
University of New Hampshire
University of New Hampshire Scholars' Repository

Doctoral Dissertations Student Scholarship

Spring 2005

Pole -mounted sonar vibration prediction using
CMAC neural networks
Chunshu Zhang
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Zhang, Chunshu, "Pole -mounted sonar vibration prediction using CMAC neural networks" (2005). Doctoral Dissertations. 280.
https://scholars.unh.edu/dissertation/280

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/280?utm_source=scholars.unh.edu%2Fdissertation%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

POLE-MOUNTED SONAR VIBRATION PREDICTION
USING CMAC NEURAL NETWORKS

by

Chunshu Zhang

M.S., University of New Hampshire, 2001

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Doctor o f Philosophy
in

Engineering: Electrical

MAY, 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3169098

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3169098

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation has been examined and approved.

(t
Dissertation Director, L. Gordon Kraft,
Professor of Electrical and Computer Engineering

l/UvA-Wi. (;(C I A _
Kondagunta U. Sivaprasad, 1
Professor of Electrical and Computer Engineering

Michael J.
Associate Professor of Electrical and Computer
Engineering

Brian R. C a lde rr"
Research Assistant Professor of Electrical and
Computer Engineering

Lloyd Huf
Research Professor of Ofeean Engineering

Larry M Ma\
Professor of Earth Sciences and Ocean
Engineering

7A. -f

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my parents, wife, and son

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

This research project is sponsored by the Center for Coastal and

Ocean Mapping (C-COM) and supported by the Department of Electrical

and Computer Engineering, University of New Hampshire.

I would like to express my deepest gratitude to Dr. Gordon Kraft, my

advisor, who has encouraged and supported me throughout the many

years of my entire graduate studies a t UNH. My deepest gratitude extends

to the committee members (Dr. Kondagunta U. Sivaprasad, Dr. Michael J.

Carter, Dr. Larry Mayer, Dr. Brian Calder, Dr. Lloyd Huff) for your willingness

to work with me and for all of your insightful suggestions on completing this

dissertation, I would also like to thank Dr. John R. LaCourse, Dr. Andrew L.

Kun, Mr. Adam Perkins, and the entire ECE department for your

enthusiastic and persistent support and help.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PREFACE

The configuration of pole-mounted sonar sensors is one of two

major types of multibeam sonar systems used in hydrographic surveys, The

vibration of the pole during operation constitutes a challenging problem

tha t limits the accuracy of the sonar data. A novel approach of

estimating or predicting the pole/sonar vibration using CMAC neural

networks is proposed and investigated by multiple means. The objective

of this dissertation is to provide the readers with sufficient background

development and adequate technical details so tha t the results of this

research are accessible for use in continuing research efforts.

This dissertation starts with a system-level discussion of the research.

In chapter 1, graphical figures illustrate the pole vibration problem. The

advantages and disadvantages of potential methods, such as vibration

theory and CMAC neural network, are discussed. The proposed system is

briefly described and the tools of research are introduced. The expected

research outputs are also outlined.

Chapter 2 provides background knowledge or development o f

relevant research areas, including vibration theory, adaptive signal

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing, artificial neural networks in general and CMAC neural

networks in particular. Section 2.1 summarizes the basic concepts

concerning vibration study and two classes of approximate solutions. An

overview of artificial neural networks and several landmark achievements,

such as artificial neurons, adaline and perceptron, backpropagation

algorithm, and radial basis function networks, are presented in section 2 .2 .

Based on a thorough literature search, section 2.3 describes the historic

development of CMAC neural networks including the CMAC topological

structure, learning algorithms, and applications. Some notes on adaptive

signal processing tha t are related to this research, such as the optimum

Wiener filter and the least-mean-square (LMS) algorithm used in many

adaptive filters, conclude the chapter of background material.

In chapter 3, based on a detailed examination of the geometrical

formation of CMAC neural networks for one-input and two-input spaces,

their memory-addressing mechanisms are formulated and generalized to

the case of N-input space. Written in the vector form, the scalar output of

CMAC will be the inner product of the weight vector and the excitation

vector.

Chapter 4 is dedicated to analyzing CMAC algorithms from the

point of view of adaptive filter theory. To establish a corresponding

relation between a CMAC neural network and an adaptive FIR filter,

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CMAG is divided into three parts - an input converter that forms the

excitation vector, a linear combiner or the inner product of the excitation

vector and the weight vector, and the weight-adjusting algorithm,

Minimizing the mean square error (MSE) leads to the Wiener-Hopf

equation. Two forms of correlation matrix are given in section 4.2, A

unique property establishing the relation between the trace of the

correlation matrix and generalization parameter of CMAC is presented in

section 4.3. Using the tool of eigenanalysis, several conditions for the

convergence of CMAC algorithms and a simple formula of estimating the

misadjustment due to the gradient noise are derived.

Chapter 5 discusses many issues involved in the implementation

and verification of the proposed system. Two levels of implementation, the

computer simulation and the real-time lab prototype, have been carried

out in the research. To build the simulation model, special effort has been

spent on two key system components - the CMAC block (S-function of

Simulink) and the pole model. The code for the CMAC block is written in C

language and the UNH version of CMAC neural network is incorporated.

The first pole model, a 2nd-order underdampled linear system, is used in

the preliminary study of the effectiveness of the proposed approach. The

second pole model, based on the experiments with a real-time laboratory

prototype, is a higher-order nonlinear system and has been exclusively

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used for study in subsequent chapters. The central part of the lab

prototyping is the real-time C-program tha t controls the data acquisition

hardware and implements the CMAC neural network. The flowcharts o f

the program are given in section 5.4. The results of lab experiments are

observed on-site, recorded to data files, and plotted by Matlab. Both the

experimental results for verification o f the system and the data for

analyzing the pole dynamics are presented in section 5.5.

In chapter 6 and 7, a large number of simulations designed for

different purposes are analyzed. The first set of simulations of chapter 6 is

designed to study the CMAC's capability in prediction of the pole

vibration. The other simulations provide results for different scenarios of the

input force. Chapter 7 is dedicated to testing the CMAC performance as

function of individual CMAC parameter such as the memory allocation,

generalization factor, quantization factor, and training gain.

Chapter 8 provides a summary of major achievements of this

research and suggests several directions of future work.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION................................... iii

ACKNOWLEDGEMENTS ... iv

PREFACE......................... v

LIST OF TABLES............... xii

LIST OF FIGURES xiii

ABSTRACT.. xvii

1 INTRODUCTION..1

1.1 The Problem... 1
1.2 The Methodology.............. 4
1.3 The Proposed Approach..12
1.4 The Implementations. ... 14
1.5 The Outputs of Research..15

2 BACKGROUND..16

2.1 Basic Concepts and Approaches in Vibration Study 16
2.2 Artificial Neural Networks..18

2.2.1 Overview................................. 18
2.2.2 Artificial Neurons.. 21
2.2.3 Adaptive Linear Element (Adaline) and Perceptron.............. 22
2.2.4 Backpropagation Algorithm..24
2.2.5 Radial Basis Function Networks... 25

2.3 Historical Development of CMAC Neural Networks.27
2.3.1 On the CMAC Topological Structure.................................... 28
2.3.2 On the CMAC Learning Algorithms............................. 30
2.3.3 On the Application of CMAC M odels..................... 32

2.4 Some Notes on Adaptive Signal Processing.. 33

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 CMAC STRUCTURE.. 37

3.1 One-Dimensional Input CMAC...38
3.1.1 Formation of Receptive Fields.................... 38
3.1.2 Number of Receptive fields................................ 40
3.1.3 Addressing Mechanism and Excitation Vector.41
3.1.4 Coordinates of Centers of Receptive Fields.............................. 42

3.2 Two-Dimensional I nput C MAC................ 44
3.2.1 Formation of Receptive Fields..44
3.2.2 Number of Receptive fields... 47
3.2.3 Addressing Mechanism and Excitation Vector...................... 48
3.2.4 Coordinates of Centers of Receptive Fields..........................49

3.3 N-Dimensional Input CMAC.. 52
3.3.1 Number o f Receptive fields..52
3.3.2 Addressing Mechanism and Excitation Vector.........................54
3.3.3 Coordinates of Centers of Receptive Fields.............................. 55

4 EIGENANALYSIS OF CMAC ALGORITHMS57

4.1 Introduction 57
4.2 The Performance Function... 59
4.3 Properties of Correlation Matrix........................ 63
4.4 Convergence and Misadjustment o f CAMC Algorithms.....................69

4.4.1 The Method of Steepest Descent..69
4.4.2 Convergence of LMS Algorithm..71
4.4.3 Misadjustment of LMS Algorithm..75

5 SYSTEM ARCHITECTURE AND IMPLEMENTATION PLATFORMS................. 78

5.1 The System Architecture..78
5.2 Simulink block (S- Function) implementation of CMAC N N 81
5.3 Preliminary Study on Simulink Models of the System............................. 85
5.4 Laboratory Prototype Development.. 90

5.4.1 Overview................ ."............90
5.4.2 DataAcq SDK and DT-Open Layers standard for W indows 90
5.4.3 Real-time C-program implementation..92

5.5 Laboratory Experiments Analyses.. 97
5.5.1 Real-Time Learning/Predicting Capability of CAMC N N97
5.5.2 Impulse Response and Approximate Model of a Pole............100

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 FEASIBILITY ANALYSES 105

6 .1 Two-DOF Simulation M odels...106
6.2 Single-Frequency Input over a Range of Frequencies..................... 108
6.3 Multi-Frequency Inpu t..112

6.3.1 Strong Low-Freq. and Weak Hi-Freq. Com ponents................ 115
6.3.2 Weak Low-Freq, and Strong Hi-Freq. Com ponents 115
6.3.3 Two Equal Low-Freq. and Hi-Freq. C om ponents.....................116
6.3.4 A Force with Two Non-harmonic Frequency Components. .,117

6.4 CMAC's Capabilities of Learning and Prediction of Pole Vibration.. 118

7 SIMULATION ANALYSES OF CMAC PERFORMANCE............................. 122

7.1 Introduction.. 122
7.2 CMAC Performance Indices versus Its Memory Allocation...............124
7.3 CMAC Performance Indices versus Its Generalization F ac to r 127
7.4 CMAC Performance Indices versus Its Quantization Facto r............ 130
7.5 CMAC Performance Indices as Functions of Its Training Gain p>i 132

8 SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK.... 136

REFERENCES 143

APPENDIX I CIRCUIT DIAGRAMS OF VIBRATION SENSORS.....;........151

APPENDIX II SPECTRAL ANALYSIS OF CMAC'S LEARNING ERROR... 153

APPENDIX III SIMULATED STEADY-STATE RESPONSE OF POLE 157

APPENDIX IV SIMULATION PARAMETERS OF 1-DOF MODELS............159

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 3-1: Addresses & excitation vectors of the CMAC in Figure 3-1 (a) ..42

Table 3-2: RF Center coordinates for the CMAC in Figure 3-1 (a)44

Table 3-3: Number of receptive fields vs. generalization fa c to r 48

Table 3-4: RF addresses and center coordinates of 3 different inputs........52

Table 6-1: Error between system response and CMAC pred ic tion120

Table 7-1: CMAC performance indices vs. memory size a llo ca te d 125

Table 7-2: CMAC performance indices vs. generalization fa c to r127

Table 7-3: CMAC performance indices vs. quantization fa c to r 130

Table 7-4: CMAC performance indices vs. learning ra te 133

Table A4-1: Simulation parameters of 1-DOF m ode ls 159

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1-1: Pole-mounted sonar h e a d ..2

Figure 1-2: illustration of sonar image distortion and correction 3

Figure 1-3: Current and proposed sonar data collection process.............5

Figure 1-4: Differential analyses of a b e a m 6

Figure 1 -5: Adaptive transversal filter..9

Figure 1-6: A geometrical explanation of CMAC's working mechanism.... 10

Figure 1-7: Pole-mounted sonar vibration prediction system.................... 12

Figure 1-8: Angular displacement of p o le14

Figure 2-1: Adaptive linear e lem en t ... 23

Figure 3-1: Receptive fields and weight-addressing of 1-D input CMAC...39

Figure 3-2: Receptive fields and weight-addressing of 2-D input CM AC... 45

Figure 3-3: Another way of locating weights associated with a 2-D input.46

Figure 3-4: The centers of receptive fields.. 50

Figure 3-5: More examples of receptive fie lds............................ 51

Figure 3-6: Number of receptive fields vs. generalization parameter...... 53

Figure 4-1: Comparison between CMAC NN and adaptive FIR Filter 58

Figure 5-1: Block diagram of 1-DOF CMAC prediction system.................. 78

Figure 5-2: Block diagram of 2-DOF CMAC prediction system.................. 79

Figure 5-3: How Simulink performs CMAC S-function simulation83

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-4: A Simulink implementation of CMAC neural ne tw ork..............84

Figure 5-5: 1 -DOF model of vibration learning using C M A C 86

Figure 5-6: Simulation results of Figure 5 -5 ..86

Figure 5-7: Second 1-DOF model of vibration learning using CMAC....... 87

Figure 5-8: Simulation results of Figure 5 -7 ..88

Figure 5-9 :1-DOF model with alternate-frequency in p u t............................ 89

Figure 5-10: Simulation results of Figure 5 -9 .. 89

Figure 5-11: DT-Open Layers compliant- DataAcq SDK architecture.........91

Figure 5-12: Flowchart of main p ro g ra m ..93

Figure 5-13: Flowchart of data processing thread (thread 2) 94

Figure 5-14: Flowchart of data acquisition board se tu p 95

Figure 5-15: Flowchart of board re lease............................... 96

Figure 5-16: Laboratory setup for observation using oscilloscope.............. 97

Figure 5-17: CMAC prediction of real-time signal...................................... 100

Figure 5-18: Pole's two-dimensional responses to impulse fo rc e 101

Figure 5-19: Detected pole response & reference 10Hz sinusoidal signal..102

Figure 5-20: Experiment-based approximate model o f pole dynamics..., 103

Figure 5-21: Simulated impulse response of approximate m o d e l 103

Figure 6-1: A simulation model for 2-DOF coupled vibration prediction... 106

Figure 6-2: Positioning a measure on a periodic s igna l............................. 107

Figure 6-3: System response to ! Hz input & error of CMAC estim ation 109

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6-4: Comparison of errors of CMAC estimation............................... I l l

Figure 6-5: Comparison of error estimation by different CM ACs.............. I l l

Figure 6-6 : Four scenarios of force fields of two frequency components. 113

Figure 6-7: System response and the error of CMAC estimation (1)115

Figure 6-8 : System response and the error of CMAC estimation (2)116

Figure 6-9: System response and the error of CMAC estimation (3)117

Figure 6-10: System response and the error of CMAC estimation (4)...... 118

Figure 6-11: An enlarged portion of CMAC's ten-step p red ic tion 119

Figure 6-12: Error of CMAC prediction vs. steps of p re d ic tion121

Figure 7-1: CMAC learning error and three performance indicators ..123

Figure 7-2: CMAC performance (SSE) vs. memory a llo ca tio n126

Figure 7-3: CMAC performance (SSE) vs. generalization fa c to r 128

Figure 7-4: CMAC performance (x.e.) vs. generalization fa c to r129

Figure 7-5: CMAC performance (SSE) vs. quantization fa c to r....................132

Figure 7-6: CMAC performance (SSE.) vs. training gain (2-Pl) 134

Figure 7-7: CMAC performance (x.e.) vs. training gain (2-Pl)134

Figure A l-1 : Strain gauge circuit d ia g ra m ...151

Figure Al-2: Bias & amplification circuit diagram for p h o to ce ll............... 152

Figure A2-1: A simulation model for CMAC learn ing..................................153

Figure A2-2: Pole response and error o f CMAC estim ation................... ...154

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure A2-3: Frequency spectrums of pole response and error of GMAC
estimation (steady-state) ...155

Figure A3-1: Simulation model for steady-state response of p o le 157

Figure A3-2: Simulated steady-state response of pole to sinusoidal
in p u t.. 158

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

POLE-MOUNTED SONAR VIBRATION PREDICTION
USING CMAC NEURAL NETWORKS

by

Chunshu Zhang

University of New Hampshire, May, 2005

The efficiency and accuracy of pole-mounted sonar systems are

severely affected by pole vibration. Traditional signal processing

techniques are not appropriate for the pole vibration problem due to the

nonlinearity of the pole vibration and the lack of a priori knowledge about

the statistics of the data to be processed. A novel approach of predicting

the pole-mounted sonar vibration using CMAC neural networks is

presented. The feasibility of this approach is studied in theory, evaluated

by simulation and verified with a real-time laboratory prototype.

Analytical bounds of the learning rate of a CMAC neural network are

derived which guarantee convergence of the weight vector in the mean.

Both simulation and experimental results indicate the CMAC neural

network is an effective tool for this vibration prediction problem,

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 The Problem

Multibeam sonar systems are the latest advancement in

hydrographic surveying technology. Typically each system consists of four

major operational parts: (1) a transducer to generate acoustic pulses and

receive the echoes; (2) a GPS unit to determine vessel location and

speed; (3) an inertia motion unit (IMU) which records vessel attitude at the

time of each pulse; and (4) a signal processing system to convert the

echoes into bathymetric and backscatter values, and a data processing

computer to compile a series of pulses into seafloor information. The world

coordinates of each footprint (the spot on the Earth the sensor measures)

are calculated based on the geometry of the sonar head relative to the

GPS of the ship. Therefore, the resulting survey quality highly depends on

the accuracy of the estimated mounting configuration of the sonar head.

There are two major configuations of multibeam sensors: (1) pole-

mounted sensors (Figure 1-1) that are normally used on smaller vessels

temporarily dedicated to acoustic surveying, and (2) through-the-hull

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sensors that are those integrated with the vessel's bottom. The latter is a

stable configuration but expensive to install. The multibeam sonar systems

of the second type, which attempts to correct for vessel motion with the

information from the vessel orientation system, assures the highest possible

quality for the spatial accuracy of the bathymetry or backscatter

information once the exact physical location of each system component

and the distances between them is determined with great precision.

The multibeam sonar of the first type,

however, faces another problem. The pole

is susceptible to bending and twisting

forces. When the vessel is in survey

operation, the sonar head is exposed to a

variety of external forces due to water or

vessel movement. These forces will cause

the sonar head to vibrate. Therefore the

position of the sonar is not fixed relative to

the vessel. The calculation of the world

coordinates of each footprint has to factor

in the displacement of sonar head caused

by pole vibration. In other words, assume at a particular time, the spot

surveyed by sonar would be located at (xo, yo) if no vibration exists, but it is

* Source: http://www.ccom.unh.edu/scapa/images/inwater.jpg

2

Figure 1-1: Pole-mounted
sonar head'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ccom.unh.edu/scapa/images/inwater.jpg

actually located at (xo+6x, yo+6y) because of the pole vibration. The sea

depth detected by sonar is d. Hence on a 3-D mapping image, (xo, yo, d)

is plotted, but the correct image would need to plot (xo+6x, yo+6y, d).

Figure 1-2 shows a Matlab-produced 3-D image demo illustrating

the graphic process of sonar image distortion and correction related to

sr

.......
o IM W I

S) 1 D Q I S D a D 2 0 3 C D 3 S D 4 0 D « 0 5 (n 50 100 1® 200 250 3DD 350 4DD 450 5D0

(a) The original seabed image ^ The distorted (along-track) image

S3 100 153 SO 300 350 400 460 500

(c) The distorted (two axes) image

50 100 150 200 250 300 350 400 4® 500

(d) The restored image

Figure 1 -2: Illustration of sonar image distortion and correction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pole vibration. The top-left pane is an image of a flat ramp with small

objects (say, a barrel and a mine) on it. The ramp rises along the Y-axis

direction that is also the along-track direction. The top-right pane of Figure

1 -2 shows the image of a rippled ramp resulted from 1 -D along-track pole

vibration. The bottom-left pane shows the distorted image due to 2-D

(along-track and cross-track) pole vibration, where the barrel and mine

are barely recognizable. The bottom-right pane shows the restored image

as a result of world coordinate correction using techniques from this

dissertation. After processing correction, the last image is very close to the

first original image.

For now, without the error correction method being employed, the

accuracy and efficiency of pole-mounted sonar systems are severely

affected by pole vibration. To ensure a certain degree of accuracy, the

speed of the survey vessel has to be limited to reduce the amount of pole

vibration, which limits the daily coverage of survey. This productivity issue

urges the study of pole vibration.

1.2 The Methodology

To improve the survey efficiency, it is necessary to come up with an

approach to predict the displacement of sonar head due to pole

vibration so that the error in the world coordinates of the footprint can be

corrected. Figure 1 -3 shows the process of sonar data collection in which

a new block (dotted-line) is proposed to add to the current process (solid-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

line blocks). This new block will provide an estimation or prediction of the

sonar displacement to be used in sonar data processing.

o
ST
a.'Cs

o

\ ___

Sonar

,j\
\s

t

Boat Orientation
System

(GPS & IMU)

Erro?- estimation or
prediction -
Direct measurement;
Pole vibration equ.i
Data filtering;
CMAC.

L "

Echo signal

Sonar data
processing &
displaying

Figure 1-3: Current and proposed sonar data collection process

There are several potential options for the task. One of them is the

direct measurement of the position of the sonar head using instruments

such as accelerometers. This approach is methodologically simple and

direct. However, the acceleration instrument is expensive, subject to

shock problems, drift errors, and would have to be small and waterproof.

These disadvantages limit its use in practical problems.

Another choice would be the vibration theory of the pole. The

motion of a rigid body is entirely defined by Newton's law of motion. This

kind of problem is described by a set of differential equations with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constant coefficients. Unfortunately, the pole bends, and even twists

under some circumstances. Another essential aspect of the pole is that it is

continuous, meaning that it has continuous distribution of mass, elasticity,

and damping. To make things worse, the pole is likely to be non-

homogeneous, that is, the distribution of its mass and flexibility is not

uniform. In general, we cannot solve the pole bending problems exactly.

u(x, t)

(a) A flexible beam

F(x, t)

s(x, t'

. . d m (x , t)
m(x, t) H dx

ox

\ s(x,t) + ̂ ^ - d x
ox

(b) Beam element

Figure 1-4: Differential analyses of a beam

A well-studied example is the Bernoulli- Euler beam model [8], which

is the simplest beam model. As shown in Figure i-4, it is assumed that one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end of the beam is fixed (at the origin O) and the vibration of the beam

will be one-dimensional (Y-axis). Let p(x) be the mass per unit length along

the beam and u(x, t) the displacement normal to the beam at x, the

vibration equation will be:

, a2
* x)W + v

E I (x) d “ f (x , t) (1 . 1)
dx2

Where E is Young’s modulus, I(x) is the beam area moment of inertia,

and f(x, t) is the force density at x. Figure 1-4 also shows an infinitesimal

element taken out of the beam, which is the basis of Bernoulli- Euler beam

model. The beam could be treated as a combination of thousands of

such infinitesimal elements, which means the same large number of 4th-

order partial equations need to be solved.

