑. This indicates the volume of the note, according to the 

dynamics. 

 The bar number, 𝐵 . In terms of the bar number from the music sheet, this will 

distinguish the musical notes that appears in different bars. 

 The beat time number 𝐵𝑇. This refers to the specific beat time, the musical note is 

played inside the bar number. 

 The duration of the musical note 𝐷. This is a relative time value which relates to the 

time signature. 



 

4
8

 

 

Figure 4.1-1. Piano Keys, Piano Sheets and S-MDL. 

Note 1: The vectors were using the format of: (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
). 

Note 2: The middle C has been highlighted in blue. 
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Figure 4.1-2. Music Sheet and S-MDL for the first four bars of [27]. 

To conclude, the first two features together define the note we should play, followed by 

the relative dynamic value. The next two identify the beginning time of the note. The final 

feature represents how long the note should be held. Therefore, we have the following 

mathematical definition for the symbolic based MDL. 

Definition 5. Symbolic-based Music Definition Language (S-MDL). 

Symbolic-based Music Definition Language (for a music melody) is a stream of vector 
sequences which describes the (symbolic) flow of the music. Each 6 × 1 vector has stored 
the main six-tuple features of any single musical note in the melody sequence, relates to 
the music notations. S-MDL can be expressed as follows: 

𝑆-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦 ∶= (𝑆-𝑀𝐷𝐿𝑁𝑜𝑡𝑒)𝑖 ∶=

(

 
 
 
 

(

 
 
 

𝑁𝑚𝑜𝑑 12

𝑆𝐼
𝐴𝑑
𝐵
𝐵𝑇
𝐷 )

 
 
 

)

 
 
 
 

𝑖

, 𝑖 ∈ ℕ+ 

 

where 𝑁𝑚𝑜𝑑 12 ∈ {0, 1, … , 11}, 𝑆𝐼 ∈ ℤ, 𝐴𝑑 , 𝐵𝑇 , 𝐷 ∈ ℚ+ and 𝐵 ∈ ℕ. 

For example, Figure 4.1-2 shows the linkage between the music sheet and the S-

MDLMelody of a simple melody, “Twinkle, Twinkle, Little Star” [27]. 

However, like the existing symbolic codings, similar limitations exist for our S-MDL. 

The most important one is that the first two entries of the S-MDL belongs to the integer 

number. I.e., 𝑁𝑚𝑜𝑑 12 ∈ {0, 1, … , 11} ⊆ ℕ ⊆ ℤ and 𝑆𝐼 ∈ ℤ. Thus, we define Audio-based 

Music Definition Language (A-MDL) as containing the following features: 
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 The fundamental frequency of the sound, 𝑓𝑝 . Each musical note has its own 

fundamental frequency (pitch), thus allowing it to extend from the discrete frequency 

set. 

 The amplitude of the sound, 𝐴. Unlike S-MDL, it is unaffected from the dynamic 

notations. However, this can vary due to the volume, hence we treat 𝐴 = 10 ∗ 𝐴𝑑. 

 The beginning time plays, 𝑡. By default, it will last until the next A-MDL. Thus, we 

do not need to code the duration nor the ending time. 

These three fundamental features can define a simple sound wave, as all simple 

soundwaves can be generated from the following sinusoid equation to get its audio 

waveform (Guillaume, 2006; Kessler, 2007).  

𝑓(𝑡) = 𝐴 sin(2𝜋𝑓𝑝𝑡 +  𝜑) 

 

where 𝜑 is phase in radians. In our case, 𝜑 = 0. 

Hence, we know what pitch we are making, its volume, and the starting time. The ending 

time is when we see the next A-MDL, either corresponding to another note, or a rest, 

where in this case, 𝑓𝑝 = 0. Therefore, we have the following mathematical definition for 

the audio based MDL. 

Definition 6. Audio-based Music Definition Language (A-MDL). 

Audio-based Music Definition Language (for a music melody) is a stream of vector 
sequences which describes the flow of the music in its acoustic waveform (sinusoidal 
wave equation). Each 3 × 1 vector has stored the main three-tuple features from the 
sinusoidal wave equation (9). Thus, A-MDL can be expressed as follows: 

𝐴-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦 ∶= (𝐴-𝑀𝐷𝐿𝑁𝑜𝑡𝑒)𝑖 ∶= ((
𝑓𝑝
𝐴
𝑡

))

𝑖

, 𝑖 ∈ ℕ+ 

 

where 𝑓𝑝, 𝐴, 𝑡 ∈ {0} ∪ ℝ+. 

Using the following equations, we can transfer between the 88 piano key number, 𝑛𝑝, and 

its corresponding frequency, 𝑓, in Hertz (Bello, et al., 2000). 
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𝑓 = 440 ∗ 2
(
𝑛𝑝−49

12
)
 

 

𝑛𝑝 = 12 log2 (
𝑓

440
) + 49 

 

Similarly, for the key numbers in MIDI, 𝑛𝑀, simply replace the 49 in Equation (11) and 

(12) with 69 (Viitaniemi, et al., 2003). This indicates without 49 (or 69 for MIDI), all 

frequencies have been converted into the key number, 𝑛, such that the A note with 440 

Hz is defined to be the key number zero. Therefore, Equation (13) and (14) illustrate the 

conversion between our 𝑁𝑚𝑜𝑑 12 and 𝑆𝐼 from S-MDL and 𝑓𝑝 from A-MDL. 

𝑓𝑝 = 440 ∗ 2
(
12(𝑆𝐼−1)+𝑁𝑚𝑜𝑑 12

12
)
 

 

{
 
 

 
 𝑁𝑚𝑜𝑑 12 = (12 log2 (

𝑓𝑝

440
))𝑚𝑜𝑑 12

𝑆𝐼 =
12 log2 (

𝑓𝑝
440) − 𝑁𝑚𝑜𝑑 12

12
+ 1

 

 

On the other hand, according to the tempo measurement in Figure 4.1-2, known as 

metronome marks (Joutsenvirta & Perkiömäki, 2010), there are 80 crotchets per minute. 

Thus, one crotchet lasts 60/80 = 0.75 seconds. 

Therefore, Figure 4.1-3 shows the music sheet and its corresponding A-MDLMelody, for 

the same track [27].  

Note: frequencies were rounded to three decimal places. 
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Figure 4.1-3. Music Sheet and A-MDL for the first four bars of [27]. 

Further from the example, we can derive the following lemma. 

Lemma 1. The A-MDL and S-MDL Conversion for monophonic melody. 

Given the standard amplitude, tempo measurement and the time signature, every S-MDL 
for a monophonic melody can be converted into A-MDL. The opposite direction holds 

iff 𝑙𝑜𝑔2 (
𝑓𝑝

440
) ∈ ℤ & 𝑡 ∈ ℚ. 

Proof:  

Firstly, Equation (13) and (14) shows the conversion between the 𝑁𝑚𝑜𝑑 12 and 𝑆𝐼 from S-

MDL and the 𝑓𝑝 from A-MDL. Since 𝑆𝐼 ∈ ℤ by defnition, then we need log2 (
𝑓𝑝

440
) ∈ ℤ 

for Equation (14). Moreover, a rest means a note with 0 Hz (𝑓𝑝 = 0), no sound. Thus, in 

theory, (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

0
−∞

) is the rest. However, if we provide a filter such that any 

frequency below a value will be filtered out, i.e., treated as a rest, then we can simply 

define the corresponding S-MDL as a rest, in other words, 𝑓𝑝 ≠ 0 & (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) ≠ (

0
−∞

) 

for a rest. 

Secondly, 𝐴 = 𝑘 ∗ 𝐴𝑑 for some non-zero constant 𝑘, can convert the relative amplitude 

into the real amplitude with respect to the standard amplitude, and vice versa. In our case, 

𝑘 = 10. Moreover, for a rest, 𝐴 = 𝑘 ∗ 𝐴𝑑 = 0. 

Finally, Equation (15) and (16) shows the conversion between the 𝐵, 𝐵𝑇 and 𝐷 from S-

MDL and the 𝑡 from A-MDL, given the duration of a standard note from the tempo 

measurement (metronome marks) and the time signature. More specifically, 𝑥 beat per 

minute means 60/𝑥 seconds for one relative duration length, 
1

𝑙
, and define 𝐷 = 1 for one 
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standard duration length, 
1

𝛽
. The time signature is given in the form of 

𝛼

𝛽
. Note both 𝛽 and 

𝑙 were in powers of 2. Thus, for perfectly on time, t ∈ ℚ ⊆ ℝ. 

{
 
 

 
 𝑡 = (

60

𝑥
) ∗ (

𝑙

𝛽
) ∗ ((𝐵 − 1) ∗ 𝛼 + 𝐵𝑇)

𝑜𝑟

𝑡𝑖 = (
60

𝑥
) ∗ (

𝑙

𝛽
) ∗∑𝐷𝑗

𝑖−1

𝑗=0

, ∀𝑖 ∈ ℕ+ 𝑓𝑜𝑟 𝑚𝑜𝑛𝑜𝑝ℎ𝑜𝑛𝑖𝑐 𝑚𝑒𝑙𝑜𝑑𝑦

 

 

{
 
 
 

 
 
 

𝐵 =
𝑡 ∗ (

𝑥
60) ∗ (

𝛽
𝑙
) − 𝐵𝑇

𝛼
+ 1

𝐵𝑇 = (𝑡 ∗ (
𝑥

60
) ∗ (

𝛽

𝑙
))𝑚𝑜𝑑 𝛼

 𝐷𝑖 = (𝑡𝑖+1 − 𝑡𝑖) ∗ (
𝑥

60
) ∗ (

𝛽

𝑙
) , ∀𝑖 ∈ ℕ+ 𝑓𝑜𝑟 𝑚𝑜𝑛𝑜𝑝ℎ𝑜𝑛𝑖𝑐 𝑚𝑒𝑙𝑜𝑑𝑦

 

 

where 𝑥, 𝑙, 𝛼, 𝛽 ∈ ℕ+ 𝑎𝑛𝑑 𝐷0 = 0. 

∎ 

Lemma 2. The A-MDL and S-MDL Conversion for polyphonic music. 

Given the standard amplitude, tempo measurement and the time signature, every S-MDL 

can be converted into A-MDL. The opposite direction holds iff 𝑙𝑜𝑔2 (
𝑓𝑝

440
) ∈ ℤ & 𝑡 ∈ ℚ. 

Proof 

Similar proof follows once we break down the polyphonic music into multi-channelled 

monophonic melodies with a lot of ‘dummy’ rests in the format of (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) ≠ (

0
−∞

) 

for S-MDL and 𝑓𝑝 ≠ 0 for A-MDL. 

∎ 

From Lemma 1 and Lemma 2, the following theorem holds: 
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Theorem 1. A-S Theorem 

S-MDL is a subset of A-MDL in terms of music descriptivity. 

Proof 

From the proof of Lemma 1 and 2, every S-MDL can be converted into A-MDL, which 

means every vector of S-MDL can be transferred into a vector of A-MDL. On the other 

hand, for the opposite direction, we require the vector of A-MDL to satisfy the property: 

log2 (
fp

440
) ∈ ℤ . However, the range of log2 (

fp

440
)  is ℝ  for 𝑓𝑝 ∈ {0} ∪ ℝ+ . Thus, the 

condition log2 (
fp

440
) ∈ ℤ ⊆ ℝ indicates that S-MDL is a subset of A-MDL. Similarly for 

t ∈ ℚ ⊆ ℝ. 

∎ 

Based on S-MDL and A-MDL, here is the general definition of MDL. 

Definition 7. Music Definition Language (MDL). 

Music Definition Language is a collection of vector sequences which represents the basic 
stream flow of the melody. It contains the fundamental frequency, the volume and the 
beginning time of the sound in either A-MDL or S-MDL form. 

4.2. Music Manipulation Language 

Once we have described the basic sound features, we need to consider some extra 

information about the individual sound. Thus, as described in Chapter 3, this ‘language’ 

considers the extra information about how the individual notes should be played. In music 

notations, this ‘language’ is related to the articulation marks applied on the music note. 

From the reality, different artists might treat the same note differently. Especially, the live 

performance version might be different to album recording version. Moreover, this made 

the symbolic music closer to the audio music in terms of sound fidelity. Once again, 

similar to the concept of DML (Elmasri & Navathe, 2014), we have defined this ‘language’ 

as Music Manipulation Language (MML), literally meaning ‘manipulate the music’.  

As stated in Section 2.5.4, the homeomophism concept from Topology has been used in 

our MML design, such that it can further group the similar treatments. Therefore, there 

are two (major) types of MML for our coding scheme. 
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The first type of MML is Operational Music Manipulation Language (O-MML) and the 

second one is Topological Music Manipulation Language (T-MML). 

Definition 8. Operational Music Manipulation Language (O-MML). 

Operational Music Manipulation Language is a ‘meaningful’ function, either in matrix, 
vector or the combination form, such that it can be applied to those consecutive MDL 
vectors to perform linear transformations, even the A-MDL & S-MDL conversion. 

Definition 9. Topological Music Manipulation Language (T-MML). 

Topological Music Manipulation Language is a sequence of vectors, such that it can 
describe how, topologically, the notes were played under the defined MDL interval. 

From the two definitions, O-MML is aiming to identify the manipulation under similar 

linear transformations, for example, an entire song speeded up or slowed down. Adjusting 

the volume would not affect the main flow of the music. On the other hand, T-MML is 

aiming to identify similar music manipulation techniques applied on the single notes, such 

as various articulation marks. 

The rest of Chapter 4 is concentrated on the T-MML. Before that, we briefly give some 

examples and ideas about the O-MML. 

Lemma 3. The C Key Transformation Lemma 

There exists O-MML which allows music in any key to change into the C major (or A minor) 
key. 

Proof 

From Equation (11-14), we can see that the conversion is respect to the 440 Hz where the 

note number is 0 and similarly, from Figure 2.5-5, A minor corresponds to C major. Then 

wherever we start counting, we just add or minus the number of extra keys between the 

new starting key and that of A. Similarly, if we define C as the base key, then, to transform 

music to a different key, we just need to shift the base key. For example, an S-MDL was 

in the G Key, which means that every time we see  (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

10
0
), it is in fact (

3
0
). 

In other words, the base key has been shifted by the vector (
−7
0
).  
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𝑆-𝑀𝐷𝐿𝑀 𝑖𝑛 𝐶 =  𝑆-𝑀𝐷𝐿𝑀 𝑖𝑛 𝐺 . +

(

  
 

−7
0
0
0
0
0 )

  
 
=

(

 
 
 
 

𝑆-𝑀𝐷𝐿𝑁 𝑖𝑛 𝐺 +

(

  
 

−7
0
0
0
0
0 )

  
 

)

 
 
 
 

𝑖

, ∀𝑖 ∈ ℕ+ 

As 𝑁𝑚𝑜𝑑 12 ∈ {0, 1, … , 11} by definition, we just need to do the following mapping: 

(
−𝑎
𝑏
) →  (

−𝑎 + 12
𝑏 − 1

) , 𝑎 ∈ ℕ+ & 𝑏 ∈ ℤ 

 

Thus, in this case, we name 

(

  
 

−7
0
0
0
0
0 )

  
 

𝑚𝑜𝑑 12

 as the O-MML, as this resembles the 

conversion as Equation (17). 

As a summary, 

(

  
 

±𝑘
0
0
0
0
0 )

  
 

𝑚𝑜𝑑 12

, 𝑘 ∈ {0,… ,11} is the required O-MML which transfers the 

music in any key back to the C key, which ensembles the following conversion mapping: 

{
(
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

𝑎
𝑏
) →  (

𝑎 − 12
𝑏 + 1

) , 13 ≤ 𝑎 ≤ 23 & 𝑏 ∈ ℤ

(
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) = (

𝑎
𝑏
) →  (

𝑎 + 12
𝑏 − 1

) , −11 ≤ 𝑎 ≤ −1 & 𝑏 ∈ ℤ
 

 

∎ 

Similarly, we have the Set Transformation Lemma, Volume Tuning Lemma, Tempo 

Tuning Lemma, Extended A-MDL and S-MDL Conversion, and others. However, we 

have omitted the proof. 
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Lemma 4. The Set Transformation Lemma 

There exists O-MML which allows the music to change tone while staying in the same 
key. 

Lemma 5. The Volume Tuning Lemma 

There exists O-MML which allows the music to change the dynamic/volume. 

Lemma 6. The Tempo Tuning Lemma 

There exists O-MML which allows the music to change the tempo. 

Lemma 7. The Extended A-MDL and S-MDL Conversion Lemma 

Given the standard amplitude, tempo measurement and the time signature, there exists 
non-linear O-MML such that every S-MDL can be converted into A-MDL. The opposite 

direction holds iff 𝑙𝑜𝑔2 (
𝑓𝑝

440
) ∈ ℤ & 𝑡 ∈ ℚ. 

