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PREFACE

The configuration of pole-mounted sonar sensors is one of two

major types of multibeam sonar systems used in hydrographic surveys. The
~vibration of the pole during operation constitutes a challenging problem

that limits the accuracy of the sonar data. A novel approach of
estimating or predicting the polé/soncr vibration using CMAC neural
networks is proposed and investigated by multiple means. The objective
of this dissertation is 1o provide the readers with sufficient background
development and adequate technical details so that the results of this
-research are accessible for use in continuing research efforts.

This dissertation starts with a system-level discussion of the research.
in chapter 1, graphical figures illustrate ’rhé pole vibration problem. The
advantages and disadvantages of pofential methods, such as vibration
theory and CMAC neural network, are discussed. The pfoposed system is
briefly described and the tools of research are infroduced. The expected
research outfputs cre.olso outlined.

Chapter 2 provides background knowledge or development of

relevant research areas, including vibration theory, adaptive signal
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processing, artificial neural networks in general and CMAC neuradl
networks in particular. Section 2.1 summarizes the basic concest
concerning vibration study and two classes of approximate solutions. An
overview of arfificial neural networks and several landmark achievements,
such as artificial neurons, adadline and perceptron, backpropagation
algorithm, and radial basis function networks, are presented in section 2.2.
Based on a thorough literature search, section 2.3 describes the historic
development of CMAC neural networks including the CMAC topological
structure, learning algorithms, and agpplications. Some notes on adaptive
signal processing that are related fo this research, such as the opfimum
Wiener filter and the least-mean-square (LMS) olgori’rhm used in many
adaptive filters, conclude the chapter of background material.

In chapter 3, based on a detailed examination of the geometrical
formation of CMAC neurdl networks for one-input and two-input spoces.'
their memory—cddfessing mechanisms are formulated and generalized o
the case of N-input spdce. Wiitten in the vector form, the scalar output of
CMAC will be the inner product of the weight vector and the excitafion
vector.

Chapter 4 is dedicated to analyzing CMAC algorithms from the
point of view of adaptive fih‘er_ theory. To establish a corresponding

relation between a CMAC neural network and an adaptive FIR filter,

vi
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CMAC is divided info three parts - an input converter that forms the
excitation vector, a linear combiner or the inner product of the excitation
vector and the weight vecfor, and the weight-adjusting algorithm.
Minimizing the mean square error (MSE) leads to the Wiener-Hopf
“equation. Two forms of correlation matrix are given in section 4.2. A
uhique property establishing the relation between the frace of the
correlation matrix and generdlization pcrome‘rér of CMAC is presented in
section 4.3. Using the tool of eigenanalysis, several conditions for the
convergence of CMAC algorithms and ’o simple formula of estimating the
misadjustment due fo the gradient noise are derived.

Chapter 5 discusses many issues involved in the implementation
and verifico‘rion of the proposed system. TWo levels of imblemem‘o‘rion, the
computer simulation and the real-time lab prototype, have been carried
out in the research. To build the simulation model, special effort has been
spent on two key system componem‘_s - the CMAC block (S-function df
Simulink) and the pole model. The code for the CMAC block is written in C
language and the UNH version of CMAC neural neMork is incorporated.
The first pole model, a 2nd-order underdampled linear éys’rem, is used in
the preliminary study of the effectiveness of‘ the proposed approach. The |
second pole model, based on the experiments with a feol-ﬁme laboratory

prototype, is @ higher—drder nonlinear system and has been exclusively
vii
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used for study in subsequent éhop’rers. The ceniral part of the lab
prototyping is the real-time C-program that controls the data acquisition
hardware and implements the CMAC neural network. The flowchars of
the program are given in section 5.4. The results of lab experiments are
observed on-site, recorded 1o data files, and ploftted by Matlab. Both the
experimental results for verification of Thé systemm and the data for
-analyzing the pole dynamics are presented in section 8.5.

in chapter 6 and 7, a Icrge number of simulations designed for
_differen’r purposes are analyzed. The first set of sileoﬁons of chop’ref 6is
designed to study the CMAC’s capability in prediction of the pole
vibration. The other simulations provide results for differem scenarios of the
input force. Chapter 7 fs dedicated to testing the CMAC performance as
function of individual CMAC parameter such as the memory onoc;aﬁon,
generalization ‘fcci’ror, quantization factor, and ’frcining gain.

Chapter 8 provides a summary of major achievements of this

research and suggests several directions of future work.

viii
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ABSTRACT
POLE-MOUNTED SONAR VIBRATION PREDICTION
USING CMAC NEURAL NETWORKS
by
Chunshu Zhang

University of New Hampshire, May, 2005

The efficiency and accuracy of pole-mouh’red son}or systems are
severely affected by pole vibration. Traditional signal processing
techniques are not appropriate for the pole vibration problem due to the
nonlinearity of the pole vibration and the lack of a priori knowledge about
the statistics of the data 1o be processed. A novel approach of predicfing
the pole-mounted sonar  vibration using CMAC neural networks is
presented. The feasibility of this approach is studied in theory, evaluated
by simulation and verified with a realtime Ilaboratory prototype.
Analytical bounds of the learning ra’re éf a CMAC‘neurcl network are
derived which guarantee convergence of the weight vector in the mean.
Both simulation and experimental results indicate the CMAC neuradl

network is an effective ool for this vibration prediction problem.

Xvii
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CHAPTER 1

INTRODUCTION

1.1 The Problem

Multibeam sonar systems are the latest odvcncéme_n’r in
hydrographic surveying technology. Typically each system consists of four
major operational parts: (1) a fransducer to generc’re acoustic pulses and
receive the echoes; (2) a GPS unit to determine vessel location and
speed; (3) oﬁ inertia motion unit (IMU) which records vessel attitude at the
time of each pulse; and v(4) a signal processing system to convert the
echoes into bathymetric and backscatter values, and a data processing
computer to compile a series of pulses into seafloor information. The world
coordinates of each footprint (the spot on the Earth the sensor measures)
are calculated based on the geomefry of the ;sonor head relative to the
GPS of the ship. Therefore, the resulting survey quality highly depends on
the accuracy of the estimated mounting configuration of the sonar head.
There are two major configuations of mullibeam sensors: (1) pole-
mounted sensors (Figure 1-1) that are normally used on smaller Vessels

temporarily dedicated to acoustic surveying, and (2) through-the-hull
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sensors that are those integrated with the vessel's boﬁom. The latter is a
stable configuration but expensive to install. The multibeam sonar systems
of the second type, whic:hv attempts to correct for vessel motion with the
information from the vessel orientation system, assures the highest possible
quality for the spatial accuracy of the bathymetry or backscatter
information once the exact physical location of each system component
and the distances between them is determined with great precision.

The multibeam sonar of the first type,
however, faces another problem. The pole
is susceplible to bending and twisting
for;es. When the vessel is in survey
}bperoﬁon, the sonar head is exposed to a
variety of external forces due to water or
vessel movement. These forces will cause
the sonar head to vibrate. Therefore the
position of the sonar is not fixed relative to

the vessel. The caiculation of the world

coordinates of each footprint has to factor Figure 1-1: Pole-mounted

in the displacement of sonar head caused sonar head

by pole vibration. In other words, assume at a particular time, the spot

surveyed by sonar would be located at (xo, yo) if no vibration exists, but it is

* Source: hitp://www.ccom.unh.edu/scapa/images/inwater.jpg

2
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actually located at (xe+6x, yo+by) because of the pole vibration. The sea

depth detected by sonar is d. Hence on a 3-D mapping image, (xo, Yo, d)

is plofted, but the correct image would need to plot (xo+8x, yotdy, d).
Figure 1-2 shows a Matlab-produced 3-D image demo illustrating

the graphic process of sonar image distortion and correction related to

5 W0 0 A 20 X0 0 45 0 50 ® W0 B W F A B 0 D &

(a)The original seabed image () The distorted (along-track) image

BB B 8 W B BB

) 18 150 4D 260 300 3D 400 450 S0

1 108 183 20 20 3 30 40 40 50

(c) The distorted (two axes) image (d) The restored image

Figure 1-2: lllustration of sonar image distortion and correction
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pole vibration. The ’top—lef'r pane is an image of a flat ramp with small
objects (say, .c barrel and a mine) on it. The ramp rises along the Y-axis
direction that is also the along-frack direction. The top-right pane of Figure
1-2 shows the image of a rippled ramp resulted from 1-D along-track pole
vibration. The bottom-left pane shows the distorted image due to 2-D
(along-tfrack and cross-frack) pole vibration, where the barrel and mine
are barely recognizoblé. The bottom-right pane shows the restored image
as a result of world coordinate correction usihg techniques from this
dissertation. After processing correction, the last image is very close to the
first original image.

For now, without the error comrection method being employed, the
occurovcy and efficiency of pole-mounted sonar systems are severel‘y
cffec’réd,by pole vibration. To ensure a certain degree of accuracy, the
speed of the survey vessel has to be limited to reduce the amount of pole
vibration, which limits the daily coverage of survey. This producﬁvify issue

urges the study of pole vibration.

1.2 The Methodology

To improve the survey efficiency, it is necessary to come up with an
approach to predict the displacement of sonar head due to pole
vibration so that the emor in the world coordinates of the footprint can be
corrected. Figure 1-3 shows the process of sonar data collection in which

a new block (dotted-line) is prdposed to add to the current process (solid-
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line blocks). This new block will provide an estimation or prediction of the

sonar displacement to be used in sonar data processing.

~
\/

sorureuAp spod

.......

Boat Orientation
System
(GPS & IMU)
Direct measurement; || | Sonar data
Poje vibration equ.: §”:_"_" 4 processing &
Data filtering: ; displaying
CRAALT ’

Figure 1-3: Current and proposed sonar data collection process

There are several potential options for the task. One of them is the

direct measurement of the position of the sonar head using instruments

such as accelerometers. This approach is methodologically simple and

direct. However, the acceleration instrument is expensive, subject to

shock problems, drift errors, and would have to be small and waterproof.

These disadvantages limit its use in practical problems.

Another choice would be the vibration theory of the pole. The

motion of a rigid body is entirely defined by Newton’s law of motion. This

kind of problem is described by a set of differential equations with
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constant coefficients. Unfortunately, the pole bends, and even twists
under some circumstances. Another essential aspect of the pole is that it is
confinuous, meaning that it has continuous distribution of mass, elasticity,
and damping. To make things worse, the pole is likely Td be non-
homogeneous, that is, the distribution of its mass and flexibility is not

uniform. In general, we cannot solve the pole bending problems exactly.

A
%:Tw _____

(a) A flexible beam

F(x, 1)
om(x,1)

1) ' m(x,t) +
\ / ox

l T\ s(x,1) +_______8sgx, D g
s{x, 1‘/ |

m(x, dx

i
! X
}

— ! gyle—

(b)Beam element

Figure 1-4: Differential analyses of a beam

A well-studied example is the Bernoulli- Euler beam model [8], which

is the simplest beam model. As shown in Figure 1-4, it is assumed that one
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end of the beam is fixed (at the origin O) and the vibration of the beam
will be one-dimensional (Y-axis). Let p(x) be the mass per unit length along
the beam and u{x, 1} the displacement normal to the beam atf x, the

vibration equation will be:

2 2 2
py L%l [El(x)a

ox

o f}f(x,t) (1.1)

Where E is Young's modulus, I(x) is the beam area moment of inertia,
and f(x, 1) is the force densi_’ry at x. Figure 1-4 also shows an infinitesimal
elemenf. taken out of the beam, which is the basis of Bernoulli- Euler beam
model. The beam could be freated as a combihoﬁon of thousands of
such infinitesimal elements, which means the same large number of 4fh-
order partial equations need to be solvedv.

The obstacles of applying vibration theory in the pole vibration
problem are numerous. They include:

» No generic closed-form solution;

» Numerical solutions need thousands of calculations to solve
partial differential equations related to particular conditions;

» Not adaptable to structural change, or parameter chdnge;‘

> Difﬁcﬁﬁy‘ increases rapidly with DOF and coupling.

In a word, we can conclude that the vibration theory approach is

not practical for a real-time problem within this volatile environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Adaptive filtering technigues provide a different opprodch to data
processing. A filter is a hardware or soffware device that we may use to
perform three basic information-processing tasks [291:

(1) Estimation {filtering)®, i.e., exfracting information about a quantity
of inferest at time t by using data measured up o and including time 1.

(2) Smoothing*, which involves the usage of data both up fo and
after time 1.

(3) Predicﬁon*, which is to derive information about what the
guantity of interest will be at some future time t + 1, for 1 > 0, by using data
measured up to and including time t.

The design of an optimal filter, such as the Wiener filter that is said to
be optimum in the mean-square sense, réquires a priori knowledge about
the statistics of the data to be processed. In an. environment where
complete information of the relevant signal characteristics is not available,
the adaptive filter that is self-designing has a good opportunity to perform
satisfactorily. The self-designing of the adaptive filter relies on a rchrsive
olgbﬁthm; which starts from some set of predetermined initial éondifions,
representing our best knowledge of the environment. It has been found, in
a stationary environment, the adaptation algorithm bf o linear adaptive
filter, after successive iterations, will converge to the Wiener optimum

solution in a statistical sense.

* These terms, not strictly defined, are used here to highlight the functions of the filter.

8
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Figure 1-5: Adaptive fransversal filter

Figure 1-5 shows an adaptive fransversal (FIR) filter [33]{29]. The filter

output is given by:
M-1
yk) = wuk i) (1.2)
i=0

The tap weights, wi, wa, ..., wmi, are adjusted at every time-step.
There can bé hundreds of taps for a practical adaptive filter, This makes
the adaptation algorithm slow and increases the computational costs [33].

The data filtering methods, including fixed-gain filters (such as the
Wiener filter and the Kalman filter) and odapﬁve filters, are limited by a
fundamental problem that the vibration motion, the ocean bottom
motion, and the boat wave motion are all in same frequency range. Data

filtering cannot distinguish one from others.
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A mvore récen’r development is the CMAC neural network (The way
that it works in the process of sonar data collection and processing Will be
discussed in next section). The Cerebellar Model Arithmetic Computer
(CMAC) is an associative memory neural network in that each input maps
to a subset of weights or merhory locations whose values are summed Tov

produce outputs. The unique aspect of how the CMAC neural network

works is graphically explained in Figure 1-6 [58].

A

p points

e D

random |— output
mapping
Input/state

Space ‘Conceptual
Memory Actual
Memory

Figure 1-6: A geometrical explanation of CMAC’s working mechanism

An input vector is the collection of N appropriate sensors of the real
world and/or measures of the desired goal. The CMAC olgorh‘hm maps
any input it receives into a setf of p (the generalization parameter) points in
a large ‘conceptual’ memory (A in Figure 1-6} in such a way that two

inputs that are "close” in input space (§ in Figure 1-6) will have their points

10
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overlap in the A memory, with more overlap for closer inputs. If two inputs
are far apart in the input space § there will be no overlap in their p-
element sets in the A memory, and therefore no generadlization.

Since most learning problems do not involve all of the input space,
which is extremely large for prc‘cﬁcol systems and hence would require a
comrespondingly large number of locations in the memory A, the memory
requirement is reduced by mapping the A memory onto a much smaller
physical memory A’. Any input presented to CMAC will generate p reai
memory locations, the contents of which will be added in order to obtain
an output.

Another important aspect of CMAC neural network is the concept
of "local generalization” built in its weights-adjusting algorithm. For ecg:h
input presented, only the weights in p memory iocations will be changed,
proportional to the emor between 'rhe oQtpu’r of CMAC and ’rhe desired
target signal. Our mathematical formation of the adaptation algorithm of
CMAC reveadls its similarity to the widely used LMS algorithm. This leads fo
further study of CMAC neural network from the point of view of adaptive
signal processing.

The built-in properties of CAMC result in such advantages as: a) fast
learning property, b) rapid generalization capability, ¢) no local-minima
problem, and, d) modeling or learning abilities for nonlinear plants as well

as linear plants. Another benefit of using CMAC neural network is its

11
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-availability in software & hardware and proven success in real-fime

problem.

1.3 The Proposed Appreach

To correct for the displacement of the sonar head caused by pole
vibration in the process of sonar data collection and processing. a novel
approach to estimate or predict the displacement of sonar head using

CMAC neural networks is proposed (Figure 1-7).

Pole
Vsx

: > Preprocessing

Strain gages Vs circuitry (Biasing,
999 : L . amplification &

filtering)

Vpy

To DataAcq
board

Forces

Fy Computer w/
DataAcq Board
& CMAC NN

Photocell

Figure 1-7: Pole-mounted sonar vibration prediction system
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The proposed vsysfem conisists of the pole itself, several strain gauges
attached to the pole, and the computer that operates the CMAC neural
networks o estimate or predict the coordinates of the sonar relative fo
the vessel. Photocells are used to measure fhe displacement of the
bottom of the pole during the training period. The electrical signal outputs
are connected to the computer via data oéquisifion hardware (DT3010).

In this research project, the simulation model and loborofory
profotype are built mainly for testing the capability of the CMAC neurail
network to estimate or predict the displacement at the bottom of the
pole based on an additional measurement at the top of the pole.
Thérefore, the sensors used in our prototype are cheap and easy to install.
For real applications, other position detectors more suitable to underwater
environment should be used and further calibration is needed.

The strain gauge is a device whose electrical resistance varies in
proportional to the amount of strain (¢, defined as the fractional change
in Iengfh) in the device. With proper configuration, a bridge circuit
comprised of a pair of strain gauges is able to produce a voltage signol
proportional to the strain along one axis. That is, for example, Vx = yi*&x,
where y1 is roughly a constant coefficient. Similarly, we could have Vy =
y2¢&y. More generally, Vy = fi{ex) and Vy = fa(gy).

Photocells or other kinds of position detectors are used to detect

the coordinates of the sonar (represented by afip at the bottom of the

13
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pole in the lab). The electrical signal outputs of
photocells are indicators of the position of the
- sonar. Figure 1-8 shows the relationship among
the angular displacement of the pole, linear

displacement of the pole's bottom, and the

A \ X
voltage signal of the photocell. For small angular | | X ]
Xm Xm
displacement o,
v i
y_.x_.9 (1.3) :
v, =x, 6, |
Hence, . Vm
P P Figure 1-8: Angular
6= -‘-,*"-V = (1.4) displacement of pole

In Eq. {1.4). xn and 6, are determined by the physical size (effective
length) of the photocell and the pole. In our laboratory setup, 8m = tan(6m)
= Xm/lpoe = 2.3/180 = 0.0128 rad = 0.732°. The maximum voltage is

determined by the circuitry of photocell and is adjustable.

