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Abstract

In the last few years, research formal methods for the analysis and the verification

of properties of systems has increased greatly. A meaningful contribution in this

area has been given by algorithmic methods developed in the context of synthesis.

The basic idea is simple and appealing: instead of developing a system and verifying

that it satisfies its specification, we look for an automated procedure that, given

the specification returns a system that is correct by construction. Synthesis of

reactive systems is one of the most popular variants of this problem, in which

we want to synthesize a system characterized by an ongoing interaction with the

environment. In this setting, large effort has been devoted to analyze specifications

given as formulas of linear temporal logic, i.e., LTL synthesis.

Traditional approaches to LTL synthesis rely on transforming the LTL specifi-

cation into parity deterministic automata, and then to parity games, for which a

so-called winning region is computed. Computing such an automaton is, in the

worst-case, double-exponential in the size of the LTL formula, and this becomes a

computational bottleneck in using the synthesis process in practice.

The first part of this thesis is devoted to improve the solution of parity games as

they are used in solving LTL synthesis, trying to give efficient techniques, in terms

of running time and space consumption, for solving parity games. We start with the

study and the implementation of an automata-theoretic technique to solve parity

games. More precisely, we consider an algorithm introduced by Kupferman and

Vardi that solves a parity game by solving the emptiness problem of a corresponding

alternating parity automaton. Our empirical evaluation demonstrates that this
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algorithm outperforms other algorithms when the game has a small number of

priorities relative to the size of the game. In many concrete applications, we do

indeed end up with parity games where the number of priorities is relatively small.

This makes the new algorithm quite useful in practice.

We then provide a broad investigation of the symbolic approach for solving

parity games. Specifically, we implement in a fresh tool, called SymPGSolver, four

symbolic algorithms to solve parity games and compare their performances to

the corresponding explicit versions for different classes of games. By means of

benchmarks, we show that for random games, even for constrained random games,

explicit algorithms actually perform better than symbolic algorithms. The situation

changes, however, for structured games, where symbolic algorithms seem to have the

advantage. This suggests that when evaluating algorithms for parity-game solving,

it would be useful to have real benchmarks and not only random benchmarks, as

the common practice has been.

LTL synthesis has been largely investigated also in artificial intelligence, and

specifically in automated planning. Indeed, LTL synthesis corresponds to fully

observable nondeterministic planning in which the domain is given compactly and

the goal is an LTL formula, that in turn is related to two-player games with LTL

goals. Finding a strategy for these games means to synthesize a plan for the

planning problem. The last part of this thesis is then dedicated to investigate

LTL synthesis under this different view. In particular, we study a generalized

form of planning under partial observability, in which we have multiple, possibly

infinitely many, planning domains with the same actions and observations, and

goals expressed over observations, which are possibly temporally extended. By

building on work on two-player games with imperfect information in the Formal

Methods literature, we devise a general technique, generalizing the belief-state

construction, to remove partial observability. This reduces the planning problem

to a game of perfect information with a tight correspondence between plans and

strategies. Then we instantiate the technique and solve some generalized planning

problems.



Chapter 1

Introduction

1.1 Overview on LTL Synthesis

In the last decades many different methods have been introduced and deeply

investigated for automatically check the reliability of hardware and software systems.

A very attractive approach in this field is model checking, a framework developed

independently by Clarke and Emerson [46] and by Queille and Sifakis [133] in

early 80s. The idea behind model checking is simple and appealing: in order to

check whether a system is correct with respect to a desired behavior, one formally

checks instead whether a mathematical model representing the system, usually a

labelled-state transition system or a Kripke structure, is correct with respect to a

formal specification of the required behavior, usually described in terms of a modal

logic formula, such as LTL [128], CTL [46], CTL* [59], µ-calculus [96], and the like.

Model checking has been successfully applied to numerous theoretical and practical

problems [3, 28, 42, 76, 79, 109, 120], such as verification of sequential circuit designs,

communication protocols, software device drivers, security algorithms, to name a

few, and the impact on industrial design practices is increasing. In the last four

decades, model checking has been the subject of several books [14,16,43,45,47,108]

and surveys [44,57,139].

However, model checking, at least in the way it has been first conceived, turns

7



8 CHAPTER 1. INTRODUCTION

out to be appropriate only to verify closed systems, which are characterized by

the fact that their behavior is completely determined by internal states. These

systems are often described as those having only one source of nondeterminism,

coming from the system itself. Unfortunately, many systems in real life are open,

in the sense that they are characterized by an ongoing iteration with an external

environment and its behavior fully depends on this interaction. Consequently, all

model-checking tools devised to verify the correctness of closed systems are not

appropriate when applied to open systems. In fact, an appropriate model checking

procedure of open systems should check the correctness of the system with respect

to arbitrary environments and should take into account the ongoing interaction

with the environment. This problem was first addressed and deeply investigated

by Kupferman, Vardi and Wolper who introduced module checking [103], a specific

framework for the verification of open systems against branching-time temporal-

logics such as CTL, CTL*, and the like. Since its introduction, module checking

has been a very active field of research and applied in several directions. Among the

others we recall applications in the infinite-state recursive setting (i.e., pushdown

systems) [25,65], as well as hierarchical [123], and multi-agent systems [85,86].

Although model checking has been a successful tool to verify systems, two main

problems arise with the application of this method in practice: designing a correct

system is hard and expensive; redesigning a system when it does not satisfy a

desired behavior is still hard and expansive. Therefore, a more ambitious question

is to ask whether we can synthesize such systems, that is, whether we can start from

a specification and automatically design the system that satisfies such specification.

Thus, synthesis goes beyond verification, in which both a specification and an

implementation have to be given, by automatically deriving the latter from the

former.

The synthesis problem was originally posed by Church [41] in the context of

synthesizing switching circuits using the monadic second-order logic of one successor

(S1S) as a specification language. The problem was solved by Rabin [134] and

Büchi and Landweber [27] in the late 1960s showing its decidability. The modern
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approach to this problem was initiated by Pnueli and Rosner who introduced linear

temporal logic (LTL) synthesis [129, 130], later extended to handle branching-

time specifications, such as µ-calculus [57]. The Pnueli and Rosner idea can be

summarized as follows. Given sets ΣI and ΣO of inputs and outputs, respectively

(usually, ΣI = 2I and ΣO = 2O, where I is a set of input signals and O is a set of

output signals), we can view a system as a strategy σ : Σ∗I → ΣO that maps a finite

sequence of sets of input signals into a set of output signals. When σ interacts

with an environment that generates infinite input sequences, it associates with each

input sequence an infinite computation over ΣI ∪ ΣO. Though the system σ is

deterministic, it induces a computation tree. The branches of the tree correspond

to external nondeterminism, caused by different possible inputs. Thus, the tree has

a fixed branching degree |ΣI |, and it embodies all the possible inputs of σ. When

we synthesize σ from LTL specification φ, we require φ to hold in all the paths of

σ’s computation tree [6]. Synthesis can be viewed as a turn-based game between

two players: the environment and the system. In each round the system picks an

output from ΣO and then the environment picks a input from ΣI , and the next

round starts. The play is winning for the system in case the sequence is recognized

as a desired behavior. Otherwise, the environment wins.

The classic approach to LTL synthesis [27, 130, 135] consists of the following

steps. Given an LTL formula φ over I ∪ O, construct a nondeterministic Büchi

automaton1 (NBA) Aφ that accepts all the words that satisfy φ. Translate Aφ into

a deterministic parity automaton (DPA) Bφ. Convert Bφ into a parity game in

which the transitions of Bφ are splitted into two parts: the first part refers to the

output variables O controlled by the system, the second part to the input variables

I controlled by the environment. Finally, check whether the system has a winning

strategy in such game. (See Section 1.2 for the definition of parity games).

By looking at Figure 1.1, in reducing an LTL formula to nondeterministic

Büchi automaton we may have an exponential blow-up in the size of the formula.

1For an introduction on automata on infinite objects and additional useful material we

suggest [101,107,156].
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Figure 1.1: Steps in solving LTL Synthesis.

Additionally, there is a double-exponential blow-up in the size of the formula

to translating NBA into a deterministic parity automaton, and then to parity

games. Finally, solving parity games witn n nodes and c colors is polynomial in n

and exponential in c. This process provides an overall 2EXPTIME procedure to

solve LTL synthesis [130]. Therefore, even though LTL synthesis is an appealing

problem, despite extensive research, it remains a difficult problem. To mitigate

this problem several approaches have been devised. On the one hand, researchers

have looked at synthesis techniques for fragments of LTL that cover interesting

classes of specifications, but for which the synthesis problem is easier. There exist

several interesting cases where the synthesis problem can be solved in polynomial

time, by using simpler automata or partial fragments [2,75,87,162]. Representative

cases are the work in [8] which presents an efficient quadratic solution to games,

and hence synthesis problems, where the acceptance condition is one of the LTL

formulas G p (i.e., p is always true), F q (i.e., q will become true at some point in
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the future), GF p (i.e., p is true infinitely often), or FG q (i.e., p will be always

true from some point in the future). The work in [2] presents efficient synthesis

approaches for various LTL fragments. In [20] is studied a generalization of the

results of [8] and [2] into the wider class of Generalized Reactivity(1) formulas, or

(GR(1)). i.e. formulas of the form:

(GF p1 ∧ · · ·GF pm)→ (GF q1 ∧ · · ·GF pn)

Thus, any synthesis problem whose specification is a GR(1) formula can be

solved with complexity O(mnN2), where N is the size of the state space. On the

same line, the work in [166] focuses on the attention on the Safety LTL fragment,

which corresponds to the fragment of LTL consisting of Until-free formulas in

Negation Normal Form. Such formulas express safety properties, meaning that

every violating trace has a finite bad prefix that falsifies the formula [105]. For this

strict subset of LTL, the synthesis problem can be reduced to safety games, which

are far easier to be solved [110].

On the other hand, researchers have looked at more efficient algorithms for

determination and solving parity games. Notable examples are the ones used

to avoiding determination through alternate constructions [67, 68, 78, 102, 106].

Another approach proposed in [148] is to derive a deterministic parity automaton

for each property in the specification, thus avoiding in most cases the application

of the determination to large automata. This leads, however, from the solution

of a parity game to a more complex conjunctive generalized parity game [38], i.e.

a game with multiple parity winning conditions. In solving a generalized parity

game, the time required to solve it depends on the number of components of a

conjunctive generalized winning condition, then one may conjoin, in a heuristic

way, some properties before translating them to deterministic automata as long

as no blow up occurs. Or, using a different approach developed in [147] where

safety and persistence properties can be dealt with before the rest of the properties

without affecting the algorithm’s completeness.
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A recent line of work has given a more effort in trying to improve the classical

approach for solving LTL synthesis bypassing the determinization [127,141], and

then producing different types of automata, such as DPA [62,100], deterministic

Rabin automata (DRA) and deterministic generalized Rabin automata (DGRA)

[61,97,98], and limit-deterministic Büchi automata (LDBA) [48,95,146], without the

intermediate step through nondeterministic automata [160]. To better understand

this approach in Figure 1.2 we report a diagram taken from [99] that highlights the

entire process in solving LTL synthesis based on the automata-theoretic approach.

Figure 1.2: LTL translations to different types of automata.

1.2 Parity Games

Parity games [60,167] are abstract infinite-duration games that represent a powerful

mathematical framework to address fundamental questions in computer science.

They are intimately related to other infinite-round games, such as mean and

discounted payoff, stochastic, and multi-agent games [5, 19, 31,33,37,39,116].

In the basic setting, parity games are two-player, turn-based, played on directed

graphs whose nodes are labeled with priorities (also called, colors) and players

have perfect information about the adversary moves. The two players, Player 0

and Player 1, take turns moving a token along the edges of the graph starting from

a designated initial node. Thus, a play induces an infinite path and Player 0 wins

the play if the smallest priority visited infinitely often is even; otherwise, Player 1
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wins the play. The problem of deciding if Player 1 has a winning strategy (i.e.,

can induce a winning play) in a given parity game is known to be in UPTime

∩ CoUPTime [88]; whether a polynomial time solution exists is a long-standing

open question [165].

Several algorithms for solving parity games have been proposed in the last two

decades, aiming to tighten the known complexity bounds for the problem, as well as

come out with solutions that work well in practice. Among the latter, we recall the

recursive algorithm (RE) proposed by Zielonka [167], the Jurdziński’s small-progress

measures algorithm [89] (SPM), the strategy-improvement algorithm by Jurdziński

et al. [161], the (subexponential) algorithm by Jurdzińki et al. [91], the big-step

algorithm by Schewe [143], the priority promotion algorithm by Mogavero et al. [15],

and the tangle learning algorithm by Tom van Dijk [158]. These algorithms have

been implemented in the platforms PGSolver and Oink, and extensively investigated

experimentally [70,159].

This study has also led to a few optimizations in order to speed-up their

execution time, such as improving the code implementation along with the use of

better performing programming languages, or using parallelism [7,80,154].

Table 1.1 summarizes the classic algorithms along with their complexity, where

n, e, and c denote the number of nodes, edges, and priorities, respectively.

Algorithm Computational Complexity

Recursive (RE) [167] O(e · nc)
Small Progress Measures (SP) [89] O(c · e · (n

c
)
c
2 )

Strategy Improvement (SI) [161] O(2e · n · e)
Dominion Decomposition (DD) [91] O(n

√
n)

Big Step (BS) [143] O(e · n 1
3
c)

Table 1.1: Parity algorithms along with their computational complexities.

Recently, Calude et al. [30] have given a major breakthrough providing a quasi-

polynomial time algorithm for solving parity games that runs in time O(ndlog(c)+6e).
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Previously, the best known algorithm for parity games was DD which could solve

parity games in O(n
√
n), so this new result represents a significant advance in the

understanding of parity games.

Their approach is to provide a compact witness that can be used to decide

whether Player 0 wins a play. Traditionally, one must store the entire history of

a play, so that when the players construct a cycle, we can easily find the largest

priority on that cycle. The key observation in [30] is that a witness of poly-

logarithmic size can be used instead. This allows them to simulate a parity game

on an alternating Turing machine that uses poly-logarithmic space, which leads to

a deterministic algorithm that uses quasi-polynomial time and space. This new

result has already inspired follow-up works [49,63,90,112]. However, benchmarks

in the literature have demonstrated that both on random games and real examples

the quasi-polynomial is not the best performing one. For this reason we decided in

this thesis to concentrate on (the best performing) existing algorithms and drop

the quasi-polynomial algorithm along the benchmarks.

In formal system design [46, 47, 107, 133], parity games arise as a natural

evaluation machinery for the automatic synthesis and verification of distributed

and reactive systems [3, 103, 157], as they allow to express liveness and safety

properties in a very elegant and powerful way [121]. Specifically, the model-

checking question, in case the specification is given as a µ-calculus formula [96],

can be rephrased, in linear-time, as a parity game [60]. So, a parity game solver

can be used as a model checker for a µ-calculus specification (and vice-versa), as

well as for fragments such as CTL, CTL?, and the like.

In the automata-theoretic approach to µ-calculus model checking, under a linear-

time translation, one can also reduce the verification problem to a question about

automata. More precisely, one can take the product of the model and an alternating

tree automaton accepting all tree models of the specification. This product can

be defined as an alternating parity word automaton over a singleton alphabet,

and the system is correct with respect to the specification iff this automaton is

nonempty [107]. It has been proved there that the nonemptiness problems for



1.2. PARITY GAMES 15

nondeterministic parity tree automata and alternating parity word automata over

a singleton alphabet are equivalent and their complexities coincide. For this reason,

in the sequel we refer to these two kinds of automata just as parity automata.