As these O-MMLs, from the definition, can be applied on the whole music or partial 

melodies. Therefore, similar or repeated patterns inside a music can be identified easily. 

Moreover, these would be benefit our music applications. For example, we can alter the 

key in a similar way to many karaoke systems.  

Going back to T-MML, every MDL should follow at least one T-MML, to record the 

actual ‘manipulation’ inside that MDL interval. Hence, we have the following features 

for T-MML with respect to A-MDL: 

 The continuous change in frequency (∆𝐹) inside the duration time of one single A-

MDL vector. Thus, notes like Glissando, Turning notes, Arpeggiated chords, and even 

the continuous Glissando from EM can be coded with higher fidelity. 

 The continuous change in amplitude (∆𝐴) inside the duration time of one single A-

MDL vector. Thus, notes like Accented notes and most musical dynamics can be 

encoded. 

 The continuous change in time (∆𝑡), allows users to record the time of any short note 

or break inside the duration time of one single A-MDL. Thus, notes like Staccato 

notes, and riffed notes from EM can be coded. 

Similar T-MML features can be obtained for S-MDL. Thus, it can be summarized into 

the following equations, where ‘∆’ indicates the difference between the start and the end 

of the MDL intervals: 
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{
 
 
 
 

 
 
 
 

𝑇-𝑀𝑀𝐿𝐴−𝑀𝐷𝐿 ∶= ((
∆𝑓𝑝
∆𝐴
∆𝑡

))

𝑗

𝑇-𝑀𝑀𝐿𝑆−𝑀𝐷𝐿 ∶=

(

 
 
 
 

(

 
 
 

∆𝑁𝑚𝑜𝑑 12

∆𝑆𝐼
∆𝐴𝑑
∆𝐵
∆𝐵𝑇
∆𝐷 )

 
 
 

)

 
 
 
 

𝑗

, ∀ 𝑗 ≥ 1 

 

Figure 4.2-1 has shown the examples of the different uses of T-MML. 

From Figure 4.2-1, Examples 1 and 2 have shown that the normal notes and the musical 

rests are coded differently in A-MDL/S-MDL, where they have the same T-MML. From 

the proof of Lemma 1, we allow the minimum capture pitch to be 6.875 𝐻𝑧, as the first 

MIDI note is around 8.18 𝐻𝑧. 

From Examples 3 and 4, we can see the advantage of using T-MML to clarify the 

difference between the main melody flow and the extras from the turning note and the 

glissando note example. Moreover, S-MDL with T-MML is used for the traditional 

glissando note whereas M-MDL with T-MML is used for the continuous glissando note 

from EM. 

From Example 5 and 6, we can see that T-MML is capable of representing the volume 

change and the accent note. This exemplifies the second feature of A-MDL (𝐴) and T-

MML (∆𝐴). 

Finally, Examples 7 and 8 illustrate two similar sounded melodies with different 

meanings and representations using musical notations. Example 7 is a demisemiquaver 

note with a demisemiquaver rest whereas example 8 is a staccato semiquaver note. From 

Figure 4.2-1, without T-MML, they have to have the same MDL (A-MDL or S-MDL). 

However, with T-MML, these two situations are no longer distinguishable. 



 

5
9

 

 

 S-MDL without T-MML S-MDL/A-MDL with T-MML 

1 

(

  
 

𝟎
𝟎
𝟏
𝟏
𝟎
𝟏)

  
 

 

(

  
 

𝟎
𝟎
𝟏
𝟏
𝟎
𝟏)

  
 
 & 

(

  
 

𝟎
𝟎
𝟎
𝟎
𝟏
−𝟏)

  
 
 𝒐𝒓(

𝟐𝟐𝟎
𝟏𝟎
𝟎

)  & (
𝟎
𝟎

𝟎. 𝟕𝟓
) 

2 

(

  
 

𝟎
−𝟓
𝟎
𝟏
𝟎
𝟏 )

  
 

[𝟏]

 

(

  
 

𝟎
−𝟓
𝟎
𝟏
𝟎
𝟏 )

  
 

[𝟏]

 & 

(

  
 

𝟎
𝟎
𝟎
𝟎
𝟏
−𝟏)

  
 
 𝒐𝒓 (

𝟎
𝟎
𝟎
)  & (

𝟎
𝟎

𝟎. 𝟕𝟓
) 

3 

(

  
 

𝟐
𝟎
𝟏
𝟏
𝟏

𝟎. 𝟐𝟓

 

𝟎
𝟎
𝟏
𝟏

𝟏. 𝟐𝟓
𝟎. 𝟐𝟓

 

𝟏𝟎
−𝟏
𝟏
𝟏
𝟏. 𝟓
𝟎. 𝟐𝟓

 

𝟎
𝟎
𝟏
𝟏

𝟏. 𝟕𝟓
𝟎. 𝟐𝟓)

  
 

[𝟐]

 

(

  
 

𝟎
𝟎
𝟏
𝟏
𝟏
𝟏)

  
 
 & 

(

  
 

𝟐
𝟎
𝟎
𝟎
𝟎
𝟎

 

−𝟐
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓

 

−𝟐
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓

 

𝟐
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓

 

𝟎
𝟎
𝟎
𝟎
𝟎

−𝟎. 𝟐𝟓)

  
 

[𝟐]

  

𝒐𝒓 (
𝟐𝟐𝟎
𝟏𝟎
𝟎. 𝟕𝟓

)  & (
𝟐𝟔. 𝟗𝟒𝟐

𝟎
𝟎

 
−𝟐𝟔. 𝟗𝟒𝟐

𝟎
𝟎. 𝟏𝟖𝟕𝟓

 
−𝟐𝟒. 𝟎𝟎𝟐

𝟎
𝟎. 𝟏𝟖𝟕𝟓

 
𝟐𝟒. 𝟎𝟎𝟐

𝟎
𝟎. 𝟏𝟖𝟕𝟓

 
𝟎
𝟎

𝟎. 𝟏𝟖𝟕𝟓
)

[𝟐]

 

4 

(

 
 
 

𝟎
𝟎
𝟏
𝟏
𝟏
𝟏 𝟕⁄

 

𝟏𝟎
−𝟏
𝟏
𝟏
𝟖 𝟕⁄

𝟏 𝟕⁄

 

𝟖
−𝟏
𝟏
𝟏
𝟗 𝟕⁄

𝟏 𝟕⁄

 

𝟕
−𝟏
𝟏
𝟏

𝟏𝟎 𝟕⁄

𝟏 𝟕⁄

 

𝟓
−𝟏
𝟏
𝟏

𝟏𝟏 𝟕⁄

𝟏 𝟕⁄

 

𝟑
−𝟏
𝟏
𝟏

𝟏𝟐 𝟕⁄

𝟏 𝟕⁄

 

𝟐
−𝟏
𝟏
𝟏

𝟏𝟑 𝟕⁄

𝟏 𝟕⁄

 

𝟎
−𝟏
𝟏
𝟏
𝟐
𝟏 )

 
 
 

[𝟐]

 

(

  
 

𝟎
𝟎
𝟏
𝟏
𝟏
𝟐)

  
 
 & 

(

  
 

𝟎
−𝟏
𝟎
𝟎
𝟏
−𝟏

 

𝟎
𝟎

−𝟎. 𝟓
𝟎
𝟏
−𝟏 )

  
 

[𝟐]

 𝒇𝒐𝒓 𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 𝒈𝒍𝒊𝒔𝒔𝒂𝒏𝒅𝒐  

𝒐𝒓 (
𝟐𝟐𝟎
𝟏𝟎
𝟎. 𝟕𝟓

)  & (
−𝟏𝟏𝟎
𝟎

𝟎. 𝟕𝟓
 
𝟎
−𝟓
𝟎. 𝟕𝟓

)

[𝟐]

 𝒇𝒐𝒓 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒈𝒍𝒊𝒔𝒔𝒂𝒏𝒅𝒐 

5 

(

  
 

𝟎
𝟎
𝟏
𝟏
𝟐
𝟏)

  
 

 

(

  
 

𝟎
𝟎
𝟏
𝟏
𝟐
𝟏)

  
 
 & 

(

  
 

𝟎
𝟎

−𝟎. 𝟓
𝟎
𝟏
−𝟏 )

  
 
 𝒐𝒓 (

𝟐𝟐𝟎
𝟏𝟎
𝟏. 𝟓

)  & (

𝟎
−𝟓
𝟎. 𝟕𝟓

) 

6 

(

  
 

𝟎
𝟎
𝟏. 𝟓
𝟏
𝟐
𝟏 )

  
 

 

(

  
 

𝟎
𝟎
𝟏. 𝟓
𝟏
𝟐
𝟏 )

  
 
 & 

(

  
 

𝟎
𝟎
−𝟏
𝟎
𝟏
−𝟏)

  
 
 𝒐𝒓 (

𝟐𝟐𝟎
𝟏𝟓
𝟏. 𝟓

)  & (

𝟎
−𝟏𝟎
𝟎. 𝟕𝟓

) 

7 

(

  
 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟏𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟑𝟕𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓

𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟔𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟖𝟕𝟓
𝟎. 𝟏𝟐𝟓)

  
 

[𝟏][𝟐]

 

(

  
 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟏𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟑𝟕𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓

𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟔𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟖𝟕𝟓
𝟎. 𝟏𝟐𝟓)

  
 

[𝟏][𝟐]

 & 

(

  
 

𝟎
𝟎
𝟎
𝟎

𝟎. 𝟏𝟐𝟓
−𝟎. 𝟏𝟐𝟓)

  
 

 

𝒐𝒓 (

𝟐𝟐𝟎
𝟓

𝟐. 𝟐𝟓

𝟎
𝟎
𝟕𝟓
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟕𝟖
𝟑𝟐

𝟎
𝟎
𝟖𝟏
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟖𝟒
𝟑𝟐

𝟎
𝟎
𝟖𝟕
𝟑𝟐

𝟐𝟐𝟎
𝟓
𝟗𝟎
𝟑𝟐

𝟎
𝟎
𝟗𝟑
𝟑𝟐

)

[𝟐]

 & (

𝟎
𝟎
𝟑
𝟑𝟐

) 

8 

(

  
 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟏𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟑𝟕𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓

𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟔𝟐𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟏𝟐𝟓

 

𝟎
−𝟓
𝟎
𝟏

𝟑. 𝟖𝟕𝟓
𝟎. 𝟏𝟐𝟓)

  
 

[𝟏][𝟐]

 

(

  
 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑

𝟎. 𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟐𝟓
𝟎. 𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏
𝟑. 𝟓
𝟎. 𝟐𝟓

 

𝟎
𝟎
𝟎. 𝟓
𝟏

𝟑. 𝟕𝟓
𝟎. 𝟐𝟓)

  
 

[𝟐]

 & 

(

  
 

𝟎
𝟎

−𝟎. 𝟓
𝟎

𝟎. 𝟐𝟓
−𝟎. 𝟏𝟐𝟓)

  
 
 𝒐𝒓(

𝟐𝟐𝟎
𝟓

𝟐. 𝟐𝟓
 

𝟐𝟐𝟎
𝟓
𝟕𝟖
𝟑𝟐

 

𝟐𝟐𝟎
𝟓
𝟖𝟒
𝟑𝟐

 

𝟐𝟐𝟎
𝟓
𝟗𝟎
𝟑𝟐

)

[𝟐]

& (

𝟎
−𝟓
𝟑
𝟑𝟐

) 

Figure 4.2-1. & Table 4.2-1. Examples of MDL and T-MML with music notations. 

[1] Assume the minimum capture pitch is 6.875 Hz. By default and definition, this represents the rest note in S-MDL form. 

[2] To save space, we grouped the S-MDL, A-MDL & T-MML vector sequences into one matrix respectively.
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3 
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5 

6 

7 
Key: 

S-MDL & T-MML A-MDL & T-MML 
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𝑆𝐼
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𝐵
𝐵𝑇
𝐷 )

 
 
 
 & 

(

 
 
 

∆𝑁𝑚𝑜𝑑 12

∆𝑆𝐼
∆𝐴𝑑
∆𝐵
∆𝐵𝑇
∆𝐷 )

 
 
 

 
(
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𝐴
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)&(
∆𝑓𝑝
∆𝐴
∆𝑡

) 
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From these examples, we can conclude that the T-MML is necessary to be added onto the 

MDL in representing the music, where MDL corresponds to our existing symbolic coding 

schemes, such that both the fidelity is closer to the actual audio and the coding is closer 

to the actual music sheet. For example, if we want to have a higher fidelity for a non-

linear continuous glissando note, we can just add more T-MMLs to a A-MDL to get a 

better linear approximation. However, for certain musical content analysis, it does not 

matter whether it is a linear approximation or non-linear original glissando note, as long 

as they are homeomorphic, i.e., 𝑝𝑙𝑖𝑛.𝑎𝑝𝑝𝑟𝑜𝑥(𝑡 = 0) =  𝑝𝑛𝑜𝑛−𝑙𝑖𝑛.𝑜𝑟𝑖(𝑡 = 0) 

 & 𝑝𝑙𝑖𝑛.𝑎𝑝𝑝𝑟𝑜𝑥(𝑡 = 1) =  𝑝𝑛𝑜𝑛−𝑙𝑖𝑛.𝑜𝑟𝑖(𝑡 = 1) where p is the pitch function against time, t, 

𝑡 =  0 is the start of the A-MDL and 𝑡 =  1 is the end of the A-MDL (ref: Section 2.5.4). 

Based on O-MML and T-MML, we have derived the following definition for MML. 

Definition 10. Music Manipulation Language (MML). 

Music Manipulation Language is used to describe how different artists performed the 
MDL in more technical details, either in the collection of topological vector form or as a 
mapping function. 

4.3. Grammar and Rules 

For the completion of the language setting, this section briefly introduce some typical 

grammar or rules for MDL and MML.  

Since the main concepts of MDL and MML were come from DDL and DML respectively, 

we can use similar instructions as SQL to further modify the MDL and MML sequences 

while we transfer from theories to applications. Here are some theoretical examples: 

 To create a new MDL sequence, we may use the syntax ‘create … as’. E.g., Create 

(Sequence_number) as S-MDL or Create (Sequence_number) as A-MDL. 

 To insert any instrumental setting, we may use the syntax ‘ins-set’. E.g., Create 

(Sequence_number) as S-MDL ins-set (Instrument). Similar syntax can be defined 

for other settings, for example, tempo setting would be ‘tem-set’. 

 To adjust any existing settings, simply replace ‘create’ with ‘modify’ and ‘set’ with 

‘adj’. E.g., Modify ins-adj (Instrument) 

 To remove an existing MDL sequence, we may use the syntax ‘remove’.  E.g., Remove 

S-MDL (Sequence_number) (Sequence_number) 



62 
 

 To insert or delete any individual MDL, we may use the syntax ‘insert … to … at …’ 

or ‘delete … from … of …’. E.g.,  Insert S-MDL (S-MDL parameters) to 

(Sequence_number) at (Position_number). Similarly, we can insert or delete any 

individual T-MML. 

 To adjust any existing MDL from the sequence, we may use the syntax ‘adjust’. E.g., 

Adjust S-MDL (new S-MDL parameters) for (Sequence_number) (Position_number). 

Similarly, we can adjust any existing T-MML. 

 To define O-MML, we may use the syntax ‘def-omml’. E.g., def-omml (O-MML 

parameters). 

The syntax described here can be adjusted if any confusion is found. Moreover, we can separate 

MDL (A-MDL or S-MDL) and T-MML by forcing all numerical entries in T-MML to be 

signed. E.g., Example 1 in Figure 4.2-1, (
𝟎
𝟎

𝟎. 𝟕𝟓
) becomes (

+𝟎
+𝟎

+𝟎. 𝟕𝟓
). Therefore, we can run 

a systematic check to validate whether the MDL or MML is inserted individually. 

4.4. Music Representation using the MDL and MML 

With MDL and (T-)MML, a proof-of-concept prototype has been built that illustrates the 

way of generating music or soundwaves using the defined coding scheme, in order to 

show some features claimed previously about music representation (Dannenberg, 1993). 

Refering to the case study in Section 2.2, we use this typical example, the introduction 

part of “Zero For Conduct” by Bastarz (of Block B) [45], to illustrate the potential of 

MDL and MML, as at this stage we manually implemented MDL and MML. Figure 4.4-1 

has shown the Spectral Pitch Display (SPD) for the official music track using Adobe 

Audition. 

From Figure 4.4-1, we can see that the introduction can be split into two channels.  

The first one is the audio channel that covers the continuous change in the frequency (𝑓 ∈

ℝ) and the ‘real’ time (t ∈ ℝ) that is hard for the existing symbolic approach to cover. 