The obstacles of applying vibration theory in the pole vibration

problem are numerous. They include:

► No generic closed-form solution;

► Numerical solutions need thousands of calculations to solve

partial differential equations related to particular conditions;

► Not adaptable to structural change, or parameter change;

► Difficulty increases rapidly with DOF and coupling.

In a word, we can conclude that the vibration theory approach is

not practical for a real-time problem within this volatile environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Adaptive filtering techniques provide a different approach to data

processing. A filter is a hardware or software device that we may use to

perform three basic information-processing tasks [29]:

(1) Estimation (filtering)*, i.e., extracting information about a quantity

of interest at time t by using data measured up to and including time t.

(2) Smoothing*, which involves the usage of data both up to and

after time f.

(3) Prediction*, which is to derive information about what the

quantity of interest will be at some future time t + t , for t > 0 , by using data

measured up to and including time t.

The design of an optimal filter, such as the Wiener filter that is said to

be optimum in the mean-square sense, requires a priori knowledge about

the statistics of the data to be processed. In an environment where

complete information of the relevant signal characteristics is not available,

the adaptive filter that is self-designing has a good opportunity to perform

satisfactorily. The self-designing of the adaptive filter relies on a recursive

algorithm, which starts from some set of predetermined initial conditions,

representing our best knowledge of the environment. It has been found, in

a stationary environment, the adaptation algorithm of a linear adaptive

filter, after successive iterations, will converge to the Wiener optimum

solution in a statistical sense.

* These terms, not strictly defined, are used here to highlight the functions of the filter.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u(k-1) u(k-M+2) u(k-M+1)u(k-2)

Adaptation algorithm

Figure 1-5: Adaptive transversal filter

Figure 1-5 shows an adaptive transversal (FIR) filter [33] [29]. The filter

output is given by:

M-1
y (k) = ' * Tw iu (k - i) (1 .2)

i=0

The tap weights, wi, w2, ..., w M-i, are adjusted at every time-step.

There can be hundreds of taps for a practical adaptive filter. This makes

the adaptation algorithm slow and increases the computational costs [33].

The data filtering methods, including fixed-gain filters (such as the

Wiener filter and the Kalman filter) and adaptive filters, are limited by a

fundamental problem that the vibration motion, the ocean bottom

motion, and the boat wave motion are all in same frequency range. Data

filtering cannot distinguish one from others.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A more recent development is the CMAC neural network (The way

that it works in the process of sonar data collection and processing will be

discussed in next section). The Cerebellar Model Arithmetic Computer

(CMAC) is an associative memory neural network in that each input maps

to a subset of weights or memory locations whose values are summed to

produce outputs. The unique aspect of how the CMAC neural network

works is graphically explained in Figure 1 -6 [58].

A’
A

p points

o

outputrandom
mapping

Input/state
Space Conceptual

Memory Actual
Memory

Figure 1-6: A geometrical explanation of CMAC's working mechanism

An input vector is the collection of N appropriate sensors of the real

world and/or measures of the desired goal. The CMAC algorithm maps

any input it receives into a set of p (the generalization parameter) points in

a large ‘conceptual’ memory (A in Figure 1-6) in such a way that two

inputs that are "close" in input space (S in Figure 1-6) will have their points

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

overlap in the A memory, with more overlap for closer inputs. If two inputs

are far apart in the input space S there will be no overlap in their p-

element sets in the A memory, and therefore no generalization.

Since most learning problems do not involve all of the input space,

which is extremely large for practical systems and hence would require a

correspondingly large number of locations in the memory A, the memory

requirement is reduced by mapping the A memory onto a much smaller

physical memory A’ . Any input presented to CMAC will generate p real

memory locations, the contents of which will be added in order to obtain

an output.

Another important aspect of CMAC neural network is the concept

of "local generalization" built in its weights-adjusting algorithm. For each

input presented, only the weights in p memory locations will be changed,

proportional to the error between the output of CMAC and the desired

target signal. Our mathematical formation of the adaptation algorithm of

CMAC reveals its similarity to the widely used LMS algorithm. This leads to

further study of CMAC neural network from the point of view of adaptive

signal processing.

The built-in properties of CAMC result in such advantages as: a) fast

learning property, b) rapid generalization capability, c) no local-minima

problem, and, d) modeling or learning abilities for nonlinear plants as well

as linear plants. Another benefit of using CMAC neural network is its

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

availability in software & hardware and proven success in real-time

problem.

1.3 The Proposed Approach

To correct for the displacement of the sonar head caused by pole

vibration in the process of sonar data collection and processing, a novel

approach to estimate or predict the displacement of sonar head using

CMAC neural networks is proposed (Figure 1-7).

i

Photocell

Pole

Strain gages
Preprocessing
circuitry (Biasing,
amplification &

Yrfc filtering)

11 To DataAcq
V board

Forces

x
Computer w /
DataAcq Board
& CMAC NN

y

Figure 1-7: Pole-mounted sonor vibration prediction system

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The proposed system consists of the pole itself, several strain gauges

attached to the pole, and the computer that operates the CMAC neural

networks to estimate or predict the coordinates of the sonar relative to

the vessel. Photocells are used to measure the displacement of the

bottom of the pole during the training period. The electrical signal outputs

are connected to the computer via data acquisition hardware (DT3010).

In this research project, the simulation model and laboratory

prototype are built mainly for testing the capability of the CMAC neural

network to estimate or predict the displacement at the bottom of the

pole based on an additional measurement at the top of the pole.

Therefore, the sensors used in our prototype are cheap and easy to install.

For real applications, other position detectors more suitable to underwater

environment should be used and further calibration is needed.

The strain gauge is a device whose electrical resistance varies in

proportional to the amount of strain (e, defined as the fractional change

in length) in the device. With proper configuration, a bridge circuit

comprised of a pair of strain gauges is able to produce a voltage signal

proportional to the strain along one axis. That is, for example, Vx = yi »ex,

where yi is roughly a constant coefficient. Similarly, we could have Vy =

Y 2 * £ y . More generally, Vx = fi(ex) and Vy = f2(ey).

Photocells or other kinds of position detectors are used to detect

the coordinates of the sonar (represented by a tip at the bottom of the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pole in the lab). The electrical signal outputs of

photocells are indicators of the position of the

sonar. Figure 1-8 shows the relationship among

the angular displacement of the pole, linear

displacement of the pole’s bottom, and the

voltage signal of the photocell. For small angular

displacement 0,

(1.3)

X m Xm

V_
K,

x e_

Hence, m

e e
0 = -ZLV = - ^ X

V„ x„
(1.4)

Figure 1-8: Angular
displacement of pole

In Eq. (1.4), xm and 9m are determined by the physical size (effective

length) of the photocell and the pole. In our laboratory setup, em « tan(em)

= X m /L p o ie = 2.3/180 = 0.0128 rad = 0.732°. The maximum voltage is

determined by the circuitry of photocell and is adjustable.

1.4 The Implementations

Two implementations of the pole-mounted sonar vibration

prediction system were realized. The first one is a pure software

implementation - computer model built in Simulink environment. Each

of the system components, including the pole, the strain gauge, and the

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CMAC neural network, is represented by a Simulink block or a group of

simulink blocks whose parameters are properly defined. Two major

components of our proposed system we need to create or construct on

our own are: (1) the CMAC neural network, and (2) the model of pole

dynamics. The software implementation provides a quick and inexpensive

way of thoroughly investigating the feasibility of the proposed method.

The second implementation is a laboratory prototype involving both

hardware and software. Only the CMAC neural network is programmed in

the computer while the other components use physical models close to

those that would be used in real sonar surveying. The laboratory

prototype helped to study pole dynamics in addition to verifying the

feasibility of the proposed approach in real-time application.

1.5 The Outputs of Research

Three major achievements are expected through this research:

(1) Fulfill the feasibility study of pole-mounted sonar vibration

prediction using CMAC neural networks.

(2) Make theoretical contribution to the field of CMAC neural

network research.

(3) Use the platform/testbench established in the research to

explore the capabilities and performance limitations of CMAC

neural networks.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

BACKG RO UND

2.1 Basic Concepts and Approaches in Vibration Study

Vibration can be found virtually everywhere. All bodies possessing

mass and elasticity are capable of vibration. The study of vibration is

concerned with the oscillatory motions of bodies and the forces

associated with them [73].

There are two classes of vibrations: (1) Free vibration, which refers to

the vibration taking place under the action of forces inherent to the

system itself and when external impressed forces are absent; (2) Forced

vibration that takes place under the excitation of external forces. The

system under free vibration will vibrate at one or more of its natural

frequencies. The vibrating linear system under oscillatory excitation will

vibrate at the excitation frequency. When the excitation frequency

coincides with one of the system’s natural frequencies, a condition

referred to as resonance may be encountered. Nonlinear systems

respond at all the harmonics and the mixing or "beat" frequencies of the

excitation frequencies.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As far as the vibrating systems are concerned, they can be

classified as linear or nonlinear, and, discrete or continuous. Linear systems

are subject to the principle of superposition and there are many eloquent

mathematical techniques well developed for their treatment, in contrast,

the techniques of analyzing nonlinear systems are generally difficult to

apply. Vibration study involves both the knowledge of linear systems and

the knowledge of nonlinear systems because all systems tend to become

nonlinear with increasing amplitude of oscillation.

Likewise, we see the relationship of studying the discrete system and

the continuous system. Discrete systems such as masses and springs are

easy to study but such idealized structures never exist in the real world.

Nevertheless, the mathematical analyses of discrete systems lay the

foundation of the study of continuous systems. Except for some special

cases, continuous problems cannot be solved exactly [8]. Thus we are

forced to consider approximate solutions. There are two distinct classes of

approximate solutions: one is the structure-oriented approach that

discretizes the original continuous system into a number of lumped

elements and another is the behavior-modeling approach that

approximates the system's response by a finite number of mode shapes.

The second approach is widely used because it does not need the

detailed knowledge of the structure of the system and many data

processing techniques can be adopted.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Artificial Neural Networks

2.2.1 Overview

Artificial neural networks have emerged from studies of how human

and animal brains perform operations. Interest in artificial neural networks

could be traced back in the early 1940s when pioneers, such as

McCulloch and Pitts and Hebb [53] [30] [6] [62], investigated networks

based on the neuron and attempted to formulate the adaptation laws

applied to such systems. The human brain is composed of many millions of

individual and highly connected elements called neurons. Functionally,

the brain is a highly complex, non-linear, and parallel computer (or,

information-processing system). It is fair to say that the human brain has

been and will still be the driving force behind the discipline of artificial

neural networks.

Many neural networks (the word “artificial” is dropped hereafter for

simplicity) have been proposed and studied in the past several decades.

Some of them, especially those in the early stage of development of

neural networks, possessed certain drawbacks such as, noticeably, the

requirement of a large number of neurons (weights) and/or slow

convergent speed. These drawbacks have been largely improved in

newer neural networks such as the CMAC neural network through hashing

and parallel computing.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overall, neural networks have found many application areas such

as neuroscience, mathematics, statistics, physics, computer science, and

engineering, based on their promising attributes [51], including:

• Inherent parallelism in the network architecture due to the

repeated use of the simple processing elements or neurons. This leads to

the possibility of very fast hardware implementations of neural networks.

• Capability of ‘learning’ information by example. The learning

mechanism is often achieved by appropriate adjustment of the weights in

the synapses of the artificial neuron models.

• Ability to generalize to new inputs (i.e. a trained network is

capable of predicting the outputs when presented with input data that

has not been used before).

• Robustness to noisy data that occur in real world applications.

• Fault tolerance. In general, network performance does not

significantly degenerate if some of the network connections become

faulty.

One definition for a neural network is [4]: A neural network is a

massively parallel distributed processor that has a natural propensity for

storing experiential knowledge and making it available for use. The neural

network resembles the brain in two respects:

(1) Knowledge is acquired by the network through a learning

process;

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) Interneuron connection strengths known as synaptic weights are

used to store the knowledge.

Neural networks are usually implemented by using electronic

components or are simulated in software on a digital computer. The

procedure used to perform the learning process is called a learning

algorithm, the function of which is to modify the synaptic weights of the

network in an orderly fashion to attain a desired design objective.

A popular paradigm of learning [52], called supervised training or

learning with a teacher, involves modification of the synaptic weights of a

neural network by applying a set of labeled training samples. Each

sample consists of a unique input and a corresponding desired response.

The network is presented with an example picked at random from the set,

and the synaptic weights of the network are modified to minimize the

difference between the desired response and the actual response of the

network produced by the input signal in accordance with an appropriate

statistical criterion. The training of the network is repeated for many

examples in the set until the network reaches a steady state where there

are no further significant changes in the synaptic weights. The previously

applied training examples may be reapplied during the train session but in

a different order. Thus the network learns from the examples by

constructing an input-output mapping for the problem at hand.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In addition to those attributes of neural networks that make them

appealing to a variety of fields, two prominent advantages the neural

networks possess due to their built-in capabilities make them a useful tool

in systems modeling, pattern classification, adaptive signal processing,

and adaptive control. First, a neural network, made up of interconnected

nonlinear neurons, is itself nonlinear. Moreover, the nonlinearity is of a

special kind in the sense it is distributed throughout the network.

Nonlinearity is an important property, particularly if the underlying physical

mechanism under study is inherently nonlinear. Applying linear modeling

techniques to a nonlinear system usually results in a large number of

equations to solve. Second, neural networks have a built-in capability to

adapt their synaptic weights to changes in the surrounding environment.

When it is operating in a non-stationary environment, a neural network

can be designed to change its synaptic weights in real time.

The following important accomplishments mark the major

advancements of neural networks:

2.2.2 Artificial Neurons

In 1943, McCulloch and Pitts presented their simple neuron with five

assumptions governing the operation of neurons [53]. The McCulloch-Pitts

neuron is a very simple two-state device. There is no training for their

neurons. The first time a learning rule for adjusting the synaptic weights is

presented is in the paper by Hebb in 1949 [30]. John Hopfield presented a

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neural architecture made up simple processing units based on the formal

neuron of McCulloch and Pitts in his paper [32] published in 1982.

Hopfield's paper brought together several seemingly unrelated concepts

in the literature and presented them in a highly coherent fashion. As

stated in [6], regarding Hopfield's work, "As far as public visibility goes, the

modern era in neural networks dates from the publication of this paper by

John Hopfield."

2.2.3 Adaptive Linear Element fAdaline! and Perception

The Adaline is a single neuron whose synaptic weights are updated

according to the Least Mean Square (LMS) algorithm [81] [79], which is

sometimes referred to as the Widrow-Hoff learning rule or the delta rule

[14] [69]. The architecture of Adaline can be viewed by referring to Figure

2-1, which consists of an adaptive linear combiner cascaded with a

symmetric hard limiter. For a pattern recognition problem, the hard limiter

is a decision-maker or pattern-classifier. There are two varieties of LMS

algorithms - p-LMS algorithm and a-LMS algorithm. The simplest p-LMS

algorithm is of the following form:

w (k + 1) = w(A~) + JU ■ e (k)x (k) (2 .1)

The a-LMS algorithm is of the following form:

w (k + l) = w (k) + a
e (k)x (k)

(2.2)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi(k) »

Xn(k)

W o(k) \

Linear error

Activation
Function
f(v(k))

Adaptive algorithm

/

Symmetric
hard-limiting

quantizer

kd(k)

Figure 2-1: Adaptive linear element

y(k)

The Adaline closely resembles the simple perceptron (single-layer

perceptron), which was originally presented by Rosenblatt [68]. Several

different types of perceptron were developed later. The major difference

between the Adaline and perceptron is, during the training process of the

network, how the error is generated. For an Adaline, the error is generated

as the difference between the desired output and the output of the linear

combiner; and the resulting error, i.e., e(k) =d(k)-v(k), is called the linear

error. For a perceptron, the error is generated as the difference between

the desired output and the output of an activation function. There are

many different activation functions. An example is the symmetric hard

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

limiter and then the resulting error, i.e., e ’ (k)= d(k)-sgn(v(k)), is called the

quantizer error. The learning rule for this perceptron is given as [82]:

w (k + 1) = w (k) + a e ^ x (k) (2.3)

Another commonly used activation function is the sigmoid

activation function, denoted as f (•). The learning rule in this case is given

as:

w(* +1) = w(Jfc) + n • e \k) x (k) ^ - 1 v=vW (2.4)
dv 1

The learning rule for the perceptron, like the Widrow-Hoff learning

rule, is based on the method of steepest descent and attempts to

minimize an instantaneous performance function.

The LMS algorithm is extensively studied and used in adaptive signal

processing and neural networks. The LMS algorithm for training a single

layer network is the predecessor to the backprogation learning rule for

feedforward multilayer perceptrons.

2.2.4 Backpropaaation Algorithm

The standard backpropagation algorithm for training the multilayer

perceptron neural network (MLP NN) is based on the steepest descent

gradient approach applied to the minimization of an energy function

representing the instantaneous error. The adjustment of synaptic weights

at each layer of the network is proportional to the product of the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computed local error, or delta, and the local input (or the output of prior

layer). Therefore the backpropagation algorithm is also referred to as the

extended delta rule.

The backpropagation algorithm was first developed by Werbos in

1974 [75], but it went unnoticed [76] [77] until 1986 when Rumelhart, Hinton

and Williams published their work on the backpropagation algorithm

[70] [69]. Today, backpropagation is a popular learning process in neural

networks. The main drawback of backpropagation is slow convergent

speed.

2.2.5 Radial Basis Function Networks

In many cases, radial basis function networks will train much more

quickly than the feedforward multilayer perceptrons trained by

backpropagation [28]. In a radial basis function network (RBF NN), the

neuron (or RBF center) close to the input will make more contribution to

the output of the RBF NN in response to that input than remote centers.

The output o f the RBF NN is the weighted sum of the outputs of the hidden

neurons (the neurons between the input layer and the output layer):

(2.5)
*=1 k~l

where xe 9Tnxl is an input vector and ck e 3Txl are the RBF centers in the

input vector space. O k(*) is a function from 9T to SR. The most commonly

used function is an exponential quadratic function as follows:

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</){x) - e x p (- x 2 Ic r2} (2 .6)

It can seen from (2.5) that two sets of parameters governing the

properties of RBF NN are the weights Wtt in the output layer and the

centers c* of the radial basis functions. The defining of the centers largely

affects the complexity of RBF NN training. The simplest form of RBF NN

training is with fixed centers. In 1988 Broomhead and Lowe [9] proposed

an approach of choosing the fixed centers in a random manner as a

subset of the input data set. A "sufficient” number of randomly selected

centers is required so that they can statistically represent the distribution of

the input data. The only adjustable parameters were the weights in the

output layer. But this approach produces a relatively large network, even

for a relatively simple problem. Some improvements aiming to reduce the

size of RBF NN, such as training the RBF using the stochastic Gradient

approach [28] [29] and the orthogonal least squares (OLS) method

[15] [29], had been presented but the selection of the RBF centers remains

a major challenge in the design and application of the RBF NN.

The Cerebellar Model Arithmetic Computer (CMAC) is regarded as

a special case of the radial basis function network [3J[11][58]. Both are

designed according to a fundamental principle of “ local generalization" -

- similar inputs produce similar outputs while distant inputs produce nearly

independent outputs. CMAC uses a geometrical method to decide the

receptive fields where the basis functions are defined. Two specialties

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

embedded in CMAC are its layered structure and that its basis functions

are discontinuous functions. Much more will be said about the CMAC in

the next section and the following chapters.

2.3 Historical Development of CMAC Neural Networks

The Cerebellar Model Arithmetic Computer (CMAC), an associative

memory neural network in that each input maps to a subset of weights

whose values are summed to produce outputs, was introduced by James

Albus [I] [2] in early 1970's to approximate the information processing

characteristics of the human cerebellum. Evidently since mid-1980’s, study

on CMAC has made significant progress and applications have been

found in fields such as system identification or plant modeling and real­

time adaptive control. One of the most frequently quoted works is the

development of a practical implementation of the CMAC neural network

that could be used in the real-time control applications [58] by Miller,

Glanz, and Kraft at University of New Hampshire.

A large number of papers or other publications about CMAC neural

networks have been published. Among them are the works on exploring

the properties and capacities of CMAC [58] [19], on improving or

generalizing the CMAC structure [43] [50] [49] [25] [26] [44] [2] [17] [54] and

receptive functions [43] [78] [20] [16], on the selection of learning

parameters [48] [47] [37], on the learning convergence [87] [63] [46] [39]

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[40][10][88], and on applying models or architectures [56][57][55][21][31]

[22] [23] [41] [89] [13].

The following summary outlines the efforts and progresses made in

the study of CMAC neural networks.

2.3.1 On the CMAC Topological Structure*

The original Albus CMAC [2] can be thought of as a special case of

lattice- based AMN (associative memory networks) with sparse placement

of basis functions. Using this technique, the input space is quantized into

discrete states as well as larger size overlapped areas called hypercubes

(or receptive fields where the basis functions are defined). Each

hypercube covers many discrete states and is assigned a memory cell

that stores information in it. The pattern of placement of basis functions on

the input space is diagonal. As a result, the number of basis functions

(which equals the number of memory cells) is significantly less than the

number of lattice cells, which reduces the computation requirements.

However, the CMAC’s modeling ability is not as flexible as a standard

AMN (where the number of basis functions is equal to the number of

lattice cells).

In the conventional diagonal-placement pattern of weights (basis

functions), the weights are not evenly distributed on the input space.

Actually, they are concentrated along the parallel diagonals. Lane et al

‘ A detailed description of CMAC structure is given in Chapter 3.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[43] discussed two weight-addressing schemes, that is, (1) Main diagonal

and anti-diagonal weight-addressing scheme, and (2) Main diagonal and

sub-diagonal weight-addressing scheme, which have the weights more

scattered on the input space.

The conventional CMAC performs a uniform approach to equally

partition input space into discrete regions in order to construct memory

structure and one generalization factor p is used for all inputs. Gonzalez-

Serrano et al [25] noted that its rigid structure reduces its accuracy of

approximation and speed of convergence with heterogeneous inputs. In

[26] it is shown that the variation of the function to be approximated is

highly correlated with the variation of the weights. Lee et al [44] noted

that the conventional CMAC neglects the problem of various distributions

of training data sets so that it allocates many unused memory units.

