10 research outputs found

    The Complexity of Enriched Mu-Calculi

    Full text link
    The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus.Comment: A preliminary version of this paper appears in the Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP), 2006. This paper has been selected for a special issue in LMC

    Solving Parity Games in Scala

    Get PDF
    Parity games are two-player games, played on directed graphs, whose nodes are labeled with priorities. Along a play, the maximal priority occurring infinitely often determines the winner. In the last two decades, a variety of algorithms and successive optimizations have been proposed. The majority of them have been implemented in PGSolver, written in OCaml, which has been elected by the community as the de facto platform to solve efficiently parity games as well as evaluate their performance in several specific cases. PGSolver includes the Zielonka Recursive Algorithm that has been shown to perform better than the others in randomly generated games. However, even for arenas with a few thousand of nodes (especially over dense graphs), it requires minutes to solve the corresponding game. In this paper, we deeply revisit the implementation of the recursive algorithm introducing several improvements and making use of Scala Programming Language. These choices have been proved to be very successful, gaining up to two orders of magnitude in running time

    On P-transitive graphs and applications

    Full text link
    We introduce a new class of graphs which we call P-transitive graphs, lying between transitive and 3-transitive graphs. First we show that the analogue of de Jongh-Sambin Theorem is false for wellfounded P-transitive graphs; then we show that the mu-calculus fixpoint hierarchy is infinite for P-transitive graphs. Both results contrast with the case of transitive graphs. We give also an undecidability result for an enriched mu-calculus on P-transitive graphs. Finally, we consider a polynomial time reduction from the model checking problem on arbitrary graphs to the model checking problem on P-transitive graphs. All these results carry over to 3-transitive graphs.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Logical Combinators for Rich Type Systems

    Get PDF
    We present a functional approach to design rich type systems based on an elegant logical representation of types. The representation is not only clean but avoids exponential increases in combined complexity due to subformula duplication. This opens the way for solving a wide range of problems such as subtyping in exponential-time even though their direct translation into the underlying logic results in an exponential blowup of the formula size, yielding an incorrectly presumed two-exponential time complexity.Nous présentons une approche fonctionnelle pour concevoir des systèmes de types riches basée sur une représentation élégante et logique des types. La représentation n'est pas seulement propre, mais évite une augmentation exponentielle de la complexité en raison de duplication de sous-formules. Cela ouvre la voie pour résoudre un large éventail de problèmes tels que le sous-typage en temps simplement exponentiel, même si leur traduction directe dans la logique sous-jacente produit une explosion combinatoire de la taille de la formule, donnant une complexité en temps incorrectement présumée doublement exponentielle

    Relentful Strategic Reasoning in 1 Alternating-Time Temporal Logic

    Get PDF
    Temporal logics are a well investigated formalism for the specification, verification, and synthesis of reactive systems. Within this family, Alternating-Time Temporal Logic (ATL , for short) has been introduced as a useful generalization of classical linear- and branching-time temporal logics, by allowing temporal operators to be indexed by coalitions of agents. Classically, temporal logics are memoryless: once a path in the computation tree is quantified at a given node, the computation that has led to that node is forgotten. Recently, mCTL has been defined as a memoryful variant of CTL , where path quantification is memoryful. In the context of multi-agent planning, memoryful quantification enables agents to “relent” and change their goals and strategies depending on their history. In this paper, we define mATL , a memoryful extension of ATL , in which a formula is satisfied at a certain node of a path by taking into account both the future and the past. We study the expressive power of mATL , its succinctness, as well as related decision problems. We also investigate the relationship between memoryful quantification and past modalities and show their equivalence. We show that both the memoryful and the past extensions come without any computational price; indeed, we prove that both the satisfiability and the model-checking problems are 2EXPTIME-COMPLETE, as they are for AT