Hence, algorithms for the solution of the µ-calculus model checking problem, parity

games, and the emptiness problem for parity automata can be interchangeably

used to solve any of these problems, as they are linear-time equivalent.

Although each of the algorithms reported above uses a different technique to

solve parity games, they all rely on algorithms that explicitly represent a game

graph using a structure as a list or array that grows in proportion to the number

of nodes. As the number of nodes in a graph may grow exponentially in the

verification of finite-state systems, the size of the structures is usually the limiting

factor in applying these algorithms to the analysis of the realistic systems. Hence

for the analysis of large finite-state systems symbolic algorithms are necessary.

Symbolic algorithms are an efficient way to deal with extremely large graphs.

These algorithms do not manipulate individual nodes, but, rather, sets of nodes.

This is accomplished by representing the edge relation of the graph and sets of

nodes as Boolean formulas, and by conducting the search by directly manipulating

the symbolic representation. Both the edge relation and sets of nodes are described

by Boolean functions and represented by Binary Decision Diagrams (BDDs) [26].

BDDs are widely used in various tools for the design and analysis of systems.

Although they do not prevent state explosion, they allow us to verify in practice

systems with extremely large state spaces that would be impossible to handle with

explicit state. In formal verification, and specifically in model checking, symbolic

algorithms have been widely investigated and, it was demonstrated that large

regular models with as many as 1020 states can be handled [28,118].

When using BDDs, however, it must been noticed that they are not sufficient

in case the algorithms also require real-valued functions. To face this limitation,

Algebraic Decision Diagrams (ADDs) [12] have been introduced to extend BDDs by

allowing values from any arbitrary finite domain to be associated with the terminal

nodes of the diagram.
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Coming back to parity games, one can observe that while many explicit al-

gorithms have been introduced and deeply investigated for solving such games,

symbolic algorithms have been only marginally explored. In this direction, we

just mention a symbolic implementation of RE [13,93], which, however, has been

done a for different purposes and no benchmark comparison with the explicit

version has been carried out. Other works close to this topic and worth mentioning

are [29, 35], where a symbolic version of the small progress measures algorithm has

been theoretically studied but not implemented.

1.3 Contributions of the thesis

The first part of this thesis is devoted to improve the solution of parity games as

they are used in solving LTL synthesis, trying to give efficient techniques, in terms

of running time and space consumption, for solving parity games. We start with

the study and the implementation of an algorithm, which we call APT, introduced

by Kupferman and Vardi in [104], for solving parity games via emptiness checking

of alternating parity automata, and evaluate its performance over the PGSolver

platform. This algorithm has been sketched in [104], but not spelled out in detail

and without a correctness proof, two major gaps that we fill here. The core idea

of the APT algorithm is an efficient translation to weak alternating automata [122].

These are a special case of Büchi automata in which the set of states is partitioned

into partially ordered sets. Each set is classified as accepting or rejecting. The

transition function is restricted so that the automaton either stays at the same set

or moves to a smaller set in the partial order. Thus, each run of a weak automaton

eventually gets trapped in some set in the partition. The special structure of weak

automata is reflected in their attractive computational properties. In particular, the

nonemptiness problem for weak automata can be solved in linear time [107], while

the best known upper bound for the nonemptiness problem for Büchi automata is

quadratic [36]. Given an alternating parity word automaton with n states and c

colors, the APT algorithm checks the emptiness of an equivalent weak alternating



1.3. CONTRIBUTIONS OF THE THESIS 17

word automaton with O(nc) states. The construction goes through a sequence

of c intermediate automata. Each automaton in the sequence refines the state

space of its predecessor and has one less color to check in its parity condition.

Since one can check in linear time the emptiness of such an automaton, we get

an O(nc) overall complexity for the addressed problem. APT does not construct

the equivalent weak automaton directly, but applies the emptiness test directly,

constructing the equivalent weak automaton on the fly. Recently, it has been

provided a translation of alternating parity word automata into weak automata

that involves only a quasi-polynomial size blow-up [21].

We then provide the first broad investigation of the symbolic approach for

solving parity-games. We implement four symbolic algorithms and compare their

performances to the corresponding explicit versions (implemented in Oink) for

different classes of parity games. Specifically, we implement in a new tool, called

SymPGSolver the symbolic versions of the Recursive [167], APT [104,153], and the

small progress measures algorithm presented in [29] and in [38]. The tool also

has a collection of procedures to generate random games, as well as compare the

performance of different symbolic algorithms. The main result we obtain from

our comparisons is that for random games, and even for constrained random

games explicit algorithms actually perform better than symbolic algorithms, most

likely because BDDs do not offer any compression for random sets. The situation

changes, however, for structured games, where the symbolic algorithms outperform

the explicit ones. We take this as an important development because it suggests

a methodological weakness in this field of investigation, due to the excessive

reliance on random benchmarks. We believe that, in evaluating algorithms for

parity-game solving, it would be useful to have real benchmarks and not only

random benchmarks, as the common practice has been. This would lead to a

deeper understanding of the relative merits of parity-game solving algorithms, both

explicit and symbolic.

Planning and LTL Synthesis. LTL synthesis has been largely investigated

also in Artificial Intelligence, and specifically in automated planning. Indeed, LTL
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synthesis corresponds to fully observable nondeterministic planning in which the

domain is given compactly and the goal is an LTL formula, that in turn is related

to two-players game with LTL goals. Finding a strategy for these games means

to synthesize a plan for the planning problem. The last part of this thesis is then

dedicated to investigate LTL synthesis under this different view.

Automated planning is a fundamental problem in Artificial Intelligence (AI).

Given a deterministic dynamic system with a single known initial state and a goal

condition, automated planning consists of finding a sequences of actions (the plan)

to be performed by agents in order to achieve the goal [115]. The application of

this notion in real-dynamic worlds is limited, in many situations, by three facts: i)

the number of objects is neither small nor predetermined, ii) the agent is limited

by its observations, iii) the agent wants to realize a goal that extends over time.

For example, a preprogrammed driverless car cannot know in advance the number

of obstacles it will enter in a road, or the positions of the other cars not in its view,

though it wants to realize, among other goals, that every time it sees an obstacle it

avoids it. This has inspired research in recent years on generalized forms of planning

including conditional planning in partially observable domains [114,138], planning

with incomplete information for temporally extended goals [18, 53] and generalized

planning for multiple domains or infinite domains [24,64,81,82,113,150–152].

We use the following running example, taken from [82], to illustrate a generalized

form of planning: the goal is to chop down a tree, and store the axe. The number

of chops needed to fell the tree is unknown, but a look-action checks whether the

tree is up or down. Intuitively, a plan solving this problem alternates looking and

chopping until the tree is seen to be down, and then stores the axe. This scenario

can be formalized as a partially-observable planning problem on a single infinite

domain, or on the disjoint union of infinitely many finite domains.

The standard approach to solve planning under partial observability for finite

domains is to reduce them to planning under complete observability. This is done

by using the belief-state construction that removes partial observability and passes

to the belief-space [17,73]. The motivating problem of this work is to solve planning
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problems on infinite domains, and thus we are naturally lead to the problem of

removing partial-observability from infinite domains.

Our technical contribution (Theorem 6.4.2) is a general sound and complete

mathematical technique for removing imperfect information from a possibly infinite

game G to get a game Gβ, possibly infinite, of perfect information. Our method

builds upon the classic belief-state construction [73, 136, 137], also adopted in

POMDPs [92,111].2 The classic belief-state construction fails for certain infinite

games. We introduce a new component to the classic belief-state construction that

isolates only those plays in the belief-space that correspond to plays in G. This

new component is necessary and sufficient to solve the general case and capture

also all infinite games G.

We apply our technique to game solving, i.e., deciding if a player has a winning

strategy (this corresponds to deciding if there is a plan for a given planning instance).

We remark that we consider strategies and plans that may depend on the history

of the observations, not just the last observation. Besides showing how to solve the

running Tree Chopping example, we report two cases. The first case is planning

under partial observability for temporally extended goals expressed in LTL in

finite domains (or a finite set of infinite domains sharing the same observations).

This case generalizes well-known results in the AI literature [17, 53, 64, 81, 138].

The second case involves infinite domains. Note that because game solving is

undecidable for computable infinite games (simply code the configuration space of a

Turing Machine), solving games with infinite domains requires further computability

assumptions. We focus on games generated by pushdown automata; these are

infinite games that recently attracted the interest of the AI community [40,124]. In

particular these games have been solved assuming perfect information. By applying

our technique, we extend their results to deal with imperfect information under

the assumption that the stack remains observable (it is known that making the

stack unobservable leads to undecidability [9]).

2However, our work considers nondeterminism rather than probability, and qualitative objec-

tives rather than quantitative objects.
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Table 1.2 summarizes the publications during my PhD and the concerned parts

in the thesis.

References Concerned part

Solving Parity Games Using An Automata-Based Algorithm [153] Chapter 4

Solving Parity Games: Explicit vs Symbolic [54] Chapter 5

Imperfect-Information Games and Generalized Planning [52] Chapter 6

Table 1.2: Publications during my PhD.



Chapter 2

Infinite Games

In this chapter we introduce infinite games on directed graph. We will define what

is a game, a strategy, how to win a game, under which conditions, etc.

2.1 Games

A game is played in an arena and the winner is determined by a winning condition.

We will start by defining an arena.

An arena is a tuple A = (P0,P1,Mv) where,

− P0 and P1 are sets of nodes, where P0 ∪ P1 = P and P0 ∩ P1 = ∅;

− Mv ⊆ P× P is the left-total binary relation of moves. The set of successors

of a node v ∈ P is defined by Mv(q) , {q′ ∈ P : (q, q′) ∈ Mv}.

The games we are considering are played by two players, called Player 0 and

Player 1. The two players take turns moving a token along the edges of the graph

by means of the relation Mv starting from a designated initial node. Specifically, if

the token is in a node belonging to Player 0, he moves, otherwise Player 1 moves.

This is repeated infinitely often. We formally define a play over A as being an

infinite sequence π = q · q · . . . ∈ Pth ⊆ Pω of nodes that agree with Mv , i.e.,

(πi, πi+) ∈ Mv , for each natural number i ∈ N, and a hystory a finite sequence

21
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π = q · . . . · qn ∈ Hst ⊆ P∗ of nodes that agree with Mv , i.e., (πi, πi+) ∈ Mv

for each natural number i ∈ [1, n− 1]. For a given history π = q · . . . · qn, by

fst(π) , q and lst(π) , qn we denote the first and last node occurring in π,

respectively. Finally, by Hst (resp., Hst) we denote the set of histories π such

that lst(π) ∈ P (resp., lst(π) ∈ P).

For a path π = q0 · q1 · · · ∈ Pω, we define the set Inf(π) of nodes visited infinitely

often, i.e.,

Inf(π) = {q ∈ P|∀i∃j > i, π(j) = q}

Let A be an area and W ⊆ Pω, a game is defined by the pair G = (A,W ), where

W is a winning set of G. Player 0 is the winner of a play π iff π ∈ W .

The winning sets we will consider are expressed on color sequences, that is,

sequences where every node is associated to a color. Let A be an arena, we

define a coloring function by p : P → C. For a given play π = q · q · . . ., by

p(π) = p(q) · p(q) · . . . ∈ Nω we denote the associated color sequence. Moreover,

we need to introduce an acceptance component α in the specification of games,

which will arise in different formats. Therefore, we will write Wp(α) for the winning

set consisting of all infinite plays π where p(π) is accepted according to α.

Among the acceptance conditions studied in literature we consider the following

ones:

− Büchi condition, where α ⊆ C = P, π ∈ Wp(α) iff Inf(p(π)) ∩ α 6= ∅.

− co-Büchi condition, where α ⊆ C = P, π ∈ Wp(α) iff Inf(p(π) ∩ α = ∅.

− parity condition, where C is a finite subset of integers {0, . . . , c− 1}. A play

π ∈ Wp(α) iff min(Inf(p(π))) is even. We also refer to co-parity condition

∼ α. A play π ∈ Wp(∼ α) iff min(Inf(p(π))) is odd.

− Rabin condition, where α = {(E1, F1), . . . , (Ek, Fk)} with Ei, Fi ⊆ C = P,

for 1 ≤ i ≤ k. A play π ∈ Wp(α) iff there exists an index i for which

Inf(p(π) ∩ Ei = ∅ and Inf(p(π) ∩ Fi 6= ∅.
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− Street condition, where α = {(E1, F1), . . . , (Ek, Fk)} with Ei, Fi ⊆ C = P,

for 1 ≤ i ≤ k. A play π ∈ Wp(α) iff for all i ∈ [1 . . . k] we have Inf(p(π)∩Fi 6=
∅ ⇒ Inf(p(π) ∩ Ei 6= ∅.

Depending on the actual acceptance condition we will speak of Büchi, parity,

Rabin, and Street games. For simplicity, in the rest of this thesis we will just

write (A, p, α), instead of (A,Wp(α)) to indicate a game with a certain winning

condition.

5
q

3
q

2
q

1
q

5
q

2
q

2
q

Figure 2.1: A parity game.

As a running example, consider the game depicted in Figure 2.1. The set

of players’s nodes is P = {q, q, q, q} and P = {q, q, q}; we use circles to

denote nodes belonging to Player 0 and squares for those belonging to Player 1.

Mv is described by arrows. Finally, the priority function p is given by p(q) = 1,

p(q) = p(q) = p(q) = 2, p(q) = 3, and p(q) = p(q) = 5.

A possible play is π = q · q · q · (q)ω, while a possible history is given by

π = q·q·q·q. The associated priority sequence to π is given by p(π) = 1·5·5·(2)ω.

Moreover, we have that Inf(π) = {q} and Inf(p(π)) = {2}. If we consider as winning

condition the parity acceptance condition, the play π is winning for Player 0.
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2.2 Strategies and Determinacy

A strategy, informally, is a method that Player 0 (resp., Player 1) applies to

determine the next action to take, at any stage of the game, depending on the

history of play up to that stage. Formally, a Player 0 (resp., Player 1) strategy is a

function str : Hst → P (resp., str : Hst → P) such that, for all π ∈ Hst (resp.,

π ∈ Hst), it holds that (lst(π), str(π)) ∈ Mv (resp., lst(π), str(π)) ∈ Mv).

Given a node q, Player 0 and a Player 1 strategies str and str, the play of

these two strategies, denoted by play(q, str, str), is the only play π in the game

that starts in q and agrees with both Player 0 and Player 1 strategies, i.e., for all

i ∈ N, if πi ∈ P, then πi+ = str(πi), and πi+ = str(πi), otherwise.

A strategy str (resp., str) is memoryless if, for all π, π ∈ Hst (resp., π, π ∈
Hst), with lst(π) = lst(π), it holds that str(π) = str(π) (resp., str(π) =

str(π)). Note that a memoryless strategy can be defined on the set of nodes,

instead of the set of histories. Thus we have that they are of the form str : P → P

and str : P → P.

We say that Player 0 (resp., Player 1) wins the game G from node q if there

exists a Player 0 (resp., Player 1) strategy str (resp., str) such that, for all Player 1

(resp., Player 0) strategies str (resp., str) it holds that play(q, str, str) is winning

for Player 0 (resp., Player 1).