The number of basis functions increases exponentially with the input

dimension. It also increases with the levels of quantization (discretion)

quickly. To reduce the storage requirement and increase the flexibility of

CMAC structure, efforts have been made by several researchers. In [17],

the authors proposed a self-organizing CMAC neural network that uses a

Kohonen self-organizing map algorithm to cluster the receptive fields in

regions of the input space where the data is dense. In [44] proposed a

self-organizing input space module that uses Shannon’s entropy measure

and the golden-section search method to appropriately determine the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input space quantization according to various distributions of training

data sets. The problem with these approaches is that, while reducing the

storage requirement, they lose one of the major benefits of CMAC,

namely the speed of computation. In [54], a hierarchical multi-resolution

approach is investigated through experimentation as a possible

approach to alleviate the problem.

Reference [25] proposed a generalized CMAC (GCMAC) network

with multiple generalization factors [q. = [pi, P2 pn]), one for each

input that depends on the smoothness of each input. The shape of

receptive fields then becomes hyperparallelpipeds instead of hypercubes.

Albus’ CMAC can be considered as a special case for the GCMAC.

2.3.2 On the CMAC Learning Algorithms

The CMAC network performs a locally weighted approximation of

functions by means of some basis functions. The original CMAC has

constant basis functions. In CMAC, the input space is divided into small,

overlapped regions, called receptive fields, where the basis functions are

defined. A disadvantage is that its output is constant within each

receptive field and the derivative information is not preserved. Proposed

alternatives are B-splines [43], exponential [78] [20], and Gaussian functions

[16]. In [16], CMAC with general basis functions is investigated and the

condition of learning convergence has been proved. The performance of

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a simulation with Gaussian functions (GBFs) showed better accuracy while

the learning speed is very close to the conventional CMAC.

In [48], Lin and Kim investigated the problem of parameter selection

(such as the learning rate) for a CMAC-based adaptive critic learning

technique which the authors proposed previously [47] [37). The adaptive

critic learning structure consists of two main modules - a control module

and an evaluation module. The output of the former module is used for

learning the optimal control action. Analytic result for estimating the limits

of the learning rate was achieved and simulation result was provided.

Wong and Sideris [87] proved that CMAC's learning always

converges with arbitrary accuracy on any sets of training data. However,

their proof was restricted to the case that the memory size is greater than

the number of weights to be stored and no hash mapping is used. The

proof by Parks and Miltizer [63] defined a Lyapunov function and used it

to prove that CMAC learning converge to a limited cycle given that the

learning rate equals to one. Lin and Chiang [46], through defining the

CMAC technique using mathematical formation and then examining the

eigenvalues of a matrix describing the learning procedure, further proved

that CMAC's iterative learning from either with or without hash converges

to a limited cycle if the learning rate is between zero and two. Moreover,

their study also proved that CMAC learning results in a least square error if

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of iteration approaches to infinity and the learning rate

approaches to zero.

2.3.3 On the application of CMAC models

The use of CMAC neural networks in practical problems has been

predominantly conducted at University of New Hampshire. Among them

are applications in real-time robotic [56] [57] [55], vibration control [41] [89]

[13], pattern recognition [21] [31], and signal processing [22] [23].

Reference [55] demonstrated the application of CMAC neural

networks for a robot-tracking problem involving the control of a five-axis

industrial robot with a video camera attached to the fifth axis in the place

of a gripper. An application in signal processing problem - learn how to

generate the original input given the output of a nonlinear channel with

memory, was presented in [23].

In [41][89], the CMAC network was used in a feedback control

structure to produce the signal required to actively cancel the vibration

source. In [41], the CMAC neural network concept was applied to a real­

time closed-loop vibration control system to reduce unwanted vibrations

in an acoustic system. In [89] offered two significant extensions, which

make the CMAC controller method applicable to a wider range of

practical problems. The first is a new weight update procedure that

separates the training cycle from the control cycle so that the CMAC

controller is able to deal with the phase shift inherent in the plant. The

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second is another new approach that does not require direct

measurements of the vibration source. The new vibration control schemes

were tested on a submarine simulation model. Results indicate CM AC is

an effective tool for this vibration control problem.

In [13], an algorithm for the convergent adaptation of a CMAC

neural network in feedforward disturbance cancellation architectures is

presented. This technique is a generalization of the Filtered-X LMS

algorithm used in the case of linear adaptive filters. Results are presented

for an implementation of the algorithm on a laboratory acoustic duct

model. This application shows that CMAC can operate at high enough

frequencies for the pole vibration problem.

2.4 Some Notes on Adaptive Signal Processing

Adaptive signal processing can be considered to be a process in

which the parameters used for the processing of signals change

according to some criterion, such as the estimated mean squared error or

the correlation. Adaptive processing usually refers to adaptive filtering, in

which the parameters of the filter can change with the independent

variable (usually space or time).

Two distinct linear optimum filters are the Wiener filter and the

Kalman filter. The first studies of minimum mean-square estimation in

stochastic processes were made by Kolmogorov [38], Krein [42] and

Wiener [85] during the late 1930s and early 1940s. Kolmogorov developed

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a comprehensive treatment of the linear prediction problem for discrete­

time stochastic processes. Krein extended the results to continuous time

by using a bilinear transformation. Wiener independently formulated the

continuous-time linear prediction problem and derived an explicit

optimum formula that required the solution of the Wiener-Hopf equation

[86]. The original Wiener-Hopf equation, taking the form of an integral

equation, is difficult to solve. In 1947, Levinson formulated the Wiener

filtering problem in discrete time [45]. In this case, the Wiener-Hopf

equation is neatly written as an algebraic matrix-vector equation:

Rw = p (2.7)

where w* is the tap-weight vector of the optimum Wiener filter structured

in the form of a transversal filter (Figure 1.5), R is the correlation matrix of

the tap inputs, and p is the cross-correlation vector between the tap input

and the desired response.

The works of Wiener and Kolmogorov were based on the

assumption of stationary stochastic processes. For a problem to which

nonstationarity of the signal and/or noise is intrinsic, the optimum filter has

to assume a time-varying form. One solution turned up in 1960 is the

Kalman filter, a powerful device with a wide variety of engineering

applications, especially in aerospace and aeronautical applications.

Kalman’s original formulation of the linear filtering problem was derived for

discrete-time processes [35]. Later (1961) Kalman and Bucy collaborated

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on the continuous-time filter [36]. The mathematical description of the

Kalman filter is based on the state-space approach. A key property of the

Kalman filter is that it leads to minimization of the trace of the filtered state

error correlation matrix, which means the Kalman filter is the linear

minimum variance estimator df the state vector [5] [27]. The Kalman filter

also provides a unifying framework for the derivation of the recursive least-

squares filters [71] [29]. The link between Kalman filter theory and adaptive

filter theory was demonstrated by Sayed and Kailath in their paper

published in 1994 [71].

The earliest work on adaptive filters may be traced back to the late

1950s. The least-mean-square (LMS) algorithm, devised by Widrow and

Hoff in 1959 to train the weights of Adaline in their study of a pattern

recognition problem, emerged as a simple and yet effective algorithm

and has been widely used in engineering applications.

The LMS algorithm could be developed from the Wiener-Hopf

equations (or the cost function of Wiener optimum filter) in two stages [29].

First, by adopting the method of steepest descent - a well-known

technique in optimization theory, a recursive procedure of updating

weights is formed which requires the use of the gradient vector. Second,

by altering the mean square error in the cost function to instantaneous

square error, an estimation of the gradient vector is obtained. The

resulting algorithm is the well-known LMS algorithm, the essence of which

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may be put in the following words: the adjustment at each time step is

proportional to the product of tap-input vector and the error signal. The

rate of convergence depends on a coefficient called the learning rate.

The second approach to develop the linear adaptive filtering

algorithm is based on the method of least squares, the cost function of

which is the sum of weighted error squares. The resulting algorithm is the

recursive least-squares (RLS) algorithm. One of the earliest papers on the

standard RLS algorithm was presented by Plackett in 1950 [64]. Efforts

have been made to establish the relationship (one-to-one variable

correspondence) between RLS algorithms and Kalman filtering algorithms.

These include a paper by Gogard in 1974, which used Kalman filter theory

to derive a variant of the RLS algorithm [24], and an expository paper by

Sayed and Kailath in 1994 [71].

At last, an important type of nonlinear adaptive filters is the neural

network. The nonlinearity of a neural network is distributed throughout the

network. Hence, theoretically and practically, neural networks are the

most important nonlinear adaptive filters. It has been shown that the

development of adaptive filtering algorithms is closely interwoven with the

development of neural networks.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

C M A C STRUCTURE

This chapter revisits the structure of CMAC neural network in great

details. Both the geometric formation and mathematic representation of

CMAC structure will be discussed. The purpose of this chapter is to

formulate the weight-addressing mechanism (i.e., information storage

and/or retrieval approach) as well as to lay the foundation of exploring

the properties of CMAC neural network in this and next chapters.

Before we go to formal discussion, a brief description of notations

and terminology of CMAC neural network is given: Let x = [xi, X2, ..., Xn] e

Rn be the input of CMAC and q = [qi, q2, ..., qn] e In be the discretized

input of the CMAC. As for other parameters, p stands for the

generalization factor, and d = [di, 6 2 dn) e In is the displacement

vector of CMAC. Further assume that the discretized input span the

hypercube Zn ={[zi, Z2 zn] e In | 0 ^ z < Li-1}. Hence, q e Zn. The

(discretized) input space is divided into small, overlapped regions, called

receptive fields (RFJ or memory elements, where the basis functions are

defined. The total number of receptive fields is often referred as memory

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size that is equivalent to the number of weights of the network. The

generalization factor p defines the size of the receptive fields and the

number of layers of basis functions (also known as overlays). For a given

input, only the basis functions whose corresponding receptive fields

contain that input are excited (activated).

3.1 One-Dimensional-Input CMAC

3.1.1 Formation of Receptive Fields

In the 1-D input case, the receptive fields are segments. Figure 3-1

shows two examples of the receptive fields of 1-dimensional input CMAC.

In Figure 3-1 (a), it is assumed that the input has been discretized and it

would span the hypercube Zi = {zi e I1 | 0 £ zi £ Li-1}, where Li = 8. Further

assume that the displacement vector di =1 and the generalization factor

pi = 3. The role of the displacement vector is to form different receptive

field at each layer. In the first layer, 3 receptive fields (segments) are

formed; in the second layer, 4 receptive fields (segments) are formed; in

the third layer, 3 receptive fields (segments) are formed. The total number

of the receptive fields (or the memory size of CMAC neural network) is Mi

= 10. These receptive fields are numbered from 1 to 10 (these numbers are

conveniently designated as the addresses of these receptive fields or

memory elements of CMAC neural network), according to which layer

they belong to and their position at each layer. As a convention, the

number increases from left to right in each layer and from lower layer to

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, A \ , *
 3 :|A ^

/ £ » . _‘ "
-3---- 3i — 1 v j - £ H

"0 "" ...r Z o "■"ir" 6 7

(a) Li =8, di =1, pi = 3

i olT^-tr-tr-rt-Tr-Tr-rr-rrfi^

z.__z_i

L&__
i

5 - 2 — 2 4 -3 — 3

u 1 2 3 - ^ 5 6 7 ts v p

3rd layer

2 nd iayer

1st layer

Input

4th layer

3rd layer

2nd layer

Ist layer

Input

(b) l_2= 10, d2 =3, p2 = 4

Figure 3-1: Receptive fields and weight-addressing of 1-D input CMAC

higher layer. Also shown in the figure is how the receptive fields are

excited to a particular input. For example, given input q = 4 (marked by a

star sign on the input axis), receptive fields No.2, No.6, and No.9 are

excited (marked by colored circles on their layers). The corresponding

excitation vector S4 is:

s4= [0, 1,0,0,0, 1,0,0, 1,0]T (3.1)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In general, the excitation vector is a vector of M elements, which

has p elements of value 1 and M- p elements of value 0.

In Figure 3-1 (b), it is assumed that I 2 = 10, 6 2 =3, P2 = 4. The

receptive fields are formed and numbered in a similar way to Figure 3-1

(a). Here 4 layers are formed and there are totally 13 receptive fields. For

example a given input q = 4, receptive fields No.2, No.5, N0.8 and No.l 1

are excited. Its corresponding excitation vector S4 is:

s4 = [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]T (3.2)

Obviously, the value (1 or 0) of each element of an excitation

vector will be determined by the element’s index in the vector. For those

elements whose indices coincide with the addresses of the receptive

fields being excited by the particular input q, their values are 1. Otherwise

they are zero.

3.1.2 Number of Receptive fields

To formulate the addresses of the excited receptive fields, we need

to know the number of receptive fields at each layer, which is given by:

* II \ k - l) x d ~
+ ceil

' L - (k - l) x d ~ k = 1..... p (3.3)
. P . P

So, the memory size or the required number of weights is:

M = ^ M W (3.4)
*=1

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For Figure 1 (a), Min = 3, Ml2) = 4, M(3) = 3, and M = Ml'! + Ml2) + Ml3) =

10; For Figure 1 (b), Mi') = 3, Ml2) = 3, Ml3) = 3, Ml4) = 4, and M = MO) + Ml2) +

M<3l + M(4)= 13.

3.1.3 Addressing Mechanism and Excitation Vector

For one given input x (or q), one memory element (segment) at

each layer is associated. The relative address of the particular element at

kth layer is (numbering from one):

rq k) = ceil
(k - l) x d

+ ceil k = 1 p (3.5)

If we number the memory elements incrementally from left to right

of the first layer, then the second layer, till the pth layer. The “absolute"

address of this element will be (starting from one):

i=0
Ml°)= 0 (3.6)

Table 3.1 shows the addresses of receptive fields calculated

according to equation (3.6) and the corresponding excitation vectors, for

the 1-D CMAC given in Figure 3-1 (a). Take input q = 4 for example, rqn) = 2,

rq (2) = 3, rq I3) = 2, aq 1’) = M(°J + rq 0) = 2, aq I2) = M(°) + Ml1) + rq (2) = 6, aq 0) =

M<°) + MO + Ml2) + rq3 = 9. Hence, the 2nd, 6th and 9fh elements of excitation

vector will be 1 and others will be 0. This conclusion agrees with Eq. (3.1).

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3-1: Addresses and excitation vectors
of the CMAC in Figure 3-1 (a)

Input
variable

d

Absolute
address

aa(k)

Excitation
vector

0 1,4,8 (1,0,0,1,0,0,0,1,0,01
1 1,5,8 (1,0,0,0,1,0,0,1,0,01
2 1,5,9 (1,0,0,0,1,0,0,0,1,01
3 2, 5,9 (0,1,0,0,1,0,0,0,1,01
4 2, 6,9 (0,1,0,0,0,1,0,0,1,01
5 2, 6, 10 (0,1,0,0,0,1,0,0,0,11
6 3, 6, 10 (0,0,1,0,0,1,0,0,0,11
7 3, 7, 10 (0,0,1,0,0,0,1,0,0,11

3.1.4 Coordinates of Centers of Receptive Fields

In the remaining part of this section, the coordinate of the center of

the receptive field (segment) will be discussed. As mentioned before, for

one given input x (or q), there are p memory elements associated with it

(one memory element at each layer). However, the input is most likely to

miss the centers of those segments (Figure 3-1). One fundamental

prerequisite of CMAC is that similar inputs tend to generalize and produce

similar outputs. The similarity is evaluated by the distance between the

inputs. The conventional algorithm that uses constant basis functions

weights all the excited receptive fields equally. A fine-tuned improvement

will adjust the weight of each excited receptive field according to the

distance between the active input and the receptive field.

On the discretized input axis, the coordinates c‘*} of the center of

receptive fields at kth layer are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

{3.7a)

s mod ((k - l) x d , p) - l
2

cq k) = • 5mod((k - 1) x d , p) + (rqik) - 2) x p + -- - - - -

L - l + smod((fc- 1) xd ,p) + {rq(k) - 2) x p
. 2

2 < r ik) < M (k)

k=2 p (3.7b)

where smod(m, n) is defined as a function of two positive integers:

smod(m, n)
n,

mod (m,n),

i f(mod(m, n) = 0)and{m ^ 0)

otherwise
(3.8)

Finally, the distance between the input q and the center of each

memory unit associated with the input is:

Table 3.2 shows the center coordinates of receptive fields

calculated according to equation (3.7) and the corresponding distances

to the active inputs, again for the 1-D CMAC given in Figure 3-1 (a). We

notice that all the values of distances calculate are less than p/2.

it is worthwhile to note that while the both relative and absolute

addresses start from one, coordinates of both the inputs and the centers

of the units associated with them start from zero in order to keep

consistent with convention.

for k = 1,..., p (3.9)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3-2: RF center coordinates For the CMAC in Figure 3-1 (a)

Input
variable

d

Center
coordinate

CaN

Distance

1 q- c qw |
0 1.0, 0.0, 0.5 1.0, 0.0,0.5
1 1.0, 2.0, 0.5 0.0, 1.0, 0.5
2 1.0, 2.0, 3.0 1.0, 0.0, 1.0
3 4.0, 2.0, 3.0 1.0, 1.0, 0.0
4 4.0, 5.0, 3.0 0.0, 1.0, 1.0
5 4.0, 5.0, 6.0 1.0, 0.0, 1.0
6 6.5, 5.0, 6.0 0.5, 1.0,0.0
7 6.5, 7.0, 6.0 0.5, 0.0, 1.0

3.2 Two-Dimensional-Input CMAC

3.2.1 Formation of Receptive Fields

In the 2-D input case, the receptive fields are squares (or

rectangles). Figure 3-2 shows an example of the receptive fields of 2-

dimensional input CMAC. It is assumed that the inputs has been

discretized and they would span the hypercube I 2 = {[zi,Z2] e I2 | 0 < zi <

Li-1, | 0 < Z2 £ L2-I}, where Li = 8 and L2 = 10. Further assume that the

displacement vector [di, d2]= [1, 1] and the generalization factor p= 3. In

the first layer (Figure 3-2(b)), 12 receptive fields (squares/rectangles) are

formed; in the second layer (Figure 3-2(c)), 16 receptive fields are formed;

in the third layer (Figure 3-2(d)), 12 receptive fields are formed. The total

number of the receptive fields (or the memory size of CMAC neural

network) is M = 40. These receptive fields are numbered from 1 to 40. Also

shown in the figure is how the receptive fields are excited according to a

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particular input. For example, given input q = (3, 4), marked by a star sign

in Figure 3-2, three receptive fields No.5, No.22, and No.33 are excited

(marked by colored circles on their layers).

0 1 2 3 4 5 6 7xi

X2

9
"8
7

j5J
5
4
3
T|
1
0

10 10 10
T '' '7 " " T
7 7 7

4 . 4 4
4 4 4
4 4 4

-r ~ T ~ r
1 1 1
1 1 1

0 1 2

11 11 11
_8 8 8
8 8 8

5 5 5
☆ 5 5
9 5 5
~T~'~2 T
2 2 2
2 2 2

12 12

3 4 5

9 9
9 9

J L . .S
6 6
6 6
6 6

"T 'T
3 3
3 3

 ►
6 7xi

(a) The input space and
an active input (3,4)

(b) Receptive fields of 1st layer

X2

O i l 2 3 ! 4 5 6 7 xi

(b) Receptive fields of 2nd layer

X2
A

9
k.

24 25 26 26 i 27 27 27 28
▲

9
8 24 25 26 26 1 27 27 27 28 8

-7_ 24 25 26 26 • 27 27 27 28 "7
6 21 '22''22"22!23"23' "23 "23 6
5 21 '*'» 22 22j 23 23 23 23 -5.
4 21 j. — 22.3225.23—21-23^ .23 4

T 17 ,18 18 18 j 19 19 19 20 3
2 17 18 18 18 j 19 19 19 20 2

_L 17 18 18 18 j 19 19 19 20 T
0 "13'tl'4'T4“ 14‘t'I5”T5" I T kT6 0

—►

38 38i
•38-381-
35 35-
35 35!
35 35i
32"32i'
32 32;
32._32i.
29 29j
29 291

39 39
-39-39
36 36
36 36
36 36

'33~'?S'
XL 33
51.3.3.
30 30
30 30

39] 40
_39i--40-
36| 37
36! 37
36i 37

"33T"3T
33j 34

_33j-3.4.
30j 31
30i 31

40 40
-40-40
37 37
37 37
37 37
34 ” 34
34 34
.3.4-34
31 31
31 31

 ►
0 1 i 2 3 4 i 5 6 7xi

(d) Receptive fields of 3rd layer

Figure 3-2: Receptive fields and weights addressing
for a 2-d input CMAC

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

8

7

6

5

4

3

2

1

0

Figure 3-3: Another way of locating weights associated with a 2-D input

Figure 3-3 shows another way of locating weights associated with a

2-D input. The pattern of weight placement is formed according to the

following procedure: first, a receptive field is represented by a weight

located on the left-bottom corner of the receptive field; then, all weights

on three layer are superimposed (projected) on one plane. In figure 3-3,

the weights near the border of the input space (a grid region of 8 x 10

dots) are not shown so that the diagonal-placement pattern of CMAC

46

0 • • • •

• • • •

The weights associated
with a particular input,
(3,4), marked by star

sign, are located within
a square of side 3, with
the input at the upper-

right corner of the
square.

Legend:
Red: 1st layer
Green: 2nd layer
Blue: 3 d layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

weights can be clearly seen. Having identified al! weights on the input (2-

D) space, the weights associated with a particular input (3, 4) can be

located within a square of side 3, with the input point at the upper-right

corner of the square.

3.2.2 Number of Receptive fields

For a 2-dimensional input CMAC, the number of receptive fields at

each layer is:

M w = f lM ,w k = 1...... p (3.10)
;=i

where

M ,w = ceil

1

1 X

1

+ ceil

i
i"

1 1 i X jr
. i

L P J L P J

So, the memory size (the total number of receptive fields) is:

M = £ M (i)= £ flM ,W (3.H)
k=l k=1 i=1

For the example given in Figure 3-2, M il’) =3, M2o =4, MO = 3x4 = 12;

M , (2) =4, M2® =4, M(2) = 4x4 = 16; MiP> =3, M2(3,l =4, MP1 = 3x4 = 12; and M

= MO + Ml2) + MO = 40.

Table 3-3 gives the numbers of receptive fields for some commonly-

used generalization parameters, assuming di = d2 = 1. This table shows

that the required memory size actually decreases with the generalization

parameter. This is because, while the number of layers increases linearly

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the generalization factors, the number of squares each layer

decreases at higher order.

