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PREFACE

The objective of this dissertation is to provide the reader w ith  sufficient background 

to elucidate the motivation behind the current research and to provide adequate technical 

detail so that the results of th is research are accessible for use in practical applications and 

continuing research efforts. To that end, this dissertation contains a significant extent of 

background material intended to provide the reader with an overview of the more popular 

conventional methods of active disturbance cancellation. Additionally, the documented 

shortcomings of these methods provide motivation for the novel disturbance cancellation 

techniques introduced in the later chapters.

The field of active disturbance cancellation has a substantial historical background. 

In fact, the first patent for active control of sound was issued in 1936 although practical 

means for its implementation were not available at the time [61] [68], Since then, a 

tremendous variety of approaches have been developed. Chapter one is dedicated to 

providing a brief overview of the most common of these techniques. As an introduction to 

this subject, section 1.1 describes several classical approaches to disturbance rejection in 

linear time invariant control theory. This objective of this section is to provide an 

understanding of how the present research fits into the context of classical linear control 

theory. However, the described methods are strictly limited in applicability to time invariant 

systems. In contrast, most physical systems, particularly in acoustic and vibration control 

systems, experience significant temporal variation. Sections 1.2 through 1.4 review several 

active disturbance cancellation methodologies based on adaptive linear filter techniques 

which allow their use in time varying systems. Particular emphasis is placed on 

implementation of such approaches in system s containing significant transport delays, 

resonance, and non-minimum phase dynamics. These conditions represent some of the 

challenging aspects encountered in practical active vibration and noise control systems.

iv
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Special emphasis is placed on the acoustic cancellation problem although the presented 

techniques are applicable to a wide variety of systems.

Section 1.6 begins with a derivation of the LMS algorithm for adaptation of discrete

time linear filters. The LMS algorithm requires a measure of the filter error in order to 

provide convergent adaptation. However, in disturbance cancellation algorithms this signal 

is unavailable due to the presence of cancellation path dynamics and therefore, the LMS 

algorithm can not be directly applied to such systems. Instead, an extension of the algorithm 

known as the Filtered-X LMS method is commonly utilized. Section 1.6 provides a derivation 

of the Filtered-X LMS algorithm for the case where the secondaiy path is represented by an 

FIR filter. This algorithm serves as the basis for more analogous nonlinear techniques which 

are introduced in later chapters. Section 1.6 also presents a variety of refinements to the 

LMS update which are commonly utilized in active disturbance cancellation systems. These 

techniques serve as inspiration for the development of analogous enhancements of the 

nonlinear neural network methods presented in later chapters.

Section 1.6 and 1.7 provide background on the field of application for active 

disturbance cancellation systems. The two main categories of applications are active noise 

control and active vibration cancellation. However, such techniques are also useful for 

augmenting conventional control algorithms in order to enhance their robustness against 

external disturbances. Examples are provided of typical applications in each of these 

categories. Additionally, section 1.7 provides a tutorial review on the acoustics of active 

noise control. This section describes the fundamental approaches to active noise control and 

outlines the capabilities and limitations of each.

Chapter 2 is dedicated to providing a thorough background of the CMAC neural 

network and its use in modeling nonlinear dynamical systems. Section 2.1 provides a basic 

description of the CMAC algorithm and illustrates its relation to other feedforward neural 

network architectures. In particular, it is shown that the CMAC is particularly well suited 

to control applications due to its efficient implementation and robust convergence properties.

v
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Additionally, in such applications, the limited generalization capabilities of the CMAC are 

readily surmounted by extra training given the large quantity of training data typically 

available in such applications. Section 2.2 provides a detailed description of the CMAC 

algorithm. The presented material is largely tutorial, but emphasis is placed on features and 

extensions of the CMAC network which are of particular significance in typical disturbance 

cancellation applications. Sections 2.3 and 2.4 describe the time delay neural network 

architecture and illustrate its ability to model nonlinear dynamical systems. In particular, 

these sections provide some fundamental guidelines as to the representational capabilities of 

the time delay CMAC network, focusing primarily on those requirements which are 

particular significance in active disturbance cancellation systems. Section 2.5 concludes the 

chapter with an analysis of the convergence properties of a single input dimension CMAC 

network. This section provides additional insight into the nature of the CMAC adaptation 

algorithm.