1.4 The Implementations

Two implementations of the pole-mounted sonar vibration
prediction system were redlized. The first one is a pure software
implementation — computer model built in Simulink environment. Each

of the system components, including the pole, the strain gauge, and the

.14
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CMAC neural network, is represented by a Simulink block or a group of
simuli;nk blocks whose parameters are properly defined. Two maijor
components of our proposed system we need 1o create or construct on
our own are: (1) the CMAC neural network, and (2) the model of pole
dynamics. The software implementation provides a quick and inexpensive
way of thoroughly investigating the feasibility of the proposed method.
The second irhplemen'raﬁon is a laboratory prototype involving both
hardware and software. Only the CMAC neural network is programmed in
the computer while the other corhponen’rs use physical models close to
those that would be used in  real sonar surveying.  The laboratory
prototype helped to study pote dynamics in addition to verifying the

feasibility of the proposed approach in real-time application.

- 1.5 The Outputs of Research

Three major achievements are expected through this research:

(1) Fulfill the feasibility study of pole-mounted sonar vibration
prediction Qsihg CMAC neural networks.

(2) Make theoretical contribution to the field of CMAC neural
network research.

(3).Use the platform/testbench established in the 'reseorc:h to
explore the capabiliies and performance limitations of CMAC

neural networks.

15
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CHAPTER 2

BACKGROUND

2.1 Basic Concepts and Approaches in Vibration Study

Vibration can be found virtually everywhere. All bodies posﬁessing
mass and elasticity are capable of vibration. The study of vibration is
concerned with the oscillatory motions of bodies and the forces
associated with them [73].

There are two classes of vibrations: (1) Free vibration, which refers fo
the vibration taking place under the action of forces inherent to the
system itself and when external impressed forces are absent; (2) Forced
vibration that takes place under the excitation of external forces. The
system under free vibration will vibrate at one or more of its natural
frequehcies. The vibrcﬁng linear system under oscillatory excitation will
vibrate at the excitation frequency. When the excitation frequency
coincides with one of the system’s natural frequencies, a condition
referred to as resonance may be encountered. Nonlinear systems
respond at all the harmonics and the mixing or "beat” frequencies of the

excitation frequencies.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As fdr as the vibrating systems are concemed, they can be
classified as linear or nonlinear, and, discrete or continuous. Linear systems
are subject 1o the principle of superposition and there are many eloquent
mathematical techniques well developed for their freatment. Iin contrast,
the techniques of analyzing nonlinear systems are generally difficult to
apply. Vibration study involves both the knowledge of linear systems and
the knowledge of nonlineor systems because all sysfems tend to become
nonlinear with increasing amplitude of oscillation.

Likewise, we see the relationship of sfudying the discrete system and
the continuous system. Discrete systems such as masses and springs are
easy to study but such idedlized structures never exist in the real world.
Nevertheless, the mo‘themcn‘icol cnolysés of discrete systems lay the
foundation of the study of continuous systems. Except for some special
cases, continuous problems cannot be solved exactly [8]. Thus we are
forced to consider approximate solutions. There are two distinct classes of
approximate solutions: one is the siructure-oriented cpproqch that
discretizes ’rhé original continuous ‘sys'rem into a number of IQmped
elements and another is the behavior-modeling approach that
approximates the sysfefn’s response by a finite number of mode shopes;
The second approach is widely used because it does not need the
detailed knowledge of the structure of the system and many data

processing fechnigues can be adopted.

17
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2.2 Artificial Neural Networks
2.2.1 Overview

Artificial neural networks have emerged from studies of how human
and animal brains perform operations. Interest in drﬁficial neural networks
could be ftraced back in the veorly 1940s when pioneers, such as
McCulloch and Pitts and Hebb [53][30}{6][62]. investigated networks
based on the neuron and attempted to formulate the adaptation laws
applied to such systems. The human brain is composed of mény millions of
individual cmd highly connected elements called neurons. Functionally,
the brain ié a highly compl‘ex, non-linear, and parallel computer (or,
informcfrion—proéessing system). It is fair to say that the human brain has
been ‘c.md will still be the driving force behind the discipli_ne of artificial
neural networks.

Many neural networks (the word “artificial” is dropped hereafter for
simplicity) have been proposed and studied in the past séverol decades.
Some of them, especidlly those in the early stage of development of
neural networks, possessed certain drawbacks such as, noticeably, the
requirement of a large numberv of neurons (weights) and/or slow
convergent speed. These drawbacks have been largely improved in
newer neural networks such as the CMAC neural network through hashing

and parallel computing.

18
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Overdll, neural networks have found many application areas such
as neuroscience, mathematics, stafistics, physic's, computer science, and
engineering, based on their promising atiributes [51], including:

s Inherent parallelism in the network architecture due to the

~ repeated use of the simple processing elements or neurons. This leads to
the possibili‘ry of very fast hardware implementations of neural networks.

. Ccpobili‘ry of ‘'leaming’ information by example. The leamning
mechanism is often achieved by appropriate odjus’rmen’r of the weights ih
the synapses of the artificial neuron models. |

« Ability to generalize to new inputs (i.e. a trained network is
capable of predicting the outputs when presented with input data that
has not been used before).

. Robus’rness to noisy data that occur in real world applications.

e Fault tolerance. In general, network performqnce does not
significantly degenerate if some of the network connections become
faulty.

One definition for a neural network is [4]: A neural network is @
massively parallel distributed processor that has a natural propensity for
storing experiential knowledge and making it available for use. The neural
network resembles the brain in two respects:

(1) Khowledge is acquired by the network through a learing

process; .
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(2) Interneuron connection strengths known as synaptic weights ore-
used to store the knowledge.

Neural networks are usually implemented by using electronic
components or are simulated in software on a digital computer. The
procedure used to perform the learning process is called a learning
clgbri’rhm, the function of which is to modify the synaptic weights of the
network in an orderly fashion to attain a desired design objective.

A popular paradigm of leaming [52], called supervised fraining or
learning Wi’rh a teacher, involves modification of the synaptic weights of a
neural network by applying a set of labeled training samples. Each
sample consists of a unique input and a corresponding desired response.
The network is presented with an example picked at random from the set,
and the synaptic weighfs of the network are modified to minimize the
difference between the desired response and the actual response of the

- network produced by the input signal in accordance with an cppropridfe
statistical criterion. The training of ’rhe network is repeated for many
examples in the set until the network reaches a steady state where there
are no further significant changes in the synaptic weights. The.previously
applied training examples may be reapplied during the train session but in
a different order. Thus the network learns from the examples by

constructing an input-output mapping for the problem at hand.
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In addition to those atfributes of neural networks that make them
appedadling to a variety of fields, two prominent advantages the neural
networks possess due to their built-in capabilities moke them a useful tool
in systems modeling, pattern classification, adaptive signal processing,
and adaptive control. First, a neural network, made up of interconnected
nonlinear neurons, is itself nonlinear. Moreover, the nonlinearity is of @
special kind in the sehse it is distributed ’rhroQghouT the network.
Nonlinearity is an important property, particularly if the underlying physical
mechanism Uhder study is inherently nonlinear. Applying linear modeling
technigues to a nonlinear system usually results in a large number of
equations to solve. Second, neural networks have a built-in capability to
adapt their synaptic weights to changes in the surrounding environment.
When it is operating in a non-stationary environment, a neural network
can be designed to change its synaptic weights in real time.

The following important accomplishments mark the magjor

advancements of neural networks:

2.2.2 Artificial Neurons

In 1943, MCCUIIQch and Pitts presented their simple neuron with five
osstpﬁons governing the operation of neurons [53]. The McCulloch-Pitts
neuron is a very simple two-state device. There is no training for their
neuréns. The first time a Ieorning rule for adjusting the synaptic weights is

presented is in the paper by Hebb in 1949 [30]. John Hopfield presented a
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neural architecture made up simple processing units bosed on the formal
neuron of McCulloch and Pitts in his paper [32] published in 1982.
Hopfield's paper brought together several seemingly unrelated concepts
in the literature and presented them in a highly coherent fashion. As
stated in [¢], regarding Hopfield's work, “As far as pubilic visibility goes, the
modern era in neural ne’rworkis dates from the publication of this paper by

John} Hopfield“."

2.2.3 Adaptive Linear Element (Adaline) and Perceptron

The Adaline is a single neuron whose syndp‘ric weighfs are updated
according to the Least Mean Square (LMS) algorithm [81][79], which is
sometimes refered to as the Widrow-Hoff learning rule or the delta rule
[14] [69]. The architecture of Addline can be viewed by referring to Figure
2-1, which consists of an adapftive linear combiner cascaded with a
symmefric hard limiter. For a pattern recognition problem, the hard limiter

is a decision-maker or pattern-classifier. There are two varieties of LMS

algorithms - p-LMS algorithm and a-LMS algorithm. The simplest p-LMS

algorithm is of the following form:

w(k +1) = w(k) + i - e(k)x(k) (2.1)

The o-LMS algorithm is of the following form:

e(k)x(k)
x|

wk+)=wk)+a (2.2)
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Figure 2-1: Adaptive linear element

' The Addline closely resembles "rhe simple perceptron (single-layer
perceptron), whfc-h was originally presented by Rosenblatt [68]. Several
different types of perceptron were developed later. The maijor difference
between the Adaline and perceptron is, during the training process of the
nefwork, how the error is generated. For an Adaline, the error is genero’red
os the difference between the desired output and the output of the linear
combiner; and the resulﬁng error, i.e., e(k) =d(k)-v(k), is called the linear
error. For a perceptron, the error is género’red as the difference between
the desired output and the output of an activation function. There are

many different activation func’rio_ns. An example is the symmetric hard
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limiter and then the resulling error, i.e., €' (k)= d(k)-sgn(v(k)). is called the
quantizer error. The learning rule for this perceptron is given as {82]:

e'(k)
2

wk+D=wk)+a x(k) (2.3)

Another commonly used activation function is the sigmoid
activation function, denoted as f(¢). The leamning rule in this case is given

as:

df (v)

wk +1) =w(k)+ u-e'(k)x(k)——
dv

(2.4)

v=v{k)

The leaming rule for the percepftron, like the Widrow-Hoff leaming
rule, is based on the method of steepest descent and attempts to
minimfze an instantaneous performance function.

The LMS algorithm is extensively studied and used in adaptive signal
processing and neural networks. The LMS algorithm for froinihg a single
layer network is the predecessor to the backprogation learning rule for

feedforward multilayer perc‘ep’rrons.

2.2.4 Backpropagation Algorithm

The standard backpropagation algorithm for fraining the mulfilayer
percepﬁon neural network (MLP NN) is based on the steepest déscenf
gradient approach applied to the minimization of an energy function
representing the instantaneous error. The adjustment of synaptic weights

at each layer of the network is proportional to the product of the
24
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computed local error, or delta, and the local input (or the output of prior
layer). Therefore the backpropagation dlgorifhm is olgo referred to as the
extended delta rule.

The bockpropogdﬁon algorithm was first developed by Werbos in
1974 [75], but it went unngficed [76]]77] until 1986 when Rumelhart, Hinton
and Williams published their work on the backpropagation algorithm
[70]{69]. Today, backpropagation is a popular learmning process in neural
networks. The main drawback of backpropagation is slow convergent

speed.

2.2.5 Radial Basis Function Networks
In many cases, radial basis function networks will frain much more
“quickly than the feedforward mullilayer perceptrons frained by
backpropagation [28]. In a radial basis function network (RBF NN), 'rhe
neuron (or RBF center) close to the input will make more contribution to
the output of frhe RBF NN in response to that input than remote centers.
The output of the RBF NN is the weighted sum of the outputs of the hidden

neurons (the neurons between the input layer and the output layer):

k=l

Yi= wak¢k (Xsck_) =Zvvik¢k ("X —ck“z) - (2.5)

where xe ®™ is an input vector and ¢, € ®™ are the RBF centers in the

input vector space. ®(e) is a function from R* to EK The most commonly

used function is an exponential quadratic function as follows:
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#(x) = exp(-x"/0?) (2.6)
It can seen from (2.5) that two sets of parameters governing the

properties of RBF NN are the weights W, in the output layer and the

centers ¢« of the radial basis funcﬁons. The defining of the centers largely
affects the complexity of RBF NN fraining. The simplest form of RBF NN
training is with fixed centers. Ih 1988 Broomhead and Lowe [9] proposed
an approach of c_hoosiné’rhe fixed centers in a raondom manner as a
subset of the input data set. A “sufficient” number of randomly selected
centers is required so that they can statistically represent the distribution of
the input data. The only adjustable parameters were the weights in the
ou’rput layer. But this approach produces a relatively large néMork, even
for a reloﬁvely simple problem. Some improvements aiming to reduce the
size of RBF NN, such as training the RBF using the stochastic Gradient
approach [28][29] and the orthogonadl least squares (OLS) method
[15][29]. had been presented but the selection of the RBF. centers remains
a major challenge in the design and application of the RBF NN.

The Cerebellar Model Ari’rhmeﬁc Computer (CMAC]) is regdrded as
a special case of the radial basis function network [3]{11][58]. Both are
designed according to a fundamental principle of “local generalization” -
- similar inputs produce similar outputs while distant inputs produce nearly
independent outputs. CMAC uses a geometrical method to decide the

receptive fields where the basis functions are defined. Two specialties
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embedded in CMAC are its layered structure and that its basis functions
are discontinuous functions. Much more will be said about the CMAC in

the next section and the following chapters.

2.3 Historical Development of CMAC Neural Networks

The Cerebellar Model Arithmetic Computer (CMAC), an associative
memory neural network in that each input maps to a subset of weights
whose values ‘are summed 1o produce outputs, was infroduced by James
Albus [1][2] in early 1970's to approximate the information processing‘
characteristics of the human cerebellum. Evidently since mid-1980's, study
on CMAC has made significant progress and applications have been
found in fields such as system identification or plant modeling and real-
time adapftive control. One of the most frequently quoted works is the
development of a practical implementation of ’rhe CMAC neural network
’rhqf could be used in the reol—’rime contfrol applications [58] by Miller,
Glanz, and Kraft at University of New Hampshire. |

A large number of papers or other publications about CMAC neural
networks have been published. Among them are the works on exploring
the properties and capacities of CMAC [58] [19], on improving or
generalizihg the CMAC structure [43][50] [49][25][26][44][2)[17][54] and
receptive functions [43][78][20][14], on the selection of learning

parameters [48][47]1[37]. on the leaming convergence [87][63][46][39]
27
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[40][10]{88]. and on applying models or architectures [56][57][55][21][31]
[22] [23][41]1(89][13].
| The following summary-outlines the efforts and progresses made in

the study of CMAC neural networks.

2.3.1 On the CMAC Topological Structure”

The original Albus CMAC [2] can be thought of as a special case of
lattice- based AMN (associative memory networks) with sparse placement
of basis functions. Using this technigue, the input space is quantized into
discrete states as well as larger size overlapped areas called hypercubes
(or receptive fields where fhe basis functions are defined). Each
hypercube covers many discrete states and is assigned a memory cell ’
that stores information in it. The pattern of placement of basis functions on
the input space is diagonal. As a resQl'r, the number of basis functions
(which equals the number of memory cells) is significantly less than the
number of lattice cells, which reduces the computation requirements.
However, the CMAC's modeling ability is not as flexible as a standard
AMN (where the number of basis functions is equal to the number of
lattice cells).

in the conventional diogonol-plocemen’r pattern of weights (basis
functions), the weights are not evenly distributed on the input space.

Actuadlly, they are concentrated along the parallel diagonals. Lane et ai

* A detailed description of CMAC structure is given in Chapter 3.
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[43] discussed two weight-addressing schemes, that is, (1) Main diagonal
and anti-diagonal weight-addressing scheme, and (2} Main diagonal and
sub-diagonal weight-addressing scheme, which have the weights more
scattered on the input space.

The conventional CMAC performs a uniform opprocch to -equally
partition input space into discrete regions in order to construct memory
structure and one generalization factor p is used for all inputs. Gonzalez-
Serrano et al [25] noted that ifs rigid structure reduces its accuracy of
approximation and speed of convergence with heterogeneous inputs. In
[26] it is shown that the variation of the function to be approximated is
highly correlated with the variation of the weights. Lee et al [44] noted
that the conventional CMAC neglects the problem of various distributions
of fraining data sets so that it ollochTe's many unused memaory unifs.

The number of basis functions increases exponentially with the input
dimension. It also increases with the Iévels of quantization (discretion)
quickly. To reduce the storage requirement and increase the flexibility of
CMAC structure, efforts have been made by Severol researchers. In [17],
the authors proposed a self-organizing CMAC neural network that uses a
Kohonen self-organizing map algorithm to cluster the receptive fields in
regions of the inpUt space where the data is dense. In [44] proposed a
self-organizing input space module that uses Shannon's entropy measure

and the golden-section search method to appropriately determine the
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input space quantization according to various distributions of training
data sets. The problem with these approcéhes is that, while reducing the
stqroge requirement, they lose one of the magjor benefits of CMAC,
namely fhe speed of computation. In [54], a hierarchical mulﬁ—resoluﬁoﬁ
approach is investigated through experimentation as a possible
approach to alleviate the problem.

Reference [25] proposed a generalized CMAC (GCMAC) network
with multiple generalization factors (o = [ p1, p2. ..., pn]_), one for each
input that depends on the smoothness of each input. The shape of
receptive fields then becomes hyperparallelpipeds instead of hypercubes.

Albus' CMAC can be considered as a special case for the GCMAC.

2.3.2 On the CMAC Learning Algorithms

The CMAC network performs a locally weighted opproximoﬁon of
functions by means of some basis functions. The original CMAC_ has
constant basis functions. in CMAC, the input space is divided into small,
oveﬂcpped regions, called receptive fields, where‘ the basis functions are
defined. A disadvantage is that its output is constant within each
receptive field and the derivative information is not preserved. Proposed
alternatives are B-splines«[43], exponential [78][20]. and Gaussian functions
[16]. In [16], CMAC wi’rh general basis functions is investigated and the

condition of learning convergence has been proved. The performance of
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a simulation with Gaussian functions (GBFs) showed better accuracy while
the learning speed is very close to the conventional CMAC.

In [48], Lin and Kim investigated the problem of parameter selection
(such as the leaming rate) for a CMAC-based adaptive critic learning
technique which the authors proposed previously [47][37]. The adaptive
critic learning structure consists of two main modules — a control module
and an evaluation module. The output of the former module is used for
learning the optimal control action. Analytic resuﬁ for estimating the limits
of the learning rate was achieved and simulation result was provided.

Wong and Sideris [87] proved that CMAC’s learning always |
converges with arbitrary accuracy on any sets of training data. However,
their proof was restricfed to the case that the memory size is greater than
the number of weights to be stored and no hash mapping is used. The
proof by Parks and Miltizer [63] defined a Lyapunov function and used it
to prove that CMAC learning converge to a limited cycle given that the
leaming rate equals fo one. Lin and Chiang [46]. through defining the
CMAC technique using mathematical formation and then examining the
eigenvalues of a matrix describing the learning procedure, further proved
that CMAC's iterative learning from either with or without hash converges
to a limited cycle if the learning rate is between zero and two. Moreover,

their study also proved that CMAC learning resulfs in a IeoST square error if
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the number of iteration approaches to infinity and the learning rate

approaches to zero.

