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PREFACE

The configuration of pole-mounted sonar sensors is one of two 

major types of multibeam sonar systems used in hydrographic surveys, The 

vibration of the pole during operation constitutes a challenging problem 

tha t limits the accuracy of the sonar data. A novel approach of 

estimating or predicting the pole/sonar vibration using CMAC neural 

networks is proposed and investigated by multiple means. The objective 

of this dissertation is to provide the readers with sufficient background 

development and adequate technical details so tha t the results of this 

research are accessible for use in continuing research efforts.

This dissertation starts with a system-level discussion of the research. 

In chapter 1, graphical figures illustrate the pole vibration problem. The 

advantages and disadvantages of potential methods, such as vibration 

theory and CMAC neural network, are discussed. The proposed system is 

briefly described and the tools of research are introduced. The expected 

research outputs are also outlined.

Chapter 2 provides background knowledge or development o f 

relevant research areas, including vibration theory, adaptive signal

V
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processing, artificial neural networks in general and CMAC neural 

networks in particular. Section 2.1 summarizes the basic concepts 

concerning vibration study and two classes of approximate solutions. An 

overview of artificial neural networks and several landmark achievements, 

such as artificial neurons, adaline and perceptron, backpropagation 

algorithm, and radial basis function networks, are presented in section 2 .2 . 

Based on a thorough literature search, section 2.3 describes the historic 

development of CMAC neural networks including the CMAC topological 

structure, learning algorithms, and applications. Some notes on adaptive 

signal processing tha t are related to this research, such as the optimum 

Wiener filter and the least-mean-square (LMS) algorithm used in many 

adaptive filters, conclude the chapter of background material.

In chapter 3, based on a detailed examination of the geometrical 

formation of CMAC neural networks for one-input and two-input spaces, 

their memory-addressing mechanisms are formulated and generalized to 

the case of N-input space. Written in the vector form, the scalar output of 

CMAC will be the inner product of the weight vector and the excitation 

vector.

Chapter 4 is dedicated to analyzing CMAC algorithms from  the 

point of view of adaptive filter theory. To establish a corresponding 

relation between a CMAC neural network and an adaptive FIR filter,

vi
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CMAG is divided into three parts -  an input converter that forms the 

excitation vector, a linear combiner or the inner product of the excitation 

vector and the weight vector, and the weight-adjusting algorithm, 

Minimizing the mean square error (MSE) leads to  the Wiener-Hopf 

equation. Two forms of correlation matrix are given in section 4.2, A 

unique property establishing the relation between the trace of the 

correlation matrix and generalization parameter of CMAC is presented in 

section 4.3. Using the tool of eigenanalysis, several conditions for the 

convergence of CMAC algorithms and a simple formula of estimating the 

misadjustment due to the gradient noise are derived.

Chapter 5 discusses many issues involved in the implementation 

and verification of the proposed system. Two levels of implementation, the 

computer simulation and the real-time lab prototype, have been carried 

out in the research. To build the simulation model, special effort has been 

spent on two key system components -  the CMAC block (S-function of 

Simulink) and the pole model. The code for the CMAC block is written in C 

language and the UNH version of CMAC neural network is incorporated. 

The first pole model, a 2nd-order underdampled linear system, is used in 

the preliminary study of the effectiveness of the proposed approach. The 

second pole model, based on the experiments with a real-time laboratory 

prototype, is a higher-order nonlinear system and has been exclusively

vii
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used for study in subsequent chapters. The central part of the lab 

prototyping is the real-time C-program tha t controls the data acquisition 

hardware and implements the CMAC neural network. The flowcharts o f 

the program are given in section 5.4. The results of lab experiments are 

observed on-site, recorded to data files, and plotted by Matlab. Both the 

experimental results for verification o f the system and the data for 

analyzing the pole dynamics are presented in section 5.5.

In chapter 6  and 7, a large number of simulations designed for 

different purposes are analyzed. The first set of simulations of chapter 6 is 

designed to study the CMAC's capability in prediction of the pole 

vibration. The other simulations provide results for different scenarios of the 

input force. Chapter 7 is dedicated to testing the CMAC performance as 

function of individual CMAC parameter such as the memory allocation, 

generalization factor, quantization factor, and training gain.

Chapter 8 provides a summary of major achievements of this 

research and suggests several directions of future work.

viii
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ABSTRACT

POLE-MOUNTED SONAR VIBRATION PREDICTION 
USING CMAC NEURAL NETWORKS

by

Chunshu Zhang 

University of New Hampshire, May, 2005

The efficiency and accuracy of pole-mounted sonar systems are 

severely affected by pole vibration. Traditional signal processing 

techniques are not appropriate for the pole vibration problem due to the 

nonlinearity of the pole vibration and the lack of a priori knowledge about 

the statistics of the data to be processed. A novel approach of predicting 

the pole-mounted sonar vibration using CMAC neural networks is 

presented. The feasibility of this approach is studied in theory, evaluated 

by simulation and verified with a real-time laboratory prototype. 

Analytical bounds of the learning rate of a CMAC neural network are 

derived which guarantee convergence of the weight vector in the mean. 

Both simulation and experimental results indicate the CMAC neural 

network is an effective tool for this vibration prediction problem,

xvii
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CHAPTER 1

INTRODUCTION

1.1 The Problem

Multibeam sonar systems are the latest advancement in 

hydrographic surveying technology. Typically each system consists of four 

major operational parts: (1) a transducer to generate acoustic pulses and 

receive the echoes; (2) a GPS unit to determine vessel location and 

speed; (3) an inertia motion unit (IMU) which records vessel attitude at the 

time of each pulse; and (4) a signal processing system to convert the 

echoes into bathymetric and backscatter values, and a data processing 

computer to compile a series of pulses into seafloor information. The world 

coordinates of each footprint (the spot on the Earth the sensor measures) 

are calculated based on the geometry of the sonar head relative to the 

GPS of the ship. Therefore, the resulting survey quality highly depends on 

the accuracy of the estimated mounting configuration of the sonar head. 

There are two major configuations of multibeam sensors: (1) pole- 

mounted sensors (Figure 1-1) that are normally used on smaller vessels 

temporarily dedicated to acoustic surveying, and (2) through-the-hull

1
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sensors that are those integrated with the vessel's bottom. The latter is a 

stable configuration but expensive to install. The multibeam sonar systems 

of the second type, which attempts to correct for vessel motion with the 

information from the vessel orientation system, assures the highest possible 

quality for the spatial accuracy of the bathymetry or backscatter 

information once the exact physical location of each system component 

and the distances between them is determined with great precision.

The multibeam sonar of the first type, 

however, faces another problem. The pole 

is susceptible to bending and twisting 

forces. When the vessel is in survey 

operation, the sonar head is exposed to a 

variety of external forces due to water or 

vessel movement. These forces will cause 

the sonar head to vibrate. Therefore the 

position of the sonar is not fixed relative to 

the vessel. The calculation of the world 

coordinates of each footprint has to factor 

in the displacement of sonar head caused 

by pole vibration. In other words, assume at a particular time, the spot 

surveyed by sonar would be located at (xo, yo) if no vibration exists, but it is

* Source: http://www.ccom.unh.edu/scapa/images/inwater.jpg

2

Figure 1-1: Pole-mounted 
sonar head'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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actually located at (xo+6x, yo+6y) because of the pole vibration. The sea 

depth detected by sonar is d. Hence on a 3-D mapping image, (xo, yo, d) 

is plotted, but the correct image would need to plot (xo+6x, yo+6y, d).

Figure 1-2 shows a Matlab-produced 3-D image demo illustrating 

the graphic process of sonar image distortion and correction related to

sr

.......
o IM W I

S) 1 D Q I S D a D 2 0 3 C D  3 S D 4 0 D « 0 5 ( n 50 100 1® 200 250 3DD 350 4DD 450 5D0

(a) The original seabed image ^  The distorted (along-track) image

S3 100 153 SO 300 350 400 460 500

(c) The distorted (two axes) image

50 100 150 200 250 300 350 400 4®  500

(d) The restored image

Figure 1 -2: Illustration of sonar image distortion and correction
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pole vibration. The top-left pane is an image of a flat ramp with small 

objects (say, a barrel and a mine) on it. The ramp rises along the Y-axis 

direction that is also the along-track direction. The top-right pane of Figure 

1 -2 shows the image of a rippled ramp resulted from 1 -D along-track pole 

vibration. The bottom-left pane shows the distorted image due to 2-D 

(along-track and cross-track) pole vibration, where the barrel and mine 

are barely recognizable. The bottom-right pane shows the restored image 

as a result of world coordinate correction using techniques from this 

dissertation. After processing correction, the last image is very close to the 

first original image.

For now, without the error correction method being employed, the 

accuracy and efficiency of pole-mounted sonar systems are severely 

affected by pole vibration. To ensure a certain degree of accuracy, the 

speed of the survey vessel has to be limited to reduce the amount of pole 

vibration, which limits the daily coverage of survey. This productivity issue 

urges the study of pole vibration.

1.2 The Methodology

To improve the survey efficiency, it is necessary to come up with an 

approach to predict the displacement of sonar head due to pole 

vibration so that the error in the world coordinates of the footprint can be 

corrected. Figure 1 -3 shows the process of sonar data collection in which 

a new block (dotted-line) is proposed to add to the current process (solid-

4
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line blocks). This new block will provide an estimation or prediction of the 

sonar displacement to be used in sonar data processing.

o
ST
a.'Cs

o

\ ___

Sonar

,j\
\s

t

Boat Orientation 
System 

(GPS & IMU)

Erro?- estimation or 
prediction -  
Direct measurement;
Pole vibration equ.i 
Data filtering; 
CMAC.

L "

Echo signal

Sonar data 
processing & 
displaying

Figure 1-3: Current and proposed sonar data collection process

There are several potential options for the task. One of them is the 

direct measurement of the position of the sonar head using instruments 

such as accelerometers. This approach is methodologically simple and 

direct. However, the acceleration instrument is expensive, subject to 

shock problems, drift errors, and would have to be small and waterproof. 

These disadvantages limit its use in practical problems.

Another choice would be the vibration theory of the pole. The 

motion of a rigid body is entirely defined by Newton's law of motion. This 

kind of problem is described by a set of differential equations with
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constant coefficients. Unfortunately, the pole bends, and even twists 

under some circumstances. Another essential aspect of the pole is that it is 

continuous, meaning that it has continuous distribution of mass, elasticity, 

and damping. To make things worse, the pole is likely to be non- 

homogeneous, that is, the distribution of its mass and flexibility is not 

uniform. In general, we cannot solve the pole bending problems exactly.

u(x, t)

(a) A flexible beam

F(x, t)

s(x, t'

. . d m (x , t )
m(  x, t ) H   dx

ox

\  s(x,t) + ̂ ^ - d x  
ox

(b) Beam element 

Figure 1-4: Differential analyses of a beam

A well-studied example is the Bernoulli- Euler beam model [8], which 

is the simplest beam model. As shown in Figure i-4, it is assumed that one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



end of the beam is fixed (at the origin O) and the vibration of the beam 

will be one-dimensional (Y-axis). Let p(x) be the mass per unit length along 

the beam and u(x, t) the displacement normal to the beam at x, the 

vibration equation will be:

, a2 
* x)W + v

E I ( x ) d “ f ( x , t ) ( 1 . 1)
dx2

Where E is Young’s modulus, I(x) is the beam area moment of inertia, 

and f(x, t) is the force density at x. Figure 1-4 also shows an infinitesimal 

element taken out of the beam, which is the basis of Bernoulli- Euler beam 

model. The beam could be treated as a combination of thousands of 

such infinitesimal elements, which means the same large number of 4th- 

order partial equations need to be solved.

The obstacles of applying vibration theory in the pole vibration 

problem are numerous. They include:

► No generic closed-form solution;

► Numerical solutions need thousands of calculations to solve 

partial differential equations related to particular conditions;

► Not adaptable to structural change, or parameter change;

► Difficulty increases rapidly with DOF and coupling.

In a word, we can conclude that the vibration theory approach is 

not practical for a real-time problem within this volatile environment.
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Adaptive filtering techniques provide a different approach to data 

processing. A filter is a hardware or software device that we may use to 

perform three basic information-processing tasks [29]:

(1) Estimation (filtering)*, i.e., extracting information about a quantity 

of interest at time t by using data measured up to and including time t.

(2) Smoothing*, which involves the usage of data both up to and 

after time f.

(3) Prediction*, which is to derive information about what the 

quantity of interest will be at some future time t + t , for t  >  0 , by using data 

measured up to and including time t.

The design of an optimal filter, such as the Wiener filter that is said to 

be optimum in the mean-square sense, requires a priori knowledge about 

the statistics of the data to be processed. In an environment where 

complete information of the relevant signal characteristics is not available, 

the adaptive filter that is self-designing has a good opportunity to perform 

satisfactorily. The self-designing of the adaptive filter relies on a recursive 

algorithm, which starts from some set of predetermined initial conditions, 

representing our best knowledge of the environment. It has been found, in 

a stationary environment, the adaptation algorithm of a linear adaptive 

filter, after successive iterations, will converge to the Wiener optimum 

solution in a statistical sense.

* These terms, not strictly defined, are used here to highlight the functions of the filter.

8
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u(k-1) u(k-M+2) u(k-M+1)u(k-2)

Adaptation algorithm

Figure 1-5: Adaptive transversal filter

Figure 1-5 shows an adaptive transversal (FIR) filter [33] [29]. The filter 

output is given by:

M-1
y (k )  =  ' * Tw iu ( k - i )  ( 1 .2 )

i=0

The tap weights, wi, w2, ..., w M-i, are adjusted at every time-step. 

There can be hundreds of taps for a practical adaptive filter. This makes 

the adaptation algorithm slow and increases the computational costs [33].

The data filtering methods, including fixed-gain filters (such as the 

Wiener filter and the Kalman filter) and adaptive filters, are limited by a 

fundamental problem that the vibration motion, the ocean bottom 

motion, and the boat wave motion are all in same frequency range. Data 

filtering cannot distinguish one from others.

9
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A more recent development is the CMAC neural network (The way 

that it works in the process of sonar data collection and processing will be 

discussed in next section). The Cerebellar Model Arithmetic Computer 

(CMAC) is an associative memory neural network in that each input maps 

to a subset of weights or memory locations whose values are summed to 

produce outputs. The unique aspect of how the CMAC neural network 

works is graphically explained in Figure 1 -6 [58].

A’
A

p points

o

outputrandom
mapping

Input/state
Space Conceptual

Memory Actual
Memory

Figure 1-6: A geometrical explanation of CMAC's working mechanism

An input vector is the collection of N appropriate sensors of the real 

world and/or measures of the desired goal. The CMAC algorithm maps 

any input it receives into a set of p (the generalization parameter) points in 

a large ‘conceptual’ memory (A in Figure 1-6) in such a way that two 

inputs that are "close" in input space (S in Figure 1-6) will have their points

10
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overlap in the A memory, with more overlap for closer inputs. If two inputs 

are far apart in the input space S there will be no overlap in their p- 

element sets in the A memory, and therefore no generalization.

Since most learning problems do not involve all of the input space, 

which is extremely large for practical systems and hence would require a 

correspondingly large number of locations in the memory A, the memory 

requirement is reduced by mapping the A memory onto a much smaller 

physical memory A’ . Any input presented to CMAC will generate p real 

memory locations, the contents of which will be added in order to obtain 

an output.

Another important aspect of CMAC neural network is the concept 

of "local generalization" built in its weights-adjusting algorithm. For each 

input presented, only the weights in p memory locations will be changed, 

proportional to the error between the output of CMAC and the desired 

target signal. Our mathematical formation of the adaptation algorithm of 

CMAC reveals its similarity to the widely used LMS algorithm. This leads to 

further study of CMAC neural network from the point of view of adaptive 

signal processing.

The built-in properties of CAMC result in such advantages as: a) fast 

learning property, b) rapid generalization capability, c) no local-minima 

problem, and, d) modeling or learning abilities for nonlinear plants as well 

as linear plants. Another benefit of using CMAC neural network is its

11
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availability in software & hardware and proven success in real-time 

problem.

1.3 The Proposed Approach

To correct for the displacement of the sonar head caused by pole 

vibration in the process of sonar data collection and processing, a novel 

approach to estimate or predict the displacement of sonar head using 

CMAC neural networks is proposed (Figure 1-7).

i

Photocell

Pole

Strain gages
Preprocessing 
circuitry (Biasing, 
amplification &

Yrfc filtering)

11 To DataAcq 
V  board

Forces

x
Computer w / 
DataAcq Board 
& CMAC NN

y

Figure 1-7: Pole-mounted sonor vibration prediction system
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The proposed system consists of the pole itself, several strain gauges 

attached to the pole, and the computer that operates the CMAC neural 

networks to estimate or predict the coordinates of the sonar relative to 

the vessel. Photocells are used to measure the displacement of the 

bottom of the pole during the training period. The electrical signal outputs 

are connected to the computer via data acquisition hardware (DT3010).

In this research project, the simulation model and laboratory 

prototype are built mainly for testing the capability of the CMAC neural 

network to estimate or predict the displacement at the bottom of the 

pole based on an additional measurement at the top of the pole. 

Therefore, the sensors used in our prototype are cheap and easy to install. 

For real applications, other position detectors more suitable to underwater 

environment should be used and further calibration is needed.

The strain gauge is a device whose electrical resistance varies in 

proportional to the amount of strain (e, defined as the fractional change 

in length) in the device. With proper configuration, a bridge circuit 

comprised of a pair of strain gauges is able to produce a voltage signal 

proportional to the strain along one axis. That is, for example, Vx = yi »ex, 

where yi is roughly a constant coefficient. Similarly, we could have Vy = 

Y 2 * £ y . More generally, Vx = fi(ex) and Vy = f2(ey).

Photocells or other kinds of position detectors are used to detect 

the coordinates of the sonar (represented by a tip at the bottom of the

13
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pole in the lab). The electrical signal outputs of 

photocells are indicators of the position of the 

sonar. Figure 1-8 shows the relationship among 

the angular displacement of the pole, linear 

displacement of the pole’s bottom, and the 

voltage signal of the photocell. For small angular 

displacement 0,

(1.3)

X m Xm

V_
K,

x e_

Hence, m

e e
0  =  -ZLV  =  - ^ X  

V„ x„
(1.4)

Figure 1-8: Angular 
displacement of pole

In Eq. (1.4), xm and 9m are determined by the physical size (effective 

length) of the photocell and the pole. In our laboratory setup, em « tan(em) 

=  X m /L p o ie  = 2.3/180 = 0.0128 rad = 0.732°. The maximum voltage is 

determined by the circuitry of photocell and is adjustable.