Chapter 3 is devoted to an analysis of the use of time delay CMAC neural networks 

for feedforward active disturbance cancellation in nonlinear systems. In this application, the 

conventional CMAC weight adaptation cannot be utilized directly since the output error is 

not known due to the presence of secondary path dynamics. Instead, suitable modifications 

to the standard CMAC weight update algorithm are derived which provide convergent 

adaptation for a variety of secondary paths. The simplest case is presented in section 3.2 

which considers the case of a nonlinear forward signal path in combination with a purely 

linear secondary path. Convergence of the time delay CMAC in this case is proven 

analytically given a bound on the learning gain. This result is extended in section 3.3 to 

provide a similar conclusion for a class of static nonlinear secondary paths.

Sections 3.4 and 3.5 consider the impact of time delays in the secondary path. The 

presence of this delay adds a phase shift in the error signal path which can result in 

instability of the weight adaptation. An algorithm for the stable adaptation of the time delay 

CMAC in the case of secondary path delay is presented and an analytical bound on the
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maximum stable learning gain is derived. This resu lt indicates th a t the maximum learning 

gain must be reduced in  proportion to the length  of the delay and the number of overlapping 

weights between nearby data points. The Band Limited CMAC introduced in this section 

allows for this technique to be applied for use in the case of narrowband cancellation with a 

general dynamical linear secondary path.

Section 3.6 describes the Filtered-X Backpropagation algorithm developed by Snyder 

and Tanaka [97], This technique allows a multi-layer perceptron to be trained for active 

disturbance cancellation in nonlinear dynamical systems. A simplified derivation of the 

algorithm is provided in order to show its relation to the analogous CMAC algorithms 

introduced in later sections. The primary disadvantage of the Filtered-X Backpropagation 

algorithm is its significant computational overhead which limits the upper boundary of the 

effective cancellation frequency range. Additionally, the multi-layer perceptron often suffers 

from slow and unreliable convergence in many practical systems. These shortcomings 

provide motivation for introduction of the Filtered-X CMAC algorithm in section 3.7. The 

Filtered-X CMAC algorithm utilizes a time delay CMAC network to model the secondary 

path. Numerically determined gradients through this model are then used to provide a 

means for adaptation of a second time delay CMAC network which serves as the active 

disturbance cancellation compensator. Thus, the Filtered-X CMAC algorithm provides an 

alternative means for implementing active disturbance cancellation in systems characterized 

by a nonlinear secondary path which does not suffer from the limitations of the Filtered-X 

Backpropagation algorithm.

In many practical applications, despite the presence of a nonlinear forward path, the 

secondary path can be adequately modeled as a linear dynamical system. In such cases, the 

Reduced Filtered-X CMAC algorithm offers the benefits of lower computational overhead and 

more robust convergence properties. This algorithm is presented in section 3.9. Its use is 

demonstrated via simulation for a variety of nonlinear systems. In section 3.10, the 

convergence of the Reduced Filtered-X CMAC algorithm is considered analytically. It is
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shown that convergence of the algorithm is guaranteed given certain bounds on the learning 

gain.

Chapter 4 presents three alternative approaches for utilization of the tim e delay 

CMAC neural network in active disturbance cancellation systems. The regenerative CMAC 

approach described in section 4.1 is an extension of the analogous technique used in the case 

of adaptive linear compensators. This technique eliminates the need for an estimate of the 

original disturbance by functioning solely from the measured error signal. In section 4.2, a 

reinforcement learning algorithm is presented which allows the time delay CMAC to be 

trained without requiring any prior knowledge or model of the secondary path. However, 

this significant advantage comes at the expense of substantially reduced rates of 

convergence. Finally, section 4.3 describes the use of a recurrent time delay CMAC for 

disturbance cancellation. As with the regenerative approach, this technique eliminates the 

need for an estimate of the primary disturbance signal. The three techniques presented in 

this chapter are more experimental in comparison to the feedforward techniques of chapter 

3. Each presentation is limited to a basic description of the algorithm and a representative 

simulation indicating basic feasibility of the concept.