2.3.3 On the application of CMAC models

The use of CMAC neural networks in prdcﬁcol problems has been
predominantly conducted at Unfversity of New Hampshire. Among them
are applications in real-time robotic [56][57][55], vibration control [41][89]
[13]. pattern recognition [21][31], and signal processing [22] [23].

Reference [55] demonstrated the application of CMAC neurdl
networks for @ robot-fracking problem involving the confrol of a five-axis
industrial robot with a video camera attached to the fifth axis in the place
of a gripper. An application in signal processing problem - learm how to
generate the original input given the output of a nonlinear channel with
memory, was presented in [23]. |

in [41][89], the CMAC network was ‘used in a feedback control
structure to produce the signhal required to actively cancel the vibration
source. In [41], the CMAC neural ne’rwbrk concept was applied 1o a redl—
ﬁ‘me closed-loop vibration control system to reduce unwanted vibrations
in an acoustic system, In [89] offered two significant extensions, which
make the CMAC controller method applicable to a wider range of
practical problems. The first is a new weighf vupdon‘e' procedure that
separates the fraining cycle from the conTr_olvcycIe so that the CMAC

confroller is able to deal with the phase shift inherent in the plant. The
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second is another new approach that does not réquire direct
meosu_rements of the vibration source. The new vibration control schemes
were tésted on a submarine simulation model. Results indicate CMAC is
an effective tool for this vibration control problem.

In [13], an algorithm for the convergent adaptation of a CMAC
neural network in feedforward disturbance cancellation architectures is
presented. This technique is a generdlization of the Filtered-X LMS

~algorithm used in the case of Iinedr adaptive filters. Results are presented
for an implementation of the algorithm on a laboratory acoustic duct
model. This application shows that CMAC can operate at high enough

frequencies for the pole vibration problem.

2.4 Some Notes on Adaptive Signal Processing

Adaptive signal processing can be considered to be a proCess in
which the parameters used for the processing of signals change
according to some criterion, such as the estimated mean squared error or
the correlation. Adaptive processing usually refers to adaptive filtering, in
Which the parameters of the filter can change with the indepéndem
variable (usually space or time).

Two distinct linear optimum filters are the Wiener filter and the
Kalman filter. The first studies of minimum mean-square estimation in
stochastic processes were made by Kolmogorov [38], Krein [42] and

Wiener [85] during the late 1930s and early 1940s. Kolmogorov developed
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a comprehensive treatment of the linear prediction problem for discrete-
fime stochastic processes. Krein extended the results 1o continuous fime
by using a bilinear transformation. Wiener independently formulated ’rHe
continuous-time linear prediction problem and deri\;ed an explicit
optimum formula that required fhe solution of the Wiener-Hopf equation
[86]. The original Wiener-Hopf equation, taking the form of an integral
equation, is difficult to solve. In 1947, Levinson formulated the Wiener
_fil’rering problem in discrete fime [45]. In this case, the Wiener-Hopf
equation is neatly written as an algebfoic matrix-vector equoﬁon:

Rw =p (2.7)
where w* is the tap-weight vector of the optimum Wiener filter structured
in the form of a Trons_versol filter (Figure 1.5), R is the correlation matrix of
the tap inputs, and p is the cross-correlation vector between the tap input
and the desired response. |

The works of Wiener and Kolmogorov were based on the
assumption of stationary stochastic processes. For a problem to which
nonstationarity of the signal and/or noise is infrinsic, the optimum filter has
fo assume a tfime-varying form. One solution turmed up in 1960 is the
Kalman filter, a powerful device with a wide variety of engineering
applications, especially in aerospace and aeronautical applications.
Kalman's original formulation of the linear filtering problem was derived for

discrete-time processes [35]. Later {1961) Kalman and Bucy collaborated
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on the continuous-time filter [36]. The mathematical description of the
Kalman filfer is based on the state-space approach. A key property of the
Kalman filter is that it leads to minimization of the frace of the filtered state
error correlation matrix, which means the Kalman filter is the linear
minimum variance estimator of the state vector [5][27]. The Kalman filter
aiso provides a unifying fromerrk for the derivation of the recursive least-
squares filters [71]1[29]. The link between Kalman filter theory and adaptive
filter theory was demohs’rro’red by Sayed and Kailath in ’rhei‘r paper
published in 1994 [71].

The earliest work on adaptive filters may be traced back to the late
1950s. The least-mean-square (LMS) algorithm, devised by Widrow and
Hoff in 1959 to train the weights of Addline in their study of a paﬁém
recognition problem, emerged as a simple and yet effective algorithm
and has been widely used in engineering dppliccﬁons.

~The LMS dalgorithm could be developed from the Wiener-Hopf
equations (or the cost function of Wiener optimum filter) in two stages [29].
First, by adopting the method Qf steepest descent - a well-known
technigue in optimization theory, a recursive procedure of updating
weights is formed which requires the use of the gradient vector. Seconq,
by altering the mean square error in the cost function fo instantaneous
square emor, an estimation of the gradient vec’ror.is obtained. The

resulting algorithm is the well-known LMS olgori’rhrh, the essence of which
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may be put in the following words: the adjustment at each time step is
proportional to the product of tap-input vector and the emor signal. The
rate of convergence depends on a coefficient called the learning rate.

The second approach to develop the linear adaptive filtering
algorithm is based on the method of Ié051 squares, the cost function of
which is the sum of-weigh'red error squares. The resulting algorithm is the

| recursive least-squares (RLS) algorithm. One of the earliest papers on the
standard RLS algorithm was presented by Plackett in 1950 [64]. Effon‘s
have been made to establish the relationship (one-to-one variable
correspondence) between RLS algorithms and Kalman filtering algorithms.
These include a paper by Gogard in 1974, which used Kalman filter theory
to derive a variant of the RLS algorithm [24], and an expository paper by
Sayed and Kailath in 1994 [71].

At last, an important type ‘of nonlihecr adaptive filters is the neural
network. The nonlinearity of a neural network is distributed throughout the
network. Hence, theorefically and practically, neural networks are the
most important nonlinear adaptive filters. It has been shown that the
development of adaptive filtering algorithms is closely interwoven with the

development of neural networks.
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CHAPTER 3

CMAC STRUCTURE

This chapter revisits the structure of CMAC neural network in great
details. Both the geometric formation and mathematic representation of
CMAC structure will be discussed. The purpose of this chapter is to
formulate the weight-addressing mechanism (i.e., information storage
ond/or refrieval approach) as well as to lay the foundation of exploring
the properties of CMAC neurol network in this and next chapters.

Before we go to formal discussion, a brief description of notations
and terminology of CMAC neural network is given: Let x = [xi, X2, ..., Xn] €
Rr be the inpufvof CMAC and g = [an, 92, ..., gn] € I be the discretized
input of the CMAC. As for other parameters, p stands for the
generalization factor, and d = [d;, da, ..., dn] € I" is the displacement
vector of CMAC. Further assume that the discretized input span the
hypercube In ={[z1, z2, ..., zn] € I" | 0 < z < L-1}. Hence, q € In. The
(discretized) input space is divided into small, overlapped regions, called
recepfive fie!ds (RF} or memory elémem‘s, where the basis functions are

defined. The total number of receptive fields is often referred as memory
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size that is equivalent to the number of weights of the network. The
generalization factor p defines the size of the receptive fields and the
number of layers of basis functions (also known as overlays). For a given
input, only the basis functions whose comesponding receptive fields

contain that input are excited (activated).

3.1 One-Dimensional-input CMAC

3.1.1 Formcﬂion of Receptive Fields

In the 1-D input case, the receptive fields are segments. Figure 3-1
shows two examples of the receptive fields of 1-dimensional input CMAC.
In Figure 3-1 {q), it is assumed that the input has been discretized and it
would span the hypechbe Li={zmel | 0z <Li-1}, where L = 8. Further
assume that the' displacement vector di =1 and the generalization factor
p1 = 3. The role of the displacement vector is to form different receptive
field at each layer. In the first layer, 3 receptive fields (segments) are
formed; in the second layer, 4 receptive ﬁélds (segments) are formed; in
the third layer, 3 recepfive fields (segments) are formed. The total number
of the receptive fields {or the memory size of CMAC neural network) is M;
= 10. These receptive fields are numbered from 1 1o 10 (these numbers are

- conveniently desigho’red as the addresses of these receptive fields or
memory elements of CMAC neural network], according to which layer
they belong to and their position at each layer. As a convention, the

number increases from left to right in each layer and from lower layer o
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3rd layer
2nd Jayer

Ist layer

Input

(o)L =8, di=1,p1=3

1o-%*r~9§¢41’r—*rr—x1§‘~r2~—r7—r2-r2—§-’r3 4 layer

3 layer

2nd [qyer

Istlayer

Input

(b) L2=10, d2 =3, p2 = 4
Figure 3-1: Recebﬁve fields and weight-addressing of 1-D input CMAC

higher layer. Also shown in the ﬁgQre is how fhe receptive fields are
excited to a particular input. For ekample, given input g = 4 (marked by a
star sign on the input oxié), receptive fields No.2, No.6, and No.9.cre
excited [marked by colored circles on their layers). The correspohding
excitation vector s4 is:

$4=100,1,0,0,0,1,0,0, 1, O (3.1)
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In general, the excitation vector is a vector of M elements, which
has p elements of value 1 and M- p elements of value 0.

In Figure 3-1 (b), it is assumed that Lo = 10, d2 =3, p2 = 4. The
receptive fields are formed and numbered in a similar way to Figure 3-1
(a). Here 4 layers are formed and there are totally 13 receptive fields. For
example a given input g = 4, receptive fields No.2, No.5, No.8 and No.11
are excited. lts coresponding excitation vector s4 is:

5=10,1,0,0,1,0,0,1,0,0,1,0,00" (3.2)

Obviously, the value (1 or 0) of each element of an excitation
vector will be determined by the element’s index in the vector. For those
elements whose indices coincide with the addresses of the rec:‘ep’rive
fields being excited by the particular input g, their volués are 1. Otherwise

they are zero.

3.1.2 Number of Receptive fields

To formulate the addresses of the excited receptive fields, we need

to know the number of receptive fields at each layer, which is given by:

M® = ceil[—(k—_;)id} +ceil[l‘__(kp'_l)_>_<i] k=1,...p (3.3)

So, the memory size or the required number of weights is:

M=3M® (3.4)

k=1
40
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For Figure 1{a}, M} = 3, M2 = 4, MB) = 3, and M = Ml + M2} + MBI =
10; For Figure 1(b), Ml = 3, M2 = 3, MB) = 3, Ml4 = 4, and M = M1} + M(2 +

MG+ Mi4) = 13,

3.1.3 Addressing Mechanism and Excitation Vector

For one given input x (or g}, one memory element (segment) of
each layer is associated. The relative address of the particular element at

kth layer is (numbering from one):

rq(k) =ceil[-(—]r—gﬁ]+ceil[(q+l)n;k_l)>(dj| k=1,....p (3.5

If we number the memory elements incrementally from left to right
of the first layer, then the second layer, fill the p™ layer. The “absolute”

address of this element will be (starting from one):

k-1
%ngMmmm M= 0 (3.6)

Table 3.1 shows the addresses of receptive fielkds calculated
according to equation (3.6) and the comesponding excitation vectors, for
the 1-D CMAC given in Figure 3-1 (a). Toke input g = 4 for example, rqf!) = 2,
rql2 =3,rgR =2, qém = MO + rgl1) = 2, ag@ = MO + M) + (2 = 6 Qgl® =
MO+ M) + MI2) + 143 = 9. Hence, the 279, 6t and 9th elements of excitation

vector will be 1 and others will be 0. This conclusion agrees with Eq. (3.1).
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Table 3-1: Addresses and excitation vectors
of the CMAC in Figure 3-1{q)

input Absolute Excitation
variable | address vector

o Qg

0 1.4,8 |[1,0,0.1,0,0,0,1,0,0]
1 1,58 [1,0,0.0,1,0,0,1,0,0]
2 1,59 [1,0,0,0,1,0,0,0,1,0]
3 2,59 [0,1,0,0,1,0,0,0,1,01
4 2,6,9 [0,1,0,0,0,1,0,0,1,0]
5 2,6,10 110,1,00,0,1,0,0,0,1]
6 3,6,10 {[0,0,1,0,0,1,0,0,0,1]
7 3,7,10 | {0,0,1,0,0,0,1,0,0,1]

3.1.4 Coordinates of Centers of Receptive Fields

In the remaining part of this section, the coordinate of the center of
the receptive field (segment) will be discussed. As mentioned before, for
one given input x (Qr q). there are p memory elements associated with it
(one memory element at each layer). However, the input is most likely to.
miss the centers of those segments (Figure 3-1). One fundamental
prerequisite of CMAC is that similar inputs tend to generdlize and produce
similar oufpu’ré. The similarity is evaluated by the distance between the
inputs. The conventional algorithm that uses constant basis functions
weights all the excited irecepﬁve fields equally. A fine-tuned improvement
will adjust the weight of each excited receptive field according to the
distance between the active input and the receptive field.

On the discretized input axis, the coordinates ¢ of the center of

receptive fields at ki layer are:
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m
(r,

—-1)><p+£"—)-2:2 1<r,®<M® '
)
c, = , , 3.7a
‘ L-1+(," -Dxp LD g0 s7¢l
2 q
smod((k -1 xd,p)-1 )
r, =1
2 v ‘
c,® ={smod((k 1) xd, p)+(r, —2)x Nl 2<rP <M®
q - "p g p 2 -—rq
L-1+smod((k -D)xd, p)+(r, =2)xp L% _ 0
{ 2 !

k=2, ...p (3.7b)
where smod(m, n) is defined as a function of two positive integers:

n, if (mod(m, n) = 0)and(m # 0)

smod(m,n) = .
mod(m,n), otherwise

(3.8)

Finally, the distance between the input g and the center of each
memory unit associated with the input is:

&) =|g-cl| - fork=1,..p (3.9)

Table 3.2 shows the center coordinates of receptive fields
calculated according to equation (3.7) and the corresponding distances
to the active inputs, again for the 1-D CMAC given in Figure 3-1 (a). We
notice that all the values of distances calculate are less than p/2.

It is worthwhile to note that while the both relative and absolute
addresses start from one, coordinates of both the inputs and the centers
of the units associated with them start ffom zero in order to keep

consistent with convention.
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Table 3-2: RF center coordinates For the CMAC in Figure 3-1{a)

Input Center Distance
variable | coordinate
s! Cql la-cqi|
-0 1.0,0.0,0.5 1.0,0.0,0.5
] 1.0, 2.0, 0.5 0.0, 1.0,0.5
2 1.0, 2.0, 3.0 1.0,0.0,1.0
3 4.0,2.0,3.0 1.0, 1.0,0.0
4 4.0,5.0, 3.0 0.0,1.0,1.0
5 4,0,5.0,6.0 1.0,0.0,1.0
6 6.5,5.0, 6.0 0.5, 1.0,0.0
7 6.5,7.0, 6.0 0.5,0.0,1.0

3.2 Two-Diménsional-lngui CMAC
3.2.1 Formation of Receptive Fields

In the 2-D input case, the receptive fields are squo‘res {or
rectangles). Figure 3-2 shows an example of the receptive fields of 2-
dimensional input CMAC. It is assumed that the inputs has been
discretized and they would span the hypercube Zo = {[z1,22) e 2 | 023 <
Li-1, | 0 £ 2 € L2-1}, where Ly = 8 and L2 = 10. Further assume that the
displacement vector [d;, d2]= [1, 1] and The generalization factor p= 3. In
formed; in the second layer (Figure 3-2(c)). 16 receptive fields are formed;
in the third layer (Figure 3-2(d)), 12 receptive fields are formed. The total
number of the ‘recep'rive fields (or the memory size of CMAC neuradl
network) is M = 40. These receptive fields are numbefed from 1 to 40. Also

shown in the figure is how the receptive fields are excited according to a
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particular input. For example, given input g = (3, 4), marked by a star sign
in Figure 3-2, three receptive fields No.5, No.22, and No.33 are excited

(marked by colored circles on their layers).

X2
A nd 4 : .
9 e o o o o o o 9| 10 10 10{ 11 11 11i12 12
8|l s o o o o e g TTTTTIET8 8799
Tle o o o fJo o o 70 7 7 7:8 8 819 9
6|l [ + = ] o 1% 6l 1.7 7f &._.8-.-.8.%..9_.-.‘2
5] |o o fo e o s 5| 4 4 475 5 5i6 6
4]« L —r |- - 4 4 4 4is% 5 5{6 6
31 ¢ BRI B A 3444@65-5;66
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Il o ¢ o o o o3¢ 1l 11 12 2 2{3 3
O o o o o« 2 o o o 11 1;2 2 23 3
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0 1 2 3 4 5 6 7Tx 0 1 23 4 516 Tx;
(a)The input space and (b) Recepfive fields of 15t layer
an active input (3,4)
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Figure 3-2: Receptive fields and weights addressing
for a 2-d input CMAC
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8
7
6
The weights associated
5 with a particular input,
(3,4), marked by star
sign, are located within
4 a square of side 3, with
the input at the upper-
right corner of the
3 ! square.
|
oo s - g - - s -
2 ® r ‘ ®
R | .
3rd
1
® ® Legend:
Red: 1%t layer
0 Green: 2" jayer
® o 0 o Biue: 3¢ layer
0 1 2 3 4 5 6 7

Figure 3-3: Another way of locating weights associated with a 2-D input

Figure 3-3 shows another way of locating weights associated with a
2-D input. The pattern of weight placement is formed according to the
following procedure: first, a receptive field is represented by a weight
located on the left-bottom corner of the receptive field; then, all weights
on three layer are superimposed (projected) on one plane. Ih figure 3-3,
the weights near the border‘of the input space (a grid region of 8 x 10

dots) are not shown so that the diagonal-placement pattern of CMAC
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weights can be clearly seen. Having identified all weights on the input (2-
D) space, the weights associated with a particular input (3, 4) can be
located within a square of side 3, with the input point at the upper-right

corner of the square.

3.2.2 Number of Receptive fields
For a 2-dimensional input CMAC, the number of recepfive fields at

each layer is:

2
M® =T[m® k=1,...p (3.10)

i=1

where

MP = ceill:—————————-(k —I)Xdi:l+ceil[Li -k ~1)de:|
p P

So, the memory size (the total number of receptive fields) is:

M =iM”‘> =ffIM,."‘> _ (3.11)
k=1 ‘

pas
For the example given in Figure 3-2, M1l =3, Mal1) =4, M) = 3x4 = 12;
Mi(2) =4, M2(2) =4, MI2 = 4x4 = 16;M1(3) =3, M231) =4, MB) =3x4 = 12; and M
= M1} + MI{2) + M3} = 40,
| Table 3-3 gives the numbers of receptive fields for some commonly-
used generalization parameters, assuming d; = dz = 1. This table shows
that the required mefnory size actually decreases with the generalization

parameter. This is because, while the number of layers increases linearly
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with the generalization factors, the number of squares each layer

" decreases at higher order.