1.4 The Implementations

Two implementations of the pole-mounted sonar vibration 

prediction system were realized. The first one is a pure software 

implementation -  computer model built in Simulink environment. Each 

of the system components, including the pole, the strain gauge, and the

14
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CMAC neural network, is represented by a Simulink block or a group of 

simulink blocks whose parameters are properly defined. Two major 

components of our proposed system we need to create or construct on 

our own are: (1) the CMAC neural network, and (2) the model of pole 

dynamics. The software implementation provides a quick and inexpensive 

way of thoroughly investigating the feasibility of the proposed method.

The second implementation is a laboratory prototype involving both 

hardware and software. Only the CMAC neural network is programmed in 

the computer while the other components use physical models close to 

those that would be used in real sonar surveying. The laboratory 

prototype helped to study pole dynamics in addition to verifying the 

feasibility of the proposed approach in real-time application.

1.5 The Outputs of Research

Three major achievements are expected through this research:

(1) Fulfill the feasibility study of pole-mounted sonar vibration 

prediction using CMAC neural networks.

(2) Make theoretical contribution to the field of CMAC neural 

network research.

(3) Use the platform/testbench established in the research to 

explore the capabilities and performance limitations of CMAC 

neural networks.

15
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CHAPTER 2

BACKG RO UND

2.1 Basic Concepts and Approaches in Vibration Study

Vibration can be found virtually everywhere. All bodies possessing 

mass and elasticity are capable of vibration. The study of vibration is 

concerned with the oscillatory motions of bodies and the forces 

associated with them [73].

There are two classes of vibrations: (1) Free vibration, which refers to 

the vibration taking place under the action of forces inherent to the 

system itself and when external impressed forces are absent; (2) Forced 

vibration that takes place under the excitation of external forces. The 

system under free vibration will vibrate at one or more of its natural 

frequencies. The vibrating linear system under oscillatory excitation will 

vibrate at the excitation frequency. When the excitation frequency 

coincides with one of the system’s natural frequencies, a condition 

referred to as resonance may be encountered. Nonlinear systems 

respond at all the harmonics and the mixing or "beat" frequencies of the 

excitation frequencies.

16
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As far as the vibrating systems are concerned, they can be 

classified as linear or nonlinear, and, discrete or continuous. Linear systems 

are subject to the principle of superposition and there are many eloquent 

mathematical techniques well developed for their treatment, in contrast, 

the techniques of analyzing nonlinear systems are generally difficult to 

apply. Vibration study involves both the knowledge of linear systems and 

the knowledge of nonlinear systems because all systems tend to become 

nonlinear with increasing amplitude of oscillation.

Likewise, we see the relationship of studying the discrete system and 

the continuous system. Discrete systems such as masses and springs are 

easy to study but such idealized structures never exist in the real world. 

Nevertheless, the mathematical analyses of discrete systems lay the 

foundation of the study of continuous systems. Except for some special 

cases, continuous problems cannot be solved exactly [8]. Thus we are 

forced to consider approximate solutions. There are two distinct classes of 

approximate solutions: one is the structure-oriented approach that 

discretizes the original continuous system into a number of lumped 

elements and another is the behavior-modeling approach that 

approximates the system's response by a finite number of mode shapes. 

The second approach is widely used because it does not need the 

detailed knowledge of the structure of the system and many data 

processing techniques can be adopted.

17
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2.2 Artificial Neural Networks

2.2.1 Overview

Artificial neural networks have emerged from studies of how human 

and animal brains perform operations. Interest in artificial neural networks 

could be traced back in the early 1940s when pioneers, such as 

McCulloch and Pitts and Hebb [53] [30] [6] [62], investigated networks 

based on the neuron and attempted to formulate the adaptation laws 

applied to such systems. The human brain is composed of many millions of 

individual and highly connected elements called neurons. Functionally, 

the brain is a highly complex, non-linear, and parallel computer (or, 

information-processing system). It is fair to say that the human brain has 

been and will still be the driving force behind the discipline of artificial 

neural networks.

Many neural networks (the word “artificial” is dropped hereafter for 

simplicity) have been proposed and studied in the past several decades. 

Some of them, especially those in the early stage of development of 

neural networks, possessed certain drawbacks such as, noticeably, the 

requirement of a large number of neurons (weights) and/or slow 

convergent speed. These drawbacks have been largely improved in 

newer neural networks such as the CMAC neural network through hashing 

and parallel computing.

18
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Overall, neural networks have found many application areas such 

as neuroscience, mathematics, statistics, physics, computer science, and 

engineering, based on their promising attributes [51], including:

• Inherent parallelism in the network architecture due to the 

repeated use of the simple processing elements or neurons. This leads to 

the possibility of very fast hardware implementations of neural networks.

• Capability of ‘learning’ information by example. The learning 

mechanism is often achieved by appropriate adjustment of the weights in 

the synapses of the artificial neuron models.

• Ability to generalize to new inputs (i.e. a trained network is 

capable of predicting the outputs when presented with input data that 

has not been used before).

• Robustness to noisy data that occur in real world applications.

• Fault tolerance. In general, network performance does not 

significantly degenerate if some of the network connections become 

faulty.

One definition for a neural network is [4]: A neural network is a 

massively parallel distributed processor that has a natural propensity for 

storing experiential knowledge and making it available for use. The neural 

network resembles the brain in two respects:

(1) Knowledge is acquired by the network through a learning 

process;

19
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(2) Interneuron connection strengths known as synaptic weights are 

used to store the knowledge.

Neural networks are usually implemented by using electronic 

components or are simulated in software on a digital computer. The 

procedure used to perform the learning process is called a learning 

algorithm, the function of which is to modify the synaptic weights of the 

network in an orderly fashion to attain a desired design objective.

A popular paradigm of learning [52], called supervised training or 

learning with a teacher, involves modification of the synaptic weights of a 

neural network by applying a set of labeled training samples. Each 

sample consists of a unique input and a corresponding desired response. 

The network is presented with an example picked at random from the set, 

and the synaptic weights of the network are modified to minimize the 

difference between the desired response and the actual response of the 

network produced by the input signal in accordance with an appropriate 

statistical criterion. The training of the network is repeated for many 

examples in the set until the network reaches a steady state where there 

are no further significant changes in the synaptic weights. The previously 

applied training examples may be reapplied during the train session but in 

a different order. Thus the network learns from the examples by 

constructing an input-output mapping for the problem at hand.

20
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In addition to those attributes of neural networks that make them 

appealing to a variety of fields, two prominent advantages the neural 

networks possess due to their built-in capabilities make them a useful tool 

in systems modeling, pattern classification, adaptive signal processing, 

and adaptive control. First, a neural network, made up of interconnected 

nonlinear neurons, is itself nonlinear. Moreover, the nonlinearity is of a 

special kind in the sense it is distributed throughout the network. 

Nonlinearity is an important property, particularly if the underlying physical 

mechanism under study is inherently nonlinear. Applying linear modeling 

techniques to a nonlinear system usually results in a large number of 

equations to solve. Second, neural networks have a built-in capability to 

adapt their synaptic weights to changes in the surrounding environment. 

When it is operating in a non-stationary environment, a neural network 

can be designed to change its synaptic weights in real time.

The following important accomplishments mark the major 

advancements of neural networks:

2.2.2 Artificial Neurons

In 1943, McCulloch and Pitts presented their simple neuron with five 

assumptions governing the operation of neurons [53]. The McCulloch-Pitts 

neuron is a very simple two-state device. There is no training for their 

neurons. The first time a learning rule for adjusting the synaptic weights is 

presented is in the paper by Hebb in 1949 [30]. John Hopfield presented a
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neural architecture made up simple processing units based on the formal 

neuron of McCulloch and Pitts in his paper [32] published in 1982. 

Hopfield's paper brought together several seemingly unrelated concepts 

in the literature and presented them in a highly coherent fashion. As 

stated in [6], regarding Hopfield's work, "As far as public visibility goes, the 

modern era in neural networks dates from the publication of this paper by 

John Hopfield."

2.2.3 Adaptive Linear Element fAdaline! and Perception

The Adaline is a single neuron whose synaptic weights are updated 

according to the Least Mean Square (LMS) algorithm [81] [79], which is 

sometimes referred to as the Widrow-Hoff learning rule or the delta rule

[14] [69]. The architecture of Adaline can be viewed by referring to Figure 

2-1, which consists of an adaptive linear combiner cascaded with a 

symmetric hard limiter. For a pattern recognition problem, the hard limiter 

is a decision-maker or pattern-classifier. There are two varieties of LMS 

algorithms -  p-LMS algorithm and a-LMS algorithm. The simplest p-LMS

algorithm is of the following form:

w ( k  + 1 )  =  w(A~) +  JU ■ e (k )x (k ) (2 .1)

The a-LMS algorithm is of the following form:

w ( k + l )  =  w ( k )  +  a
e (k )x (k )

(2.2)
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Figure 2-1: Adaptive linear element

y(k)

The Adaline closely resembles the simple perceptron (single-layer 

perceptron), which was originally presented by Rosenblatt [68]. Several 

different types of perceptron were developed later. The major difference 

between the Adaline and perceptron is, during the training process of the 

network, how the error is generated. For an Adaline, the error is generated 

as the difference between the desired output and the output of the linear 

combiner; and the resulting error, i.e., e(k) =d(k)-v(k), is called the linear 

error. For a perceptron, the error is generated as the difference between 

the desired output and the output of an activation function. There are 

many different activation functions. An example is the symmetric hard
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limiter and then the resulting error, i.e., e ’ (k)= d(k)-sgn(v(k)), is called the 

quantizer error. The learning rule for this perceptron is given as [82]:

w ( k  + 1 )  =  w ( k )  +  a  e ^  x (k )  (2.3)

Another commonly used activation function is the sigmoid 

activation function, denoted as f (•). The learning rule in this case is given 

as:

w(* +1) = w(Jfc) + n • e \k ) x ( k ) ^ - 1 v=vW (2.4)
dv 1

The learning rule for the perceptron, like the Widrow-Hoff learning 

rule, is based on the method of steepest descent and attempts to 

minimize an instantaneous performance function.

The LMS algorithm is extensively studied and used in adaptive signal 

processing and neural networks. The LMS algorithm for training a single 

layer network is the predecessor to the backprogation learning rule for 

feedforward multilayer perceptrons.

2.2.4 Backpropaaation Algorithm

The standard backpropagation algorithm for training the multilayer 

perceptron neural network (MLP NN) is based on the steepest descent 

gradient approach applied to the minimization of an energy function 

representing the instantaneous error. The adjustment of synaptic weights 

at each layer of the network is proportional to the product of the
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computed local error, or delta, and the local input (or the output of prior 

layer). Therefore the backpropagation algorithm is also referred to as the 

extended delta rule.

The backpropagation algorithm was first developed by Werbos in 

1974 [75], but it went unnoticed [76] [77] until 1986 when Rumelhart, Hinton 

and Williams published their work on the backpropagation algorithm 

[70] [69]. Today, backpropagation is a popular learning process in neural 

networks. The main drawback of backpropagation is slow convergent 

speed.

2.2.5 Radial Basis Function Networks

In many cases, radial basis function networks will train much more 

quickly than the feedforward multilayer perceptrons trained by 

backpropagation [28]. In a radial basis function network (RBF NN), the 

neuron (or RBF center) close to the input will make more contribution to 

the output of the RBF NN in response to that input than remote centers. 

The output o f the RBF NN is the weighted sum of the outputs of the hidden 

neurons (the neurons between the input layer and the output layer):

(2.5)
*=1 k~l

where xe 9Tnxl is an input vector and ck e 3Txl are the RBF centers in the

input vector space. O k(*) is a function from 9T to SR. The most commonly 

used function is an exponential quadratic function as follows:
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</){x) -  e x p ( - x 2 Ic r2} (2 .6 )

It can seen from (2.5) that two sets of parameters governing the 

properties of RBF NN are the weights Wtt in the output layer and the

centers c* of the radial basis functions. The defining of the centers largely 

affects the complexity of RBF NN training. The simplest form of RBF NN 

training is with fixed centers. In 1988 Broomhead and Lowe [9] proposed 

an approach of choosing the fixed centers in a random manner as a 

subset of the input data set. A "sufficient” number of randomly selected 

centers is required so that they can statistically represent the distribution of 

the input data. The only adjustable parameters were the weights in the 

output layer. But this approach produces a relatively large network, even 

for a relatively simple problem. Some improvements aiming to reduce the 

size of RBF NN, such as training the RBF using the stochastic Gradient 

approach [28] [29] and the orthogonal least squares (OLS) method

[15] [29], had been presented but the selection of the RBF centers remains 

a major challenge in the design and application of the RBF NN.

The Cerebellar Model Arithmetic Computer (CMAC) is regarded as 

a special case of the radial basis function network [3J[11][58]. Both are 

designed according to a fundamental principle of “ local generalization" - 

- similar inputs produce similar outputs while distant inputs produce nearly 

independent outputs. CMAC uses a geometrical method to decide the 

receptive fields where the basis functions are defined. Two specialties

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



embedded in CMAC are its layered structure and that its basis functions 

are discontinuous functions. Much more will be said about the CMAC in 

the next section and the following chapters.

2.3 Historical Development of CMAC Neural Networks

The Cerebellar Model Arithmetic Computer (CMAC), an associative 

memory neural network in that each input maps to a subset of weights 

whose values are summed to produce outputs, was introduced by James 

Albus [I ] [2] in early 1970's to approximate the information processing 

characteristics of the human cerebellum. Evidently since mid-1980’s, study 

on CMAC has made significant progress and applications have been 

found in fields such as system identification or plant modeling and real­

time adaptive control. One of the most frequently quoted works is the 

development of a practical implementation of the CMAC neural network 

that could be used in the real-time control applications [58] by Miller, 

Glanz, and Kraft at University of New Hampshire.

A large number of papers or other publications about CMAC neural 

networks have been published. Among them are the works on exploring 

the properties and capacities of CMAC [58] [19], on improving or 

generalizing the CMAC structure [43] [50] [49] [25] [26] [44] [2] [17] [54] and 

receptive functions [43] [78] [20] [16], on the selection of learning 

parameters [48] [47] [37], on the learning convergence [87] [63] [46] [39]
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[40][10][88], and on applying models or architectures [56][57][55][21][31] 

[22] [23] [41] [89] [13].

The following summary outlines the efforts and progresses made in 

the study of CMAC neural networks.

2.3.1 On the CMAC Topological Structure*

The original Albus CMAC [2] can be thought of as a special case of 

lattice- based AMN (associative memory networks) with sparse placement 

of basis functions. Using this technique, the input space is quantized into 

discrete states as well as larger size overlapped areas called hypercubes 

(or receptive fields where the basis functions are defined). Each 

hypercube covers many discrete states and is assigned a memory cell 

that stores information in it. The pattern of placement of basis functions on 

the input space is diagonal. As a result, the number of basis functions 

(which equals the number of memory cells) is significantly less than the 

number of lattice cells, which reduces the computation requirements. 

However, the CMAC’s modeling ability is not as flexible as a standard 

AMN (where the number of basis functions is equal to the number of 

lattice cells).

In the conventional diagonal-placement pattern of weights (basis 

functions), the weights are not evenly distributed on the input space. 

Actually, they are concentrated along the parallel diagonals. Lane et al 

‘ A detailed description of CMAC structure is given in Chapter 3.
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[43] discussed two weight-addressing schemes, that is, (1) Main diagonal 

and anti-diagonal weight-addressing scheme, and (2) Main diagonal and 

sub-diagonal weight-addressing scheme, which have the weights more 

scattered on the input space.

The conventional CMAC performs a uniform approach to equally 

partition input space into discrete regions in order to construct memory 

structure and one generalization factor p is used for all inputs. Gonzalez- 

Serrano et al [25] noted that its rigid structure reduces its accuracy of 

approximation and speed of convergence with heterogeneous inputs. In 

[26] it is shown that the variation of the function to be approximated is 

highly correlated with the variation of the weights. Lee et al [44] noted 

that the conventional CMAC neglects the problem of various distributions 

of training data sets so that it allocates many unused memory units.

The number of basis functions increases exponentially with the input 

dimension. It also increases with the levels of quantization (discretion) 

quickly. To reduce the storage requirement and increase the flexibility of 

CMAC structure, efforts have been made by several researchers. In [17], 

the authors proposed a self-organizing CMAC neural network that uses a 

Kohonen self-organizing map algorithm to cluster the receptive fields in 

regions of the input space where the data is dense. In [44] proposed a 

self-organizing input space module that uses Shannon’s entropy measure 

and the golden-section search method to appropriately determine the
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input space quantization according to various distributions of training 

data sets. The problem with these approaches is that, while reducing the 

storage requirement, they lose one of the major benefits of CMAC, 

namely the speed of computation. In [54], a hierarchical multi-resolution 

approach is investigated through experimentation as a possible 

approach to alleviate the problem.

Reference [25] proposed a generalized CMAC (GCMAC) network

with multiple generalization factors [q. = [ pi, P2 pn]), one for each

input that depends on the smoothness of each input. The shape of 

receptive fields then becomes hyperparallelpipeds instead of hypercubes. 

Albus’ CMAC can be considered as a special case for the GCMAC.

2.3.2 On the CMAC Learning Algorithms

The CMAC network performs a locally weighted approximation of 

functions by means of some basis functions. The original CMAC has 

constant basis functions. In CMAC, the input space is divided into small, 

overlapped regions, called receptive fields, where the basis functions are 

defined. A disadvantage is that its output is constant within each 

receptive field and the derivative information is not preserved. Proposed 

alternatives are B-splines [43], exponential [78] [20], and Gaussian functions

[16]. In [16], CMAC with general basis functions is investigated and the 

condition of learning convergence has been proved. The performance of
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a simulation with Gaussian functions (GBFs) showed better accuracy while 

the learning speed is very close to the conventional CMAC.

In [48], Lin and Kim investigated the problem of parameter selection 

(such as the learning rate) for a CMAC-based adaptive critic learning 

technique which the authors proposed previously [47] [37). The adaptive 

critic learning structure consists of two main modules -  a control module 

and an evaluation module. The output of the former module is used for 

learning the optimal control action. Analytic result for estimating the limits 

of the learning rate was achieved and simulation result was provided.