A node q is winning for Player 0 (resp., Player 1) if Player 0 (resp., Player 1)

wins the game from q. By Win(G) (resp., Win(G)) we denote the set of winning

nodes in G for Player 0 (resp., Player 1).

A game is determined if for every node q, either q ∈ Win(G) or q ∈
Win(G) [60].

In this thesis we will focus on parity and Rabin games. In the following we

report some important results about these games.

Theorem 2.2.1 ( [117]). Parity games are determined.

Theorem 2.2.2 ( [167]). In every parity game, both players win memoryless.
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Theorem 2.2.3 ( [23]). In every Rabin game, Player 0 has memoryless winning

strategy on his winning region. Symmetrically, in every Street game, Player 1 has

a memoryless strategy on his winning region.

2.2.1 Subgames, traps, and dominions

Let G = (A, p, α) be a game and U ⊆ P. The subgraph induced by U , denoted by

G[U ], is defined as follows,

G[U ] = (P0 \ U, P1 \ U,Mv \ (U × P ∪ P× U), p|P\U)

where p|P\U is the restriction of p to U .

G[U ] is a subgame of G if it is a game, i.e., if each node of U has at least one

successor in U .

For example, in the game of Figure 2.1, G[{q4, q6}] is a subgame of G. Instead,

G[{q0, q4, q6}] is not a subgame of G.

Let σ ∈ {0, 1}, a σ-trap in a game G is any nonempty set U of nodes G such

that

∀v ∈ U ∩ Pσ, Mv(q) ⊆ U and ∀v ∈ U ∩ P1−σ, Mv(q) 6= U

If the token is in a σ-trap U , then Player σ can play a strategy consisting in

choosing always successors inside of U . On the other hand, since all successors of

Player σ nodes in U belong to U , Player σ has no possibility to force the token

outside of U .

A set U ⊆ P is a σ-dominion if U is 1 − σ-trap and Player σ has a winning

strategy for the winning condition α from all nodes in U in the subgame G[U ].

As a example, in the game of Figure 2.1, the set U = {q4, q6} is a 0-trap, but

it is not a 1-dominion since Player 1 loses from all nodes in U . While the set

{q2, q3, q4, q6} is a 1-trap, and a 0-dominion.
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2.3 Attractor

We now define the notion of attractor, core of some algorithms for solving parity

and Rabin games we will describe in later chapters. Intuitively, given a set of

nodes F ⊆ P, the attractor of U for a Player σ ∈ {0, 1}, indicated by Attrσ(G,F ),

represents those nodes that σ can force the play toward. That is, Player σ can

force any play to behave in a certain way, even though this does not mean that

Player σ wins the game. Formally, for all k ∈ N :

Attr0σ(G,F ) = U

Attrk+1
σ (G,F ) = Attrkσ(G,F ) ∪ {v ∈ Pσ|∃w ∈ Attrkσ(G,F ) s.t (v, w) ∈ E}

Then, we have that Attrσ(G,F ) =
⋃
k∈N Attr

k
σ(G,F ).

Note that, any attractor on a finite game is necessarily finite, and we can easily

see that in a finite area with n nodes and m edges the attractor can be computed

in time O(m). In the Figure 2.2 we show a possible example of attractor.

Figure 2.2: Example of attractor

The attractor of a set F for Player σ defines the winning region for Player σ in a

reachability game [74], i.e., game in which Player σ wins a play π if some node from
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U occurs in π. A memoryless winning strategy strσ(π) is called a corresponding

attractor strategy for Player σ, and it is defined as follows.

strσ(π) =


w, ∃k > 0 s.t lst(π) ∈ (P0 ∩ Attrkσ(G, F )) \ Attrk−1σ (G, F )

and w ∈ Ak−1σ (G, F ) ∩Mv(lst(π))

⊥ otherwise
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Chapter 3

Algorithms for Solving Parity

Games

In this chapter we are going to give a brief overview of the two most studied

algorithms for solving parity games, i.e., the recursive algorithm by Zielonka [167]

and the small progress measures algorithm by Jurdzinski [88].

3.1 Small Progress Measures Algorithm

We start with an informal description of the progress measure, and then provide

the formal definition. The progress measure is based on a so-called lexicographic

ranking function that assigns a rank to each node v, where the rank is a vector

of counters that indicates the number of times Player 1 can force a play to visit

an odd priority node before a node with lower even priority is reached. If Player

1 can ensure a counter value of at least n, with n number of nodes, then he can

ensure that a cycle with lowest priority odd is reached from v and therefore Player

1 can win from v. Conversely, if Player 1 can reach a cycle with lowest priority odd

before reaching a lowest even priority, then he can also force a play to visit an odd

priority n times before reaching a lower even priority. When a node v is classified

as winning for Player 1, it is marked with the rank >.

29
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The small progress measures algorithm (SPM, in short) computes the progress

measure by updating the rank of a node according to the ranks of its successors,

i.e., computing a least fixed point for all nodes with respect to ranking functions.

First, we briefly recall the basic notions. Let c be the maximum priority in G
and d ∈ Nc be a c-tuple of non-negative integers, i.e., d = (d0, d1, . . . , dc−1). We use

the comparison symbol < to denote the lexicographic ordering applied to tuples

of natural numbers and, the comparison symbol <i with i ∈ N, to denote the

lexicographic ordering on Ni applied to tuples restricted to their first i components.

Moreover, for all n ∈ N, by [n] we denote the set {0, . . . , n− 1}.

Let ni be the number of nodes with priority i for odd i, and let ni = 0 for

even i. The progress measure domain is defined by the set M>
G = MG ∪ {>} with

MG = (M0 ×M1 × . . .×Mc−2 ×Mc−1), where Mi = [ni + 1] for i ∈ {0, . . . , c− 1}.
The element > is the biggest element such that m < > for all m ∈MG.

For a tuple d = (d0, . . . , dc−1), let 〈d〉l be the tuple (d0, d1, . . . , dl, 0, . . . , 0) where

all elements with index more than l are set to 0. We indicate with inc(d) the

smallest tuple d′ ∈ M>
G such that d < d′, and with dec(d) the greatest tuple

d′ ∈M>
G such that d′ < d. These notions can also be restricted to the tuples in Ni

defining incl(d) (resp. decl(d)) with l > 0, to be the smallest (resp. the greatest)

tuple d′ ∈M>
G such that d <l d

′ (resp. d′ <l d). In particular, for d = > we have

incl(d) = d. Otherwise, incl(d) = 〈d〉l if l is even and min{y ∈ M>
G |y >l d} if l

is odd. And, for d = (0, . . . , 0) we have decl(0, . . . , 0) = (0, . . . , 0). Otherwise, if

〈x〉l > (0, . . . , 0) then decl(x) = min{y ∈M>
G |x = incl(y)}.

We now report the definitions of ranking function, the best and the lift operators,

and finally the algorithm to compute the small progress measures.

A ranking function % : P → M>
G associates to each node either one of the c

dimensional vectors in MG or the top element >.

The best operation defines the edge that leads to the lowest rank and Player i

has to choose when he owns the node. Formally, given the ranking function % and

a node v, the best function is defined as follows.
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best(%, v) =

min{%(w)|(v, w) ∈ Mv}, if v ∈ P0

max{%(w)|(v, w) ∈ Mv}, if v ∈ P1

The Lift operator uses the function best to define the increment of a node v

based on its priority and the ranks of its neighbors. The formal definition follows.

Lift(%, v)(u) =

incp(v)(best(%, v)), v = u

%(u), otherwise

The Lift(., v)-operators are monotone and the progress measure for a parity

game is defined as the least fixed point of all Lift(., v)-operators.

The algorithm to compute a progress measure starts assigning 0 to every node.

Then, it applies the lift operator as long as Lift(%, v)(u) > %(v) for some v ∈ P.

When the algorithm terminates, the least fixed point of all lift operators has been

found.

The following lemma implies that to solve a parity game G it is sufficient to

provide an algorithm, reported in Algorithm 1, that computes the least fixed point

of all Lift(., v)-operators.

Lemma 1 ( [88]). If % is a progress measure then the set of nodes with %(v) < >
is the set of winning nodes for Player 0.

Algorithm 1 Progress Measure Lifting

1: µ := λv ∈ P.(0, · · · , 0)

2: while µ < Lift(µ, v) for some v ∈ P do

3: µ :=Lift(µ, v)

The algorithm requires O(c ·m ·M>
G ) = O

(
c ·m ·

(
n
bc/2c

)bc/2c)
and it works in

space O(c · n).
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3.2 Recursive (Zielonka) Algorithm

The recursive algorithm (RE, for short), reported in Algorithm 2, is one of the first

exponential-time algorithm for solving parity games. It is based on the work of

McNaughton [119] and it was explicitly presented as a solver for parity games by

Zielonka [167]. The algorithm makes use of a divide and conquer technique and its

core subroutine is the attractor described in Section 2.3.

Algorithm 2 Recursive Algorithm

1: procedure Solve(G)

2: if (P == ∅) then

3: (W0,W1) = (∅, ∅)
4: else

5: d = maximal priority in G
6: U = { v ∈ V | p(v) = d }
7: p = d % 2

8: j = 1 - p

9: A = Attrp(U)

10: (W
′
0, W

′
1) = Solve (G \ A)

11: if W
′
j == ∅ then

12: Wp = W
′
p ∪ A

13: Wj = ∅
14: else

15: B = Attrj(W
j
1 )

16: (W
′
0, W

′
1) = Solve (G \B)

17: Wp = W
′
p

18: Wj = W
′
j ∪B

19: return (W0,W1)

At each step, the algorithm removes all nodes with the highest priority p,

denoted by U , together with all nodes Player i = p mod 2 can attract to them,
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denoted by A, and recursively computes the winning sets (W ′
0,W

′
1) for Player 0

and Player 1, respectively, on the remaining subgame G[A] (See Figure 3.1).

Figure 3.1: Execution of RE, lines 6-9, with p even.

At this point, there are two cases to be considered. First, if Player i wins G[A],

then he also wins the whole game G. Indeed, whenever Player 1− i decides to visit

A, Player i’s winning strategy would be to reach U . Then, every play that visits A

infinitely often has p as the highest priority occurring infinitely often, or otherwise

it stays eventually in G[A], and hence is won by i.

Second, if Player i does not win the whole subgame G[A], i.e., W ′
1−i is non

empty, then Player 1− i wins on a subset W ′
1−i in G[A]. And, since Player i cannot

force Player 1− i to leave W ′
1−i, we have that Player 1− i also wins on W ′

1−i in

the game G. Hence, the algorithm computes the attractor B for Player 1 − i of

W ′
1−i and recursively solves the subgame G[A] (See Figure 3.2).

Figure 3.2: Execution of RE, lines 15-16, with p even.
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Chapter 4

An Automata Approach for

Parity Games

In this chapter, we study and implement an algorithm, which we call APT, introduced

by Kupferman and Vardi in [104], for solving parity games via emptiness checking

of alternating parity automata, and evaluate its performance over the PGSolver

platform. This algorithm has been sketched in [104], but not spelled out in detail

and without a correctness proof, two major gaps that we fill here.

4.1 The APT Algorithm

The APT algorithm makes use of two special sets of nodes, denoted by V and A,

and called set of Visiting and Avoiding, respectively. Intuitively, a node is declared

visiting for a player at the stage in which it is clear that, by reaching that node, he

can surely induce a winning play and thus winning the game. Conversely, a node is

declared avoiding for a player whenever it is clear that, by reaching that node, he

is not able to induce any winning play and thus losing the game. The algorithm, in

turns, tries to partition all nodes of the game into these two sets. The introduction

of this two sets leads to define a new type of game we call Extended Parity Game.

The formal definition follows.

35
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Definition 1. Let G = (P0,P1,Mv , p, α) be a parity game, an Extended Parity

Game, (Epg, for short) is a tuple GE = (P0,P1,Mv , p′, V, A, α), where P, P, Mv,

and α are defined as in G. The subsets of nodes V,A ⊆ P = P ∪P are two disjoint

sets of Visiting and Avoiding nodes, respectively. Finally, p′ : (P \ V ∪ A)→ N is

a parity function mapping every non-visiting and non-avoiding set to a color.

The notions of histories and plays of GE are equivalent to the ones given for G.

Moreover, as far as the definition of strategies is concerned, we say that a play π

that is in P · (P \ (V ∪ A))∗ · V · Pω is winning for Player 0, while a play π that

is in P · (P \ (V ∪ A))∗ · A · Pω is winning for Player 1. For a play π that never

hits either V or A, we say that it is winning for Player 0 iff it satisfies the parity

condition, i.e., min(Inf(p(π))) is even, otherwise it is winning for Player 1.

Clearly, parity games are special cases of Epgs in which V = A = ∅. Conversely,

one can transform an Epg into an equivalent parity game with the same winning set

by simply replacing every outgoing edge with loop to every node in V∪A and then

relabeling each node in V and A with an even and an odd number, respectively.

In order to describe how to solve Epgs, we introduce some notation. By

Fi = p−(i) we denote the set of all nodes labeled with i. Doing that, the parity

condition can be described as a finite sequence α = F · . . . · Fk of sets, which

alternates from sets of nodes with even priorities to sets of nodes with odd priorities

and the other way round, forming a partition of the set of nodes, ordered by the

priority assigned by the parity function. We call the set of nodes Fi an even (resp.,

odd) parity set if i is even (resp., odd).

For a given set X ⊆ P, by force0(X) = {q ∈ P : X ∩Mv(q) 6= ∅} ∪ {q ∈ P :

X ⊆ Mv(q)} we denote the set of nodes from which Player 0 can force to move

in the set X. Analogously, by force1(X) = {q ∈ P : X ∩Mv(q) 6= ∅} ∪ {q ∈ P :

X ⊆ Mv(q)} we denote the set of nodes from which Player 1 can force to move in

the set X. For example, in the parity game in Figure 4.1, force1({q}) = {q, q}.

We now introduce two functions that are co-inductively defined that will be

used to compute the winning sets of Player 0 and Player 1, respectively.
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For a given Epg GE with α being the representation of its parity condition, V

its visiting set, and A its avoiding set, we define the functions Win(α,V,A) and

Win(α,A,V). Informally, Win(α,V,A) computes the set of nodes from which

the player 0 has a strategy that avoids A and either force a visit in V or he wins

the parity condition. The definition is symmetric for the function Win(α,A,V).

Formally, we define Win(α,V,A) and Win(α,A,V) as follows.

If α = ε is the empty sequence, then

− Win(ε,V,A) = force0(V) and

− Win(ε,A,V) = force1(A).

Otherwise, if α = F · α′, for some set F, then

− Win(F · α′,V,A) = µY(P \Win(α
′,A ∪ (F \ Y),V ∪ (F ∩ Y))) and

− Win(F · α′,A,V) = µY(P \Win(α
′,V ∪ (F \ Y),A ∪ (F ∩ Y))),

where µ is the least fixed-point operator1.

3
q

2
q

1
q

3
q

Figure 4.1: A parity game with no gaps.