Table 3-3: Number of receptive fields vs. generalization factor

Generalization factor Number of receptive fields
Ly=L2=100 Li=1l=200

4 2653 10303

8 1433 5357

16 829 2893

32 ' 539 1673

64 : 431 1087

128 - 867

3.2.3 Addressing Mechanism and Excitation Vector
For one given input x =(x;, X2} (or g = (qi. g2)). one memory element
(square/rectangle) at each layer is activated. The relative address of the

particular element at kth layer can be defined as:

arq(k) =(rq2(") —l)lea‘) +rq‘“‘) k=1,....p (3.12)
where
r, ) ceil[wjl + ceill: (g, +1) _;k —hxd, ] i=1,2 (3.13)
! P

if we number the memory elements incrementally from lower layer
(smaller displacement) ‘to upper layer (larger displacement), the

“"absolute” address of this element vx{ill be:

k-1
aq(k) - Z M9+ arq‘k? M@= (3.‘ 14)

=0

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Figure 3-2, for input g = (3, 4), rgf) = (2, 2), arglV = (2-1)x3+2=5; 52
=(2,3), argl2l=(3-1) x 4+ 2=10; rq® = (2,2), arg® = (2-1)x3+2=35; aq! = |
MOI + arg ) = 5, aq 2 = MO+ M + arq () = 0+12+10 =22, aq 31 = M0 + Ml +
M2 + arg® = 0+12+16+5 = 33. The corresponding excitation vector s 4) is:

s3.4) = [0,0,0,0,1,0,0,0,0.0,0,0,0,0,0,0.0,0,0,0,0.1,
0.0,0,0,0,0,0,0,0.0,1,0,0,0,0,0.0.0]7 (3.15)
That is, the 5h, 22nd and 33 elements of the excitation v'ecto‘r have

The value of one and other 37 elements are 0.

3.2.4 Coordinates of Centers of Receptive Fields

® ¢®y the coordinates (on the discretized input

(k)
Denote ¢, =(c, Y

space) of the center of memory element at k™ layer, of which each

coordinate can be calculated according to:

smod((k -1)xd,, p)—1
2 : L5
¢, ={smod((k—1)xd,,p)+(r,® —~D)xp+ (p2—1) 257, ® <M

[

Ll—1+sm0d((k“I)de,p)‘*’(rq,(k)_z)xp r (k)=
) 9 ¢

k=2 ...p;i=1,2 (3.16q)

r,” -Dxp+
™ _ '
@ L-1+@,” =Dxp

7 Tei =M

(p-1) 1<r ® ey ® _
2 i=1,2 (3.16b)

c
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The distance between the input g and the center of each

~ receptive field at k' layer associated with the input is defined as:

St= max ({jg,—cif fork=1,...,p (3.17)
ie{l, 2}

which is always less than p/2. Again, take g = (3, 4) for example, cqf) = (4,
4), cq@ = (2, 5), cql® = (3,3); 8qlN =1, 82 =1, §q8) = 1.

The definition given by Eq. (3.17) will be convenient for one to

determine whether an input (or weight) is located within a square.

9 ® ®
8 ® @
e &
6 ® ®
The centers of
‘ receptive fields
5 @ ® associated with a
particutar input, (3,4),
marked by star sign,
4 o are located within a
square of side 3, with
the input at the center
3 ® o of the square.
2 ® o
1 ®
Legend:
Red: 1= layer
0 ® ¢ ® ® L ® ® ® Green: 2 layer
Blue: 3“ layer
0 1 -2 3 4 5 6 7

Figure 3-4: The centers of receptive fields
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Figure 3-4 shows the distribution pattern of centers of receptive fields of

| CMAC NN on the 2-dimensional input space (plane). Again those near
the edges of the input space are not shown so that the diagonal pattern
is clearly seen. The centers of receptive fields associated with input (3, 4)
are located within a square of side 3, with the input {(marked by a star sign)
at the center of the square.

Figure 3-5 shows two more examples of receptive fields associated
with inputs (0, 1) and (5, 9), which are near the edges of the input space.
In Table 3-4, the oddresses, center coordinates and distances between
the inputs ond their corresponding centers are given by calculation
occofding to equations (3.12), (3.16) and (3.17). Cross-examining Table 3-4

with Figure 3-3 and Figure 3-2 verifies the correctness of these equations.

X2 an
A l st
9 . . N . ° ° . .
8 . . ° ° . . ° . d
T e . . . > 3 . .
2“d6 . ® . ) ° . ° °
§4\ . ® ° . ° . ® ®
3 D) ° ° ® 0 ° . °
2 . . . . ° . . .
1 [oj . ° . . . ® °
0 ° . . . ® . . .
/ . >
370 1 2 3\4 5 6 7 xi
) I st

Figure 3-5: More examples of receptive fields

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3-4: RF addresses and center coordinates of 3 different inputs

Input | Absolute | Center coordinates Distance
variable | address ’
Q agt¥ Cqi¥ Sqlkl
(3, 4) 5.22,33 (4, 4), (2, 5). (3, 3) 1.0,1.0,1.0
(0, 1) 1,17,29 | (1,1).(0,2), (.5, .5) 1.0, 1.0,0.5
(5,9) 111.27,40| (4,9).(5.8),(6.8.5) 1.0,1.0,1.0

The excitation vectors corresponding to (0, 1) and (5, 9) are:

si.1) = [1,0,0.0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,0,0,

0.0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]" (3.18)
and
sis.9) = [0.0,0,0,0,0,0,0,0.0,1,0,0,0,0,0,0,0.0,0,0,0,
0.0,0,0,1,0,0,0,0,0.0,0,0,0,0,0,0,1] (3.19)

3.3 n-Dimensional-input CMAC

Generdlly, for n > 2, the shape of CMAC receptive fields are
hypercubes. Though it is hard to visualize these receplive fields in this case,.
the principles of calculation of memory size, addresses and coordinates of
the centers for 1-D and 2-D CMAC apply to the higher-dimensional-input

case.

3.3.1 Number of Receptive fields

As a natural extension of 1-input and 2-input CMAC, at each layer,

the number of hypercubes (or, hyperparallelepipeds) of n-input CMAC is:
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M®© =[MP k=1,...p (3.20)

i=1

where

M® =ceil[&._1/;)_)i(£’;:l+ceil[Li —(k;I)Xd’} i=1,2....n (3.21)

So, the memory size (total number of hypercubes) is:

M=3M®=3T[M® (3.22)
k=1

k=1 il
Figure 3-6 shows the relationship between the number of receptive
fields and the generalization parameter (p). The three cases of input-
spaces can be represented by Z, ={[z1, z2. Zweh|0<z<Llli=1,
2, .... nN} when n = 2, 3, and 4. The calculation clsd assumes L = 200 and d;

=1fori=1,2, ... n Two conclusions can be drawn from this figure: (1) The

10 1 T
48

10 E-,
= S
290’ N .
> S
2 VN
A AR
BI0E N N 3
B ey
e \\%M .
[ 10 F ”"“‘H--»,_.,_ 3D i SN “‘———»——«_A_;
Z \\u,* MM%__

10k 2D ]

102 i i i 1

0 50 100 _ 180

Generalization parameter

Figure 3-6: Number of receptive fields vs. generalization parameter -
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number of receptive fields increases dramatically with the dimension of
the input space (when p = 64, the numbers are 1087, 4523, and 18967
respectively for 2-D, 3-D and 4-D input quces); {2) The number of
recepftive fields decreases when the value of generdlization parameter
increases, and the speed of decrement slows when the generalization

parameter becomes bigger.

3.3.2 Addressing Mechanism and Excitation Vector
For one given input g = (i .... On), One memory element
(hypercube) at each layer is activated. The relative address of the

‘particular element at khlayer can be defined as:

n~1

ar,® =3¢, " "‘DXIL[Mj(k) +r,0 k=l.p (3.23)
i=1 j=1 .
where
r,© = ceil[w]+ceill:(qi 1) /‘)" “”""f] i=1.2,...n (3.24)
' p

If we number the memory elements incrementally from lower layer
(smaller displacement] to upper layer (larger displacement), the

“absolute” address of this element will be:

k=1
a q"‘) = ZM @ 4 arq(k) M= 0 (3.25)
i=0 ,
The value of jth element of the excitation vector sq may be

mathematically expressed as:
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L if jelalk=1..p) }
5,(j)= (3.26)

0, Otherwise

3.3.3 Coordinates of Centers of Receptive Fields

Denote ¢ =(c¥,...,c{) the coordinates (on the discretized input

g
space) of the center of memory element at ki layer, of which each

coordinate can be calculated according to:

(-1

(’qu —1)><p+—;— 1< rq,“) <M
™ _ i=
Cq‘_ bt Li _1+(rq‘(1) _l)xp “) =M (1) I ]1 erey n (3.270)
2 qi i
[ smod((k ~1)xd,, p)—1 w
2 q; -
® _ ’ ® (p-1 ® ®
Cp =9 smod((k —1)xd;, p)+(r, —2)xp+—-2——— 2£rqi <M,
| L =1+ smod((k - D)xd,, p)+(r, ' ~2)xp Ly ®
L 2 4 i
k=2, ...p:i=1,.,n - (3.27b)

The distance between the input g and the center of each memory

unit associated with the input is defined as:

§t= max {lg,—ci) fork=1,....p . (3.28)

q
iefl,.,n}

which is always less than p/2.
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This chapter will conclude with a brief discussion of the output
function of neural network, which is conyenﬁon‘olly a linear combiner
wriﬁen.in vector form as:

y =5, 0w  (3.29)
where sq is the excitation vector comresponding to input g and may be
calculated according to (3.26). w denotes the weight vector that is the
contents of memory elements of CMAC network. yq is the (scalar) output
of CMAC network in response 1o input g.

The radial basis function network mentioned in chapter 2 provides

another way to look at the output function. We start by revising (2.4) into:

. M N
Y, =2 W, g.c))=D w,¢d)) (3.30)

j=1 j=

If the function ®(e) is defined as:

) , 1, ifd <pl2.
#g.c;)=0d]))= fdi<p _ (3.31)

0, Otherwise

| Theh eguations (3.29) and (3.30) are equivalent. Nevertheless,
equation (3.30) offers broad choice of flexibility but adds additional

- complexity to the algorithm of CMAC neural networks.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

EIGENANALYSIS OF CMAC ALGORITHMS

4.1 Infroduction

Eigenc‘nolysis is a basic tool of analysis in the study of digital signai
processing, which involves a useful decomposition of a matrix in terms of
its eigenvalues and associated eigenvectors. As discussed in chopfer 2,
the CMAC neural network may be regarded as an adaptive filter. This
suggests that we could study CMAC within a general adaptation context
that has been studied by such disciplines as adaptive signal processing
and adaptive control. |

A comparison between a CMAC neural network and an adaptive
FIR filter helps formulate the CMAC algorithm in proper form for this study.
As shown in Figure 4-1, the operation procedures of both the CMAC
neural network and the adaptive FIR filter can be divided into three parts:
(1) an input converter that forms a vector, x or s, from the input signal x.
Their length, M, is equal to the number of the weighfts (taps); (2) an inner
product of vector x, or s, with the weight vector, w; (3) a weight upddﬁng

algorithm such as the LMS algorithm, Aw = 2uex or Aw = (a/p)es, or its

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v

e=d-y

v

IR
z y=Xw=wXx
&———————b X, X
z’ inner product
(Linear combiner)
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— N
>x ) w
-+
P
Z-1
> Xz X
a E—— Aw-2yex _
R Xy S
Converter LMS algorithm
An Adaptive FIR Filter
—— v jo— SD \\ ’
— | s, ":‘_‘> y = STW =W's
(J.' s
— Inner product
o {Linear combiner)
® » s,
X 1] > s,
@ — s, s w b*
ol | :
e =
—_ .
=™ Sue Aw = (o/ples s
—r® sy,
Converter LMS algorithm ( p =a/(2p))

A CMAC Neural Network (p=3)
Figure 4-1: An illustrative comparison between
CMAC neural network and adaptive FIR filter (SISO)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



extensions (e.g., Fil’reredjx or Filtered-¢, depending on the configuration
in which the filter/network is applied). The first step, input conversion, is
significantly different in the two caoses while the other ftwo procedures,
output estimation and weight updating, are much the same, at Iéas’r in

| their forms of representation,

4.2 the Performance Function
Assume at time step k, a pair of data (xk, dk) is presented, in which xk
is the input and dk is the desired output (target). The output of CMAC
corresponding o x is:
y, =S, ew=w' es, (4.1)
‘where w is the weight vector of size M (memory size) and sk is the
excitation (selection) vector determined by x«. For a conventional CMAC
neural network, sk is a vector with p elements of one and M-p elements of
zero. Denofte sk(j) the jth element of the excitation vector sk, the value of
which moy be decided using methods presen'red in chapter 3.
The error between the desired output dk and the estimated output
Yk iS:
e, =d,~y,=d, -5, *W (4.2)
The goal of adaptation is to minimize the following performance
function (MSE):

J(w) = Ele}]= E[(d, ~ y,)*1 = El(d, —s[ *W)*] (4.3)
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Take the derivative of J(w),

0 0 d
5o/ (W) ==—El(d, - )’ 1= E[Wwf —-2xd, y,+y)]

| 3 3 3
= E[[—2Xdk(§;yk)+2x}’k(5;yk ))] =(_2)XE[($yk)(dk - yk)]

= (-2)X E[s, (d, —sTw)] = (-2) X { Els,d, ] - Els,s" 1w}
Set j—](w) l._..=0, thatis
aW w=w* ! '

(-2)x{Els,d,]1- Els,s]lw*}=0
Els,s; lw*=Els,d, ] (4.4)
Let R denote the MxM correlation matrix of the excitation vector sk
of the CMAC neural network:

E[s,()s, (D]  Els,(Ds ()] -+ Els, (s, (M)]

Els,(2)s, (D] Els,(2)s,(D] -+ Els,(Ds, (M)]

R=Els,sl]= (4.5)

Efs,(M)s, (D] Els,(M)s, ()] -+ E[s,(M)s, (M)]

Let p denote the Mx1 cross-correlation vector between the

excitation vector and the desired response dg:

Eld,s, (]
p=Eld,s,]=| ) (4.6)
Eld;s, (M)]
Then equation (4.4) becomes:
Rw*=p (4.7)
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Equation [4.7) is the Wiéner-Hopf equation in matrix form, which

gives the optimal wéigh’r vector:
w*=R7p ' (4.8)
under the assumption that R-1 exists.

The properties of the correlation matrix R are vefy important in the
study of adaptive filtering theory, which wil be explored in the next
section. Here we take a brief look at the optimal solution problem from a
different way familiar to the community of CMAC neural networks, that is,
the batch-mode solution. The derivation of properties and theorems in the
next two sections could be c;onduc’red similarly by assuming a limited
number of training data. The problem is re-stated as follows.

Assume that N- pairs of dc’rd, (xk. dk). k =1, ..., N, are available for
training. For each pair of data, the oufpuf of CMAC iS y, =S, *W=W"®5,,
The emor between the desired output dx and the estimated output yk is
e, =d, -y, =d, —s, *w. The goal of adaptation is to achieve a minimum

for the following performance function:
J(w) =lfe2 -=—1-§N:(d %) =i§:(d -5, *w)? (4.9)
' Nk:lk'N’k=1\k g Na ¢ ¢

Again, take the derivative of J(w),

—?-—J(W)=—1———a~—i(d -y, )’ =L 3 —a——(d2—2><d +y2) (4.10)
Iw N aw = Vi NiZow kVetYe .
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!

1& d
——1\7“[ 2><d( ykj+2><yk (“—)XZ ka(d

= (——E)X(Zsk x(d, -—S:W)) = (——)X(ﬁ:skdk ’"Zskszw)
N ey N k=1 k=1

Set -—Q—J(w)lw_w,, 0, then,
ow
A s sTywe= LS54 @11
Nk___l F 2 4 Nk=1 Kk .

N
Assume EJe] _-1\72(.) for the stochastic process being studied (this is

k=l
a reasonable chumpﬁon for a large N), we conclude that equation (4.11)
is the same as equation (4.4) or the Wiener-Hopf equation (4.7).

Furthermore, let § denote the excitation matrix:

s{
Sowan =| ¢ (4.12)
Jt
and let d denote the response vector:
dl
Ay =| (4.13)
d, '
Equation (4.11) may be written in matrix-vector form as:
1 .r 1 .7
—S"Sw*=—S8"d (4.14)
N N
To derive (4.14), the following two equations are used:
N
STS=ZsisiT (4.15)

i=1
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and

N
Sd=) s, {4.16)

i=1
In this case the correlation matrix is defined as

R, =Ls75=L 37 (4.17)
N N I il §

i=1

and the cross-correlation vector

i=1

p=isa=1Ysd, (4.18)
N N [ 4

4.3 Properties of Correlation Matrix

The correlation mafrix R is deﬁned.by equation {4.5) or (4.17). In this
section, nine useful properties of the correlation matrix are discussed. The
first seven properties apply to a general correlation matrix [29] and are
presented without elaboration. Prop’erﬁés 8 and 9 apply to CMAC neural
‘networks only. It is these unique properties that make the eigenanalysis of
CMAC neural network imporfant beyond mere mathematical
manipulation. These properties will be used in the derivation ond/or
interpretation of convergence conditions and misadjustment estimation
of CMAC algorithm in next section.

Property 1: For a correlation matrix R, the following equations hold:

R" =R (4.19)

RRT= R'R =R2 (4.20)
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Eq. (4.19) follows directly from the definition of R given in Eq. (4.7)

and Eq(4.20) follows directly from Eq. (4.19).

Property 2: The correlation matrix R is always nonnegative definite
(or positive semidefinite).

Let x be an arbifrary (nonzero) M-by-1 vector. The fa’c:’r x's, =sIx
(both are scalar) is used in the following equation:

x"Rx =x"E[s,s] Ix = E[x"s,s,x] = E[(x"s,)?]120
Property 3: Let A, A .... A be the eigenvalues of the correlation

matrix R. Then all these eigenvalues are real and nonnegative.
Denote qi the eigenvector associated with A;. Hence,
Rq; =44, i=1,2,...M
Pre-muttiplying both sides of this equation by ¢’ , we get
| a;Rq; = 4q]q,

Since both q/Rq;, and q’q, are nonnegative scalars, it follows that As

Vv
o

Property 4: Let A A, .... A be the eigenvalues of the correlation

matrix R. Then the sum of these eigenvalues equals the frace of matrix R.
The trace of a square maitrix is defined as the sum of the diagonal

elements of the matrix. This property is not limited fo the correlation matrix.
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Property 5: Let Amox be the largest eigenvalue and Amin be the

smallest eigenvalue of the cormelation matrix R. Then

1
A

n .