Wong and Sideris [87] proved that CMAC's learning always 

converges with arbitrary accuracy on any sets of training data. However, 

their proof was restricted to the case that the memory size is greater than 

the number of weights to be stored and no hash mapping is used. The 

proof by Parks and Miltizer [63] defined a Lyapunov function and used it 

to prove that CMAC learning converge to a limited cycle given that the 

learning rate equals to one. Lin and Chiang [46], through defining the 

CMAC technique using mathematical formation and then examining the 

eigenvalues of a matrix describing the learning procedure, further proved 

that CMAC's iterative learning from either with or without hash converges 

to a limited cycle if the learning rate is between zero and two. Moreover, 

their study also proved that CMAC learning results in a least square error if
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the number of iteration approaches to infinity and the learning rate 

approaches to zero.

2.3.3 On the application of CMAC models

The use of CMAC neural networks in practical problems has been 

predominantly conducted at University of New Hampshire. Among them 

are applications in real-time robotic [56] [57] [55], vibration control [41] [89] 

[13], pattern recognition [21] [31], and signal processing [22] [23].

Reference [55] demonstrated the application of CMAC neural 

networks for a robot-tracking problem involving the control of a five-axis 

industrial robot with a video camera attached to the fifth axis in the place 

of a gripper. An application in signal processing problem -  learn how to 

generate the original input given the output of a nonlinear channel with 

memory, was presented in [23].

In [41][89], the CMAC network was used in a feedback control 

structure to produce the signal required to actively cancel the vibration 

source. In [41], the CMAC neural network concept was applied to a real­

time closed-loop vibration control system to reduce unwanted vibrations 

in an acoustic system. In [89] offered two significant extensions, which 

make the CMAC controller method applicable to a wider range of 

practical problems. The first is a new weight update procedure that 

separates the training cycle from the control cycle so that the CMAC 

controller is able to deal with the phase shift inherent in the plant. The
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second is another new approach that does not require direct 

measurements of the vibration source. The new vibration control schemes 

were tested on a submarine simulation model. Results indicate CM AC is 

an effective tool for this vibration control problem.

In [13], an algorithm for the convergent adaptation of a CMAC 

neural network in feedforward disturbance cancellation architectures is 

presented. This technique is a generalization of the Filtered-X LMS 

algorithm used in the case of linear adaptive filters. Results are presented 

for an implementation of the algorithm on a laboratory acoustic duct 

model. This application shows that CMAC can operate at high enough 

frequencies for the pole vibration problem.

2.4 Some Notes on Adaptive Signal Processing

Adaptive signal processing can be considered to be a process in 

which the parameters used for the processing of signals change 

according to some criterion, such as the estimated mean squared error or 

the correlation. Adaptive processing usually refers to adaptive filtering, in 

which the parameters of the filter can change with the independent 

variable (usually space or time).

Two distinct linear optimum filters are the Wiener filter and the 

Kalman filter. The first studies of minimum mean-square estimation in 

stochastic processes were made by Kolmogorov [38], Krein [42] and 

Wiener [85] during the late 1930s and early 1940s. Kolmogorov developed
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a comprehensive treatment of the linear prediction problem for discrete­

time stochastic processes. Krein extended the results to continuous time 

by using a bilinear transformation. Wiener independently formulated the 

continuous-time linear prediction problem and derived an explicit 

optimum formula that required the solution of the Wiener-Hopf equation 

[86]. The original Wiener-Hopf equation, taking the form of an integral 

equation, is difficult to solve. In 1947, Levinson formulated the Wiener 

filtering problem in discrete time [45]. In this case, the Wiener-Hopf 

equation is neatly written as an algebraic matrix-vector equation:

Rw = p (2.7)

where w* is the tap-weight vector of the optimum Wiener filter structured 

in the form of a transversal filter (Figure 1.5), R is the correlation matrix of 

the tap inputs, and p is the cross-correlation vector between the tap input 

and the desired response.

The works of Wiener and Kolmogorov were based on the 

assumption of stationary stochastic processes. For a problem to which 

nonstationarity of the signal and/or noise is intrinsic, the optimum filter has 

to assume a time-varying form. One solution turned up in 1960 is the 

Kalman filter, a powerful device with a wide variety of engineering 

applications, especially in aerospace and aeronautical applications. 

Kalman’s original formulation of the linear filtering problem was derived for 

discrete-time processes [35]. Later (1961) Kalman and Bucy collaborated
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on the continuous-time filter [36]. The mathematical description of the 

Kalman filter is based on the state-space approach. A key property of the 

Kalman filter is that it leads to minimization of the trace of the filtered state 

error correlation matrix, which means the Kalman filter is the linear 

minimum variance estimator df the state vector [5] [27]. The Kalman filter 

also provides a unifying framework for the derivation of the recursive least- 

squares filters [71] [29]. The link between Kalman filter theory and adaptive 

filter theory was demonstrated by Sayed and Kailath in their paper 

published in 1994 [71].

The earliest work on adaptive filters may be traced back to the late 

1950s. The least-mean-square (LMS) algorithm, devised by Widrow and 

Hoff in 1959 to train the weights of Adaline in their study of a pattern 

recognition problem, emerged as a simple and yet effective algorithm 

and has been widely used in engineering applications.

The LMS algorithm could be developed from the Wiener-Hopf 

equations (or the cost function of Wiener optimum filter) in two stages [29]. 

First, by adopting the method of steepest descent -  a well-known 

technique in optimization theory, a recursive procedure of updating 

weights is formed which requires the use of the gradient vector. Second, 

by altering the mean square error in the cost function to instantaneous 

square error, an estimation of the gradient vector is obtained. The 

resulting algorithm is the well-known LMS algorithm, the essence of which
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may be put in the following words: the adjustment at each time step is 

proportional to the product of tap-input vector and the error signal. The 

rate of convergence depends on a coefficient called the learning rate.

The second approach to develop the linear adaptive filtering 

algorithm is based on the method of least squares, the cost function of 

which is the sum of weighted error squares. The resulting algorithm is the 

recursive least-squares (RLS) algorithm. One of the earliest papers on the 

standard RLS algorithm was presented by Plackett in 1950 [64]. Efforts 

have been made to establish the relationship (one-to-one variable 

correspondence) between RLS algorithms and Kalman filtering algorithms. 

These include a paper by Gogard in 1974, which used Kalman filter theory 

to derive a variant of the RLS algorithm [24], and an expository paper by 

Sayed and Kailath in 1994 [71].

At last, an important type of nonlinear adaptive filters is the neural 

network. The nonlinearity of a neural network is distributed throughout the 

network. Hence, theoretically and practically, neural networks are the 

most important nonlinear adaptive filters. It has been shown that the 

development of adaptive filtering algorithms is closely interwoven with the 

development of neural networks.
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CHAPTER 3

C M A C  STRUCTURE

This chapter revisits the structure of CMAC neural network in great 

details. Both the geometric formation and mathematic representation of 

CMAC structure will be discussed. The purpose of this chapter is to 

formulate the weight-addressing mechanism (i.e., information storage 

and/or retrieval approach) as well as to lay the foundation of exploring 

the properties of CMAC neural network in this and next chapters.

Before we go to formal discussion, a brief description of notations 

and terminology of CMAC neural network is given: Let x = [xi, X2, ..., Xn] e 

Rn be the input of CMAC and q = [qi, q2, ..., qn] e In be the discretized 

input of the CMAC. As for other parameters, p stands for the

generalization factor, and d = [di, 6 2  dn) e In is the displacement

vector of CMAC. Further assume that the discretized input span the

hypercube Zn ={[zi, Z2 zn] e In | 0 ^  z <  Li-1}. Hence, q e Zn. The

(discretized) input space is divided into small, overlapped regions, called 

receptive fields (RFJ or memory elements, where the basis functions are 

defined. The total number of receptive fields is often referred as memory
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size that is equivalent to the number of weights of the network. The 

generalization factor p defines the size of the receptive fields and the 

number of layers of basis functions (also known as overlays). For a given 

input, only the basis functions whose corresponding receptive fields 

contain that input are excited (activated).

3.1 One-Dimensional-Input CMAC

3.1.1 Formation of Receptive Fields

In the 1-D input case, the receptive fields are segments. Figure 3-1 

shows two examples of the receptive fields of 1-dimensional input CMAC. 

In Figure 3-1 (a), it is assumed that the input has been discretized and it 

would span the hypercube Zi = {zi e I1 | 0 £ zi £ Li-1}, where Li = 8. Further 

assume that the displacement vector di =1 and the generalization factor 

pi = 3. The role of the displacement vector is to form different receptive 

field at each layer. In the first layer, 3 receptive fields (segments) are 

formed; in the second layer, 4 receptive fields (segments) are formed; in 

the third layer, 3 receptive fields (segments) are formed. The total number 

of the receptive fields (or the memory size of CMAC neural network) is Mi 

= 10. These receptive fields are numbered from 1 to 10 (these numbers are 

conveniently designated as the addresses of these receptive fields or 

memory elements of CMAC neural network), according to which layer 

they belong to and their position at each layer. As a convention, the 

number increases from left to right in each layer and from lower layer to
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Figure 3-1: Receptive fields and weight-addressing of 1-D input CMAC

higher layer. Also shown in the figure is how the receptive fields are 

excited to a particular input. For example, given input q = 4 (marked by a 

star sign on the input axis), receptive fields No.2, No.6, and No.9 are 

excited (marked by colored circles on their layers). The corresponding 

excitation vector S4 is:

s4= [0, 1,0,0,0, 1,0,0, 1,0]T (3.1)
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In general, the excitation vector is a vector of M elements, which 

has p elements of value 1 and M- p elements of value 0.

In Figure 3-1 (b), it is assumed that I 2 = 10, 6 2  =3, P2 = 4. The 

receptive fields are formed and numbered in a similar way to Figure 3-1 

(a). Here 4 layers are formed and there are totally 13 receptive fields. For 

example a given input q = 4, receptive fields No.2, No.5, N0.8 and No.l 1 

are excited. Its corresponding excitation vector S4 is:

s4 = [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]T (3.2)

Obviously, the value (1 or 0) of each element of an excitation 

vector will be determined by the element’s index in the vector. For those 

elements whose indices coincide with the addresses of the receptive 

fields being excited by the particular input q, their values are 1. Otherwise 

they are zero.

3.1.2 Number of Receptive fields

To formulate the addresses of the excited receptive fields, we need 

to know the number of receptive fields at each layer, which is given by:

* II \ k - l ) x d ~
+ ceil

' L - ( k - l ) x d ~ k = 1..... p (3.3)
. P  . P

So, the memory size or the required number of weights is:

M = ^ M W (3.4)
*=1
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For Figure 1 (a), Min = 3, Ml2) = 4, M(3) = 3, and M = Ml'! + Ml2) + Ml3) = 

10; For Figure 1 (b), Mi') = 3, Ml2) = 3, Ml3) = 3, Ml4) = 4, and M = MO) + Ml2) + 

M<3l + M(4)= 13.

3.1.3 Addressing Mechanism and Excitation Vector

For one given input x (or q), one memory element (segment) at 

each layer is associated. The relative address of the particular element at 

kth layer is (numbering from one):

rq k) = ceil
( k - l ) x d

+ ceil k = 1 p (3.5)

If we number the memory elements incrementally from left to right 

of the first layer, then the second layer, till the pth layer. The “absolute" 

address of this element will be (starting from one):

i=0
Ml°)= 0 (3.6)

Table 3.1 shows the addresses of receptive fields calculated 

according to equation (3.6) and the corresponding excitation vectors, for 

the 1-D CMAC given in Figure 3-1 (a). Take input q = 4 for example, rqn) = 2, 

rq (2) = 3, rq I3) = 2, aq 1’) = M(°J + rq 0) = 2, aq I2) = M(°) + Ml1) + rq (2) = 6, aq 0) = 

M<°) + MO + Ml2) + rq3 = 9. Hence, the 2nd, 6th and 9fh elements of excitation 

vector will be 1 and others will be 0. This conclusion agrees with Eq. (3.1).
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Table 3-1: Addresses and excitation vectors
of the CMAC in Figure 3-1 (a)

Input
variable

d

Absolute
address

aa(k)

Excitation
vector

0 1,4,8 (1,0,0,1,0,0,0,1,0,01
1 1,5,8 (1,0,0,0,1,0,0,1,0,01
2 1,5,9 (1,0,0,0,1,0,0,0,1,01
3 2, 5,9 (0,1,0,0,1,0,0,0,1,01
4 2, 6,9 (0,1,0,0,0,1,0,0,1,01
5 2, 6, 10 (0,1,0,0,0,1,0,0,0,11
6 3, 6, 10 (0,0,1,0,0,1,0,0,0,11
7 3, 7, 10 (0,0,1,0,0,0,1,0,0,11

3.1.4 Coordinates of Centers of Receptive Fields

In the remaining part of this section, the coordinate of the center of 

the receptive field (segment) will be discussed. As mentioned before, for 

one given input x (or q), there are p memory elements associated with it 

(one memory element at each layer). However, the input is most likely to 

miss the centers of those segments (Figure 3-1). One fundamental 

prerequisite of CMAC is that similar inputs tend to generalize and produce 

similar outputs. The similarity is evaluated by the distance between the 

inputs. The conventional algorithm that uses constant basis functions 

weights all the excited receptive fields equally. A fine-tuned improvement 

will adjust the weight of each excited receptive field according to the 

distance between the active input and the receptive field.

On the discretized input axis, the coordinates c‘*} of the center of

receptive fields at kth layer are:
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2

{3.7a)

s mod ( ( k - l ) x d , p ) - l  
2

cq k) =  • 5mod((k - 1  ) x d , p )  + (rqik) - 2 ) x p  +  -- - - - -

L - l  + smod((fc- 1 ) xd ,p )  + {rq(k) - 2 ) x p  
. 2

2 < r ik) < M (k)

k=2 p  (3.7b)

where smod(m, n) is defined as a function of two positive integers:

smod(m,  n)
n,

mod (m,n),

i f(mod(m, n) = 0)and{m ^ 0) 

otherwise
(3.8)

Finally, the distance between the input q and the center of each 

memory unit associated with the input is:

Table 3.2 shows the center coordinates of receptive fields 

calculated according to equation (3.7) and the corresponding distances 

to the active inputs, again for the 1-D CMAC given in Figure 3-1 (a). We 

notice that all the values of distances calculate are less than p/2.

it is worthwhile to note that while the both relative and absolute 

addresses start from one, coordinates of both the inputs and the centers 

of the units associated with them start from zero in order to keep 

consistent with convention.

for k = 1,..., p (3.9)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3-2: RF center coordinates For the CMAC in Figure 3-1 (a)

Input
variable

d

Center
coordinate

CaN

Distance

1 q- c qw |
0 1.0, 0.0, 0.5 1.0, 0.0,0.5
1 1.0, 2.0, 0.5 0.0, 1.0, 0.5
2 1.0, 2.0, 3.0 1.0, 0.0, 1.0
3 4.0, 2.0, 3.0 1.0, 1.0, 0.0
4 4.0, 5.0, 3.0 0.0, 1.0, 1.0
5 4.0, 5.0, 6.0 1.0, 0.0, 1.0
6 6.5, 5.0, 6.0 0.5, 1.0,0.0
7 6.5, 7.0, 6.0 0.5, 0.0, 1.0

3.2 Two-Dimensional-Input CMAC

3.2.1 Formation of Receptive Fields

In the 2-D input case, the receptive fields are squares (or 

rectangles). Figure 3-2 shows an example of the receptive fields of 2- 

dimensional input CMAC. It is assumed that the inputs has been 

discretized and they would span the hypercube I 2 = {[zi,Z2] e I2 | 0 < zi < 

Li-1, | 0 < Z2 £ L2-I}, where Li = 8 and L2 = 10. Further assume that the 

displacement vector [di, d2]= [1, 1] and the generalization factor p= 3. In 

the first layer (Figure 3-2(b)), 12 receptive fields (squares/rectangles) are

formed; in the second layer (Figure 3-2(c)), 16 receptive fields are formed; 

in the third layer (Figure 3-2(d)), 12 receptive fields are formed. The total 

number of the receptive fields (or the memory size of CMAC neural 

network) is M = 40. These receptive fields are numbered from 1 to 40. Also 

shown in the figure is how the receptive fields are excited according to a

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



particular input. For example, given input q = (3, 4), marked by a star sign 

in Figure 3-2, three receptive fields No.5, No.22, and No.33 are excited

(marked by colored circles on their layers).
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Figure 3-3: Another way of locating weights associated with a 2-D input

Figure 3-3 shows another way of locating weights associated with a 

2-D input. The pattern of weight placement is formed according to the 

following procedure: first, a receptive field is represented by a weight 

located on the left-bottom corner of the receptive field; then, all weights 

on three layer are superimposed (projected) on one plane. In figure 3-3, 

the weights near the border of the input space (a grid region of 8 x 10 

dots) are not shown so that the diagonal-placement pattern of CMAC
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weights can be clearly seen. Having identified al! weights on the input (2- 

D) space, the weights associated with a particular input (3, 4) can be 

located within a square of side 3, with the input point at the upper-right 

corner of the square.

3.2.2 Number of Receptive fields

For a 2-dimensional input CMAC, the number of receptive fields at 

each layer is:

M w = f lM ,w k = 1...... p (3.10)
;=i

where

M ,w  =  ceil

1

1 X

1

+  ceil

i
i"

1 1 i X jr
. i

L P  J L P  J

So, the memory size (the total number of receptive fields) is:

M = £ M (i)= £ flM ,W (3.H)
k=l k=1 i=1

For the example given in Figure 3-2, M il’) =3, M2o  =4, MO = 3x4 = 12; 

M , ( 2) =4, M2® =4, M(2) = 4x4 = 16; MiP> =3, M2(3,l =4, MP1 = 3x4 = 12; and M 

= MO + Ml2) + MO = 40.

Table 3-3 gives the numbers of receptive fields for some commonly- 

used generalization parameters, assuming di = d2 = 1. This table shows 

that the required memory size actually decreases with the generalization 

parameter. This is because, while the number of layers increases linearly

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with the generalization factors, the number of squares each layer 

decreases at higher order.