Table 3-3: Number of receptive fields vs. generalization factor

Generalization factor Number of receptive fields00itCN
_1II L, = L2 = 200

4 2653 10303
8 1433 5357
16 829 2893
32 539 1673
64 431 1087
128 - 867

3.2.3 Addressing Mechanism and Excitation Vector

For one given input x =(x\, X2) (or q = (qu q2)j, one memory element

(square/rectangle) at each layer is activated. The relative address of the

particular element at kth layer can be defined as:

< } = K (k) - D x M ® +r9iw k = 1 p (3.12)

where

ceil

1XN1Wt

+ ceil
(qi +1) - (& -1) x d i

i= 1 ,2 (3.13)
L P J P

If we number the memory elements incrementally from lower layer

(smaller displacement) to upper layer (larger displacement), the

"absolute” address of this element will be:

a q(k) =] ? M (i) + arqm M(0)= 0 (3.14)
/=o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In Figure 3-2, for input q = (3, 4), rqf’) = (2, 2), arqn) = (2-1)><3+2 = 5; rq(2)

= (2, 3), arq(2) = (3-1) x 4 + 2 = 10; rq 0) = (2, 2), arq0) = (2-1)x3+2 = 5; aq M) =

Mf°) + arq (D = 5, aq (2) = Mf°) + MH) + arq (2) = 0+12+10 =22, aq P) = M!°) + Ml') +

Ml2) + arq3 = 0+12+16+5 = 33. The corresponding excitation vector S(3,4j is:

That is, the 5th, 22nd and 33rd elements of the excitation vector have

the value of one and other 37 elements are 0.

3.2.4 Coordinates of Centers of Receptive Fields

Denote c (k) = (c (k) , c (qk)) the coordinates (on the discretized input

space) of the center of memory element a t kth layer, of which each

coordinate can be calculated according to:

(3.15)

s mod((fc — 1) x d (, p) — 1
2

c q,ik) = <s mod((/c -1) x d t , p) + (rq,{k)- 2) x p + - - - - -

L, -1 + s mod((k -1) x d t , p) + (r? {k) - 2) x p
_

2 < r ik) < M (t)Hi ‘

k = 2 p; i = 1, 2 (3.16a)

c
1 < r (1> < M (1)

Hi 1

i = 1, 2 (3.16b)
* Li -1 + (^ (1> ~l)x/g

2

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The distance between the input q and the center of each

receptive field at kth layer associated with the input is defined as:

S k = max {\q, - < , | }

i e { 1, 2}

fork = 1 , p (3.17)

which is always less than p/2. Again, take q = (3, 4) for example, cqn) = (4,

4), cq(2) = (2, 5), cqP) = (3, 3); 8q<» = 1, Sql2) = 1, 5q(3) = 1.

The definition given by Eq. (3.17) will be convenient for one to

determine whether an input (or weight) is located within a square.

3

2

• •

0 1

The centers of
receptive fields

associated with a
particular input, (3,4),
marked by star sign,
are located within a

square of side 3, with
the input at the center

of the square.

Legend:
Red: 1st layer
Green: 2nd layer
Blue: 3 d layer

Figure 3-4: The centers of receptive fields

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3-4 shows the distribution pattern of centers of receptive fields of

CMAC NN on the 2-dimensional input space (plane). Again those near

the edges of the input space are not shown so that the diagonal pattern

is dearly seen. The centers of receptive fields associated with input (3, 4)

are located within a square of side 3, with the input (marked by a star sign)

at the center of the square.

Figure 3-5 shows two more examples of receptive fields associated

with inputs (0, 1) and (5, 9), which are near the edges of the input space.

In Table 3-4, the addresses, center coordinates and distances between

the inputs and their corresponding centers are given by calculation

according to equations (3.12), (3.16) and (3.17). Cross-examining Table 3-4

with Figure 3-3 and Figure 3-2 verifies the correctness of these equations.

Figure 3-5: More examples of receptive fields

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3-4: RF addresses and center coordinates of 3 different inputs

Input
variable

d

Absolute
address

aaw

Center coordinates

C a W

Distance

8 q W

(3, 4) 5, 22, 33 (4, 4), (2, 5), (3, 3) 1.0, 1.0, 1.0
(0,1) 1, 17,29 (1,1), (0, 2), (.5, .5) 1.0, 1.0, 0.5
(5,9) 11, 27, 40 ..(4, 9), (5, 8), (6, 8,5).. 1.0, 1.0, 1.0

The excitation vectors corresponding to (0, 1) and (5, 9) are:

S(o,i) = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,l,0,0,0,0,0,0m0,0,0]T (3.18)

and

S(5,9) = [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1]T (3.19)

3.3 n-Dimensional-lnput CMAC

Generally, for n > 2, the shape of CMAC receptive fields are

hypercubes. Though it is hard to visualize these receptive fields in this case,-

the principles of calculation of memory size, addresses and coordinates of

the centers for 1-D and 2-D CMAC apply to the higher-dimensional-input

case.

3.3.1 Number of Receptive fields

As a natural extension of 1-input and 2-input CMAC, at each layer,

the number of hypercubes (or, hyperparallelepipeds) of n-input CMAC is:

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where

M (k) = f l M -
i=i

k = 1......p (3.20)

M] k) = ceil
' (k- tyxd; '
. P .

+ ceil

i
i I ?r-

 ̂
1 X

1
>

i = 1, 2......n (3.21)

So, the memory size (total number of hypercubes) is:

k=1
(3.22)

Figure 3-6 shows the relationship between the number of receptive

fields and the generalization parameter (p). The three cases of input-

spaces can be represented by Zn ={[zi, Z2, Zn] e In | 0 ^ z, ^ U-l, i = 1,

2 , n} when n = 2, 3, and 4. The calculation also assumes U = 200 and di

= 1 for i = 1, 2 , n. Two conclusions can be drawn from this figure: (1) The

50 100 150
Generalization parameter

Figure 3-6: Number of receptive fields vs. generalization parameter

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of receptive fields increases dramatically with the dimension of

the input space (when p = 64, the numbers are 1087, 4523, and 18967

respectively for 2-D, 3-D and 4-D input spaces); (2) The number of

receptive fields decreases when the value of generalization parameter

increases, and the speed of decrement slows when the generalization

parameter becomes bigger.

3.3.2 Addressing Mechanism and Excitation Vector

For one given input q = (qi, qn), one memory element

(hypercube) at each layer is activated. The relative address of the

particular element at kth layer can be defined as:

R-l

i=i

0k) k= 1 p (3.23)

where

ceil
(k-tyxdi

+ ceil
{qt + l) - (k - l) x d i i = 1, 2 n (3.24)

If we number the memory elements incrementally from lower layer

(smaller displacement) to upper layer (larger displacement), the

"absolute” address of this element will be:

k-l
a qw =]T M (i) + arqw M(°>= 0 (3.25)

i=0

The value of jth element of the excitation vector sq may be

mathematically expressed as:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sa(j)
Otherwise

(3.26)

3.3.3 Coordinates of Centers of Receptive Fields

Denote = (c ® ,. . . ,c ®) the coordinates (on the discretized input

space) of the center of memory element at kth layer, of which each

coordinate can be calculated according to:

(i)
(r m - Y) X P + (P - V) 1 < rq m < M t(1)

= 1 n (3.27a)

s mod((£: -1) x d t., p) -1

s mod((& -1) x d j , p) + (rqi (i) - 2) x p + (/?-D

L, - l + s m o d ((£ - l)x d ;, /?) + (/- w -2) x /?
(* > = M <*>

k = 2,..., p; i = 1 , n (3.27b)

The distance between the input q and the center of each memory

unit associated with the input is defined as:

Sq = max

i e n)
(|Qi - < |) for k =] , p (3.28)

which is always less than p/2.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This chapter wil! conclude with a brief discussion of the output

function of neural network, which is conventionally a linear combiner

written in vector form as:

y , = s , » w (3.29)

where sq is the excitation vector corresponding to input q and may be

calculated according to (3.26). w denotes the weight vector that is the

contents of memory elements of CMAC network. yq is the (scalar) output

of CMAC network in response to input q.

The radial basis function network mentioned in chapter 2 provides

another way to look at the output function. We start by revising (2.4) into:

M

If the function 0(*) is defined as:

1, if d! < p l 2
q y (3.31)

0, Otherwise

Then equations (3.29) and (3.30) are equivalent. Nevertheless,

equation (3.30) offers broad choice of flexibility but adds additional

complexity to the algorithm of CMAC neural networks.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

EIGENANALYSIS OF CMAC ALGORITHMS

4.1 Introduction

Eigenanalysis is a basic tool of analysis in the study of digital signal

processing, which involves a useful decomposition of a matrix in terms of

its eigenvalues and associated eigenvectors. As discussed in chapter 2,

the CMAC neural network may be regarded as an adaptive filter. This

suggests that we could study CMAC within a general adaptation context

that has been studied by such disciplines as adaptive signal processing

and adaptive control.

A comparison between a CMAC neural network and an adaptive

FIR filter helps formulate the CMAC algorithm in proper form for this study.

As shown in Figure 4-1, the operation procedures of both the CMAC

neural network and the adaptive FIR filter can be divided into three parts:

(1) an input converter that forms a vector, x or s, from the input signal x.

Their length, M, is equal to the number of the weights (taps); (2) an inner

product of vector x, or s, with the weight vector, w; (3) a weight updating

algorithm such as the LMS algorithm, Aw = 2|iex or Aw = (a/p)es, or its

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inner product
(Linear combiner)

e =

'M -2

LMS algorithmConverter

Aw=2pex

An Adaptive FIR Filter

Q — •
Inner product

(Linear combiner)
k-2

LMS algorithm (p =a/(2p))
Converter

Aw = (a/p)es

A CMAC Neural Network (p=3)

Figure 4-1: An illustrative comparison between
CMAC neural network and adaptive FIR filter (SISO)

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

extensions (e.g., Filtered-x or Filtered-£, depending on the configuration

in which the filter/network is applied). The first step, input conversion, is

significantly different in the two cases while the other two procedures,

output estimation and weight updating, are much the same, at least in

their forms of representation,

4.2 The Performance Function

Assume at time step k, a pair of data (Xk, dk) is presented, in which x*

is the input and dk is the desired output (target). The output of CMAC

corresponding to Xk is:

y t = s [. w = w r » s t (4.1)

where w is the weight vector of size M (memory size) and Sk is the

excitation (selection) vector determined by Xk. For a conventional CMAC

neural network, Sk is a vector with p elements of one and M-p elements of

zero. Denote Sk(j) the jth element of the excitation vector Sk, the value of

which may be decided using methods presented in chapter 3.

The error between the desired output dk and the estimated output

Yk is:

ek = dk - y t = d k- s [*w (4.2)

The goal of adaptation is to minimize the following performance

function (MSE):

J(w) = E[e2k] = E[(dk- y k)2) = E[(dk- s Tk «w)2] (4.3)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Take the derivative of J(w),

~ 7 (w) = ^ E[(dk - j ,) 2] = E [^ - (d ; - 2 x d ky k+ y 2k)]

= E[2 x d t
9w 7* t 2 x « S ' '

] = (-2)x £ [
/y

Tit (<*t - y t)]

(-2) x £[s * (dt - sTw)] = (-2) x {E[st£*t] - £[s*sT]w}

Set — 7(w)lw_w,=0, that is,
ow

(- 2) x { E [s kd k] - E [s ks Tk]W*} = 0

£'[sX]w* = £[strft] (4.4)

Let R denote the MxM correlation matrix of the excitation vector Sk

of the CMAC neural network:

R = E[8ksTky.

E[sk(l)sk(l)] E[s ,(l)s ,(2)]

£ [S l(2)st (l)] .E[st (2)st (2)]

E[sk(M) s k(l)] E[sk(M) s k(2)]

E[sk(l)sk(M)] '

E[Sk(2)sk(M)]

E[sk(M) s k(M)]

(4.5)

Let p denote the Mxl cross-correlation vector between the

excitation vector and the desired response dk:

V = E[dks k] =

E[dks k(I)]

E[dks k(2)]

E[dks k(M)]

(4.6)

Then equation (4.4) becomes:

Rw* = p (4.7)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Equation (4.7) is the Wiener-Hopf equation in matrix form, which

gives the optimal weight vector:

w* = R ~l p (4.8)

under the assumption that R-> exists.

The properties of the correlation matrix R are very important in the

study of adaptive filtering theory, which will be explored in the next

section. Here we take a brief look at the optimal solution problem from a

different way familiar to the community of CMAC neural networks, that is,

the batch-mode solution. The derivation of properties and theorems in the

next two sections could be conducted similarly by assuming a limited

number of training data. The problem is re-stated as follows.

Assume that N- pairs of data, (Xk, dk), k =1, ..., N, are available for

training. For each pair of data, the output of CMAC is yk = s* »w = wr -s * .

The error between the desired output dk and the estimated output yk is

ek =dk- y k =dk- sj[» w . The goal of adaptation is to achieve a minimum

for the following performance function:

W = =-[-£(<** - y *)2 -s [*w)2 (4.9)
N f i Nt?i A f w

Again, take the derivative of J(w),

- 2xi l ‘ y t+y ^ <410>dw N dw f-f N ow

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 NAssume £[•] = —Y(»)for the stochastic process being studied (this is

a reasonable assumption for a large N), we conclude that equation (4.11)

is the same as equation (4.4) or the Wiener-Hopf equation (4.7).

Furthermore, let S denote the excitation matrix:

y(NxM)

and let d denote the response vector:

dx

d it
‘ (A 'x l)

Equation (4.11) may be written in matrix-vector form as:

— SrSw*=— Srd
N N

To derive (4.14), the following two equations are used:

SrS * 2 > * f

(4.12)

(4.13)

(4.14)

(4.15)
i=l

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and

N

Srd = 2 M , (4.16)

In this case the correlation matrix is defined as

(4.17)

and the cross-correlation vector

4.3 Properties of Correiation Matrix

The correlation matrix R is defined by equation (4.5) or (4.17). In this

section, nine useful properties of the correlation matrix are discussed. The

first seven properties apply to a general correlation matrix [29] and are

presented without elaboration. Properties 8 and 9 apply to CMAC neural

networks only. It is these unique properties that make the eigenanalysis of

CMAC neural network important beyond mere mathematical

manipulation. These properties will be used in the derivation and/or

interpretation of convergence conditions and misadjustment estimation

of CMAC algorithm in next section.

Property 1: For a correlation matrix R, the following equations hold:

RT=R (4.19)

RRT = RTR =R2 (4.20)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Eq. (4.19) follows directly from the definition of R given in Eq. (4.7)

and Eq(4.20) follows directly from Eq. (4.19).

Property 2: The correlation matrix R is always nonnegafive definite

(or positive semidefinite).

Let x be an arbitrary (nonzero) M-by-1 vector. The fact x \ = s[x

(both are scalar) is used in the following equation:

x R x = x r £ '[st s [] x = £ [x r s t s f x] = 2?[(xr s t) 2] > 0

Property 3: Let Ai, Az ..., Am be the eigenvalues of the correlation

matrix R. Then all these eigenvalues are real and nonnegative.

Denote q; the eigenvector associated with Ai. Hence,

Rq, = f a f 1 = 1 , 2M

Pre-multiplying both sides of this equation by q j , we get

qfRq, =A,qfq,

Since both qfRq, and qfq, are nonnegative scalars, it follows that Ai

2s 0.

Property 4: Let Ah As, Am be the eigenvalues of the correlation

matrix R. Then the sum of these eigenvalues equals the trace of matrix R.

The trace of a square matrix is defined as the sum of the diagonal

elements of the matrix. This property is not limited to the correlation matrix.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Property 5: Let Amax be the largest eigenvalue and Amin be the

smallest eigenvalue of the correlation matrix R. Then

where the spectral norm ||r|| /s defined as the square root of the largest

eigenvalue of RTR.

Property 6: The eigenvalues of the correlation matrix Rof a discrete­

time stochastic process are bound by the minimum and maximum values

of the power spectral density of the process.

Property 7: Let q,, q2, ..., q i be the normalized eigenvectors

corresponding to the distinct eigenvalues Ai, A2, ..., Am of the correlation

matrix R, respectively. That is,

where Q = [q i,q2,.,q M] ond A = diag(Al ,A2,...AM).

Property 8: The trace of correlation matrix R of the CMAC neural

network is equal to the generalization parameter of the CMAC neural

network. That is

and

Then the original matrix R may be diagonalized as follows:

Q~‘RQ = A (4.21)

trace{ R) = p (4.22)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof: Let nj denote the product of the ith element and jfh

element of the excitation vector Sk, i.e.,

rtJ = s , (i)s, (j)

The value of r» may be determined by the following equation:

ru = M 0 f =
1 i f i ,h element o f sk is 1

0 if i* element o f sk is 0

1=1

Since Sk is the excitation vector that has p elements of one

and M-p elements of zero,

M
Ysru=p

Hence,

rr(R) = £ £ (' «) =E[Yj ra]=E(p) = p
i=l i=4

Property 9: Let M, Az ..., Am be the eigenvalues of the correlation

matrix R. Then

M
(4.23)

M M

i=i

This follows directly from Property 4 and Eq. (4.22).

The above proof has been done for the correlation matrix defined

in Eq. (4.5). It can be proved that Properties 8 and 9 apply also to the

correlation matrix defined in Eq. (4.17).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generally, there is little can be told about the statistic

characteristics of the correlation matrix R. The importance of Property 8

and Property 9 is that, for a CMAC neural network, we can determine the

trace of R (and the sum of eigenvalues of R) before the input data are

actually collected. The trace of R is a key factor in determining the

convergence bound of learning rate and the misadjustment due to the

gradient noise (discussed in next section).

It is worthwhile to point out that, while the technique of hashing

mapping used in most practical CMAC neural networks is not mentioned

in the presentation of the above properties, these properties apply to

CMAC neural networks with or without hashing. The reason is that the

hashing reduces the memory size but not the generalization parameter.

There always are p elements of one and M-p elements of zero in the

excitation vector.

Taking the CMAC given in Figure 3-1 (a) as an example, its

generalization parameter is 3 and its excitation matrix S is given in Table 3-

1. Without hash mapping, the excitation matrix Ssxio is

3(1,:) =s,= [1,0,0,1,0,0,0,1,0,0]
S(2,:) =s2= [1,0,0,0,1,0,0,1,0,0]
S(3,:) =s3= [1,0,0,0,1,0,0,0,1,0]
S(4,:) =s4= [0,1,0,0,1,0,0,0,1,0]
S(5,:) =s5= [0,1,0,0,0,1,0,0,1,0]
3(6,:) =s6 = [0,1,0,0,0,1,0,0,0,1]
3(7,:) =s7= [0,0,1,0,0,1,0,0,0,1]
S(8,:) =s8= [0,0,1,0,0,0,1,0,0,13

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 8

Using Matlab, it is easy to verify that]T s (i, ;) = Z S<0‘) = 3 for i =1,
7= 1 7=1

2, 8 and tr(R) = tr(STS/8) = 3. The eigenvalues of R are: 0, 0, 0.0298,

0.0399, 0 .1028, 0.1176, 0.2891, 0.5485, 0.8284, 1.0440. The sum of these

eigenvalues is 3.

But rank(R) = 8 < 10, so R-1 doesn’t exist.

Given the hash matrix Htox6 as follows:

H (1,:) = [1,0,0,0,0,0];
H(2,:)= [0,1,0,0,0,0];
H(3,:)= [0,0,1,0,0,0];
H(4,:)= [0,0,0,1,0,0] ;
H(5,:)= [0,0,0,0,1,03;
H(6,:)= [0,0,0,0,0,1];
H(7,:)= [0,0,0,0,1,01;
H(8,:) = [0,0,0,0,0,1];
H (9,:) = [0,0,1,0,0,01;
H(10,:) = [0,0,0,1,0,0];

After hash mapping (SH), the 8x6 excitation matrix Sh becomes

1 0 0 1 0 1
1 0 0 0 1 1
1 0 1 0 1 0
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 1 0 1
0 0 1 1 1 0

It can be verified that Tr(Rh) = Tr(ShTSh/8)= 3. The eigenvalues of Rh

are: 0.0424, 0.1183, 0.2624, 0.4354, 0.5732, and 1.5684. The sum of all

eigenvalues is 3.

Rank(Rh) = 6 so R-1 exists. Rh is positive definite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Convergence and Misadiustment of CMAC Algorithms

The weights of CMAC neural networks are usually trained by the

LMS algorithm, which is based on the method of steepest descent.

4.4.1 The Method of Steepest Descent

First we go back to the performance function defined in section 4.2.

Expanding Eq. (4.3) and substituting Eq. (4.5) and Eq. (4.6):

/ (w) = E[(dk - s[• w)2] = E [d 2k] - 2E[dksTk)w + wT£fs*s[]w

= £ K 2]-2/7rw + wrRw (4.24)

The minimum MSE is obtained by substituting Eq. (4.8) into Eq. (4.9):

J ^ = E [d 2k] - prw* (4.25)

Substituting Eq. (4.25) and Eq. (4.8) into (4.24):

J(w) = + p7w * -2prw + w7Rw (4.26)

Define a new vector:

v = w - w * (4.27)

Substituting w = v + w* into Eq. (4.26):

7(w) = 7 ,̂, + pr w * -2pT (v + w*) + (vT + w *r)(Rv + Rw*)

= + prw *-2pTv -2 p r w*+(vr + w*r)(Rv + p)

-2pTv - p Tw*+vr Rv + w*r Rv + vrp + w *r p

= j min - p rv + vrRv + pTR Rv

= / mta+ v rRv (4.28)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Eq. (4.21) can be rewritten as:

R = QA.Q 1 =Q A.Q r

Substituting this expression for R in Eq. (4.28):

/ = /„ * ,+ v rRv = J ^ + vrQA.Qr v = /„ ,„ + v'r Av1 (4.29)

where v '= Q ~!v and v = Q v \

The gradient vector of the performance function is:

f)r r) r)
V = Ip 3 ^ *1 = £[2e> lto e‘ 1 = ~2Ele‘ s‘ 1 |4-301

Differentiating Eq. (4:29) yields another form of the gradient:

V = = 2Rv = 2QA.V' (4.31)
ow

Now, the steepest descent method makes each change in the

weight vector, AWk, proportional to the negative of the gradient vector:

Aw*=w*+1-w* = //(-v A)

Hence,

wt+1 =w,+//(~Vt) (4.32)

Subtracting w* from both sides of Eq. (4.32):

= v*+M-V*)

Pre-multiplying both sides by Q-1 and using Eq. (4.31) yields:

v'*+1 = (/ - 2 M) v V = (/ -2 M)* +V 0 (4.33)

For the stability of (14), it is necessary that

|l - <1, fori = 1, 2,..., M

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus,

1 > n > 0 (4.34)
m̂ax

Inequality (4.34) is the condition of stability for the steepest descent

method.