=

= A, and "R“

s

where the spectral norm |R| is defined as the square root of the largest

eigenvalue of R'R.

Properly é: The eigenvalues of the correlation matrix R of a discrete-
time stochastic process are bound by the minimum and maximum values
of the power spectral density of fhé process.

Property 7: Let qi. qz ... gum be the normalized eigenvectors

corresponding to the distinct eigenvalues Ai. A, ..., Av of the correlation

matrix R, respectively. That is,

Then the original matrix R may be diagonalized as follows:
Q'RQ= A | (4.21)
where Q ={q,.9q,.....q, ] and A =diag(4,4,,...4).
Property 8: The trace of éorre_laﬁon matrix R of the CMAC nevural
network is equal to the generolizaﬁon parameter of the CMAC neural
network. Thatis

'irace(R) =p (4.22)
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Proof: Let rj denote the product of the ith element and jth

element of the excitation vector s, i.e.,
ry =8, (D8, (j)
The value of i may be determined by the following equation:

=I5, =

: 1 if i" element of s, is 1
0 if i" element of s, is 0

~ Since sk is the excitation vector that has p elements of one

and M-p elements of zero, -
M
Z Lhi=p

=

U

Hence,

M ' M
r(R) =D E(r,) =E[Dr;1=E(p) = p
i=1

i=]
Property 9: Let A, A ..., Au be the eigenvalues of the correlation
matrix R. Then

Yh=p (4.23)

This follows directly from Property 4 and EqQ. (4.22).
The above proof has been done for the comelation matrix defined
in Eg. (4.5). It can be proved that Properties 8 and 9 apply also to the

correlation matrix defined in Eq. (4.17).
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Generally, there is litle can be told about the statistic
characteristics of} the cormrelation matrix R. The importance of Property 8
and Property 9 is that, for a CMAC neural network, we can determine the
tfrace of R (and the sum of eigenvalues of R) before the input data are
actuadlly collected. The trace of R is a key factor in determining the
convergence bound of learning rate and the misadjustment due to the
gradient noise (discussed in next section).

It is worthwhile to point out that, While the technique of hashing
mapping used in most practical CMAC neural networks is not mentioned
in the preseh'rcn‘ion of the above properties, fhese. properties apply to
CMAC neural networks with or without hashing. The reason is that the
hashing reduces the memofy size but not the generalization parameter.
There always are p"elemenfs of one and M-p elements of zero in the
excitation vector.

Taking the CMAC given in Figure 3-1{a) as an example, its
generdlization parameter is 3 and ifs éxcitaﬁon mcn‘rix S is given in Table 3-

1. Without hash mapping, the excitation mairix Sgxio is

- $(1,2) =s1= [1,0,0,1,0,0,0.1,0,0]
$(2.:) =s2=[1,0,0,0,1,0,0.1,0,0]
$(3,:) =ss3= [1,0,0.0,1,0,0,0,1,0]
$(4.:) =s4=1[0,1,0,0,1,0,0,0,1,0]
$(5.:) =ss=1[0,1,0,0.0,1,0,0,1,0]

$(6.1) =s6 =[0.1,0,0,0.1,0,0,0.1]
${7.:) =s7=1[0,0,1,0,0,1,0,0,0,1]
$(8,7) =s5=1[0.0,1,00,0,1,00,1]
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8 8
Using Matlab, it is easy to verify that > SG, )= s,(j)=3 for i =1,

j=1 j=
Zmﬁomﬂﬂﬂﬂﬁw&=3ﬂwdmmﬂwuﬁkm&&&&@%,
0.0399, 0 .1028, 0.1176, 0.2891, 0.5485, 0.8284, 1.0440. The sum of these
eigenvalues is 3.

But rank(R) = 8 < 10, so R-! doesn’t exist.

| Given the hash matrix Hygxs as follows:

H(1,) = [1,0,0,0.0,0];
H(2:) = [0.1,0,0,0,0];
H(3,:) = [0.0,1,0,0,0];
H(4,:) = [0,0,0,1,0,0];
H(5,) = [0,0,0,0.1,0];

H(6.:) = [0.0.0,0.0,1];
H(7.) = [0,0,0,0,1,0];
H(8,:) = [0.0,0,0,0,1];
H(9.:) = [0,0,1,0.0,0];
H(10.}) = [0,0,0,1,0,0];

After hash mapping (SH), the 8x6 excitation matrix Sn becomes

CO0O0O0 — — —
00— ——=00O0
—_-—_—0 = = =00
—-— 0000 ~—
- 000 ——~—0
O——= =00 ——

It can be verified that Tr(Rn) = Tr{Sn'Sh/8)= 3. The eigenvalues of Rn
are: 0.0424, 0.1183, 0.2624, 0.4354, 0.5732, and 1.5684. The sum of all
eigenvalues is 3.

Rank(Rn) = 6 so R-'exists. Rn is positive definite.
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4.4 Convergence and Misadjustment of CMAC Algorithms
The weights of CMAC neural networks are usually frained by the

LMS algorithm, which is based on the method of steepest descent.

4.4.1 The Method of Steepest Descent

First we go back to the performance function defined in section 4.2.
Expanding Eq. {4.3) and substituting Eq. (4.5) and Eq. (4.6):
J(w)=E[(d, —s. ew)*] = E[d}]-2E[d,s. lw+w" E[s,s] lw
= E[d}]1-2p"w+w Rw (4.24)
The minimum MSE is obtained by substituting Eq. (4.8) into Eq. (4.9):
J.. =Eld}]1-p w* o (4.25)
Substituting Eqg. (4.25) and Eq. (4.8) into (4.24):
Jwy=J_ +p w*-2p'w+w' Rw (4.26)
Define a new vector:
VEw-w* (4.27)
Substituting w = v + w* into Eq. (4.26):
| Jw)=J_, +p " w*=2p" (v+w¥)+ (v" +w* )(Rv + Rw*)
=J . +p ' w*=2p"v-2p"w*+(v" +w* )Rv +p)
=J in —2pTv—pTw*+vTRv+w*T Rv+vip+w* p
=J . —p v+v' Rv+p’R'Rv

=7 +v'Rv | (4.28)
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Eqg. (4.21) can be rewritten as:
R=QAQ"'=QAQ"
Substituting this expression for R in Eq. {4.28):
J=J_  +V'Rv=J_ +vIQAQ v=J_ +v' AV (4.29)
where v'=Q7'v and v=Qv'.

The gradient vector of the performcnce function is:

aJ

v=2
ow

il

d d
5v7E[e,f] = E[2e, ) 1=-2E]le,s,] (4.30)

Differentiating Eq. (4.29) yields another form of the gradient:

v=9% _oRv=20Av (4.31)
ow A

Now, the steepest descent method makes each change in’ the
weight vectof, Awg, proportional to the negative of the grodién’r vector:

Aw,=w,  ~w, = u(-V,)
Hence,

W, =W, + (V) (4.32)
Subftracting w* from both sides of Eq. (4.32):

Ve =Y +u(=V,) |
Pre-multiplying both sides by Q! and using Eqg. (4.31) vields:
Via = =24A)V', = (I =2pA)*" vy (4.33)

For the stability of (14), it is necessary that

-2p4|<1, fori=1,2,... M
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Thus,

1
e 0 4.34
T M (4.34)

max

Inequality (4.34) is the condition of stability for the steepest descent
method.

4.4.2 Convergence of LMS Algorithm

The LMS algorithm uses the estimated (instantaneous) gradients at

" 2
each step, Vi =§af"—, as the guide to adjust the weight vector:
W

Aw,=w, ~w, =u(-V;) ~ (4.35)
where
A 2 '
L (4.36)
ow ow,

Hence, the weight updating formula of the LMS algorithm is

w,, =W, +2ues, =w,+2uld, -y s, (4.37)
Conventionally, the weight adjusting formula of CMAC is written as:

a a
W, =W, +-;)—eksk =W, +;(dk—y%)sk (4.38)

Let = -;‘7; (4.37) and (4.38) are then equivalent.

Taking the expected value, we g_e’r

Elw, )= E[w,]+ %E[eksk] = Elw, ]+ %{E[dksk 1-Els,s, w, 1}
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To continue on, we need to make an assumption that the excitation
vector sk is independent of the weight vector wk. The independence can
be interpreted as the result of slow adaptation. Assume that the leaming
rate u is small {or the generalization parameter p is big), the adaptive
weight vector depends on many past input samples, and its dependence
on the pfesenf excitation vector is negligible. Furthermore, when the
training process is stabilized, the weight vector will remain unchanged
while the excitation vector will still respond to the input at every tick of
fime. A similar assumption was first made by Widrow in 1970 and then
again in 1996 [84] for the study of convergence of adaptive filters. For
CMAC neurdl networks with hashing, another layer of independence is
added. .

It follows that

Ew,, 1= Ew,1+ZEd,s, -2 Es,sT 1Ew, |
p P
=E[wk]+gp-——q-RE[wk]
p P

a a
={I-—R)E[w, J+—
p HEP

Substituting w = v + w*, we get

Elv,,]=- %R)E[vk‘]

Using v=Qviand R=Q .Q7,
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HY,,1=a —%A)E{v'k 1=a —%A)"*‘ ELV,] (4.39)

Comparing Eqg. (4.33) and Eq. (4.39). we nofice that in the former
case (the steepest descent method) the vector v, Wwill go to zero when k
goes to infinity under the condition given in Eq. (4.34), while in the latter
case (LMS algorithm) it is the expected value of v, , rather than the vector
v, itself, that will go to zero when k goes to infinity (under the condition
given in Theorém 4.1). Since the vector v, is a linear tfransformation of the
weight vector wi, the vector wi or its expected valug will also go to zero
when k goes to infinity.

Taking the expectation of Eq. (4.36) and using Eq. (4.30), it follows
that:

E[\}k] =-2F[e,s,1=V : (4.40)

This indicates that, although the grddiem‘ estimates made af each
step may be noisy, many steps taken in the direction of the negative
instantaneous gradient will, on average, go in the correct direction for the

steepest descent.

The above discussion can be summarized into the following
theorems:

Theorem 4.1 For a CMAC neural network trained by Eq. (4.38), a
necessary and sufficient condition for convergence of the weight véctor

in the mean is
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-%ﬂ>a>o (4.41)

where Amox is the largest eigenvalue of the correlation matrix R defined by

Eq. (4.5) orEq. (4.17).

Proof It follows from Eq. (4.39) that, for the convergence of E[vk'].

b—ﬂ4<1 fori=1, ..., M
P
which is equivalent to:
—l<1——q-/1,.<1 fori=1,... M
P
Therefore,
2P >a>0

Theorem 4.2 For a CMAC neural network trained by Eq. (4.38), a
sufficient condition for convergence of the weight vector in the mean is
2>a>0 (4.42)

Proof It follows from Property 3 that

M

0< Ay <D A4
i=1

Property 9 tells us ’rhq’r

M

Zﬂ‘i =p

i=]1
Hence,

0<A, <p

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



or

()<.L<_!__

P A

Muttiplying by 2p, we get

0<2< —/12—'?-— (4.43)

The last inequadlity indicates that the interval (0, 2) is a part of

the interval (0, 20/ Amax)- Therefore, (4.42) follows from (4.41).

Theorem 4.1 and 4.2 present two bounds on the learning rate of the
VCMAC neural network that guarantee convergence of the weight vector
in the mean. Theorem 4.1 is a new conclusion about the convergence of
CMAC neural networks. Canfield [13] presented a condition of
convergence similar o Theorem 4.2, with different approach. While it is
difficult to calculate the bound given by Eq. (4.41 )vof Theorem 4.1, it points
out the theoretical bound is bigger than two. For example, if the
maximum eigenvalue of the coﬁelofion matrix R is half the sum of ali
eigenvalues which equals the generdlization parameter p, the maximum

bound of the leaming rate will be four.

4.4.3 Misadjustment of LMS Algorithm

Another important concept, misadjustment due to gradient noise

N=V.-V, is defined as the ratfio of the average excess MSE to the

minimum MSE, i.e.
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average excess MSE

Misadjustment = - (4.44)
min MSE

Using Eq. (4.29). we get

ElJ-J,1_ EIVTAV,]
J

Misadjustment = (4.45)

nin min

It is interesting fo note that while E[v,]will go to zero when k goes to
infinity, E[v’l Av', ] will not go to zero. The reason is that while v, takes
both positive and negative values, v’ Av', is always greater than or equal

fo zero.
| It has been proved [84] that, after adaptive fransients die out,
E[vI AV, 1=l tr(R) (4.46)
Substituting Eq. (4.46) into EqQ. (4.45) yields |
| Misadjustment = y* tr(R) (4.47)
Theorem 4.3 For a CMAC neural network trained with Eq. (4.38), the
misadjustment due to gradient noise after adaptive transients die out may

be estimated by:

Misadjustment = % 7 (4.48)

Proof

Eq. (4.48) follows by substituting u = % and tr{R) = p into Eq. (4.47).
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Theorem 4.3 gives us a quick way to select the parameter of CMAC
neural netwcirk to meet certain design specification. For example,
typically on experienced designer would expect no more than 10%
misadjustment, so one can select a learning rate (a) less than 0.2. The

fradeoff is that the adaptation time will be longer when o decreases.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER &

SYSTEM ARCHITECTURE AND IMPLEMENTATIONS

5.1 The System Architecture

In the first chapter, we have already discussed the physical
composition of the pole-mounted sonar vibration prediction system
(Figure 1-7). In this section, the working n’;echcnism of the system will be
discussed. For simplicity, we first assume a single-degree-of-freedom (DOF)

of the pole movement.

Fx

> Pole. , >
Dynamics
Photocell
Vpx\ (Target)
Vsx CMAC Output
‘ 3 Strain Gouge !Po"'ﬁen NNefW | >
etwo

i
Figure 5-1: Block diagram of 1-DOF (x-axis) CMAC prediction system

As shown in Figure 5-1, the signal detected from the photocells (one
for each axis), which is proportional to the sonar's displacement (x ory), is

sent to the learning module — CMAC neural network as its training target.
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The voltage signal from the sirain gauge is connected to the CMAC
neural network as its pointer information. After a period of training, it is
expected that the output of the CMAC neural network will predict the
sonar's coordinates with or without the continuing existence of the
training target data (meaning that it does not need the on-site position
detector). Also, we can tell from Figure 5-1 that The key to the success of
this model lies in: (1) CMAC's capability of representing the target signal in
accordance with the pointer information, and (2) how well the target
signol and pointer signal are acquired and how closely they can

represent the real signals.

2-DOF Pole
Dynamics % Photocell [~P__
........ ;__--1_,~:‘ ' Target
i —» Strain Gauge
External w~. ¥ chNaAC
5/” §i ) > Netwdxk [
| Ry —® Strain Gauge X:,
.--__---.".---.'\: ointer *
> Photocell )

Figure 5-2: Block diagram of 2-DOF CMAC prediction system

There are two ways of extending from the 1-DOF architecture to the
2-DOF case, which is more redlistic. One method is to freat the two DOFs
separately, effectively assuming that the 2-dimensional dynamics of pole

are uncoupled. Hence, the whole system is composed of two identical 1-
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DOF subsystems. The other way is to use a CMAC network with higher
dimensions of input and output (Figure 5-2). The advantage of the latter
approach is that ’rhe single and “‘bigger” neural network is expected fo
learn the interaction of two dimensions, since its receptive fields are
organized on the information from both dimensions. The discdvontoge'is
that its memory size (number of weights) will be much larger since the
memory size increases rapidly with the number of pointers of the CMAC
neural neMork. Fortunately, this disadvantage is compensated by the
following two factors: (1) the hashing technigque used in the CMAC neural
network, and (2) the fact that these two DOFs are coupled so that the
number of pointers does not need to double since there exists redundant
information in them. These issues are further discussed in the secfions on
simulation analyses.

To test whether the proposed system/approach is cdpoble of
fulfilling its task, the first step was to establish the simulation model and
examine the results under different circumstances. Then the initially-tested
architecture was profo’ryped in the laboratory, which enabled verification
of this approach in a real-time environment and provided a platform of

system identification for the pole.
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5.2 Simulink block (S- Function) implementation of CMAC NN

The simulations were carmried out using Simulink, which is integrated
with Matlab. Simulink is one of the most widely used sOﬂwgre packages in
academia ondvindus’rry' for modeling, simulating, and analyzing systems.
Simulating a dynamic system with Simulink is a two-step process. First, one
creates a graphical model of the system to be simulated, using Simulink's
model editor. One then uses Simulink to simulate and analyze the
behavior of the system over a specified time span. Simulink uses
information that one entered into the model fo perform the simulation.

One of the most extraordinary features of Simulink is its graphical
user interface (GUI) for building models as block diagram, using click-and-
drag mouse operations. In a Simulink model, each system component is
represented by a block or a group of blocks. Simulink includes a
comprehensive block library of sinks, sources, linear and nonlinear
components, and connectors. What Simulink's block library does not
provide, however, is the CMAC neural network.

Blocks are the elements or components from which Simulink models
are built. An S-function (System-function) is a computer language
descripﬁonv of a Simulink block. S-functions provide a powerful mechanism
for extending the capabiliies of Simulink. An advantage of using S-

functions is that one can build a general purpose block that can be used
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many times in a model while varying parameters with each instance of
the block.

S-functions can be written in MATLAB, C, C++, Ada, or Fortran. C,
C++, Ada, and Fortran S-functions are compiled as MEX-files using the mex
uﬁliv'ry. MEX-files are dynamically linked subroutines that the MATLAB
interpreter can automatically load and execute. MATLAB identifies MEX-
fles by platform-specific extensions, such as *.dil in a Windows
environment.

The Simulink biock ({S-function) implementation of the CMAC neural
network is written in the C language. Thé UNH version® of the CMAC
neural network is incorporated into the S-function. The code is highly
structured and usually comprises a number of Simulink callback methods
(functions), in which the Simstruct access macros, C mx-functions, and
user-defined functions could be used.

* Simstruct access macros: defined in “simstruc.h,” started with “ss”
(such as ssSetSampleTime);

* C mx-functions: defined in “simstruc.h,” started with “mx” (such
as mxGetPr); |

* User-defined functions: such as “genmap(}". and “sfoap()."”

* The weight adjustment equation implemented in .UNH_CMAC code is:
Aw, =27 (3,(8) ~ y(SN) +27% (y(S) - WA", ])

where separate training gains are used to individually emphasize the importance of the
supervised learning versus the weight magnitude normahzatlon Since good output performance
{which is affected by By) is generally the most important, 2(#2 s typically selected to be at most
equal to 2*1/4.
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Figure 5-3: How Simulink performs CMAC S-function simulation
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Figure 5-3 shows a flowchart illustrating how Simulink performs
CMAC S-function simulation. The initialization of S-function pcrcrhe’rers
and the CMAC data structure is executed once in the simulation of the

model, while the other two

callback methods mdiOutput A Targets
PCMAC N
and mdiUpdate,  which AFoimtes
test
perform the tasks of a) A Simulink block of CMAC NN

calculating the outputs and

- . PNW
fraining the weights, are | goesisionseeles

| s
executed repeatedly until the | sepmgimetegomn
" Joom e
simulation is ended by Simulink. | sesieg s

i
A Simulink block | pamieys .
Memoy szactweihis (60 2000)

implementing the  CMAC

neural network and its dialog

box are shown in Figure 5-4.

