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Combinateurs logiques pour des systèmes de types riches
Résumé : Nous présentons une approche fonctionnelle pour concevoir des systèmes de types
riches basée sur une représentation élégante et logique des types. La représentation n’est pas
seulement propre, mais évite une augmentation exponentielle de la complexité en raison de
duplication de sous-formules. Cela ouvre la voie pour résoudre un large éventail de problèmes
tels que le sous-typage en temps simplement exponentiel, même si leur traduction directe dans la
logique sous-jacente produit une explosion combinatoire de la taille de la formule, donnant une
complexité en temps incorrectement présumée doublement exponentielle.

Mots-clés : logique, duplication, taille des formules
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1 Introduction

During the last few years, a growing interest has been seen in the use of logical solvers, such as
satisfiability solvers and satisfiability-modulo solvers, in the context of functional programming
and static type checking [4, 3, 10]. Any progress made for enhancing the expressivity or suc-
cinctness of underlying logics may have a drastic impact on static type systems for functional
programming languages. In particular, logical advances make it possible to obtain efficient pro-
cedures for deciding subtyping relations in increasingly richer type systems. For example, solvers
for tree logics [9, 7] are used as basic building blocks for type systems for XQuery [10].

In this context, we generalize a logic already used for solving XPath static analysis [9] and
subtyping for parametric polymorphic types [10] with combinators. These combinators allow the
description of advanced type properties such as cardinality constraints, tree type frontiers, and
other complex properties requiring heavy subformula duplication. We show that this approach
is not only elegant but avoids exponential increases in combined complexity due to subformula
duplication.

From a logical point of view, by embedding types into logical frameworks, we can capture
types that are of very high expressive power, but with precise complexity bounds for reasoning.
However, some advanced features in type systems such as the ones underlying XML include sev-
eral constructs that cannot easily or succinctly be translated in logics as the µ-calculus. The most
important of such constructs are inverse programs, nominals, and counting constraints. Inverse
programs allow to navigate backwards along accessibility relations [13]. Nominals are proposi-
tional variables interpreted as singleton sets. Counting operators enable statements about the
number of occurrences of nodes satisfying a given formula. Since they allow counting anywhere
in trees, they can be seen as a powerful generalization of graded modalities [5, 2].

As reported by Bonati and al [5], the combination of these three features leads to undecid-
ability for the general µ-calculus [14]. Another concern in such embeddings is related to the
translation cost. Even when the problem at hand is known to be decidable, one needs to control
possible blowups, via duplications, in the logical translation of problems. The logic considered
here is a restricted form of µ-calculus tuned for trees which remains decidable with these three
features combined, unlike [5]. More precisely, these features are described as combinators which
preserve the exact complexity bound of the original logic.

Two essential steps are involved in the reduction of a problem such as subtyping to logical
satisfiability: (1) the translation of the initial problem into a logical formula (using a derivor), and
(2) the actual satisfiability check of the formula. Traditionally, the complexity of the satisfiability
test is stated in terms of the size of the formula, thus every duplication of sub-formulas during
the first step may affect the combined complexity and severely impact the practical applicability
of the entire approach. Interestingly, we observe that a common form of µ-calculus sub-formula
duplication has a very limited impact on combined complexity in existing implementations, such
as [9, 11, 12]. The reason lies in the fact that satisfiability-testing algorithms can operate directly
on a Hinttika-set-like representation of formulas composed of atomic propositions and modal sub-
formulas. In this setting, we prove that the time complexity actually depends on the number
of distinct atomic propositions and modal sub-formulas. This makes explicit a notion of truth-
status sharing for identical sub-formulas not exhibited in the analysis of the time complexity of
such algorithms.

We develop this idea in the context of a logic borrowed from [9]. The logic is an alternation-free
µ-calculus with converse modalities whose models are finite trees. Trees are encoded in binary,
without loss of generality [6], through the “first-child” and “next-sibling” modalities, respectively
noted 〈1〉 and 〈2〉 (see Figure 1).