Table 3-3: Number of receptive fields vs. generalization factor

Generalization factor Number of receptive fields00itCN 
_1II L, = L2 = 200

4 2653 10303
8 1433 5357
16 829 2893
32 539 1673
64 431 1087
128 - 867

3.2.3 Addressing Mechanism and Excitation Vector

For one given input x =(x\, X2) (or q = (qu q2)j, one memory element 

(square/rectangle) at each layer is activated. The relative address of the 

particular element at kth layer can be defined as:

< } = K (k) - D x M ®  +r9iw k = 1 p (3.12)

where

ceil

1XN1Wt

+  ceil
(qi +1) -  (& -1 )  x d i

i=  1 ,2 (3.13)
L P  J P

If we number the memory elements incrementally from lower layer 

(smaller displacement) to upper layer (larger displacement), the 

"absolute” address of this element will be:

a q(k) = ] ? M (i) + arqm  M(0)= 0 (3.14)
/=o
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In Figure 3-2, for input q = (3, 4), rqf’) = (2, 2), arqn) = (2-1)><3+2 = 5; rq(2) 

= (2, 3), arq(2) = (3-1) x 4 + 2 = 10; rq 0) = (2, 2), arq0) = (2-1 )x3+2 = 5; aq M) = 

Mf°) + arq (D = 5, aq (2) = Mf°) + MH) + arq (2) = 0+12+10 =22, aq P) = M!°) + Ml') + 

Ml2) + arq3 = 0+12+16+5 = 33. The corresponding excitation vector S(3,4j is:

That is, the 5th, 22nd and 33rd elements of the excitation vector have 

the value of one and other 37 elements are 0.

3.2.4 Coordinates of Centers of Receptive Fields

Denote c (k) =  ( c (k) , c (qk)) the coordinates (on the discretized input

space) of the center of memory element a t kth layer, of which each 

coordinate can be calculated according to:

(3.15)

s mod((fc — 1) x  d (, p )  — 1 
2

c q,ik) =  <s  mod((/c -1 )  x d t , p )  + (rq,{k)- 2 ) x p  + - - - - -

L, -1  + s mod((k -1 ) x  d t , p )  + (r? {k) - 2 ) x p  
_

2 < r ik) < M  (t)Hi ‘

k = 2  p; i = 1, 2 (3.16a)

c
1 < r  (1> < M  (1)

Hi 1

i = 1, 2 (3.16b)
* Li -1 + ( ^ (1> ~l)x/g

2
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The distance between the input q and the center of each 

receptive field at kth layer associated with the input is defined as:

S k = max  {\q, - < , | }

i e {  1, 2}

fork = 1 , p (3.17)

which is always less than p/2. Again, take q = (3, 4) for example, cqn) = (4, 

4), cq(2) = (2, 5), cqP) = (3, 3); 8q<» = 1, Sql2) = 1, 5q(3) = 1.

The definition given by Eq. (3.17) will be convenient for one to 

determine whether an input (or weight) is located within a square.

3

2

•  •

0 1

The centers of 
receptive fields 

associated with a 
particular input, (3,4), 
marked by star sign, 
are located within a 

square of side 3, with 
the input at the center 

of the square.

Legend:
Red: 1st layer 
Green: 2nd layer 
Blue: 3 d layer

Figure 3-4: The centers of receptive fields
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Figure 3-4 shows the distribution pattern of centers of receptive fields of 

CMAC NN on the 2-dimensional input space (plane). Again those near 

the edges of the input space are not shown so that the diagonal pattern 

is dearly seen. The centers of receptive fields associated with input (3, 4) 

are located within a square of side 3, with the input (marked by a star sign) 

at the center of the square.

Figure 3-5 shows two more examples of receptive fields associated 

with inputs (0, 1) and (5, 9), which are near the edges of the input space. 

In Table 3-4, the addresses, center coordinates and distances between 

the inputs and their corresponding centers are given by calculation 

according to equations (3.12), (3.16) and (3.17). Cross-examining Table 3-4 

with Figure 3-3 and Figure 3-2 verifies the correctness of these equations.

Figure 3-5: More examples of receptive fields
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Table 3-4: RF addresses and center coordinates of 3 different inputs

Input
variable

d

Absolute
address

aaw

Center coordinates 

C a W

Distance

8 q W

(3, 4) 5, 22, 33 (4, 4), (2, 5), (3, 3) 1.0, 1.0, 1.0
(0,1) 1, 17,29 (1,1), (0, 2), (.5, .5) 1.0, 1.0, 0.5
(5,9) 11, 27, 40 ..(4, 9), (5, 8), (6, 8,5).. 1.0, 1.0, 1.0

The excitation vectors corresponding to (0, 1) and (5, 9) are:

S(o,i) = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,l,0,0,0,0,0,0m0,0,0]T (3.18)

and

S(5,9) = [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1 ]T (3.19)

3.3 n-Dimensional-lnput CMAC

Generally, for n > 2, the shape of CMAC receptive fields are 

hypercubes. Though it is hard to visualize these receptive fields in this case,- 

the principles of calculation of memory size, addresses and coordinates of 

the centers for 1-D and 2-D CMAC apply to the higher-dimensional-input 

case.

3.3.1 Number of Receptive fields

As a natural extension of 1-input and 2-input CMAC, at each layer, 

the number of hypercubes (or, hyperparallelepipeds) of n-input CMAC is:
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where

M (k) = f l M -
i=i

k = 1......p (3.20)

M ] k) = ceil
' (k- tyxd; '  
. P .

+ ceil

i 
i I ?r-
 

 ̂
1 X

1 
>

i = 1, 2......n (3.21)

So, the memory size (total number of hypercubes) is:

k=1
(3.22)

Figure 3-6 shows the relationship between the number of receptive 

fields and the generalization parameter (p). The three cases of input- 

spaces can be represented by Zn ={[zi, Z2, Zn] e In | 0 ^  z, ^  U-l, i = 1, 

2 , n} when n = 2, 3, and 4. The calculation also assumes U = 200 and di 

= 1 for i = 1, 2 , n. Two conclusions can be drawn from this figure: (1) The

50 100 150
Generalization parameter

Figure 3-6: Number of receptive fields vs. generalization parameter
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number of receptive fields increases dramatically with the dimension of 

the input space (when p = 64, the numbers are 1087, 4523, and 18967 

respectively for 2-D, 3-D and 4-D input spaces); (2) The number of 

receptive fields decreases when the value of generalization parameter 

increases, and the speed of decrement slows when the generalization 

parameter becomes bigger.

3.3.2 Addressing Mechanism and Excitation Vector

For one given input q = (qi, qn), one memory element 

(hypercube) at each layer is activated. The relative address of the 

particular element at kth layer can be defined as:

R-l

i=i

0k) k= 1 p (3.23)

where

ceil
(k-tyxdi

+ ceil
{qt + l ) - ( k - l ) x d i i = 1, 2 n (3.24)

If we number the memory elements incrementally from lower layer 

(smaller displacement) to upper layer (larger displacement), the 

"absolute” address of this element will be:

k-l
a qw  =  ]T M (i) + arqw  M(°>= 0 (3.25)

i=0

The value of jth element of the excitation vector sq may be 

mathematically expressed as:
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Sa( j )
Otherwise

(3.26)

3.3.3 Coordinates of Centers of Receptive Fields

Denote = ( c ® ,. . . ,c ® )  the coordinates (on the discretized input

space) of the center of memory element at kth layer, of which each 

coordinate can be calculated according to:

(i)
( r m - Y ) X P  + ( P - V ) 1 < rq m < M t(1)

= 1 n (3.27a)

s mod((£: -1 )  x  d t., p )  -1

s mod((& -1 )  x  d j , p )  + (rqi (i) -  2) x  p  + (/?-D

L, - l  + s m o d ((£ - l)x d ;, /?) + (/- w  -2 ) x /?
( * >  =  M  <*>

k = 2,..., p; i = 1 , n (3.27b)

The distance between the input q and the center of each memory 

unit associated with the input is defined as:

Sq =  max 

i e  n)
(|Qi - < | ) for k = ] , p (3.28)

which is always less than p/2.
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This chapter wil! conclude with a brief discussion of the output 

function of neural network, which is conventionally a linear combiner 

written in vector form as:

y , = s , » w  (3.29)

where sq is the excitation vector corresponding to input q and may be 

calculated according to (3.26). w denotes the weight vector that is the 

contents of memory elements of CMAC network. yq is the (scalar) output 

of CMAC network in response to input q.

The radial basis function network mentioned in chapter 2 provides 

another way to look at the output function. We start by revising (2.4) into:

M

If the function 0(*) is defined as:

1, if d!  < p l 2
q y  (3.31)

0, Otherwise

Then equations (3.29) and (3.30) are equivalent. Nevertheless, 

equation (3.30) offers broad choice of flexibility but adds additional 

complexity to the algorithm of CMAC neural networks.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

EIGENANALYSIS OF CMAC ALGORITHMS

4.1 Introduction

Eigenanalysis is a basic tool of analysis in the study of digital signal 

processing, which involves a useful decomposition of a matrix in terms of 

its eigenvalues and associated eigenvectors. As discussed in chapter 2, 

the CMAC neural network may be regarded as an adaptive filter. This 

suggests that we could study CMAC within a general adaptation context 

that has been studied by such disciplines as adaptive signal processing 

and adaptive control.

A comparison between a CMAC neural network and an adaptive 

FIR filter helps formulate the CMAC algorithm in proper form for this study. 

As shown in Figure 4-1, the operation procedures of both the CMAC 

neural network and the adaptive FIR filter can be divided into three parts: 

(1) an input converter that forms a vector, x or s, from the input signal x. 

Their length, M, is equal to the number of the weights (taps); (2) an inner 

product of vector x, or s, with the weight vector, w; (3) a weight updating 

algorithm such as the LMS algorithm, Aw = 2|iex or Aw = (a/p)es, or its
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Inner product 
(Linear combiner)

e =

'M -2

LMS algorithmConverter

Aw=2pex

An Adaptive FIR Filter

Q —  •
Inner product 

(Linear combiner)
k-2

LMS algorithm ( p =a/(2p))
Converter

Aw = (a/p)es

A CMAC Neural Network (p=3)

Figure 4-1: An illustrative comparison between 
CMAC neural network and adaptive FIR filter (SISO)
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extensions (e.g., Filtered-x or Filtered-£, depending on the configuration 

in which the filter/network is applied). The first step, input conversion, is 

significantly different in the two cases while the other two procedures, 

output estimation and weight updating, are much the same, at least in 

their forms of representation,

4.2 The Performance Function

Assume at time step k, a pair of data (Xk, dk) is presented, in which x* 

is the input and dk is the desired output (target). The output of CMAC 

corresponding to Xk is:

y t =  s [ . w = w r » s t (4.1)

where w is the weight vector of size M (memory size) and Sk is the 

excitation (selection) vector determined by Xk. For a conventional CMAC 

neural network, Sk is a vector with p elements of one and M-p elements of 

zero. Denote Sk(j) the jth element of the excitation vector Sk, the value of 

which may be decided using methods presented in chapter 3.

The error between the desired output dk and the estimated output

Yk is:

ek = dk - y t = d k-  s [*w  (4.2)

The goal of adaptation is to minimize the following performance 

function (MSE):

J(w) = E[e2k] = E[(dk- y k)2) = E[(dk- s Tk «w)2] (4.3)
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Take the derivative of J(w),

~ 7 ( w )  = ^ E[(dk -  j , ) 2] = E [ ^ - ( d ;  - 2 x d ky k+ y 2k)]

=  E[ 2 x d t
9w 7* t 2 x « S ' '

] = ( -2 )x £ [
/y

Tit (<*t - y t )]

(-2) x £[s * (dt -  sTw)] = (-2 ) x  {E[st£*t ] -  £[s*sT ]w}

Set —  7(w)lw_w,=0, that is, 
ow

( - 2 ) x { E [ s kd k] - E [ s ks Tk]W*} = 0

£'[sX]w* = £[strft ] (4.4)

Let R denote the MxM correlation matrix of the excitation vector Sk

of the CMAC neural network:

R = E[8ksTky.

E[sk(l)sk(l)] E[ s ,( l)s ,(2 )]

£ [S l(2)st (l)] .E[st (2)st (2)]

E[sk( M) s k(l)] E[sk( M ) s k(2)]

E[sk( l )sk(M)] ' 

E[Sk(2)sk(M)]

E[sk( M ) s k(M)]

(4.5)

Let p denote the Mxl cross-correlation vector between the 

excitation vector and the desired response dk:

V  = E[dks k] =

E[ dks k(I)] 

E[dks k(2)]

E[ dks k(M)]

(4.6)

Then equation (4.4) becomes:

Rw* = p (4.7)
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Equation (4.7) is the Wiener-Hopf equation in matrix form, which 

gives the optimal weight vector:

w* =  R ~l p  (4.8)

under the assumption that R-> exists.

The properties of the correlation matrix R are very important in the 

study of adaptive filtering theory, which will be explored in the next 

section. Here we take a brief look at the optimal solution problem from a 

different way familiar to the community of CMAC neural networks, that is, 

the batch-mode solution. The derivation of properties and theorems in the 

next two sections could be conducted similarly by assuming a limited 

number of training data. The problem is re-stated as follows.

Assume that N- pairs of data, (Xk, dk), k =1, ..., N, are available for 

training. For each pair of data, the output of CMAC is yk = s* »w = wr -s * . 

The error between the desired output dk and the estimated output yk is 

ek =dk- y k =dk-  sj[ » w .  The goal of adaptation is to achieve a minimum

for the following performance function:

W  = =-[-£(<** - y * )2 -s [  *w )2 (4.9)
N f i  Nt?i A f w

Again, take the derivative of J(w),

- 2xi l ‘ y t+y ^  <410>dw N dw f-f N ow
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1 NAssume £[•] = —Y(»)for the stochastic process being studied (this is

a reasonable assumption for a large N), we conclude that equation (4.11) 

is the same as equation (4.4) or the Wiener-Hopf equation (4.7). 

Furthermore, let S denote the excitation matrix:

y(NxM)

and let d denote the response vector:

dx

d it
‘ (A 'x l)

Equation (4.11) may be written in matrix-vector form as:

— SrSw*=— Srd
N N

To derive (4.14), the following two equations are used: 

SrS * 2 > * f

(4.12)

(4.13)

(4.14)

(4.15)
i=l
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and

N

Srd = 2 M , (4.16)

In this case the correlation matrix is defined as

(4.17)

and the cross-correlation vector

4.3 Properties of Correiation Matrix

The correlation matrix R is defined by equation (4.5) or (4.17). In this 

section, nine useful properties of the correlation matrix are discussed. The 

first seven properties apply to a general correlation matrix [29] and are 

presented without elaboration. Properties 8 and 9 apply to CMAC neural 

networks only. It is these unique properties that make the eigenanalysis of 

CMAC neural network important beyond mere mathematical 

manipulation. These properties will be used in the derivation and/or 

interpretation of convergence conditions and misadjustment estimation 

of CMAC algorithm in next section.

Property 1: For a correlation matrix R, the following equations hold:

RT=R (4.19)

RRT = RTR =R2 (4.20)
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Eq. (4.19) follows directly from the definition of R given in Eq. (4.7) 

and Eq(4.20) follows directly from Eq. (4.19).

Property 2: The correlation matrix R is always nonnegafive definite 

(or positive semidefinite).

Let x be an arbitrary (nonzero) M-by-1 vector. The fact x \  = s[x 

(both are scalar) is used in the following equation:

x  R x  =  x r £ '[st s [ ] x  =  £ [ x r s t s f x ]  =  2?[(xr s t ) 2] >  0

Property 3: Let Ai, Az ..., Am be the eigenvalues of the correlation

matrix R. Then all these eigenvalues are real and nonnegative.

Denote q; the eigenvector associated with Ai. Hence,

Rq, = f a f  1 = 1 , 2 ......M

Pre-multiplying both sides of this equation by q j , we get

qfRq, =A,qfq,

Since both qfRq, and qfq, are nonnegative scalars, it follows that Ai

2s 0.

Property 4: Let Ah As, Am be the eigenvalues of the correlation

matrix R. Then the sum of these eigenvalues equals the trace of matrix R.

The trace of a square matrix is defined as the sum of the diagonal 

elements of the matrix. This property is not limited to the correlation matrix.
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Property 5: Let Amax be the largest eigenvalue and Amin be the 

smallest eigenvalue of the correlation matrix R. Then

where the spectral norm ||r|| /s defined as the square root of the largest

eigenvalue of RTR.

Property 6: The eigenvalues of the correlation matrix Rof a discrete­

time stochastic process are bound by the minimum and maximum values 

of the power spectral density of the process.

Property 7: Let q,, q2, ..., q i be the normalized eigenvectors

corresponding to the distinct eigenvalues Ai, A2, ..., Am of the correlation 

matrix R, respectively. That is,

where Q = [q i,q2,.,q M] ond A = diag(Al ,A2,...AM).

Property 8: The trace of correlation matrix R of the CMAC neural 

network is equal to the generalization parameter of the CMAC neural 

network. That is

and

Then the original matrix R may be diagonalized as follows:

Q~‘RQ = A (4.21)

trace{ R) = p (4.22)
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Proof: Let nj denote the product of the ith element and jfh 

element of the excitation vector Sk, i.e.,

rtJ = s , (i)s, (j)

The value of r» may be determined by the following equation:

ru = M 0 f  =
1 i f  i ,h element o f  sk is 1 

0 if  i* element o f  sk is 0

1=1

Since Sk is the excitation vector that has p elements of one 

and M-p elements of zero,

M
Ysru=p

Hence,

rr(R) = £ £ ( ' « )  =E[Yj ra]=E(p) = p
i=l i=4

Property 9: Let M, Az ..., Am be the eigenvalues of the correlation 

matrix R. Then

M
(4.23)

M M

i=i

This follows directly from Property 4 and Eq. (4.22).

The above proof has been done for the correlation matrix defined 

in Eq. (4.5). It can be proved that Properties 8 and 9 apply also to the 

correlation matrix defined in Eq. (4.17).
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Generally, there is little can be told about the statistic 

characteristics of the correlation matrix R. The importance of Property 8 

and Property 9 is that, for a CMAC neural network, we can determine the 

trace of R (and the sum of eigenvalues of R) before the input data are 

actually collected. The trace of R is a key factor in determining the 

convergence bound of learning rate and the misadjustment due to the 

gradient noise (discussed in next section).

It is worthwhile to point out that, while the technique of hashing 

mapping used in most practical CMAC neural networks is not mentioned 

in the presentation of the above properties, these properties apply to 

CMAC neural networks with or without hashing. The reason is that the 

hashing reduces the memory size but not the generalization parameter. 

There always are p elements of one and M-p elements of zero in the 

excitation vector.