The second one is the symbolic channel that involves polyphonic music, multiple sound 

channels and sound resources, which is able to be covered by the existing audio and 

symbolic approaches.  
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Figure 4.4-1. Spectral Pitch Display of the introduction of [45] using Adobe Audition. 

From Lemma 2 and Definition 10, we can see that both MDL and MML can extend to 

polyphonic music. Thus, better sound quality can be achieved by ensembling the harmony 

channel. Therefore, for simplicity, we demonstrate the SPD with fundamental frequencies 

only, using the manually implemented MDL and T-MML for the intro of [45]. For the 

same reason, every MDL follows one T-MML for every note. Thus, several ‘dummy’ 

MDL and one extra channel for the chord have been manually added. More specifically, 

for the audio channel, we have used the A-MDL structure and the corresponding T-MML. 

On the other hand, for the symbolic channel, we have also used the A-MDL structure and 

the last three entries of S-MDL as bonus features for separation, and the corresponding 

T-MML.  

I.e., (
𝑓𝑝
𝐴
𝑡

∆𝑓𝑝
∆𝐴
∆𝑡

)  & 

(

 
 
 

𝑓𝑝
𝐴
𝑡
𝐵
𝐵𝑇
𝐷

∆𝑓𝑝
∆𝐴
∆𝑡
∆𝐵
∆𝐵𝑇
∆𝐷 )

 
 
 
  respectively. 

The manual MDL and MML were stored in Excel format of the file size of 15 KB, as it 

would be easy for the MatLab to load. Therefore, Algorithm 1 shows the procedure of 

reading the MDL and MML file and generating the SPD. 
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Algorithm 1. MDL&MML Playback (simplified SPD version) 

Input: MDL and MML (Excel Format) 

Output: Spectral Pitch Display 

1. Read MDL and T-MML and relevant parameter initializations. 

2. Split into corresponding channels. 

3. 𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 (
𝟏

𝒓
) ∶= 𝒕𝒊𝒎𝒆 𝒑𝒆𝒓 𝒃𝒆𝒂𝒕 (

𝟔𝟎

𝒙
) ∗ 𝒎𝒊𝒏. 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 (

𝒍

𝜷𝒎𝒊𝒏
). 

4. 𝒓𝒕(𝒊), 𝒊 ∈  {𝟎, (
𝟏

𝒓(𝒕𝒎.𝒆𝒏𝒅−𝒕𝒎.𝒃𝒆𝒈𝒊𝒏)
) … , 𝟏} where 𝒓𝒕(𝟎) =  𝒕𝒎.𝒃𝒆𝒈𝒊𝒏, 𝒓𝒕(𝟏) =

 𝒕𝒎.𝒆𝒏𝒅. 

5. For each channels (audio or symbolic) 

a. Calculate the A-MDL frame (the number of notes or the number of 

MDL and MML pair). 

b. For each 𝑨-MDL frame 

i. 𝒕𝒎𝒊𝒏 = 𝑨-MDL(𝟑); 𝒕𝒎𝒂𝒙 =   𝑨-𝑴𝑫𝑳(𝟑) + 𝑻- MML(𝟑)  

ii. 𝒔𝒕(𝒋), 𝒋 ∈  {𝟎, (
𝟏

𝒓(𝒕𝒎𝒂𝒙−𝒕𝒎𝒊𝒏)
) … , 𝟏} where 𝒔𝒕(𝟎) =  𝒕𝒎𝒊𝒏, 𝒔𝒕(𝟏) =  𝒕𝒎𝒂𝒙, 

𝒔𝒕(𝒋) ⊆ 𝒓𝒕(𝒊) and ⊕∀ 𝑨-𝑴𝑫𝑳 𝒇𝒓𝒂𝒎𝒆 𝒔𝒕 = 𝒓𝒕. 

iii. 𝑮𝑨,𝒔𝒕 =
𝑻-𝑴𝑴𝑳(𝟐)

𝑻-𝑴𝑴𝑳(𝟑)
;  𝑰𝑨,𝒔𝒕 = 𝑨-MDL(𝟐) − 𝑨-MDL(𝟑) ∗ 𝑮𝑨,𝒔𝒕 

iv. 𝑨(𝒔𝒕) = 𝑮𝑨,𝒔𝒕 × 𝒔𝒕 + 𝑰𝑨,𝒔𝒕 

v. Rescale into dBs (−𝟏 dB ≈ 0.891 Amp. & −∞ dB = 0 Amp.). 

vi. 𝑮𝒇,𝒔𝒕 =
𝑻-𝑴𝑴𝑳(𝟏)

𝑻-𝑴𝑴𝑳(𝟑)
;  𝑰𝒇,𝒔𝒕 = 𝑨-MDL(𝟏) − 𝑨-MDL(𝟑) ∗ 𝑮𝒇,𝒔𝒕 

vii. 𝒇(𝒔𝒕) = 𝑮𝒇,𝒔𝒕 × 𝒔𝒕 + 𝑰𝒇,𝒔𝒕 

viii. Convert 𝒇(𝒔𝒕) to 𝒏𝒑 using Equation (12), regardless of 𝒏𝒑 ∈ ℤ. 

c. End 

6. End 

7. Concatenate 𝒏𝒑 & 𝑨(𝒔𝒕) across all the channels. 

8. Plot SPD in real-time, including Amplitude-time graph (𝑨(𝒔𝒕) 𝒊𝒏 𝒅𝑩𝒔 

against 𝒕), Pitch-time graph (𝒏𝒑 against 𝒕). 
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Figure 4.4-2. Simplified SPD of the introduction of music track [45] using MatLab. 

Based on the Algorithm 1, the following simplified SPD has been generated, as shown in 

Figure 4.4-2. 

In Figure 4.4-2, the green line is the amplitude for the individual channel whereas the 

blue line is the concatenated amplitude. The magenta line is the fundamental frequency, 

in terms of 𝑛𝑝, generated from the audio channel whereas the yellow line is generated 

from the symbolic channel. More specifically, the magenta line represents the continuous 

glissando using the linear line. 

By comparing Figure 4.4-1 and Figure 4.4-2 with Figure 4.4-1 and Figure 4.4-3, we can 

see that the main melody flow of the music almost matches in terms of fundamental pitch, 

amplitude, and time, as those lines fit the original music’s SPD much better than using 

the MIDI cover’s SPD against the original SPD. In Figure 4.4-3, only the symbolic part 

has been transferred into the piano cover (MIDI version). 
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Figure 4.4-3. Spectral Pitch Display of the introduction of [45a] using Adobe Audition. 

From a file storage perspective, our file is only 15 KB for the first 18 seconds that covers 

almost all of the sound, apart from the harmonies, whereas the whole song ([45]) is 3.01 

MB in ‘M4A’ format, 2.96 MB in ‘MP3’ format and the short (symbolic) MIDI cover 

([45a]) is 6.53 KB. Thus, with appropriate estimation, we can claim that the file size of 

the MDL and MML file lays in between of the audio and the symbolic files as expected. 

On the other hand, the MIDI cover is not included the audio channel. Hence, from the 

music representation, we can claim that MDL and MML is an improvement of existing 

symbolic files and towards the audio files. In fact, even if we try to ensemble the audio 

channel into the MIDI cover, it would be a number of step functions, rather than a linear 

function. 

Therefore, based on this slightly complicated case, the MDL and MML file is claimed to 

lay in between audio and symbolic files in terms of music storage and representation. 
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However, unlike SPD, music is a real-time event and the soundwave is generated as time 

goes on. Despite Algorithm 1 providing a real-time SPD, we still need to see the actual 

synthezised accoustic sound of the MDL and MML. 

As this is not the main concept of the project, Xue (2018) has helped complete the 

simplified relevant work as his final year project . He obtained a result of that, with human 

listeners and cosidering the normal version, the version with continuous glissando and 

the version with chord for the music track [27] by applying Equation (20) using Python, 

MDL and MML has correctly represented the melody flow. However, the sound quality 

is not particularly high quality as if only considers the fundamental frequencies (Xue, 

2018). 

𝜔(𝑡) = (𝐴 +
∆𝐴

∆𝑡
𝑡𝑠) sin (2𝜋 (𝑓𝑝 +

∆𝑓𝑝

∆𝑡
𝑡𝑠) 𝑡) 

 

where 𝑡𝑠 ∈ {0,… ,1}, linear spacing the range [0,1] for sound sampling within one MDL. 

Therefore, in the section, we have shown that by using MDL and MML to store the music 

data, it is more capacity-efficient in terms of file size and has better sound retrieval where 

sound waveforms are concerned. More importantly, it can handle a greater variety of 

audio signals compared to the existing MIDI format. However, the sound quality 

possesses a lot of room for improvement. 

4.5. Convert Audio into the MDL and MML using Signal Processing 

In order to show the one-to-one mapping from the coding and the accoustic sound 

(Fremerey, et al., 2008), we now need to prove the converse, from music to the code. I.e., 

convert into MDL and MML from the audio like MIDI (Derrien, 2014). For a similar 

reason, we build a proof-of-concept prototype for a simple case. 

The input is the MP3 file implemented in Section 4.4, the normal version of music track 

[27], i.e., ∆𝑓𝑝 = ∆𝐴 = 0, as we generate the sound using the manually noted S-MDL and 

T-MML file, in Excel format. The recording has a sample rate of 44.1 kHz and consists 

of two channels with equal sinusoidal values, which is similar to recording without a 

microphone or downloading online music. The output is the similarity score between the  
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 Algorithm 2. MDL & T-MML Generation (simplified, assuming ∆𝒇𝒑 = ∆𝑨 = 𝟎) 

Input: MP3 File 

Output: A-MDL/(S-)MDL & T-MML Files 

1. Read MP3 file and parameter initializations (e.g., 𝜽). 

2. Display basic MP3 information. 

3. Generate the sequence of the sinusoidal value, 𝝎(𝒕𝒊). 

4. Plot the time-domain figure (𝝎(𝒕𝒊) against 𝒕). 

5. 𝒔𝒊𝒍𝒆𝒏𝒕𝒍𝒆𝒇𝒕(𝒌) = 𝒕𝒊, where 𝝎(𝒕𝒊−𝟏) ≠ 𝟎 & 𝝎(𝒕𝒊) = 𝝎(𝒕𝒊+𝟏) = 𝟎, ∀𝒌. 

6. 𝒔𝒊𝒍𝒆𝒏𝒕𝒓𝒊𝒈𝒉𝒕(𝒌) = 𝒕𝒋, where 𝝎(𝒕𝒋−𝟏) = 𝝎(𝒕𝒋) = 𝟎 & 𝝎(𝒕𝒋+𝟏) ≠ 𝟎, ∀𝒌. 

7. 𝒍𝒔(𝒌) = 𝒔𝒊𝒍𝒆𝒏𝒕𝒓𝒊𝒈𝒉𝒕(𝒌) − 𝒔𝒊𝒍𝒆𝒏𝒕𝒍𝒆𝒇𝒕(𝒌), ∀𝒌. 

8. Filter 𝒍𝒔(𝒌) into 𝒍𝒔(𝒌
′) s.t. 𝒍𝒔(𝒌

′) ≥ 𝜽. 

9. 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒐𝒕𝒆 = 𝒌′. 

10. For each note (m = 1 to 𝒌′) 

a. Apply FFT on the sinusoidal value. % Discrete sound waves (Section 

2.5.3) 

b. Extract 𝒇𝒑(𝒎) & 𝑨(𝒎). 

c. Transfer 𝒍𝒔(𝒌
′) into time in seconds, ∆𝒕(𝒎). 

d. 𝒕(𝒎) = ∑ ∆𝒕(𝒏)𝒌′−𝟏
𝒏=𝟏  

e. Plot all the relevant graphs and display the four features. 

f. 

{
  
 

  
 
𝐀-𝐌𝐃𝐋 (𝐦, 𝟏) = 𝒇𝒑(𝒎)

𝐀-𝐌𝐃𝐋 (𝐦, 𝟐) = 𝑨(𝒎)

𝐀-𝐌𝐃𝐋 (𝐦, 𝟑) = 𝒕(𝒎)

𝐓-𝐌𝐌𝐋𝑨 (𝐦, 𝟏) = 𝟎

𝐓-𝐌𝐌𝐋𝑨 (𝐦, 𝟐) = 𝟎

𝐓-𝐌𝐌𝐋𝑨 (𝐦, 𝟑) = ∆𝒕(𝒎)

, based on Equation (10) and (19) 

g. Convert into (S-)MDL(m) and the corresponding T-MMLS(m) using 

‘similar’ steps from Lemma 1, i.e., Equation (21). 

11. End 

12. Concatenate 𝐀-𝐌𝐃𝐋 (𝐦)/(𝑺-)𝐌𝐃𝐋 (𝐦) & 𝐓-𝐌𝐌𝐋 (𝐦) , for all m. 

13. Output A-MDL/(S-)MDL & T-MML Files as Excel format. 
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Algorithm 3. Similarity Evaluation Between Manually and Automatic Generated 

(S-)MDL&MML Files 

Input: Manually and Automatic Generated (S-)MDL & T-MML File from 

Algorithm 2. 

Output: Similarity Scores, 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹 or 𝐒𝐢𝐦𝒍𝒆𝒏𝒈𝒕𝒉. 

1. Read both files and any parameter initializations (e.g., 𝝑). 

2. Extract both melody and rhythm line:  

𝐦𝟏(𝐭)  =  (𝐒-)𝐌𝐃𝐋𝒎𝒂𝒏(𝟏) & 𝐫𝟏(𝐭)  =  (𝐒-)𝐌𝐃𝐋𝒎𝒂𝒏(𝟓) 

𝐦𝟐(𝐭)  =  (𝐒-)𝐌𝐃𝐋𝒂𝒖𝒕𝒐(𝟏) & 𝐫𝟐(𝐭)  =  (𝐒-)𝐌𝐃𝐋𝒂𝒖𝒕𝒐(𝟓)
[1] 

3. If 𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)) == 𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟐(𝐭)), similar for 𝐫𝟏(𝐭) and 𝐫𝟐(𝐭) 

a. 𝒍 = 𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)) 

4. Else 

a. 𝐒𝐢𝐦𝒍𝒆𝒏𝒈𝒕𝒉  =
𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟐(𝐭))−𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)),

𝐥𝐞𝐧𝐠𝐭𝐡(𝐦𝟏(𝐭)),
 [2]  

b. Output 𝐒𝐢𝐦𝒍𝒆𝒏𝒈𝒕𝒉 

5. End If  

6. For 𝐦𝟏(𝐭) & 𝐦𝟐(𝐭) % with Equation (22) 

a. Count the number of allowed captured pitches against 𝝑, |𝑨|. 

b. Count the number of disallowed captured pitches against 𝝑, |𝑩|. 

c. Count the number of perfectly captured pitches, |𝑪|. 

7. End 

8. For 𝐫𝟏(𝐭) & 𝐫𝟐(𝐭) % with Equation (24) 

a. Count the number of perfectly matched duration length, |𝑹|. 

9. End 

10. 𝐒𝐢𝐦𝑪 =
|𝑨|

𝒍
∗ 𝒆−𝑴𝑺𝑫 =

|𝑨|

𝒍
∗ 𝒆−(|𝑨|+|𝑩|−|𝑪|)

−𝟏∗∑ (𝐦𝟐(𝐭)−𝐦𝟏(𝐭))
𝟐𝒍

𝒕=𝟏 , Equation (23) 

11. 𝐒𝐢𝐦𝑹 =
|𝑹|

𝒍
, % with Equation (24) 

12. Output 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹. 

[1]: Equation (21) will allow the rest of (S-)MDL & T-MML elements to match iff these 

two lines match. 

[2]: At a later stage, will call the normalization function to make sure the comparison 

melody lengths were the same.  
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manually noted S-MDL and T-MML file against the file converted from the audio using 

signal processing. The whole process is split into Algorithm 2 and Algorithm 3. 

As any noise will affect the FFT process, the fundamental pitch will not be identical to 

the actual pitch. Hence, in order to convert into S-MDL at Algorithm 2 line 10.g, we need 

to use the rounding function to make sure the note output (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) is, by definition, in 

integer. Therefore, to measure the error of the full process, frequency is stored in the 

(S-)MDL file instead. I.e., (S-)MDL & T-MMLS(m) in Algorithm 2 & Algorithm 3 is in 

the format of 

(

 
 

𝑓𝑝
𝐴𝑑
𝐵
𝐵𝑇
𝐷

∆𝑓𝑝
∆𝐴𝑑
∆𝐵
∆𝐵𝑇
∆𝐷 )

 
 

, where ∆fp = ∆A𝑑 = 0.  

On the other hand, the recording volume will affect the actual amplitude in the time-

domain figure, whereas the duration of the note, ∆𝑡(𝑚), can be irrational. 