In this setting, an elegant way of building a µ-calculus formula is to apply a combinator
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Figure 1: N-ary to Binary Tree Encoding

to another formula. For instance, split(X) = 〈1〉X ∧ 〈2〉X is a combinator that generates a
formula such that the input formula must hold in both successors of the current node. Although
X is duplicated, the increase of the size of the lean generated from split(ϕ) when compared to
the one generated from ϕ is only a small constant, independent of ϕ.

The paper is organized as follows. We recall the logic in §2, state our main result in §3, and
give several examples in §4.

2 Basic Logical Formulas and Combinators

We recall the syntax of the logic of [9], used to prove properties about finite binary trees. We
consider a set AP of atomic propositions, representing the tree node names, which includes a
special reserved name σ; a set Var of variables, used in fixpoints; and a set Prog =

{
1, 2, 1, 2

}
of

programs, to describe navigation in a tree. Program 1 navigates to the first child (left successor
in Figure 1), program 2 navigates to the next sibling (right successor), program 1 to the parent
(predecessor to the right, if it exists), and program 2 to the previous sibling (predecessor to the
left, if it exists). We let a = a for any a ∈ Prog. A logical formula is defined using the following
syntax.

• >, ⊥, σ or ¬σ for all σ ∈ AP \ {σ};

• x for all x ∈ Var;

• ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2 where ϕ1 and ϕ2 are logical formulas;

• 〈a〉ϕ or ¬ 〈a〉> where a ∈ Prog and ϕ is a logical formula;

• µx.ϕ where x ∈ Var and ϕ is a logical formula.

We now give an intuition of the interpretation of formulas in the setting of finite trees. A
formula is satisfiable if there exists a tree such that a node of this tree is selected by the formula.
The truth formula > selects every node whereas ⊥ selects none. The σ formula selects every
node whose name is σ whereas ¬σ selects the nodes with other names (the node name σ is used
to represent names of nodes not occurring in the formula). Formula conjunction and disjunction
correspond to set intersection and union, respectively. A formula 〈a〉ϕ selects a node if the
node reached following a is selected by formula ϕ. Formula ¬ 〈a〉> selects a node if there is no
node reachable through a. Finally, a fixpoint µx.ϕ is interpreted as the smallest fixpoint (the
intersection of every pre-fixpoint).

A formula is closed if every occurrence of a variable x is bound by an enclosing µx. We write
ϕ ≺ ψ if ϕ is a sub-formula of ψ, and ϕ ⊀ ψ if it is not.

Inria



Logical Combinators for Rich Type Systems 5

> = ⊥ σ = ¬σ
F ∧G = F ∨G ⊥ = >
¬σ = σ F ∨G = F ∧G
X = ¬X x = x

〈a〉> = ¬〈a〉> ¬X = X

µx.F = µx.F ¬ 〈a〉> = 〈a〉>

〈a〉F ∨ ¬ 〈a〉> = 〈a〉F 〈a〉F = 〈a〉F ∨ ¬ 〈a〉> F 6= >

Figure 2: Negation Normal Form

A combinator F is a formula with zero or more occurrences of a placeholder, written X,
possibly negated (¬X). We write F{ϕ/X} for the combinator F where every instance of X has
been replaced by the closed formula ϕ.1 We often write F (X) to make clear the name of the
placeholder, and F (ϕ) for F{ϕ/X}.

We consider formulas in negation normal form. The negation of a formula or combinator,
written F , is defined in Figure 2. The negation of a modality is a disjunction: the modality is
false either because there is no node in that direction, or because the node in that direction does
not satisfy the sub-formula. Following [9], the greatest and smallest fixpoint coincide (for cycle-
free formulas using sets of finite trees as models). Every combinator presented here is cycle-free,
but this work could also be done in a setting where the smallest and greatest fixpoints differ,
and in this case one defines µx.F as νx.F .

3 Deciding Combined Formulas

3.1 The Lean
Following [11, 9, 12], we define the lean of F as follows, with LΓ(F ) defined in Figure 3 (the
environment Γ is the set of already unfolded fixpoints). The main difference with the usual
approaches is that we close the lean under negation.

