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Recent research indicates that Artificial Neural Networks offer interesting
learning or adaptive capabilities. The current research focuses on the
potential for application of neural networks in a nonlinear aircraft control
law. The current work has been to determine which networks are suitable
for such an application and how they will fit into a nonlinear control law.
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Parameter Estimation in Nonlinear Control

The equations of motion of an aircraft can be cast into a set of nonlinear
ordinary differential equations that are linear in the control input, u.
Included in the state and output equations is a parameter vector, p.
Several methods, including Nonlinear Inverse Dynamics [Lane and
Stengel, 1988] and decoupling [Singh and Rugh, 1972], are available for
generating nonlinear feedback laws if the system is known. Using these
techniques, the feedback laws are determined as functions of the
parameter vector, p. p itself is a function of the current state and possibly
external states and controls not included in the system dynamics. The
main difficulty is to provide an estimate of the parameters that are
possible complex nonlinear functions of the states.

Given a Nonlinear Dynamic System (e.g. an aircra[_)

i= f(x, p) + G(x, p)u

y ---h(x, p)

and a Nonlinear Feedback Law

u =a(x, p) + B(x, p)v

wbe_

p = p(x, Xext, Uext)

h ow do you e_tlmate the parameterR, p ?
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Nonlinear Function Approximation

While many techniques exist for nonlinear function approximation, three
have been chosen for further investigation. A B-spline (basis spline)
technique with coefficients updated using Recursive Least-Squares
estimation represents a classic function approximation method. Two
neural networks methods are also investigated. The Back-Propagation
Feedforward Network [Rumelhart, Hinton, and Williams, 1986] is a
popular, widely investigated, model in the neural network community.
The Cerebellar Model Articulation Controller (CMAC) [Albus, 1975] is less
well known, but very useful and powerful in function approximation
implementations.

Three appealing methods

• C1AR_Iemethod

- Recursive Least Sqtmre_ E_tinmtlon uMng B-SplineR

• NeuralmethodA

- Back-PropagationFeedforwardNetwnrk

- Cercbc1|ar Model Articulntion Contr_ller (CMAC) Network
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Comments on Operation and Learning

Each of the three techniques has different adaptation (or learning)
capabilities. The B-spline method requires a matrix inversion that may be
very slow, especially for high input dimension systems. The least-squares
estimation scheme effectively extracts information from the input data,
making adaptation fast when measured in terms of number of points
presented to the estimator. The feedforward network, on the other hand,
needs many presentations to accurately approximate the nonlinear
function. Once trained, it can be extremely fast in operation, especially if
fully implemented on a VLSI chip. The CMAC quickly approximates the
desired function in the neighborhood of the training points and provides
good operation speed on a traditional computer architecture.

• Recursive Least._luarea B-Splinea

- Slow learning
Matrix inverRion

- Effective learning

• Back-Propagatlon Feedforward Networks

- Relatively Inefficient learning

Many training pcfinhqneeded

- FA.qT nperatlon

• CMAC

- Reaaonable learning and operation
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Approximation by Neural Networks

The approximation capabilities of traditional spline techniques are
relatively well-known. The capabilities of the neural networks are less
well-known. The CMAC approximates by a generalized table look-up.
Using overlapping, quantized inputs, the CMAC output is a piece-wise
continuous approximation of the input function. The approximation
accuracy is limited by the size of the table used in the look-up scheme.
The feedforward network provides a continuous approximation of the
desired function with the accuracy determined by the number of layers
and nodes in the network architecture. There has been much recent
interest in exactly determining the approximation capabilities o["such
networks.

• CMAC'a approximate by generalized table Ic_k-up

- Approximation limlted by table size

- Stalr._tep output

• Feedforward network_

- Capacity determined by ncdea and lnyers

- Cnntinuoum nut.put

- Much recent interest in appr_rxlmatlon abilities
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Back Propagation Neural Networks

A very simple, 2-input / 2-output back-propagation network is given here.
The operation of the network can be described by a simple recursive
relationship between the outputs of each layer. At each node, a weighted
sum of the outputs from all of the nodes of previous layers is acted on by a
simple nonlinear function to provide the output for the node. A fixed,
unity input is provided to each node to act as a threshold or bias. When
the number of layers and nodes in each layer is chosen, the overall
nonlinear function calculated by the network is determined by the values
of the weights in the interconnections.

