58 research outputs found

    Neural Networks in Nonlinear Aircraft Control

    Get PDF
    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law

    Pole -mounted sonar vibration prediction using CMAC neural networks

    Get PDF
    The efficiency and accuracy of pole-mounted sonar systems are severely affected by pole vibration, Traditional signal processing techniques are not appropriate for the pole vibration problem due to the nonlinearity of the pole vibration and the lack of a priori knowledge about the statistics of the data to be processed. A novel approach of predicting the pole-mounted sonar vibration using CMAC neural networks is presented. The feasibility of this approach is studied in theory, evaluated by simulation and verified with a real-time laboratory prototype, Analytical bounds of the learning rate of a CMAC neural network are derived which guarantee convergence of the weight vector in the mean. Both simulation and experimental results indicate the CMAC neural network is an effective tool for this vibration prediction problem

    Active disturbance cancellation in nonlinear dynamical systems using neural networks

    Get PDF
    A proposal for the use of a time delay CMAC neural network for disturbance cancellation in nonlinear dynamical systems is presented. Appropriate modifications to the CMAC training algorithm are derived which allow convergent adaptation for a variety of secondary signal paths. Analytical bounds on the maximum learning gain are presented which guarantee convergence of the algorithm and provide insight into the necessary reduction in learning gain as a function of the system parameters. Effectiveness of the algorithm is evaluated through mathematical analysis, simulation studies, and experimental application of the technique on an acoustic duct laboratory model

    Stability and weight smoothing in CMAC neural networks

    Get PDF
    Although the CMAC (Cerebellar Model Articulation Controller) neural network has been successfully used in control systems for many years, its property of local generalization, the availability of trained information for network responses at adjacent untrained locations, although responsible for the networks rapid learning and efficient implementation, results in network responses that is, when trained with sparse or widely spaced training data, spiky in nature even when the underlying function being learned is quite smooth. Since the derivative of such a network response can vary widely, the CMAC\u27s usefulness for solving optimization problems as well as for certain other control system applications can be severely limited. This dissertation presents the CMAC algorithm in sufficient detail to explore its strengths and weaknesses. Its properties of information generalization and storage are discussed and comparisons are made with other neural network algorithms and with other adaptive control algorithms. A synopsis of the development of the fields of neural networks and adaptive control is included to lend historical perspective. A stability analysis of the CMAC algorithm for open-loop function learning is developed. This stability analysis casts the function learning problem as a unique implementation of the model reference structure and develops a Lyapunov function to prove convergence of the CMAC to the target model. A new CMAC learning rule is developed by treating the CMAC as a set of simultaneous equations in a constrained optimization problem and making appropriate choices for the weight penalty matrix in the cost equation. This dissertation then presents a new CMAC learning algorithm which has the property of weight smoothing to improve generalization, function approximation in partially trained networks and the partial derivatives of learned functions. This new learning algorithm is significant in that it derives from an optimum solution and demonstrates a dramatic performance improvement for function learning in the presence of widely spaced training data. Developed from a completely unique analytical direction, this algorithm represents a coupling and extension of single- and multi-resolution CMAC algorithms developed by other researchers. The insights derived from the analysis of the optimum solution and the resulting new learning rules are discussed and suggestions for future work are presented

    Neural Networks for Flight Control

    Get PDF
    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions

    Joint University Program for Air Transportation Research, 1989-1990

    Get PDF
    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented

    Self-Organizing Neural Network for Optimum Supervised Learning

    Get PDF
    This work introduces a new algorithm called the Self-Organizing Neural Network (SONN), and demonstrates its use in a system identification task. The algorithm constructs a network, chooses the neuron functions, and adjusts the weights. Here, it is compared to the Back-Propagation algorithm in the identification of the chaotic time series. The results show that SONN constructs a simpler, more accurate model, requiring less training data and epochs. The algorithm can also be applied as a classifier

    Adaptive strategy for neural network synthesis constant estimation

    Get PDF
    Neural Network Synthesis is a new innovative method for an artificial neural network learning and structural optimization. It is based on two other already very successful algorithms: Analytic Programming and Self-Organizing Migration Algorithm (SOMA). The method already recorded several theoretical as well as industrial application to prove itself as a useful tool of modelling and simulation. This paper explores promising possibility to farther improve the method by application of an adaptive strategy for SOMA. The new idea of adaptive strategy is explained here and tested on a theoretical experimental case for the first time. Obtained data are statistically evaluated and ability of adaptive strategy to improve neural network synthesis is proved in conclusion

    Autonomous Navigation in (the Animal and) the Machine

    Get PDF
    Understanding the principles underlying autonomous navigation might be the most enticing quest the computational neuroscientist can undertake. Autonomous operation, also known as voluntary behavior, is the result of higher cognitive mechanisms and what is known as executive function in psychology. A rudimentary knowledge of the brain can explain where and to a certain degree how parts of a computation are expressed. However, achieving a satisfactory understanding of the neural computation involved in voluntary behavior is beyond today’s neuroscience. In contrast with the study of the brain, with a comprehensive body of theory for trying to understand system with unmatched complexity, the field of AI is to a larger extent guided by examples of achievements. Although the two sciences differ in methods, theoretical foundation, scientific vigour, and direct applicability, the intersection between the two may be a viable approach toward understanding autonomy. This project is an example of how both fields may benefit from such a venture. The findings presented in this thesis may be interesting for behavioral neuroscience, exploring how operant functions can be combined to form voluntary behavior. The presented theory can also be considered as documentation of a successful implementation of autonomous navigation in Euclidean space. Findings are grouped into three parts, as expressed in this thesis. First, pertinent back- ground theory is presented in Part I – collecting key findings from psychology and from AI relating to autonomous navigation. Part II presents a theoretical contribution to RL theory developed during the design and implementation of the emulator for navigational autonomy, before experimental findings from a selection of published papers are attached as Part III. Note how this thesis emphasizes the understanding of volition and autonomous navigation rather than accomplishments by the agent, reflecting the aim of this project – to understand the basic principles of autonomous navigation to a sufficient degree to be able to recreate its effect by first principles
    • …
    corecore