Chapter 5 describes application of the Filtered-X CMAC algorithm to a laboratory 

acoustic duct system. Section 5.1 provides a brief analysis of the acoustic environment 

presented by such systems. In particular, the frequencies of higher order modes are 

determined in order to be able to restrict experiments to the fundamental mode of operation. 

Sections 5.2 and 5.3 provide two refinements to the algorithm designed to increase the 

efficiency of the implementation. Specifically, section 5.2 describes a means by which the 

computational overhead per iteration can be reduced at the expense of proportionally 

reduced rates of convergence. Section 5.3 shows how the dimension of the CMAC can be 

reduced in the case of narrowband disturbance cancellation. Finally, section 5.4 describes 

details of the laboratory implementation and documents the performance of the system. The

viii
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prim ary goal of this laboratory platform is to show that the Filtered-X CMAC algorithm can 

be effectively applied to a practical physical system.

Chapter 6 provides a concluding commentary as well as a description of several 

practical concerns regarding implementation of the Filtered-X CMAC algorithm. Section 6.2 

provides an estimate of the computational requirements of the algorithm which is a key 

factor in determining the upper frequency of cancellation given particular hardware 

capabilities. These results reveal that the algorithm is only marginally more 

computationally intensive than conventional linear adaptive techniques. Section 6.3 

presents an overview of several means for continuous adaptation of the secondary path 

which have been developed. The applicability of each to the Filtered-X CMAC and Reduced 

Filtered-X CMAC algorithms is considered. Finally, section 6.4 reveals how the reduced 

Filtered-X CMAC algorithm can be extended for application in systems requiring multiple 

actuators and multiple error sensors.
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ABSTRACT

ACTIVE DISTURBANCE CANCELLATION IN NONLINEAR 
DYNAMICAL SYSTEMS USING NEURAL NETWORKS

by

John C. Canfield 

University of New Hampshire, December, 2003

A proposal for the use of a time delay CMAC neural network for disturbance 

cancellation in nonlinear dynamical systems is presented. Appropriate modifications to the 

CMAC training algorithm are derived which allow convergent adaptation for a variety of 

secondary signal paths. Analytical bounds on the maximum learning gain are presented 

which guarantee convergence of the algorithm and provide insight into the necessary 

reduction in learning gain as a function of the system parameters. Effectiveness of the 

algorithm is evaluated through mathematical analysis, simulation studies, and experimental 

application of the technique on an acoustic duct laboratory model.
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CHAPTER 1

ACTIVE DISTURBANCE CANCELLATION

1.1 Disturbance Cancellation in Linear Time Invariant Systems

In a general sense, the purpose of a control algorithm  is to create activation signals 

for some plant or process in order to achieve a desired behavior in the outputs of that system. 

In open-loop control, the activation signals are created solely from an a priori model of the 

system, whereas in feedback control systems, a m easure of the system output is continuously 

utilized to improve the performance of the controller. Generally, the use of feedback provides 

superior performance particularly in the presence of modeling uncertainties and external 

disturbances.

Com m and or 
Reference 

Input

Figure 1.1 -  A block diagram illustrating the general control system.

An illustration of the generic control system is shown in figure 1.1. In practical 

systems, there are often many factors which complicate the design of a suitable control 

algorithm. One commonly faced difficulty is the presence of nonlinear plant characteristics

1

Control
Algorithm

tx te rn ai
D isturbance

System Under Control

Nonlinear?
Tim e Varying? 

Possesses U nm odeled Dynamics? 
Resonant?

T ran sp o rt Delay?

tx te rn ai
D isturbance

OutputO u tp u t

Sensor
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as might be caused by actuator saturation and sensor limitations. Additionally, many 

physical systems have time varying dynamics due to component aging and environmental 

factors. However, even if the system is linear and time variant, the presence of unmodeled 

dynamics, plant resonances, and transport delay commonly complicate practical control 

system design. In addition to non-ideal features associated with the plant, another common 

complication is the presence of external disturbances which can be introduced at different 

points in the system. Such disturbances often represent actual external stimulation sources, 

but can also be utilized to model quantization effects and measurement noise.

Under the assumption that the system is linear and time invariant, the compensator 

and plant can be modeled by transfer functions and the feedback control system is concisely 

represented by the block diagram of figure 1.2. In this case, U(s) represents the command 

input, C(s) represents the compensator, and P(s) represents the plant transfer function. 