Lean(F ) =
{
〈a〉> | a ∈ {1, 2, 1, 2}

}
∪ {σ} ∪ L∅(F )

3.2 The Factorization Power of the Lean
We can now state the main theorem of this paper: the lean size is not impacted by the duplication
of sub-formulas. We write |S| for the size of a set S.

Theorem 3.1. Let F be a combinator and ϕ a closed formula. We have |Lean(F{ϕ/X})| ≤
|Lean(F )|+ |Lean(ϕ)|.

The theorem is a direct consequence of Lemma A.8 which is proved in the appendix.
We now give some intuition about this result, through a simple example. Recall the split(X)

combinator defined as 〈1〉X∧〈2〉X. Since the elements of the lean are either atomic propositions
1In case of a negated placeholder, we replace ¬X with ϕ, the negation normal form of ϕ (see Figure 2).

RR n° 8010



6 Genevès & Layaïda & Schmitt

LΓ(>) = LΓ(⊥) = LΓ(x) = LΓ(X) = LΓ(¬X) = ∅
LΓ(σ) = LΓ(¬σ) = {σ}

LΓ(F ∨G) = LΓ(F ∧G) = LΓ(F ) ∪ LΓ(G)

LΓ(〈a〉F ) = {〈a〉F ; 〈a〉F ; 〈a〉>} ∪ LΓ(F )

LΓ(¬ 〈a〉>) = {〈a〉>}

LΓ(µx.F )
def
= LΓ(F ) if x ⊀ F

LΓ(µx.F )
def
= ∅ if µx.F ∈ Γ or µx.F ∈ Γ

LΓ(µx.F )
def
= LΓ∪{µx.F}(F{µx.F/x}) otherwise

Figure 3: Negation Closed Lean

(node names) and modalities, the lean of split(ϕ) includes the lean of ϕ and four new elements:
〈1〉ϕ, 〈1〉ϕ, 〈2〉ϕ, and 〈2〉ϕ. If we now consider split(split(ϕ)), we once again add only four
formulas to the lean: 〈1〉 split(ϕ), 〈1〉 split(ϕ), 〈2〉 split(ϕ), and 〈2〉 split(ϕ). This linear
growth, even though the formula’s size increases exponentially, is due to the fact that modalities
are considered atomically and are not split up in their components (e.g., 〈1〉 (ϕ ∧ ψ) is not split
up into 〈1〉ϕ and 〈1〉ψ).

3.3 Satisfiability-Testing Algorithms based on the Lean
A typical approach to decide the satisfiability of a formula is to first build the lean, as described
above, then to use a tableau-based algorithm implemented with BDDs [9, 11, 12]. The time
complexity of this approach is shown to be exponential in the size of the formula. More precisely,
it is exponential in the size of the lean, which is in turn linear in the size of the formula.

The essence of this pearl is to realize that the lean may grow much more slowly than the for-
mula when sub-formulas are duplicated. This opens the way for solving a wide range of problems
in exponential-time even though their direct translation into the modal logic is exponential, as
illustrated previously and in the following section.

4 Examples
The authors of [9] provide an online implementation [8] of their solver. Each example given in
this section is provided with a boxed version which can directly be copied and pasted in order
to be tested with this online implementation.

4.1 Split
The combinator split(X) introduced in Section 3.2 may generate arbitrary large formulas: for
instance, let ϕ = a ∧ 〈1〉 b ∧ 〈2〉µy.c ∨ 〈2〉 y, the expanded formula ψ = split(split(split(ϕ)))
uses 8 occurrences of ϕ. To give this formula to the implementation of [8], we write it as follows.

phi() = a & <1>b & <2>let $y = c | <2>$y in $y;
split($x) = <1>$x & <2>$x;
split(split(split(phi())))

Inria
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Figure 4: Tree Navigation

We then observe that ψ contains 24 atomic propositions, 38 modalities, 23 conjunctions, and 8
disjunctions (including duplicates). The size of the lean is only 18 (14 modalities and 4 atomic
propositions.)2 Each new split(_) around the formula then only adds two elements to the lean.