W (0) W O)

x1(o)
x 1

x ';' x_z)

Thr_hold 1.0

xCk)= s[WCk-Z)xCk-_)]

y --x(N) = f[x¢o)]
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Exact Representation using Neural Networks 

While investigating the limits of neural networks, Hecht-Nielsen [I9871 
was able to  reinterpret a theorem by Kolmogorov related to the exact 
representation of a multi-input nonlinear function in  terms of simple 
single-input functions. While back-propagation neural networks can be 
interpreted in terms of this theorem, the nonlinear function a t  each node 
is fixed by a limiting process which depends explicitly on tllc function to bc 
represented. Most neural networks, on the other hand, have a common, 
simple function a t  the  network node, and use the  weighted 
interconnections to adjust the output of the network. There are many 
further difficulties with this theorem that limit its usefulness except as  
the most basic of existence proofs. 

Hccht-Nidncnk Inlcrpmbtion oTKolmqomv'n Tt~norcrii 

(Solution to Hilbert'n 13th PrAlcm) 

- Exact Rcprencntnlion 

2n " p - l  
f(x) = C g( C h. v ( x p  tcq) + q ) 

q = o  p = l  

- W can be oblained an a uniform limit n fa  ncqurncc vr ofconlinuoun 

nondccrcaning piecewise linear functions 

- W i n  dillicult Lo computc 

- W in difrcmnt for each Rx) 



Approximation Representation for Feedforward Networks

In most instances an approximate representation of a nonlinear function is
all that is needed. Many researchers have been investigating the
approximation capabilities of feedforward networks of the type described.
These theorems are usually based on results from functional analysis and
give sufficient conditions for the approximation of any continuous function
to any desirable degree of accuracy. In general, they are not based on the
Kolmogorov's Theorem for exact representation.

• Can feedforward networka approximate nonilnear functinng?

• Recent theoretical remllts by

Funahashi,

Cybenko,

tlecht-Nielsen,

Stincheombe and White,

and many other_

• Based on results from functional analysiR
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Cybenko's Theorem

As an example of these recent theorems, the version due to Cybenko
[1989] is outlined here. Defining a sigmoidal function in the most general
form, Cybenko's Theorem shows that finite sums of sigmoidal functions,
exactly the form of a single hidden layer feedforward neural network, are
dense in the continuous functions on the unit hypercube. In simpler
terms, any continuous function with inputs between 0 and 1 can be
arbitrarily closely approximated by a neural network with one hidden
layer. The other researchers have developed similar results. The
differences are usually technical details related to how smooth the
approximated function is and what type of functions are allowed in the
nodes of the hidden layer.

While this is a very promising result, it is only an existence proof. The
number of nodes necessary in the hidden layer is only specified as finite,
and the weight vector is left unspecified.

_: We say that G in sigmoidal if

last _,ooo(t)--* 0 ast-_-*o

_: Let obe any eontinuoun Rigmoidal function. Then finite sums of the form

N

g(X) = j___i_tjfl(wjrx + 0j)

are denne in C([n).

In other words, given f_ C(In) and E>O, there is n _um, g_x), of the above form, fi,r which

x)
for all x _ In.
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Example Functions

The sigmoidal functions, as defined for Cybenko's Theorem, can have
many different shapes, including those shown here. The back-propagation
algorithm requires a differentiable nonlinear function at each node. In
most implementations the function is similar to the first one shown.

As mentioned previously, the other approximation theorems have different
requirements on the nonlinearity allowed in the node. Two are shown
here that fail to meet the requirements for Cybenko's Theorem, but are
shown to be sufficient for function approximation by others.

• Satisfying Cybenko'M Theorem

I I

• Other Theo_rnR
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What's Ahead

Future work includes investigating the approximation capabilities of
reasonable sized networks for multi-input functions of the type that will
be found in a nonlinear control law. This will allow for a complete
implementation of a nonlinear control law for the 737 aircraft using neural
networks.

• Multidimensional Approximations

• Complete Nonlinear Inverse Dynamics
implementation for 737

• ImplementNeural Networksin Nil}
control law

• Hopeforconstructiveresultsregarding
NeuralNetworkfunctionapproximation
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