Three versions of the CMAC

| Dimension of response and pointer fe.g. [1.2])
23]
umber of steps to predict K100L

block, ie. “CMAC_037" for

-single input and single ou'rput,

"PCMAC" for muliiple inputs

and mulhple OU’prTS, and {b) The d’clog box of CAMC block-

“C':MAC4039" with an Figure 5-4: A Simulink implementation of
CMAC neural network
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additional input port for a training switch, are used in the simulation

models presented in this document.

5.3 Preliminary Study on Simulink Models of the System

Before the data that was used to determine the dynamics of a real
pole was ‘obfdined, a simple 2nd-order linear system was used as @
tentative model of the pole dynamics based on the assumption of one
dominant mode of vibration. Therefore, the results presented in this section
are preliminary — they are less about the validity of the pole-sonar
vibration prediction system than about the funéﬁoncliﬁes of the S-function
implementation of the CMAC neural network. The values of the simulated
pole response and the CMAC ou’rpuf are not calibrated.

First, a simple CMAC learning model of 1-dimensional (x—dxis)
displacement was established (Figure 5-5) in Simulink. This model can be
viewed os a direct conversion of the block diagram of a 1-DOF CMAC
prediction éys'rem (Figure 5-1) into Simulink. The CMAC block takes the
voltage output (Vx) of the simulated strain gauge to form its pointers. The
output of the pole dynamics {x) is used to train CMAC, which produces its
own oufput (x') that would graduoily better approximate x.

The simulation result” (Figure 5-6) shows that, after the pole output
has stabilized, the output of CMAC neural network (x’') almost coincides

with the pole’s actual displacement (x). This simulation revealed that the

* The simulation parameters for simulations discussed in this chapter afg given in Appendix IV.
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CMAC neural network has excellent learning capability for sinusoidal

displvocemem‘ functions.

Fx 5 X
P .
J Zrort L
Sine Wawve Paole
Qutputs
< L
target '
. X
— ¥X 6ain CMAC_037 -
Up{ sin - - simout
pointers
Gauge D%( To Wodspace
: test
Transport
Delay

Figure 5-5: 1-DOF (X-axis) model of vibration learning using CMAC

o
o

---- Pole response
— CMAC output

o
th

o o
W

o
) -

I

Simulated pole response & CMAC output
o
8]

& &
N s

Time (sec)
Figure 5-6: Simulation results of Figure 5-5
In the second model [Figure 5-7), two modifications were mcde.
The first modification is that CMAC was altered to be able to operate in
fraining or working mode. During the training period (first 15 sec, as shown
in Figure 5-8), the simulated pole response  (x) signal is used as the training

signal and fed to the “target” input of the CMAC block; at 15 sec, the

86.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



switch connecting the plant output and the “target” input of the CMAC
block “turns off,” so the CMAC is operating only on the pointer
information. The second modification is that now an input combination of
two sinusoidal functions of different frequencies is used to simulate a
relatively more complicated external force applied to the sonar/pole. The
frequencies and amplitudes of these two inputs are labeled in Figure 5-7.
The simulation result (Figure 5-8) shows that the CMAC oufput coincides
with the pole output (coordinate x)' even when the ftraining signal is
absent after the ihiﬁal fraining period. Although the simulated pole
response looks like a single-frequency sinusoidal signal, the spectral

analysis reveals two frequency components (at 1Hz and 2Hz) are still

presented.
5
\f Zaghq .
Sine Wave Pole Dynamics |Constant| O ' —
(tHz A=2)
I.-"\ L Soopel
i target
Sine Wave @ — * X
(2Hz, A=1) ) Training-off —ps pointers CMAC_039
Gain Switeh1 J-ptraining.fhola
Step CMAC_N/F
sin
. simout
Accelerometer %{
To Wolspace
Transport
Delay

Figure 5-7: Second 1-DOF model of vibration learning using CMAC
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Figure 5-8: Simulation results of Figure 5-7

in the third model (Figure 5-9), the input takes one of two
frequencies alternately. Each frequency component (1Hz or 2Hz) lasts for
2.5 seconds with its own ampliftude and then another frequency
component takes over. A bigger cycle of 5 seconds (Figure 5-10) is
formed for the input. This input pattern represents a scenario in which the
frequency and dmplifude of the external force chchgé from time to fime
but will repeat themselves as the operation goes on. The sirhulcﬁon results
are shown in Figure 5-10. We see that, after three cyc.les (15 seconds), the
eror of the CMAC learning (the difference between simulated pole

response and the CMAC output) gradually reduces to within -0.05 ~ +0.05.
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Figure 5-9: 1-DOF model with alternate-frequency input
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Figure 5-10: Simulation results of Figure 5-9
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5.4 Laboratory Prototype Development

5.4.1 Overview

The lab prototype serves two purposes: (1) It is used as a real-time
test-bench of CMAC’s caopabilities of estimating/predicting the
displacement of the sonar head; (2) It is also used as a platform o obtain
an experimental model of pole dynamics, which may be placed in the
simulation models that are more flexible and versaﬁie.

. The centrai part of the lab prototype is the real-time C-progrom
implementation of ’rhe CMAC neural network. The development tools
include Visual C/C++ compiler and DataAcq SDK (detailed later). The
whole development process is divided into two steps:

* Electrical signals generated by a function generator were fed to
the computer’s data acquisition board (DTSO]O) to test the functionality of
the hardware and fhe learning capability of the CMAC NN in a real-fime
environment;

* Signals from the detectors (photocells and strain gauges) of pole
vibration were connected to the computer’'s data acquisition board to
test the proposed sonar/pole displacement prediction system as well as
capture data of the pole dynamics.

54.2 DdtaAcg SDK and DT-Open Layers standard for Windows
The DataAcq SDK is a programmer's DLL (Dynamic Linked Library)

that supports Data Translation's most popular data acquisition boards
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under Microsoft Windows 3.x, Windows 95, and Windows NT (Version 3.51
and 4.0). The DataAcq SDK is an extension o the Microsoft Windows SDK
that enables one to develop custom data acquisition applications in the

windows environment.

Applications Application Layer
[End-user's code) :

] 1
Library Data Data
Routines Acaquisition Management

{ ]

Function Library Layer

| 1
DT3010 Other Device |
Device Driver Drivers

Device Interface Layer
Figure 5-11: DT-Open Layers compliant- DataAcqg SDK orchitecfure

The DataAcq SDK is fully compatible with the DT—Open Layers
standard for Windows. The DT-Open Layers standard defines software
calling conventions and a standard architecture at three different,
compatible layers (Figure 5-11):

| * Application Layer --'Windows application software intended for
end users. At this layer, interaction with higher- level languages through a
set of consistent hardWore independent commcnds, part of the AP, is

possible. This set of commands is independent of the device and
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operating system being used, making the lower layers completely
Tronsporer;T o the user at this level.

® Function Library Layer -- This layer provides a set of library
functions that allow the application layer to communicate with the
device drivers at the device interface layer. The DataAcq SDK is a
function library layer product.

* Device Inferfoce Layer -- Lower-level drivers called by libraries to
assert control over specific devices. This layer supports a device
independent {or dependent) inferface for the native operating system,

but does not provide portability across operating systems.

543 Real-ﬂm}e C-program implementation

The program creates two threads (Figure 5-12). The main function
sets~u§ (and releases after the cpplic‘cﬁon is ended) the data acquisition
board and maintains the front-end thread that fulfills the user interface
tasks including entering the porométers of the CMAC neural network and
displaying dofo-processing progress while waiting for key ‘q’ or ‘Q’ to quit
the application. The background thread (Figure 5—13) is responsible for
sampling signals, processing'dcfo using the CMAC neural network, and

outputting the estimated/predicted value for display or recording.
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[ Start (Thread 1ﬂ
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Set up the Board (Figure 5-14)
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Figure 5-12: Flowchart of main program
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( Start Thread 2 }
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Figure 5-13: Flowchart of data processing thread (thread 2)
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[ Start Bodrd Setup ]

Initialize the Device Driver
and Get the Device Handle
with olDalnitialize ' l

:

Get a Handle to D/A Sub-
Get a Handle fo A/D Sub- t ith olD IDAS
system with olDaGetDASS Sy hf aGetDASS
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Set the Data Fow to
OL_DF_SINGLEVALUE
OL_DF_SINGLEVALUE using olDalnitialize
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I I
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Subsystem's Parameters using
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[ End Board Setup ]

Figure 5-14: Flowchart of data acquisition board setup
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{ Start Board Release ]

v

Set a Constant 0.0 Level
on D/A Channels

v

Release A/D and D/A
Subsystems using
olDaReleqseDASS

v

Release the Driver and
Terminate the Session
using olDaTerminate

[ End board relec_se ]

Figure 5-15: Flowchart of board release

Figure 5-14 shows how to set up the data acquisition hardware. The
device driver is first initialized and a device handle is obtained, then
handles to A/D and D/A sub-system are obtained, the mode of data flow
and the channel lists are set, and finally one gets the information of these
subsystems about their data rcnge,‘ resolution and encoding mode. The
information ob’roinéd is used in data conversion between binary values
(raw data form of DAC and ADC). and floatfing-point values. The release
of the board (Figure 5-15) is relatively simple and involves three steps: first
set a constant 0.0 level on D/A channels, then release the A/D and D/A

subsystems, and at last release the driver and terminate the session.
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5.5 Laboratory Experiments and Analyses

5.5.1 Real-Time Learning/Predicting Capability of CMAC NN

A large number of experiments ho?e been conducted to verify the
learning and/or predicting capability of the CMAC neural network with
the available hardware and computer in a real-time application setting.
Sompling rates for these experiments are obopt 3 ~ 5 KHz. Figure 5-16
illustrates o'se'rup for observing the experimental result (in the form of a
Lissajous figure). The Torgé'r signal (the signal from sensors detecting the
displacement at the bottom of fhe pole) is fed to the input 1 (x-channel)
of the oscilloscope, and the CMAC output is fed (via D/A) to the input 2
(y-channel) of this oscilloscope. The oscilloscope operates in X-Y

(sweeping) mode.

Sweep

XY

CMAC output
Target Signal ‘

Figure 5-16: Laboratory setup for observation using oscilloscope

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Our observations showed that, in the case of CMAC leaming, a
straight line segment of 45° showed} up (Figure 5-16) after the tfransient
period was over, and in the case of CMAC predicting (that is, CMAC
output set to be n sample time steps ahead the torgéf signal — the sonar
displacement), a thin ellipse whose major axis is aligned at 45° from the
horizontal was presehfed on the screen of oscilloscope. The ellipse
becamé “fatter” when more steps were being predicted.

The following mathematic analysis helps justify our observations.

Assume the target signal to be of the form:

x = Asin wt (5.1)
and the CMAC output to be
y = Asin a(z + At) (5.2)

In the first case, At = 0. Hence, assuming perfect leamning
y=x ., lx|SA | (5.3)
which represents a segment of the 45° straight line.
More generally, equation (5.2) can be expanded as:
y = Asin(a@r) cos(wAr) + A cos(@t) sin(@At) (5.4)

Substitute (5.1) into {5.4) and rearrange it,

y — xcos(wAt)

Sn(w) = Acos(ax) (5.5)

Square and add (5.1} and (5.5},
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. +(———~—>”?‘°°S(‘”A’)]2 o (5.6)
sin{ @A)

which can further be simplified as
x? —2xycos(@Ar) + y* = A*sin? (wAt) (5.7)
Equation (5.7) is a quadratic equation representing an ellipse.
The area of an arbitrary ellipse given by the quadratic equation

ax® +bxy +cy’ =1 ' (5.8)

§=— 2% (5.9)

Vaac-b*
Therefore, the area of an ellipse given by (5.7) is
S = A% sin(@Ar)| = A @}Ar|, for small At (’5.1-0)

Equation (5.10) | indicates that the area Qf the ellipse is
approximately proportional to the length or steps of time advance (delay)
of the second signal, namely the CMAC output relative to the target
signal.

In addition to on-site real-time observation, the data could be
recorded (written to a file) and analyzed later. Figure 5-17 is a Matlab plot
of the data recorded in oh experiment in which the CMAC oquu’r‘ was
‘expected to predict three steps ahead of the target signal. The data

pointes marked by “+”, which are the target data shifted to the left by
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three sampiles, fall almost exactly on the line of CMAC output (as was

expected in this particular experiment).

RS

Y

O T U T J i

® E :
L] AR L CMACoutput NN
G ! : : :
> : ' ! : :
O] S NS A S N b
PY N U SN S S e VW .7 G
3 i i i i ] I i | i i
5 10 15 20 25 30 3/ 40 45 D

Figure 5-17: CMAC prediction of real-time signal

'5.5.2 Impulse Response and Approximate Model of a Pole

EXperimen’rs indicate that the response of the pole to external
forces. is Mofdimensionol - the vibration can be measured (Figure 5-18)
not only along the same direction as the forcé but also in the direction
perpendicular to the force. The former is referred to as the primary
response and the latter is referred to as the collateral response. As shown
in figure 5-18, the primary response is a typical impulse résponsé of a
second-order under-damped linear system. The collateral response is less

visible but more complicated.
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Vibration along X or Y axis

: 1
0] 5 10 18 20 25 30
Time {sec)

Figure 5-18: Pole's two-dimensional responses to impulse force

Td further investigate fhe primary response, we conducted another
experiment in which the impulse response of the pole and a 10 Hz
sinusoidal signal produced by a function generator are compared (Figure
5-19). We conclude that the natural frequency for primary dynamics is10
Hz. In Figure 5-18(b), the fundamenial frequency of FFT is 2 Hz ({2000
samples at sampling frequency of 4000Hz). More samples will make the
figure look finer.

By constructing a Simulink model of a second-order under-damped
linear system, the damping ratio can be experimentally determined to be

about 0.001.
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(a) Detected signal vs.

10 Hz sinusocidal signal
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Figure 5-19: Detected pole response and reference 10 Hz sinusoidal signal

The patten of the collateral response (Figure 5-18) resembles the
modulation of a 10 Hz carrier by a very low frequency signal {less than 1

Hz). We propose modeling the collateral dynamics as a product of two

Frequency (Hz)

second-order under-damped linear systems.

Based on the observations

experiments, an approximate model of pole dynamics was constructed in
| Simulink (Figure 5-20). It is a nonlinear composite system with a single major
mode for each oXis and coupling to two weaker modes for the respective
orthogonal axes. Simulaﬁon‘ results (Figure 5-21) show that the impulse

responses have captured the major dynamics of the experimental data.

ond analyses of the laboratory
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Figure 5-20: Experiment-based approximate model of pole dynamics
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Figure 5-21: Simulated impulse response of approximate model
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Finally, we note that the model shown in Figure 5-20 is only an
approximate model of 'the real pole dynamics. More blocks could be
added to the model so that its impulse response will be closer o the
experimental data. For example, we could add to each axis one block
representing an extremely low frequency additive term presented in the
collateral response (Figure 5-18). And also we are sure that more
experiments and more precise measurement will bring up more details of
the pole dynamics. However, since the pole we used in the laboratory is
not a real pole used in a pole-mounted sonar system, it will not help much
for us to build a more complex model for it. Besides, ’rhi§ study relies not
only on the computer model but also on a laboratory prototype that has

all the major and minor dynamics with it.
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CHAPTER 6

FEASIBILITY ANALYSES

In chapter 5, the feasibility of pole vibration prediction using the
CMAC neural network has been initially evaluated. In this chapfter, the
preceding simulation models are generdlized to the 2-DOF coupled
vibration pro'blem. The simulations of the new models are desighed to
answer such questions as: (1) effectivenass - how well is the CMAC able
to estimate ohd predict the vibration at the bottom of the pole based the
signal captured from .Thé strain godge at the top of the pole? and, (2)
robustness - how much will the change in the environment (input force) .
affect the performance of the proposed system? |

A practical issue related to the accuracy of the CMAC esfimation
or prediction is the calibration of the simulated pole response, which is a
voltage signal in our model. Approximately, one volt of the simulofed pole
response corresponds to 0.28° of the angular displacement of the sonar
head. In other words, if the error between the simulated pole response
and the CMAC estimation is 0.01V, the corresponding angular error will be

0.0028°.
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6.1 Two-DOF Simulation Models

Figure 6-1 shows a simulation model implementing the 2-DOF CMAC

| prediction system presented in Figure 5-2. The‘ approximate nonlinear
model of pole dynamics based on experimental data captured from the
lab prototype (Figure 5-19) is adopted. A new CMAC block capable of
handling mulfiple inputs and multiple outputs (MIMO) is created and used
in this simulation model. The error is the average of the absolute values of

the two-axes difference between the simulated pole response and the

CMAC estfimation, that s, %qx —x|+|y- ).

F

oy ]

Gine 't!fa-ﬁ

V0 0062 BB BE

3442
SO, 1903 A%

2.8

| wt Piodrckd

¥

XY Geaph

24390 DB Bev 52,842

¥

3942

+

Targets

Ealntes

FOMSE

Transpont
FHPG BT NGRS, G i !

aeee MII:!? Pyt

o
T 2000 962 B2 012

gzane

» sin

g d

F Y

Gaint X

Falng

Cesing Ware

427000102 Bt B0

106

Figure 6-1: A simuldﬁon model for 2—DOF coupled vibration prediction
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Generally, one measure of a periodic signal cannot solely
determine its position on the waveform of the signal. As shown in Figure 6-
2, ’rwb points, A and B, have the same measure V). However, a pair of
measures, such as Vi, Vo) and (V1. V3), will be able to determine solely
where the signal is at the time of measurement - A Ceresponding to (Wi,

V2) and B corresponding to (V1, Va).

Figure 6-2: Positioning a measure on a periodic signal

Hence, it takes two measured volues‘(one current measurement
and one previous measurement) 1o determine the position of a periodic
signcl on its waveform. Accordingly, for a single-degree-of-freedom (1-
DOF) vibration problem, two pointers (one the original and another the
delayed version of the signal) will provide enough inforrhcn‘ion for CMAC

to determine the current position in its input space. For a two-DOF
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vibration problem, four pointers are presumably needed. waever, if the
forces or movements along the two axes are correlated, as in the
problem being studied, fewer pointers would probably suffice ds well. The
decrease in the number of pointers would significantly réducé the number
of weights (taps) in the CMAC neural network, but may cause the
deterioration of performance of the CMAC neural network. To study the
tradeoff of performance with the number of pointers, three simulation
models (one with four pointers as shown in Figure 6-1, the second with
three pointers which drops one delayed version, and the third with Mo
pointers which drops both delayed versions of the input signails) are used
as the platforms of verification and analyses.