Thus, Algorithm 2 line 10.g considered the following instead: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(S-)MDL(m, 1) ∶= 𝑓𝑝 = 𝑓𝑝(𝑚) ∈ ℝ

(S-)MDL(m, 2) ∶= 𝐴𝑑 = 𝑟𝑜𝑢𝑛𝑑(
𝐴(𝑚)

𝐴(1)
) ∈ ℚ+

(S-)MDL(m, 3) ∶= 𝐵 =
∑ 𝐷(𝑛)𝑚−1
𝑛=1 − 𝐵𝑇(𝑚)

𝛽
+ 1 ∈ ℕ

(S-)MDL(m, 4) ∶= 𝐵𝑇 = ∑ 𝐷(𝑛)

𝑚−1

𝑛=1

 𝑚𝑜𝑑 𝛽 ∈ ℚ+

(S-)MDL(m, 5) ∶= 𝐷(𝑚) = 𝑟𝑜𝑢𝑛𝑑 (
𝑡(𝑚)

𝑡(1)
) ∈ ℚ+, 𝑤. 𝑟. 𝑡.

1

𝛽
𝑚𝑖𝑛

T-MML𝑆(m, 3) ∶= ∆𝐵(𝑚) = 0

T-MML𝑆(m, 4) ∶= ∆𝐵𝑇(𝑚) = 𝐷(𝑚)

T-MML𝑆(m, 5) ∶= ∆𝐷(𝑚) = −𝐷(𝑚)

, ∀m ∈ {1,… , 𝑘′} 

 

where letting the first note’s amplitude is 1 and defining the duration of the first note 

(𝑡(1)) is equal to 1 as it starts with a crotchet note in the time signature of 
4

4
, 𝛽 = 4. 

In Algorithm 3, the following equations were considered: 
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Figure 4.5-1. Main time domain plot and the music information for music track [27]. 

{

𝐴 = {𝑖||𝑚1(𝑖) − 𝑚2(𝑖)| ≤ 𝜗, 𝑖 ∈ {1,… , 𝑙}}

𝐵 = {𝑖||𝑚1(𝑖) − 𝑚2(𝑖)| > 𝜗, 𝑖 ∈ {1, … , 𝑙} }

𝐶 = {𝑖||𝑚1(𝑖) − 𝑚2(𝑖)| = 0, 𝑖 ∈ {1, … , 𝑙}}

   (line 6) 

 

𝑀𝑆𝐷 =
1

|𝐴| + |𝐵| − |𝐶|
∑(𝑚2(𝑡) − 𝑚1(𝑡))

2
𝑙

𝑡=1

    (line 10) 

 

where MSD is known as the mean squared distance (without square root). 

𝑅 = {𝑖||𝑟1(𝑖) − 𝑟2(𝑖)| = 0}     (line 8. a, 11) 

 

After running the proof-of-concept prototype with the sample track [27], the following 

results have been obtained. Figure 4.5-1 is the main plot for the whole MP3 file at 

Algorithm 2 line 4. Figure 4.5-2 and Figure 4.5-3 are the sample plots for the first and the 

last note, containing the frequency domain figure, time domain figure and the four 

features extracted at Algorithm 2 line 10.e. Figure 4.5-4 shows the output of the A-MDL 

and T-MML file in Excel format. Figure 4.5-5 shows the output of the (S-)MDL and T-

MML file. 
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Figure 4.5-2. Plots and feature output for the first note of music track [27]. 

 

Figure 4.5-3. Plots and feature output for the last note of music track [27]. 
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Figure 4.5-4. A-MDL and T-MML output for music track [27]. 

 

Figure 4.5-5. (S-)MDL and T-MML output for music track [27]. 

Let 𝜗 = 0.5 𝐻𝑧 (𝑎𝑝𝑝𝑟𝑜𝑥. 8.66 − 8.18) , then the (S-)MDL and T-MML file and the 

initial file gave 93.63% accuracy for the contour melody and 100% accuracy for the 

rhythm. More specifically, it proves the following features of MDL and MML that was 

described at the design stage: 
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Firstly, if we allow small errors, then everything would be 100% accurate as we will 

round to the nearest integer when converting into the proper S-MDL and T-MML file. 

This means the 6.37% error is all due to the background noise when recording, as all the 

frequencies extracted are within 0.5 𝐻𝑧. 

Secondly, we can see that each crotchet lasts about 0.95 seconds. This means that we can 

change the time setting to make the music play faster or slower without affecting the 

fundamental pitch value using O-MML.   

Thirdly, if the first note is not the standard duration, crotchet in our example, we can use 

O-MML to make the modification. For example, if the first note is a quaver instead, then 

mulitiply all duration by 0.5 and you can obtain the corrected duration value. Thus, the 

bar number and the beat number can be modified. 

The above two points would be useful when proving Lemma 6. The Tempo Tuning 

Lemma. 

Finally, we have made the similar assumption that the amplitude of the first note is 1, 

whereas the real amplitude is approximately 0.305, which may be due to the volume 

reduction when recording. The amplitudes of all the rest of the notes are the relative 

values compared to the first note. For a similar reason, by defining the first note to a 

certain dynamic value, the volume for the entire music can be controlled by an O-MML. 

Similarly, this helps to prove Lemma 5. The Volume Tuning Lemma. 

4.6. Summary 

We have introduced the MDL and MML with various examples, including the potential 

of using MDL and MML to model the music with various articulation marks. We have 

outlined several mathematical theories relevant to the new coding scheme. Most 

importantly, we have illustrated the one-to-one mapping between the acoustic sound and 

the coding scheme and showed the advantages of using the MDL and MML with proof-

of-concept prototypes, from both music storage and music representation perspectives. 
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5. Original Music Identifier using MDL and MML 

Given the good result previously, the one to one mapping between the music and 

MDL&MML, we now move towards the main MUCASM for OMI. We, first design the 

similarity measurement and the mechanism for MUCASM, followed by various 

experimental studies to see how the ensembled learning can improve the OMI’s accuracy. 

Moreover, it will further prove that MDL and MML lays in between the audio and the 

traditional symbolic coding schemes. 

5.1. MUCASM Design 

According to prototype and the test requirements in Chapter 3, we want to see the 

difference between just using unsupervised SOM and the supervised RL-based ensembled 

learning. Thus, with the defined MDL and the the corresponding T-MML, we design our 

MUsic Classification And Similarity Mesurement (MUCASM) system.  

From Chapter 4, we are assuming that MDL & T-MML can be well used to represent and 

store music melodies. Thus, the input melody to MUCASM is encoded with the proposed 

scheme MDL, which includes S-MDL and A-MDL with the corresponding T-MML. 

Then we compare the input with those in the original music (melody) database following 

both audio and symbolic based similarity measurement methods to identify matched ones 

based on given criteria (i.e. the highest similarity score). After sorting the outputs, the 

system retrieves the most matched original music (melody) track IDs and relevant 

information. The output can either be unique, multiple or none depending on the criteria. 

Moreover, the melody database does not only store original melodies, but also their 

variations, in order to provide a rich data set to train the proposed classification algorithms. 

Figure 5.1-1 shows the overall MUCASM architecture. 

Apart from MML and MDL, the similarity calculation and classification (i.e. self-

supervised reinforcement-based ensemble learning for the musical origin classification) 

also play pivotal roles in the proposed system. The first subsection describes various 

similarity calculation methods based on SOM (Self-Organize Map), and the second 

subsection explains the proposed classification approaches based on Ensemble Machine 

Learning (EML) which includes several learning mechanisms and these are various 

SOMs.  
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* https://www.smartdraw.com/flowchart/flowchart-symbols.htm 

 

Figure 5.1-1. Overall flowchart for MUCASM. 

In Figure 5.1-1, ⊕ is the ‘Or’ symbol, which indicates that the process flow continues in 

more than two branches; ⊗ is the ‘Summing Junction’ Symbol, which indicates a point 

in the flowchart where multiple branches converge back into a single process*. 

5.1.1. Self-Organizing Map 

SOM, a self-learning method, can produce different effectiveness on clustering according 

to the selection of embedded similarity calculations, activation functions for the best 

match unit and the update formulae. In order to maximise the SOM performance, and find 

their correlation and optimum combination, the activation function is fixed, but the 

methods for similarity calculation and update formula are varied. 

https://www.smartdraw.com/flowchart/flowchart-symbols.htm
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5.1.1.1. Similarity Calculations 

For S-MDL-based SOM, the two important features extracted from the sextuple S-MDL 

are the contour melody and the rhythm. The contour melody differs from the Parsons 

code for melodic contours (Müllensiefen & Wiggins, 2011), and is the sequence of the 

key number derived from (
𝑁𝑚𝑜𝑑 12

𝑆𝐼
) against the duration (𝐷). The rhythm part is purely 

derived from (𝐷) . Theoretically, 𝐴𝑑 , 𝐵, 𝐵𝑇  should be taken into account at the pre-

processing stage. However, as they were either identical in our dataset or can be derived 

from the duration, we have excluded them at this time. Therefore, we have designed the 

following three equations for the contour melody and one for the rhythm given that the 

two melodies have the same length. 

Similarity Calculation 1 for Contour Melody (SC1): 

𝑆𝑖𝑚𝐶 (𝑀𝐷𝐿1,𝑖(𝑗),𝑀𝐷𝐿2,𝑖(𝑗)) =
|𝐴|

6 ∗ 𝑙
 𝑤ℎ𝑒𝑟𝑒 𝐴 = {(𝑖, 𝑗)||𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗)| = 0} 

 

Similarity Calculation 2 for Contour Melody (SC2): 

𝑆𝑖𝑚𝐶 =
|𝐴|

6 ∗ 𝑙
∗ 𝑒−𝑀𝑆𝐷 𝑤ℎ𝑒𝑟𝑒 

{
 
 

 
 

𝐴 = {(𝑖, 𝑗)||𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗)| = 0}

𝐵 = {(𝑖, 𝑗)||𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗)| ≠ 0}

𝑀𝑆𝐷 =
1

|𝐵|
∗ ∑ (𝑀𝐷𝐿1,𝑖(𝑗) − 𝑀𝐷𝐿2,𝑖(𝑗))

2

𝑖,𝑗∈𝐵

 

 

Similarity Calculation 3 for Contour Melody (SC3): 

𝑆𝑖𝑚𝐶 = 𝑤𝑀 ∗ 𝑆𝑖𝑚𝑀 + 𝑤𝐷 ∗ 𝑆𝑖𝑚𝐷 + 𝑏 𝑤ℎ𝑒𝑟𝑒 

{
 
 
 
 
 

 
 
 
 
 
𝑀𝑒𝑙1,𝑖 = 𝑀𝐷𝐿1,𝑖(1) + 12 ∗ 𝑀𝐷𝐿1,𝑖(2)

𝑀𝑒𝑙2,𝑖 = 𝑀𝐷𝐿2,𝑖(1) + 12 ∗ 𝑀𝐷𝐿2,𝑖(2)

𝐴 = {𝑖||𝑀𝐷𝐿1,𝑖(6) − 𝑀𝐷𝐿2,𝑖(6)| = 0}

𝐵 = {𝑖||𝑀𝑒𝑙1,𝑖 −𝑀𝑒𝑙2,𝑖| ≠ 0}

𝑀𝑆𝐷 =
1

|𝐵|
∗∑(𝑀𝑒𝑙1,𝑖 −𝑀𝑒𝑙2,𝑖)

2

𝑖∈𝐵

𝑆𝑖𝑚𝑀 = 𝑒−𝑀𝑆𝐷

𝑆𝑖𝑚𝐷 =
|𝐴|

𝑙
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Rhythm Coding (RC): 

{
1 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑛𝑜𝑡𝑒 𝑝𝑟𝑒𝑠𝑠𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

in the resolution of 
1

𝑠
∈
1

2𝑛
and the time signature of 

𝛼

𝛽
. 

 

Similarity Calculation for Rhythm (SR): 

𝑆𝑖𝑚𝑅 (𝑀𝐷𝐿1,𝑖(𝑗),𝑀𝐷𝐿2,𝑖(𝑗)) =
|𝐴|

𝑙
 𝑤ℎ𝑒𝑟𝑒 

{
 
 

 
 𝑅ℎ𝑦1,𝑖

(28)
←  𝑀𝐷𝐿1,𝑖(6)

𝑅ℎ𝑦2,𝑖
(28)
←  𝑀𝐷𝐿2,𝑖(6)

𝐴 = {𝑖||𝑅ℎ𝑦1,𝑖 − 𝑅ℎ𝑦2,𝑖| = 0}

 

 

SC1 is simply the ratio between the number of identical entries and the total number of 

entries. In Equation (25), 𝑖 indicates that it is the ith MDL in the sequence, 𝑗 is the column 

index of the vector-based MDL and 𝑙 is the length of the 𝑀𝐷𝐿1,𝑖(𝑗), or 𝑀𝐷𝐿2,𝑖(𝑗), as they 

have normalized into the same length. However, this method has a limitation that it cannot 

distinguish between a melody with small variance and a melody with big variance, as 

they might give the same similarity output. For example, one original melody consists of 

five notes, but Variance 1 and Variance 2 both have one note different. Despite the 

musical note distance between the original melody and Variance 1 is closer than with 

Variance 2, SC1 will give both case 80% similarity scores. 

Thus, SC2 made an improvement. It used Mean Squared Distance (MSD) to capture the 

possible detailed difference. As this is primarily for symbolic MDL, thus unlike the 

equation in Algorithm 3 line 10, only two sets were defined, either the entries from two 

melodies were identical, set A, or different, set B. This means, despite the fact that we 

might have the same fraction 
|𝐴|

𝑙
, as we multiply a different factor of 𝑒−𝑀𝑆𝐷, the final 

similarity score will vary. Notice that, in Equation (26), 𝑖, 𝑗 𝑎𝑛𝑑 𝑙 have the same meaning. 

For SC3, we made another improvement. As the musical melody is frequency against 

time, we split the contour melodic similarity scores into two parts, using the idea of 

perceptron neural network (Widrow & Lehr, 1990; Heaton, 2015). One for the similarity 
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in terms of melody and one in terms of the duration such that the overall similarity is the 

sum of those two similarities with two weights, 𝑤𝑀 𝑎𝑛𝑑 𝑤𝐷 ,  where 𝑤𝑀 + 𝑤𝐷 = 1, and 

a bias, 𝑏, where we set it to be 0. For the melodic similarity, we only use the exponential 

of the negative MSD to capture the detailed difference. Thus, we need to convert into the 

melody lines, 𝑀𝑒𝑙1,𝑖 𝑎𝑛𝑑 𝑀𝑒𝑙2,𝑖, from the first two entries of S-MDL, and define set B. 

For the rhythmic similarity, we just use the simple fraction as there is no detailed 

difference. Thus, set A is defined using 𝑗 =  6. Notice that, in Equation (27),  𝑖 𝑎𝑛𝑑 𝑙 

have the same meaning. 

For all those three equations, firstly, 𝑀𝐷𝐿() was meant to be 𝑆-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦 at this stage. 

Secondly, they are for comparing two vector sequences of the equal length. Therefore, 

most of the time, we need Equation (30) to normalize two melodies with unequal length. 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑀𝐷�̃�1,�̃�𝑖…�̃�𝑖+1−1(𝑗) ← 𝑀𝐷𝐿1,𝑖(𝑗)  𝑓𝑜𝑟 𝑗 = 1,… ,4

𝑀𝐷�̃�1,�̃�𝑖…�̃�𝑖+1−1(5) ←𝑀𝐷𝐿1,𝑖(5) +
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿1,𝑖(5))1

𝑠

𝑀𝐷�̃�1,�̃�𝑖…�̃�𝑖+1−1(6) ←𝑀𝐷𝐿1,𝑖(6) −
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿1,𝑖(5))1

𝑠

𝑀𝐷�̃�2,�̃�𝑖…�̃�𝑖+1−1(𝑗) ← 𝑀𝐷𝐿2,𝑖(𝑗)  𝑓𝑜𝑟 𝑗 = 1,… ,4

𝑀𝐷�̃�2,�̃�𝑖…�̃�𝑖+1−1(5) ← 𝑀𝐷𝐿2,𝑖(5) +
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿2,𝑖(5))1

𝑠

𝑀𝐷�̃�2,�̃�𝑖…�̃�𝑖+1−1(6) ← 𝑀𝐷𝐿2,𝑖(6) −
𝛽

𝑠
∗ 𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿2,𝑖(5))1

𝑠

,

in the resolution of 
1

𝑠
∈
1

2𝑛
 and the time signature of 

𝛼

𝛽
. 