    Reasoning About Strategies: On the Model-Checking Problem

    Full text link
    In open systems verification, to formally check for reliability, one needs an appropriate formalism to model the interaction between agents and express the correctness of the system no matter how the environment behaves. An important contribution in this context is given by modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL\star, and the like. Recently, Chatterjee, Henzinger, and Piterman introduced Strategy Logic, which we denote here by CHP-SL, with the aim of getting a powerful framework for reasoning explicitly about strategies. CHP-SL is obtained by using first-order quantifications over strategies and has been investigated in the very specific setting of two-agents turned-based games, where a non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems. In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about strategies in multi-agent concurrent games. We prove that SL includes CHP-SL, while maintaining a decidable model-checking problem. In particular, the algorithm we propose is computationally not harder than the best one known for CHP-SL. Moreover, we prove that such a problem for SL is NonElementarySpace-hard. This negative result has spurred us to investigate here syntactic fragments of SL, strictly subsuming ATL\star, with the hope of obtaining an elementary model-checking problem. Among the others, we study the sublogics SL[NG], SL[BG], and SL[1G]. They encompass formulas in a special prenex normal form having, respectively, nested temporal goals, Boolean combinations of goals and, a single goal at a time. About these logics, we prove that the model-checking problem for SL[1G] is 2ExpTime-complete, thus not harder than the one for ATL\star

    Reasoning about LTL Synthesis over finite and infinite games

    Get PDF
    In the last few years, research formal methods for the analysis and the verification of properties of systems has increased greatly. A meaningful contribution in this area has been given by algorithmic methods developed in the context of synthesis. The basic idea is simple and appealing: instead of developing a system and verifying that it satisfies its specification, we look for an automated procedure that, given the specification returns a system that is correct by construction. Synthesis of reactive systems is one of the most popular variants of this problem, in which we want to synthesize a system characterized by an ongoing interaction with the environment. In this setting, large effort has been devoted to analyze specifications given as formulas of linear temporal logic, i.e., LTL synthesis. Traditional approaches to LTL synthesis rely on transforming the LTL specification into parity deterministic automata, and then to parity games, for which a so-called winning region is computed. Computing such an automaton is, in the worst-case, double-exponential in the size of the LTL formula, and this becomes a computational bottleneck in using the synthesis process in practice. The first part of this thesis is devoted to improve the solution of parity games as they are used in solving LTL synthesis, trying to give efficient techniques, in terms of running time and space consumption, for solving parity games. We start with the study and the implementation of an automata-theoretic technique to solve parity games. More precisely, we consider an algorithm introduced by Kupferman and Vardi that solves a parity game by solving the emptiness problem of a corresponding alternating parity automaton. Our empirical evaluation demonstrates that this algorithm outperforms other algorithms when the game has a small number of priorities relative to the size of the game. In many concrete applications, we do indeed end up with parity games where the number of priorities is relatively small. This makes the new algorithm quite useful in practice. We then provide a broad investigation of the symbolic approach for solving parity games. Specifically, we implement in a fresh tool, called SPGSolver, four symbolic algorithms to solve parity games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been. LTL synthesis has been largely investigated also in artificial intelligence, and specifically in automated planning. Indeed, LTL synthesis corresponds to fully observable nondeterministic planning in which the domain is given compactly and the goal is an LTL formula, that in turn is related to two-player games with LTL goals. Finding a strategy for these games means to synthesize a plan for the planning problem. The last part of this thesis is then dedicated to investigate LTL synthesis under this different view. In particular, we study a generalized form of planning under partial observability, in which we have multiple, possibly infinitely many, planning domains with the same actions and observations, and goals expressed over observations, which are possibly temporally extended. By building on work on two-player games with imperfect information in the Formal Methods literature, we devise a general technique, generalizing the belief-state construction, to remove partial observability. This reduces the planning problem to a game of perfect information with a tight correspondence between plans and strategies. Then we instantiate the technique and solve some generalized planning problems

    The Complexity of Enriched Mu-Calculi

    No full text
    The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus
    corecore