Taking the CMAC given in Figure 3-1 (a) as an example, its

generalization parameter is 3 and its excitation matrix S is given in Table 3-

1. Without hash mapping, the excitation matrix Ssxio is

3(1,:) =s,= [1,0,0,1,0,0,0,1,0,0]
S(2,:) =s2= [1,0,0,0,1,0,0,1,0,0]
S(3,:) =s3= [1,0,0,0,1,0,0,0,1,0]
S(4,:) =s4= [0,1,0,0,1,0,0,0,1,0]
S(5,:) =s5= [0,1,0,0,0,1,0,0,1,0]
3(6,:) =s6 = [0,1,0,0,0,1,0,0,0,1]
3(7,:) =s7= [0,0,1,0,0,1,0,0,0,1]
S(8,:) =s8= [0,0,1,0,0,0,1,0,0,13
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8 8

Using Matlab, it is easy to verify that ]T s (i, ;) = Z S<0‘) = 3 for i =1,
7=  1 7=1

2, 8 and tr(R) = tr(STS/8) = 3. The eigenvalues of R are: 0, 0, 0.0298,

0.0399, 0 .1028, 0.1176, 0.2891, 0.5485, 0.8284, 1.0440. The sum of these

eigenvalues is 3.

But rank(R) = 8 < 10, so R-1 doesn’t exist.

Given the hash matrix Htox6 as follows:

H (1,:) = [1,0,0,0,0,0];
H(2,:)= [0,1,0,0,0,0];
H(3,:)= [0,0,1,0,0,0];
H(4,:)= [0,0,0,1,0,0] ;
H(5,:)= [0,0,0,0,1,03;
H(6,:)= [0,0,0,0,0,1];
H(7,:)= [0,0,0,0,1,01;
H(8,:) = [0,0,0,0,0,1];
H (9,:) = [0,0,1,0,0,01;
H(10,:) = [0,0,0,1,0,0];

After hash mapping (SH), the 8x6 excitation matrix Sh becomes

1 0 0 1 0 1
1 0 0 0 1 1
1 0 1 0 1 0
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 1 0 1
0 0 1 1 1 0

It can be verified that Tr(Rh) = Tr(ShTSh/8)= 3. The eigenvalues of Rh 

are: 0.0424, 0.1183, 0.2624, 0.4354, 0.5732, and 1.5684. The sum of all 

eigenvalues is 3.

Rank(Rh) = 6 so R-1 exists. Rh is positive definite.
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4.4 Convergence and Misadiustment of CMAC Algorithms

The weights of CMAC neural networks are usually trained by the 

LMS algorithm, which is based on the method of steepest descent.

4.4.1 The Method of Steepest Descent

First we go back to the performance function defined in section 4.2. 

Expanding Eq. (4.3) and substituting Eq. (4.5) and Eq. (4.6):

/ ( w) = E[(dk - s[ • w)2] = E [ d 2k ] -  2E[dksTk)w + wT£fs*s[]w

= £ K 2]-2/7rw + wrRw (4.24)

The minimum MSE is obtained by substituting Eq. (4.8) into Eq. (4.9): 

J ^ = E [ d 2k] - prw* (4.25)

Substituting Eq. (4.25) and Eq. (4.8) into (4.24):

J(  w) = + p7w * -2prw + w7Rw (4.26)

Define a new vector:

v = w - w *  (4.27)

Substituting w = v + w* into Eq. (4.26):

7(w) = 7 ,̂, + pr w * -2pT (v + w*) + (vT + w *r )(Rv + Rw*)

= + prw *-2pTv -2 p r w*+(vr + w*r )(Rv + p)

-2pTv - p Tw*+vr Rv + w*r Rv + vrp + w *r p 

= j min - p rv + vrRv + pTR Rv

= / mta+ v rRv (4.28)
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Eq. (4.21) can be rewritten as:

R = QA.Q 1 =Q A.Q r 

Substituting this expression for R in Eq. (4.28):

/  = /„ * ,+  v rRv = J ^  + vrQA.Qr v = /„ ,„ +  v'r Av1 (4.29)

where v '= Q ~!v and v = Q v \

The gradient vector of the performance function is:

f)r r) r)
V = Ip  3 ^ *1 = £[2e> lto e‘ 1 = ~2Ele‘ s‘ 1 |4-301

Differentiating Eq. (4:29) yields another form of the gradient:

V = = 2Rv = 2QA.V' (4.31)
ow

Now, the steepest descent method makes each change in the 

weight vector, AWk, proportional to the negative of the gradient vector:

Aw*=w*+1-w* = //(-v A)

Hence,

wt+1 =w,+//(~Vt ) (4.32)

Subtracting w* from both sides of Eq. (4.32):

= v*+M-V*)

Pre-multiplying both sides by Q-1 and using Eq. (4.31) yields:

v'*+1 = ( / - 2 M ) v V  = ( / -2 M )* +V 0 (4.33)

For the stability of (14), it is necessary that

|l -  <1, fori = 1, 2,..., M
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Thus,

1 > n  > 0 (4.34)
m̂ax

Inequality (4.34) is the condition of stability for the steepest descent 

method.

4.4.2 Convergence of LMS Algorithm

The LMS algorithm uses the estimated (instantaneous) gradients at

de2each step, V* = -4 -, as the guide to adjust the weight vector: 
dw

Awt = w w - w  k = j u ( - \ k) (4.35)

where

V * = _ L  = 2 e , *  = - 2 ^  (4.36)
dw dw.

Hence, the weight updating formula of the LMS algorithm is

wM = w* + 2V(dk -  yk )sk (4.37)

Conventionally, the weight adjusting formula of CMAC is written as:

w*+i = w* + “ ■ =  w* ->*)s* (4-38)
P P

Let u -  —  ) (4.37) and (4.38) are then equivalent.
2 p

Taking the expected value, we get

Elwk+l] = E[wk] + -E [eksk} = E[wk] + - {E [dksk] -E [SksTkv k]} 
P P
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To continue on, we need to make an assumption that the excitation 

vector Sk is independent of the weight vector Wk. The independence can 

be interpreted as the result of slow adaptation. Assume that the learning 

rate p is small (or the generalization parameter p is big), the adaptive 

weight vector depends on many past input samples, and its dependence 

on the present excitation vector is negligible. Furthermore, when the 

training process is stabilized, the weight vector will remain unchanged 

while the excitation vector will still respond to the input a t every tick of 

time. A similar assumption was first made by Widrow in 1970 and then 

again in 1996 [84] for the study of convergence of adaptive filters. For 

CMAC neural networks with hashing, another layer of independence is 

added. .

It follows that

£ [w w  ] =  £ [w  J  +  -  E[ dksk ] -  -  J5[sts £ ]£ [ w * ]
P P

= E [ w J + -p - -R E [w J  
P  P

= ( I - - R ) E [ w J  + - p  
P  P

Substituting w = v + w*, we get

£[vi+1] = ( I - - R ) £ [ v J  
P

Using v = Qv'and R = Q Q 1,
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E[ v't+1 ] = (I -~ A )E [y \ ] = ( ! -  —A)*+1 £[v'0 ] (4.39)
P P

Comparing Eq. (4.33) and Eq. (4.39), we notice that in the former 

case (the steepest descent method) the vector vk will go to zero when k 

goes to infinity under the condition given in Eq. (4.34), while in the latter 

case (LMS algorithm) it is the expected value of vk, rather than the vector 

vk itself, that will go to zero when k goes to infinity (under the condition 

given in Theorem 4.1). Since the vector vk is a linear transformation of the 

weight vector Wk, the vector Wk or its expected value will also go to zero 

when k goes to infinity.

Taking the expectation of Eq. (4.36) and using Eq. (4.30), it follows

that:

E[Vk] = -2E[eksk] = V (4.40)

This indicates that, although the gradient estimates made at each 

step may be noisy, many steps taken in the direction of the negative 

instantaneous gradient will, on average, go in the correct direction for the 

steepest descent.

The above discussion can be summarized into the following 

theorems:

Theorem 4.1 For a CMAC neural network trained by Eq. (4.38), a 

necessary and sufficient condition for convergence of the weight vector 

in the mean is
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2 p > a >  0 (4.41)

where A max is the largest eigenvalue of the correlation matrix R defined by 

Eq. (4.5) or Eq. (4.17).

Proof It follows from Eq. (4.39) that, for the convergence of E[vk’],

i -£Ljl <1

which is equivalent to:

a
- 1<1  4  <1

P

Therefore,

2 p
> a >  0

for i = 1 M

for i = 1,..., M

Theorem 4.2 For a CMAC neural network trained by Eq. (4.38), a 

sufficient condition for convergence of the weight vector in the mean is

2 > a > 0 (4.42)

Proof It follows from Property 3 that

M
o < 4 « < E 4i=i

Property 9 tells us that

M

=P
/=!

Hence,

0 < Ana*< P
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or

n  1 10 <  —  <
p K

Multiplying by 2p, we get

0 < 2 < - ^  (4.43)
Armax

The last inequality indicates that the interval (0, 2) is a part of 

the interval (0, 2p/ A m a x ). Therefore, (4.42) follows from (4.41).

Theorem 4.1 and 4.2 present two bounds on the learning rate of the 

CMAC neural network that guarantee convergence of the weight vector 

in the mean. Theorem 4.1 is a new conclusion about the convergence of 

CMAC neural networks. Canfield [13] presented a condition of 

convergence similar to Theorem 4.2, with different approach. While it is 

difficult to calculate the bound given by Eq. (4.41) of Theorem 4.1, it points 

out the theoretical bound is bigger than two. For example, if the 

maximum eigenvalue of the correlation matrix R is half the sum of all 

eigenvalues which equals the generalization parameter p, the maximum 

bound of the learning rate will be four.

4.4.3 Misadiustment of LMS Algorithm

Another important concept, misadjustment due to gradient noise

A

Nk= V* - V t , is defined as the ratio of the average excess MSE to the 

minimum MSE, i.e.
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average excess MSE 
Misadjustment = --------------------------- (4.44)•*' • s i r r  * ‘mm MSE

Using Eq. (4.29), we get

Misadjustment = = A y *1 (4 .4 5 )
^  mm J  nan

It is interesting to note that while JEIvjwill go to zero when k goes to 

infinity, E [\'Tk AVk ] will not go to zero. The reason is that while \'k takes 

both positive and negative values, v’* Av'k is always greater than or equal 

to zero.

It has been proved [84] that, after adaptive transients die out, 

E K A v ’J ^ ^ / i - C R )  (4.46)

Substituting Eq. (4.46) into Eq. (4.45) yields

Misadjustment =  H * r̂ (R) (4.47)

Theorem 4.3 For a CMAC neural network trained with Eq. (4.38), the 

misadjustment due to gradient noise after adaptive transients die out may 

be estimated by:

(XMisadjustment = — (4.48)

Proof

Eq. (4.48) follows by substituting n  = —  and tr(R) = p into Eq. (4.47).
2 p
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Theorem 4.3 gives us a quick way to select the parameter of CMAC 

neural network to meet certain design specification. For example, 

typically an experienced designer would expect no more than 10% 

misadjustment, so one can select a learning rate (a) less than 0.2. The 

tradeoff is that the adaptation time will be longer when a decreases.
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CHAPTER 5

SYSTEM ARCHITECTURE AND IMPLEMENTATIONS

5.1 The System Architecture

In the first chapter, we have already discussed the physical 

composition of the pole-mounted sonar vibration prediction system 

(Figure 1-7). In this section, the working mechanism of the system will be 

discussed. For simplicity, we first assume a single-degree-of-freedom (DOF) 

of the pole movement.

Vp\  (Target)

Output

Photocell

Strain Gauge

Pole
Dynamics

Figure 5-1: Block diagram of 1-DOF (x-axis) CMAC prediction system 

As shown in Figure 5-1, the signal detected from the photocells (one

for each axis), which is proportional to the sonar's displacement (x or y), is 

sent to the learning module -  CMAC neural network as its training target.
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The voltage signal from the strain gauge is connected to the CMAC 

neural network as its pointer information. After a period of training, it is 

expected that the output of the CMAC neural network will predict the 

sonar’s coordinates with or without the continuing existence of the 

training target data (meaning that it does not need the on-site position 

detector). Also, we can tell from Figure 5-1 that the key to the success of 

this model lies in: (1) CMAC's capability of representing the target signal in 

accordance with the pointer information, and (2) how well the target 

signal and pointer signal are acquired and how closely they can 

represent the real signals.

Target

External
Forced Out

’ointer

Photocell

Photocell

Strain Gauge

Strain Gauge

2-DOF Pole 
Dynamics

Figure 5-2: Block diagram of 2-DOF CMAC prediction system

There are two ways of extending from the 1 -DOF architecture to the 

2-DOF case, which is more realistic. One method is to treat the two DOFs 

separately, effectively assuming that the 2-dimensional dynamics of pole 

are uncoupled. Hence, the whole system is composed of two identical 1-
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DOF subsystems. The other way is to use a CMAC network with higher 

dimensions of input and output (Figure 5-2). The advantage of the latter 

approach is that the single and "bigger" neural network is expected to 

team the interaction of two dimensions, since its receptive fields are 

organized on the information from both dimensions. The disadvantage is 

that its memory size (number of weights) will be much larger since the 

memory size increases rapidly with the number of pointers of the CMAC 

neural network. Fortunately, this disadvantage is compensated by the 

following two factors: (1) the hashing technique used in the CMAC neural 

network, and (2) the fact that these two DOFs are coupled so that the 

number of pointers does not need to double since there exists redundant 

information in them. These issues are further discussed in the sections on 

simulation analyses.

To test whether the proposed system/approach is capable of 

fulfilling its task, the first step was to establish the simulation model and 

examine the results under different circumstances. Then the initially-tested 

architecture was prototyped in the laboratory, which enabled verification 

of this approach in a real-time environment and provided a platform of 

system identification for the pole.
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5.2 Simulink block fS- Function) implementation of CMAC NN

The simulations were carried out using Simulink, which is integrated 

with Matlab. Simulink is one of the most widely used software packages in 

academia and industry for modeling, simulating, and analyzing systems. 

Simulating a dynamic system with Simulink is a two-step process. First, one 

creates a graphical model of the system to be simulated, using Simulink's 

model editor. One then uses Simulink to simulate and analyze the 

behavior of the system over a specified time span. Simulink uses 

information that one entered into the model to perform the simulation.

One of the most extraordinary features of Simulink is its graphical 

user interface (GUI) for building models as block diagram, using click-and- 

drag mouse operations. In a Simulink model, each system component is 

represented by a block or a group of blocks. Simulink includes a 

comprehensive block library of sinks, sources, linear and nonlinear 

components, and connectors. What Simulink’s block library does not 

provide, however, is the CMAC neural network.

Blocks are the elements or components from which Simulink models 

are built. An S-function (System-function) is a computer language 

description of a Simulink block. S-functions provide a powerful mechanism 

for extending the capabilities of Simulink. An advantage of using S- 

functions is that one can build a general purpose block that can be used
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many times in a model while varying parameters with each instance of 

the block.

S-functions can be written in MATLAB, C, C++, Ada, or Fortran. C, 

C++, Ada, and Fortran S-functions are compiled as MEX-files using the mex 

utility. MEX-files are dynamically linked subroutines that the MATLAB 

interpreter can automatically load and execute. MATLAB identifies MEX- 

files by platform-specific extensions, such as *.dll in a Windows 

environment.

The Simulink block (S-function) Implementation of the CMAC neural 

network is written in the C language. The UNH version’ of the CMAC 

neural network is incorporated into the S-function. The code is highly 

structured and usually comprises a number of Simulink callback methods 

(functions), in which the Simstruct access macros, C mx-functions, and 

user-defined functions could be used.

• Simstruct access macros: defined in "simstruc.h,” started with “ss” 

(such as ssSetSampleTime);

• C mx-functions: defined in “simstruc.h,” started with "mx" (such 

as mxGetPr);

• User-defined functions: such as “genmap()", and "sfoap().”

* The weight adjustment equation implemented in UNH_CMAC code is:
Aw,. = 2 'a (y d (S) -  y (S )) + 2"A (y(S )  -  w[A’,. ])

where separate training gains are used to individually emphasize the importance of the 
supervised learning versus the weight magnitude normalization. Since good output performance 
(which is affected by Prf is generally the most important, 2( 'p2) is typically selected to be at most 
equal to 2('pr)/4.
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Check Parameters' Validity 
mdlCheckParamefers

Specify Characteristics 
ssSetNumContStates, 
ssSetSampleTime, etc

Obtain & Pass Param Values 
to internal variables. 

mxGetPr, etc

Call User-Defined Function 
genm ap  to Initialize 

Random Lookup Tabie for 
Hashing

— *| Call User-Defined Function 
| stoap to Get the Memory 
I Addresses According to 

Current Inputs

Start of Simulation

Calculate Outputs 
mdlOutput

Update Weights 
mdlUpdate

Initialize Data Structure of 
CMAC Neural Network: 

Allocate Memory for 
CMAC, Initialize Random 
Lookup Table, and Clear 

CMAC Weights 
mdlStart

Initialize the Block: Specify 
the Number of Inputs, 

Outputs, States, 
Parameters, and other 

Characteristics of 
the S-function. 

mdllnitializeSizes 
mdllnitializeSampleTimes

Figure 5-3: How Simulink performs CMAC S-function simulation
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Figure 5-3 shows a flowchart illustrating how Simulink performs 

CMAC S-function simulation. The initialization of S-function parameters 

and the CMAC data structure is executed once in the simulation of the 

model, while the other two

callback methods mdlOutput 

and mdlUpdate, which 

perform the tasks of 

calculating the outputs and 

training the weights, are 

executed repeatedly until the 

simulation is ended by Simulink.

A Simulink block

implementing the CMAC 

neural network and its dialog 

box are shown in Figure 5-4. 

Three versions of the CMAC 

block, i.e., "CMAC_037" for 

single input and single output, 

“PCMAC” for multiple inputs 

and multiple outputs, and 

“CMAC.O 39" with an

> Targets
PCMAC

> Pointeis

test

la) A Simulink block of CMAC NN
Murl K m iitnr *i-r» W o

S function PCMAC Imask) 

Parameters
Generateahon size (e g. G4)
j a r — — -
Sampling time }e g 0001}

Beta }e g 3)

ff ““  *"“~
Beta2fey 5)

Memory size of weights [e g. 2000} 

internal scaling factor le g 1000)
110000

Quantizaton
noo

r  Hash cofeion

ReeeptivefieWs; ju^ar ' £
Dimension of response and pointer (e.g |1.2))

I 2 3 T "

Number of steps to predict f«100)

OK Cancel

(b) The dialog box of CAMC block

Figure 5-4: A Simulink implementation of 
CMAC neural network
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additional input port for a training switch, are used in the simulation 

models presented in this document.

5.3 Preliminary Study on Simulink Models of the System

Before the data that was used to determine the dynamics of a real 

pole was obtained, a simple 2ncLorder linear system was used as a 

tentative model of the pole dynamics based on the assumption of one 

dominant mode of vibration. Therefore, the results presented in this section 

are preliminary -  they are less about the validity of the pole-sonar 

vibration prediction system than about the functionalities of the S-function 

implementation of the CMAC neural network. The values of the simulated 

pole response and the CMAC output are not calibrated.