The selection of the Volue of the delay (AY) is affected by two
opposite considerations: (1) To save the memory (for storing Thé delayed
signal), a small At is preferred; (2) The dif‘ferencé between the values of

two pointers, f(I+A1)-f(1), should be bigger than the quantization resclution.

6.2 Single-Frequency Input over a Range of Freqguencies

Figure 6-3 shows ’rypiccl patterns of both the pole response 1o ¢
single-frequency (1 Hz) input and the error between the pole response
and CMAC estimation. The simulation parameters of simulations are:
generalization factor (p) = 64; B1 = 1. p2 = 7. memory size = 3000 for CMAC
with three pointers; sampling period = 0.001 s; internal scaling factor =

10000; quantization = 100; the linear receptive field is selected. Since the
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simulated responses at x-axis and y-axis exhibit a similar pattern, only one
output (Y) is given in the figure. The error signal starts with an initial spike
- but then shrinks quickly. The amplitude of the steady state error (SSE) is

about 0.01 V or 0.0028¢°,

v2---.-1 ...... Jecaman [ Rpppp | IyRRpRpp .‘l ...... J. ...... Ji P | RN | g ed
o L .
€ 1§ HE i A F A - : .
] ] AL, 1 l
2 RAAREALAL EARAARAR (R EADA AN MG
0'}0 3 i
%1 : b
T 2pL qmommee- F------ pro=es et Mt el poo---- f-----
0 1 15 20 25 30 35 40 45 &0
S
et i SSE

30 35 40 45 &0
Time {s)

Figure 6-3: System response folHz input and error of CMAC esﬁmaﬁon
To answer the question whether the information of pole response
has been fully leamed, we conducted a spectral analysis on the steady-
state error (see Appendix Il for.details). The result shows that the spectrum
of fhe error signal spreads over a wide rdnge of frequencies, while the
simulated pole response contains only fwo frequency components (1 Hz
and 2 Hz). We conclude that CMAC neural network is able to acquire the

information of pole response thoroughly.
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The rest of this section presents the results of simulations designed 1o
fest the capability of the CMAC neural network to learn the pole
dynamics assuming that the pole/sonar is subject to .on external force of
single frequency from 1 Hz to 8 Hz. Two sampling rafes were adopted for
simulation: 0.0003 s/somple (approximately the real-time sampling rate of
our laboratory prototype), and 0.001 s/sample. Other parameters of this
set of simulations are: generalization factor (p) = 64; B1 = 1; B2 = 7; memory
size = 1000/3000/5000 for CMAC with two pointers, three pointfers, and four -
pointers respectively; infernal scaling factor = 10000; quon’rizaﬂon = 100;
the linear receptive field is selected.

The simulation results are shown in Figure 6-4 and 6-5. We can see
from these figures that: (1) the steady SToTe error increases as the
frequency increoses} (2 for the same frequency, the simulation
Conduc‘red at higher sampling rate consistently results in  higher
performance; especially at the higher frequency:; (3) Figure 6-5 reveals the
difference of performance between models using CMAC neural networks.
with two, three, or four pointers (sampling period = 0.001 s). At low
frequency (1~3 Hz). the difference is insignificant, but at higher frequency,
the CMAC neural network with more pointers shows its advantage in

terms of error reduction.
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(a) 4_pointer CMAC.
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Figure 6-5: Comparison of error estimation by different CMACs
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6.3 Multi-Freguency Input

A model of the force applied to the pole-mounted sonar head
would be composed of several parts including:

(1) A constant force along the axis paraliel to the ship’s centerline

(assuming the velocity of the ship is constant);

(2) Turbulence forces with a broad power spectrum;

3) A component due to the pitch and roll components of the ship

motion.

The constant component of the force would cause a shift of the
‘balance point of pole/sonar vibration and would not change the
\dynomics of pole vibration (no new frequency involved). For the second

and third components of the force, they can be decomposed as a series
of sinusoidal functions under the assumption that they are periodic.

For simplicity, assuming that the external force (disturbance) consists

of two frequency componenfs: a low frequency one represented by fi (1
or 2 Hz) and a high frequency one represented by f2 (15 Hz). Under certain
assumptions made for the orthogonal components of the force, a ring-
shaped force field (frace of tip of the composite force vector) is formed
(Figure 6-6). The width of the ring depends on the amplitudes of both

frequency cbmponem‘s.
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Figure 6-6: Four scenarios of force fields of two frequency components

Mathematically, the force vector can .be expressed as

and we assume that

F, = A sin(w;t) + A, sin(w,?)
F, =4 cos(wli) + A, cos(w,t)

Hence,

F=|F

= \/Ff +F} = \/Af' + A} +2A,A, cos(m, — @, )t
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Since

—1<cos(w, —w,)t <1

Then,
A+ A2 -2A A, S A+ A +2AA, cos(@, — w, )t < Af +A2+2AA,
(A —A2)2 < A12 +A22 -+ 2A/A, cos(m, — w, )t < (4, +A2)2

Therefore,
|4, - A|SF<A+A,

This means the force vector's tip will be traveling within a ring
formed by two circles. The radius of outside circle is A1+Az and the radius
of inside circle is | A1-A2|. Figure 6-6 shows four cases of this kind of force
trajectory:. (q) A = 1 and Az = 0, representing the single-frequency case

“that has been studied in the previous section; (b) A1 = 1 and A2 = 1/3,
represehﬁng a strong low-frequency component and weak high-
frequency component case; (c) A1 = 1/3 and Az = 1, representing a weak
Iow-frequenéy component and strong high-frequency component case;
ond (d) Ai = 1 and Az = 1, representing a “bi-mode” case.

In this set of experiments, a simulcﬁon model that employs CMAC
with three poinfers is used. The pofome’rers of CMAC are: generalization
factor (p) =64; Pr =1, P2=7; memory size = 3000; internal scaling
factor = 10000; quantization = 100; sampling period = 0._0003 s; the Iineqr
receptive field is selected. In each experiment, the frequencies and

omplh‘u’des are changed 1o produce the four force field patterns.
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6.3.1 Strong Low-Freqg. and Weak Hi-Freq. Comgonents

In this experiment, fi=1 Hz, Ai=1, f2=15 Hz, A2=1/3. The simulation
resulfs are shown in Figure 6-7. The error of CMAC estimation (the
difference between the system response and the CMAC output) was

stabilized after 20 s. The amplitude of steady state error (SSE) is 0.017 V, or

0.00476° of angular displacement.
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Figure 6-7: System response and the error of CMAC estimation (1)

6.3.2 Weak Low-Freq. and Strong Hi-Freq. Components

In this experiment, fi=1 Hz, A1=1/3, fo=15 Hz, A=1. The simuldﬁon

results are shown in Figure 6-8. The error of CMAC will be stabilized after 30
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s. The amplitude of steady state error (SSE) is 0.025 V or 0.007° of angular

displacement.

|

Y-axis displacement

Time {s)

Figure 6-8: System response and the error of CMAC estimation (2)

6.3.3 Two Equal Low-Freq. and Hi-Freq. Components

In this experiment, two harmonicolly related sinusoids of equal
magnitude comprise the inpuT force. Specifically, fi=1 Hz, Ai=1, f=15 Hz,
Az=1. The simulation results are shown in Figure 6-9. The error of CMAC
esfimation was stabilized after 20 s. The orﬁplifude of steady state error

(SSE) is 0.03 V or 0.0084° of angular displacement.
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Figure 6-9: System response and the error of CMAC estimation (3)

6.3.4 A Force with Two Non-harmonically Related Frequency Comgonents‘

In this experiment, two non-harmonically related frequency

components of equal magnitude comprise the input force. Spec

ifically,

fi=2 Hz, Ai=1, f2=15 Hz, A>=1. The simulation results are shown in Figure 6-10.

The error of CMAC estimation was stabilized after 20 s. The amplitude of

steady state error (SSE) is 0.032 V or 0.009° of angular displacement.
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Figure 6-10: System response and the error of CMAC estfimation (4)

In this seéﬁon, four scenarios of input force composed of two
frequency components were considered. The results indicate that the
CMAC learming system as presented in Figure 5-2 and implemented in

Figure 6-1 functions well in these situations.

6.4 CMAC’s Capabilities of Learning and Prediction of Pole Vibration
One of the odvon’rcjges of using the CMAC approach is that it not

only can leamn the behavior of the Sysfem, but also predict the sysfem
response adaptively. This could be a benefit for on-site data processing

obero‘rions. Figure 6-11 shows an enlarged portion of a simulation result in
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which the CMAC output (yellow staircase on the leff) is expected to

predict ten steps ahead of the system response (the sonar displacement,

plotted by blue line).

Figure 6-11: An enlarged portion of CMAC'’s ten-step prediction

This section presents the results of studies on the accuracy of
CMAC's prediction of the system response with respect to the predic’ribn
time offset. The CMAC parameters for this set of experiments are:
generalization factor (p) = 64; 1 = 1; P2 = 7. memory size = 1000/3000/5000
for CMAC with two pointers, three pointers, and four pointers, respectively;
internal scaling factor = 10000; quantization = 100; sampling period = 0.001

s; the linear receptive field is selected. The input frequency is 1 Hz.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The simulation results are given in Table 6-1. We see from the table
that the error between the CMAC output and the pole résponse
remained small (ess thaon 0.03 VoIt or 0.0084° if franslated to angular
displacement) for most of our simulations. The accuracy of one-step
prediction is almost as good as that of leamning (zero-step prediction).
Figure 6-12 revedis the trend of CMAC prediction’s error: it increases as
the step of bredic’rion increases. This frend is especially evident for CMAC
with two pointers,

Table 6-1: Error between pole response and CMAC prediction

Steps of _ Steady state error (SSE) (V)
prediction 4-pointer 3-pointer 2-pointer
CMAC CMAC CMAC
0 0.011 0.014 0.013
1 0.011 0.016 0.013
2 0.013 0.020 0.015
3 0.014 0.022 0.020
4 . 0.017 0.022 0.025
5 0.018 0.023 0.027
6 0.020 0.026 0.031
7 0.025 0.032 0.056
8 0.028 0.041 0.057
9 0.031 0.061 0.074
10 0.033 0.071 0.115
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Figure 6-12: Error of CMAC prediction vs. steps of prediction
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CHAPTER 7

SIMULATION ANALYSES OF
CMAC PERFORMANCE

7.1 Introduction

The CMAC neural network is a powerful tool for modeling various
sys’re.m behaviors. However, its performance depends not only on the
complexity of the system, but also on the pdrome’rers of the network itself.
In this chapter, the Simulink models we built are used as a platform for
testing the performance of CMAC neural network. To measure how well
the CMAC neural network learns the system’'s behaviors, three indicators
(Figure 7-1) are adopted: ‘(l) steady state emor (SSE) — absolute value of
amplitude of stable eror, (2) maximum error (x.e.) — the peak value of
error in the inifial fransient period, and (3) transient time (t.t.) — the time
period from the beginning of simulation to when the error is reduced to
20% of maximum eror. The fransient time defined here is d simple and
eosy—fo-meosu}re indicator of how fast the Iecrhing process converges.
The second and third indicators characterize the training process of

CMAC neural network and are meaningful when the CMAC neurdl
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network is kept trained in some applications (online fraining). Thé SSE and
X.e. are measured in volfs and the transient time is measured in seconds.
Generally speaking, the smaller the values of these indico’roré are,
the better performance the CMAC achieves. However, these three
‘indiccn‘ors do not always agree with each oTher‘(meoning that one
cannot necessarily minimize them at the same time). In that case, the
designer needs to choose priorities. For example, one might put first the
goal of minimizing the steady state error when the system operates in a
stable environrhem“ or when the CMAC is trained offline. In a dynamic
environment, reducing the maximum error (the spike in the initial fransient

period) might be more important than in the stable environment.

Error

20% x.e.

8SE

20 80 100

40 Time (s) 60 _
Figure 7-1: CMAC learning error and three performance indicafors

This chapter considers the performance of a CMAC neural network
as a function of its magjor parameters such as the memory size,

generalization factor, quantization factor, and fraining gain.' Due to the
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nonlinearity of the CMAC neural network, it is extremely difficult, if not
impossible, fo derive analytic relationships between the performance
indices ohd the parameters for a practical CMAC that is capable of
dedling with reallife problems. However, the conclusions based on a
large number of experiments (simulations) could provide some helpful
guidelines for design engineers in choosing parameters.

The methodology of experimentation is to conduct a set of
simulations in which only the value of a Single parameter is changed while
the other parameters remain fixed. Observation and comparison of these
simulation results, evaluated by the performance indices, may lead to
insight of the relationships between the performance of the CMAC and

the parameters.

7.2 CMAC Performance Indices versus lts Memory Allocation

In this set of experiments, }fhe memory size of the CMAC neural
network varies from 100 to 10000. Other fixed CMAC parameters are:
generdlization factor (p) = 64; P = 3; P2 = 7; infernal scaling factor = 10000;
quantization = 100; sampling period = 0.001 s; the linear receptive field is
selected. The delay between two pointers is 0.01 s.

The experimental results for CMAC heurol networks with 2 pointers, 3

pointers, and 4 pointers are given in Table 7-1 (q). (b). and (c) respectively.
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Table 7-1: CMAC performance indices vs. memory size allocated

{a)] CMAC with two pointers

Memory size Performance indicators
SSE (V) Transient fime (s) | Max. Error {V)
100 0.124 - 0.597
200 0.090 - 30 0.697
500 0.045 7 1.048
800 0.031 3 1.204
900 0.021 3 1.053
1000,1500, 0.0113 S 1.02
2000,5000
(b) CMAC with three pointers
Memory size Performance indicators
SSE (V) Transient time (s) | Max. Error (V)
100 0.153 - 0.586
200 0.107 40 0.759
500 0.086 20 0.873
800 0.040 9 0.940
1000 0.035 12 0.743
1500 0.0255 9 0.712
2000 0.0096 9 0.712
3000,5000,10000 0.0079 9 0.712

(c) CMAC with four pointers

Memory size Performance indicators
SSE {V) Transient time (s) | Max. Error (V)

100 0.142 68 0.755

200 0.131 46 0.825

500 0.089 26 0.819

800 0.060 20 0.935

1000 0.044 13 0.912

2000 0.026 é 0.979

4000 0.011 4 0.861
5000,8000,10000 0.0074 4 0.861

Based on the experimental results shown in Table 7-1 and Figure 7-2,
the performance indicators of CMAC neural network exhibit the following

frends:
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Figure 7-2: CMAC performance (SSE) vs. memory allocation

(1). The steady state error decreases when the memory allocation
of CMAC neural network increases.

(2). There exists a ‘critical’ value of memory size (about 1000 for
CMAC with 2 pointers; 2500 for CMAC with 3 pointers; 4500 for CMAC with
4 pointers) - below it, the steady state eror of CMAC improves quickly
with the memory size; beyond that point, the steady state error of CMAC
will not change much. (Note: Theoretically, the memory sizes for 2-pointer,
3-pointer and 4-pointer CMACs without hashing will be 1087, 4523 and
18967 respectively.)

(3) The change of transient time of CMAC neural networks follows @
similar pattem of steady state ermor. That is, it decreases when the memory

“allocation of CMAC neural network increases and there exists a ‘critical’
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value of memory size beyond which' the performance index remains
mostly unchanged.

(4) The case of maximum amplitude of error is more complicated.
This performance index will be getting worse, when the memory size starts
to increase, before it gets improved when the memory size approaches its

‘crifical’ value.

7.3 CMAC Performance Indices versus lis Generalization Factor

In this set of experiments, the generalization factor (p) of CMAC
neural network varies from 8 ‘rb 256. Other fixed CMAC parameters are:
memory size = 1000/3000/5000 for CMAC with two pointers, three pointers,
and four pointers respectively; 1 = 1; B2 = 7; internai scaling factor = 10000;
guantization = 100; som’pling period = 0.001 s; the linear receptive field is
selected.

The experimental ‘resuh‘s for CMAC neural networks with 2 pointers, 3
pointers, and 4 pointers are given in Table 7-2 (a), (b}, and (c) respectively.

Table 7-2: CMAC perfofmonce indices vs. generalization factor

{a) CMAC with two pointers

Generalization Performance indicators
factor SSE (V) Transient fime (s) Max. Error {s)

8 0.166 40 1.619
16 0.057 22 iy 1.068
32 0.0285 9 0.654
64 0.0077 8.5 : 0.350

128 0.0085 8 0.263

256 Does not converge
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(b) CMAC with three pointers

Generalization Performance indicators
factor SSE (V) Transient time {s) | Max. Error (V)
8 0.109 75 1.463
16 0.042 28 0.856
32 0.0163 9 0.534
64 0.0077 9 0.367
128 0.0091 14 0.208
256 0.014 18 0.196
(c] CMAC with four pointers
Generalization Performance indicators
factor SSE (V) Transient time (s) Maix. Error (V)
8 0.093 54 1.882
16 0.045 35 1.173
32 0.019 8 0.728
64 0.0076 6 0.474
128 0.0085 8 0.301
256 - 0.014 14 0.202
0.2 T T 1 T T
l ; - 4_pointer CMAC
n ~s  3_pointer CMAC
} : ' : —+— 2_pointer CMAC
045 -p-ommmeee prmommmee e ARRRhl Sk ik g
VRTINS SRR SNSRI SRS SN SR
@ : : : : |
Hl E ' :
| ; : : :
I S S S S
S e e et
0 100 180 200 250 300

0 50
. Generalization factor

Figure 7-3: CMAC performance (SSE) vs. generalization factor

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



@ ; E -G~ 4_pointer CMAC
: ' ; —s 3 _pointer CMAC
: -~ 2 pointer CMAC
2] St s HE T T .
— E‘;; ; ] ) : 1
E a'fl 3 ] : :
Y SO SRR USRNSSR SO SN
5| N\ E
= \‘ : . : :
0.5p----- v Rttt S RS  — .
A A : ¥ :
: T’:"*‘-ﬁl‘:@;:;-“_:':;:';:;-l:;~;;.;-;.-_i@
0 i i i : ;
0 50 100 180 200 250 300

Generalization factor

Figure 7-4: CMAC performance (x.e.) vs. generalization factor

Based on the experimental results shown in Table 7-2 and Figure 7-3
& 7-4, the performance indicators of CMAC neural network exhibit the
following frends: | |

| (1). The steady state error starts to decrease significantly before it
reaches its optimal point where the generalization factor is around 64 ~
128, and then it goes up slightly until training fails to converge.

(2) The change of fransient time of CMAC neural networks follows a
pattern similar to that of the steady state error. That is, it initially decreases
when the generdlization factor of the CMAC neural network increoses,.
and there exists a ‘optimal valu.e’ of generdlization factor beyond which

the performance index goes up slightly.
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(3) The maximum error decreases when the generalization factor
increases, but the speed of change is also decreased.