4.2 Document-Order Relation and Global Counting
We illustrate tree navigation in Figure 4. A very simple example of a combinator is the descendant
relation that checks that a node satisfying some formula X is accessible in the subtree by any
sequence of forward modalities. It is encoded as follows:

descendant(X) = 〈1〉µz.X ∨ 〈1〉 z ∨ 〈2〉 z

A whole range of combinators to navigate in a tree can be defined in a similar manner. In
particular we can encode:

following(X) = ancestor_or_self(ψ)

where
ψ = following_sibling(descendant_or_self(X))

These combinators, whose intuition is illustrated in Figure 4, are predefined in [8]. They can be
used as such to encode the so-called document-order relation�. This relation corresponds to the
ordering of nodes given by a depth-first tree traversal: x� y iff node y is visited after node x in a
depth-first tree traversal. We define the combinator next(X) = descendant(X)∨following(X)
with which we can mimic the document-order relation (we write X ∧next(Y ) for x� y). Notice
that this combinator duplicates formulas, since the placeholder X appears twice in its definition.

The document-order relation can be used to express global counting properties in trees. For
instance, if we want to encode the so-called concept of a nominal – or more generally the fact
that some formula ψ is satisfied by one and only one node in the tree – we can write:

psi() = a & <1>b & <2>let $y = c | <2>$y in $y;
next($x) = descendant($x) | following($x);

2Notice that in their implementation, the authors of [9] do not have a lean closed under negation. Closing the
lean under negation adds a modal formula 〈a〉ϕ for every modal formula 〈a〉ϕ where ϕ is not >. In this particular
case, the lean would contain 10 other formulas. Each new split(_) would then add 4 formulas to the lean.

RR n° 8010
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Figure 5: Tree Frontier Case Analysis

leaf() = ~<1>T;
down_to_first_leaf($z) = let $x = (leaf() & <0>$z) | <1>$x in $x;
up_until_rsibl($x) = (<2>T & $x) | let $w = <-1>((<2>T & $x) | $w) | <-2>$w in $w;
next_frontier_node($y) = (leaf() & <2>($y & leaf())) | (leaf() &
up_until_rsibl(<2>down_to_first_leaf($y)));

down_to_first_leaf(a & next_frontier_node(a & next_frontier_node(a)))

Figure 6: Tree Frontier Example (including all the necessary definitions for use with [8]).

root() = ~<-1>T & ~<-2>T;
nominal($x) = ancestor_or_self(root()

& next($x & ~next($x)));
nominal(psi())

If we now want to force the existence of at least 4 different tree nodes that satisfy ψ, we can
write:

psi() & next(psi() & next(psi() & next(psi())))

The full expansion of the above formula is notably large (if we count duplicates, the formula con-
tains 468 atomic propositions, 933 modalities, 343 conjunctions, and 590 disjunctions). However,
the size of its lean is 48 (44 modalities and 4 atomic propositions).

4.3 The Tree Frontier

We borrow from [1] another advanced example: the description of properties on a tree frontier.
A tree frontier is the set of leaves (nodes without a “1” child) ordered from left to right. A frontier
node y is the successor of a frontier node x iff x� y and there is no leaf node in between x and
y in the document order. A simple case analysis shows that node y is the successor of a frontier
node x in one of three cases. These are depicted in Figure 5, where the current leaf is black, the
next leaf is white, and grayed nodes are not selected. Dotted arrows correspond to sequences of
navigation.

1. Either x is a leaf with an immediate next sibling which is also a leaf (y);

2. or x is a leaf with an immediate next sibling which is not a leaf, in which case, by navigating
downward in its subtree we reach the leftmost leaf (y);

Inria
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3. or x is a leaf with no next sibling, in which case, by going up to the parent node recursively
until we reach a parent node which has a next sibling, then going to this next sibling, and
then, from this node, navigating downward in its subtree we reach the leftmost leaf (y).