4.4.2 Convergence of LMS Algorithm

The LMS algorithm uses the estimated (instantaneous) gradients at

de2each step, V* = -4 -, as the guide to adjust the weight vector:
dw

Awt = w w - w k = j u (- \ k) (4.35)

where

V * = _ L = 2 e , * = - 2 ^ (4.36)
dw dw.

Hence, the weight updating formula of the LMS algorithm is

wM = w* + 2V(dk - yk)sk (4.37)

Conventionally, the weight adjusting formula of CMAC is written as:

w*+i = w* + “ ■ = w* ->*)s* (4-38)
P P

Let u - —) (4.37) and (4.38) are then equivalent.
2 p

Taking the expected value, we get

Elwk+l] = E[wk] + -E [eksk} = E[wk] + - {E [dksk] -E [SksTkv k]}
P P

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To continue on, we need to make an assumption that the excitation

vector Sk is independent of the weight vector Wk. The independence can

be interpreted as the result of slow adaptation. Assume that the learning

rate p is small (or the generalization parameter p is big), the adaptive

weight vector depends on many past input samples, and its dependence

on the present excitation vector is negligible. Furthermore, when the

training process is stabilized, the weight vector will remain unchanged

while the excitation vector will still respond to the input a t every tick of

time. A similar assumption was first made by Widrow in 1970 and then

again in 1996 [84] for the study of convergence of adaptive filters. For

CMAC neural networks with hashing, another layer of independence is

added. .

It follows that

£ [w w] = £ [w J + - E[dksk] - - J5[sts £]£ [w *]
P P

= E [w J + -p - -R E [w J
P P

= (I - - R) E [w J + - p
P P

Substituting w = v + w*, we get

£[vi+1] = (I - - R) £ [v J
P

Using v = Qv'and R = Q Q 1,

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E[v't+1] = (I -~ A)E [y \] = (! - —A)*+1 £[v'0] (4.39)
P P

Comparing Eq. (4.33) and Eq. (4.39), we notice that in the former

case (the steepest descent method) the vector vk will go to zero when k

goes to infinity under the condition given in Eq. (4.34), while in the latter

case (LMS algorithm) it is the expected value of vk, rather than the vector

vk itself, that will go to zero when k goes to infinity (under the condition

given in Theorem 4.1). Since the vector vk is a linear transformation of the

weight vector Wk, the vector Wk or its expected value will also go to zero

when k goes to infinity.

Taking the expectation of Eq. (4.36) and using Eq. (4.30), it follows

that:

E[Vk] = -2E[eksk] = V (4.40)

This indicates that, although the gradient estimates made at each

step may be noisy, many steps taken in the direction of the negative

instantaneous gradient will, on average, go in the correct direction for the

steepest descent.

The above discussion can be summarized into the following

theorems:

Theorem 4.1 For a CMAC neural network trained by Eq. (4.38), a

necessary and sufficient condition for convergence of the weight vector

in the mean is

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 p > a > 0 (4.41)

where A max is the largest eigenvalue of the correlation matrix R defined by

Eq. (4.5) or Eq. (4.17).

Proof It follows from Eq. (4.39) that, for the convergence of E[vk’],

i -£Ljl <1

which is equivalent to:

a
- 1<1 4 <1

P

Therefore,

2 p
> a > 0

for i = 1 M

for i = 1,..., M

Theorem 4.2 For a CMAC neural network trained by Eq. (4.38), a

sufficient condition for convergence of the weight vector in the mean is

2 > a > 0 (4.42)

Proof It follows from Property 3 that

M
o < 4 « < E 4i=i

Property 9 tells us that

M

=P
/=!

Hence,

0 < Ana*< P

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or

n 1 10 < — <
p K

Multiplying by 2p, we get

0 < 2 < - ^ (4.43)
Armax

The last inequality indicates that the interval (0, 2) is a part of

the interval (0, 2p/ A m a x). Therefore, (4.42) follows from (4.41).

Theorem 4.1 and 4.2 present two bounds on the learning rate of the

CMAC neural network that guarantee convergence of the weight vector

in the mean. Theorem 4.1 is a new conclusion about the convergence of

CMAC neural networks. Canfield [13] presented a condition of

convergence similar to Theorem 4.2, with different approach. While it is

difficult to calculate the bound given by Eq. (4.41) of Theorem 4.1, it points

out the theoretical bound is bigger than two. For example, if the

maximum eigenvalue of the correlation matrix R is half the sum of all

eigenvalues which equals the generalization parameter p, the maximum

bound of the learning rate will be four.

4.4.3 Misadiustment of LMS Algorithm

Another important concept, misadjustment due to gradient noise

A

Nk= V* - V t , is defined as the ratio of the average excess MSE to the

minimum MSE, i.e.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

average excess MSE
Misadjustment = --------------------------- (4.44)•*' • s i r r * ‘mm MSE

Using Eq. (4.29), we get

Misadjustment = = A y *1 (4 .4 5)
^ mm J nan

It is interesting to note that while JEIvjwill go to zero when k goes to

infinity, E [\'Tk AVk] will not go to zero. The reason is that while \'k takes

both positive and negative values, v’* Av'k is always greater than or equal

to zero.

It has been proved [84] that, after adaptive transients die out,

E K A v ’J ^ ^ / i - C R) (4.46)

Substituting Eq. (4.46) into Eq. (4.45) yields

Misadjustment = H * r̂ (R) (4.47)

Theorem 4.3 For a CMAC neural network trained with Eq. (4.38), the

misadjustment due to gradient noise after adaptive transients die out may

be estimated by:

(XMisadjustment = — (4.48)

Proof

Eq. (4.48) follows by substituting n = — and tr(R) = p into Eq. (4.47).
2 p

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 4.3 gives us a quick way to select the parameter of CMAC

neural network to meet certain design specification. For example,

typically an experienced designer would expect no more than 10%

misadjustment, so one can select a learning rate (a) less than 0.2. The

tradeoff is that the adaptation time will be longer when a decreases.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

SYSTEM ARCHITECTURE AND IMPLEMENTATIONS

5.1 The System Architecture

In the first chapter, we have already discussed the physical

composition of the pole-mounted sonar vibration prediction system

(Figure 1-7). In this section, the working mechanism of the system will be

discussed. For simplicity, we first assume a single-degree-of-freedom (DOF)

of the pole movement.

Vp\ (Target)

Output

Photocell

Strain Gauge

Pole
Dynamics

Figure 5-1: Block diagram of 1-DOF (x-axis) CMAC prediction system

As shown in Figure 5-1, the signal detected from the photocells (one

for each axis), which is proportional to the sonar's displacement (x or y), is

sent to the learning module - CMAC neural network as its training target.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The voltage signal from the strain gauge is connected to the CMAC

neural network as its pointer information. After a period of training, it is

expected that the output of the CMAC neural network will predict the

sonar’s coordinates with or without the continuing existence of the

training target data (meaning that it does not need the on-site position

detector). Also, we can tell from Figure 5-1 that the key to the success of

this model lies in: (1) CMAC's capability of representing the target signal in

accordance with the pointer information, and (2) how well the target

signal and pointer signal are acquired and how closely they can

represent the real signals.

Target

External
Forced Out

’ointer

Photocell

Photocell

Strain Gauge

Strain Gauge

2-DOF Pole
Dynamics

Figure 5-2: Block diagram of 2-DOF CMAC prediction system

There are two ways of extending from the 1 -DOF architecture to the

2-DOF case, which is more realistic. One method is to treat the two DOFs

separately, effectively assuming that the 2-dimensional dynamics of pole

are uncoupled. Hence, the whole system is composed of two identical 1-

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOF subsystems. The other way is to use a CMAC network with higher

dimensions of input and output (Figure 5-2). The advantage of the latter

approach is that the single and "bigger" neural network is expected to

team the interaction of two dimensions, since its receptive fields are

organized on the information from both dimensions. The disadvantage is

that its memory size (number of weights) will be much larger since the

memory size increases rapidly with the number of pointers of the CMAC

neural network. Fortunately, this disadvantage is compensated by the

following two factors: (1) the hashing technique used in the CMAC neural

network, and (2) the fact that these two DOFs are coupled so that the

number of pointers does not need to double since there exists redundant

information in them. These issues are further discussed in the sections on

simulation analyses.

To test whether the proposed system/approach is capable of

fulfilling its task, the first step was to establish the simulation model and

examine the results under different circumstances. Then the initially-tested

architecture was prototyped in the laboratory, which enabled verification

of this approach in a real-time environment and provided a platform of

system identification for the pole.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Simulink block fS- Function) implementation of CMAC NN

The simulations were carried out using Simulink, which is integrated

with Matlab. Simulink is one of the most widely used software packages in

academia and industry for modeling, simulating, and analyzing systems.

Simulating a dynamic system with Simulink is a two-step process. First, one

creates a graphical model of the system to be simulated, using Simulink's

model editor. One then uses Simulink to simulate and analyze the

behavior of the system over a specified time span. Simulink uses

information that one entered into the model to perform the simulation.

One of the most extraordinary features of Simulink is its graphical

user interface (GUI) for building models as block diagram, using click-and-

drag mouse operations. In a Simulink model, each system component is

represented by a block or a group of blocks. Simulink includes a

comprehensive block library of sinks, sources, linear and nonlinear

components, and connectors. What Simulink’s block library does not

provide, however, is the CMAC neural network.

Blocks are the elements or components from which Simulink models

are built. An S-function (System-function) is a computer language

description of a Simulink block. S-functions provide a powerful mechanism

for extending the capabilities of Simulink. An advantage of using S-

functions is that one can build a general purpose block that can be used

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

many times in a model while varying parameters with each instance of

the block.

S-functions can be written in MATLAB, C, C++, Ada, or Fortran. C,

C++, Ada, and Fortran S-functions are compiled as MEX-files using the mex

utility. MEX-files are dynamically linked subroutines that the MATLAB

interpreter can automatically load and execute. MATLAB identifies MEX-

files by platform-specific extensions, such as *.dll in a Windows

environment.

The Simulink block (S-function) Implementation of the CMAC neural

network is written in the C language. The UNH version’ of the CMAC

neural network is incorporated into the S-function. The code is highly

structured and usually comprises a number of Simulink callback methods

(functions), in which the Simstruct access macros, C mx-functions, and

user-defined functions could be used.

• Simstruct access macros: defined in "simstruc.h,” started with “ss”

(such as ssSetSampleTime);

• C mx-functions: defined in “simstruc.h,” started with "mx" (such

as mxGetPr);

• User-defined functions: such as “genmap()", and "sfoap().”

* The weight adjustment equation implemented in UNH_CMAC code is:
Aw,. = 2 'a (y d (S) - y (S)) + 2"A (y(S) - w[A’,.])

where separate training gains are used to individually emphasize the importance of the
supervised learning versus the weight magnitude normalization. Since good output performance
(which is affected by Prf is generally the most important, 2('p2) is typically selected to be at most
equal to 2('pr)/4.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Check Parameters' Validity
mdlCheckParamefers

Specify Characteristics
ssSetNumContStates,
ssSetSampleTime, etc

Obtain & Pass Param Values
to internal variables.

mxGetPr, etc

Call User-Defined Function
genm ap to Initialize

Random Lookup Tabie for
Hashing

— *| Call User-Defined Function
| stoap to Get the Memory
I Addresses According to

Current Inputs

Start of Simulation

Calculate Outputs
mdlOutput

Update Weights
mdlUpdate

Initialize Data Structure of
CMAC Neural Network:

Allocate Memory for
CMAC, Initialize Random
Lookup Table, and Clear

CMAC Weights
mdlStart

Initialize the Block: Specify
the Number of Inputs,

Outputs, States,
Parameters, and other

Characteristics of
the S-function.

mdllnitializeSizes
mdllnitializeSampleTimes

Figure 5-3: How Simulink performs CMAC S-function simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-3 shows a flowchart illustrating how Simulink performs

CMAC S-function simulation. The initialization of S-function parameters

and the CMAC data structure is executed once in the simulation of the

model, while the other two

callback methods mdlOutput

and mdlUpdate, which

perform the tasks of

calculating the outputs and

training the weights, are

executed repeatedly until the

simulation is ended by Simulink.

A Simulink block

implementing the CMAC

neural network and its dialog

box are shown in Figure 5-4.

Three versions of the CMAC

block, i.e., "CMAC_037" for

single input and single output,

“PCMAC” for multiple inputs

and multiple outputs, and

“CMAC.O 39" with an

> Targets
PCMAC

> Pointeis

test

la) A Simulink block of CMAC NN
Murl K m iitnr *i-r» W o

S function PCMAC Imask)

Parameters
Generateahon size (e g. G4)
j a r — — -
Sampling time }e g 0001}

Beta }e g 3)

ff ““ *"“~
Beta2fey 5)

Memory size of weights [e g. 2000}

internal scaling factor le g 1000)
110000

Quantizaton
noo

r Hash cofeion

ReeeptivefieWs; ju^ar ' £
Dimension of response and pointer (e.g |1.2))

I 2 3 T "

Number of steps to predict f«100)

OK Cancel

(b) The dialog box of CAMC block

Figure 5-4: A Simulink implementation of
CMAC neural network

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

additional input port for a training switch, are used in the simulation

models presented in this document.

5.3 Preliminary Study on Simulink Models of the System

Before the data that was used to determine the dynamics of a real

pole was obtained, a simple 2ncLorder linear system was used as a

tentative model of the pole dynamics based on the assumption of one

dominant mode of vibration. Therefore, the results presented in this section

are preliminary - they are less about the validity of the pole-sonar

vibration prediction system than about the functionalities of the S-function

implementation of the CMAC neural network. The values of the simulated

pole response and the CMAC output are not calibrated.

First, a simple CMAC learning model of 1-dimensional (x-axis)

displacement was established (Figure 5-5) in Simulink. This model can be

viewed as a direct conversion of the block diagram of a 1-DOF CMAC

prediction system (Figure 5-1) into Simulink. The CMAC block takes the

voltage output (Vx) of the simulated strain gauge to form its pointers. The

output of the pole dynamics (x) is used to train CMAC, which produces its

own output (x1) that would gradually better approximate x.

The simulation result* (Figure 5-6) shows that, after the pole output

has stabilized, the output of CMAC neural network (x’) almost coincides

with the pole's actual displacement (x). This simulation revealed that the

* The simulation parameters for simulations discussed in this chapter are given in Appendix IV.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CMAC neural network has excellent learning capability for sinusoidal

displacement functions.

r \ Fx 5

V w
s?+sM

Sine Wave Pole

Vx Gain

Gauge

Outputs

CMAC 037
simout

pointers

test
To Workspace

Transport
Delay

Figure 5-5: 1-DOF (X-axis) model of vibration learning using CMAC

- - - Pole response
— CMAC output

a.

■s -0.1

65 -0.2
Time (sec)

Figure 5-6: Simulation results of Figure 5-5

In the second model (Figure 5-7), two modifications were made.

The first modification is that CMAC was altered to be able to operate in

training or working mode. During the training period (first 15 sec, as shown

in Figure 5-8), the simulated pole response (x) signal is used as the training

signal and fed to the "target” input of the CMAC block; at 15 sec, the

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

switch connecting the plant output and the "target" input of the CMAC

biock "turns off,” so the CMAC is operating only on the pointer

information. The second modification is that now an input combination of

two sinusoidal functions of different frequencies is used to simulate a

relatively more complicated external force applied to the sonar/pole. The

frequencies and amplitudes of these two inputs are labeled in Figure 5-7.

The simulation result (Figure 5-8) shows that the CMAC output coincides

with the pole output (coordinate x) even when the training signal is

absent after the initial training period. Although the simulated pole

response looks like a single-frequency sinusoidal signal, the spectral

analysis reveals two frequency components (at 1Hz and 2Hz) are still

presented.

ConstantPole Dynamics □
Soopel

target

pointers CMAC_039

training/hold

Sine Wave
(2 Hz; A=1)

CMAC mStep
sin

simout

Transport
Delay

Figure 5-7: Second l-DOF model of vibration learning using CMAC

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pole response
CMAC output

0 5 10 15 20 25 30
Time (sec)

Figure 5-8: Simulation results of Figure 5-7

In the third model (Figure 5-9), the input takes one of two

frequencies alternately. Each frequency component (1Hz or 2Hz) lasts for

2.5 seconds with its own amplitude and then another frequency

component takes over. A bigger cycle of 5 seconds (Figure 5-10) is

formed for the input. This input pattern represents a scenario in which the

frequency and amplitude of the external force change from time to time

but will repeat themselves as the operation goes on. The simulation results

are shown in Figure 5-10. We see that, after three cycles (15 seconds), the

error of the CMAC learning (the difference between simulated pole

response and the CMAC output) gradually reduces to within -0.05 ~ +0.05.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source

Sine Wave
(1 Hz; A=2)

Pole Dynamics

target
CMAC.037

pointers
OutputsinDiscrete Pulse

Generator test
Accelerometer Transport

Delay

Figure 5-9: l-DOF model with alternate-frequency input

2

0

■2

1.5

0.5

0o
Q.

0.4

0.2

-0 .0!

- 0.2
25 3010 15 200 5

Time (sec)

Figure 5-10: Simulation results of Figure 5-9

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 laboratory Prototype Development

5.4.1 Overview

The lab prototype serves two purposes: (1) It is used as a real-time

test-bench of CMAC's capabilities of estimating/predicting the

displacement of the sonar head; (2) It is also used as a platform to obtain

an experimental model of pole dynamics, which may be placed in the

simulation models that are more flexible and versatile.

. The central part of the lab prototype is the real-time C-program

implementation of the CMAC neural network. The development tools

include Visual C/C++ compiler and DataAcq SDK (detailed later). The

whole development process is divided into two steps;

• Electrical signals generated by a function generator were fed to

the computer’s data acquisition board (DT3010) to test the functionality of

the hardware and the learning capability of the CMAC NN in a real-time

environment;

• Signals from the detectors (photocells and strain gauges) of pole

vibration were connected to the computer's data acquisition board to

test the proposed sonar/pole displacement prediction system as well as

capture data of the pole dynamics.

5.4.2 DataAca SDK and DT-Qpen Lavers standard for Windows

The DataAcq SDK is a programmer’s DLL (Dynamic Linked Library)

that supports Data Translation’s most popular data acquisition boards

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

under Microsoft Windows 3.x, Windows 95, and Windows NT (Version 3.51

and 4.0). The DataAcq SDK is an extension to the Microsoft Windows SDK

that enables one to develop custom data acquisition applications in the

Windows environment.

Application Layer

Function Library Layer

Library
Routines

Data
Acquisition

DT3010
Device Driver

Other Device
Drivers

Data
Manaqement

Applications
(End-user's code)

Device Interface Layer

Figure 5-1J: DT-Open Layers compliant- DataAcq SDK architecture

The DataAcq SDK is fully compatible with the DT-Open Layers

standard for Windows. The DT-Open Layers standard defines software

calling conventions and a standard architecture a t three different,

compatible layers (Figure 5-11):

•Application Layer -- Windows application software intended for

end users. At this layer, interaction with higher- level languages through a

set of consistent hardware independent commands, part of the API, is

possible. This set of commands is independent of the device and

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operating system being used, making the iower layers completely

transparent to the user at this level.

• Function Library Layer - This layer provides a set of library

functions that allow the application layer to communicate with the

device drivers at the device interface layer. The DataAcq SDK is a

function library layer product.

• Device Interface Layer - Lower-level drivers called by libraries to

assert control over specific devices. This layer supports a device

independent (or dependent) interface for the native operating system,

but does not provide portability across operating systems.

5.4.3 Real-time C-proaram implementation

The program creates two threads (Figure 5-12). The main function

sets-up (and releases after the application is ended) the data acquisition

board and maintains the front-end thread that fulfills the user interface

tasks including entering the parameters of the CMAC neural network and

displaying data-processing progress while waiting for key ‘q ’ or ‘Q’ to quit

the application. The background thread (Figure 5-13) is responsible for

sampling signals, processing data using the CMAC neural network, and

outputting the estimated/predicted value for display or recording.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Figure 5-14)

Thread 2Is *Q’ or ‘q
entered?

(Figure 5-13)No
Yes

No
Is Thread 2

ended?

(Figure 5-15)

Set ‘End’ Flag

Start (Thread 1)

End

Wait for Console Input

Release the Board

Prompt & Wait for User to
Enter CMAC Parameters

Set up the Board
(DT3010) for I/O

Clear Console Screen &
Display "Goodbye!"

Enter Main Data Processing
Function (Thread 2)

Figure 5-12: Flowchart of main program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test Thread-
End Flag?

Yes

No

End of
Thread 2

Start Thread 2

De-allocate
MemorySample Data from A/D

Smooth the Sampled Data

Output Value via D/A

Allocate Memory for CMAC;
Initialize CMAC Weights

Scale and Array the Data
for CMAC Algorithm

Call Training Function to
Update the Weights

Call Output Function to
Calculate CMAC Output

Clear Console Screen for
Displaying Op. Progress

Figure 5-13: Flowchart of data processing thread (thread 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start Board Setup

End Board Setup

Configure A/D Sub-system
with olDaConfig

Get a Handle to A/D Sub­
system with oIDaGetDASS

Get a Handle to D/A Sub­
system with olDaGetDASS

Configure D/A Sub-system
with olDaConfig

Initialize the Device Driver
and Get the Device Handle

with olDalnitialize

Set the Data Flow to
OL_DF_SINGLEVALUE
using olDalnitialize

Set the Data Flow to
OL_DF_SINGLEVALUE

using olDalnitialize

Set the A/D Subsystem’s
Channel List using

olDaSetChannelListSize &
olDaSetChannelListEntry

Set the D/A Subsystem’s
Channel List using

OlDaSetChannelListSize &
OlDaSetChannelListEntry

Inquire about A/D
Subsystem's Parameters

using
olDaGetRange,
oIDaEncoding &

olDaGetResolution

Inquire about D/A
Subsystem’s Parameters

using
olDaGetRange,
olDaEncoding &

olDaGetResolution

Figure 5-14: Flowchart of data acquisition board setup

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End board release

Start Board Release

Set a Constant Q.O Level
on D/A Channels

Release A/D and D/A
Subsystems using
o IDaReleaseDASS

Release the Driver and
Terminate the Session
using olDaTerminate

Figure 5-15: Flowchart of board release

Figure 5-14 shows how to set up the data acquisition hardware. The

device driver is first initialized and a device handle is obtained, then

handles to A/D and D/A sub-system are obtained, the mode of data flow

and the channel lists are set, and finally one gets the information of these

subsystems about their data range, resolution and encoding mode. The

information obtained is used in data conversion between binary values

(raw data form of DAC and ADC) and floating-point values. The release

of the board (Figure 5-15) is relatively simple and involves three steps: first

set a constant 0.0 level on D/A channels, then release the A/D and D/A

subsystems, and at last release the driver and terminate the session.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Laboratory Experiments and Analyses

5.5.1 Real-Time Learning/Predicting Capability of CMAC NN

A large number of experiments have been conducted to verify the

learning and/or predicting capability of the CMAC neural network with

the available hardware and computer in a real-time application setting.