To better understand how APT solves a parity game we show a simple piece of

execution on the example in Fig 4.1. It is easy to see that such parity game is

1The unravellings of Win and Win have some anologies with the fixed-point formula intro-

duced in [163] also used to solve parity games. Unlike our work, however, the formula presented

there is just a translation of the Zielonka algorithm [167].
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won by Player 0 in all the possible starting nodes. Then, the fixpoint returns the

entire set P. The parity condition is given by α = F1 · F2 · F3, where F1 = {q},
F2 = {q}, F3 = {q, q}. The repeated application of functions Win(α,V,A) and

Win(α,A,V) returns:

Win(α, ∅, ∅) = µY1(P \ µY2(P \ µY3(P \ force1(V4))))

in which the sets Yi are the nested fixpoint of the formula, while the set V is

obtained by recursively applying the following:

− V1 = ∅, Vi+1 = Ai ∪ (Fi \ Yi), and

− A1 = ∅, Ai+1 = Vi ∪ (Fi ∩ Yi).

As a first step of the fixpoint computation, we have that Y1 = Y2 = Y3 = ∅.
Then, by following the two iterations above for the example in Figure 4.1, we obtain

that at the second step:

− V2 = A1 ∪ (F1 \ Y1) = {q},

− A2 = V1 ∪ (F1 ∩ Y1) = ∅.

At the third step:

− V3 = A2 ∪ (F2 \ Y2) = {q},

− A3 = V2 ∪ (F2 ∩ Y2) = {q}.

At the fourth step:

− V4 = A3 ∪ (F3 \ Y3) = {q, q, q},

− A4 = V3 ∪ (F3 ∩ Y3) = {q}.

At this point we have that force1(V
4) = {q, q, q, q} 6= ∅ = Y. This means

that the fixpoint for Y has not been reached yet. Then, we update the set Y

with the new value and compute again V. This procedure is repeated up to the
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point in which force1(V
4) = Y, which means that the fixpoint for Y has been

reached. Then we iteratively proceed to compute Y = P \ Y until a fixpoint for

Y is reached. Note that the sets Ai and Vi depends on the Yi and so they need

to be updated step by step. As soon as a fixpoint for Y is reached, the algorithm

returns the set P \ Y. As a fundamental observation, note that, due to the fact

that the fixpoint operations are nested one to the next, updating the value of Yi

implies that every Yj, with j > i, needs to be reset to the empty set.

We now prove the correctness of this procedure. Note that the algorithm is an

adaptation of the one provided by Kupferman and Vardi in [104], for which a proof

of correctness has never been shown.

Theorem 4.1.1. Let GE = (P0,P1,Mv , p′, V, A, α) be an Epg with α being the

parity sequence condition. Then, the following properties hold.

1. If α = ε then Win(GE) = Win(α,V,A) and Win(GE) = Win(α,V,A);

2. If α starts with an odd parity set, it holds that Win(GE) = Win(α,V,A);

3. If α starts with an even parity set, it holds that Win(GE) = Win(α,V,A).

Proof. The proof of Item 1 follows immediately by definition, as α = ε forces the

two players to reach their respective winning sets in one step.

For Item 2 and 3, we need to find a partition of F into a winning set for Player

0 and a winning set for Player 1 such that the game is invariant w.r.t. the winning

sets, once they are moved to visiting and avoiding, respectively. We proceed by

mutual induction on the length of the sequence α. As base case, assume α = F

and F to be an odd parity set. Then, first observe that Player 0 can win only by

eventually hitting the set V, as the parity condition is made by only odd numbers.

We have that Win(F,V,A) = µY(P \Win(ε,A ∪ (F \ Y),V ∪ (F ∩ (Y)))) =

µY(P \ force1(A∪ (F \Y))) that, by definition, computes the set from which Player

1 cannot avoid a visit to V, hence the winning set for Player 0. In the case the set

F is an even parity set the reasoning is symmetric.
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As an inductive step, assume that Items 2 and 3 hold for sequences α of length

n, we prove that it holds also for sequences of the form F ·α of length n+1. Suppose

that F is a set of odd priority. Then, we have that, by induction hypothesis, the

formula Win(α,A ∪ (F \Y),V ∪ (F ∩Y)) computes the winning set for Player 1

for the game in which the nodes in F ∩Y are visiting, while the nodes in F \Y are

avoiding. Thus, its complement P \Win(α,A ∪ (F \ Y),V ∪ (F ∩ Y)) returns the

winning set for Player 0 in the same game. Now, observe that, if a set Y′ is bigger

than Y, then P\Win(α,A∪ (F\Y′),V∪ (F∩Y′)) is the winning set for Player 0 in

which some node in F \Y has been moved from avoiding to visiting. Thus we have

that P \Win(α,A∪ (F \Y),V∪ (F∩Y)) ⊆ P \Win(α,A∪ (F \Y′),V∪ (F∩Y′)).

Moreover, observe that, if a node q ∈ F ∪ A is winning for Player 0, then it can be

avoided in all possible winning plays, and so it is winning also in the case q is only

in F. It is not hard to see that, after the last iteration of the fixpoint operator, the

two sets F \ Y and F ∩ Y can be considered in avoiding and winning, respectively,

in a way that the winning sets of the game are invariant under this update, which

concludes the proof of Item 2.

Also in the inductive case, the reasoning for Item 3 is perfectly symmetric to

the one for Item 2.

4.1.1 Implementation of APT in PGSolver

In this section we describe the implementation of APT in the well-known platform

PGSolver developed in OCaml by Friedman and Lange [70], which collects the large

majority of the algorithms introduced in the literature to solve parity games [77,

89,91,143,144,161,167].

We briefly recall the main aspects of this platform. The graph data structure is

represented as a fixed length array of tuples. Every tuple has all information that a

node needs, such as the owner player, the assigned priority and the adjacency list of

nodes. The platform implements a collection of tools to generate and solve parity

games, as well as compare the performance of different algorithms. The purpose of
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Algorithm 3 The APT Algorithm

1: function WIN(G,i,α,V,A)

2: if (α 6= ε) then

3: return MinFP(i,α,V,A)

4: else

5: return forcei(V )

6: function MinFP(i,α,V,A)

7: Y1 = Y 2 = ∅
8: F =head[α]

9: α′=tail[α]

10: do

11: Y2 = P\WIN(G,1− i,α′,V ∪ (F ∩ Y1), A ∪ (F \ Y1))
12: Y1 = Y2

13: while Y1 6= Y2

14: return Y2

this platform is not just that of making available an environment to deploy and

test a generic solution algorithm, but also to investigate the practical aspects of the

different algorithms on the different classes of parity games. Moreover, PGSolver

implements optimizations that can be applied to all algorithms in order to improve

their performance. The most useful optimizations in practice are decomposition

into strongly connected components, removal of self-cycles on nodes, and priority

compression.

We have added to PGSolver an implementation of the APT algorithm introduced

above. Our procedure applies the fixpoint algorithm to compute the set of winning

positions in the game by means of two principal functions that implement the two

functions of the algorithm core processes, i.e., function forcei and the recursive

function Wini(α, V,A). The pseudocode of the APT algorithm implementation is re-

ported in Algorithm 3. It takes six parameters: the Player (0 or 1), the game, the set

of nodes, the condition α, the set of visiting and avoiding. Moreover, we define the
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function min fp for the calculation of the fixed point. The whole procedure makes

use of Set and List data structures, which are available in the OCaml’s standard

library, for the manipulation of the sets visiting and avoiding, and the accepting con-

dition α. The tool along with the implementation of the APT algorithm is available

for download from https://github.com/antoniodistasio/pgsolver-APT.

For the sake of clarity, we report that in PGSolver it is used the maximal priority

to decide who wins a given parity game. Conversely, the APT algorithm uses the

minimal priority. However, these two conditions are well known to be equivalent

and, in order to compare instances of the same game on different implementations

of parity games algorithms in PGSolver, we simply convert the game to the specific

algorithm accordingly. For the conversion, we simply use a suitable permutation of

the priorities.

4.1.2 Experiments

In this section, we report the experimental results on evaluating the performance for

the APT algorithm implemented in PGSolver over the random benchmarks generated

in the platform. We have compared the performance of the implementation of APT

with those of RE and SPM. We have chosen these two algorithms as they have been

proved to be the best-performing in practice [70].

All tests have been run on an AMD Opteron 6308 @2.40GHz, with 224GB

of RAM and 128GB of swap running Ubuntu 14.04. We note that APT has been

executed without applying any optimization implemented in PGSolver [70], while

SPM and RE are run with such optimizations. Applying these optimization on APT

is a topic of further research.

We evaluated the performance of the three algorithms over a set of games that

are randomly generated by PGSolver, in which it is possible to give the number n

of states and the number k of priority as parameters. We have taken 20 different

game instances for each set of parameters and used the average time among them

returned by the tool. For each game, the generator works as follows. For each node
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q in the graph-game, the priority p(q) is chosen uniformly between 0 and k − 1,

while its ownership is assigned to Player 0 with probability 1
2
, and to Player 1 with

probability 1
2
. Then, for each node q, a number d from 1 to n is chosen uniformly

and d distinct successors of q are randomly selected.

Experimental results

We ran two experiments. First, we tested games with 2, 3, and 5 priorities,

where for each of them we measured runtime performance for different state-space

sizes, ranging in {2000, 4000, 6000, 8000, 10000, 12000, 14000}. The results are in

Table 4.1, in which the number of states is reported in column 1, the number of

colors is reported in the macro-column 2, 3, and 5, each of them containing the

runtime executions, expressed in seconds, for the three algorithms. Second, we

evaluated the algorithms on games with an exponential number of nodes w.r.t.

the number of priorities. More precisely, we ran experiments for n = 2k, n = ek

and n = 10k, where n is the number of states and k is the number of priorities.

The experiment results are reported in Table 4.2. By abortT , we denote that

the execution has been aborted due to time-out (greater of one hour), while by

abortMwe denote that the execution has been aborted due to mem-out.

2 Pr 3 Pr 5 Pr

n RE SPM APT RE SPM APT RE SPM APT

2000 4.94 5.05 0.10 4.85 5.20 0.15 4.47 4.75 0.42

4000 31.91 32.92 0.17 31.63 31.74 0.22 31.13 32.02 0.82

6000 107.06 108.67 0.29 100.61 102.87 0.35 100.81 101.04 1.39

8000 229.70 239.83 0.44 242.24 253.16 0.5 228.48 245.24 2.73

10000 429.24 443.42 0.61 482.27 501.20 0.85 449.26 464.36 3.61

12000 772.60 773.76 0.87 797.07 808.96 0.98 762.89 782.53 6.81

14000 1185.81 1242.56 1.09 1227.34 1245.39 1.15 1256.32 1292.80 10.02

Table 4.1: Runtime executions with fixed priorities 2, 3 and 5
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The first experiment shows that with a fixed number of priorities (2, 3, and

5) APT significantly outperforms the other algorithms, showing excellent runtime

execution even on fairly large instances. For example, for n = 14000, the running

time for both RE and SPM is about 20 minutes, while for APT it is less than a minute.

The results of the exponential-scaling experiments, shown in Table 4.2, give

more nuanced results.

n Pr RE SPM APT

n = 2k

1024 10 1.25 1.25 8.58

2048 11 7.90 8.21 71.08

4096 12 52.29 52.32 1505.75

8192 13 359.29 372.16 abortT

16384 14 2605.04 2609.29 abortT

32768 15 abortT abortT abortT

n = ek

21 3 0 0 0

55 4 0 0 0.02

149 5 0.01 0.01 0.08

404 6 0.14 0.14 0.19

1097 7 1.72 1.72 0.62

2981 8 24.71 24.46 7.88

8104 9 413.2.34 414.65 35.78

22027 10 abortT abortT 311.87

n = 10k

10 1 0 0 0

100 2 0 0 0

1000 3 1.3 1.3 0.04

10000 4 738.86 718.24 4.91

100000 5 abortM abortM 66.4

Table 4.2: Runtime executions with n = ek and n = 2k and n = 10k.

Here, APT is the best performing algorithm for n = ek and n = 10k. For example,

when n = 100000 and k = 5, both RE and SPM memout, while APT completes in just
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over one minute. That is, the efficiency of APT is notable also in terms of memory

usage. At the same APT underperforms for n = 2k. Our conclusion is that APT has

superior performance when the number of priorities is logarithmic in the number of

game-graph nodes, but the base of the logarithm has to be large enough. As we see

experimentally, e is sufficiently large base, but 2 is not. This point deserve further

study, which we leave to future work. In Figure 4.2 we just report graphically the

benchmarks in the case n = ek.

Figure 4.2: Runtime executions with n = ek

4.2 Conclusion and Discussion

The APT algorithm, an automata-theoretic technique to solve parity games, has

been designed two decades ago by Kupferman and Vardi [104], but never considered

to be useful in practice [69]. In this work, for the first time, we fill missing gaps

and implement this algorithm. By means of benchmarks based on random games,

we show that it is the best performing algorithm for solving parity games when the
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number of priorities is very small w.r.t. the number of states. We believe that this

is a significant result as several applications of parity games to formal verification

and synthesis do yield games with a very small number of priorities.

The specific setting of a small number of priorities opens up opportunities for

specialized optimization technique, which we aim to investigate in future work.

This is closely related to the issue of accelerated algorithms for three-color parity

games [50]. We also plan to study why the performance of the APT algorithm is so

sensitive to the relative number of priorities, as shown in Table 4.2.



Chapter 5

Symbolic Parity Games

In this chapter we provide a broad investigation of the symbolic approach for

solving parity game. We implement four symbolic algorithms and compare their

performances to the corresponding explicit versions for different classes of parity

games. Specifically, we implement in a new tool, called SymPGSolver, the symbolic

versions of RE, APT, and two variants of SPM. The tool also allows to generate

random games, as well as compare the performance of different symbolic algorithms.

5.1 Definition

We start with some notation. In the sequel we use symbols xi for propositions

(variables), li for literals, i.e., positive or negative variables, f for a generic

Boolean formula, ||f || represents the set of interpretations that makes the for-

mula f true, λ(f) ⊆ V for the set of variables in f , and Prime(f) for the formula

f [x1, . . . , xn/x
′
1, . . . , x

′
n], that is, the formula where xi is replaced with x′i, for

1 ≤ i ≤ n.

Definition 2. Given a parity game (PG, for short) G = (P0,P1,Mv , p, α), the corre-

sponding symbolic PG (SPG, for short) is the tuple F = (X ,XM , fP0 , fP1 , fMv , ηp, α)

defined as follows:

47
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− X = {x1, . . . , xn}, with n = dlog2(|P|)e, is the set of propositions used

to encode nodes in G, i.e., to each v ∈ P we associate a Boolean formula

fv = lv,1 ∧ ... ∧ lv,n where lv,i is either xi or xi. We also associate to v the in-

terpretation Xv ∈ 2X , i.e., the subset of variables appearing positively in fv.

− XM = {x′1, ..., x′n}, with n = dlog2(|P|)e, is the set of propositions used to

encode the successor nodes such that X ∩ XM = ∅. We extend to XM the

definitions of fv and Xv as used in the previous item.

− fPi
, for i ∈ {0, 1}, is a Boolean formula such that ||fPi

||=Pi.

− fMv is a Boolean formula over the propositions X ∪XM such that ||fMv ||=Mv.

− ηp is the symbolic representation of the priority function p; it is formally

given by the function ηp : 2X → N that associates with each interpretation Xv

a natural number.

To solve an SPG we compute the Boolean formulas fWin over X that is satisfied

by those interpretations that correspond to winning nodes for Player 0.

For technical reasons, we also need the definition of symbolic sub-games.