Control systems possessing a single input and a single output can be classified into two 

categories. Tracking controllers, or servosystems, are designed with the objective that the 

system output follow the command input with as little error as possible. In contrast, 

regulation controllers have a zero or constant reference input and the primary objective is to 

maintain the system output at some fixed operating point in the presence of internal and 

external disturbances.

D(s)

U(s) P(s)

Figure 1.2 -  Linear feedback control for disturbance rejection.

The most common approach to disturbance rejection in linear control system design 

is the use of a local feedback loop to minimize the impact of the disturbance on the closed- 

loop system output. As an example of this approach, consider the system of figure 1.2, where 

an external disturbance, D(s) , enters the system at the plant output. The compensator,

2
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C(s) , can be designed so as to minim ize the influence of the disturbance on the closed loop 

system output, Y(s) . For the sake of the present discussion, it is assumed that this system  

represents a regulation controller with an input U(s) — 0 . In that case, the transfer function 

from the disturbance input to the closed loop system output is given by equation (1.1).

H(s) =  = -------- --------  (1.1)
V 7 D(s) 1 +  C(s)P(s)

Using the final value theorem, the steady state output for this system of figure 1.2 

can be expressed as shown in (1.2). To achieve zero steady state error, the limit in this 

expression must exist and be equal to zero.

lim y(t) =  lim sF(s) =  lim  —rr'  (1.2)s—>Q s-*Q C(s)P(s)

In most introductory texts on linear control theory, the topic of disturbance 

cancellation is primarily focused on the steady state error in response to signals which can be 

represented as integrals of the impulse function. For a disturbance of this form, D(s) =  ,

and the steady state error will be zero as long as the open loop transfer function, C(s)P(s) , 

contains a factor s~A . For example, in the case of a step disturbance, D(s) =  s~', the steady 

state error will be zero if  the compensator contains a single free integrator. In general, the 

steady state error can be reduced to zero for disturbances of the form D(s) — s~A simply by 

adding free integrators to the compensator. However, this modification must be performed 

while simultaneously ensuring that stability of the system is not adversely affected.

In many practical situations the disturbance signal can not be represented as an 

impulse function or its integrals. For example, a common disturbance signal in many 

practical applications is more accurately represented as a periodic noise source. In this case, 

the disturbance can be modeled by a Fourier series and the resultant response of the system  

in figure 1.2 is gauged by the frequency response given in equation (1.3).

H(jw) =  HiM. = --------- 1---------  (1.3)
D(jw) 1 +  C(jw)P(jw)
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Complete rejection of a periodic disturbance signal would require an infinite loop 

gain at the frequency of each harmonic contained in the Fourier series representation of the 

disturbance. Consequently, complete disturbance cancellation in the feedback architecture is 

impossible for any periodic disturbance signal. However, it is possible to attain significant 

attenuation of a periodic disturbance utilizing the feedback approach. The extent of 

cancellation is determined by the magnitude of the loop gain evaluated at the frequencies 

contained in the disturbance. However, in practical applications, it is often difficult to 

increase the loop gain while simultaneously maintaining stability of the feedback loop, 

particularly in cases where the plant contains significant phase loss or transport delay.

In applications where an estimate of the disturbance can be obtained directly, an 

alternate disturbance rejection technique is possible. In this case, a measurement of the 

disturbance is utilized to create an additional plant input designed to reduce the effect of the 

disturbance signal on the system’s output. This approach is depicted in figure 1.3 where 

C(s) represents the compensator and G(s) represents the possibility of a linear 

transformation between the actual disturbance and the estimated value available to the 

control algorithm. This approach is known as feedforward compensation since the 

compensator is not contained within a feedback loop. As a result, a significant advantage of 

this technique is that it eliminates the possibility for system level instabilities. That is, the 

only way in which the cancellation algorithm can become unstable is due to an instability in 

the compensator transfer function itself, since the output of the compensator has no 

influence on the signal at the input of the compensator.

D(s)

C(s)

P(s)

G(s)

Figure 1.3 -  Linear feedforward disturbance cancellation.
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The transfer function from the disturbance input to the system output for the 

feedforward cancellation algorithm is given in equation (1.4). If the compensator is designed 

such that C(s) — -CT1 (s)P-1 (s), then the overall resulting transfer function is identically zero. 