Sampling rates for these experiments are about 3 - 5 KHz. Figure 5-16

illustrates a setup for observing the experimental result (in the form of a

Lissajous figure). The target signal (the signal from sensors detecting the

displacement at the bottom of the pole) is fed to the input 1 (x-channel)

of the oscilloscope, and the CMAC output is fed (via D/A) to the input 2

(y-channel) of this oscilloscope. The oscilloscope operates in X-Y

(sweeping) mode.

Sweep

X-Y

iannel

CMAC output
Target Signal

Figure 5-16: Laboratory setup for observation using oscilloscope

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our observations showed that, in the case of CMAC learning, a

straight line segment of 45° showed up (Figure 5-16) after the transient

period was over, and in the case of CMAC predicting (that is, CMAC

output set to be n sample time steps ahead the target signal - the sonar

displacement), a thin ellipse whose major axis is aligned at 45° from the

horizontal was presented on the screen of oscilloscope. The ellipse

became “ fatter" when more steps were being predicted.

The following mathematic analysis helps justify our observations.

Assume the target signal to be of the form:

x = Asm cot (5.1)

and the CMAC output to be

y = Asin 6)(t + At) (5.2)

In the first case, At = 0. Hence, assuming perfect learning

y - x , x <: A (5.3)

which represents a segment of the 45° straight line.

More generally, equation (5.2) can be expanded as:

y = Asin(<0f)cos(ffiAO + A cos(ax) sin(ffiAr) (5.4)

Substitute (5.1) into (5.4) and rearrange it,

y -x c o s jo A t)
sin(reAr)

= A cos(ax) (5.5)

Square and add (5.1) and (5.5),

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x 2 +
y-xcos(O)A t)

= A 2 (5.6)
sin(e&r)

which can further be simplified as

x 2 - 2xyco$(aA t) + y 2 = A 2 sin2(aAt) (5.7)

Equation (5.7) is a quadratic equation representing an ellipse.

The area of an arbitrary ellipse given by the quadratic equation

ax2 + bxy + c y 2 =1 (5.8)

IS

2 71 (5.9)
V4 a c - b 2

Therefore, the area of an ellipse given by (5.7) is

S = M 2|sin(<aAf)|« ^A2c^At\, for small At (5.10)

Equation (5.10) indicates that the area of the ellipse is

approximately proportional to the length or steps of time advance (delay)

of the second signal, namely the CMAC output relative to the target

signal.

In addition to on-site real-time observation, the data could be

recorded (written to a file) and analyzed later. Figure 5-17 is a Matlab plot

of the data recorded in an experiment in which the CMAC output was

expected to predict three steps ahead of the target signal. The data

pointes marked by “+” , which are the target data shifted to the left by

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

three samples, fall almost exactly on the line of CMAC output (as was

expected in this particular experiment).

signal

CMAC_out|3Ut _ j\l

Sample

Figure 5-17: CMAC prediction of real-time signal

5.5.2 Impulse Response and Approximate Model of a Pole

Experiments indicate that the response of the pole to external

forces is two-dimensional - the vibration can be measured (Figure 5-18)

not only along the same direction as the force but also in the direction

perpendicular to the force. The former is referred to as the primary

response and the latter is referred to as the collateral response. As shown

in figure 5-18, the primary response is a typical impulse response of a

second-order under-damped linear system. The collateral response is less

visible but more complicated.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-18: Pole’s two-dimensional responses to impulse force

To further investigate the primary response, we conducted another

experiment in which the impulse response of the pole and a 10 Hz

sinusoidal signal produced by a function generator are compared (Figure

5-19). We conclude that the natural frequency for primary dynamics islO

Hz. In Figure 5-18(b), the fundamental frequency of FFT is 2 Hz (2000

samples at sampling frequency of 4000Hz). More samples will make the

figure look finer.

By constructing a Simulink model of a second-order under-damped

linear system, the damping ratio can be experimentally determined to be

about 0.001.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Detected signal vs. 10 Hz sinusoidal signal
1.5

1

0.5

0

-0.5

-1 l

1000

800

600

400

200

°0 5 10 15 20 25 30 35 40 45 50
Frequency (Hz)

Figure 5-19: Detected pole response and reference 10 Hz sinusoidal signal

The pattern of the collateral response (Figure 5-18) resembles the

modulation of a 10 Hz carrier by a very low frequency signal (less than 1

Hz). We propose modeling the collateral dynamics as a product of two

second-order under-damped linear systems.

Based on the observations and analyses of the laboratory

experiments, an approximate model of pole dynamics was constructed in

Simulink (Figure 5-20). It is a nonlinear composite system with a single major

mode for each axis and coupling to two weaker modes for the respective

orthogonal axes. Simulation results (Figure 5-21) show that the impulse

responses have captured the major dynamics of the experimental data.

102

• v -

20 40 60 80 100 120 140 160 180 200

transform<b)

Reference signal
Detected response

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62.3*2

s2+ 2 ’ 0 .001*62,8s+62.8*2

Impulse
3.14*2

s?+2’0.01'3.14s+3.14*2

62.8*2 Dot Produot2
<=2+2*0.001'62,8s+82.8*2

RTPole model
3.14*2

T o workspace
s 2+ 2 ' 0 .01 ’ 3 .14s +3 .14*2

62.8*2
Dot Product3s++2*0.001*62,8s+62.8*2

©ain1

62.8*2

s++2*0.001 “62.8s+62.8*2

Impulsel Scope2

Figure 5-20: Experiment-based approximate model of pole dynamics

WffVfww ft**

15
Time (sec)

10 15 20
Time (sec)

Figure 5-21: Simulated impulse response of approximate model

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, we note that the model shown in Figure 5-20 is only an

approximate model of the real pole dynamics. More blocks could be

added to the model so that its impulse response will be closer to the

experimental data. For example, we could add to each axis one block

representing an extremely low frequency additive term presented in the

collateral response (Figure 5-18). And also we are sure that more

experiments and more precise measurement will bring up more details of

the pole dynamics. However, since the pole we used in the laboratory is

not a real pole used in a pole-mounted sonar system, it will not help much

for us to build a more complex model for it. Besides, this study relies not

only on the computer model but also on a laboratory prototype that has

all the major and minor dynamics with it.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

FEASIBILITY ANALYSES

In chapter 5, the feasibility of pole vibration prediction using the

CMAC neural network has been initially evaluated, In this chapter, the

preceding simulation models are generalized to the 2-DOF coupled

vibration problem. The simulations of the new models are designed to

answer such questions as: (1) effectiveness -- how well is the CMAC able

to estimate and predict the vibration a t the bottom of the pole based the

signal captured from the strain gauge a t the top of the pole? and, (2)

robustness -- how much will the change in the environment (input force)

a ffect the performance of the proposed system?

A practical issue related to the accuracy of the CMAC estimation

or prediction is the calibration of the simulated pole response, which is a

voltage signal in our model. Approximately, one volt of the simulated pole

response corresponds to 0.28° o f the angular displacement o f the sonar

head. In other words, if the error between the simulated pole response

and the CMAC estimation is 0.01 V, the corresponding angular error will be

0.0028°.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Two-DOF Simulation Models

Figure 6-1 shows a simulation model implementing the 2-DOF CMAC

prediction system presented in Figure 5-2. The approximate nonlinear

model o f pole dynamics based on experimental data captured from the

lab prototype (Figure 5-19) is adopted. A new CMAC block capab le of

handling multiple inputs and multiple outputs (MIMO) is created and used

in this simulation model. The error is the average of the absolute values of

the two-axes difference between the simulated pole response and the

CMAC estimation, tha t is, - (|* - x\ + |y - / 1).
2

Os2+l*D.0C1*e2.8s»62Je*2 S

j242'C .EEH '6 2 £ i* -S 2 -8 *2

Error

o
j2 < 2 '3 .0 0 1 *6 2 .2 5 *8 2 Si'•£

S2t2 ’ 8JJS 1*e2.teH S .8 '2

Figure 6-1: A simulation m odel for 2-DOF coupled vibration prediction

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generally, one measure of a periodic signal cannot solely

determine its position on the waveform of the signal. As shown in Figure 6-

2, tw o points, A and B, have the same measure V i. However, a pair o f

measures, such as (Vi, V2) and (Vi, V3), will be able to determine solely

where the signal is a t the time of measurement - A corresponding to (Vi,

V2) and B corresponding to (Vi, V3).

Figure 6-2: Positioning a measure on a period ic signal

Hence, it takes two measured values (one current measurement

and one previous measurement) to determine the position of a periodic

signal on its waveform. Accordingly, for a single-degree-of-freedom (1-

DOF) vibration problem, two pointers (one the original and another the

delayed version of the signal) will provide enough information for CMAC

to determine the current position in its input space. For a two-DOF

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vibration problem, four pointers are presumably needed. However, if the

forces or movements along the two axes are correlated, as in the

problem being studied, fewer pointers would probably suffice as well. The

decrease in the number of pointers would significantly reduce the number

of weights (taps) in the CMAC neural network, but may cause the

deterioration of performance of the CMAC neural network. To study the

tradeoff of performance with the number of pointers, three simulation

models (one with four pointers as shown in Figure 6-1, the second with

three pointers which drops one delayed version, and the third with two

pointers which drops both delayed versions of the input signals) are used

as the platforms of verification and analyses.

The selection of the value of the delay (At) is a ffected by two

opposite considerations: (1) To save the memory (for storing the delayed

signal), a small At is preferred; (2) The difference between the values of

two pointers, f(t+At)-f(t), should be bigger than the quantization resolution.

6.2 Sinale-Freauencv input over a Range of Frequencies

Figure 6-3 shows typical patterns of both the pole response to a

single-frequency (1 Hz) input and the error between the pole response

and CMAC estimation. The simulation parameters of simulations are:

generalization factor (p) = 64; = 1; (32 = 7; memory size = 3000 for CMAC

with three pointers; sampling period = 0.001 s; internal scaling factor =

10000; quantization = 100; the linear receptive field is selected. Since the

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simulated responses a t x-axis and y-axis exhibit a similar pattern, only one

output (Y) is given in the figure. The error signal starts with an initial spike

but then shrinks quickly. The amplitude of the steady state error (SSE) is

about 0.01 V or 0.0028°.

10 15 20 25 30 35 40 45 50

0.5

0.4

- 0.3O
in Q 2

0.1

0

n - ... "i " i 1r n r

I 1

Hi

B l l i i k t i L . SSI:

0 10 15 20 25 30 35 40 45
Time (s)

50

Figure 6-3: System response to!Hz input and error o f CMAC estimation

To answer the question whether the information of pole response

has been fully learned, we conducted a spectral analysis on the steady-

state error (see Appendix II for.details). The result shows tha t the spectrum

of the error signal spreads over a w ide range of frequencies, while the

simulated pole response contains only two frequency components (1 Hz

and 2 Hz). We conclude tha t CMAC neural network is able to acquire the

information of pole response thoroughly.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The rest of this section presents the results of simulations designed to

test the capability of the CMAC neural network to learn the pole

dynamics assuming that the pole/sonar is subject to an external force of

single frequency from 1 Hz to 8 Hz. Two sampling rates were adopted for

simulation: 0.0003 s/sample (approximately the real-time sampling rate of

our laboratory prototype), and 0.001 s/sample. Other parameters of this

set of simulations are: generalization factor (p) = 64; |3i = 1; p>2 = 7; memory

size = 1000/3000/5000 for CMAC with two pointers, three pointers, and four

pointers respectively; internal scaling factor = 10000; quantization = 100;

the linear receptive field is selected.

The simulation results are shown in Figure 6-4 and 6-5. We can see

from these figures that: (1) the steady state error increases as the

frequency increases; (2) for the same frequency, the simulation

conducted a t higher sampling rate consistently results in higher

performance, especially a t the higher frequency; (3) Figure 6-5 reveals the

difference of performance between models using CMAC neural networks,

with two, three, or four pointers (sampling period = 0.001 s). A t low

frequency (1 ~3 Hz), the difference is insignificant, but a t higher frequency,

the CMAC neural network with more pointers shows its advantage in

terms of error reduction.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) 4_pointer CMAC

-B - Sampling period 0.001s
Sampling period 0.0003s

I 0.05
hi

(b) 3_pointer CMAC

1 0.05LU

(c) 2_pointer CMAC

1 0.05UJ

Frequency (Hz)

Figure 6-4: Comparison o f errors o f CMAC estimation
for two sampling rates

0.12
-O - 2_pointer CMAC
• ■* - 3jo in te r CMAC
—f- 4_pointer CMAC

p 0.06w

0.04

0.02

Frequency (Hz)

Figure 6-5: Comparison o f error estimation by different CMACs
(sampling period = 0,001 s)

i l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Multi-Freauencv input

A model of the force applied to the pole-mounted sonar head

would be composed of several parts including:

(1) A constant force along the axis parallel to the ship's centerline

(assuming the velocity o f the ship is constant);

(2) Turbulence forces with a broad power spectrum;

(3) A component due to the pitch and roll components of the ship

motion.

The constant component of the force would cause a shift of the

balance point of pole/sonar vibration and would not change the

dynamics of pole vibration (no new frequency involved). For the second

and third components of the force, they can be decomposed as a series

of sinusoidal functions under the assumption that they are periodic.

For simplicity, assuming tha t the external force (disturbance) consists

of two frequency components: a low frequency one represented by fi (1

or 2 Hz) and a high frequency one represented by h (15 Hz). Under certain

assumptions m ade for the orthogonal components of the force, a ring-

shaped force field (trace of tip of the composite force vector) is formed

(Figure 6-6). The width of the ring depends on the amplitudes of both

frequency components.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa} A1 = 1 & A2 5) A1 = 1 & A2 = 1/3
2

1

0

■1

■2
-2 1 0 21

2

1

0

1

-2
■2 ■1 0 1 2

(c) A1 = 1/3 & A2 = 1 (d) A1 = 1 & A2 = 1
2

1

| | ^ j | ■ 0

-1

-2
*1 -1

Figure 6-6: Four scenarios o f force fields o f two frequency components

Mathematically, the force vector can be expressed as

and we assume tha t

F = Fx x + F y y

Fx = Ax s in ^ r) + A, sin(ft?20

Fy = Aj cos((Qxt) + Aj cos (a)2t)

Hence,

F = t J f x + Fy = -yj Ax + A % +2A1A2 c o s (cox - co2)t

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since

- 1 < cos(g>] - 0)2)t < 1

Then,

A,2 + A^ - 2AXA^ < A 2 4- A^ + 2AjA2 cos(ft>, -Q)2)t < A? + 4- 2AjA2

(Aj - A2) 2 < Af + A^ + 2AjA2 cos(g?j -co2) t< (Aj 4- A^) 2

Therefore,

|a1- a 2| < f < a 1 + a 2

This means the force vector's tip will be traveling within a ring

formed by two circles. The radius of outside circle is A i+A2 and the radius

of inside circle is | A 1-A2 I . Figure 6-6 shows four cases o f this kind of force

trajectory: (a) Ai = 1 and A2 = 0, representing the single-frequency case

that has been studied in the previous section; (b) Ai = 1 and A2 = 1/3,

representing a strong low-frequency com ponent and weak high-

frequency com ponent case; (c) Ai = 1/3 and A2 = 1, representing a weak

low-frequency component and strong high-frequency com ponent case;

and (d) Ai = 1 and A2 = 1, representing a "bi-mode" case.

In this set of experiments, a simulation model tha t employs CMAC

with three pointers is used. The parameters of CMAC are: generalization

factor (p) = 64; pi = 1; P2 = 7; memory size = 3000; internal scaling

factor = 10000; quantization = 100; sampling period = 0.0003 s; the linear

receptive field is selected. In each experiment, the frequencies and

amplitudes are changed to produce the four force field patterns.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.1 Strong Low-Frea. and Weak Hi-Frea. Components

In this experiment fi= l Hz, A i= l, f2=15 Hz, A2=l/3. The simulation

results are shown in Figure 6-7. The error of CMAC estimation (the

difference between the system response and the CMAC output) was

stabilized after 20 s. The amplitude of steady state error (SSE) is 0.017 V, or

0.00476° of angular displacement.

0.08

1.25

0.017

'0 5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 6-7: System response an d the error o f CMAC estimation (1)

6.3.2 Weak Low-Frea. and Strong Hi-Frea. Components

In this experiment, f i= l Hz, A i= l/3 , f2=15 Hz, A2= l. The simulation

results are shown in Figure 6-8. The error o f CMAC will be stabilized after 30

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s. The amplitude of steady state error (SSE) is 0.025 V or 0.007° of angular

displacement.

2 --------- ,--------- r --------,--------- ,--------- ,----------!--------- 1----------1--------- r

i i i i i i i t i

i i i i i i I I I____
0 5 10 15 20 25 30 35 40 45 50

t 1----------- 1----------- 1----------- 1----------- 1-----------1----------- 1----------- r

Time (s)

Figure 6-8: System response and the error o f CMAC estimation (2)

6.3.3 Two Eaual Low-Frea. and Hi-Frea. Components

In this experiment, two harmonically related sinusoids of equal

magnitude comprise the input force. Specifically, f i= l Hz, Ai=1, f2=15 Hz,

A2= l. The simulation results are shown in Figure 6-9. The error of CMAC

estimation was stabilized after 20 s. The amplitude of steady state error

(SSE) is 0.03 V or 0.0084° of angular displacement.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time (s)

Figure 6-9: System response and the error o f CMAC estimation (3)

6.3.4 A Force with Two Non-harmonicallv Related Frequency Components

In this experiment two non-harmonically related frequency

components of equal magnitude comprise the input force. Specifically,

fi=2 Hz, A i= l, f2=15 Hz, A2= l . The simulation results are shown in Figure 6-10.

The error of CMAC estimation was stabilized after 20 s. The amplitude of

steady state error (SSE) is 0.032 V or 0.009° of angular displacement.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Time (s)

Figure 6-10: System response and the error o f CMAC estimation (4)

In this section, four scenarios of input force com posed of two

frequency components were considered. The results indicate that the

CMAC learning system as presented in Figure 5-2 and implemented in

Figure 6-1 functions well in these situations.

6.4 CMAC’s Capabilities of Learning and Prediction of Pole Vibration

One of the advantages of using the CMAC approach is that it not

only can learn the behavior of the system, but also predict the system

response adaptively. This could be a benefit for on-site da ta processing

operations. Figure 6-11 shows an enlarged portion of a simulation result in

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which the CMAC output (yellow staircase on the left) is expected to

predict ten steps ahead of the system response (the sonar displacement,

plotted by blue line),

Figure 6-11: An enlarged portion o f CMAC's ten-step prediction

This section presents the results o f studies on the accuracy of

CMAC's prediction of the system response with respect to the prediction

time offset. The CMAC parameters for this set o f experiments are:

generalization factor (p) = 64; (3i = 1; (32 = 7; memory size = 1000/3000/5000

for CMAC with two pointers, three pointers, and four pointers, respectively;

internal scaling factor = 10000; quantization = 100; sampling period = 0.001

s; the linear receptive field is selected. The input frequency is 1 Hz.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The simulation results are given in Table 6-1. We see from the table

tha t the error between the CMAC output and the pole response

remained small (less than 0.03 Volt or 0.0084° if translated to angular

displacement) for most of our simulations. The accuracy of one-step

prediction is almost as good as that of learning (zero-step prediction).

Figure 6-12 reveals the trend of CMAC prediction's error: it increases as

the step of prediction increases. This trend is especially evident for CMAC

with two pointers.

Table 6-1: Error between pole response and CMAC prediction

Steps of
prediction

Steady state error (SSE) (V)
4-pointer
CMAC

3-pointer
CMAC

2-pointer
CMAC

0 0.011 0.014 0.013
1 0.011 0.016 0.013
2 0.013 0.020 0.015
3 0.014 0.022 0.020
4 0.017 0.022 0.025
5 0.018 0.023 0.027
6 0.020 0.026 0.031
7 0.025 0.032 0.056
8 0.028 0.041 0.057
9 0.031 0.061 0.074
10 0.033 0.071 0.115

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0-12 r ~7.~t — i------- 1--------- 1-------- 1-----------1--------- 1--------
-"O-" 4_pointer CMAC • j j j ! ! T

3_pointer CMAC ; I ! ! : ! /
0 - + 2_pointer CMAC........ L..........

0.08

I 0.06
LU

0.04

0.02

0
0 1 2 3 4 5 6 7 8 9 10

Steps of prediction

Figure 6-12: Error o f CMAC prediction vs. steps o f prediction

z ..
-"O-" 4_pointer CMAC

3_pointer CMAC
2_pointer CMAC

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

SIMULATION ANALYSES OF
C M A C PERFORMANCE

7.1 Introduction

The CMAC neural network is a powerful tool for modeling various

system behaviors. However, its performance depends not only on the

complexity of the system, but also on the parameters of the network itself.

In this chapter, the Simulink models we built are used as a platform for

testing the performance of CMAC neural network. To measure how well

the CMAC neural network learns the system’s behaviors, three indicators

(Figure 7-1) are adopted: (1) steady state error (SSE) - absolute value of

amplitude of stable error, (2) maximum error (x.e.) - the peak value of

error in the initial transient period, and (3) transient time (t.t.) - the time

period from the beginning of simulation to when the error is reduced to

20% of maximum error. The transient time defined here is a simple and

easy-to-measure indicator of how fast the learning process converges.

The second and third indicators characterize the training process of

CMAC neural network and are meaningful when the CMAC neural

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network is kept trained in some applications (online training). The SSE and

x.e, are measured in volts and the transient time is measured in seconds.