Definition 3. Let G = (P0,P1,Mv , p, α) be a PG and U ⊆ P. By G[U ] = (P0 \ U,
P1 \ U,Mv \ (U × P ∪ P× U), p|P\U) we denote the PG restricted to nodes P \ U .

Let fU be a Boolean formula such that ||fU || = U and F = (X ,XM , fP0 , fP1 ,

fMv , ηp) be the corresponding SPG of the PG G. By FP\U = (X ,XM , f ′P0
, f ′P1

, f ′Mv ,

η′p) we denote the SPG of G[U ], where:

− f ′Pi
= fPi

∧ ¬fU , for i ∈ {0, 1}, is the Boolean formula for nodes v ∈ Pi \ U ;

− fMv ′ = fMv ∧ ¬(fU ∨ f ′U), where ||f ′U || = U and λ(f ′U) = XM , is the Boolean

formula representing moves restricted to Mv \ (U × P ∪ P× U);

− η′p = 2X → N is the symbolic representation of p|P\U that associates to the

interpretations Xv satisfying the Boolean formula fP ∧¬fU a natural number.
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5.2 Symbolic Algorithms

We now describe symbolic versions of the explicit algorithms listed in Chapter 2.

To do this, we first give a brief overview to Binary Decision Diagrams and Algebraic

Decision Diagrams. Note that, we keep using the notions introduced previously.

5.2.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) [1, 26] are a compact way to represent function

of the form f : B→ {0, 1}. A BDD is defined as a directed acyclic graph (DAG),

with nonterminal nodes and terminal nodes. Each nonterminal node is labeled by

a Boolean variable var(v) and has two successors: low(v) corresponding to the case

where the variable v is assigned to 0, and high(v) corresponding to the case where

the variable v is assigned to 1. Each terminal node is labeled by value(v) which

are either true or false. Given a BDD representing a function f , whether a truth

assignment to the variables makes f true or false can be decided by traversing the

DAG from the root to a terminal node, taking appropriate edges forward based on

value(v). The value of the terminal node will be the value of f .

One of the major features in using BDDs is the possibility to have a canonical

representation for Boolean functions. In [26] is shown how to obtain a canonical

representation for Boolean functions by repeatedly applying the following three

transformation rules.

− Share identical terminal nodes: eliminate all but one terminal node with a

given label and redirect all edges to the eliminated nodes to the remaining

one.

− Share identical non terminal nodes: if two nonterminals v and u have var(v) =

var(u), low(v) = high(u) and high(v) = low(u), then eliminate v or u and

redirect all incoming edges to the other node.

− Remove redundant test: if non terminal v has low(v) = high(v), then

eliminate v and redirect all incoming edges to low(v).
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And, by imposing a total order on the variables that label the nodes in the BDD.

Such BDDs are called ordered binary decision diagrams. The above rules are applied

until the size of the diagram can no longer be reduced, and the diagram so obtained

is called reduced ordered binary decision diagram (ROBDD). Consequences of the

canonicity are that one can check tautology or satisfiability of a f by looking at

whether its resulting ROBDD is either 1 or 0, respectively. Moreover, the checking

equivalence of two functions is reduced to checking if their ROBDDs are equals.

Figure 5.1: The ROBDD for (x0 ⇔ y0) ∧ (x1 ⇔ y1).

Figure 5.1 illustrates an example of BDD. The high(v) and low(v) edges from

a nonterminal are shown as solid and dashed lines, and represent the variable’s

true and false respectively. The leaves store the Boolean values 0 and 1.

Variable ordering plays a fundamental role in determining the size of an OBDD.

When using OBDDs, it is crucial to select a good order of the variables in order to

build a small OBDD, but finding an optimal order is an NP-Complete problem [22].

Moreover, there are Boolean functions that have an exponential size OBDDs for

any variable ordering. Several heuristics have been proposed for finding a good

variable ordering when such an order exists [56, 83,125,126,140,164].
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5.2.2 Algebraic Decision Diagrams

Algebraic Decision Diagrams (ADDs) [12] were introduced to extend BDDs by

allowing values from any arbitrary finite domain to be associated with the terminal

nodes of the diagram, and then to represent in a compact way functions of the

form f : B → R. An ADD can be seen as a BDD whose leaves may take on

values belonging to a set of constants different from 0 and 1. Hence, ADDs are

defined similarly to BDDs, and the canonical representation is obtained by applying

the rules described in the previous section. Similar to BDDs, given an ADD

representing a function f , the function’s value associated to a truth assignment

to the variables can be decided by traversing the DAG from the root node to a

terminal node taking appropriate edges forward based on value(v). The resulting

leaf node represents the function’s value. For example, in Figure 5.2, the assignment

(x0 = 1, x1 = 1, y0 = 0, y1 = 0) leads to a leaf node labeled 5.

Figure 5.2: Example ADD

The key benefit of an ADD is, other to provide a compact representation, the

existence of efficient algorithms for function manipulation and composition. For
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example operations like addition, multiplication, max, min, etc., can be performed

directly within the ADD graph structures.

Applications of ADDs include computations on very big matrices including

computing steady-state probabilities of Markov chains, probabilistic verification,

and AI planning. Finally, because BDDs and ADDs have been used extensively in

many domains, very efficient implementations are readily available in the CUDD

package. Most of the popular algorithms have been tested using CUDD.

5.2.3 SPG Implementation

An SPG can be implemented using BDDs and ADDs to represent and manipulate

the associated Boolean functions introduced along with its definition.

Given an SPG F = (X1,XM , fP0 , fP1 , fMv , ηp) with maximal priority c, we use

BDDs to represent the Boolean formulas fP0 , fP1 and fMv , and an ADD for the

function ηp. Moreover, we decompose the function ηp into a sequence of BDDs

B = 〈B0, . . . , Bc−1〉 where each Bi encodes the nodes with priority i, to easily

manage the selection of a set of nodes with a specific priority. In the sequel, by

BDD (resp., ADD) f, we denote the BDD (resp., ADD) representing the function f.

5.2.4 Symbolic SPM (SSP)

This is the first symbolic implementation of SPM we are aware of, and which we

describe with some minor corrections compared to the one in [29]. Lift is encoded

by using ADDs and the algorithm computes the progress measure as the least fixed

point fG of Lift(f, v) on a ranking function here given by the function f : P→ D,

with D = MG ∪ {∞,−∞}. The algorithm takes as input an SPG F and returns

an ADD representing the least fixed point fG such that the set of winning nodes

for Player 0 is {v|fG(v) < ∞}, and the set of winning nodes for Player 1 is

{v|fG(v) =∞}. The symbolic implementation of SPM is reported in Algorithm 4.



5.2. SYMBOLIC ALGORITHMS 53

Algorithm 4 Symbolic Small Progress Measures

1: procedure PARITY (F)

2: f =→ (fP,−∞);

3: repeat

4: fold = f ; f = false;

5: for j = 0 to c− 1 do

6: f = f OR MAXeo(fold, j) OR MINeo(fold, j);

7: until f = fold

The algorithm calls the following procedures:

− MAXeo, which given an ADD f : P → D, the BDD fMv , and 1 ≤ j ≤ k,

returns an ADD that assigns to every vertex v ∈ P1, with p(v) = j, the value

incj(max{f(v′)|(v, v′) ∈ Mv});

− MINeo, which given an ADD f : P → D, the BDD fMv , and 1 ≤ j ≤ k,

returns an ADD that assigns to every vertex v ∈ P0, with p(v) = j, the value

incj(min{f(v′)|(v, v′) ∈ Mv}).

MINeo (resp., MAXeo) aims at constructing an ADD that represents the ranking

function fmin(v) = min{f(v′)|(v, v′) ∈ Mv} (resp., fmax(v) = max{f(v′)|(v, v′) ∈
Mv}). To do this, given an ADD f : P→ D and the BDD fMv , it is generated an

ADD fsuc : (P × P) → D such that fsuc(v, v
′) = d if (v, v′) ∈ Mv and f(v′) = d.

Then, the ADD fsuc is given in input to the procedure MIN, described in Algorithm

5, that constructs the ADD for fmin. The procedure MAX is defined similarly. Let

n be an ADD node, we refer to the left and right successors of n as n.l and n.r,

respectively, and refer to the variable that n represents as n.v. For a variable v, let

o(v) be the position of v in the BDD order. Since Mv may be a strict subset of

P× P, the function fsuc is not defined for all the pairs in P× P. Thus, one leaf in

the ADD fsuc stands for the value of the pairs from which fsuc is undefined, and we

assume that is value is ∞. Since every node has at least one successor, the ADD

fmin is defined for all nodes of P.
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Algorithm 5 Procedure MIN

1: procedure MIN(ADD n)

2: if n is a terminal node then

3: return n

4: if n.v is in X then

5: return (n.v AND MIN(n.r)) OR ( NOT n.v AND MIN(n.l))

6: if n.v is in X ′ then
7: return MERGE(MIN(n.r), MIN(n.l)))

The procedure MIN calls the procedure MERGE, reported in Algorithm 6, that

gets in input the pointer to the roots n1 and n2 of two ADDs representing the

functions f1 and f2, both from some set U ⊆ P to D, and merges them to an ADD

in which every u ∈ U is mapped into min(f1(u), f2(u)).

Algorithm 6 Procedure MERGE

1: procedure MERGE(ADD n1, ADD n2)

2: if n1 and n2 are a terminal nodes then

3: return min(n1, n2)

4: if o(n1.v) < o(n2.v) then

5: return (n1.v AND MERGE(n1.r, n2)) OR ( NOT n1.v AND MERGE(n1.l, n2))

6: if o(n1.v) > o(n2.v) then

7: return (n2.v AND MERGE(n2.r, n1)) OR ( NOT n2.v AND MERGE(n2.l, n1))

8: return (n1.v AND MERGE(n1.r, n2.r)) OR ( NOT n1.v AND MERGE(n1.l, n2.l))

5.2.5 Set-Based Symbolic SPM (SSP2)

This is a symbolic implementation of SPM that has been introduced recently in [35].

It allows to use only basic set operations like ∪, ∩, \, ⊆, and one-step predecessor

operations for its description. Unlike the implementation described previously,

the ranking function is implicitly encoded by using sets of nodes. This allows

representing the Lift operator just by BDDs.
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To encode the ranking function the algorithm defines for each rank r ∈M>
G the

set Sr containing the nodes with rank r or higher. Formally, given the ranking

function % : P → M>
G , the corresponding sets are defined as Sr = {v|%(v) ≥ r}.

Conversely, given the family of sets {Sr}r, the corresponding ranking function, say

%{Sr}r , is given by %{Sr}r(v) = max{r ∈M>
G |v ∈ Sr}. This formulation encodes the

ranking function with sets but uses exponential in c many sets.

Space is reduced to a linear number of sets by encoding the value of each

coordinate of the rank r, separately. In detail, for each odd priority i, the algorithm

defines the sets Ci
0, . . . , C

i
ni

. Each set Ci
x with x ∈ {0, . . . , ni} contains the nodes

that have x as i-th coordinate of their rank. Therefore, the algorithm has to

construct the set Sr whenever it needs it.

Let Cprei(X) = {q ∈ Pi : X ∩ Mv(q) 6= ∅} ∪ {q ∈ P1−i : X ⊆ Mv(q)} the

one-step controllable predecessor operator, i.e., the Cprei(X) operator computes

all nodes from which Player i can ensure that in the next step the successor belongs

to the given set X. The algorithm starts initializing the sets Sr for r > 0 to empty,

and S0 with the set of all nodes P. The rank r initially is set to the second lowest

rank inc((0, . . . , 0)). Then, at each iteration the set Sr is updated for the current

value of r by using the Lift encoded by the Cprei operator. After the update of Sr,

it is checked if S ′r ⊇ Sr for all r′ < r, i.e., if the property of the anti-monotonicity

is preserved. Anti-monotonicity together with the definition of the sets S ′r allows

to decide whether the rank of a node v can be increased to r by only considering

one set S ′r. If the anti-monotonicity is preserved, then for r < > the value of

r is increased to the next highest rank and for r = > the algorithm terminates.

Otherwise the nodes newly added to Sr are also added to all sets with r′ < r that

do not already contain them; the variable r is then updated to the lowest r′ for

which a new node is added to S ′r in this iteration. The symbolic implementation is

reported in Algorithm 7. Note that, the parity condition α is defined as a finite

sequence F · . . . · Fk, with Fi = p−(i).
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Algorithm 7 Symbolic Progress Measures Algorithm

Input: Parity game G = (P0,P1,Mv , p, α).

Output: Winning set for Player 0.

1: function SymbolicSPM(G)

2: S0 ← P; Sr ← ∅ for r ∈M>
G ;

3: r ← inc(0);

4: while true do

5: if r 6= > then

6: Let l maximal such that r = 〈r〉L;

7: Sr ← Sr ∪
⋃

1≤k≤(l+1)/2(CPre1(Sdec2k−1(r)) ∩ F2k−1);

8: repeat

9: Sr ← Sr ∪ (CPre1(Sr) \
⋃
l≤k≤c Pk);

10: until a fized-point for Sr is reached ;

11: else if r = > then

12: S> ← S> ∪
⋃

1≤k≤bc/2c(CPre1(Sdec2k−1(>)) ∩ F2k−1);

13: repeat

14: S> ← S> ∪ (CPre1(S>);

15: until a fized-point for S> is reached ;

16: r′ ← dec(r);

17: if S ′r ⊇ Sr and r < > then

18: break

19: else

20: repeat

21: S ′r ← S ′r ∪ Sr;
22: r′ ← dec(r′);

23: until S ′r ⊇ Sr;

24: r′ ← inc(r′);

25: return P \ S>
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5.2.6 Symbolic versions of RE (SRE) and APT (SAPT).

RE and APT can be easily rephrased symbolically by using BDDs to represent the

operations they make use of: set basic operations like union, intersection, com-

plement, and inclusion. The controllable predecessor operator used to implement

the function forcei in APT and the attractor in RE can be encoded using existential

quantification as follows.

CPrei(fU) = (fPi
∧ ∃XM .fMv ∧ Prime(fU)) ∨ (fP1−i

∧ ¬∃XM .fMv ∧ ¬Prime(fU))

That is, the BDD for fU is first renamed to be over XM , then it is conjoined

with the BDD fMv , and finally all variables in XM are quantified existentially.

The symbolic construction of a subgame used in RE is implemented following

the definition of symbolic subgame reported previously.

5.3 Experimental Evaluations: Methodology and

Results

We now analyze the performance of the introduced symbolic approach to solve PGs

and compare with the explicit one. We have implemented the symbolic algorithms

described in Section 5.2 in a fresh platform tool, called SymPGSolver(Symbolic

Parity Games Solver). SymPGSolver1 is implemented in C++ and uses the CUDD2

package as the underlying BDD and ADD library. The platform provides a collection

of tools to randomly generate and solve SPGs, as well as compare the performance

of different symbolic algorithms.

We have also compared them with Oink, a platform recently developed in C++

by Tom van Dijk [159], which collects the large majority of explicit PGs algorithms

introduced in the literature [30,89,90,167].