 

where 𝑖̃ is the index where the whole melody duration with time signature of 
𝛼

𝛽
 has evenly 

distributed in the resolution of 
1

𝑠
. 𝑖̃ = {1,… ,

𝑠

𝛽
∗ 𝛼 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑟𝑠}, where 

1

𝑠
 must be 

less than the minimum duration of two melodies. For example, four bars with time 

signature, 
4

4
, in the resolution of 

1

16
, 𝑖̃ =  {1, . . ,256}. In this example, neither of the two 

melodies should contain a duration less than 
1

16
. However, it is possible that melody A’s 

minimum duration is 
1

16
 and melody B’s minimum duration is 

1

8
.  
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Moreover, 𝑑𝑖𝑠𝑡(𝑀𝐷𝐿)1
𝑠

 is the evenly distributed set of the duration of the MDL under the 

resolution 
1

𝑠
, and 𝐷 = 1 if the note is crotchet when 𝛽 = 4. From the same example above, 

if the value of 𝑀𝐷𝐿1,𝑖=1(6) = 1 , then  𝑑𝑖𝑠𝑡 (𝑀𝐷𝐿1,𝑖(6))1
𝑠

= {0,1,2,3}  as 
𝑠

𝛽
= 4. 

Thus,  𝑀𝐷�̃�1,�̃�=1(6) = 1 + 0.25 ∗ 0 =1, 𝑀𝐷�̃�1,�̃�=2(6) = 1 + 0.25 ∗ 1 =1.25 and so on 

until when 𝑀𝐷�̃�1,�̃�=5(6) = 𝑀𝐷𝐿1,𝑖=2(6). This means we can create an index subsequence 

𝑖̃𝑖 such that 𝑖̃𝑖 ∈ 𝑖̃ and 𝑖 is the index of the original MDL. Thus, from the same example 

above, 𝑖1̃ = 1; 𝑖̃2 = 5 etc. 

Similarly, for RC, the rhythm pattern is in the resolution of 
1

𝑠
. Therefore, after we have 

extended the 𝑀𝐷𝐿 into 𝑀𝐷�̃�, we code 1 in every position 𝑖̃𝑖, which indicates that this is 

the time that the note has been pressed, and 0 otherwise, as these were the ‘dummy’ notes. 

For the same example, the rhythm will become (1,0,0,0,1,… ) using Equation (28). 

As the rhythm pattern is either 0 or 1, Mean Squared Distance is no longer needed. Hence, 

Equation (29) is sufficient to evaluate the similarity score. 

Finally, Equation (31) evaluates the final similarity scores: 

𝑆𝑖𝑚 (𝑀𝐷𝐿1,𝑖(𝑗),𝑀𝐷𝐿2,𝑖(𝑗)) = 𝑤𝐶 ∗ 𝑆𝑖𝑚𝐶 + 𝑤𝑅 ∗ 𝑆𝑖𝑚𝑅 + 𝑏  

 

where 𝑆𝑖𝑚𝐶 use either SC1, SC2 or SC3, and 𝑏 has set to be zero. 

5.1.1.2. Self-learning 

The first approach when updating the weight at the self-training stage is to follow the 

traditional SOM self-learning (Section 2.5.1.2). This means we treat the MDL sequence 

as ‘weights’ and the melody itself as hidden neuron. Thus, Equation (32) has been 

considered: 

Self-Learning 1 (SL1): 

𝑇𝑛(𝑖, 𝑗, 𝑡 + 1) = 𝑇𝑛(𝑖, 𝑗, 𝑡) − η(𝑇𝑛(𝑖, 𝑗, 𝑡) − 𝐶(𝑖, 𝑗, 𝑡)) 
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where 𝑇𝑛() represents the value of the selected 𝑛𝑡ℎ hidden neuron, 𝑖 is the index of the 

MDL melody sequence, 𝑗 is the column index of the individual MDL, 𝑡 is the iteration 

time, 𝜂 is the learning rate and 𝐶() is the current input. 

However, as the duration is normally in the form of 
𝑎

2𝑛
, for some integer 𝑎 and 𝑛, it would 

be sensible to update the relevant field in a similar way, such that it would benefit for the 

rhythmic similarity calculation. Equation (33) allows the relevant value of the hidden 

neuron approach to value of the selected input much faster, thus the similarity will make 

a significant change. Otherwise, as an example, 0.95 would still not match with the target 

input 0.5 after one iteration, where 𝜂 = 0.1 and the original value of the hidden value is 

1. 

{
 
 

 
 
𝑇𝑛(𝑖, 𝑗, 𝑡 + 1) = 𝑇𝑛(𝑖, 𝑗, 𝑡) − η(𝑇𝑛(𝑖, 𝑗, 𝑡) − 𝐶(𝑖, 𝑗, 𝑡)), 𝑗 = 1,2,3,4

𝑇𝑛(𝑖, 5, 𝑡 + 1) = 𝑇𝑛(𝑖, 5, 𝑡) +
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 5, 𝑡) − 𝐶(𝑖, 5, 𝑡)))

𝑇𝑛(𝑖, 6, 𝑡 + 1) = 𝑇𝑛(𝑖, 6, 𝑡) −
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 6, 𝑡) − 𝐶(𝑖, 6, 𝑡)))

 ,

𝑤ℎ𝑒𝑟𝑒 
1

𝑠
∈
1

2𝑛
 is the resolution and 

𝛼

𝛽
 is the time signature. 

 

Now, for the same example above, the hidden value 1 will become 0.5 after two iterations, 

for 𝜂 = 0.1, the resolution is 
1

16
 and the time signature is 

𝛼

𝛽
=

4

4
. 
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Algorithm 4. SOM for S-MDL 

Input: S-MDL self-training sets, 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 . 

Output: Accuracy for the self-testing, 𝒂𝒄𝒄 

1. Read 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 and parameter initializations (e.g., learning rate, 

𝜼 and number of iterations 𝒌). 

2. Define hidden neurons from 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, 𝒉𝒑,  where p is the 

original melody’s index. 

𝓗 = {𝒉𝒑,   ∀𝒑 ∈ ℕ} ⊆ 𝓜 = {𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
,   ∀𝒐𝒓𝒊, 𝒗𝒂𝒓 ∈ ℕ} 

% For Self-training. 

3. For iteration = 1 to k 

a. For each input from 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊=𝒙,𝒗𝒂𝒓=𝒚
. 

i. Normalization over all 𝒉𝒑 using Equation (30) respectively. 

ii. Evaluate Similarity score over all 𝒉𝒑 using Equation (31) (Equation 

(26)/Equation (27) only when 𝒘𝑹 = 𝟎). 

iii. 𝑺𝒊𝒎𝒎𝒂𝒙 =  𝑺𝒊𝒎(𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑𝒎𝒂𝒙

) =

𝒎𝒂𝒙 {𝑺𝒊𝒎(𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑) , ∀𝒑 ∈ ℕ} (as the activation 

function) 

iv. Return index 𝒑𝒎𝒂𝒙. 

v. Update 𝒉𝒑𝒎𝒂𝒙
 using Equation (32) or Equation (33) where 𝑻𝒏 =

𝒉𝒑𝒎𝒂𝒙
, 𝒏 = 𝒑𝒎𝒂𝒙 𝒂𝒏𝒅 𝑪 = 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚

, and the learning rate 𝜼. 

b. End for 

4. End for 

% For Self-testing. 

5. Repeat step 3.a.i upto 3.a.iv for all 𝑺-𝑴𝑫𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the training sets 

to obtain a confusion matrix. 

6. 𝒂𝒄𝒄 =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓),  𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix. 

7. Output 𝒂𝒄𝒄 
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5.1.1.3. Algorithm for SOM 

Based on the idea and mechanism of SOM and those similarity calculations and learning 

methods, we have constructed Algorithm 4. The input is the melody training set in S-

MDL format, 𝑆-𝑀𝐷𝐿𝑀𝑒𝑙𝑜𝑑𝑦𝑜𝑟𝑖,𝑣𝑎𝑟 using Equation (8), where 𝑜𝑟𝑖 is index of the original 

track and 𝑣𝑎𝑟 is the index for the variational type. The initial hidden neurons were set to 

be those original melodies, where the index for the varitional type is 0. The output is the 

index number, 𝑖, of most likely to be an original melody from variational melodies after 

clustering. 

5.1.2. RL-based EML 

At this stage, we need to maintiain the advantages of audio-based MIRs, an audio 

approach for A-MDL and T-MML is implemented, i.e., audio fingerprinting. With all the 

components, we outline the process flow for our EML approach on MUCASM for OMI. 

5.1.2.1. Audio fingerprinting 

Similar to the existing audio fingerprinting, we, firstly, need to create an audio fingerprint 

hash table. Thus, after evaluating several existing audio-fingerprint approaches, we 

designed the following process flow such that the proposed hybrid system can use both 

symbolic (Algorithm 4) and audio approaches. The process flow considers A-MDL and 

T-MML. For simplicity, the amlitude and the frequency remain constant. 

This process was inserted before the self-training stage, and contains a fingerprint 

extraction function in order to create a fingerprint database that corresponds to Shazam 

fingerprint catalog (Haitsma & Kalker, 2002; Haitsma & Kalker, 2003; Wang, 2003; 

Cano, et al., 2005; Duong & Duong, 2015). Therefore, similar to most audio 

fingerprinting methods, it involves the following stages: 

 Pre-processing: 

We create different samples with size 50%, 200%, 500% or 1000% by extracting or 

interpolating the original data. For example, if the original data contains 10 MDL, we 

implement a sequence of 5, 20, 50 and 100 vectors respectively, which consider either 

the pitch and the duration for S-MDL or the Shazam-like fingerprint catalogue for A-

MDL. 
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 Feature Extraction: 

We extract the distinct frequencies from previous vector sequences into our audio 

fingerprint hash table. 

 Post-processing: 

We count the appearence time either using the tally count or using the actual duration 

time. However, only the original music has been stored at this stage, as we need 

different songs to have distinctive high peak pitches and less affected by the variations. 

 Feature Modelling: 

The numbers of distinctive frequencies stored in our hash table is defined by the 

compression ratio, 50% or 100%. For example, a 50% compression ratio means we 

only the use top five frequencies and the scores in our final table, when we have found 

ten distinct frequencies. The final table were sorted in the appearance of time order, 

from high to low. 

Once we have the hash table, we outlined the following equation for evaluating the 

similarity score between the two hash tables, the hash table for the current input, 𝑇𝐶, and, 

either the ith originals or the ith hidden neurons after SOM, 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖
.  

𝑆𝑖𝑚𝐻 =
|𝐴|

|𝐴| + |𝐵|
+ 𝑒−𝑀𝑆𝐷 𝑤ℎ𝑒𝑟𝑒 

{
 
 

 
 

𝐴 = {𝑖||𝑇𝐶(𝑖, 1) − 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖
(𝑖, 1)| = 0}

𝐵 = {𝑖||𝑇𝐶(𝑖, 1) − 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖
(𝑖, 1)| ≠ 0}

𝑀𝑆𝐷 =
1

|𝐵|
∗∑(𝑇𝐶(𝑖, 1) − 𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖

(𝑖, 1))
2

𝑖∈𝐵

 

 

For the same reason as Equation (25) – (27), we need to modify the two hash tables such 

that they have the same number of rows. Thus, we choose the comparison length that is 

the minimum of the hash tables. I.e. |𝐴| + |𝐵| = min
𝑖
{|𝑇𝐶(𝑖, 1)|, |𝑇𝑂𝑖 𝑜𝑟 𝐻𝑖

(𝑖, 1)|}. 

Thus, Algorithm 5 and Algorithm 6 have shown the process flow for the fingerprint 

extraction and the fingerprint matching for our MUCASM respectively, which relates to 

Figure 2.1-2.  
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Algorithm 5. Audio Fingerprint Extraction 

Input: S-MDL and corresponding T-MML, 𝑺-𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚. 

Output: Audio Hash Table, 𝑻. 

1. Read 𝑺-𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚, based on Equation (8) & (19) and parameter 

initializations (E.g., the Sampling Rate, 𝑹, and the Compression Rate, 𝑪) 

% Pre-processing 

2. 𝑳 =  𝒍𝒆𝒏𝒈𝒕𝒉(𝑺-𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚) 

3. For i = 1 to R*L 

a. Get the current frequency, 𝒇𝒊, and the current calculated duration 

time, 𝑫𝒊, based on the information from the corresponding T-MML.  

% Feature Extraction 

b. If 𝒇𝒊 ≠ 𝒇𝒋, ∀𝒋 < 𝒊 

i. Initialize 𝒕(𝒇𝒊) = 𝟎 

ii. 𝑯(𝒙, 𝟏) ← 𝒇𝒊 , 𝒙 = 𝟏, 𝟐, 𝟑, … 𝒓𝒆𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆𝒍𝒚. Add 𝒇𝒊 at the new 𝒙𝒕𝒉 

row of 𝑯. 

% Post-processing 

iii. 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝟏 𝑶𝑹 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝑫𝒊, 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒔𝒂𝒎𝒆 𝒙. 

c. Else If 𝒇𝒊 = 𝒇𝒋, 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒋 < 𝒊 

i. 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) + 𝟏 𝑶𝑹 𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) +

𝑫𝒊, 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒙 𝒘𝒉𝒆𝒓𝒆 𝑯(𝒙, 𝟏) = 𝒇𝒋. 

d. End If 

4. End For 

5. 𝑻
↓𝑯(𝒙,𝟐)
←    𝑯, sort 𝑯 in order of 𝒕(𝒇𝒊), from high to low. 

% Feature Modelling 

6. Given 𝑪, filter 𝑻. 
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Algorithm 6. Audio Fingerprint Matching 

Input: Hash tables generated by Algorithm 5, 𝑻𝑪, 𝑻𝑶𝒊  𝒂𝒏𝒅 𝑻𝑯𝒊
, ∀𝒊. 

Output: Similarity Scores, 𝑺𝒊𝒎𝑯 and the original melody index, 𝒊.   

1. Read Hash Tables and parameter initialization. 

2. For i = 1 to n 

a. Evaluate 𝑺𝒊𝒎𝑯,𝒊,𝟏 for 𝑻𝑪 and 𝑻𝑶𝒊 using Equation (34). 

b. Evaluate 𝑺𝒊𝒎𝑯,𝒊,𝟐 for 𝑻𝑪 and 𝑻𝑯𝒊
 using Equation (34). 

3. End For 

4. Find 𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 and 𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐 

5. If 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐 

a. 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐 

b. 𝑺𝒊𝒎𝑯 = 𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 

6. Else If 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟏 ≠ 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐 

a. 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

𝑺𝒊𝒎𝑯,𝒊,𝟐 iff the confusion matrix improves in terms of the 

overall accuracy, while training. 

b. 𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒊

(𝑺𝒊𝒎𝑯,𝒊,𝟏, 𝑺𝒊𝒎𝑯,𝒊,𝟐)  & 𝑺𝒊𝒎𝑯 = 𝐦𝐚𝐱
𝒊
(𝑺𝒊𝒎𝑯,𝒊,𝟏, 𝑺𝒊𝒎𝑯,𝒊,𝟐), 

otherwise. 

7. End For 
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5.1.2.2. The Process Flow for EML 

As we now need both MDL and T-MML, Algorithm 4 has been modified with the 

following changes: 

 The input is MDL (either S-MDL or A-MDL or the combination form in Section 4.5) 

and the corresponding T-MML. 

 As T-MML is only involved when using the audio fingerprint, and combined with the 

symbolic-based similarity measurement, we may call Algorithm 6 when necessary. 

 For A-MDL or the combination form, the melody equation in Equation (27) changes 

to 
𝑀𝑒𝑙1,𝑖 = 𝐴-𝑀𝐷𝐿1,𝑖(1)

𝑀𝑒𝑙2,𝑖 = 𝐴-𝑀𝐷𝐿2,𝑖(1)
, whereas for the combination form only, the duration index 

has changed to 5 instead of 6 (3 instead of 6 for A-MDL). We labelled as ‘modified 

Equation (27)’. Similar modification and labelling applied to Equation (29) and 

Equation (30). Moreover, when evaluating symbolic-based similarity scores, only 

MDL is considered. In other words, we filtered out the T-MML. Therefore, nothing 

needs to be added for Equation (25) ~ (31). 