Thus, a fundamental advantage of this approach over the feedback disturbance cancellation 

technique is that, theoretically, the disturbance can be perfectly eliminated using a finite 

gain compensator. However, in practice, since the compensator must be stable and causal, 

complete cancellation is only realizable if  the transfer function G(s)P(s) is proper and 

m in im u m  phase.

®  =  l  +  G(,)C7(a)P(S) (1.4)
D{s)

The fundamental distinction between the feedback and feedforward algorithms is 

that the feedforward approach requires the presence of a direct estimate of the external 

disturbance source while the feedback approach utilizes no knowledge as to the nature of the 

disturbance signal. A third approach which represents a compromise between these 

extremes is based on the development of a disturbance model which is used to create an 

estimate of the actual disturbance signal. In this methodology, the form of the disturbance 

signal must be known, but an actual estimate of the disturbance is not required. In practice, 

there are many techniques which can be utilized to model the disturbance and the most 

appropriate choice depends on the nature of the disturbance. In cases where the disturbance 

can be represented as a combination of a small number of sinusoids or step functions, one 

practical solution is to utilize an augmented state space observer as shown in figure 1.4. 

This approach is based on the assumption that an a priori linear model for the disturbance 

can be derived. The states of the disturbance model are appended to the plant state vector 

and a linear observer is created for the augmented state vector. The original disturbance 

signal can then be estimated directly from the augmented state vector. The primary 

disadvantage of this approach is that it requires an accurate model of both the plant and 

disturbance signal in order to provide effective cancellation.

5
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P(s)

Augm ented
Observer

Figure 1.4 -  Disturbance modeling via an augmented state space vector.

The disturbance rejection methods presented in this section are limited in 

applicability to cases where the system is linear and time invariant. In the remainder of this 

chapter it will be shown that these techniques can be extended for use in time varying linear 

systems through the use of an adaptive linear compensator.

1.2 Broadband Feedforward Cancellation

The block diagram of figure 1.5 depicts the standard framework utilized for 

feedforward disturbance cancellation. An acoustic cancellation system is illustrated to 

provide an intuitive basis for the discussion. In general, however, the same techniques are 

applicable to a broad range of applications beyond active noise control. A sampling of other 

common applications will be presented in section 1.6. The acoustic system is of special 

interest since it represents a particularly challenging application given the large transport 

delays and sharp resonances typical of such systems. Furthermore, this context is directly 

applicable to the experimental acoustic laboratory system introduced in chapter 5.

In the present section, it is assumed that all components of the system are linear and 

can therefore be represented by transfer functions in the Laplace domain as shown in figure 

1.5. An acoustic disturbance propagates through the forward path represented by P^s) to 

create a residual error signal which is monitored by the error sense microphone. A second 

microphone is utilized to obtain a direct estimate of the original disturbance which is used by 

the compensator, C(s) , to produce an appropriate cancellation signal. The compensator is 

designed to produce a cancellation signal which minimizes the power in the residual

6
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disturbance at the error sense microphone. Notice that the compensator can only influence 

the signal at the error sense microphone via the secondary path, P2(s) . This transfer 

function is unavoidable in physical systems as it represents the combined dynamics of the 

cancellation actuator and the signal path from the cancellation source to the error sense 

microphone.

Error 
Sense

D -
p2(s)

Cancellation
Source

C(s)

Figure 1.5 -  Broadband feedforward disturbance cancellation.

In most active noise and vibration cancellation systems, the dynamical properties of 

the actuators and signal paths vary significantly over time. For example, in acoustic 

cancellation systems, the dynamics of the system are generally a function of temperature, 

humidity, and physical changes in the environment. Additionally, there are typically many 

longer term changes in the system, including the effects of aging on the signal paths and 

gradual changes in the bandwidth and sensitivity of speakers and microphone elements. 

Furthermore, relatively minor parametric changes can lead to quite significant changes in 

the signal propagation properties of many acoustic systems. This is particularly the case in 

systems with significant resonances, where minor parametric fluctuations can lead to a shift 

in the resonant frequencies, resulting in vast changes in the response at the disturbance 

frequencies. The presence of time varying factors renders static model-based compensation 

techniques inadequate for many disturbance cancellation problems.