First, a simple CMAC learning model of 1-dimensional (x-axis) 

displacement was established (Figure 5-5) in Simulink. This model can be 

viewed as a direct conversion of the block diagram of a 1-DOF CMAC 

prediction system (Figure 5-1) into Simulink. The CMAC block takes the 

voltage output (Vx) of the simulated strain gauge to form its pointers. The 

output of the pole dynamics (x) is used to train CMAC, which produces its 

own output (x1) that would gradually better approximate x.

The simulation result* (Figure 5-6) shows that, after the pole output 

has stabilized, the output of CMAC neural network (x’) almost coincides 

with the pole's actual displacement (x). This simulation revealed that the

* The simulation parameters for simulations discussed in this chapter are given in Appendix IV.
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CMAC neural network has excellent learning capability for sinusoidal 

displacement functions.

r \ Fx 5

V ......... w
s?+sM

Sine Wave Pole

Vx Gain

Gauge

Outputs

CMAC 037
simout

pointers

test
To Workspace

Transport
Delay

Figure 5-5: 1-DOF (X-axis) model of vibration learning using CMAC

- - -  Pole response 
—  CMAC output

a.

■s -0.1

65 -0.2
Time (sec)

Figure 5-6: Simulation results of Figure 5-5

In the second model (Figure 5-7), two modifications were made. 

The first modification is that CMAC was altered to be able to operate in 

training or working mode. During the training period (first 15 sec, as shown 

in Figure 5-8), the simulated pole response (x) signal is used as the training 

signal and fed to the "target” input of the CMAC block; at 15 sec, the
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switch connecting the plant output and the "target" input of the CMAC 

biock "turns off,” so the CMAC is operating only on the pointer 

information. The second modification is that now an input combination of 

two sinusoidal functions of different frequencies is used to simulate a 

relatively more complicated external force applied to the sonar/pole. The 

frequencies and amplitudes of these two inputs are labeled in Figure 5-7. 

The simulation result (Figure 5-8) shows that the CMAC output coincides 

with the pole output (coordinate x) even when the training signal is 

absent after the initial training period. Although the simulated pole 

response looks like a single-frequency sinusoidal signal, the spectral 

analysis reveals two frequency components (at 1Hz and 2Hz) are still 

presented.

ConstantPole Dynamics □
Soopel

target

pointers CMAC_039 

training/hold

Sine Wave 
(2 Hz; A=1)

CMAC mStep
sin

simout

Transport
Delay

Figure 5-7: Second l-DOF model of vibration learning using CMAC
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Pole response 
CMAC output

0 5 10 15 20 25 30
Time (sec)

Figure 5-8: Simulation results of Figure 5-7 

In the third model (Figure 5-9), the input takes one of two 

frequencies alternately. Each frequency component (1Hz or 2Hz) lasts for 

2.5 seconds with its own amplitude and then another frequency 

component takes over. A bigger cycle of 5 seconds (Figure 5-10) is 

formed for the input. This input pattern represents a scenario in which the 

frequency and amplitude of the external force change from time to time 

but will repeat themselves as the operation goes on. The simulation results 

are shown in Figure 5-10. We see that, after three cycles (15 seconds), the 

error of the CMAC learning (the difference between simulated pole 

response and the CMAC output) gradually reduces to within -0.05 ~ +0.05.
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Figure 5-9: l-DOF model with alternate-frequency input
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Figure 5-10: Simulation results of Figure 5-9
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5.4 laboratory Prototype Development

5.4.1 Overview

The lab prototype serves two purposes: (1) It is used as a real-time 

test-bench of CMAC's capabilities of estimating/predicting the 

displacement of the sonar head; (2) It is also used as a platform to obtain 

an experimental model of pole dynamics, which may be placed in the 

simulation models that are more flexible and versatile.

. The central part of the lab prototype is the real-time C-program 

implementation of the CMAC neural network. The development tools 

include Visual C/C++ compiler and DataAcq SDK (detailed later). The 

whole development process is divided into two steps;

• Electrical signals generated by a function generator were fed to 

the computer’s data acquisition board (DT3010) to test the functionality of 

the hardware and the learning capability of the CMAC NN in a real-time 

environment;

• Signals from the detectors (photocells and strain gauges) of pole 

vibration were connected to the computer's data acquisition board to 

test the proposed sonar/pole displacement prediction system as well as 

capture data of the pole dynamics.

5.4.2 DataAca SDK and DT-Qpen Lavers standard for Windows

The DataAcq SDK is a programmer’s DLL (Dynamic Linked Library) 

that supports Data Translation’s most popular data acquisition boards
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under Microsoft Windows 3.x, Windows 95, and Windows NT (Version 3.51 

and 4.0). The DataAcq SDK is an extension to the Microsoft Windows SDK 

that enables one to develop custom data acquisition applications in the 

Windows environment.

Application Layer

Function Library Layer

Library
Routines

Data
Acquisition

DT3010 
Device Driver

Other Device 
Drivers

Data
Manaqement

Applications 
(End-user's code)

Device Interface Layer

Figure 5-1J: DT-Open Layers compliant- DataAcq SDK architecture 

The DataAcq SDK is fully compatible with the DT-Open Layers 

standard for Windows. The DT-Open Layers standard defines software 

calling conventions and a standard architecture a t three different, 

compatible layers (Figure 5-11):

•Application Layer -- Windows application software intended for 

end users. At this layer, interaction with higher- level languages through a 

set of consistent hardware independent commands, part of the API, is 

possible. This set of commands is independent of the device and
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operating system being used, making the iower layers completely 

transparent to the user at this level.

• Function Library Layer -  This layer provides a set of library 

functions that allow the application layer to communicate with the 

device drivers at the device interface layer. The DataAcq SDK is a 

function library layer product.

• Device Interface Layer -  Lower-level drivers called by libraries to 

assert control over specific devices. This layer supports a device 

independent (or dependent) interface for the native operating system, 

but does not provide portability across operating systems.

5.4.3 Real-time C-proaram implementation

The program creates two threads (Figure 5-12). The main function 

sets-up (and releases after the application is ended) the data acquisition 

board and maintains the front-end thread that fulfills the user interface 

tasks including entering the parameters of the CMAC neural network and 

displaying data-processing progress while waiting for key ‘q ’ or ‘Q’ to quit 

the application. The background thread (Figure 5-13) is responsible for 

sampling signals, processing data using the CMAC neural network, and 

outputting the estimated/predicted value for display or recording.
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(Figure 5-14)

Thread 2Is *Q’ or ‘q 
entered?

(Figure 5-13)No
Yes

No
Is Thread 2 

ended?

(Figure 5-15)

Set ‘End’ Flag

Start (Thread 1)

End

Wait for Console Input

Release the Board

Prompt & Wait for User to 
Enter CMAC Parameters

Set up the Board 
(DT3010) for I/O

Clear Console Screen & 
Display "Goodbye!"

Enter Main Data Processing 
Function (Thread 2)

Figure 5-12: Flowchart of main program
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Test Thread- 
End Flag?

Yes

No

End of 
Thread 2

Start Thread 2

De-allocate
MemorySample Data from A/D

Smooth the Sampled Data
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Allocate Memory for CMAC; 
Initialize CMAC Weights
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for CMAC Algorithm
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Update the Weights
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Calculate CMAC Output
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Figure 5-13: Flowchart of data processing thread (thread 2)
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Start Board Setup

End Board Setup

Configure A/D Sub-system 
with olDaConfig

Get a Handle to A/D Sub­
system with oIDaGetDASS

Get a Handle to D/A Sub­
system with olDaGetDASS

Configure D/A Sub-system 
with olDaConfig

Initialize the Device Driver 
and Get the Device Handle 

with olDalnitialize

Set the Data Flow to 
OL_DF_SINGLEVALUE 
using olDalnitialize

Set the Data Flow to 
OL_DF_SINGLEVALUE 

using olDalnitialize

Set the A/D Subsystem’s 
Channel List using 

olDaSetChannelListSize & 
olDaSetChannelListEntry

Set the D/A Subsystem’s 
Channel List using 

OlDaSetChannelListSize & 
OlDaSetChannelListEntry

Inquire about A/D 
Subsystem's Parameters 

using 
olDaGetRange, 
oIDaEncoding & 

olDaGetResolution

Inquire about D/A 
Subsystem’s Parameters 

using 
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olDaEncoding & 
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Figure 5-14: Flowchart of data acquisition board setup
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End board release

Start Board Release

Set a Constant Q.O Level 
on D/A Channels

Release A/D and D/A 
Subsystems using 
o IDaReleaseDASS

Release the Driver and 
Terminate the Session 
using olDaTerminate

Figure 5-15: Flowchart of board release

Figure 5-14 shows how to set up the data acquisition hardware. The 

device driver is first initialized and a device handle is obtained, then 

handles to A/D and D/A sub-system are obtained, the mode of data flow 

and the channel lists are set, and finally one gets the information of these 

subsystems about their data range, resolution and encoding mode. The 

information obtained is used in data conversion between binary values 

(raw data form of DAC and ADC) and floating-point values. The release 

of the board (Figure 5-15) is relatively simple and involves three steps: first 

set a constant 0.0 level on D/A channels, then release the A/D and D/A 

subsystems, and at last release the driver and terminate the session.
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5.5 Laboratory Experiments and Analyses

5.5.1 Real-Time Learning/Predicting Capability of CMAC NN

A large number of experiments have been conducted to verify the 

learning and/or predicting capability of the CMAC neural network with 

the available hardware and computer in a real-time application setting. 

Sampling rates for these experiments are about 3 - 5  KHz. Figure 5-16 

illustrates a setup for observing the experimental result (in the form of a 

Lissajous figure). The target signal (the signal from sensors detecting the 

displacement at the bottom of the pole) is fed to the input 1 (x-channel) 

of the oscilloscope, and the CMAC output is fed (via D/A) to the input 2 

(y-channel) of this oscilloscope. The oscilloscope operates in X-Y 

(sweeping) mode.

Sweep

X-Y

iannel

CMAC output
Target Signal

Figure 5-16: Laboratory setup for observation using oscilloscope
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Our observations showed that, in the case of CMAC learning, a 

straight line segment of 45° showed up (Figure 5-16) after the transient 

period was over, and in the case of CMAC predicting (that is, CMAC 

output set to be n sample time steps ahead the target signal -  the sonar 

displacement), a thin ellipse whose major axis is aligned at 45° from the 

horizontal was presented on the screen of oscilloscope. The ellipse 

became “ fatter" when more steps were being predicted.

The following mathematic analysis helps justify our observations. 

Assume the target signal to be of the form:

x = Asm  cot (5.1)

and the CMAC output to be

y  = Asin 6)(t + At) (5.2)

In the first case, At = 0. Hence, assuming perfect learning

y  -  x  , x  <: A (5.3)

which represents a segment of the 45° straight line.

More generally, equation (5.2) can be expanded as:

y  = Asin(<0f)cos(ffiAO + A cos(ax) sin(ffiAr) (5.4)

Substitute (5.1) into (5.4) and rearrange it,

y  -x c o s jo A t)  
sin(reAr)

=  A cos(ax) (5.5)

Square and add (5.1) and (5.5),
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x 2 +
y-xcos(O )A t)

= A 2 (5.6)
sin(e&r)

which can further be simplified as

x 2 -  2xyco$(aA t) + y 2 =  A 2 sin2(aAt) (5.7)

Equation (5.7) is a quadratic equation representing an ellipse.

The area of an arbitrary ellipse given by the quadratic equation

ax2 + bxy + c y 2 =1 (5.8)

IS

2 71 (5.9)
V4 a c - b 2

Therefore, the area of an ellipse given by (5.7) is

S = M 2|sin(<aAf)|« ^A2c^At\, for small At (5.10)

Equation (5.10) indicates that the area of the ellipse is 

approximately proportional to the length or steps of time advance (delay) 

of the second signal, namely the CMAC output relative to the target 

signal.

In addition to on-site real-time observation, the data could be 

recorded (written to a file) and analyzed later. Figure 5-17 is a Matlab plot 

of the data recorded in an experiment in which the CMAC output was 

expected to predict three steps ahead of the target signal. The data 

pointes marked by “+” , which are the target data shifted to the left by
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three samples, fall almost exactly on the line of CMAC output (as was 

expected in this particular experiment).

signal

CMAC_out|3Ut _ j\l

Sample

Figure 5-17: CMAC prediction of real-time signal

5.5.2 Impulse Response and Approximate Model of a Pole

Experiments indicate that the response of the pole to external 

forces is two-dimensional -  the vibration can be measured (Figure 5-18) 

not only along the same direction as the force but also in the direction 

perpendicular to the force. The former is referred to as the primary 

response and the latter is referred to as the collateral response. As shown 

in figure 5-18, the primary response is a typical impulse response of a 

second-order under-damped linear system. The collateral response is less 

visible but more complicated.
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Figure 5-18: Pole’s two-dimensional responses to impulse force

To further investigate the primary response, we conducted another 

experiment in which the impulse response of the pole and a 10 Hz 

sinusoidal signal produced by a function generator are compared (Figure 

5-19). We conclude that the natural frequency for primary dynamics islO 

Hz. In Figure 5-18(b), the fundamental frequency of FFT is 2 Hz (2000 

samples at sampling frequency of 4000Hz). More samples will make the 

figure look finer.

By constructing a Simulink model of a second-order under-damped 

linear system, the damping ratio can be experimentally determined to be 

about 0.001.
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(a) Detected signal vs. 10 Hz sinusoidal signal
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Figure 5-19: Detected pole response and reference 10 Hz sinusoidal signal

The pattern of the collateral response (Figure 5-18) resembles the 

modulation of a 10 Hz carrier by a very low frequency signal (less than 1 

Hz). We propose modeling the collateral dynamics as a product of two 

second-order under-damped linear systems.

Based on the observations and analyses of the laboratory 

experiments, an approximate model of pole dynamics was constructed in 

Simulink (Figure 5-20). It is a nonlinear composite system with a single major 

mode for each axis and coupling to two weaker modes for the respective 

orthogonal axes. Simulation results (Figure 5-21) show that the impulse 

responses have captured the major dynamics of the experimental data.
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Figure 5-20: Experiment-based approximate model of pole dynamics
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Figure 5-21: Simulated impulse response of approximate model
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Finally, we note that the model shown in Figure 5-20 is only an 

approximate model of the real pole dynamics. More blocks could be 

added to the model so that its impulse response will be closer to the 

experimental data. For example, we could add to each axis one block 

representing an extremely low frequency additive term presented in the 

collateral response (Figure 5-18). And also we are sure that more 

experiments and more precise measurement will bring up more details of 

the pole dynamics. However, since the pole we used in the laboratory is 

not a real pole used in a pole-mounted sonar system, it will not help much 

for us to build a more complex model for it. Besides, this study relies not 

only on the computer model but also on a laboratory prototype that has 

all the major and minor dynamics with it.
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CHAPTER 6

FEASIBILITY ANALYSES

In chapter 5, the feasibility of pole vibration prediction using the 

CMAC neural network has been initially evaluated, In this chapter, the 

preceding simulation models are generalized to  the 2-DOF coupled 

vibration problem. The simulations of the new models are designed to 

answer such questions as: (1) effectiveness -- how well is the CMAC able 

to  estimate and predict the vibration a t the bottom  of the pole based the 

signal captured from the strain gauge a t the top of the pole? and, (2) 

robustness -- how much will the change in the environment (input force) 

a ffect the performance of the proposed system?

A practical issue related to  the accuracy of the CMAC estimation 

or prediction is the calibration of the simulated pole response, which is a 

voltage signal in our model. Approximately, one volt of the simulated pole 

response corresponds to 0.28° o f the angular displacement o f the sonar 

head. In other words, if the error between the simulated pole response 

and the CMAC estimation is 0.01 V, the corresponding angular error will be 

0.0028°.
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6.1 Two-DOF Simulation Models

Figure 6-1 shows a simulation model implementing the 2-DOF CMAC 

prediction system presented in Figure 5-2. The approximate nonlinear 

model o f pole dynamics based on experimental data captured from the 

lab prototype (Figure 5-19) is adopted. A new CMAC block capab le  of 

handling multiple inputs and multiple outputs (MIMO) is created and used 

in this simulation model. The error is the average of the absolute values of 

the two-axes difference between the simulated pole response and the

CMAC estimation, tha t is, - ( |*  -  x\ + |y -  / 1).
2

Os2+l*D.0C1*e2.8s»62Je*2 S

j242'C .EEH '6 2  £ i* -S 2 -8 *2

Error

o
j2 < 2 '3 .0 0  1 *6 2 .2 5 *8 2  Si'•£

S2t2 ’ 8JJS 1*e2.teH S .8 '2

Figure 6-1: A simulation m odel for 2-DOF coupled vibration prediction
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Generally, one measure of a periodic signal cannot solely 

determine its position on the waveform of the signal. As shown in Figure 6- 

2, tw o points, A and B, have the same measure V i. However, a pair o f 

measures, such as (Vi, V2) and (Vi, V3), will be able to  determine solely 

where the signal is a t the time of measurement -  A corresponding to (Vi, 

V2) and B corresponding to (Vi, V3).

Figure 6-2: Positioning a  measure on a  period ic signal

Hence, it takes two measured values (one current measurement 

and one previous measurement) to determine the position of a periodic 

signal on its waveform. Accordingly, for a single-degree-of-freedom (1- 

DOF) vibration problem, two pointers (one the original and another the 

delayed version of the signal) will provide enough information for CMAC 

to determine the current position in its input space. For a two-DOF
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vibration problem, four pointers are presumably needed. However, if the 

forces or movements along the two axes are correlated, as in the 

problem being studied, fewer pointers would probably suffice as well. The 

decrease in the number of pointers would significantly reduce the number 

of weights (taps) in the CMAC neural network, but may cause the 

deterioration of performance of the CMAC neural network. To study the 

tradeoff of performance with the number of pointers, three simulation 

models (one with four pointers as shown in Figure 6-1, the second with 

three pointers which drops one delayed version, and the third with two 

pointers which drops both delayed versions of the input signals) are used 

as the platforms of verification and analyses.

The selection of the value of the delay (At) is a ffected by two 

opposite considerations: (1) To save the memory (for storing the delayed 

signal), a small At is preferred; (2) The difference between the values of 

two pointers, f(t+At)-f(t), should be bigger than the quantization resolution.