This yields the following definition of a combinator in which the first member of the disjunction
captures the first case and the second member of the disjunction captures the two remaining
cases:

next_frontier_node(Y ) =

(leaf ∧ 〈2〉 (Y ∧ leaf)) ∨ (leaf ∧ up_until_rsibl(ψ))

In this definition, the placeholder Y is to be replaced by a formula that holds at the successor
node, and:

leaf = ¬ 〈1〉>
ψ = 〈2〉 down_to_first_leaf(Y )

up_until_rsibl(X) = (〈2〉> ∧X)

∨ µx.
〈
1
〉

((〈2〉> ∧X) ∨ x) ∨
〈
2
〉
x

down_to_first_leaf(Z) = µx.(leaf ∧ Z) ∨ 〈1〉x

Using these combinators, we can now express properties on the tree frontier. For instance, the
formula shown on Figure 6 states that the leftmost leaf is labeled “a”, and, by further naviga-
tion on the tree frontier, we encounter two other leaves labeled “a”. If we count duplicates, the
corresponding formula contains 13 atomic propositions, 58 modalities, 30 variables, 13 fixpoint
binders, 21 negations, 33 conjunctions, and 25 disjunctions. However, the size of the corre-
sponding lean is 23. The lean is only composed of 21 distinct modalities and 2 distinct atomic
propositions.

We remark that each additional nested call to the combinator _ ∧ next_frontier_node(Y )
extends the lean by 7 modalities. However, the corresponding global formula goes from 58
modalities to 184 for the first addition, then it goes to 562 for the second addition.

5 Conclusion

We have presented an elegant logical representation of types that can be used for designing rich
type systems. The representation is not only clean but avoids exponential increases in combined
complexity due to subformula duplication. Specifically, we have presented an analysis of the
time complexity of lean-based algorithms to decide the satisfiability of a tree logic equipped
with inverse programs, nominals, and counting introduced via combinators. The analysis shows
that the lean automatically factorizes duplicated sub-formulas even for such advanced features,
thus the complexity of the algorithm should not be stated in terms of the size of the initial
formula but in terms of the size of the lean. A direct consequence of this observation is that the
addition of nominals and a more general form of counting to the initial tree logic has no impact
on decidability nor on its precise complexity bound.

We have experimentally tested this analysis with an implementation available online; it would
be interesting to check whether our observation also hold experimentally with the implementa-
tions of [11] and [12]. One could also use this approach to translate problems which have been
avoided as they were leading to formula duplication.

RR n° 8010
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EΓ(>) = EΓ(⊥) = EΓ(x) = EΓ(X) = EΓ(¬X) = 0

EΓ(σ) = EΓ(¬σ) = EΓ(¬ 〈a〉>) = 0

EΓ(F ∨G) = EΓ(F ∧G) = EΓ(F ) + EΓ(G)

EΓ(〈a〉F ) = EΓ(F )

EΓ(µx.F )
def
= EΓ(F ) if x ⊀ F

EΓ(µx.F )
def
= 0 if µx.F ∈ Γ or µx.F ∈ Γ

EΓ(µx.F )
def
= EΓ∪{µx.F}(F{µx.F/x}) + 1 otherwise

Figure 7: Number of Recursive Expansion

A Proofs
We define the number of recursive expansions of F or ϕ, written E∅(F ), in Figure 7.

Definition A.1. Given ϕ, and Γ, we define (Γ)ϕX as follows.

{G′ | X ≺ G′ ∧ (G′{ϕ/X} ∈ Γ ∨G′{ϕ/X} ∈ Γ)}

Lemma A.2. We have F{G/x} = F{G/x}.

Proof. By induction on F , relying on the fact that x = x.

Lemma A.3. We have F{G/X} = F{G/X}.

Proof. By induction on F , relying on the fact that X = ¬X.

Lemma A.4. If Γ ⊆ Γ′, then LΓ′(F ) ⊆ LΓ(F ).

Proof. By induction on the lexical order of EΓ(F ) and the size of F . Base cases are immediate.
For conjunction and disjunction, we may apply the induction hypothesis because EΓ(F1) and
EΓ(F2) do not increase and the formula size decreases. This is also the case for the modality
case.

For the recursion case where x ≺ F , we distinguish three cases (we do not mention the
negation µx.F in these cases):

• if µx.F ∈ Γ, then necessarily µx.F ∈ Γ′ and we immediately conclude;

• if µx.F ∈ Γ′, then we conclude by ∅ ⊆ S for any set S;

• otherwise, we have µx.F in neither set, and we apply the induction hypothesis, as EΓ∪{µx.F}(F{µx.F/x})
is strictly smaller than EΓ(µx.F ).