 The following were added to Equation (33) when self-learning from the definition of 

𝑇-𝑀𝑀𝐿𝑆-𝑀𝐷𝐿, was labelled ‘modified Equation (33)’:  

{
 
 

 
 
𝑇𝑛(𝑖, 𝑗, 𝑡 + 1) = 𝑇𝑛(𝑖, 𝑗, 𝑡) − η(𝑇𝑛(𝑖, 𝑗, 𝑡) − 𝐶(𝑖, 𝑗, 𝑡)), 𝑗 = 1,2,3,4

𝑇𝑛(𝑖, 5, 𝑡 + 1) = 𝑇𝑛(𝑖, 5, 𝑡) −
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 5, 𝑡) − 𝐶(𝑖, 5, 𝑡)))

𝑇𝑛(𝑖, 6, 𝑡 + 1) = 𝑇𝑛(𝑖, 6, 𝑡) +
𝛽

𝑠
∗ sgn (η(𝑇𝑛(𝑖, 6, 𝑡) − 𝐶(𝑖, 6, 𝑡)))

, 𝑓𝑜𝑟 𝑇-𝑀𝑀𝐿 

Algorithm 7 shows the modified version of Algorithm 4, where 

𝑀𝐷𝐿&𝑇-𝑀𝑀𝐿𝑀𝑒𝑙𝑜𝑑𝑦𝑜𝑟𝑖,𝑣𝑎𝑟 is defined as (𝑀𝐷𝐿𝑁𝑜𝑡𝑒 𝑇-𝑀𝑀𝐿𝑀𝐷𝐿)𝑖 over the index of the 

original melody and the index of the variation type, and i is the note index of the melody: 
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Algorithm 7. SOM for MDL&MML 

Input: MDL&MML self-training sets, 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 . 

Output: Accuracy for the self-testing, 𝒂𝒄𝒄 

1. Read 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 and parameter initializations (e.g., learning 

rate, 𝜼 and number of iterations 𝒌). 

2. Define hidden neurons from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, 𝒉𝒑,  where p is the 

original melody’s index. 

𝓗 = {𝒉𝒑,   ∀𝒑 ∈ ℕ} ⊆ 𝓜 = {𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
,   ∀𝒐𝒓𝒊, 𝒗𝒂𝒓 ∈ ℕ} 

% For Self-training. 

3. For iteration = 1 to k 

a. For each input from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊=𝒙,𝒗𝒂𝒓=𝒚
. 

i. Normalization over all 𝒉𝒑 using Equation (30) respectively. 

ii. Evaluate Similarity score over all 𝒉𝒑 using Equation (31) (Equation 

(26)/modified Equation (27) only when 𝒘𝑹 = 𝟎) or Algorithm 6. 

iii. 𝑺𝒊𝒎𝒎𝒂𝒙 =  𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑𝒎𝒂𝒙

) =

𝒎𝒂𝒙 {𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑) , ∀𝒑 ∈ ℕ} (Activation func.) 

iv. Return index 𝒑𝒎𝒂𝒙. 

v. Update 𝒉𝒑𝒎𝒂𝒙
 using Equation (32) or modified Equation (33) where 

𝑻𝒏 = 𝒉𝒑𝒎𝒂𝒙
, 𝒏 = 𝒑𝒎𝒂𝒙 𝒂𝒏𝒅 𝑪 = 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚

, and the 

learning rate 𝜼. 

b. End for 

4. End for 

% For Self-testing. 

5. Repeat step 3.a.i upto 3.a.iv for all 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the training 

sets to obtain a confusion matrix. 

6. 𝒂𝒄𝒄 =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓),  𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix. 

7. Output 𝒂𝒄𝒄 
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From this modified SOM mechanism, a Self-supervised Reinforcement-based Ensemble 

Learning mechanism is proposed. 

As each SOM with different combination of the equations may give different effects 

against different variation types, an Ensemble Learning mechanism is proposed, so we 

can merge the Audio-Fingerprinting-based approach described above and those 

Symbolic-based approaches. We treat each SOM with different similarity calculations 

and updating formulae as individual Tier 1 classifier, so we can form the final Tier 2  

mega-classifier, where each Tier 1 classifiers has combined together to optimize the 

performance against each variation type. As we are currently dealing with small size data, 

we have removed the ‘bootstrap’ & ‘jackknife’ resampling stages. Thus, Figure 5.1-2 

shows the ‘Stacked Generalization’ ensemble learning method used in our MUCASM. 

Normally, music comes with certain labels, not just the music itself. This means we can 

use the labels, variation types in our case, to make unsupervised learning mechanism 

supervised. In other words, we can let the system learn which Tier 1 classifier (Algorithm 

1 with different similarity calculations and update formulae) is the most suitable one for 

each variation type. Hence, during the training stage, we compare the performance against 

individual variation type after each epoch, by the accuracy of the confusion matrix. We 

may duplicate the Tier 1 classifiers from the previous epoch, as we cannot guarantee that 

the accuracy will improve after training for all the SOM algorithms. Therefore, we define 

those accuracies as rewards. After applying the ‘Comparison between algorithms’ from 

RL to those rewards, a decision tree, more specifically, a strategy tree, is generated. Hence, 

the mega-classifier will follow the strategy tree and optimize all the Tier 1 classifiers. 

Therefore, the RL-based learning mechanism allows the system to learn how the 

variations classify back to its origin, as well as which measurement is needed for different 

variation types, which has shown in Figure 5.1-3. 

Figure 5.1-4 shows the mechanism for self-supervised learning. Self-supervised learning 

is a supervised learning where the data labels (e.g., variation type) were determined from 

the input data, not from environment. 

Figure 5.1-5 shows the diagram of the SOM and the possible process flow the strategy 

tree may follow.  
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Figure 5.1-2. RL-based EML Mechanism: ‘Stacked Generalization’. 

The upper part of Figure 5.1-5 is the SOM-based Neural Network where we treat each 

original music melody (MDL and T-MML) as a hidden neuron, 𝑇𝑛(), and the input 

melody, 𝐶(), which either be the melody from the Training Data in Figure 5.1-2 & Figure 

5.1-3 or as a general melody. The original music with highest similarity score will be the 

output. I.e., the one highlighted in yellow.  

During each comparison  between the current input, 𝐶(), and the hidden neurons, 𝑇𝑛(), 

denoted as “*”, different routes may have been chosen for evaluating the most ‘suitable’ 

similarity score, in other words, this is the different actions MUCASM takes against 

different variation type labels. The lower part of Figure 5.1-5 illustrates the process flow. 

The ones highlighted in red correspond to the ‘Similarity-based similarity measurement’ 

from Figure 5.1-1 and the ones highlighted in blue correspond to the ‘Audio-based 

similarity measurement’ from Figure 5.1-1. The strategy tree generated in Figure 5.1-3 is 

based on this process flow. 

Finally, Algorithm 8 shows the EML using MDL and MML where 

𝑀𝐷𝐿&𝑇-𝑀𝑀𝐿𝑀𝑒𝑙𝑜𝑑𝑦𝑜𝑟𝑖,𝑣𝑎𝑟 is defined as (𝑀𝐷𝐿𝑁𝑜𝑡𝑒 𝑇-𝑀𝑀𝐿𝑀𝐷𝐿)𝑖 over the index of the 

original melody and the index of the variation type, and i is the note index of the melody. 

Again, MDL is either defined as S-MDL, A-MDL, or the combination form in Section 

4.5.  
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Algorithm 8. RL-based EML for MDL&MML 

Input: MDL&MML self-training sets, 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 . 

Output: Accuracy for the self-testing, 𝒂𝒄𝒄 

1. Read 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 and parameter initializations (e.g., learning 

rate, 𝜼 and number of iterations 𝒌). 

2. Define hidden neurons from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
, 𝒉𝒑,  where p is the 

original melody’s index. 

𝓗 = {𝒉𝒑,   ∀𝒑 ∈ ℕ} ⊆ 𝓜 = {𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
,   ∀𝒐𝒓𝒊, 𝒗𝒂𝒓 ∈ ℕ} 

% Self-training. 

3. For iteration = 1 to k 

a. For each input from 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊=𝒙,𝒗𝒂𝒓=𝒚
. 

i. Normalization over all 𝒉𝒑 using modified Equation (30). 

ii. Evaluate Similarity score over all 𝒉𝒑. 

𝑺𝒊𝒎(𝑴𝑫𝑳𝟏,𝒊(𝒋),𝑴𝑫𝑳𝟐,𝒊(𝒋)) ∶= {
𝒘𝑪 ∗ 𝑺𝒊𝒎𝑪 +𝒘𝑹 ∗ 𝑺𝒊𝒎𝑹 + 𝒃

𝒐𝒓
𝑺𝒊𝒎𝑯

 

where 𝑺𝒊𝒎𝑪 can choose either SC1, SC2 or SC3, 𝑺𝒊𝒎𝑹 is RC 

followed by SR and 𝑺𝒊𝒎𝑯 is using AF & Algorithm 6. 

iii. 𝑺𝒊𝒎𝒎𝒂𝒙 =  𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑𝒎𝒂𝒙

) =

𝒎𝒂𝒙 {𝑺𝒊𝒎(𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚
, 𝒉𝒑) , ∀𝒑 ∈ ℕ}  

(Activation function) 

iv. Return index 𝒑𝒎𝒂𝒙. 

v. Update 𝒉𝒑𝒎𝒂𝒙
 using SL1 or modified SL2  

where 𝑻𝒏 = 𝒉𝒑𝒎𝒂𝒙
, 𝒏 = 𝒑𝒎𝒂𝒙 𝒂𝒏𝒅 𝑪 = 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒙,𝒚

, and the 

learning rate 𝜼. 

b. End for 

4. End for 
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% For Value Generation after each epoch (Self-testing). 

5. For each variation type 

a. For each route from the process flow (Figure 5.1-5) 

i. Repeat step 3.a.i upto 3.a.iv for all 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the 

training sets to obtain a confusion matrix. 

ii. 𝒂𝒄�̃� =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓),  𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix. 

iii. Output 𝒂𝒄�̃� 

iv. Compare and get the max accuracy and the corresponding route 

index. 

v. Strategy Tree generation. 

b. End for 

6. End for 

% (Self-)testing. 

7. Repeat step 3.a.i upto 3.a.iv for all 𝑴𝑫𝑳&𝑴𝑴𝑳𝑴𝒆𝒍𝒐𝒅𝒚𝒐𝒓𝒊,𝒗𝒂𝒓
 in the training 

sets to obtain a confusion matrix, based on the strategy tree. 

8. 𝒂𝒄𝒄 =
|{(𝒐𝒓𝒊,𝒗𝒂𝒓),  𝒑𝒎𝒂𝒙=𝒐𝒓𝒊 }|

|𝒐𝒓𝒊|∗|𝒗𝒂𝒓|
, from the confusion matrix. 

9. Output 𝒂𝒄𝒄 

 

Figure 5.1-3. RL-based EML Mechanism: ‘Comparison between algorithms’.  
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Figure 5.1-4. The mechanism for the self-supervised learning. 

 

Figure 5.1-5. RL-based EML Mechanism: ‘SOM’ and the ‘process flow’ for the Strategy 
Tree.   
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5.2. Experiment, Result and Discussion 

With the design of MUCASM, we carried out several experiments to evaluate the 

possibility and potentialbility of the proposed MUCASM mechanism. The experiments 

are all based on ten original monophornic melodies, music track [23] to [32]. We selected 

the melodies such that they are representative.  

Each original melody considered four bars. We have manually generated the following 

four variation types: ‘Rhythm Variation’, where we have altered the rhythm; ‘Key 

Variation’, where we have altered the musical key; ‘Expansion’, where we have expanded 

melody by inserting some extra notes onto the original melody; ‘Reduction’ where we 

have reduced the melody which is literally by removing some notes. In future, these labels 

would be automatically generated by the computer to satisfy the self-supervised learning 

setting. However in this section, we manually input these labels using numbers without 

let the computer know the exact meaning to test the mechanism.  

In addition, Track [24] has modified to 
4

4
, rather than 

5

4
. Hence, there are 50 S-MDL 

sequences in total to start with, i.e., the input of the MUCASM is the 50 vector-based 

sequences which have been treated as matrices. In other words, with the resolution of 
1

16
, 

3,200 vectors are considered. Alternatively, 250 streams (time series) are generated, as 

we removed 𝐴𝑑 from the definition of S-MDL, because they are all 1s. We believe they 

are representative. At later stage, there are 50 MDL (combination of A-MDL and S-MDL, 

refer to Section 4.5) and T-MML sequences where by the A-S Theorem, the data is 

theoretically equivalent. Thus, the file doubled to 50 two-column matrix sequence. We 

manually created both files in Excel format as we are focused on the impact of 

MDL&MML on MUCASM for OMI at this point, and it would be easier for MatLab to 

import. 

The first experiment is based on the SOM, where we evaluate the best choice of similarity 

calculation and updating formula, so we tested with various combinations of those 

equations. The second experiment is based on the EML, where we evaluate how much 

advantage we can have by combining those methods, as well as through generating a 

strategy tree to describe the relationship between the variation type and the choice of 

those equations.  
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5.2.1. Experiment I: SOM 

This section discusses the experiments based on the Kohonen Self-Organized Map 

Unsupervised Neural Network only for the OMI. 

Our first experiment was carried out as follows: using SC1, SC2, SC3 with SL1 and SL2. 

Modify any factor that could affect the performance of the Self-Organized Map. 

Let 𝑘 = 100 , 𝜂 = 0.0001 , 𝑤𝑀 = 𝑤𝐷 = 0.5  and 𝑏 = 0 , we have Table 5.2-1 for the 

accuracies from the confusion matrix of the 50 melodies. 

Similarity 

Calculation 

Self-Learning 

Method 

Accuracy (Rating) 

(Before SOM) 

Accuracy (Rating) 

(After SOM) 

SC1 SL1 0.84 0.40 

SC1 SL2 0.84 0.24 

SC2 SL1 0.62 0.74 

SC2 SL2 0.62 0.72 

SC3 SL1 0.82 0.62 

SC3 SL2 0.82 0.76 

Table 5.2-1. Priliminary SOM result table. 

From these preliminary results, we filtered SC1 as the accuracy drops massively (over 

50%) after SOM and does not have much advantages without SOM. We also filtered the 

combination: SC3 and SL1 for the same reason. However, we keep the combination: SC3 

and SL2 because it has obtained the highest accuracy after SOM, despite the accuracy 

dropping after SOM. Hence, we rename the remaining three combinations as following: 

S21, S22 and S32 repectively. 

Next, we tested the effectiveness of using SOM. 

Let 𝑘 = 1000 and keep k as a constant, we have altered 𝜂 to be 0.0001, 0.001, 0.01, and 

0.05. Similarily, let 𝜂 = 0.001 and keep η as a constant, we have altered 𝑘 to be 100, 

1000, 5000 and 10000. In theory, 𝑤𝑀 and 𝑤𝐷 will be updated after each epoch, another 

loop outside the existing iteration loop in Algorithm 4. However, we have captured the 

accuracies for the following ratios for the explanation purpose: 0.1: 0.9; 0.3: 0.7; 0.5: 0.5; 

0.7: 0.3; and 0.9: 0.1 (𝑤𝑀: 𝑤𝐷). The results have shown in Table 5.2-2 and Table 5.2-3. 
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Equation 

(𝒘𝑴: 𝒘𝑫) 

Initial 

Accuracy 

Accuracy After SOM (𝒌 = 𝟏𝟎𝟎𝟎) 

𝜼 = 𝟎. 𝟎𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟏 𝜼 = 𝟎. 𝟎𝟓 

S21 0.62 0.74 0.74 0.74 0.74 

S22 0.62 0.72 0.74 0.74 0.74 

S32(𝟎. 𝟏: 𝟎. 𝟗) 0.86 0.14 0.02 0.12 0.20 

S32(𝟎. 𝟑: 𝟎. 𝟕) 0.84 0.72 0.40 0.34 0.68 

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.82 0.64 0.64 0.66 0.68 

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.78 0.68 0.62 0.66 0.66 

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.74 0.70 0.64 0.64 

Table 5.2-2. SOM with 𝑘 as a constant (contour melody only). 

Equation  

(𝒘𝑴: 𝒘𝑫) 

Initial 

Accuracy 

Accuracy After SOM (𝜼 = 𝟎. 𝟎𝟎𝟏) 

𝑘 = 100 𝑘 = 1000 𝑘 = 5000 𝑘 = 10000 

S21 0.62 0.74 0.74 0.74 0.74 

S22 0.62 0.72 0.74 0.74 0.74 

S32(𝟎. 𝟏: 𝟎. 𝟗) 0.86 0.24 0.02 0.02 0.08 

S32(𝟎. 𝟑: 𝟎. 𝟕) 0.84 0.72 0.40 0.40 0.52 

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.82 0.64 0.64 0.66 0.64 

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.78 0.68 0.64 0.66 0.66 

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.74 0.70 0.64 0.64 

Table 5.2-3. SOM with 𝜂 as a constant (contour melody only). 

From these two tables, we have made the following observations: 

 With SC2, Self-Organized Map helps to improve the accuracy by 
(0.74−0.62)

0.62
= 19.4%.  

 For SC3, high accuracy obtained with pre-defined original music melodies as hidden 

neurons. However, the accuracy drops after the training. This is due to the fact that 

we have altered the melody itself. On the other hand, theoretically, there is no 

guarantee that the exact original theme has been chosen for the hidden layer neurons. 