6.2 Sinale-Freauencv input over a Range of Frequencies

Figure 6-3 shows typical patterns of both the pole response to  a 

single-frequency (1 Hz) input and the error between the pole response 

and CMAC estimation. The simulation parameters of simulations are: 

generalization factor (p) = 64; = 1; (32 = 7; memory size = 3000 for CMAC

with three pointers; sampling period = 0.001 s; internal scaling factor = 

10000; quantization = 100; the linear receptive field is selected. Since the
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simulated responses a t x-axis and y-axis exhibit a similar pattern, only one 

output (Y) is given in the figure. The error signal starts with an initial spike 

but then shrinks quickly. The amplitude of the steady state error (SSE) is 

about 0.01 V or 0.0028°.

10 15 20 25 30 35 40 45 50

0.5 

0.4 

-  0.3O
in Q 2 

0.1 

0

n - ... "i ......... ....... " i 1r n r

I 1
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B l l i i k t i L . SSI:

0 10 15 20 25 30 35 40 45
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50

Figure 6-3: System response to!Hz input and error o f CMAC estimation 

To answer the question whether the information of pole response 

has been fully learned, we conducted a spectral analysis on the steady- 

state error (see Appendix II for.details). The result shows tha t the spectrum 

of the error signal spreads over a w ide range of frequencies, while the 

simulated pole response contains only two frequency components (1 Hz 

and 2 Hz). We conclude tha t CMAC neural network is able to acquire the 

information of pole response thoroughly.
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The rest of this section presents the results of simulations designed to 

test the capability of the CMAC neural network to learn the pole 

dynamics assuming that the pole/sonar is subject to an external force of 

single frequency from 1 Hz to  8 Hz. Two sampling rates were adopted for 

simulation: 0.0003 s/sample (approximately the real-time sampling rate of 

our laboratory prototype), and 0.001 s/sample. Other parameters of this 

set of simulations are: generalization factor (p) = 64; |3i = 1; p>2 = 7; memory 

size = 1000/3000/5000 for CMAC with two pointers, three pointers, and four 

pointers respectively; internal scaling factor = 10000; quantization = 100; 

the linear receptive field is selected.

The simulation results are shown in Figure 6-4 and 6-5. We can see 

from these figures that: (1) the steady state error increases as the 

frequency increases; (2) for the same frequency, the simulation 

conducted a t higher sampling rate consistently results in higher 

performance, especially a t the higher frequency; (3) Figure 6-5 reveals the 

difference of performance between models using CMAC neural networks, 

with two, three, or four pointers (sampling period = 0.001 s). A t low 

frequency (1 ~3 Hz), the difference is insignificant, but a t higher frequency, 

the CMAC neural network with more pointers shows its advantage in 

terms of error reduction.
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6.3 Multi-Freauencv input

A model of the force applied to the pole-mounted sonar head 

would be composed of several parts including:

(1) A constant force along the axis parallel to the ship's centerline 

(assuming the velocity o f the ship is constant);

(2) Turbulence forces with a broad power spectrum;

(3) A component due to  the pitch and roll components of the ship 

motion.

The constant component of the force would cause a shift of the 

balance point of pole/sonar vibration and would not change the 

dynamics of pole vibration (no new frequency involved). For the second 

and third components of the force, they can be decomposed as a series 

of sinusoidal functions under the assumption that they are periodic.

For simplicity, assuming tha t the external force (disturbance) consists 

of two frequency components: a low frequency one represented by fi (1 

or 2 Hz) and a high frequency one represented by h  (15 Hz). Under certain 

assumptions m ade for the orthogonal components of the force, a ring- 

shaped force field (trace of tip of the composite force vector) is formed 

(Figure 6-6). The width of the ring depends on the amplitudes of both 

frequency components.
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Figure 6-6: Four scenarios o f force fields o f two frequency components 

Mathematically, the force vector can be expressed as

and we assume tha t

F = Fx x + F y y

Fx = Ax s in ^ r )  + A, sin(ft?20  

Fy =  Aj cos((Qxt) +  Aj cos (a)2t)

Hence,

F = t J f x + Fy = -yj Ax + A % +2A1A2 c o s (cox -  co2 )t
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Since

- 1  <  cos(g>] -  0)2 )t < 1

Then,

A,2 + A^ -  2AXA^ < A 2 4- A^ + 2AjA2 cos(ft>, -Q)2)t < A? + 4- 2AjA2

(Aj -  A2) 2 < Af + A^ + 2AjA2 cos(g?j -co2) t<  (Aj 4- A^ ) 2

Therefore,

|a1- a 2| < f < a 1 + a 2

This means the force vector's tip will be traveling within a ring 

formed by two circles. The radius of outside circle is A i+A2 and the radius 

of inside circle is | A 1-A2 I . Figure 6-6 shows four cases o f this kind of force 

trajectory: (a) Ai = 1 and A2 = 0, representing the single-frequency case 

that has been studied in the previous section; (b) Ai = 1 and A2 = 1/3, 

representing a strong low-frequency com ponent and weak high- 

frequency com ponent case; (c) Ai = 1/3 and A2 = 1, representing a weak 

low-frequency component and strong high-frequency com ponent case; 

and (d) Ai = 1 and A2 = 1, representing a "bi-mode" case.

In this set of experiments, a simulation model tha t employs CMAC 

with three pointers is used. The parameters of CMAC are: generalization 

factor (p) = 64; pi = 1; P2 = 7; memory size = 3000; internal scaling 

factor = 10000; quantization = 100; sampling period = 0.0003 s; the linear 

receptive field is selected. In each experiment, the frequencies and 

amplitudes are changed to produce the four force field patterns.
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6.3.1 Strong Low-Frea. and Weak Hi-Frea. Components

In this experiment fi= l Hz, A i= l, f2=15 Hz, A2=l/3. The simulation 

results are shown in Figure 6-7. The error of CMAC estimation (the 

difference between the system response and the CMAC output) was 

stabilized after 20 s. The amplitude of steady state error (SSE) is 0.017 V, or 

0.00476° of angular displacement.

0.08

1.25

0.017

'0 5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 6-7: System response an d  the error o f CMAC estimation (1)

6.3.2 Weak Low-Frea. and Strong Hi-Frea. Components

In this experiment, f i= l Hz, A i= l/3 , f2=15 Hz, A2= l. The simulation 

results are shown in Figure 6-8. The error o f CMAC will be stabilized after 30
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s. The amplitude of steady state error (SSE) is 0.025 V or 0.007° of angular 

displacement.

2 --------- ,--------- r --------,--------- ,--------- ,----------!--------- 1----------1--------- r

i  i  i  i  i i i  t i

i i i i i i I I I____
0 5 10 15 20 25 30 35 40 45 50

t 1----------- 1----------- 1----------- 1----------- 1-----------1----------- 1----------- r

Time (s)

Figure 6-8: System response and the error o f CMAC estimation (2)

6.3.3 Two Eaual Low-Frea. and Hi-Frea. Components

In this experiment, two harmonically related sinusoids of equal 

magnitude comprise the input force. Specifically, f i= l Hz, Ai=1, f2=15 Hz, 

A2= l. The simulation results are shown in Figure 6-9. The error of CMAC 

estimation was stabilized after 20 s. The amplitude of steady state error 

(SSE) is 0.03 V or 0.0084° of angular displacement.
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Figure 6-9: System response and  the error o f CMAC estimation (3)

6.3.4 A Force with Two Non-harmonicallv Related Frequency Components

In this experiment two non-harmonically related frequency 

components of equal magnitude comprise the input force. Specifically, 

fi=2 Hz, A i= l, f2=15 Hz, A2= l . The simulation results are shown in Figure 6-10. 

The error of CMAC estimation was stabilized after 20 s. The amplitude of 

steady state error (SSE) is 0.032 V or 0.009° of angular displacement.
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Figure 6-10: System response and the error o f CMAC estimation (4)

In this section, four scenarios of input force com posed of two 

frequency components were considered. The results indicate that the 

CMAC learning system as presented in Figure 5-2 and implemented in 

Figure 6-1 functions well in these situations.

6.4 CMAC’s Capabilities of Learning and Prediction of Pole Vibration

One of the advantages of using the CMAC approach is that it not 

only can learn the behavior of the system, but also predict the system 

response adaptively. This could be a benefit for on-site da ta  processing 

operations. Figure 6-11 shows an enlarged portion of a simulation result in
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which the CMAC output (yellow staircase on the left) is expected to 

predict ten steps ahead of the system response (the sonar displacement, 

plotted by blue line),

Figure 6-11: An enlarged portion o f CMAC's ten-step prediction

This section presents the results o f studies on the accuracy of 

CMAC's prediction of the system response with respect to the prediction 

time offset. The CMAC parameters for this set o f experiments are: 

generalization factor (p) = 64; (3i = 1; (32 = 7; memory size = 1000/3000/5000 

for CMAC with two pointers, three pointers, and four pointers, respectively; 

internal scaling factor = 10000; quantization = 100; sampling period = 0.001 

s; the linear receptive field is selected. The input frequency is 1 Hz.
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The simulation results are given in Table 6-1. We see from the table 

tha t the error between the CMAC output and the pole response 

remained small (less than 0.03 Volt or 0.0084° if translated to  angular 

displacement) for most of our simulations. The accuracy of one-step 

prediction is almost as good as that of learning (zero-step prediction). 

Figure 6-12 reveals the trend of CMAC prediction's error: it increases as 

the step of prediction increases. This trend is especially evident for CMAC 

with two pointers.

Table 6-1: Error between pole response and CMAC prediction

Steps of 
prediction

Steady state error (SSE) (V)
4-pointer
CMAC

3-pointer
CMAC

2-pointer
CMAC

0 0.011 0.014 0.013
1 0.011 0.016 0.013
2 0.013 0.020 0.015
3 0.014 0.022 0.020
4 0.017 0.022 0.025
5 0.018 0.023 0.027
6 0.020 0.026 0.031
7 0.025 0.032 0.056
8 0.028 0.041 0.057
9 0.031 0.061 0.074
10 0.033 0.071 0.115

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0-12 r  .....~7.~t — i------- 1--------- 1-------- 1-----------1--------- 1--------
-"O-" 4_pointer CMAC • j j j ! ! T

3_pointer CMAC ; I ! ! : ! /
0 - +  2_pointer CMAC........      L..........

0.08 

I  0.06
LU

0.04

0.02

0
0 1  2 3 4 5 6 7 8 9  10

Steps of prediction

Figure 6-12: Error o f CMAC prediction vs. steps o f prediction

z ..
-"O-" 4_pointer CMAC 

3_pointer CMAC 
2_pointer CMAC

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7

SIMULATION ANALYSES OF  
C M A C  PERFORMANCE

7.1 Introduction

The CMAC neural network is a powerful tool for modeling various 

system behaviors. However, its performance depends not only on the 

complexity of the system, but also on the parameters of the network itself. 

In this chapter, the Simulink models we built are used as a platform for 

testing the performance of CMAC neural network. To measure how well 

the CMAC neural network learns the system’s behaviors, three indicators 

(Figure 7-1) are adopted: (1) steady state error (SSE) -  absolute value of 

amplitude of stable error, (2) maximum error (x.e.) -  the peak value of 

error in the initial transient period, and (3) transient time (t.t.) -  the time 

period from the beginning of simulation to when the error is reduced to 

20% of maximum error. The transient time defined here is a simple and 

easy-to-measure indicator of how fast the learning process converges. 

The second and third indicators characterize the training process of 

CMAC neural network and are meaningful when the CMAC neural
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network is kept trained in some applications (online training). The SSE and 

x.e, are measured in volts and the transient time is measured in seconds.

Generally speaking, the smaller the values of these indicators are, 

the better performance the CMAC achieves. However, these three 

indicators do not always agree with each other (meaning that one 

cannot necessarily minimize them a t the same time). In that case, the 

designer needs to  choose priorities. For example, one might put first the 

goal of minimizing the steady state error when the system operates in a 

stable environment or when the CMAC is trained offline. In a dynam ic 

environment, reducing the maximum error (the spike in the initial transient 

period) might be more important than in the stable environment.

20% x.e

SSE
20 40 j j me £s) 60 80 100

Figure 7-1: CMAC learning error and  three perform ance indicators

This chapter considers the performance of a CMAC neural network 

as a function of its major parameters such as the memory size, 

generalization factor, quantization factor, and training gain. Due to the
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nonlinearity of the CMAC neural network, it is extremely difficult, if not 

impossible, to derive analytic relationships between the performance 

indices and the parameters for a practical CMAC that is capable of 

dealing with real-life problems. However, the conclusions based on a 

large number of experiments (simulations) could provide some helpful 

guidelines for design engineers in choosing parameters.

The methodology of experimentation is to conduct a set of 

simulations in which only the value of a single parameter is changed while 

the other parameters remain fixed. Observation and comparison of these 

simulation results, evaluated by the performance indices, may lead to 

insight of the relationships between the performance of the CMAC and 

the parameters.

7.2 CMAC Performance Indices versus Its Memory Allocation

In this set of experiments, the memory size of the CMAC neural 

network varies from 100 to 10000. Other fixed CMAC parameters are: 

generalization factor (p) = 64; £i = 3; f>2 = 7; internal scaling factor = 10000; 

quantization = 100; sampling period = 0.001 s; the linear receptive field is 

selected. The delay between two pointers is 0.01 s.

The experimental results for CMAC neural networks with 2 pointers, 3 

pointers, and 4 pointers are given in Table 7-1 (a), (b), and (c) respectively.
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Table 7-1: CMAC performance indices vs. memory size allocated

(aI CMAC with two pointers
Memory size Performance indicators

SSE (V) Transient time (s) Max. Error (V)
100 0.124 - 0.597
200 0.090 30 0.697
500 0.045 7 1.048
800 0.031 3 1.204
900 0.021 3 1.053

1000,1500,
2000,5000

0.0113 5 1.02

(b) CMAC with three pointers
Memory size Performance indicators

SSE (V) Transient time (s) Max. Error (V)
100 0.153 - 0.586
200 0.107 40 0.759
500 0.086 20 0.873
800 0.040 9 0.940
1000 0.035 12 0.743
1500 0.0255 9 0.712
2000 0.0096 9 0.712

3000,5000,10000 0.0079 9 0.712

(c) CMAC with four pointers
Memory size Performance indicators

SSE (V) Transient time (s) Max. Error (V)
100 0.142 68 0.755
200 0.131 46 0.825
500 0.089 26 0.819
800 0.060 20 0.935
1000 0.044 13 0.912
2000 0.026 6 0.979
4000 0.011 4 0.861

5000,8000,10000 0.0074 4 0.861

Based on the experimental results shown in Table 7-1 and Figure 7-2, 

the performance indicators of CMAC neural network exhibit the following 

trends:
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Figure 7-2: CMAC performance (SSE) vs. memory allocation

(1). The steady state error decreases when the memory allocation 

of CMAC neural network increases.

(2). There exists a ‘critical’ value of memory size (about 1000 for 

CMAC with 2 pointers; 2500 for CMAC with 3 pointers; 4500 for CMAC with 

4 pointers) -  below it, the steady state error of CMAC improves quickly 

with the memory size; beyond that point, the steady state error of CMAC 

will not change much. (Note: Theoretically, the memory sizes for 2-pointer, 

3-pointer and 4-pointer CMACs without hashing will be 1087, 4523 and 

18967 respectively.)

(3) The change of transient time of CMAC neural networks follows a 

similar pattern of steady state error. That is, it decreases when the memory 

allocation of CMAC neural network increases and there exists a ‘critical’
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value of memory size beyond which the performance index remains 

mostly unchanged.

(4) The case of maximum amplitude of error is more complicated. 

This performance index will be getting worse, when the memory size starts 

to increase, before it gets improved when the memory size approaches its 

‘critical’ value.

7.3 CMAC Performance Indices versus its Generalization Factor

In this set of experiments, the generalization factor (p) of CMAC 

neural network varies from 8 to 256. Other fixed CMAC parameters are: 

memory size = 1000/3000/5000 for CMAC with two pointers, three pointers, 

and four pointers respectively; pi = 1; = 7; internal scaling factor = 10000;

quantization = 100; sampling period = 0.001 s; the linear receptive field is 

selected.

The experimental results for CMAC neural networks with 2 pointers, 3 

pointers, and 4 pointers are given in Table 7-2 (a), (b), and (c) respectively.

Table 7-2: CMAC performance indices vs. generalization factor

(a) CMAC with two pointers
Generalization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (s)
8 0.166 40 1.619
16 0.057 22 1.068
32 0.0285 9 0.654
64 0.0077 8.5 0.350
128 0.0085 8 0.263
256 Does not converge
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(b) CMAC with three pointers
Generalization Performance indicators

factor SSE (V) Transient time (s) Max. Error (V)
8 0.109 75 1.463
16 0.042 28 0.856
32 0.0163 9 0.534
64 0.0077 9 0.367
128 0.0091 14 0.208
256 0.014 18 0.196

(cj CMAC with four pointers

Generalization
factor

Performance indicators
SSE (V) Transient time (s) Max. Error (V)

8 0.093 54 1.882
16 0.045 35 1.173
32 0.019 8 0.728
64 0.0076 6 0.474
128 0.0085 8 0.301
256 0.014 14 0.202

0.2

0.15

c/o

0.05

°0 50 100 150 200 250 300
Generalization factor

Figure 7-3: CMAC performance (SSE) vs. generalization factor
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Figure 7-4: CMAC performance (x.e.) vs. generalization factor

Based on the experimental results shown in Table 7-2 and Figure 7-3 

& 7-4, the performance indicators of CMAC neural network exhibit the 

following trends:

(1). The steady state error starts to decrease significantly before it 

reaches its optimal point where the generalization factor is around 64 ~ 

128, and then it goes up slightly until training fails to converge.

(2) The change of transient time of CMAC neural networks follows a 

pattern similar to that of the steady state error. That is, it initially decreases 

when the generalization factor of the CMAC neural network increases, 

and there exists a 'optimal value’ of generalization factor beyond which 

the performance index goes up slightly.
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(3) The maximum error decreases when the generalization factor 

increases, but the speed of change is also decreased.

(4) Three simulation models (with two, three, or four pointers) exhibit 

similar patterns in terms of their performance indices as functions of the 

generalization factor.

7.4 CMAC Performance Indices as Functions of Its Quantization Factor

In this set of experiments, the quantization factor of the CMAC 

neural network varies from 50 to 500. Other fixed parameters are: 

generalization factor = 64; memory size = 1000/3000/5000 for CMAC with 

Iwo pointers, three pointers, and four pointers respectively; (5i = 1; = 7;

internal scaling factor = 10000; sampling period = 0.001 s; the linear 

receptive field is selected.