Lemma A.5. We have LΓ∪{µx.F}(G) = LΓ∪{µx.F}(G).

Proof. By an immediate induction on the lexical order of EΓ(G) and the size of G.

Lemma A.6. For any F , we have LΓ(F ) = LΓ(F ).
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12 Genevès & Layaïda & Schmitt

Proof. By induction on the lexical order of EΓ(F ) and the size of F .
The base cases >, ⊥, x, X, ¬X, σ, ¬σ, ¬ 〈a〉>, and µx.F there x ⊀ F are immediate.
For F ∧G, we compute as follows.

LΓ(F ∧G) = LΓ(F ) ∪ LΓ(G)

= LΓ(F ) ∪ LΓ(G) by induction

= LΓ(F ∨G)

= LΓ(F ∧G)

The disjunction case is similar.
For the recursion case, if µx.F or µx.F is in Γ, then µx.F or µx.F = µx.F is also in Γ and

the result follows.
Finally, if neither is in Γ, we compute as follows.

LΓ(µx.F ) = LΓ∪{µx.F}(F{µx.F/x})

= LΓ∪{µx.F}(F{µx.F/x}) by induction

= LΓ∪{µx.F}(F{µx.F/x}) by Lemma A.2

= LΓ∪{µx.F}(F{µx.F/x}) by Lemma A.5

= LΓ(µx.F )

Lemma A.7. For all Γ and F , if X ⊀ F , then L(Γ)ϕX
(F ) = L∅(F ).

Proof. We prove the more general result: for all Γ′, L(Γ)ϕX∪Γ′(F ) = LΓ′(F ) by induction on the
lexical order of EΓ′(F ) and the size of F .

The result is immediate for the base cases, and by induction for the conjunction, disjunction,
and modality cases. For the recursion case, if µx.F (or its negation) is in (Γ)ϕX ∪ Γ′, then
it must be in Γ′ as X ⊀ F and members of (Γ)ϕX contain X by definition. Thus both sides
are equal to ∅. If neither µx.F nor its negation are in (Γ)ϕX ∪ Γ′, we have L(Γ)ϕX∪Γ′(µx.F ) =

L(Γ)ϕX∪Γ′∪{µx.F}(F{µx.F/x})
We next apply the induction hypothesis with Γ′ ∪ {µx.F} and F{µx.F/x}, thus we have

L(Γ)ϕX∪Γ′∪{µx.F}(F{µx.F/x}) = LΓ′∪{µx.F}(F{µx.F/x}) = LΓ′(µx.F ).
We conclude by taking Γ′ = ∅.

Lemma A.8. Let F be a formula mentioning X, and ϕ a closed formula. We have L∅(F{ϕ/X}) ⊆
L∅(F ){ϕ/X} ∪ L∅(ϕ).

Proof. We prove the following more general property for any Γ by induction on the lexical order
of E(Γ)ϕX

(F ) and the size of F .

LΓ(F{ϕ/X}) ⊆ L(Γ)ϕX
(F ){ϕ/X} ∪ L∅(ϕ)

Inria
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We first deal with every case where X ⊀ F . In this case, X also does not occur in LΓ(F ).

LΓ(F{ϕ/X}) = LΓ(F )

⊆ L∅(F ) by Lemma A.4

= L(Γ)ϕX
(F ) by Lemma A.7

= L(Γ)ϕX
(F ){ϕ/X}

⊆ L(Γ)ϕX
(F ){ϕ/X} ∪ L∅(ϕ)

Case X. We compute as follows, using Lemma A.4 for the last inclusion.

LΓ(X{ϕ/X}) = LΓ(ϕ) ⊆ L∅(ϕ)

Case ¬X. We compute as follows, using Lemma A.4 for the set inclusion, and Lemma A.6
to conclude.

LΓ((¬X){ϕ/X}) = LΓ(ϕ) ⊆ L∅(ϕ) = L∅(ϕ)

Case F ∧G. We compute as follows.