1The tool is available for download from https://github.com/antoniodistasio/sympgsolver
2http://vlsi.colorado.edu/ fabio/CUDD/
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5.3.1 Experimental results

In this section we report on some experimental results on evaluating the performance

for the explicit algorithms RE, APT, and SPM as well as their corresponding symbolic

versions SRE, SAPT, SSP and SSP2 [35]. All tests have been run on an Intel Core i7

@2.40GHz, with 16GB of RAM running macOS 10.12. We have used different classes

of parity games: random games with linear structures, ladder games, clique games

as well as games corresponding to practical model checking problems. Random

games are generated by SymPGSolver, while for ladder and clique games we use

Oink. We have taken 100 different instances for each class of games and used the

average time execution. In all tests, we use abortT to denote an aborted execution

due to time-out (greater than 200 seconds). On the class of ladder games and in

model checking problems the benchmarks have been executed using the variable

ordering given by the heuristic WINDOW2 module available in the CUDD package.

Random Games with linear structure

Tabakov and Vardi showed that in the context of automata-theoretic problems,

explicit algorithms generally dominate symbolic algorithms, as BDDs do not offer

any compression for random sets [155]. We found that the same holds for parity-

game solving (we omit details due to lack of space). In [155] it was observed that,

in case of random games with linear structures, the symbolic algorithms are the

best performing ones. Hence, we have investigated the same class here as well, but

with a different outcome.

A random game with linear structure is built by restricting the transition relation

as follows: a node vi can make a transition to node vj, where 0 ≤ i, j ≤ |P| − 1, if

and only if |i− j| ≤ d, where d is named as the distance parameter.

Table 5.1 collects the running time of the symbolic algorithms on random games

with linear structures having priorities 2, 3, and 5, and distance d = 25. The results

show that SAPT performs better thasolving parity games using an automata based

algorithmn the others in solving games with n ≤ 10, 000 nodes and 2 priorities,
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2 Pr 3 Pr 5 Pr

n SRE SAPT SSP SSP2 SRE SAPT SSP SSP2 SRE SAPT SSP SSP2

1,000 0.04 0.03 29.89 0,95 0.05 0.10 18.9 1,44 0.05 0.45 15.75 abortT

2,000 0.14 0.12 128.06 2,87 0.13 0.18 79.22 26,24 0.12 1.34 69.6 abortT

3,000 0.25 0.23 abortT 10,15 0.21 0.41 193.06 75,49 0.21 2.03 135.04 abortT

4,000 0.33 0.30 abortT 32,42 0.28 0.60 abortT 146,58 0.3 3.01 abortT abortT

7,000 0.79 0.73 abortT abortT 0.65 1.44 abortT abortT 0.59 7.20 abortT abortT

10,000 1.16 1.12 abortT abortT 0.93 2.19 abortT abortT 1.08 11.72 abortT abortT

20,000 2.78 3.10 abortT abortT 2.33 6.34 abortT abortT 3.69 43.87 abortT abortT

100,000 19.21 24.4 abortT abortT 24.38 65.11 abortT abortT 24.89 abortT abortT abortT

Table 5.1: Runtime executions of the symbolic algorithms

while SRE is the best performing in all other cases. Also, they show that SSP and

SSP2 have the worst performances in all instances, with SSP overcoming SSP2 of

more than 200 seconds on games with 3, 000 nodes. In Table 5.2 we collect the

execution time of the explicit algorithms on the same set of games. The results

highlight that the explicit algorithms are faster than the symbolic ones in all

instances.

2 Pr 3 Pr 5 Pr

n RE APT SPM RE APT SPM RE APT SPM

1,000 0.0008 0.0006 0.0043 0.0008 0.0007 0.0049 0.0008 0.0008 0.0053

2,000 0.0015 0.0012 0.0084 0.0017 0.0016 0.0096 0.0019 0.0029 0.011

3,000 0.0023 0.0017 0.012 0.0025 0.0022 0.014 0.0029 0.0073 0.020

4,000 0.0031 0.0022 0.016 0.0033 0.0028 0.019 0.0035 0.0066 0.027

7,000 0.0051 0.0039 0.025 0.0053 0.0048 0.032 0.0056 0.012 0.039

10,000 0.0065 0.0057 0.035 0.0067 0.0076 0.046 0.0069 0.018 0.051

20,000 0.013 0.011 0.078 0.014 0.021 8.32 0.17 0.019 107.2

100,000 0.094 0.081 0.44 0.099 0.10 1.47 0.10 0.59 80.37

Table 5.2: Runtime executions of the explicit algorithms
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Ladder Games

In a ladder game, every node in Pi has priority i. In addition, each node v ∈ P

has two successors: one in P0 and one in P1, which form a node pair. Every pair

is connected to the next pair forming a ladder of pairs. Finally, the last pair is

connected to the top. The parameter m specifies the number of node pairs. Formally,

a ladder game of index m is G = (P0,P1,Mv , p) where P0 = {0, 2, . . . , 2m − 2},
P1 = {1, 3, . . . , 2m − 1}, Mv = {(v, w)|w ≡2m v + i for i ∈ {1, 2}}, and p(v) =

v mod 2. Table 5.3 reports the benchmarks.

m SRE SAPT SSP SSP2

1,000 0 0.00013 24.86 0.47

10,000 0.00009 0.00016 abortT 41.22

100,000 0.0001 0.00018 abortT abortT

1,000,000 0.00012 0.00022 abortT abortT

10,000,000 0.00015 0.00025 abortT abortT

m RE APT SPM

1,000 0.0007 0.0006 0.002

10,000 0.006 0.005 0.0017

100,000 0.057 0.054 0.18

1,000,000 0.59 0.56 1.84

10,000,000 6.31 5.02 20.83

Table 5.3: Runtime executions of the explicit and symbolic algorithms on ladder games.

The benchmarks indicate that SRE and SAPT outperform their explicit versions,

showing an excellent runtime execution even on fairly large instances. Indeed,

while RE needs 6.31 seconds for games with index m = 10M , SRE takes just 0.00015

seconds. Benchmarks also show that SSP and SSP2 have yet the worst performance.

Clique Games

Clique games are fully connected games without self-loops, where P0 (resp., P1)

contains the nodes with an even index (resp., odd) and each node v ∈ P has as

priority the index of v. An important feature of the clique games is the high number

of cycles, which may pose difficulties for certain algorithms. Formally, a clique game

of index n is G = (P0,P1,Mv , p) where P0 = {0, 2, . . . , n−2}, P1 = {1, 3, . . . , n−1},
Mv = {(v, w)|v 6= w}, and p(v) = v. Benchmarks on clique games are reported in

Table 5.4.
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n SRE SAPT SSP SSP2

2,000 0.007 0.003 5.53 abortT

4,000 0.018 0.008 19.27 abortT

6,000 0.025 0.012 39.72 abortT

8,000 0.037 0.017 76.23 abortT

n RE APT SPM

2,000 0.021 0.0105 0.0104

4,000 0.082 0.055 0.055

6,000 0.19 0.21 0.22

8,000 0.35 0.59 0.63

Table 5.4: Runtime executions of the explicit and symbolic algorithms on clique games.

Benchmarks show that SAPT is the best one among the symbolic algorithms in

all instances, SAPT and SRE outperform the explicit ones (as in ladder games), and

the symbolic versions of SPM do not show good results even on small games.

Finally, we evaluate the symbolic and explicit approaches on some practical

model checking problems as in [94]. Specifically, we use models coming from: the

Sliding Window Protocol (SWP) with window size (WS) of 2 and 4 (WS represents

the boundary of the total number of packets to be acknowledged by the receiver),

the Onebit Protocol (OP), and the Lifting Truck (Lift). The properties we check

on these models concern: absence of deadlock (ND), a message of a certain type

(d1) is received infinitely often (IORD1), if there are infinitely many read steps

then there are infinitely many write steps (IORW), liveness, and safety. Note that,

in all benchmarks, data size (DS) denotes the number of messages.

n Pr Property SRE SAPT SSP SSP2 RE APT SPM WS DS

14,065 3 ND 0.00009 0.00006 3.30 0.0001 0.004 0.004 0.029 2 2

17,810 3 IORD1 0.0003 0.0005 abortT 85.4 0.006 0.006 0.037 2 2

34,673 3 IORW 0.0006 0.0008 164.73 56.44 0.015 0.014 0.053 2 2

2,589,056 3 ND 0.0002 abortT abortT 0.29 1.02 0.93 9.09 4 2

3,487,731 3 IORD1 abortT abortT abortT abortT 1.81 1.4 17.45 4 2

6,823,296 3 IORW 0.3 abortT abortT abortT 3.87 3.13 22.26 4 2

Table 5.5: SWP (Sliding Window Protocol)

As we can see, by comparing Tables 5.5, 5.6, and 5.7, the experiments indicate

more nuanced relationship between the symbolic and explicit approaches. Indeed,
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n Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

81,920 3 ND 0.00002 31.69 1.37 0.0016 0.031 0.034 0.22 2

88,833 3 IORD1 0.0027 0.003 abortT abortT 0.036 0.0038 0.27 2

170,752 3 IORW 14.37 98.4 abortT abortT 0.07 0.07 0.47 2

289,297 3 ND 0.0001 154.89 12.3 0.0058 0.13 0.12 1.34 4

308,737 3 IORD1 0.0088 0.009 abortT abortT 0.14 0.13 1.37 4

607,753 3 IORW 43.7 abortT abortT abortT 0.29 0.27 2.06 4

Table 5.6: OP (Onebit Protocol)

n Pr Property SRE SAPT SSP SSP2 RE APT SPM DS

328 1 ND 0.00002 0.002 0.005 0.00002 0.0001 0.0001 0.0004 2

308 1 safety 0.00002 0.003 0.028 0.00002 0.0001 0.0001 0.0004 2

655 3 liveness 0.00008 0.0001 5.52 0.09 0.0003 0.0002 0.001 2

51.220 1 safety 0.0001 1.48 32.14 0.00002 0.01 0.01 0.09 4

53.638 1 ND 0.0001 0.2 4.67 0.0001 0.017 0.015 0.07 4

107,275 3 liveness 0.005 0.001 abortT abortT 0.03 0.03 0.18 4

Table 5.7: Lift (Lifting Truck)

they show a different behavior depending on the protocol and the property we are

checking. Overall, we note that SRE outperforms the other symbolic algorithms

in all protocols, although the advantage over RE is discontinued. Specifically,

SRE is the best performing in checking absence of deadlock in all three protocols,

but for IORD1 in the SWP protocol with WS = 2, or for IORW in the OP

protocol, RE exhibits a significant advantage. Differently, SAPT and SSP2 show

better performances on a smaller number of properties. Moreover, the results

highlights that SSP exhibits the worst performances in all protocols and properties.

5.4 Conclusion and Discussion

I we have compared for the first time the performances of different symbolic

and explicit versions of classic algorithms to solve parity games. To this aim
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we have implemented in a fresh tool, which we have called SymPGSolver, the

symbolic versions of Recursive [167], APT [104,153], and the small-progress-measures

algorithms presented in [29] and [35].

Our analysis started from constrained random games [155]. The results show

that on these games the explicit approach is better than the symbolic one, exhibiting

a different behavior than the one showed in [155]. To gain a fuller understanding of

the performances of the symbolic and the explicit algorithms, we have further tested

the two approaches on structured games. Precisely, we have considered ladder

games, clique games, as well as game models coming from practical model-checking

problems. We have showed several cases in which the symbolic algorithms have

the advantage over the explicit ones.

Our empirical study let us to conclude that on comparing explicit and symbolic

algorithms for solving parity games, it would be useful to have real scenarios and

not only random games, as the common practice has been.
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Chapter 6

LTL Based Automated Planning

In this chapter we analyze an LTL based automated planning. In particular we

introduce a generalized form of planning under partial observability, in which there

are multiple, possibly infinitely many, planning domains with the same actions and

observations, and goals expressed over observations, which are possibly temporally

extended. The chapter starts with the definition of generalized planning, following

the description in [81]. Then, we give a definition of generalized planning games,

and finally we introduce a sound and complete mathematical technique for removing

imperfect information from them.

Notation. We start with some notation. The positive integers are denoted N,

and N0 := N∪{0}. Write 2 for the set of Boolean values {true, false}, and write 〈b〉
to denote a vector of boolean values. For n ∈ N0, write [n] for the set {0, 1, · · · , n}.
If π is a sequence, we write π[i] for the ith element of π (here i ∈ N0; thus we

start counting with the zero’th element), and π[i, j] for the subsequence starting

with the ith element and ending with the jth element. We write Xω for the set of

infinite sequences whose elements are from X, X∗ for the finite sequences, and X+

for the finite non-empty sequences (X a set). If π is a finite sequence then Last(π)

denotes its last element.

65
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6.1 Generalized Planning

Informally, the problem of generalized planning is to find plans that can solve a set

of problem instances. We also can rephrase it as the task of synthesizing a plan that

works for multiple, possibly, infinitely many, cases [149]. This problem has been

studied since the earliest work on STRIPS [66], and the fundamental motivations

behind it stem from classical planning itself. Consider the simple planning problem

depicted in Figure 6.1, taken from [24]. Given a linear grid world, the goal is to

reach cell B, starting from cell A, moving left or right within the cells. In classical

planning, this problem is solved for a specific instance, that is, for a specific number

of cells. As we increase the number of cells in this problem, the complexity of

solving it grows exponentially, although the solutions address common subproblems

and are remarkably similar to each other. Approaches for finding generalized plans

attempt to extract, and subsequently utilize such common solutions and problem

structures. A simple generalized solution is the one showed in Figure 6.1b, which

says ”repeatedly move right, until atB is not observed.

(a) (b)

Figure 6.1: Grid world example and its generalized plan.

To formally define generalized planning, we need to start from two main compo-

nents of planning, namely, the agent that executes the plan, and the environment

in which the agent’s plan is executed. In the usual definition of planning problem

these two parts are merged. But to highlight the notion of generalized planning as

synthesizing a plan for multiple environments, they are kept separated.
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Plans are always executed by some agent, which has limitations on what it can

observe and what actions it can perform.

Definition 4. An agent A is a tuple A = 〈Ac,Obs〉, where

− Ac is a set of actions the agent can perform, and

− Obs is a set of observations the agent can make.

To this, we may add constraints on the behavior of the agent, e.g., on the

sequences of actions that it can perform, in order to further specify the agent’s

”capability”. Such constraints could be in the form of temporal logic formulae over

Ac and Obs which we define later.

Definition 5. Given an agent A = 〈Ac,Obs〉, a plan is a partial function p :

Obs+ → Ac∪{stop}, where stop stands for plan termination. Such a partial func-

tion is required to be prefix closed: if p(o1, . . . on) is defined, then so is p(o1, . . . oi)

for all i < n.

This is a very general notion of plan that completely abstracts from syntactic

or structural characterization of a plan representation. Such a notion of plan

is common in automated process synthesis [129] as well as in POMDP-based

planning [115]. Notice that in order to define a plan, we only need the specification

of the agent. In particular, we do not need any knowledge about the environment

the agent acts in, so it is possible that the plan of an agent can be executed in

multiple environments, which we define next.

Definition 6. An environment, in which an agent’s plan is executed, is a tuple

E = 〈Events , S, s0, δ〉, where

− Events is the set of all events in the environment;

− S is the internal state space of the environment;

− s0 ∈ S is its initial (internal) state;
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− δ : S × Events → S is the (partial) transition function.

As in classical planning we assume the environment is deterministic, i.e., there

is only one initial state, and every event, if it happens in one state, may only take

the environment to at most one single next state.