The experimental results for CMAC neural networks with 2 pointers, 3 

pointers, and 4 pointers are given in Table 7-3 (a), (b), and (c) respectively.

Table 7-3: CMAC performance indices vs. quantization factor

fa) CMAC with two pointers
Quantization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
50 0.0266 7 1.06
80 0.0164 9 0.49
90 0.0093 9.5 0.384
100 0.0077 9 0.344
n o 0.0078 7 0.328
120 0.0079 6 0.306
150 0.0085 9 0.258
200 0.0101 13.5 0.213
250 0.0106 16 0.173
500 0.0138 33 0.124
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(b) CMAC with three pointers
Quantization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
50 0.0174 9 0.587
80 0.0071 11 0.423
90 0.0119 9 0.377
100 0.0077 9 0.367
110 0.0073 9 0.340
120 0.0071 7 0.298
150 0.0080 8 0.263
200 0.0087 11 0.206
250 0.011 12 0.188
500 0.016 33 0.124

(c) CMAC with four pointers
Quantization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
50 0.025 10 0.804
80 0.016 6 0.559
90 0.0075 5 0.508
100 0.0076 6 0.474
n o 0.0075 4 0.487
120 0.008 5 0.437
150 0.008 6 0.341
200 0.008 7 0.302
250 0.012 10 0.258
500 0.014 20 0.157

Based on the experimental results shown in Table 7-3 and Figure 7-5, 

the performance indicators of CMAC neural network exhibit the following 

trends:

(1). The steady state error starts to decrease significantly before it 

reaches its optimal point where the quantization factor is around 100, and 

then it goes up with the increase of the quantization factor (as shown in 

Figure 7-5). The reason is that more quantization will produce more states
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in the input space, which is good before things go too far. Since the 

physical memory of CMAC neural network is specified as a fixed number, 

there will be more and more states crashed into same memory elements 

when the quantization factor exceeds a certain value.

0.03
—+• 4_pointer CMAC 

3_pointer CMAC 
-&-■ 2_pointer CMAC

0.02
LU
CO
CO

0.015

0.01

0.005.
450 500150 200 250 300 350 400

Quantization factor
100

Figure 7-5: CMAC performance (SSE) vs. quantization factor

(2) The transient time starts flat or slightly goes down until it reaches 

its bottom (optimal point) where the quantization factor is around 120; 

then it goes up evidently.

(3) The maximum error decreases when the quantization factor 

increases, but the speed of change is also decreased.

7.5 CMAC Performance Indices as Functions of Its Training Gain Si

In this set of experiments, Pi varies from 1 to 5 (the actual training 

gain varies from 2-] to 2~5). Other fixed parameters are; quantization factor
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= 100; generalization factor = 64; memory size = 1000/3000/5000 for CMAC 

with two pointers, three pointers, and four pointers respectively; = 7; 

internal scaling factor = 10000; sampling period = 0.001 s; the linear 

receptive field is selected.

The experimental results for CMAC neural networks with 2 pointers, 3 

pointers, and 4 pointers are given in Table 7-4 (a), (b), and (c) respectively.

Table 7-4: CMAC performance indices vs. learning rate

(a) CMAC with two pointers
Learning rate 

2 *1
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
2-1 0.0077 8.5 0.35
2-2 0.0080 7 0.528

. 2-3 ......._. _ 0.0113 .......  5 1.02
2-4 0.0145 5 1.125
2-5 0.0213 5.5 1.316

(b) CMAC with three pointers
Learning rate

2-Pi
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
2-i 0.0077 9 0.367
2-2 0.0080 9 0.539
2-3 0.0079 9 0.712
2-4 0.012 7 0.98
2-5 0.017 7 1.13

(c) CMAC with four pointers
Learning rate

2-3i
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
2-' 0.0076 6 0.474
2-2 0.0074 4 0.676
2-3 0.0074 4 0.861
2-4 0.008 5 1.02
2-5 0.011 6 1.127
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Based on the experimental results shown in Table 7-4, we see that 

both the steady state error (SSE) and the maximum error (x.e.) increase 

when the training gain decreases from 2 1 to 2~5 (or fh increases from 1 to 

5), as shown in Figure 7-6 and Figure 7-7.

0.022
—+- 4__pointer CMAC 
- - 3_pointer CMAC 

2_pointer CMAC  I '"" 1" ■— t — .....
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Figure 7-6: CMAC performance (SSE.) vs. training gain (2~P])
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Figure 7-7: CMAC performance (x.e.) vs. training gain (2-P])
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Finally, a brief observation on the effect of the number of pointers 

on the performance indices can be made. As revealed by the results of 

previous simulations, increasing the number of pointers (while other 

parameters are kept the same) may improve the performance indices, 

but the cost is the significant increase of memory size of the neural 

network and the computing time. Hence, a CMAC with fewer pointers is 

preferable to a CMAC with more pointers if the error tolerance 

requirements are met by the former choice.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8

SUMMARY, CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE WORK

A novel approach o f estimating or predicting the pole/sonar 

vibration using a CMAC neural network is presented in this dissertation 

(Figure 1-7, Figure 5-1 & 5-2). Physically, the pole vibration prediction 

system is com posed of a pole (to which the sonar head is bound), tw o 

pairs of strain gauges a ttached to  the top  part of the  pole, and a 

com puter in which the CMAC neural network is im plem ented to  estimate 

or predict the coordinates of the  sonar head relative to  the vessel using 

the data acquired by a data acquisition board installed in the computer. 

Photocells or other position sensors tha t d e te c t the position o f the bottom  

o f the pole are used in training. The da ta  de tected  from the photocells, 

which is proportional to the sonar's coordinate displacem ent (x or y), are 

sent to the learning module -  CMAC neural network as its training target. 

The voltage signals from the strain gauges are connected to CMAC 

neural network as its pointer information, A fter a period o f training, the 

output of the CMAC neural network will pred ict the sonar head's
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coordinates with or w ithout the continuing existence of the training ta rge t 

da ta  (see Figure 5-8 for the la tter case).

Both the proposed system itself and the m ethodology behind the 

mechanism of the system are studied. As revealed by a number of 

researches (13) (41) (55) (56) (58) (58) (89) conducted a t the Robotics and 

Vibration Control Laboratory, University of New Hampshire, as well as the 

results given in this dissertation, the CMAC neural network offers benefits 

and advantages such as fast learning and rapid generalization capability, 

noise insensitivity, modeling or learning abilities for nonlinear plants as well 

as linear plants, and its proven success for real-time problems. A fter 

analyzing the nature of the problem  and com paring several potential 

methods including the approach o f vibration theory and the data filtering 

approach, we conclude th a t a CMAC neural network offers a good 

chance of success.

In addition to  the feasibility study of predicting pole vibration using 

the CMAC neural network, theoretical research on the properties o f the 

CMAC neural network has also been conducted. The analytic results 

contribute to  the developm ent o f the CMAC neural network and help 

improve the general understanding of the CMAC neural network. 

Specifically, inspired by the adaptive  filter theory, the eigenanalysis of 

CMAC neural network has been conducted. The matrix involved in the 

eigenanalysis is the correlation matrix R formed d irectly from the excitation
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vector (Eq. (4.5) or Eq. (4.17)). It is revealed that the trace (i.e., sum of 

eigenvalues) o f the correlation matrix R is equal to  the generalization 

param eter o f the CMAC neural network. Eigenanalyses lead to  tw o 

sufficient conditions for the convergence o f CM AC's w eight vector in the 

mean (Theorem 4.1 & 4.2), It is worthy to note tha t for the LMS algorithm  

the convergence can only be achieved in some kind o f statistical sense 

(such as mean or variance) since the gradient estim ate m ade a t each 

step is generally noisy. However, many steps taken in the direction of the 

negative instantaneous gradient will, on average, go in the correct 

direction for the steepest descent. A simple formula for estimating the 

misadjustment due to  the gradient noise is aiso given (Eq. (4.48)).

The feasibility study of pole/sonar vibration prediction using CMAC 

neural networks is conducted based on two implementations of the 

proposed system -  com puter simulation and real-time lab prototype. To 

conduct the com puter simulation, the first step is the  m odeling of the 

system. Simulink® provides a graphical way o f m odeling -  each 

com ponent o f the system is represented by a block or group o f blocks. 

Two components, the pole and the CMAC neural network, are o f special 

interest to us. The CMAC block tha t implements a CMAC neural network is 

written in the C language. The code is structured as a  com bination o f 

several Simulink ca llback methods in which the Simstruct access macros, 

C mx-functions and user-defined functions are used. A fter being com plied
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and linked to the block, the parameters o f the CMAC neural network m ay 

be specified or changed through the Simulink's dialog box of the CMAC 

block (Figure 5-4).

Two simulation models of the po le are used in the research. A 

simple 2nd-order under-damped linear system is first used in the 

preliminary-study stage to test the tool o f research. A more com plicated, 

higher-order, nonlinear, approxim ate model (Figure 5-20) is constructed 

based on da ta  captured from the lab prototype. The impulse response o f 

the pole comprises a major single-mode (at 10 Hz) vibration along the 

direction of the force and a weaker response along the orthogonal axis, 

which is a nonlinear mixing of two modes.

The lab prototype is used as a real-time test-bench of CMAC's 

capabilities o f estim ating/predicting the pole/sonar vibration as well as a 

platform  to obtain the experimental m odel of po le dynamics, The central 

part o f the lab prototype is the real-tim e C-program th a t integrates the 

da ta  acquisition hardware (DT3010) w ith the functionality o f the CMAC 

neural network. From the point of view of a programmer, the application 

is a t the top  of the three-layer architecture o f the DT-Open Layers 

standard for Windows, and it relies on the DataAcq SDK a t the function 

library layer to  com m unicate with the device drivers th a t assert control 

over specific devices. The program creates tw o threads to  separate the 

user-interface task from the data processing task (Figure 5-12 & 5-13). The
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lab prototype implementation of the proposed system has been able to  

fulfill its twin objectives. The experimental results have been observed on­

site and recorded for analyses (Figure 5-17 & 5-18).

The software implementation is able to  provide a quick and 

inexpensive way of thoroughly investigating the feasibility o f the proposed 

m ethod. More scenarios may be easily simulated. In this research, 

simulations have been conducted for the input (the external force) o f 

either single-frequency or multi-frequency components.

Analyses of the results from both experiments and simulations lead 

to the conclusion tha t a CMAC neural network, after training, is capab le 

of estimating or predicting the displacem ent of the sonar head 

(represented by the bottom  of the pole), caused by the pole vibration, 

based on the information from the strain gauges installed near the top  

part o f the pole. The error between the  sonar head's position and the 

CMAC estimation or prediction is small (0.01 ~ 0.05 volt or 0.0028° ~ 0.014° 

for most cases).

Moreover, the perform ance o f the CMAC neural network, as 

judged by the three indicators of the steady state error, maximum error 

and transition time, is analyzed as a function o f the parameters of the 

CMAC neural network. Interesting trends em erged from these simulations: 

there exist some "critica l" points for CMAC parameters -  below or beyond 

those points the perform ance indices worsen or stagnate.
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There are a few  directions in which the present research could be 

extended. One of the future efforts should be a more accurate  model of 

the po le  dynamics. More experiments aim ing to capture  the pole 

response to  different forces are needed. A more com plicated and 

accurate model can be built provided tha t a large num ber of force 

patterns can be generated. Hence, a measurement and analysis of 

typical force patterns would be worthwhile. Besides, an experiment in 

which the bottom  of the pole is submerged in the w ater would help 

determ ine the dam ping coeffic ien t of the pole model. In the latter case, 

the underwater position sensors are needed. Then, having built a more 

accurate model, more simulations with the new model would help gain 

more confidence and insight about the proposed pole-m ounted sonar 

vibration prediction system.

Calibration is an im m ediate concern if the proposed system is put 

into real application. The displacem ent o f the sonar head must be 

converted into the angular error so tha t the error in the world coordinates 

of the footprint, 8x or 8y, can be corrected. For some applications in which 

the error signal of interest is directly available, the approach proposed 

here may avoid this generally tedious process, because one does not 

need to  calculate the exact position of the sonar sensor. One may train 

the CMAC neural network with the error between the “actua l" da ta  and 

the data "perceived" by the sonar. For example, to ca lib rate a sonar or
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other instruments in the lab setting (such as a tow ing test), and since the 

floor depth o f the tank is known, one can ca lcu la te  the error da ta  when 

the sonar surveys the floor and train the CMAC along with the pointer 

information from some other vibration sensors such as strain gauges.

The last, but not least, im portant area o f future research is the 

further study o f CMAC neural networks from the point o f view of adaptive 

filter theory, it is expected tha t many im portant concepts and conclusions 

from the la tter field, which is more extensively studied, can be applied or 

a t least provide some clues to  the theoretical analyses o f CMAC neural 

networks. This dissertation just starts the first step and only the 

conventional CMAC structure has been investigated. It is hoped tha t 

more efforts will be m ade in this direction o f research.
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APPENDIX I

CIRCUIT DIAGRAMS OF VIBRATION SENSORS

Strain Gage Circuit
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n IC1, IC2: UPC741C 
Power: + V = 7.5V: PIN 7 

- V = -7.5V: PIN 41uF -7.5V

Figure Al-1: Strain gauge circuit diagram
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From 
the output of 

photo cell
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APPENDIX II

SPECTRAL ANALYSIS OF CMAC’S LEARNING ERROR

An interesting question about the learning capab ility of CMAC 

neural networks is tha t how thoroughly they are ab le  to  learn from the 

training data after being fully trained* It is extremely d ifficu lt if not 

impossible, to answer this question theoretically. The spectral analysis of
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Sine Wave

,-K-

s2+2*0.01*3.14s+3.14A2

sinGauge

s?+2’0 O01 *62,8s*628*2

PCMAC
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Transport

Delay
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□
Error
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s2+2*0.001*62.8s*62.8A2 Response

Figure A2-1: A simulation m odel for CMAC learning
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the steady-state error data obtained from simulations or experiments 

provides a way to  look into this question, a t least for the problem under 

study.

In this appendix, a simulation m odel shown in Figure A2-1 is used to  

generate the error data. The input frequency is set to  be 1 Hz. O ther 

simulation parameters are: generalization factor (p) = 64; (3i = 1; £2 = 7; 

internal scaling fac to r = 10000; quantization = 100; sampling period = 0.001 

s; the linear receptive field is selected. The delay between two pointers is 

0.01 s, The simulation results are shown in Figure A2-2. The steady-state 

error, y-y', is 1.3% of the am plitude o f po le response.
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Figure A2-2: Pole response and  error o f CMAC estimation
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The frequency spectrums o f the steady-state pole response and the 

error signal are shown in Figure A2-3. Two frequencies, 1 Hz and 2 Hz, are 

presented in the pole response. The additional frequency other than the 

input frequency (1 Hz) results from the nonlinearity o f po le model. For the 

error signal, its frequency spectrum spreads over a  w ide band o f 

frequencies, The energy residing a t 1 Hz and 2Hz is no bigger than a t other 

frequencies. Moreover, the m agnitude o f the frequency spectrum of pole 

response is 70 dB above the error signal a t 1 Hz and 56 dB higher a t 2Hz. 

Hence w e can conclude that the steady-state error o f CMAC estimation

Fourier transforms of error signal and pole response

+74 dB:

Pol® response
y -  I I

Error

CB

-20

-40

100
Frequency (Hz)

Figure A2-3: Frequency spectrums o f pole response and  
error o f CMAC estimation (steady-state)
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is virtually white noise and it contains very low level o f power com pared to 

the training signal. In order words, there is no significant information not 

learned by the CMAC neural network.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX III

SIMULATED STEADY-STATE RESPONSE OF POLE

This appendix presents the simulation results o f the steady-state 

response (SSR) of the pole to  a sinusoidal input o f single frequency from 1 

Hz to  20 Hz. The simulation m odel is shown in Figure A3-1.

Sine Wave

Dot Produet3 -K-

Cosine Wave

□

□

s 2 *-2 * 0 .01* 3 . 14s +9.86

s£+2*0 £01 *62,8s*3944

s2+2*0.001*62.8s*3944

^*2*0.001*62.83*3944

s?+2*0.001*62,8s*62,8A2

s2+2*0.01*3. l-fe+3.14*2

Figure A3-1: Simulation m odel for steady-state response o f pole  

The simulation results are shown in Figure A3-2. The steady-state 

response is about l.O a t low frequencies near 1 Hz. It increases gradually 

to  2.78 when the frequency o f the sinusoidal input reaches 8 Hz. Then it
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climbs quickly and reaches a peak a t 10 Hz. It drops as quickly until the  

input frequency increases to 12 Hz, where the value of SSR is 2.28. The 

steady-state response (SSR) falls below 1.0 after the input frequency 

passes above 14 Hz. A t 20 Hz, the SSR is 0.33.

E E E E E c E E E E E E x E E E E E E

x E E E E E E E I E E E E E E EE E x E E E E E E a E E E E E E E l E E E E E E E c E E E E E E ^ E E E E E E i

Frequency (Hz)
Figure A3-2: Simulated steady-state response o f pole to sinusoidal input 

It is noteworthy tha t the simulation model of the pole dynamics 

(Figure A3-1) is based on the data obtained from our laboratory 

experiments in which the pole vibrated in the air. The small air-dam ping 

causes a large am plitude of vibration near the primary natural frequency 

(Figure A3-2). However, the dam ping of the pole-m ounted sonar 

vibrating in the  w ater is much bigger so th a t such a resonance is not likely 

to  happen in real operations. Even so, we expect a similar pattern o f the 

SSR over the same range of the frequency of the sinusoidal input.
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APPENDIX IV

SIMULATION PARAMETERS OF 1 -DOF MODELS

In chapter 5, three 1-DOF vibration learning models are used to  test 

the functionalities of the S-function im plem entation (Simulink block) o f the 

CMAC neural network. The values o f simulation parameters for these 

simulations are given in Table A4-1.

Table A4-1: Simulation parameters o f 1 -DOF models

M odel Figure 5-5 Figure 5-7 Figure 5-9
Generalization size 16 8 32
Sampling period (s) 0.001 0.001 0.001
Beta (00* 5 5 5
Beta2 (00* 7 7 100
Memory size 1000 1000 1000
Internal scaling factor** 10000 10000 10000
Quantization 100 100 100
Receptive field Rectangular Rectangular Rectangular
Transport de lay (s) 0.25 0.1 0.25

* See the footnote on page 82.

** The UNH version o f the CMAC neural network assumes the data to be processed are integers. Hence, the 
raw data generally need to be scaled up by multiplying the internal scaling factor to ensure a satisfactory 
precision o f operation.
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