Generally speaking, the smaller the values of these indicators are,

the better performance the CMAC achieves. However, these three

indicators do not always agree with each other (meaning that one

cannot necessarily minimize them a t the same time). In that case, the

designer needs to choose priorities. For example, one might put first the

goal of minimizing the steady state error when the system operates in a

stable environment or when the CMAC is trained offline. In a dynam ic

environment, reducing the maximum error (the spike in the initial transient

period) might be more important than in the stable environment.

20% x.e

SSE
20 40 j j me £s) 60 80 100

Figure 7-1: CMAC learning error and three perform ance indicators

This chapter considers the performance of a CMAC neural network

as a function of its major parameters such as the memory size,

generalization factor, quantization factor, and training gain. Due to the

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nonlinearity of the CMAC neural network, it is extremely difficult, if not

impossible, to derive analytic relationships between the performance

indices and the parameters for a practical CMAC that is capable of

dealing with real-life problems. However, the conclusions based on a

large number of experiments (simulations) could provide some helpful

guidelines for design engineers in choosing parameters.

The methodology of experimentation is to conduct a set of

simulations in which only the value of a single parameter is changed while

the other parameters remain fixed. Observation and comparison of these

simulation results, evaluated by the performance indices, may lead to

insight of the relationships between the performance of the CMAC and

the parameters.

7.2 CMAC Performance Indices versus Its Memory Allocation

In this set of experiments, the memory size of the CMAC neural

network varies from 100 to 10000. Other fixed CMAC parameters are:

generalization factor (p) = 64; £i = 3; f>2 = 7; internal scaling factor = 10000;

quantization = 100; sampling period = 0.001 s; the linear receptive field is

selected. The delay between two pointers is 0.01 s.

The experimental results for CMAC neural networks with 2 pointers, 3

pointers, and 4 pointers are given in Table 7-1 (a), (b), and (c) respectively.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7-1: CMAC performance indices vs. memory size allocated

(aI CMAC with two pointers
Memory size Performance indicators

SSE (V) Transient time (s) Max. Error (V)
100 0.124 - 0.597
200 0.090 30 0.697
500 0.045 7 1.048
800 0.031 3 1.204
900 0.021 3 1.053

1000,1500,
2000,5000

0.0113 5 1.02

(b) CMAC with three pointers
Memory size Performance indicators

SSE (V) Transient time (s) Max. Error (V)
100 0.153 - 0.586
200 0.107 40 0.759
500 0.086 20 0.873
800 0.040 9 0.940
1000 0.035 12 0.743
1500 0.0255 9 0.712
2000 0.0096 9 0.712

3000,5000,10000 0.0079 9 0.712

(c) CMAC with four pointers
Memory size Performance indicators

SSE (V) Transient time (s) Max. Error (V)
100 0.142 68 0.755
200 0.131 46 0.825
500 0.089 26 0.819
800 0.060 20 0.935
1000 0.044 13 0.912
2000 0.026 6 0.979
4000 0.011 4 0.861

5000,8000,10000 0.0074 4 0.861

Based on the experimental results shown in Table 7-1 and Figure 7-2,

the performance indicators of CMAC neural network exhibit the following

trends:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.16 - ---

0.14

0.12

0.1

m 0.08 cn

0.06

0.04

0.02

°0 1000 2000 3000 4000 5000 6000
Memory size

Figure 7-2: CMAC performance (SSE) vs. memory allocation

(1). The steady state error decreases when the memory allocation

of CMAC neural network increases.

(2). There exists a ‘critical’ value of memory size (about 1000 for

CMAC with 2 pointers; 2500 for CMAC with 3 pointers; 4500 for CMAC with

4 pointers) - below it, the steady state error of CMAC improves quickly

with the memory size; beyond that point, the steady state error of CMAC

will not change much. (Note: Theoretically, the memory sizes for 2-pointer,

3-pointer and 4-pointer CMACs without hashing will be 1087, 4523 and

18967 respectively.)

(3) The change of transient time of CMAC neural networks follows a

similar pattern of steady state error. That is, it decreases when the memory

allocation of CMAC neural network increases and there exists a ‘critical’

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value of memory size beyond which the performance index remains

mostly unchanged.

(4) The case of maximum amplitude of error is more complicated.

This performance index will be getting worse, when the memory size starts

to increase, before it gets improved when the memory size approaches its

‘critical’ value.

7.3 CMAC Performance Indices versus its Generalization Factor

In this set of experiments, the generalization factor (p) of CMAC

neural network varies from 8 to 256. Other fixed CMAC parameters are:

memory size = 1000/3000/5000 for CMAC with two pointers, three pointers,

and four pointers respectively; pi = 1; = 7; internal scaling factor = 10000;

quantization = 100; sampling period = 0.001 s; the linear receptive field is

selected.

The experimental results for CMAC neural networks with 2 pointers, 3

pointers, and 4 pointers are given in Table 7-2 (a), (b), and (c) respectively.

Table 7-2: CMAC performance indices vs. generalization factor

(a) CMAC with two pointers
Generalization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (s)
8 0.166 40 1.619
16 0.057 22 1.068
32 0.0285 9 0.654
64 0.0077 8.5 0.350
128 0.0085 8 0.263
256 Does not converge

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) CMAC with three pointers
Generalization Performance indicators

factor SSE (V) Transient time (s) Max. Error (V)
8 0.109 75 1.463
16 0.042 28 0.856
32 0.0163 9 0.534
64 0.0077 9 0.367
128 0.0091 14 0.208
256 0.014 18 0.196

(cj CMAC with four pointers

Generalization
factor

Performance indicators
SSE (V) Transient time (s) Max. Error (V)

8 0.093 54 1.882
16 0.045 35 1.173
32 0.019 8 0.728
64 0.0076 6 0.474
128 0.0085 8 0.301
256 0.014 14 0.202

0.2

0.15

c/o

0.05

°0 50 100 150 200 250 300
Generalization factor

Figure 7-3: CMAC performance (SSE) vs. generalization factor

T

- r..... .—.... 'i i
-O- 4_pointer CMAC
— 3_pointer CMAC
—f~ 2_pointer CMAC

Jti...........

1

I
t \

-——— -____ __1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

1.5

Ci_
u_<X>
I 1ex
CO

0.5

°0 50 100 150 200 250 300
Generalization factor

Figure 7-4: CMAC performance (x.e.) vs. generalization factor

Based on the experimental results shown in Table 7-2 and Figure 7-3

& 7-4, the performance indicators of CMAC neural network exhibit the

following trends:

(1). The steady state error starts to decrease significantly before it

reaches its optimal point where the generalization factor is around 64 ~

128, and then it goes up slightly until training fails to converge.

(2) The change of transient time of CMAC neural networks follows a

pattern similar to that of the steady state error. That is, it initially decreases

when the generalization factor of the CMAC neural network increases,

and there exists a 'optimal value’ of generalization factor beyond which

the performance index goes up slightly.

129

©
1.

■J..V

------------------------------1............. . T ---1------
-•©- 4_pointer CMAC
—*■ 3_pointer CMAC
—h- 2_pointer CMAC

%
h

M

. . . f en r

> >\ fV% \ \
......... r ‘ © : : ;—'V ' “ ̂ -

■

X"*1

L . ______ i

....... . ———

........

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3) The maximum error decreases when the generalization factor

increases, but the speed of change is also decreased.

(4) Three simulation models (with two, three, or four pointers) exhibit

similar patterns in terms of their performance indices as functions of the

generalization factor.

7.4 CMAC Performance Indices as Functions of Its Quantization Factor

In this set of experiments, the quantization factor of the CMAC

neural network varies from 50 to 500. Other fixed parameters are:

generalization factor = 64; memory size = 1000/3000/5000 for CMAC with

Iwo pointers, three pointers, and four pointers respectively; (5i = 1; = 7;

internal scaling factor = 10000; sampling period = 0.001 s; the linear

receptive field is selected.

The experimental results for CMAC neural networks with 2 pointers, 3

pointers, and 4 pointers are given in Table 7-3 (a), (b), and (c) respectively.

Table 7-3: CMAC performance indices vs. quantization factor

fa) CMAC with two pointers
Quantization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
50 0.0266 7 1.06
80 0.0164 9 0.49
90 0.0093 9.5 0.384
100 0.0077 9 0.344
n o 0.0078 7 0.328
120 0.0079 6 0.306
150 0.0085 9 0.258
200 0.0101 13.5 0.213
250 0.0106 16 0.173
500 0.0138 33 0.124

13.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) CMAC with three pointers
Quantization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
50 0.0174 9 0.587
80 0.0071 11 0.423
90 0.0119 9 0.377
100 0.0077 9 0.367
110 0.0073 9 0.340
120 0.0071 7 0.298
150 0.0080 8 0.263
200 0.0087 11 0.206
250 0.011 12 0.188
500 0.016 33 0.124

(c) CMAC with four pointers
Quantization

factor
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
50 0.025 10 0.804
80 0.016 6 0.559
90 0.0075 5 0.508
100 0.0076 6 0.474
n o 0.0075 4 0.487
120 0.008 5 0.437
150 0.008 6 0.341
200 0.008 7 0.302
250 0.012 10 0.258
500 0.014 20 0.157

Based on the experimental results shown in Table 7-3 and Figure 7-5,

the performance indicators of CMAC neural network exhibit the following

trends:

(1). The steady state error starts to decrease significantly before it

reaches its optimal point where the quantization factor is around 100, and

then it goes up with the increase of the quantization factor (as shown in

Figure 7-5). The reason is that more quantization will produce more states

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the input space, which is good before things go too far. Since the

physical memory of CMAC neural network is specified as a fixed number,

there will be more and more states crashed into same memory elements

when the quantization factor exceeds a certain value.

0.03
—+• 4_pointer CMAC

3_pointer CMAC
-&-■ 2_pointer CMAC

0.02
LU
CO
CO

0.015

0.01

0.005.
450 500150 200 250 300 350 400

Quantization factor
100

Figure 7-5: CMAC performance (SSE) vs. quantization factor

(2) The transient time starts flat or slightly goes down until it reaches

its bottom (optimal point) where the quantization factor is around 120;

then it goes up evidently.

(3) The maximum error decreases when the quantization factor

increases, but the speed of change is also decreased.

7.5 CMAC Performance Indices as Functions of Its Training Gain Si

In this set of experiments, Pi varies from 1 to 5 (the actual training

gain varies from 2-] to 2~5). Other fixed parameters are; quantization factor

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= 100; generalization factor = 64; memory size = 1000/3000/5000 for CMAC

with two pointers, three pointers, and four pointers respectively; = 7;

internal scaling factor = 10000; sampling period = 0.001 s; the linear

receptive field is selected.

The experimental results for CMAC neural networks with 2 pointers, 3

pointers, and 4 pointers are given in Table 7-4 (a), (b), and (c) respectively.

Table 7-4: CMAC performance indices vs. learning rate

(a) CMAC with two pointers
Learning rate

2 *1
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
2-1 0.0077 8.5 0.35
2-2 0.0080 7 0.528

. 2-3_. _ 0.0113 5 1.02
2-4 0.0145 5 1.125
2-5 0.0213 5.5 1.316

(b) CMAC with three pointers
Learning rate

2-Pi
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
2-i 0.0077 9 0.367
2-2 0.0080 9 0.539
2-3 0.0079 9 0.712
2-4 0.012 7 0.98
2-5 0.017 7 1.13

(c) CMAC with four pointers
Learning rate

2-3i
Performance indicators

SSE (V) Transient time (s) Max. Error (V)
2-' 0.0076 6 0.474
2-2 0.0074 4 0.676
2-3 0.0074 4 0.861
2-4 0.008 5 1.02
2-5 0.011 6 1.127

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on the experimental results shown in Table 7-4, we see that

both the steady state error (SSE) and the maximum error (x.e.) increase

when the training gain decreases from 2 1 to 2~5 (or fh increases from 1 to

5), as shown in Figure 7-6 and Figure 7-7.

0.022
—+- 4__pointer CMAC
- - 3_pointer CMAC

2_pointer CMAC I '"" 1" ■— t —

0.02

0.018

0.016

w 0.014

0.012

0.01

0.006
2.53.54.5

Betal
Figure 7-6: CMAC performance (SSE.) vs. training gain (2~P])

—t- ̂4_pointer CMAC
3_pointer CMAC

-O- 2_pointer CMAC

o>
E3
EXto2

0.6

0.2
4.5 3.5 2.5

Betal

Figure 7-7: CMAC performance (x.e.) vs. training gain (2-P])

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, a brief observation on the effect of the number of pointers

on the performance indices can be made. As revealed by the results of

previous simulations, increasing the number of pointers (while other

parameters are kept the same) may improve the performance indices,

but the cost is the significant increase of memory size of the neural

network and the computing time. Hence, a CMAC with fewer pointers is

preferable to a CMAC with more pointers if the error tolerance

requirements are met by the former choice.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

SUMMARY, CONCLUSIONS AND SUGGESTIONS
FOR FUTURE WORK

A novel approach o f estimating or predicting the pole/sonar

vibration using a CMAC neural network is presented in this dissertation

(Figure 1-7, Figure 5-1 & 5-2). Physically, the pole vibration prediction

system is com posed of a pole (to which the sonar head is bound), tw o

pairs of strain gauges a ttached to the top part of the pole, and a

com puter in which the CMAC neural network is im plem ented to estimate

or predict the coordinates of the sonar head relative to the vessel using

the data acquired by a data acquisition board installed in the computer.

Photocells or other position sensors tha t d e te c t the position o f the bottom

o f the pole are used in training. The da ta de tected from the photocells,

which is proportional to the sonar's coordinate displacem ent (x or y), are

sent to the learning module - CMAC neural network as its training target.

The voltage signals from the strain gauges are connected to CMAC

neural network as its pointer information, A fter a period o f training, the

output of the CMAC neural network will pred ict the sonar head's

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

coordinates with or w ithout the continuing existence of the training ta rge t

da ta (see Figure 5-8 for the la tter case).

Both the proposed system itself and the m ethodology behind the

mechanism of the system are studied. As revealed by a number of

researches (13) (41) (55) (56) (58) (58) (89) conducted a t the Robotics and

Vibration Control Laboratory, University of New Hampshire, as well as the

results given in this dissertation, the CMAC neural network offers benefits

and advantages such as fast learning and rapid generalization capability,

noise insensitivity, modeling or learning abilities for nonlinear plants as well

as linear plants, and its proven success for real-time problems. A fter

analyzing the nature of the problem and com paring several potential

methods including the approach o f vibration theory and the data filtering

approach, we conclude th a t a CMAC neural network offers a good

chance of success.

In addition to the feasibility study of predicting pole vibration using

the CMAC neural network, theoretical research on the properties o f the

CMAC neural network has also been conducted. The analytic results

contribute to the developm ent o f the CMAC neural network and help

improve the general understanding of the CMAC neural network.

Specifically, inspired by the adaptive filter theory, the eigenanalysis of

CMAC neural network has been conducted. The matrix involved in the

eigenanalysis is the correlation matrix R formed d irectly from the excitation

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vector (Eq. (4.5) or Eq. (4.17)). It is revealed that the trace (i.e., sum of

eigenvalues) o f the correlation matrix R is equal to the generalization

param eter o f the CMAC neural network. Eigenanalyses lead to tw o

sufficient conditions for the convergence o f CM AC's w eight vector in the

mean (Theorem 4.1 & 4.2), It is worthy to note tha t for the LMS algorithm

the convergence can only be achieved in some kind o f statistical sense

(such as mean or variance) since the gradient estim ate m ade a t each

step is generally noisy. However, many steps taken in the direction of the

negative instantaneous gradient will, on average, go in the correct

direction for the steepest descent. A simple formula for estimating the

misadjustment due to the gradient noise is aiso given (Eq. (4.48)).

The feasibility study of pole/sonar vibration prediction using CMAC

neural networks is conducted based on two implementations of the

proposed system - com puter simulation and real-time lab prototype. To

conduct the com puter simulation, the first step is the m odeling of the

system. Simulink® provides a graphical way o f m odeling - each

com ponent o f the system is represented by a block or group o f blocks.

Two components, the pole and the CMAC neural network, are o f special

interest to us. The CMAC block tha t implements a CMAC neural network is

written in the C language. The code is structured as a com bination o f

several Simulink ca llback methods in which the Simstruct access macros,

C mx-functions and user-defined functions are used. A fter being com plied

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and linked to the block, the parameters o f the CMAC neural network m ay

be specified or changed through the Simulink's dialog box of the CMAC

block (Figure 5-4).

Two simulation models of the po le are used in the research. A

simple 2nd-order under-damped linear system is first used in the

preliminary-study stage to test the tool o f research. A more com plicated,

higher-order, nonlinear, approxim ate model (Figure 5-20) is constructed

based on da ta captured from the lab prototype. The impulse response o f

the pole comprises a major single-mode (at 10 Hz) vibration along the

direction of the force and a weaker response along the orthogonal axis,

which is a nonlinear mixing of two modes.

The lab prototype is used as a real-time test-bench of CMAC's

capabilities o f estim ating/predicting the pole/sonar vibration as well as a

platform to obtain the experimental m odel of po le dynamics, The central

part o f the lab prototype is the real-tim e C-program th a t integrates the

da ta acquisition hardware (DT3010) w ith the functionality o f the CMAC

neural network. From the point of view of a programmer, the application

is a t the top of the three-layer architecture o f the DT-Open Layers

standard for Windows, and it relies on the DataAcq SDK a t the function

library layer to com m unicate with the device drivers th a t assert control

over specific devices. The program creates tw o threads to separate the

user-interface task from the data processing task (Figure 5-12 & 5-13). The

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lab prototype implementation of the proposed system has been able to

fulfill its twin objectives. The experimental results have been observed on­

site and recorded for analyses (Figure 5-17 & 5-18).

The software implementation is able to provide a quick and

inexpensive way of thoroughly investigating the feasibility o f the proposed

m ethod. More scenarios may be easily simulated. In this research,

simulations have been conducted for the input (the external force) o f

either single-frequency or multi-frequency components.

Analyses of the results from both experiments and simulations lead

to the conclusion tha t a CMAC neural network, after training, is capab le

of estimating or predicting the displacem ent of the sonar head

(represented by the bottom of the pole), caused by the pole vibration,

based on the information from the strain gauges installed near the top

part o f the pole. The error between the sonar head's position and the

CMAC estimation or prediction is small (0.01 ~ 0.05 volt or 0.0028° ~ 0.014°

for most cases).

Moreover, the perform ance o f the CMAC neural network, as

judged by the three indicators of the steady state error, maximum error

and transition time, is analyzed as a function o f the parameters of the

CMAC neural network. Interesting trends em erged from these simulations:

there exist some "critica l" points for CMAC parameters - below or beyond

those points the perform ance indices worsen or stagnate.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are a few directions in which the present research could be

extended. One of the future efforts should be a more accurate model of

the po le dynamics. More experiments aim ing to capture the pole

response to different forces are needed. A more com plicated and

accurate model can be built provided tha t a large num ber of force

patterns can be generated. Hence, a measurement and analysis of

typical force patterns would be worthwhile. Besides, an experiment in

which the bottom of the pole is submerged in the w ater would help

determ ine the dam ping coeffic ien t of the pole model. In the latter case,

the underwater position sensors are needed. Then, having built a more

accurate model, more simulations with the new model would help gain

more confidence and insight about the proposed pole-m ounted sonar

vibration prediction system.

Calibration is an im m ediate concern if the proposed system is put

into real application. The displacem ent o f the sonar head must be

converted into the angular error so tha t the error in the world coordinates

of the footprint, 8x or 8y, can be corrected. For some applications in which

the error signal of interest is directly available, the approach proposed

here may avoid this generally tedious process, because one does not

need to calculate the exact position of the sonar sensor. One may train

the CMAC neural network with the error between the “actua l" da ta and

the data "perceived" by the sonar. For example, to ca lib rate a sonar or

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other instruments in the lab setting (such as a tow ing test), and since the

floor depth o f the tank is known, one can ca lcu la te the error da ta when

the sonar surveys the floor and train the CMAC along with the pointer

information from some other vibration sensors such as strain gauges.

The last, but not least, im portant area o f future research is the

further study o f CMAC neural networks from the point o f view of adaptive

filter theory, it is expected tha t many im portant concepts and conclusions

from the la tter field, which is more extensively studied, can be applied or

a t least provide some clues to the theoretical analyses o f CMAC neural

networks. This dissertation just starts the first step and only the

conventional CMAC structure has been investigated. It is hoped tha t

more efforts will be m ade in this direction o f research.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

(1) Aibus, J.S., "Theoretical and Experimental Aspects o f a Cerebellar
M odel," Ph.D Dissertation, University of Maryland, 1972.

(2) Albus, J.S., "A New Approach to M anipulator Control: the
Cerebellar Model Articulation Controller (CMAC)" Trans. ASME.
Vol.97, pp.220-227, September, 1975.

(3) Albus, J.S., Brains, Behavior, & Robotics, BYTE Publications, Inc.,
Peterborough, NH, 1981.

(4) Aleksander, I. and H. Morton, An Introduction to Neural Computing.

London, UK: Chapman & Hall, 1990.

(5) Anderson, B.D.O and J. B. Moore, Linear Optimal Control, Prentice-
Hall, Englewood Cliffs, N.J., 1979.

(6) Anderson, J. A. and E. Rosenfeld, eds.. Neurocomputing:
Foundations o f Research. Cambridge, MA: MIT Press, 1988.

(7) Astrom, K.J. and B. Wittenmark, Adaptive Control, 2nd ed., Addison-
Wesley Publishing Company, Inc., 1995.

(8) Benson, H.T., Principle o f Vibration, Oxford University Press, 2002.

(9) Broomhead, D. S. and D. Lowe, "M ultivariable Functional
Interpolation and Adaptive Networks," Complex Systems, vol.2,
1988, pp. 269-303.

(10) Brown, M. and C.J. Harris, "Least m ean square learning in
associative memory networks," in Proc. 1992 IEEE Int. Symp.
Intelligent Control, 1992, pp. 531-536.

(11) Brown, M. and Harris, C., Neurofuzzy Adaptive Modelling and
Control. New York: Prentice Hall. 1994.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(12) C abrera J. B. D. and K. S. Narendra, "Issues in the applica tion o f
neural networks for tracking based on inverse control," IEEE Trans.
Autom atic Control, vol. 44, no.l 1, pp. 2007-2027, 1999.

(13) Canfield, J., Kraft, L. G., Latham, P„ and Kun, A., "Filtered-X CMAC:
An Efficient Algorithm for Active Disturbance C ancellation in
Nonlinear Dynamical Systems," Proceedings o f the 2003 IEEE
International Symposium on Intelligent Control, Houston, pp. 340-
345, O ctober 5-8, 2003.