Definition 7. A trace on E is a sequence t = s0e1s1e2 · · · ensn, where s0 is the

initial state of the environment E, and si = δ(si−1, ei) (and hence δ(si−1, ei) is

defined) for all i = 1, . . . , n. We denote by Last(t) the last state sn of t.

A goal for the environment E is a specification of desired traces on E. Note

that (possibly by allowing for infinite traces) this definition is general enough to

capture several types of goals, including temporally-extended and long-running

(infinite) ones [11, 53,132].

Executing an agent’s plan in an environment. In order to characterize the

execution of an agent’s plan in an environment, we need to know how the agent

observations are related to the environment states, and the agent actions to the

events happening in the environment. In particular, we need:

− An observation function obs : S → Obs, which determines how much of

the environment the agent can observe for the purpose of plan execution,

i.e., when selecting an action to perform, the states s1 and s2 cannot be

distinguished by the agent if obs(s1) = obs(s2);

− An execution function exec : Ac→ Events, which determines the events in

the environment that the agent causes by doing its actions. This function

enables separation between what the agent can do and what changes the

environment may have.

Given the observation and execution functions, we can determine the execution

of an agent A’s plan p in the environment E. A run r of plan p in environ-

ment E is the trace trace(p) = s0e1s1e2 · · · ensn such that for all i = 1, . . . , n,

ei = exec
(
p(obs(s0), . . . obs(si−1))

)
. We call r complete if p(obs(s0), . . . obs(sn)) =
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stop and for all i < n, p(obs(s0), . . . obs(si)) 6= stop. Notice that a plan, being

deterministic, has at most one complete run in any given environment.

Definition 8 (Basic planning problem). A (basic) planning problem P consists

of an agent A = 〈Ac,Obs〉, an environment E = 〈Events , S, s0, δ〉 with a goal G

for E, and related obs and exec functions. Formally a basic planning problem is

a tuple P = 〈Ac,Obs,Events , S, s0, δ, G, obs , exec〉 where all the components are

as above. A solution to a basic planning problem P is a plan p that generates a

complete run r that fulfill the goal, i.e., such that Last(r) ∈ G.

Definition 9 (Generalized planning problem). A generalized planning prob-

lem P = {P1, P2, . . .} is a (finite or infinite) set of basic planning problems Pi,

where all of the Pi = 〈Ac,Obs,Events i, Si, si0, δi, Gi, obs i, execi〉 share the same

agent, i.e., Ac and Obs are kept fixed. A solution for a generalized planning problem

P is a plan p, such that p is a solution for every Pi ∈ P. Intuitively, we require

that the plan p for a fixed agent A = 〈Ac,Obs〉 achieves, on all of the environments

Ei = 〈Events i, Si, si0, δi〉, their respective goals Gi. In other words, p is a solu-

tion for the generalized planning problem iff it generates, for each corresponding

environment Ei, a complete run ri such that Last(ri) ∈ Gi.

6.1.1 One-Dimensional Planning Problems

One-Dimensional planning problems (1DPP) are a specific class of generalized

planning problems. Intuitively, 1DDP model cases where an unknown and un-

bounded number of entities exist, which require independent treatment to achieve

the goal. Roughly, a state in a 1DPP consists of a vector 〈b〉 ∈ 2m (for fixed m)

which represents properties of the environment, and an (unbounded) integer n ∈ N
that represents the number of remaining tasks. An example of 1DPP includes

tree-chopping [82] that we formally describe in later sections.

Definition 10. A generalized problem P = {P1, P2, · · · } is one-dimensional ( 1DPP

for short) if all Pi = 〈Ac,Obs, Events, Si, si0, δi, G, obsi, exex〉 share the same set
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of Ac (which includes the action stop), Obs, Events, G and exec, and there exists

m ∈ N and 〈b0〉 such that, for all i ∈ N:

1. Si = {〈n, 〈b〉〉 |n ∈ [i], 〈b〉 ∈ 2m};

2. si0 = 〈i, 〈b0〉〉;

3. for every 〈b〉 ∈ 2m and a ∈ A there exists 〈b′〉 and d ∈ {0, 1} such that for all

i and n ∈ N: δi(〈n, 〈b〉〉, a) = 〈n− d, 〈b′〉〉. Note that this condition does not

say anything about the case that n = 0. Shorthand: we write 〈b〉 a/d; 〈b′〉.

4. for every 〈b〉 ∈ 2m and a ∈ A there exists 〈b′〉 such that for all i: δi(〈0, 〈b〉〉, a) =

〈0, 〈b′〉〉. Shorthand: we write 〈b〉 a;0 〈b′〉.

5. G ⊆ {0} × 2m;

6. (a) if n1, n2 ∈ N and i, j ∈ N then obsi(〈n1, 〈b〉〉) = obsj(〈n2, 〈b〉〉);

(b) if i, j ∈ N then obsi(〈0, 〈b〉〉) = obsj(〈0, 〈b〉〉);

Shorthand: we write obs′(〈b〉) for obsi(〈n, 〈b〉〉) where i, n ∈ N (note that this

is well defined, i.e., it does not depend on the values of i, n), and obs′′(〈b〉)
for obsi(〈0, 〈b〉〉) where i ∈ N (note that this is also well-defined, i.e., it does

not depend on the value of i).

The next lemma follows immediately from the definition of plan:

Lemma 2. Let s and t be two observationally equivalent states. Starting from s

and t the plan p gives the same set of actions as long as the resulting states are

also observationally equivalent.

6.2 Generalized-Planning Games

In this section we define generalized-planning (GP) games, known as games of

imperfect information in the Formal Methods literature [136], that capture many

generalized forms of planning.
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Informally, two players (agent and environment) play on a transition-system.

Play proceeds in rounds. In each round, from the current state s of the transition-

system, the agent observes obs(s) (some information about the current state), and

picks an action a from the set of actions Ac, and then the environment picks an

element of tr(s, a) (tr is the transition function of the transition-system) to become

the new current state. Note that the players are asymmetric, i.e., the agent picks

actions and the environment resolves non-determinism.

Linear-temporal logic. Formulas of linear-time propositional temporal logic

(LTL) are built from a set atomic propositions and are closed under the application

of Boolean connectives, the unary temporal connective X (next), and the binary

temporal connective U (until) [71,128]. We define LTL over a finite set of letters

Σ.1 The formulas of LTL (over Σ) are generated by the following grammar:

ϕ ::= x | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ

where x ∈ Σ.

We introduce the usual abbreviations for, e.g., ∨,F,G. Formulas of LTL (over

Σ) are interpreted over infinite words α ∈ Σω. Define the satisfaction relation |= as

follows:

1. (α, n) |= x iff αn = x;

2. (α, n) |= ϕ1 ∧ ϕ2 iff (α, n) |= ϕi for i = 1, 2; i

3. (α, n) |= ¬ϕ iff it is not the case that (α, n) |= ϕ;

4. (α, n) |= Xϕ iff (α, n+ 1) |= ϕ;

5. (α, n) |= ϕ1 Uϕ2 iff there exists i ≥ n such that (α, i) |= ϕ2 and for all

j ∈ [n, i), (α, j) |= ϕ1.

1This is without loss of generality, since if LTL were defined over a set of atomic propositions

AP we let Σ = 2AP and replace atoms p ∈ AP by
∨

p∈x x to get equivalent LTL formulas over Σ.
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Thus, the formula trueUϕ, abbreviated as F, says that holds eventually, and

the formula ¬F¬ϕ, abbreviated G, says that holds henceforth. For example, the

formula G(¬request ∨ (requestU grant) says whenever a request is made it holds

continuously until it is eventually granted. We will write α |= ϕ if (α, 0) |= ϕ and

say that α satisfies the LTL formula ϕ.

We shall see that the set of computations satisfying a given formula are exactly

those accepted by some finite automaton on infinite words [145].

We briefly recall the basics notions of two player games of imperfect information.

Arena. An arena of imperfect information, or simply an arena, is a tuple A =

(S, I,Ac, tr,Obs, obs), where

− S is a (possibly infinite) set of states,

− I ⊆ S is the set of initial states,

− Ac is a finite set of actions,

− tr : S× Ac→ 2S \ {∅} is the transition function,

− Obs is a (possibly infinite) set of observations,

− obs : S→ Obs, the observation function, maps each state to an observation.

We extend tr to sets of states: for ∅ 6= Q ⊆ S, let tr(Q, a) denote the set ∪q∈Qtr(q, a).

Sets of the form obs−1(x) for x ∈ Obs are called observation sets. The set of

all observation sets is denoted ObsSet. Non-empty subsets of observation sets are

called belief-states. Informally, a belief-state is a subset of the states of the game

that the play could be in after a given finite sequence of observations and actions.

Finite and finitely-branching. An arena is finite if S is finite, and infinite

otherwise. An arena is finitely-branching if i) I is finite, and ii) for every s, a the

cardinality of tr(s, a) is finite. Clearly, being finite implies being finitely-branching.

Strategies. A play in A is an infinite sequence π = s0a0s1a1s2a2 . . . such that

s0 ∈ I and for all i ∈ N0, si+1 ∈ tr(si, ai). A history h = s0a0 . . . sn−1an−1sn is
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a finite prefix of a play ending in a state. The set of plays is denoted Ply(A),

and the set of histories is denoted Hist(A) (we drop A when it is clear from the

context). For a history or play π = s0a0s1a1 . . . write obs(π) for the sequence

obs(s0)a0obs(s1)a1 . . .. A strategy (for the agent) is a function σ : Hist(A) → Ac.

A strategy is observational if obs(h) = obs(h′) implies σ(h) = σ(h′). In Section 6.3

we will briefly mention an alternative (but essentially equivalent) definition of

observational strategy, i.e., as a function Obs+ → Ac. We do not define strategies

for the environment. A play π = s0a0s1a1 . . . is consistent with a strategy σ if for

all i ∈ N we have that if h ∈ Hist(A) is a prefix of π, say h = s0a0 . . . sn−1an−1sn,

then σ(h) = an+1.

Generalized Planning Games. A generalized-planning (GP) game, is a tuple

G = 〈A,W 〉 where the winning objective W ⊆ Obsω is a set of infinite sequences

of observation sets. A GP game with restriction is a tuple G = 〈A,W, F 〉 where,

in addition, F ⊆ Sω is the restriction. Note that unlike the winning objective,

the restriction need not be closed under observations. A GP game is finite (resp.

finitely branching) if the arena A is finite (resp. finitely branching).

Winning. A strategy σ is winning in G = 〈A,W 〉 if for every play π ∈ Ply(A)

consistent with σ, we have that obs(π) ∈ W . Similarly, a strategy is winning

in G = 〈A,W, F 〉 if for every play π ∈ Ply(A) consistent with σ, if π ∈ F then

obs(π) ∈ W . Note that a strategy is winning in 〈A,W,Ply(A)〉 if and only if it is

winning in 〈A,W 〉.
Solving a GP game. A central decision problem is the following, called

solving a GP game: given a (finite representation of a) GP game of imperfect

information G, decide if the agent has a winning observational-strategy.

GP games of perfect information. An arena/GP game has perfect infor-

mation if Obs = S and obs(s) = s for all s. We thus suppress mentioning Obs and

obs completely, e.g., we write A = (S, I,Ac, tr) and W,F ⊆ Sω. Note that in a GP

game of perfect information every strategy is observational.

Example 1 (continued). We formalise the tree-chopping planning problem. Define

the GP game Gchop = 〈Achop,W 〉 where Achop = 〈S, I,Ac, tr,Obs, obs〉, and:
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− S = {down, success, failure} ∪ ({uk} × N0) ∪ ({up} × N),

− Ac = {chop, look, store}, I = {uk} × N,

− tr is illustrated in Figure 6.2,

− Obs = {DN,X,×,UK,UP},

− obs maps down 7→ DN, (up, i) 7→ UP for i ∈ N, (uk, i) 7→ UK for i ∈ N0,

failure 7→ ×, and success 7→ X, and

− the objective W is defined as α ∈ W iff α |= FX.

Figure 6.2: Part of the arena Achop (missing edges go to the failure state). The

numbers correspond to the numbers of chops required to fell the tree. The arena is not

finitely-branching since it has infinitely many initial states {uk} × N.
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The mentioned plan is formalized as the observational-strategy σchop that maps

any history ending in (uk, i) to look (for i ∈ N0), (up, i) to chop (for i ∈ N), down

to store, and all others arbitrarily (say to store).

Note: σchop is a winning strategy, i.e., no matter which initial state the environ-

ment chooses, the strategy ensures that the play (it is unique because the rest of

the GP game is deterministic) reaches the state success having observation X.

6.3 Generalized Form of Planning

In this section we establish that Generalized-planning (GP) games can model many

different types of planning from the AI literature, including a variety of generalized

forms of planning:

1. planning on finite transition-systems, deterministic actions, actions with

conditional effects, partially observable states, incomplete information on the

initial state, and temporally extended goals [53];

2. planning under partial observability with finitely many state variables, non-

deterministic actions, reachability goals, and partial observability [138];

3. planning on finite transition systems, nondeterministic actions, looking for

strong plans (i.e., adversarial nondeterminism) [17];

4. generalized planning, consisting of multiple (possibly infinitely many) related

finite planning instances [81,82].

We discuss the latter in detail. Following [81], a generalized planning problem P

is defined as a sequence of related classical planning problems. In our terminology,

fix finite sets Ac,Obs and let P be a countable sequence G1,G2, . . . where each

Gn is a finite GP game of the form 〈Sn, {ιn},Ac, trn,Obs, obsn,Wn〉. In [81], a plan

is an observational-strategy p : Obs+ → Ac, and a solution is a single plan that

solves all of the GP games in the sequence. Now, we view P as a single infinite
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GP game as follows. Let GP denote the disjoint union of the GP games in P.

Formally, GP = 〈S, I,Ac, tr,Obs, obs,W 〉 where

− S = {(s, n) : s ∈ Sn, n ∈ N},

− I = {(ιn, n) : n ∈ N},

− tr((s, n), a) = {(t, n) : t ∈ trn(s, a)},

− obs(s, n) = obsn(s),

− W = ∪nWn.

Then: there is a correspondence between solutions for P and winning observational-

strategies in GP.

For example, consider the tree-chopping problem as formalized in [81,82]: there

are infinitely many planning instances which are identical except for an integer

parameter denoting the number of chops required to fell the tree. The objective

for all instances is to fell the tree. Using the translation above we get a GP game

with an infinite arena which resembles (and, in fact, can be transformed to) the

GP game in Example 1.

6.4 Generalized Belief-State Construction

In this section we show how to remove imperfect information from generalized-

planning (GP) games G. That is, we give a transformation of GP games of imperfect

information G to GP games of perfect information Gβ such that the agent has a

winning observational-strategy in G if and only if the agent has a winning strategy

in Gβ. The translation is based on the classic belief-state construction [136,137].

Thus, we begin with a recap of that construction.

Belief-state Arena.2 Let A = (S, I,Ac, tr,Obs, obs) be an arena (not neces-

sarily finite). Recall from Section 6.2 that observation sets are of the form obs−1(x)

2In the AI literature, this is sometimes called the belief-space.
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for x ∈ Obs, and are collectively denoted ObsSet. Define the arena of perfect

information Aβ = (Sβ, Iβ,Ac, trβ) where,

− Sβ is the set of belief-states, i.e., the non-empty subsets of the observation-sets,

− Iβ consists of all belief-states of the form I ∩X for X ∈ ObsSet,

− trβ(Q, a) consists of all belief-states of the form tr(Q, a) ∩X for X ∈ ObsSet.