LΓ((F ∧G){ϕ/X})
= LΓ(F{ϕ/X}) ∪ LΓ(G{ϕ/X})
⊆ L(Γ)ϕX

(F ){ϕ/X} ∪ L(Γ)ϕX
(G){ϕ/X} ∪ L∅(ϕ) by induction

= L(Γ)ϕX
(F ∧G){ϕ/X} ∪ L∅(ϕ)

Case F ∨G. Identical to the previous case.
Case 〈a〉F . We compute as follows, using Lemma A.3 and the induction hypothesis.

LΓ((〈a〉F )){ϕ/X}
= LΓ(〈a〉 (F{ϕ/X}))

= {〈a〉F{ϕ/X}; 〈a〉F{ϕ/X}; 〈a〉>} ∪ LΓ(F{ϕ/X})
= {〈a〉F ; 〈a〉F ; 〈a〉>}{ϕ/X} ∪ LΓ(F{ϕ/X})
⊆ {〈a〉F ; 〈a〉F ; 〈a〉>}{ϕ/X} ∪ L(Γ)ϕX

(F ){ϕ/X} ∪ L∅(ϕ)

= L(Γ)ϕX
(〈a〉F ){ϕ/X} ∪ L∅(ϕ)

Case µx.F with x ⊀ F . We compute as follows.

LΓ((µx.F )){ϕ/X}
= LΓ(µx.F{ϕ/X}) ϕ closed

= LΓ(F{ϕ/X}) x ⊀ F{ϕ/X}
⊆ L(Γ)ϕX

(F ){ϕ/X} ∪ L∅(ϕ) by induction

= L(Γ)ϕX
(µx.F ){ϕ/X} ∪ L∅(ϕ) x ⊀ F

Case µx.F with x ≺ F .
If we have µx.F{ϕ/X} ∈ Γ or µx.F{ϕ/X} ∈ Γ then LΓ(µx.F{ϕ/X}) = ∅ and the result is

immediate.
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14 Genevès & Layaïda & Schmitt

Otherwise we compute as follows.

LΓ((µx.F ){ϕ/X})
= LΓ(µx.F{ϕ/X}) ϕ closed

= LΓ∪{µx.F{ϕ/X}}(F{ϕ/X}{µx.F{ϕ/X}/x})
= LΓ∪{µx.F{ϕ/X}}(F{µx.F/x}{ϕ/X}) ϕ closed

To apply the induction hypothesis, we show that

E(Γ)ϕX
(µx.F ) = E(Γ∪{µx.F{ϕ/X}})ϕX

(F{µx.F/x}) + 1.

First, we have µx.F /∈ (Γ)ϕX and µx.F /∈ (Γ)ϕX , since otherwise, we would have µx.F{ϕ/X} ∈
Γ or µx.F{ϕ/X} = µx.F{ϕ/X} ∈ Γ, which we assumed to be false. Thus E(Γ)ϕX

(µx.F ) =

E(Γ)ϕX∪{µx.F}(F{µx.F/x}) + 1. Next, we have (Γ ∪ {µx.F{ϕ/X}})ϕX = (Γ)ϕX ∪ {µx.F} by defi-
nition. Thus we have E(Γ)ϕX

(µx.F ) = E(Γ∪{µx.F{ϕ/X}})ϕX
(F{µx.F/x}) + 1.

We may thus apply the induction hypothesis and continue to compute.

⊆ L(Γ∪{µx.F{ϕ/X}})ϕX
(F{µx.F/x}){ϕ/X} ∪ L∅(ϕ)

= L(Γ)ϕX∪{µx.F}(F{µx.F/x}){ϕ/X} ∪ L∅(ϕ)

As neither µx.F nor µx.F are in (Γ)ϕX , we have L(Γ)ϕX
(µx.F ) = L(Γ)ϕX∪{µx.F}(F{µx.F/x}). We

may conclude the computation.

= L(Γ)ϕX
(µx.F ){ϕ/X} ∪ L∅(ϕ)

We complete the proof by taking Γ to be ∅ and remarking that (∅)ϕX = ∅.
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