(4) Three simulation models (with two, three, or four pointers) exhibit
similar patterns in terms of their performance indices as functions of the
generalization factor.

7.4 CMAC Performance Indices as Functions of Its Quantization Factor

In this set of experiments, the quantization factor bf the CMAC
neural network varies from 50 to 500. Other fixed parameters are:
generalization factor = 64; memory size = 1000/3000/5000 for CMAC with
two pointers, three pointers, and four pointers respectively; 1 = 1; B2 = 7;
internal scaling factor = 10000; sampling ‘period = 0.001 s; the linear
receptive field is selected. |

The experimental results for CMAC neural networks with 2 pointers, 3
pointers, and 4 pointers dre given in Table 7-3 (a), (b), and (c) respectively.

Table 7-3: CMAC performancé indices vs. quantization factor

(a) CMAC with two pointers

Quantization - Performance indicators :
factor SSE (V) Transient time (s) Max. Error (V)
50 0.0266 7 1.06
80 0.0164 9 0.49
90 0.0093 9.5 0.384
100 0.0077 9 0.344
110 0.0078 7 0.328
120 0.0079 ) 0.306
150 0.0085 9 0.258
200 0.0101 13.5 0.213
250 0.0106 16 0.173
500 0.0138 33 0.124
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(b) CMAC with three pointers

Quantization . Performance indicators
factor SSE (V) Transient time (s) | Max. Error (V)
50 . 0.0174 ‘ 4 0.587
80 0.0071 11 0.423
90 0.0119 9 0.377
100 0.0077 9 0.367
110 0.0073 9 0.340
120 0.0071 7 0.298
150 0.0080 8 0.263
200 : 0.0087 11 0.206
250 0.011 12 0.188
500 0.016 33 0.124
(c) CMAC with four pointers
Quantization Performance indicators
factor SSE (V) Transient time (s} | Max. Error (V)
50 0.025 10 0.804
80 0.016 6 0.559
90 0.0075 5 0.508
100 0.0076 6 0.474
110 0.0075 4 0.487
120 0.008 S 0.437
150 0.008 6 0.341
200 0.008 7 0.302
250 0.012 10 0.258
500 0.014 20. 0.157

Based on the experimental results shown in Table 7-3 and Figure 7-5,
the performance indicators of CMAC neural network exhibit the following
frends:

(1). The steady state error starts to decrease significantly before it
reaches its optimal point where the quantization factor is around 100, and
then it goes up with the increase of_ the quantization factor (as shown in

Figure 7-5). The reason is that more quantization will produce more states
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in the input space, which is good before things go too far. Since the
physical memory of CMAC neural network is specified as a fixed number,
there will be more and more states crashed into saome memory elements

when the quantization factor exceeds a certain value.

0.03

—+ 4_pointer CMAC
-~ 3 _pointer CMAC
—&~ 2_pointer CMAC | |

-
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0.015 p---4--4--mnnn-- O RECEEE IRTRRESE o mm s P ‘:'" -
kD Sepna e L
T ———
SO NS TN S N AU NN C S
50 100 150 200 250 300 k0 400 450 500

Quantization factor
Figure 7-5: CMAC performance (SSE} vs. quantization factor

(2) The transient time starts flat or slightly goes down until it reaches
its bottom (optimal point) where the quantization factor is around 120;

- then it goes up evidently.
(3) The maximum érfor decreases when the quantization factor

increases, but the speed of’chonge is also decreased.

7.5 CMAC Performance Indices as Functions of lis Training Gain B,

In this set of experiments, p1 varies from 1 to 5 (the actual training

gain varies from 2! to 2-5), Other fixed parameters are: quantization factor
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= 100; generalization factor = 64; memory size = 1000/3000/5000 for CMAC
with two pointers, three pointers, and four pointers respectively; p2 = 7;
internal scaling factor = 10000; sampling period = 0.001 s; the linear
receptive field is selected.
The experimental results for CMAC neural networks with 2 pointers, 3
pointers, and 4 pointers are given in Table 7-4 (a), (b}, and (c) respectively.
Table 7-4: CMAC performance indices vs. learning rate

{a) CMAC with two pointers

Leaming rate Performance indicators
2P SSE (V) Transient time (s} | Max. Error (V)
2 0.0077 , 8.5 0.35
22 0.0080 7 0.528
2-3 .. 0013 L S 1.02
2-4 0.0145 ' 5 1.125
25 0.0213 5.5 1.316
(b) CMAC with three pointers
Leaming rate Performance indicators
2B SSE (V) Transient time (s) | Max. Error (V
2 0.0077 9 0.367
22 . 0.0080 9 0.539
23 0.0079 9 0.712
24 0.012 ' 7 0.98
25 0.017 7 : 1.13
(c) CMAC with four pointers
Leaming rate Performance indicators
2-B1 SSE (V] Transient time (s} | Max. Error (V)
21 0.0076 6 0.474
22 0.0074 4 0.676
23 0.0074 ‘ 4 0.861
24 0.008 5 1.02
25 0.011 6 1.127
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Based on the experimental results shown in Table 7-4, we see that
both the steady state error (SSE) and the maximum error (x.e.) increase
when the fraining gain decreases from 21 to 25 (or fyincreases from 1 fo

5}, as shown in Figure 7-6 and Figure 7-7.
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Figure 7-6: CMAC performance (SSE.) vs. training gain (2-P1)
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Figure 7-7: CMAC performance (x.e.) vs. training gain (2-#1)
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Finally, a brief observation on the effect of the number of pointers
on the performance indices can be mode; As revealed by the results of
previous simulations, increasing the number of pointers (while other
parameters are kept the same) mcy'improve the performance indices,
but the cost is the significant increase of mémory size of the neuradl
network and the computing fime. Hence, a CMAC with fewer pointers is
preferable to a CMAC with more pointers if the emor tfolerance

requirements are met by the former choice.
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CHAPTER 8

SUMMARY, CONCLUSIONS AND SUGGESTIONS
FOR FUTURE WORK

A novel agpproach of estimating or predicting the pole/sonar
vibration using a CMAC neural network is presented in this dissertation
(Figure 1-7, Figure 5-1 & 5-2). Physically, the pole vibration: prediction
system is composed of a pole (to which the sonar head is bound), two
pairs of strain gauges attached to the ftop part of the pole, and a
computer in which the CMAC neural network is implemented to estimate
or predict the coordinates of the sonar head relative to the vessel using
the data ocduired by a data acquisifion board instalied in the compu’rer.‘
Photocells or o‘rher» position sensors that detect fhe position of the bottom
of the pole are used in fraining. The data detected from the photocells,

| which is propor‘rioncl to the sonar’s coordinate displacement (x or y), are
sent to the learning module - CMAC neurdl network as its fraining target. -
The voltage signals from the strain gauges are connected to CMAC
neural network as its pointer infqrmo’rion. After a period of training, the

output of the CMAC neural network will predict the sonar head’s
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coordinates with or without the continuing existence of the training target
data (see Figure 5-8 for the latter case).

Both the proposéd system itself and the methodology behind the
mechanism of the system are studied. As revedled by a number of
researches (13)(41)(55) (56)(58)(58)(89) conducted at the Robotics and
Vibration Control choro’rdry, University of New Hampshire, as well as the
resuits given in‘ this dissertation, ’rhé CMAC neural network offers benefifs
and advantages such as qu’r learning and rapid generalization capability,
noise insensitivity, modeling or learning abilities for nonlinear plants as well
as linear plants, and its proven success for real-time problems. After
analyzing the nature of the problem and comparing several potential
methods including the approach of vibration “rheory and the data filtering
approach, we conclude that a CMAC neural network offers a good
chance of success.

In addition to The feasibility study of predicting pole vibration using

the CMAC neural network, theoretical research on-the properties of the
CMAC neural network has also been conducted. The analytic results
contribute to the development of the CMAC neural network and help
improve the general undersfonding of the CMAC neurdl ‘network.
Specifically, inspired by the adaptive filter theory, the eigenanalysis of
CMAC neural network has been conducted. The matrix involved in the

eigenanalysis is the correlation matrix R formed directly from the excitation
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vector (Eq. (4.5) or Eq. (4.17)). It is revealed that the trace (i.e., sum of
eigenvalues) of the correlation matrix R is equal to Thé generdlization
parameter of the CMAC néural network. Eigenanalyses lead to two
sufficient conditions for the convergence of CMAC’s weight vector in the
mean (Theorem 4.1 & 4.2). It is worthy to note that for the LMS algorithm
the convergence can only be achieved in some kind of statistical sense
(such as mean or variance) since the gradient estimate made at each
step is generally ndisy. However, many steps taken in the direction of the
negative instantaneous gradient wil, on average, go in the correct
direction for the steepest descent. A simple formula for estimating the
misadjustment due to the gradient noise is clsQ given (Eq. (4.48)).

The feasibility s’rudvy»of pole/sonar vibration prediction using CMAC
neural networks is conducted based on two implementations of the
proposed system - computer simulation and real-fime iab prototype. To
conduct the C‘ompufer simulation, the first step is the modeling of the
system. Simulink® proyides a grophical way of modeling - eaqach
component of the system is represented by a block or group of blocks.
Two componem‘s, the pole and the CMAC neural network, are of special
interest to us. The CMAC block that implements a CMAC neural ne1work is
written in the C language. The code is structured as a combination of
several Simulink callback méThods in which the Simstruct access macros,

C mx-functions and user-defined functions are used. After being complied
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and linked 1o the block, the parameters of the CMAC neural network may
be specified or changed through the Simulink’s dialog box of the CMAC
block (Figure 5-4). |
Two simulation models of the pole are used in the research. A
sir;wple 2nd-order under-damped linear system is first used in the
preliminary-study stage to test the itool of reéec:trch. A more complicated,
higher-order, nonlinear, approximate model (Figure 5-20) is constructed
based on data captured from the lab prototype. The impulse response of
the pole comprises a major single-mode (at 10 Hz) vibration along the
direction of the force and a weaker response along the orthogonal axis,
~which is a nonlinear mixing of two modes.
~ The lab prototype is used as a real-time test-bench of CMAC’s
capabilities of és’rimo’ring/predicﬁng the pole/sonor vibragtion as well as @
platform to obtain the experimental model of pole dynamics. The central
part of the lab prototype is the real-time C-program that integrates the
data acquisition hardware (D13010) with the functionality of the CMAC
neural network. From the point of view of a programmer, the application
is at the top of the three-layer architecture of the DT-Open Layers
standard for Windows, and it relies on the DataAcqg SDK at Thelfunc’rion
library layer to communicate with the device drivers that assert control
over specific devices. The program creates two threads to separate the

user-inferface task from the data processing task (Figure 5-12 & 5-13). The
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lab prototype implementation of the proposed system has been able to
fulfill its twin objectives. The experimental results have been observed on-
site and recorded for analyses (Figure 5-17 &. 5-18).

The software implementation is able to provide a quick ond
inexpensivé way of thoroughly investigating the feasibility of the proposed
method. More scenarios may be easily simulated. In this research,
simulations have been conducted for the input (the external force) of
either single-frequency or multi-frequency components.

~ Analyses df the results from both experiments and simulations lead
to the conclusion that a CMAC neural network, after training, is capable
of es’rimoﬁng or predicting the displacement of the sonar head
(represented by the bottom of the pole), caused by the pole vibration,
based on the information from the strain gauges installed near the top
part of the pole. The error between the sonar head's position and the
CMAC estimation or predic’rion is small (0.01 ~ 0.05 volt or 0.0028° ~ 0.014°
for most cases).

Moreover, the performance of the CMAC neural né’rwork, as
judged by the three indicators of the steady state error, maximum error
and transition time, is onclyzed as a function of the parameters of the
CMAC neural network. Interesting trends emerged from these simulations:
there exist some “critical” points for CMAC parameters - below or beyond

those points the performance indices worsen or stagnate.
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There are a few directions in which the present research could be
extended. One of the fufure efforts should be a more accurate model of
the pole dynamics. More experiments aiming to capture the pole
response to different forces are needed. A more complicated and
accurate model can be built provided that a large number of force
patterns can be generated. Henée, a measurement and analysis of
typical force pdﬁerns would be worthwhile. Besides, an experiment in
which the bottom of the pole is submerged in the water would help
determine the dcrhping coefficient of the pole model. In the latter case,
the undeMa’rer position sensbrs are needed. Then, having built a more
accurate model, more simulations Wi’rh the new model would help gain
more confidence and insight about the proposed pole-mounted sonar
vibration prediction system.

Calibration is an immediate concem if the proposed system is pufv
into real application. The displacement of the sonar head must be
converted info the angular error so that the error in the world coordinates
of the footprint, 8x or 8y, can be corrected. For some applications in which
the error signal of interest is directly available, the approach proposed
here may avoid this generally tedious process, because one does no’rA
need to calculate the exact position of the sonar sensor. One may frain
the CMAC neural network with-the error between the “actual” data and

the data “perceived” by the sonar. For example, to calibrate a sonar or
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other instruments in the lab setting (such as a towing test), and since the
- floor depth of the ’fonk is known, one can calculate the error data when

the sonar suNeys the floor and tfrain the CMAC along with the pointer

information from some other vibration sensors such as strain gauges.

The last, but not least, important area of future research is the
further study of CMAC neural networks from the point of view of adaptive
filter theory. It is expected that many important concepts and conclusions
from the latter field, which is more extensively studied, can be applied or
at least provide some clues to the theoretical analyses of CMAC neurdl
networks.  This dissertafion just starts the first step and only the
conventfional CMAC siructure has been investigated. It is hoped that

more efforts will be made in this direction of research.
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APPENDIX |

CIRCUIT DIAGRAMS OF VIBRATION SENSORS

Strain Gage Circuit
+7.5Y
= Cc1
I 1uF
VR1
100 ohms 5
R5
G1
120 chms 510 kohms RE
R R3 aa%Y% 510 kohms
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J—_——L c2 1C1, IC2: uPC741C
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Figure Al-1: Strain gauge circuit diagram
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R4

100kohms
R1 MV Vout
- \ 11kohms ‘ R5 CN1
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T e 3 3 VYV
From AC ,\/\/\/ |C2
the output of R2 - L
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Figure A1-2: Bias & amplification circuit diagram for photocell
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APPENDIX i

SPECTRAL ANALYSIS OF CMAC’S LEARNING ERROR

An interesting question about the learning capability of CMAC
neural networks is that how thoroughly they are able to leamn from the
fraining data after being fully frained. It is extremely difficult, if not

impossible, fo answer this question theorefically. The spectral analysis of
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Figure A2-1: A simulation model for CMAC learning
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the steady-state error data obtained from simulations or experiments
provides a way 1o look into this question, at least for the problem under
study. |

In this appendix, a simulation model shown in Figure A2-1 is used to
generate the error data. The input frequency is set to be 1 Hz. Other
simulation parameters are: generalization factor (p) = 64, p1 = 1. B2 = 7.
internal scaling factor = 10000; quantization = 100; sampling period = 0.001
s the li‘near receptive field is selected. The delay between two pointers is
0.01 s. The simulation results are shown in Figure A2—2. The steady-state

error, y-y', is 1.3% of the amplitude of pole response.

.l ié IHM}
I,‘.li,.u.a[h.

Simulated Pale Response

[ e —

Error

1 £ ]
]

R I A -
40 B0 B0 100 120 140 160 1680 200
Time( s)

Figure A2-2: Pole response and error of CMAC estimation
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The frequency spectrums of the steady-state pole response and the
error signal are shown in Figure A2-3. Two frequencies, 1 Hzand 2 Hz, are
presented in the pole response. The additional frequency other than the
input frequency (1 Hz) results from the nonlinearity of pole model. For the
error signdl, its frequency spectrum spreads over a wide band of
frequencies. The energy residing at 1Hz and 2Hz is no bigger than at other
frequencies. Moreover, the magnitude of the frequency spectrum of pole
response is 70 dB above Thé error signal at 1Hz and 56 dB higher at 2Hz.

Hence we can cohclude that the steady-state error of CMAC estimation

Fourier transforms of error signal and pole response
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Figure A2-3: Frequency spectrums of pole response and
error of CMAC estimation (steady-state)
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is virtually white noise and it contains very low level of power compared to
the training signal. In order words, there is no significant information not

learned by the CMAC neural network.
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APPENDIX

SIMULATED STEADY-STATE RESPONSE OF POLE

This appendix presents the simulation results of the steady-state

response (SSR) of the pole to a sinusoidal input of single frequency from 1

Hz to 20 Hz. The simulation model is shown in Figure A3-1.

7\ 62.67%2 . » ]
¥ $24270.001"62 85+62.8°2 ~
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242700173, 145+3. 192 I
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Figure A3-1: Simulation model for sfeady-state response of pole

The simulation results are shown in Figure A3-2. The steady-state
response is about 1.0 af low frequencies near 1 Hz. It increases gradually

to 2.78 when the frequency of the sinusoidal input reaches 8 Hz. Then it
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climbs quickly and reaches a peak at 10 Hz. It drops as quickly until the
input frequency increases to 12 Hz, where the value of SSR is 2.28. The
steady-state response (SSR) falls below 1.0 after the input frequency

passes above 14 Hz, At 20 Hz, the SSR is 0.33.
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Figure A3-2: Simulated steady-state response of pole to sinusoidal input

It is noteworthy Th_cT the simulation model of the pole dynamics
(Figure A3-1) Is based on the data obtained from our laboratory
experiments in which the pole vibrated in the air. The émcll air-damping
causes a large amplitude of vibration near the primary natural frequency
(Figure A3-2). However, the damping of the pole-mounted sonar
vibrating in the water is much bigger so that such a resonance is not likely
to happen in real operations. Even so, we expect a similar pattem of the

SSR over the same range of the frequéncy of the sinusoidal input.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX IV

SIMULATION PARAMETERS OF 1-DOF MODELS

In chapter 5, three 1-DOF vibration learning models are used to test
~ the functionalities of the S-function implementation (Simulink block) of,The

CMAC neural network. The values of simulation parameters for these

simulations are given in Table A4-1.

Table A4-1: Simulation parameters Qf 1-DOF models

Model Figure 5-5 Figure 5-7 Figure 5-9
Generalization size 16 8 32
Sampling period (5) 0.001 0.001 0.001
Beta (B1) 5 5 5
Beta2 (Bo) 7 7 100
Memory size 1000 1000 1000
Infernal scaling factor™ 10000 10000 10000
Quantization 100 100 100
Recepitive field . Rectangular | Rectangular | Rectangular
Transport delay (s) 0.25 0.1 0.25

* See the footnote on page 82.

" The UNH version of the CMAC neural network assumes the data to be processed are integers. Hence, the
raw data generally need to be scaled up by multiplying the internal scaling factor to ensure a satisfactory

precision of operation.
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