(14) Caudill, M., "Neural Networks Primer: Part II," Al Expert, 1988, pp. 55-
61.

(15) Chen, S., C. F. Cowan and P. M. Grant, "O rthogonal Least Squares
Algorithm for Radial Basis Function Networks," IEEE Transactions on
Neural Networks, vol. 2,pp. 302-9,1991.

(16) Chiang, C.T., & Lin C.-T„ "CMAC with general basis functions,"
Neural Networks, vol.9, pp. 1191-1211, 1996

(17) Chow, M.-Y., & Menozzi, A., "A self-organized CMAC controller,"
Proc. 1994 IEEE Int. Conf. Industrial Technology - ICIT'94, Guangzhou,
China, 1994.

(18) Cochofel, H. J., D. Wooten, J. Principe, "A neural network
environment for adaptive inverse control,"
h ttp: / /w w w . cne l. ufI .edu /b ib /od f pgpers/cochofed98w cci. p d f.

(19) Cotter, N.E., & Guillerm, T.J., "The CMAC and a theorem of
Kolmogorov," Neural Networks, vol.5, pp.221-228, 1991.

(20) Eldracher, M., & Geiger, H., "Adaptive topologically distributed
encoding," in Proc. Inti Conf. Artificial Neural Networks, Sorrento,
Italy, pp.771-774, 1994.

(21) Glanz, F.H., and Miller, W.T., "Shape recognition using a CMAC
based learning system ," Proc. SPIE Conf. on Robotics and Intelligent
Systems, vol. 848, pp .294-298, Nov. 1987.

(22) Glanz, F.H., and Miller, W.T., "Deconvolution using a CMAC neural
network," Proc. 1st Annual Conf. o f the Intl. Neural Network Society,
p.440, Sept. 1988.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(23) Glanz, F.H., and Miller, W.T., "Deconvolution and nonlinear inverse
filtering using a CMAC neural network," Intl. Conf. on Acoustics and
Signal Processing, vol.4, pp.2349-2352, May 23-29, 1989.

(24) Godard, D. N., "Channel Equalization using a Kalman filter for fast
da ta transmission," IBM J. Res. Dev. vol. 18, pp. 267-273,1974,

(25) Gonzalez-Serrano, F.J., Figueiras-Vidal, A. R., 8c Artes-Rodriguez, A.,
"Generalizing CMAC Architecture and Training," IEEE Trans. Neural
Networks, vol.9, No.6, pp. 1509-1514, 1998.

(26) Gonzalez-Serrano, F.J., Figueiras-Vidal, A. R., 8c Artes-Rodriguez, A.,
"Fourier analysis of the generalized CMAC neural network," Neural
Networks, vol. 11, pp. 391-396, 1998.

(27) Goodwin, G. C. and K. S. Sin, Adaptive Filtering, Prediction and
Control, Prentice-Hall, Englewood Cliffs, N.J., 1984.

(28) Ham, F.M. and I. Kostanic, Principle o f Neurocomputing for Science
and Engineering, New York; McGraw-Hill, Inc., 2001.

(29) Haykin, S., "Adaptive Filter Theory," 3rd ed., Prentice Hall, NJ, 1996.

(30) Hebb, D. O ., The Organization o f Behavior, New York, Wiley, 1949,
introduction and chapter 4, "The First Stage o f Perception: Growth
o f the Assembly," pp.xi-xix, 60- 78. Reprinted in 1988, Anderson and
Rosenfeld (6), pp.484- 507,

(31) Herold, D ., Miller, W.T., Glanz, F.H., 8c Kraft, LG., "Pattern recognition
using a CMAC based learning system, " Proc. SPIE, Autom ated
Inspection and High Speed Vision Architectures II, vol. 1004, pp. 84-
90, Nov. 10-11, 1989.

(32) Hopfield, J. J., "Neural Nelworks and Physical Systems with Emergent
Collective Com putational Abilities," Proceedings o f the National
Academ y o f Sciences, vol.79, 1982, pp. 2554-8. Reprinted in 1988,
Anderson and Rosenfeld (6), pp.460- 4.

(33) Kaelin, A, and D. Grunigen, "On the use o f a priori know ledge in
adaptive inverse control," IEEE Trans. Circuits and Systems Part I:
Fundamental Theory and Applications, vol. 47, N o .l, pp.54-62, 2000.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(34) Kailath, T., ed „ Linear Least-Squares Estimation, Benchmark Papers
in Electrical Engineering and Com puter Science, Dowden,
Hutchinson & Ross, Stroudsburg, Pa„ 1977.

(35) Kaiman, R. E„ “A New Approach to Linear Filtering and Prediction
Problems" Trans. ASME, J. Basic Eng., vol. 82, pp. 35-45, 1960

(36) Kalman, R. E. and R. S. Bucy, "New Results in Linear Filtering and
Prediction Theory," Trans. ASME, J. Basic Eng., vol. 83, pp. 95-108,
1961.

(37) Kim, H., & Lin, C.E. "Self- learning with adaptive critic: For problems
with multiple control inputs," in Proc. 1991 Art. Neural Networks Eng.
Conf., St Louis, MO, Nov. 10-13, 1991, pp.511-518.

(38) Kolmogorov, A, N., "Sur 1 'interpoation e t extrapolation des suites
stationeries," C.R.Acad. Sci., Paris, vol. 208, pp. 2043-2045, 1939.
(English translation reprinted in (34).)

(39) Kraft, L. G., & Campagna, D. P., "A Comparison o f CMAC Neural
Networks and Traditional Adaptive Control System," Proceedings o f
the 1991 American Controls Conference, Pittsburgh, PA, May 1989.

(40) Kraft, L.G., & Liu, K., "Stability o f CMAC Neural Networks on Closed
Loop Vibration Control Systems," IASTED Controls and Applications
Conference, Cancun, Mexico, 2000.

(41) Kraft, L.G. & Pallotta, J., "V ibration Control Using CMAC Neural
Networks with Optimized W eight Smoothing," Proc. o f the American
Control Conference, San Diego, CA, 1999.

(42) Krein, M. G., "On a Problem o f Extrapolation o f A. N. Kolmogorov,"
C. R. (Dokl.) Akad. Nauk SSSR, vol. 46, pp. 305-309, 1945.
(Reproduced in (34).)

(43) Lane S.H., Handelman D.A., & Gelfand J.J., "Theory and
developm ent o f higher- order CMAC neural network", IEEE Control
Systems, vol. 12, pp. 23-30, 1992.

(44) Lee, H.-M., Chen, V.-M, and Lu, Y.-F., "A self-organizing HCMAC
neural-network classifier," IEEE Trans. Neural Networks, vol. 14, N o.l,
pp. 15-26, 2003.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(45) Levinson, N„ "The Wiener RMS (Root-Mean-Square) Error Criterion in
Filter Design and Prediction," J. Math Phys., vol. 25, pp. 261-278,
1947.

(46) Lin. C.-S., & Chiang, C.-T., "Learning convergence of CMAC
technique," IEEE Trans. Neural Networks, vol.8, No.6, pp. 1281-1292,
1997.

(47) Lin, C.E., & Kim, H„ "CMAC-based adaptive critic self- learning," IEEE
Trans. Neural Networks, vol.2, pp. 530-533, Sept. 1991.

(48) Lin, C.E., & Kim, H„ "Selection o f learning parameters for CMAC-
based adaptive critic learning," IEEE Trans. Neural Networks, vol.6,
pp, 642-647, May, 1995.

(49) Lin C.S. & Li, C.K., "A low-dimensional-CMAC-based neural network,'
in Proc. IEEE Int. Conf. Syst., Man, Cybern., vol.2, pp. 1297-1302, 1996.

(50) Lin C.S. & Li, C.K., "A sum -of-product neural network (SOPNN),"
Neurocomput, vol.30, pp .273-291, 2000.

(51) Lipnriann, R.P., "An introduction to com puting w ith neural nets," IEEE
ASSP Magazine, April, pp.4-22, 1987.

(52) Liu, K„ "Study o f Convergence Properties of CMAC Neural Network
in Closed Loop Vibration Control Systems," Master's Thesis, University
of New Hampshire, 2000.

(53) McCulloch, W. S. and W. Pitts, "A Logical Calculus o f the Ideas
Immanent in Nervous Activity," Bulletin o f Mathematical Biophysics,
Vol.5, 1943, pp. 115-33. Reprinted in 1998, Anderson and Rosenfeld
(6), pp. 18-27.

(54) Menozzi A. and MY Chow, "On the Training o f a Multi-Resolution
CMAC Neural Network," Proceedings o f IECon'97, New Orleans, LA,
pp. 1130-1135, 1997.

(55) Miller, W.T., "Real time app lica tion of neural networks for sensor-
based control o f robots w ith vision," IEEE SMC, vol. 19, pp. 825-831,
July-Aug. 1989.

(56) Miller, W.T., Glanz, F.H., & Kraft, L.G., "Application of a G eneral
Learning Algorithm to the Control of Robotics Manipulators, '
International Journal o f Robotics Research 6.2:84-87,1987.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(57) Miller, W.T., Glanz, F.H., & Kraft, LG., "Real-time Dynam ic Control o f
an Industrial Manipulator Using a Neural Network Based Learning
Controller," IEEE Journal o f Robotics and Automation, Feb., 1990.

(58) Miller, W. T., Glanz, F, H., & Kraft, L. G., "CMAC: An associative neural
network alternative to backpropagation, * Proceedings o f the IEEE,
Special Issue on Neural Networks, II, vol. 78, pp. 1561-1567, O ctober,
1990.

(59) Narendra, K. S. and J. Balakrishnan, "A daptive Control using
Multiple Models", IEEE Transactions on Automatic Control, pp. 171-
187, Vol. 42, No. 2, February 1997.

(60) Narendra, K. S., J. Balakrishnan, M. K. Ciliz, "A daptive and Learning
using Multiple Models, Switching and Tuning", IEEE Control Systems,
pp. 37-50, June 1995.

(61) Narendra, K. S. and S. Mukhopadhyay, "A daptive control using
neural networks and approxim ate models," IEEE trans. Neural
Networks, vol. 8, pp. 475-485, 1997.

(62) Page, G.F., Gomm, J.B., 8c Williams, D., Application o f Neural
Networks to Modelling and Control, Chapman 8c Hall, 1993.

(63) Parks, P. C. and J. Miltizer, "Convergence properties o f associative
memory storage for learning control systems," Autom at. Remote
Contr., vol. 50, pp.254-286, 1989.

(64) Plackett, R. L., "Some Theorems in Least Squares," Biomethka, vol.
37, p. 149, 1950.

(65) Plett, G „ "A daptive inverse control of linear and nonlinear systems
using dynam ic neural networks," IEEE Trans. Neural Networks, vol. 14,
pp. 360-376, March, 2003.

(66) Plett, G., "A daptive inverse control on plant w ith disturbances,"
Ph.D. dissertation, Stanford University, May 1998.

(67) Puskorius, G. V. and L. A. Feldkamp, "Neurocontrol o f nonlinear
dynam ical systems with Kalman filter trained neural networks," IEEE
trans. Neural Networks, vol. 5, pp. 279-297, 1994.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(68) Rosenblatt, F„ "The Perceptron; A Probabilistic Model for
Information Storage and Organization in the Brain, " Psychological
Review, vol.65, 1958, pp.386-408. Reprinted in 1988, Anderson and
Rosenfeld (6), pp.92-114.

(69) Rumelhart, D. E., G.E. Hinton, and R. J. Williams, "Learning Internal
Representations by Error Propagation," in Parallel Distributed
Processing, vol. 1, chap. 8, eds. D. E. Rumelhart and J. L.
McClelland, Cambridge, MA: MIT Press, 1986,

(70) Rumelhart, D., G. Hinton, and R. Williams, "Learning Representations
by Backpropagating Errors," Nature, vol. 323, pp. 533-536, 1986.

(71) Sayed, A. H. and T. Kailath, "A State-Space A pproach to Adaptive
RLS Filtering,' IEEE Signal Process. Mag., vol. 11, pp. 18-60, 1994.

(72) Shaffer, S., "Adaptive inverse-model control," Ph.D. dissertation,
Stanford University, August 1982.

(73) Thomson, W.T. and M.D. Dahleh, Theory o f Vibration with
Applications, 5th ed., Prentice Hall, Inc., 1993.

(74) W alach, E. and B. Widrow, "Adaptive signal processing for adaptive
control," in IF AC Workshop on Adaptive Systems in Control and
Signal Processing, San Francisco, CA, 1983.

(75) Werbos, P.J., "Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences," Ph.D thesis, Cam bridge, MA:
Harvard University, 1974.

(76) Werbos, P.J., "Backpropagation through Time: W hat it does and
How to Do It," Proceedings of the IEEE, vol.78, 1990, pp. 1550-60.

(77) Werbos, P.J., The Roots o f Backpropagation, New York: Wiley, 1994.

(78) Wertnges, H., "Partitions of unity improve neural function
approxim ation," in Proc. IEEE Inti Conf. Neural Networks, San
Francisco, CA, pp. 914-918, 1993.

(79) Widrow, B., "ADALINE AND MADLINE - 1963, Plenary Speech,"
Proceedings o f First IEEE International Conference on Neural
Networks, vol. 1, San Diego, CA, June 23, 1987, pp. 145-58.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(80) Widrow, B., "Adaptive model control applied to real-time blood-
pressure regulation," in Pattern recognition and machine learning;
proceedings, ed. K.S. Fu (New York: Plenum Press, 1971), pp.310-324.

(81) Widrow, B., and M. E. Hoff, Jr., "A daptive Switching Circuits," IRE
WESCON Convention Record, part 4, New York, IRE, 1960, pp.96-104.
Reprinted in 1988, Anderson and Rosenfeld (6), pp. 126-34.

(82) Widrow, B., and M.A. Lehr, "30 Years of Neural Networks:
Perceptron, Madaline and Backpropagation," Proceedings o f the
IEEE, vol. 78, 1990, pp. 1415-42.

(83) Widrow, B., and S. D. Sterns, Adaptive Signal Processing, Englewood
Cliffs, NJ, Prentice-Hall, 1985.

(84) Widrow, B., and E. W alach, Adaptive Inverse Control, Englewood
Cliffs, NJ, Prentice-Hall, 1996.

(85) Wiener, N„ Extrapolation, Interpolation, and Smoothing o f Stationary
Time Series, with Engineering Applications, MIT Press, Cambridge,
Mass., 1949. (Originally issued as a classified National Defence
Research Report in February 1942).

(86) Wiener, N. and E. Hopf, "On a Class o f Singular Integral Equations,'
Proc, Prussian Acad. Math-Phys. Ser„ p.696, 1931.

(87) Wong, Y. F., & Sideris, A., "Learning convergence in the cerebellar
model articulation controller," IEEE Trans, Neural Networks, vol.3, pp.
115-121, 1992.

(88) Yao, S., & Zhang, B. "The learning convergence o f CMAC in cyclic
learning," in Proc. Int. Joint Conf. Neural Networks, Nagoya, Japan,
1993, pp.2583-2586.

(89) Zhang, C „ Canfield, J., Kraft, L. G., & Kun, A., "A new active
vibration control architecture using CMAC neural networks,"
Proceedings o f the 2003 IEEE International Symposium on Intelligent
Control, Houston, pp. 533-536, O ctober 5-8, 2003.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX I

CIRCUIT DIAGRAMS OF VIBRATION SENSORS

Strain Gage Circuit

+7.5V

1uF

VR1
100 ohms

R5
510 kohms

AAA-----
R8
510 kohms
AAA/— -i

120 ohms
R3
10 kohms

A /W —

<> 560 ohms
R7
10 kohms

AAAr—

Vout
CN1R9

62 kohms
AAA—AAA—

R4
10 kohms

IC1 IC2
C3
0.1 uFR6

510 kohms
R2
620 ohms G2

120 ohms

n IC1, IC2: UPC741C
Power: + V = 7.5V: PIN 7

- V = -7.5V: PIN 41uF -7.5V

Figure Al-1: Strain gauge circuit diagram

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From
the output of

photo cell

A cn j

R1
11kohms

YvV

W v
R2
20kohms

+7.5V

R4
lOOkohms
AVv—

1 kohms

R5
63kohms

AAV—

C1
0.1 uF

IC1, IC2: UPC741C
Power: + V = 7 . 5 V : P I N 7

- V = -7.5V : PIN 4

Figure A 1-2; Bias & amplification circuit diagram for photocell

Vout
CN1

■€>

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX II

SPECTRAL ANALYSIS OF CMAC’S LEARNING ERROR

An interesting question about the learning capab ility of CMAC

neural networks is tha t how thoroughly they are ab le to learn from the

training data after being fully trained* It is extremely d ifficu lt if not

impossible, to answer this question theoretically. The spectral analysis of

32+2*0.001*62.85*62.8*2
Sine Wave

,-K-

s2+2*0.01*3.14s+3.14A2

sinGauge

s?+2’0 O01 *62,8s*628*2

PCMAC
Pointers

test
Transport

Delay

^+2*0.01*3.14se3.14"2 sin

□
Error

$2+2*0.001*62Ss+62,8A2
03

□
s2+2*0.001*62.8s*62.8A2 Response

Figure A2-1: A simulation m odel for CMAC learning

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the steady-state error data obtained from simulations or experiments

provides a way to look into this question, a t least for the problem under

study.

In this appendix, a simulation m odel shown in Figure A2-1 is used to

generate the error data. The input frequency is set to be 1 Hz. O ther

simulation parameters are: generalization factor (p) = 64; (3i = 1; £2 = 7;

internal scaling fac to r = 10000; quantization = 100; sampling period = 0.001

s; the linear receptive field is selected. The delay between two pointers is

0.01 s, The simulation results are shown in Figure A2-2. The steady-state

error, y-y', is 1.3% of the am plitude o f po le response.

20 40 60 BO 100 120 140 1BD 180 200

0.5
a

UJ

-0.5

" 1 1 1...........)"■” ...
i i
i i

i i

1 1......... T ----- 1
I 1 I 1
1 t 1 l
1 1 1 1
1 1 0 I
i l I i
I l l <

1

i i
i i
< i
t i
i t
i i

l i t !
1 1 1 <
t i l l
t i l l
1 1 1 1
I I 1 1
1 1 1 1

r ________ .. i i

1 I * 1
t i l l
1 1 I 1

i i i i
20 40 60 B0 100 120

Time (s)
140 1B0 1BD 200

Figure A2-2: Pole response and error o f CMAC estimation

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The frequency spectrums o f the steady-state pole response and the

error signal are shown in Figure A2-3. Two frequencies, 1 Hz and 2 Hz, are

presented in the pole response. The additional frequency other than the

input frequency (1 Hz) results from the nonlinearity o f po le model. For the

error signal, its frequency spectrum spreads over a w ide band o f

frequencies, The energy residing a t 1 Hz and 2Hz is no bigger than a t other

frequencies. Moreover, the m agnitude o f the frequency spectrum of pole

response is 70 dB above the error signal a t 1 Hz and 56 dB higher a t 2Hz.

Hence w e can conclude that the steady-state error o f CMAC estimation

Fourier transforms of error signal and pole response

+74 dB:

Pol® response
y - I I

Error

CB

-20

-40

100
Frequency (Hz)

Figure A2-3: Frequency spectrums o f pole response and
error o f CMAC estimation (steady-state)

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is virtually white noise and it contains very low level o f power com pared to

the training signal. In order words, there is no significant information not

learned by the CMAC neural network.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX III

SIMULATED STEADY-STATE RESPONSE OF POLE

This appendix presents the simulation results o f the steady-state

response (SSR) of the pole to a sinusoidal input o f single frequency from 1

Hz to 20 Hz. The simulation m odel is shown in Figure A3-1.

Sine Wave

Dot Produet3 -K-

Cosine Wave

□

□

s 2 *-2 * 0 .01* 3 . 14s +9.86

s£+2*0 £01 *62,8s*3944

s2+2*0.001*62.8s*3944

^*2*0.001*62.83*3944

s?+2*0.001*62,8s*62,8A2

s2+2*0.01*3. l-fe+3.14*2

Figure A3-1: Simulation m odel for steady-state response o f pole

The simulation results are shown in Figure A3-2. The steady-state

response is about l.O a t low frequencies near 1 Hz. It increases gradually

to 2.78 when the frequency o f the sinusoidal input reaches 8 Hz. Then it

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

climbs quickly and reaches a peak a t 10 Hz. It drops as quickly until the

input frequency increases to 12 Hz, where the value of SSR is 2.28. The

steady-state response (SSR) falls below 1.0 after the input frequency

passes above 14 Hz. A t 20 Hz, the SSR is 0.33.

E E E E E c E E E E E E x E E E E E E

x E E E E E E E I E E E E E E EE E x E E E E E E a E E E E E E E l E E E E E E E c E E E E E E ^ E E E E E E i

Frequency (Hz)
Figure A3-2: Simulated steady-state response o f pole to sinusoidal input

It is noteworthy tha t the simulation model of the pole dynamics

(Figure A3-1) is based on the data obtained from our laboratory

experiments in which the pole vibrated in the air. The small air-dam ping

causes a large am plitude of vibration near the primary natural frequency

(Figure A3-2). However, the dam ping of the pole-m ounted sonar

vibrating in the w ater is much bigger so th a t such a resonance is not likely

to happen in real operations. Even so, we expect a similar pattern o f the

SSR over the same range of the frequency of the sinusoidal input.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX IV

SIMULATION PARAMETERS OF 1 -DOF MODELS

In chapter 5, three 1-DOF vibration learning models are used to test

the functionalities of the S-function im plem entation (Simulink block) o f the

CMAC neural network. The values o f simulation parameters for these

simulations are given in Table A4-1.

Table A4-1: Simulation parameters o f 1 -DOF models

M odel Figure 5-5 Figure 5-7 Figure 5-9
Generalization size 16 8 32
Sampling period (s) 0.001 0.001 0.001
Beta (00* 5 5 5
Beta2 (00* 7 7 100
Memory size 1000 1000 1000
Internal scaling factor** 10000 10000 10000
Quantization 100 100 100
Receptive field Rectangular Rectangular Rectangular
Transport de lay (s) 0.25 0.1 0.25

* See the footnote on page 82.

** The UNH version o f the CMAC neural network assumes the data to be processed are integers. Hence, the
raw data generally need to be scaled up by multiplying the internal scaling factor to ensure a satisfactory
precision o f operation.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2005

	Pole -mounted sonar vibration prediction using CMAC neural networks
	Chunshu Zhang
	Recommended Citation

	tmp.1521741622.pdf.elWVf