 Despite the drop in accuracy with SC3, we can still observe that, for different weight 

ratio (𝑤𝑀: 𝑤𝐷), the melody preference similarity measurement, 𝑤𝑀 > 𝑤𝐷, can give 

more stable accuracy. Overall, 𝑤𝑀: 𝑤𝐷 = 0.7: 0.3 is the most stable one, with an 

initial accuracy rating of 0.78 and 0.66 after applied SOM.  
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Stable means changing in the learning rate or the number of iterations has less effect on 

the accuracy after the self-training. This matches our musical knowledge, contouric 

melody flow affects more than the duration of the music.  

With these findings, our next experiment has been set up such that we can see the 

performance of SOM by introducing another feature: the rhythm (RC, SR).  

Equation 

（𝒘𝑪: 𝒘𝑹） 

Initial 

Accuracy 

Accuracy After SOM (𝒌 = 𝟏𝟎𝟎𝟎) 

𝜼 = 𝟎. 𝟎𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟎𝟏 𝜼 = 𝟎. 𝟎𝟏 𝜼 = 𝟎. 𝟎𝟓 

S21(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.84 0.84 0.84 0.84 

S21(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.84 0.84 0.82 0.84 

S21(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.82 0.82 0.78 0.78 

S22(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.72 0.62 0.70 0.62 

S22(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.82 0.76 0.76 0.78 

S22(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.72 0.62 0.70 0.62 

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.80 0.70 0.60 0.58 0.56 

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.68 0.58 0.58 0.58 

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.66 0.56 0.66 0.66 

Table 5.2-4. SOM with 𝑘 as a constant (contour melody and rhythm, 𝑤𝑀: 𝑤𝐷 =
0.7: 0.3). 

Equation 

（𝒘𝑪: 𝒘𝑹） 

Initial 

Accuracy 

Accuracy After SOM (𝜼 = 𝟎. 𝟎𝟎𝟏) 

𝑘 = 100 𝑘 = 1000 𝑘 = 5000 𝑘 = 10000 

S21(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.84 0.84 0.84 0.84 

S21(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.84 0.84 0.84 0.84 

S21(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.82 0.82 0.82 0.82 

S22(𝟎. 𝟓: 𝟎. 𝟓) 0.90 0.72 0.62 0.60 0.60 

S22(𝟎. 𝟕: 𝟎. 𝟑) 0.92 0.82 0.76 0.76 0.76 

S22(𝟎. 𝟗: 𝟎. 𝟏) 0.94 0.82 0.80 0.80 0.80 

S32(𝟎. 𝟓: 𝟎. 𝟓) 0.80 0.58 0.60 0.60 0.60 

S32(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.68 0.58 0.58 0.58 

S32(𝟎. 𝟗: 𝟎. 𝟏) 0.78 0.66 0.56 0.60 0.62 

Table 5.2-5. SOM with 𝜂 as a constant (contour melody and rhythm, 𝑤𝑀: 𝑤𝐷 =
0.7: 0.3). 
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Contour  

Rhythm  

Contour  

Rhythm  

S21 

(n/a) 

(𝟎. 𝟓: 𝟎. 𝟓) 

 

 

 

0.74 

(𝑚𝑎𝑥 = 0.74) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.62) 

0.84 

(𝑚𝑎𝑥 = 0.84) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.90) 

S21 

(n/a) 

(𝟎. 𝟕: 𝟎. 𝟑) 

0.8375 

(𝑚𝑎𝑥 = 0.84) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.92) 

S21 

(n/a) 

(𝟎. 𝟗: 𝟎. 𝟏) 

0.81 

(𝑚𝑎𝑥 = 0.82) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.94) 

S22 

(n/a) 

(𝟎. 𝟓: 𝟎. 𝟓) 

 

 

 

0.735 

(𝑚𝑎𝑥 = 0.74) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.62) 

0.65 

(𝑚𝑎𝑥 = 0.72) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.90) 

S22 

(n/a) 

(𝟎. 𝟕: 𝟎. 𝟑) 

0.7775 

(𝑚𝑎𝑥 = 0.82) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.92) 

S22 

(n/a) 

(𝟎. 𝟗: 𝟎. 𝟏) 

0.8125 

(𝑚𝑎𝑥 = 0.86) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.94) 

S32 

(𝟎. 𝟕: 𝟎. 𝟑) 

(𝟎. 𝟓: 𝟎. 𝟓) 

 

 

 

0.66 

(𝑚𝑎𝑥 = 0.68) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.78) 

0.6025 

(𝑚𝑎𝑥 = 0.70) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.80) 

S32 

(𝟎. 𝟕: 𝟎. 𝟑) 

(𝟎. 𝟕: 𝟎. 𝟑) 

0.605 

(𝑚𝑎𝑥 = 0.68) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.80) 

S32 

(𝟎. 𝟕: 𝟎. 𝟑) 

(𝟎. 𝟗: 𝟎. 𝟏) 

0.6225 

(𝑚𝑎𝑥 = 0.66) 

(𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 0.78) 

Table 5.2-6. Comparison and summarization result table for the average accuracy with 
and without the Rhythm feature. 

Features Accuracy  

Summary 
Equation 

(𝒘𝑴:𝒘𝑫)(𝒘𝑪: 𝒘𝑹) 
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For this experiment, we concentrated on the ratio 𝑤𝐶: 𝑤𝑅 while maintaining 𝑤𝑀: 𝑤𝐷 =

0.7: 0.3 and filtered out the results with 𝑤𝐶 < 𝑤𝑅. Thus, in Table 5.2-4, 𝑘 has been kept 

as a constant value of 1000 and altered 𝜂 to be 0.0001, 0.001, 0.01, and 0.05, whereas in 

Table 5.2-5, 𝜂 has been kept as a constant value of 0.001 and altered 𝑘 to be 100, 1000, 

5000 and 10000. Based on Table 5.2-2 ~ Table 5.2-5, Table 5.2-6 summarizes the 

accuracy with or without the rhythm feature. 

From these tables, we have made the following observations: 

 By adding a new musical feature, the accuracy for the MUCASM increases. 

Especially, with SC2 and pre-defined original music melodies, the maximum 

potential accuracy is 0.94. 

 The optimal weight ratio 𝑤𝐶: 𝑤𝑅 is around 0.7:0.3 and 0.9:0.1. In other words, the 

melody flow is much more important compared to the rhythm. This is the reason that 

we can mashup two original music tracks which have similar tempo in Section 1.1, 

and does not escalate them up to a plagiarism cases. 

Additionally, Table 5.2-7 has shown some further analysis on the type of variations which 

will mostly like benefit from SOM, based on two typical results from Table 5.2-2 ~ Table 

5.2-5. 

 S21(n/a)(𝟎. 𝟕: 𝟎. 𝟑) S32(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 

Intial 

Accuracy 

Accuracy After 

SOM 

(𝜂 = 0.001) 

(𝑘 = 1000) 

Initial 

Accuracy 

Accuracy After 

SOM 

(𝜂 = 0.001) 

(𝑘 = 1000) 

Original 1.00 1.00 1.00 0.70 

Rhythm Variation 0.70 0.90 0.90 0.80 

Key Variation 1.00 0.40 0.30 0.10 

Expansion 1.00 1.00 1.00 0.70 

Reduction 0.90 0.90 0.80 0.60 

Overall 0.92 0.84 0.80 0.58 

Table 5.2-7. Comparison and summarization result table for detailed variational type 
breakdowns. 

Equation 

SOM Status 

Variation Type 
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Table 5.2-7 has shown that ‘Rhythm Variation’ is more likely to be benefit from the SOM 

mechanism, as the accuracy increased to 0.90 from 0.70. This suggests that if we consider 

different route for each variation type, i.e., some variation type using the pre-training data 

and some using the post-training data, the overall performance will be increased as we 

combined the maximum accuracy of individual type with different route. 

Moreover, the ‘Key Variation’ can achieve 1 for SL21, which is an improvement from 

the existing audio-based MIR system. Meanwhile, the ‘Expansion’ and ‘Reduction’ 

variation types obtained a potential accuracy of 1 and 0.9 respectively, which improves 

from the existing symbolic-based MIR system. On the other hand, a high accuracy rate 

of 0.90 has obtained for the ‘Rhythm Variation’ by altering the similarity measurement 

and the learning method. This suggested various similarity measurements and learning 

methods can be the route options too. 

5.2.2. Experiment II: RL-based EML 

This section shows the results from the experiments which is based on the RL-based 

Ensembled Machine Learning for the OMI.  

Our first test only considered A-MDL with the modified Equation (25) ~ (31) described 

in Section 5.1.2.2. Table 5.2-8 shows two typical results. 

 Initial 

Accuracy  

Accuracy After SOM 

(𝜼 = 𝟎. 𝟎𝟎𝟏)(𝒌 = 𝟏𝟎𝟎𝟎) 

S21(n/a)(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.40 

S22(n/a)(𝟎. 𝟕: 𝟎. 𝟑) 0.80 0.14 

S31(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 0.86 0.52 

S32(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 0.86 0.20 

Table 5.2-8. SOM with 𝜂, 𝑘 as a constant, considered A-MDL only and modified 
equations. 

From Table 5.2-8 and comparing with Table 5.2-6, we can made the following 

observarions: 

 For A-MDL, SL1 is better than SL2 when SOM is applied, whereas SC3 is better than 

SC2 for similarity measurement. 
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 SCs and SLs gave better overall good measurements and learning mechanisms for S-

MDL rather than A-MDL. For example, the two accuracies for S21(n/a)(0.7: 0.3) with 

S-MDL were 0.92 and 0.84, but 0.80 and 0.40 for A-MDL. 

These comparisons suggested that SCs and SLs were both designed for symbolic-based 

similarity measurement. 

Our next test considered the combination form of MDL and its corresponding T-MML, 

as described in Section 4.5, and the audio fingerprint approach, 𝐴𝐹. The results have 

shown in Table 5.2-9 where ‘A’ corresponds to {
𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝟏

𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) + 𝟏
 and ‘B’ 

corresponds to {
𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝑫𝒊

𝑯(𝒙, 𝟐) ← 𝒕(𝒇𝒊) = 𝒕(𝒇𝒊) + 𝑫𝒊
 from Algorithm 5. 

From these results, we have made the following observations: 

 On average, use the compression ratio of 50% is better than using 100% as in Table 

5.2-9 most accuracy rating with 𝐶 = 50% is larger than 𝐶 = 100%. 

 If the sampling rate is less than 1, the hash table calculation method ‘B’ is better than 

‘A’ and if is greater than 1, currently, ‘A’ is better than ‘B’. However, there is a 

conjectured trend of increasing in accuracy for ‘B’ whereas ‘A’ almost obtained a 

stable accuracy of 0.66. 

Therefore, we pick the sampling rate of 1000%, i.e., enlarge the original MDL length to 

10 times longer, the compression rate of 50% and ‘B’ for our final test.  

Our final experiment tests the RL-based EML where we combined both audio and 

symbolic approaches, and the value is based on the accuracy from the confusion matrix. 

We have adapted different similarity measurements for different variation types and 

generated a strategy tree, to increase the overall accuracy. After 1000 iterations with 𝜂 =

0.001 (defined to be one epoch), we run a self-testing to evaluate the strategy tree, to see 

which route for different type of variations maximizes the final accuracy. Thus, 

theoretically, this change of routing information will affect the choice of maximum 

hidden neurons for the next epoch.  

Typical results have shown in Table 5.2-10 with the comparison of using single (audio or 

symbolic) approach and using both (audio and symbolic) approaches.  
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Initial 

Accuracy 

Accuracy After SOM 

(𝜼 = 𝟎. 𝟎𝟎𝟏) 

(𝒌 = 𝟏𝟎𝟎𝟎) 

AF-SL1/2 

(𝑹 = 𝟓𝟎%) 

(𝑪 = 𝟓𝟎%) 

A 0.64 0.56 

B 0.70 0.54 

AF-SL1/2 

(𝑹 = 𝟓𝟎%) 

(𝑪 = 𝟏𝟎𝟎%) 

A 0.64 0.48 

B 0.68 0.52 

AF-SL1/2 

(𝑹 = 𝟐𝟎𝟎%) 

(𝑪 = 𝟓𝟎%) 

A 0.72 0.66 

B 0.72 0.62 

AF-SL1/2 

(𝑹 = 𝟐𝟎𝟎%) 

(𝑪 = 𝟏𝟎𝟎%) 

A 0.66 0.66 

B 0.68 0.56 

AF-SL1/2 

(𝑹 = 𝟓𝟎𝟎%) 

(𝑪 = 𝟓𝟎%) 

A 0.72 0.66 

B 0.72 0.62 

AF-SL1/2 

(𝑹 = 𝟓𝟎𝟎%) 

(𝑪 = 𝟏𝟎𝟎%) 

A 0.66 0.66 

B 0.68 0.56 

AF-SL1/2 

(𝑹 = 𝟏𝟎𝟎𝟎%) 

(𝑪 = 𝟓𝟎%) 

A 0.72 0.66 

B 0.74 0.64 

AF-SL1/2 

(𝑹 = 𝟏𝟎𝟎𝟎%) 

(𝑪 = 𝟏𝟎𝟎%) 

A 0.66 0.66 

B 0.68 0.58 

Table 5.2-9. SOM with audio fingerprint approach only, considered MDL & T-MML.  

SOM Status 

A/B 

AF-Equation 

(Sampling Rate) 

(Compression Rate) 
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Initial Accuracy 

Accuracy After 

SOM 

(𝜼 = 𝟎. 𝟎𝟎𝟏) 

(𝒌 = 𝟏𝟎𝟎𝟎) 

(AF+SC2)*SL1 

1000%&50%&B 

(n/a)(𝟎. 𝟕: 𝟎. 𝟑) 

Audio 0.74 0.64 

Symbolic 0.92 0.84 

EML 0.96 0.84 

(AF+SC2)*SL2 

1000%&50%&B 

(n/a)(𝟎. 𝟕: 𝟎. 𝟑) 

Audio 0.74 0.64 

Symbolic 0.92 0.76 

EML 0.96 0.76 

(AF+SC3)*SL1 

1000%&50%&B 

(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 

Audio 0.74 0.64 

Symbolic 0.80 0.64 

EML 0.80 0.68 

(AF+SC3)*SL2 

1000%&50%&B 

(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 

Audio 0.74 0.64 

Symbolic 0.80 0.58 

EML 0.80 0.66 

AF*SL2+(SC2+SC3)*SL1 

1000%&50%&B 

(𝟎. 𝟕: 𝟎. 𝟑)(𝟎. 𝟕: 𝟎. 𝟑) 

Audio 0.74 0.64 

Symbolic 
0.92 0.84 

0.80 0.64 

EML 0.96 0.84 

Table 5.2-10. EML with MDL & T-MML. 

  

SOM Status 

 

Method 

Equation Labels 

(𝑅)&(𝑪)&A/B 

(𝒘𝑴:𝒘𝑫)(𝒘𝑪: 𝒘𝑹) 
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From these results, we have made the following observations: 

 By using the ‘Stacked Generalization’ and ‘Comparison between algorithms’, the 

accuracy can be improved. 

 It will be better for ‘Original’ and ‘Rhythm Variation’ to use the Audio Fingerprint 

approach, whereas the Tier 1 SOM classifier using SL2 at training. In the meanwhile, 

‘Key Variation’ and ‘Reduction’ to use the symbolic approach with SC2 and 

‘Expansion’ is with SC3, whereas the Tier 1 SOM classifiers using SL1 at training. 

Figure 5.2-1 shows the hidden strategy tree for the final mega-classifier, learned from our 

RL-based EML MUCASM mechanism. 

 

Figure 5.2-1. Strategy tree generated by the RL-based EML Mechanism.  

5.3. Summary 

From all the experiments in this chapter, we have illustrated that the proposed MUCASM 

mechanism allows Original Music Identifier more accurate, as by adding features, 

ensembling different algorithms (with various similarity measurements and update 

formulae) and introducing self-supervised learning mechanism, there is an increase in the 

accuracy rating of the classification problem, from 74% to 96%. 

Thus, the next chapter evalutes the performance against existing MIR systems. 
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6. Further Discussion and Evaluation 

With those proof-of-concept prototypes for the proposed coding scheme and the 

MUCASM mechanism, we now need to further evaluate the E3MSD architecture, based 

on the summaries from the literature review and the research objectives. 

6.1. MDL&MML Conversions 

We have modified Algorithm 2 and Algorithm 3 such that the input is a MIDI file instead. 

Hence, we can evaluate our signal processing prototype implemented in Section 4.5 as 

well as demonstrate the relationship between MDL and MIDI files described in Section 

4.1, by comparing the parameter values of the melody in MIDI format and in the 

converted (S-)MDL format. The procedure outline is shown in Algorithm 9. 