The idea is that Q ∈ Sβ represents a refinement of the observation set: the

agent, knowing the structure of G ahead of time, and the sequence of observations

so far in the game, may deduce that it is in fact in a state from Q which may be a

strict subset of its corresponding observation set X.3

NB. Since Aβ is an arena, we can talk of its histories and plays. Although

we defined Sβ to be the set of all belief-states, only those belief-states that are

reachable from Iβ are relevant. Thus, overload notation and write Sβ for the set

of reachable belief-states, and Aβ for the corresponding arena. This notation has

practical relevance since if A is countable there are uncountably many belief-states;

but in many cases only countably many (or, as in the running example, finitely

many) reachable belief-states.

The intuition for the rest of this section is illustrated in the next example.

Example 2 (continued). Figure 6.3 shows the arena Aβ
chop corresponding to the

arena from tree-chopping game Gchop, i.e.,

− Sβ are the following belief-states: {(uk, n) |n ∈ N0}, denoted UK; {(up, n) |n ∈
N}, denoted UP; {down}, denoted DN; {success}, denoted X; and {failure}.

− Iβ is the belief-state UK,

− and trβ is shown in the figure.

3To illustrate simply, suppose there is a unique initial state s, and that it is observationally

equivalent to other states. At the beginning of the game the agent can deduce that it must be in

s. Thus, its initial belief-state is {s} and not its observation-set obs−1(obs(s)). This belief can

(and, in general, must) be exploited if the agent is to win.
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Figure 6.3: Part of the arena Aβ
chop (missing edges go the the failure state). Each circle

is a belief-state. The winning objective is FX, and the restriction is ¬GF[UK ∧ X look ∧
XXUP].

Note that the agent does not have a winning strategy in the GP game with

arena Aβ
chop and winning condition FX. The informal reason is that the strategy

σchop (which codifies “alternately look and chop until the tree is sensed to be down,

and then store the axe”), which wins in G, does not work. The reason is that after

every look the opponent can transition to UP (and never DN), resulting in the play

ρ = (UK look UP chop)ω, i.e., the repetition of (UK look UP chop) forever. Such

a play of Aβ
chop does not correspond to any play in Achop. This is a well known

phenomena of the standard belief-set construction [142], which our construction

overcomes by adding a restriction that removes from consideration plays such as ρ

(as discussed in Example 4).

The following definition is central. It maps a history h ∈ Hist(A) to the

corresponding history hβ ∈ Hist(Aβ) of belief-states.

Definition 11. For h ∈ Hist(A) define hβ ∈ Hist(Aβ) inductively as follows.

− For s ∈ I, define sβ ∈ Iβ to be I ∩ obs−1(obs(s)). In words, sβ is the set of

initial states the GP game could be in given the observation obs(s).
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− If h ∈ Hist(A), a ∈ Ac, s ∈ S, then (has)β := hβaB where B := tr(Last(hβ), a)∩
obs−1(obs(s)). In words, B is the set of possible states the GP game could be

in given the observation sequence obs(has).

In the same way, for π ∈ Ply(A) define πβ ∈ Ply(Aβ). Extend the map pointwise

to sets of plays P ⊆ Ply(A), i.e., define P β := {πβ ∈ Ply(Aβ) |π ∈ P}. Finally,

we give notation to the special case that P = Ply(A): write Im(A) for the set

{πβ |π ∈ Ply(A)}, called the image of A.

By definition, Im(A) ⊆ Ply(Aβ). However, the converse is not always true.

Example 3 (continued). There is a play of Aβ
chop that is not in Im(Achop), e.g.,

ρ = (uk look up chop)ω. Indeed, suppose πβ = ρ and consider the sequence of

counter values of π. Every look action establishes that the current counter value

in π is positive (this is the meaning of the tree being up), but every chop action

reduces the current counter value by one. This contradicts that counter values are

always non-negative.

Remark 6.4.1. If A is finitely-branching then Im(A) = Ply(Aβ). To see this, let ρ

be a play in Aβ, and consider the forest whose nodes are the histories h of A such

that hβ is a prefix of ρ. Each tree in the forest is finitely branching (because A is),

and at least one tree in this forest is infinite. Thus, by Kőnig’s lemma, the tree has

an infinite path π. But π is a play in A and πβ = ρ.

Definition 12. For ρ ∈ Ply(Aβ), say ρ = B0a0B1a1 . . . , define obs(ρ) to be the

sequence obs(q0)a0obs(q1)a1 . . . where qi ∈ Bi for i ∈ N0 (this is well defined since,

by definition of the state set Sβ, each Bi is a subset of a unique observation-set).

The classic belief-state construction transforms 〈A,W 〉 into 〈Aβ,W 〉. Exam-

ple 2 shows that this transformation may not preserve the agent having a winning

strategy if A is infinite. We now define the generalized belief-state construction

and the main technical theorem of this work.
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Definition 13. Let G = 〈A,W 〉 be a GP game. Define Gβ = 〈Aβ,W, Im(A)〉, a

GP game of perfect information with restriction. The restriction Im(A) ⊆ Ply(Aβ)

is the image of Ply(A) under the map π 7→ πβ.

Theorem 6.4.2. Fix a (possibly infinite) arena A of imperfect information, and

consider the belief-state arena Aβ of perfect information and the set Im(A) ⊆
Ply(Aβ). For every winning objective W , the agent has a winning observational-

strategy in the GP game G = 〈A,W 〉 if and only if the agent has a winning strategy

in the GP game Gβ = 〈Aβ,W, Im(A)〉. Moreover, if A is finitely-branching then

Gβ = 〈Aβ,W 〉.4

Proof. The second statement follows from the first statement and Remark 6.4.1.

For the first statement, we first need some facts that immediately follow from

Definition 11.

1. (h1)
β = (h2)

β if and only if obs(h1) = obs(h2).

2. For every h ∈ Hist(Aβ) that is also a prefix of πβ there is a history h′ ∈ Hist(A)

that is also a prefix of π such that (h′)β = h. Also, for every h′ ∈ Hist(A)

that is also a prefix of π there is a history h ∈ Hist(Aβ) that is also a prefix

of πβ such that (h′)β = h.

Second, there is a natural correspondence between observational strategies of

A and strategies of Aβ.

– If σ is a strategy in Aβ then define the strategy ω(σ) of A as mapping

h ∈ Hist(A) to σ(hβ). Now, ω(σ) is observational by Fact 1. Also, if π is

consistent with ω(σ) then πβ is consistent with σ. Indeed, let h be a history

that is also a prefix of πβ. We need to show that hσ(h) is a prefix of πβ.

Suppose that σ(h) = a. Take prefix h′ of π such that (h′)β = h (Fact 2).

Then ω(σ)(h′) = σ((h′)β) = σ(h) = a. Since π is assumed consistent with

ω(σ), conclude that h′a is a prefix of π. Thus ha is a prefix of πβ.

4The case that A is finite appears in [136].
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– If σ is an observational strategy in A then define the strategy κ(σ) of Aβ

as mapping h ∈ Hist(Aβ) to σ(h′) where h′ is any history such that h′β = h.

This is well-defined by (†) and the fact that σ is observational. Also, if ρ is

consistent with κ(σ), then every π with πβ = ρ (if there are any) is consistent

with σ. Indeed, let h′ be a history of π and take a prefix h of πβ such that

(h′)β = h (Fact 2). Then κ(σ)(h) = σ(h′), call this action a. But πβ is

assumed consistent with κ(σ), and thus ha is a prefix of πβ. Thus h′a is a

prefix of π.

We now put everything together and show that the agent has a winning

observational-strategy in G iff the agent has a winning strategy in Gβ.

Suppose σ is a winning strategy in Gβ. Let π ∈ Ply(A) be consistent with the

observational strategy ω(σ) of G. Then πβ ∈ Im(A) is consistent with σ. But σ is

assumed to be winning, thus obs(πβ) ∈ W . But obs(π) = obs(πβ). Conclude that

ω(σ) is a winning strategy in G.

Conversely, suppose σ is a winning strategy in G. Let ρ ∈ Im(A) be consistent

with the strategy κ(σ) of Gβ, and take π ∈ Ply(A) be such that πβ = ρ (such a π

exists since we assumed ρ ∈ Im(A)). Then π is consistent with σ. But σ is assumed

to be winning, thus obs(π) ∈ W . But obs(ρ) = obs(πβ) = obs(π). Conclude that

κ(σ) is a winning strategy in Gβ.

Remark 6.4.3. The proof of Theorem 6.4.2 actually shows how to transform strate-

gies between the GP games, i.e., σ 7→ ω(σ) and σ 7→ κ(σ), and moreover, these

transformations are inverses of each other.

We end with our running example:

Example 4 (Continued). Solving Gchop (Figure 6.2) is equivalent to solving the

finite GP game Gβ
chop of perfect information, i.e., 〈Aβ

chop,W, Im(Achop)〉, where the

arena A is shown in Figure 6.3. To solve this we should understand the structure

of Im(Achop). It is not hard to see that a play ρ ∈ Ply(Aβ
chop) is in Im(Achop) if

and only if it contains only finitely many infixes of the form “UK look UP”. This

property is expressible in LTL by the formula ¬GF[UK∧X look∧XXUP]. Thus we
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can apply the algorithm for solving finite games of perfect information with LTL

objectives (see, e.g., [51,130]) to solve Gβ
chop, and thus the original GP game Gchop.

6.5 Application of the Construction

We now show how to use our generalized-planning (GP) games and our generalized

belief-state constructions to obtain effective planning procedures for sophisticated

problems. For the rest of this section we assume Obs is finite (A may be infinite)

so that we can consider LTL temporally extended goals over the alphabet Obs. For

instance, LTL formulas specify persistent surveillance missions such as “get items

from region A, drop items at region B, infinitely often, and always avoid region C”.

Definition 14. Let ϕ be an LTL formula over Obs× Ac. For an arena A, define

[[ϕ]] = {π ∈ Ply(A) | obs(π) |= ϕ}.

The following is immediate from Theorem 6.4.2 and the fact that solving finite

LTL games of perfect information is decidable [51,130]:

Theorem 6.5.1. Let G = 〈A, [[ϕ]]〉 be a GP game with a finite arena (possibly

obtained as the disjoint union of several arenas sharing the same observations),

and ϕ be an LTL winning objective. Then solving G can be reduced to solving the

finite GP game Gβ = 〈Aβ, [[ϕ]]〉 of perfect information, which is decidable.

Although we defined winning objectives to be observable, one may prefer general

winning conditions, i.e., W ⊆ Sω. In this case, for finite arenas there is a translation

from parity-objectives to observable parity-objectives [32]; moreover, for reachability

objectives, a plan reaches a goal T ⊆ S iff it reaches a belief-state B ⊆ T [17].

Next we look a case where the arena is actually infinite. Recently, the AI commu-

nity has considered games generated by pushdown-automata [40,124]. However, the

games considered are of perfect information and cannot express generalized-planning

problems or planning under partial observability. In contrast, our techniques can

solve these planning problems on pushdown domains assuming that the stack is
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not hidden (we remark that if the stack is hidden, then game-solving becomes

undecidable [9]):

Theorem 6.5.2. Let G = 〈A, [[ϕ]]〉 be a GP game with a pushdown-arena with

observable stack, and ϕ is an LTL formula. Then solving G can be reduced to

solving Gβ = 〈Aβ, [[ϕ]]〉, a GP game with pushdown-arena with perfect information,

which is decidable.

Proof. Let P be a pushdown-automaton with states Q, initial state q0, finite input

alphabet Ac, and finite stack alphabet Γ. We call elements of Γ∗ stacks, and denote

the empty stack by ε. Also, fix an observation function on the states, i.e., f :Q→Obs

for some set Obs (we do not introduce notation for the transition function of P ).

A pushdown-arena AP = (S, I,Ac, tr,Obs, obs) is generated by P as follows: the

set of states S is the set of configurations of P , i.e., pairs (q, γ) where q ∈ Q and

γ ∈ Γ∗ is a stack-content of P ; the initial state of A is the initial configuration,

i.e., I={(q0, ε)}; the transition function of A is defined as tr((q, γ), a)=(q′, γ′) if

P can move in one step from state q and stack content γ to state q′ and stack

content γ′ by consuming the input letter a; the observation function obs maps a

configuration (q, γ) to f(q) (i.e., this formalizes the statement that the stack is

observable). Observe now that: (1) the GP game A is finitely-branching; (2) the

GP game Aβ is generated by a pushdown automaton (its states are subsets of Q).

Thus we can apply Theorem 6.4.2 to reduce solving A, a GP-game with imperfect

information and pushdown arena, to Aβ, a GP-game with perfect information and

pushdown arena. The latter is decidable [163].

6.6 Related work in Formal Methods

Games of imperfect information on finite arenas have been studied extensively.

Reachability winning-objectives were studied in [137] from a complexity point of

view: certain games were shown to be universal in the sense that they are the

hardest games of imperfect information, and optimal decision procedures were
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given. More generally, ω-regular winning-objectives were studied in [136], and

symbolic algorithms were given (also for the case of randomized strategies).

To solve (imperfect-information) games on infinite arenas one needs a finite-

representation of the infinite arena. One canonical way to generate infinite arenas is

by parametric means. In this line, [84] study the synthesis problem for distributed

architectures with a parametric number of finite-state components. They leverage

results from the Formal Methods literature that say that for certain types of

token-passing systems there is a cutoff [58], i.e., an upper bound on the number of

components one needs to consider in order to synthesize a protocol for any number

of components. Another way to generate infinite arenas is as configuration spaces

of pushdown automata. These are important in analysis of software because they

capture the flow of procedure calls and returns in reactive programs. Module-

checking pushdown systems of imperfect information [4, 25] can be thought of

as games in which the environment plays non-deterministic strategies. Although

undecidable, by not hiding the stack (cf. Theorem 6.5.2) decidability of module-

checking is regained.

Finally, we note that synthesis of distributed systems has been studied in

the Formal Methods literature using the techniques of games, starting with [131].

Such problems can be cast as multi-player games of imperfect information, and

logics such as ATL with knowledge can be used to reason about strategies in these

games. However, even for three players, finite arenas, and reachability goals, the

synthesis problem (and the corresponding model checking problem for ATLK) is

undecidable [55].

6.7 Conclusions and Discussion

Although our technique for removing partial observability is sound and complete,

it is, necessarily, not algorithmic: indeed, no algorithm can always remove partial

observability from computable infinite domains and result in a solvable planning
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problem (e.g, one with a finite domain).5

The main avenue for future technical work is to establish natural classes of

generalized-planning problems that can be solved algorithmically. We believe the

methodology of this work will be central to this endeavor. Indeed, as we showed in

Section 6.5, we can identify Im(A) in a number of cases. We conjecture that one

can do the same for all of the one-dimensional planning problems of [81, 82].

The framework presented in this work is non-probabilistic, but extending it with

probabilities and utilities associated to agent choices [10,72,92,111] are of great

interest. In particular, POMDPs with temporally-extended winning objectives

(e.g., LTL, Büchi) have been studied for finite domains [34]. We leave for future

work the problem of extending our setting to deal with such POMDPs over the

infinite domains.

5In fact, there is no algorithm solving games of perfect observation on computable domains

with reachability objectives.
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