 

Algorithm 9. MIDI MDL Conversion 

Input: MIDI File 

Output: A-MDL/(S-)MDL Files, Similarity scores: 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹.  

1. Read MIDI files and parameter initializations (e.g., 𝜽 and 𝝑) 

2. Fetch the acoustic value. 

% line 3-6 were based on Algorithm 2. 

3. Extract relevant features using FFT. 

4. Convert into A-MDL file. 

5. Convert into S-MDL file, rounding when necessary. 

6. Output A-MDL and S-MDL files. 

% line 7-8 were based on Algorithm 3. 

7. Extract the melody line, 𝐦𝟏(𝐭) & 𝐦𝟐(𝐭), and the rhythm line, 𝐫𝟏(𝐭) & 𝐫𝟐(𝐭), 

from the relevant parameter values of the MIDI file and the converted S-

MDL file, respectively. 

8. Evaluate and output 𝐒𝐢𝐦𝑪 & 𝐒𝐢𝐦𝑹 using line 693-12 of Algorithm 3. 
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After input track [27], in MIDI format, to Algorithm 9 and set  𝜃 = −1, 𝜗 = 1.0 𝐻𝑧, 

Sim𝐶 = 85.93%  for A-MDL and Sim𝐶 = 100%  for S-MDL, whereas Sim𝑅 = 100%  

for both MDL files. This result has further indicated that S-MDL is corresponding to 

MIDI, and hence the assumption made in Section 5.1 is reasonable. 

On the other hand, as already mentioned in Section 4.3, the further evaluation for the 

effectiveness of MDL and T-MML to the audio sound is included in Xue’s project (Xue, 

2018). 

6.2. MUCASM 

To evaluate MUCASM, we input twenty melodies onto the trained MUCASM after first 

epoch. Half of them were those origin pieces and the remaining half were ‘new’ melodies, 

such that the first half were used to test the exact search and the second half were used to 

test the approximate search. Those ten ‘new’ melodies do not belong to our training 

dataset and randomly covers each variation type from those ten origins. They were 

manually implemented and converted into the MDL and MML format. 

For the exact search, from original to original, it has obtained 100% accuracy for all Tier-

1 classifiers and the final mega-classifier, which can be achieved by the audio-based MIR 

systems using the same melody segment. However, the existing audio-based MIR 

systems were limited in approximate search, from variation to original, which has 

described in Section 2.1.1, but our MUCASM is capable, as we have found out that 

approximately 80% of those ‘new’ melodies have successfully found its origin by our 

MUCASM. 

Furthermore, we also compared with Musipedia, a symbolic-based MIR system. Due to 

the limitation of the music that is stored in Musipedia, more importantly, some of the 

melodies in our database are ‘fake’ variation music melodies. It is hard to get a direct 

comparison for benchmarking. Therefore, we evaluate the melodies that exist in both 

database. 

After testing the music data on Musipedia by translating our MDL to their input, we found 

out that the music piece “Canon” and “Twelve Variations On "Ah Vous Dirai-Je, Maman” 

were stored in the Musipedia Database. For the “Canon” melody, Musipedia failed to 

retrieve the origin from the ‘Expansion’ and ‘Reduction’ variations. Meanwhile, for the 
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“Twelve Variations On "Ah Vous Dirai-Je, Maman” melody, instead of “Twinkle, 

Twinkle, Little Star”, we cannot retrieve the complex version from the simplified melody, 

which further confirmed that Musipedia cannot deal with the ‘Reduction’ variation. By 

comparing the result with those ten ‘new’ melodies, MUCASM has obtained a relative 

higher retrieval accuracy. 

Finally, for the processing time for our MUCASM, it is going to be 𝑂(𝑒 ∗ 𝑘 ∗ 𝑛 ∗ 𝑚 ∗ 𝑡) 

for training as in Algorithm 8, we loop melodies which either are the origin or the 

variations, 𝑛 , and the number of origin melodies, 𝑚  with respect to the number of 

variation types , 𝑡, for 𝑒 ∗ 𝑘 times, where 𝑒 is the number of epoches and 𝑘 is the number 

of iterations. For well-trained MUCASM, the search order is just 𝑂(𝑚). However, we 

have not considered the search using the melody segement from a long melody that is 

stored in the database.  

6.3. Evaluation 

Table 6.3-1 shows how much we have covered in our E3MSD prototypes against the 

features and limitations summarized in Section 2.1.1 and 2.1.2, and the designed features 

in Chapter 3, which also correspond to the research objectives described in Section 1.3. 

 

 

 

 

 

 

The followings are the notes for Table 6.3-1 where there is no space underneath the table: 

[1] In Excel format. 

[2] (Xue, 2018). 

[3] Almost no variations and noise sensible. 

[4] Not good at ‘Expansion’ and ‘Reduction’. 

[5] Potentially High.  
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Research Objectives/Features/Limitations Audio-based 
Symbolic-

based 

E3MSD-

based 

Code 

↓ 

Music 

Literature Review   n/a 

Fedility of 

Music 

Normal note    

Glissando Continuous Discrete Continuous 

Lyrics    

File Size Large Small Medium[1] 

Proof-of-concept n/a n/a 

, 

SPD 

Player[2] 

Music 

↓ 

Code 

Extract/Represent 

musical features 

Melody Indirect Direct Direct 

Rhythm Indirect Direct Direct 

Conversion from Audio n/a   

Proof-of-concept n/a n/a 
, 

FFT 

Code 

↓ 

Similarity 

Scores 

Similarity Calculation methods 

Audio-

Fingerprint 

(I.e., AF) 

Various 

methods 

Combined 

(AF, SL1, 

SL2, SL3, 

SR) 

Applications 

Proof-of-concept n/a n/a 
, 

RL-EML 

Benchmark n/a n/a Indirect 

Size of dataset, for training and 

testing 
Huge Large Small 

Retrieving Types 

Genre, 

Melody/Lyrics, 

Mood, 

Timber 

Melody, 

Rhythm, 

Scale, 

Contour 

Melody, 

Rhythm 

Process Time Long Short Medium 

Retrieving 

Accuacy 

Exact High High High 

Approximate Low[3] Medium[4] High[5] 

Table 6.3-1. Project Evaluation Summary Table.   
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* https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/Presentation/4c035b43fe5b4272a89dc222da1485271d 

 

Figure 6.3-1. Park et al. (2019)’s example.  

In addition, we use an example from Park et al. (2019), Figure 6.3-1, to illustrate the 

advantages of using MDL&MML. By using Park’s approach, the melody pair 1 gave a 

similarity score of 0.7755 and the melody pair 2 gave 0.6815. i.e., the melody pair 1 has 

a higher similarity score than the melody pair 2. However, when she presented her paper 

in the ISMIR conference*, majority of the audience thought the opposite. If using 

MDL&MML with different types of MDL (S-MDL or A-MDL) and similarity 

measurements, both results can be obtained under different scenarios. For example, by 

comparing 𝑆𝑖𝑚𝑀, we may obtain 𝑒−751 against 𝑒−512 using SrC3 or 𝑒−175 against 𝑒−320 

if we ignore 𝑀𝐷𝐿1,𝑖(2) from SC3 resepectively. Moreover, by comparing 𝑆𝑖𝑚𝑅, both 

melody pairs give 
26

32
 using SR, where the resolution is 

1

8
. Equal similarity scores suggest 

that the music search purely based on the rhythm obtained low retrieval accuracy (Section 

2.1.2 on page 22). 

Finally, here are the limitations of our project on E3MSD: 

 From Table 6.3-1, the most critical limitation for our MUCASM is the amount of 

variation types and the size of music dataset, for training and testing. 

 Despite we have use Figure 6.3-1 as an example, a large-scale benchmarking with 

well-recognized music tracks is still needed to provide a much stronger evidence that 

using MDL&MML is better than using other symbolic formats, as well as using 

MUCASM on OMI is better than using other mechanisms. 

  

https://collegerama.tudelft.nl/Mediasite/Showcase/ismir2019/Presentation/4c035b43fe5b4272a89dc222da1485271d
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7. Conclusions and Future Works 

7.1. Conclusion 

We have proposed a musical data model named Music Definition Language and Music 

Manipulation Language. MDL has a similar concept with existing symbolic coding 

schemes whereas MML is introduced such that we can obtain a closer sound waveform 

without affecting the musial melody flow.  

For completion, we have shown the relationship between the audio format, symbolic 

format and MDL&MML, theoretically and practically. The file size of an MDL and MML 

file is smaller than the audio file whereas the fidelity of the music using the MDL and 

MML format is better than using those symbolic formats.  

It has been demonstrated that by using the proposed data model (MDL&MML), we can 

employ a Self-supervised Reinforcement-based Ensemble Learning to improve the 

performance of MUCASM for OMI. By introducing a weighted similarity measurements 

which combines the contouric melody and rhythm, and by altering the updating formula, 

we have achieved similarity accuracy of 84%. By introducing the RL-based EML that 

schedules different routes for different variation types of the origins, a potential similarity 

accuracy of 96% can be reached.  

In addition, we have compared with Park et al. (2019)’s example and shown that our 

approach can provide various results under different scenarios. 

All the results indicate that E3MSD can maintain high symbolized music fidelity, lead to 

extensibility in searchability and improved search performance by integrating the audio-

based and the symbolic-based approaches on the music data model and the learning 

mechanism. Hence, we believe that our research outcomes will benefit the off-line or on-

line Music Search and the Plagiarism Protection, as well as music data storage and data 

representation. 

 

 



112 
 

7.2. Future Works 

Here are some suggested future works:  

 For the representation of the MDL&MML files, we can add a stochastic function such 

that the sound wave generated will be closer to the audio sounds, as well as 

considering the harmony of the music note. 

 For MUCASM, we can add more musical features onto the process flow in Figure 

5.1-5, resulting in more Tier 1 classifiers for the mega-classifier. We can increase the 

music length and depth to make the MUCASM work for complex music pieces, e.g., 

EM, and further integrate with Policy-based Reinforcement Learning. Moreover, we 

can upgrade MUCASM by incoperating Generative Adversarial Network (GAN), 

introduced by Ian Goodfellow (Goodfellow, et al., 2014), or Recurrent Generative 

Adversarial Network (RGAN), introduced by Briot et. al. (2017). GAN and RGAN 

have been applied to general image processing and signal processing to improve the 

robustness of the classifications (Reed, et al., 2016; Briot, et al., 2017; Pascual, et al., 

2017). Their idea is to generate several ‘fake’ images from the real ones whereas we 

generated ‘fake’ melodies, as previously mentioned.  

 For applications, we need to design more syntax and rules of MDL and MML. 

 For project evaluation, we need to increase the amount of music for training and 

testing, as well as carry out some large-scale benchmarking from well-recognized 

music tracks. 

 For more industrial uses, we can extend to remix music generation based on various 

similarity scores as well as implement an MDL&MML player, with or without videos.  
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Appendix 

Appendix A. Detailed Project Methodologies 

Our project starts with relevant primary and secondary research, the results have shown 

in Chapter 2. Next, we analysed some typical software development life cycle models 

(Bhuvaneswari & Prabaharan, 2013; Anon., n.d.), to decide how the rest of the project 

should proceed. Here are the definitions of the four different types of the development 

models: 

Definition 11. The Linear Model. 

The Linear Model is also known as the Waterfall Model. This classic model requires the 
developer to work on a very organized schedule, the plan is in a sequential order and the 
developer completes the individual tasks one by one. (e.g., define-before-design and 
design-before-code). The complete solution only appears at the end of the process.  

Definition 12. The Iterative Model. 

Unlike the linear model, this model does not require with the full specification of 
requirements. During each iteration, we followed the process from the linear model. 
Further requirement could be identified. By repeating this process, we can get different 
version of the final product.  

Definition 13. The Incremental Model. 

This model involves several developing stages, and the final product is produced after 
finishing all the increments. We can see the partial core product after one increment 
stage, and after every increment stage, new function can be added to satisfy user’s 
requirement. 

Definition 14. The Evolutionary Model. 

Deal with complex systems, normally a comination of iterative and incrementl model. 
Typical examples would be the Prototyping, Spiral models. 

Based on (Bhuvaneswari & Prabaharan, 2013), Table A-1 summarizes the pros and cons 

for those models. According to Section 1.3, our project involves certain general aims and 

objectives. Moreover, it is not a large project, and  have a three years time limitation. 

Therefore, the prototyping model is a reasonable choice for our project.  

The next decision is the choice for the programming language through out the project. 

Table A-2 shows the pros and cons of several typical programming languages (Boisvert, 

et al., 2001; Prechelt, 2003; Hong & Cai, 2010). According to Section 1.3, our project is 

majorly to evaluate music similarity scores by converting music data into mathematical  
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 Pros Cons 

Linear 

(Waterfall) 

 Easy to understand and 

implement. 

 Fault fixed before carrying out 

any implementation. 

 Possible to estimate the 

development and the time 

cost. 

 Hard to get accurate 

requirements. 

 Errors may be discovered at 

later stages.  

 Expensive to make any 

alternations. 

 Difficult for risk 

management integration. 

Iterative  Improve the product step by 

step. 

 Possible to get reliable and 

useful user feedback. 

 Less documentation time and 

more design time. 

 No overlap for each 

iteration. 

 May not get full 

requirements, and thus, 

inaccurate design of system 

architectures. 

Incremental  Problem can be detected 

earlier and able to made 

changes after each cycle. 

 Fast core product production. 

 Heavy documentations. 

 Difficult for partitioning the 

functions and features 

 Long time period. 

Evolutionary: 

Prototyping 

(leads to Rapid 

Application 

Developement) 

 Quick plan and quick design. 

 Reduces the development 

time. So faster production. 

 Components can be reused. 

 Fuzzy requirements. 

 Inefficiency algorithm. 

 Fail for large project with 

lacked commitment or poor 

project modularization. 

Evolutionary: 

Spiral 

 High amount of risk analysis. 

 Adaptive and allow alteration 

for funcionalities and 

requirements. 

 More completed version of 

the software can be produced. 

 Need to consider all major 

risks at all stages. 

 Can be a costly model to 

use. 

 Does not work well for 

small projects. 

Table A-1. Pros and Cons for the Development Models (Bhuvaneswari & Prabaharan, 
2013). 
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 Pros Cons 

C/C++/ 

Java 

 C allows to implement extreme 

efficient programs (Compiled). 

 C++ is somehow super set of C, 

by adding object-oriented 

features, extensions etc.  

 Java, resembles C, is object 

oriented (with important 

features), and has a higher 

portability and safety. It allows 

incorporate into documents 

describing the behaviour of the 

architecture. 

 C/C++ reliant on well-written 

programs.  

 C/C++ are not machine 

independent and lack of certain 

high-level language features. 

 Java needs longer simulation 

run times. 

 Java has difficulty for certain 

coordination components of a 

large numerical application, 

e.g., complex number and true 

multidimensional arrays. 

MATLAB 

 

 Simple and useful with friendly 

working platform. 

 Powerful capability of 

processing mathematical and 

scientific computer data. 

 Exellent function of processing 

graphics. 

 Widely used toolkit modules. 

 Low operating efficiency. 

 Non cross-platform, low 

portability. 

 Relatively poor capability of 

access to hardware. 

 Graphical User Interface 

functions were not flexible 

enough. 

Python  Resembles Java with many 

built-in functions. No special 

rule when combining them. 

 Easier for programmer to read 

and study.  

 Slow speed of execution as 

Python is interpreted, instead of 

using compilers. 

 Design restrictions and may 

raise run-time errors. 

Table A-2. Pros and Cons for C, C++, Java, MATLAB and Python. 

data. I.e., more theoretical than application practical. Thus, from the summary table, 

MATLAB is the reasonble programming language choice for our project. In addition, it 

is possible to interface with other programs written in C, C++, Java, Python etc. 

(MATLAB and Simulink Homepage, 2019).  
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Appendix B. Codes 
 

Certain functions and important steps from those Algorithms and Equations were shown 

in here: 

Algorithm 1 

Line 5b: 

 

Algorithm 2, 9 

Extra lines for Algorithm 9, related functions were from http://kenschutte.com/midi: 

 

http://kenschutte.com/midi
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FFT: 

 

Algorithm 3-4,7-8 

SC1: 
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SC2: 
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SC3: 
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RC&SR: 
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SL1&SL2: 

 

Strategy Tree Generation for RL-EML: 
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Algorithm 5-6 

AF-Extraction: 

 

 

 

 

 

 

 

 

 

 

 



137 
 

AF-Matching: 
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Appendix C. Project Management & Others 
Project Milestone & Gantt Chart for Time Management:
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Risk Assessment Form:

Content removed on data protection grounds
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Content removed on data protection grounds
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Content removed on data protection grounds
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