A common means by which active disturbance cancellation can be effected in time 

varying systems is through the use of an adaptive linear compensator. A discussion of 

techniques which can be used for the adaptation of such a compensator is postponed until 

section 1.5. In the present section, the discussion will focus instead on the fundamental

7
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limitations of linear feedforward disturbance cancellation under the assumption that a 

means exists for providing convergent adaptation to the optimal compensator transfer 

function.

Given the feedforward disturbance rejection system of figure 1.5, the error signal, 

E(s) ,  is given by equation (1.5) where D(s) represents the disturbance signal. It is evident 

from this expression that complete cancellation of the disturbance occurs if  the compensator 

implements the relationship given in equation (1.6). If this is possible, the error signal will 

be identically zero independent of the nature of the disturbance signal.

E(s) =  D(s)Pl(s) + D(s)C(s)P2(s) (1.5)

C(s) =  - P ^ i s T 1 (1.6)

In acoustic cancellation systems, the relatively slow propagation speed of acoustic 

disturbances results in transport delays which are generally a dominant feature of the 

transfer characteristics of the signal paths. In such cases, both P^s) and P2(s) will have a 

significant linear phase component. As a result, there is no guarantee that the ideal 

compensator expressed in (1.6) is causal. For example, consider the simplified situation 

where both the forward and cancellation paths are represented by pure time delays as given 

by equations (1.7) and (1.8), respectively.

P,(«) = e~‘Tl (1.7)

P2(s) =  e~sTi (1.8)

For this system, the ideal compensator transfer function is given by equation (1.9). 

Notice that this expression is causal only under the condition Ti > T2 ■ Therefore, in order

that the compensator may be implemented in hardware, the system m ust be such that delay 

through the forward path is greater than the delay through the secondary path. In practical 

applications, the transport delay associated with the secondary path includes the

computational overhead of the compensator implementation and any latency associated with

the input and output data conversions.

8
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A complication commonly arises in broadband feedforward acoustic cancellation 

systems due to the presence of a feedback path from the cancellation speaker to the 

disturbance source sensor. Figure 1.6 depicts a feedforward cancellation system which 

explicitly shows this feedback path as represented by the transfer function F(s) . The 

presence of this additive component in the source sense signal leads to two potential 

problems. First, it corrupts the estimate of the disturbance signal thereby potentially 

affecting the cancellation performance. Second, and potentially a more deleterious effect, is 

that this extraneous feedback path creates the potential for an unstable feedback loop 

consisting of the closed loop created by transfer functions F(s) and C(s). This problem can 

be alleviated in some systems via physical modifications designed to reduce the efficacy of 

the feedback path. For example, unidirectional microphones and directive speakers can 

reduce the degree to which the cancellation speaker impacts the source sense signal. 

Alternatively, an algorithmic solution to the problem is often utilized as illustrated in figure

1.7 [62]. In this case, a second adaptive linear filter, F'(s) ,  is trained off-line to model the 

actual feedback path, F (s) . This model of the feedback path is used to estimate the 

contribution of the feedback signal which is then subtracted from the compensator input.

D isturbance
Source

Source Q  
Sense C ancellation

Source

F(s)

C(s)

Error
Sense

D -

Figure 1.6 -  The intrinsic feedback path in broadband feedforward cancellation.
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D isturbance
Source

Source Q  
Sense C ancellation

Source

F(s)

F'(S)

C(s)

Error
Sense

D -

Figure 1.7 -  Model based elimination of the acoustic feedback path.

The broadband feedforward cancellation approach described in this section has been 

successfully employed in a variety of acoustic cancellation problems [26] [43] [80] [104]. In 

most applications the adaptive compensator is implemented as a Finite Impulse Response 

(FIR) filter due to its advantages of unconditional stability and global convergence of the 

adaptation algorithm. However, it is also possible to implement the compensator as an 

Infinite Impulse Response (HR) filter. The HR compensator is particularly well suited for 

use in resonant systems since the HR filter provides a much more compact representation of 

such dynamics as compared to the FIR filter. That is, the dynamical system can be 

represented utilizing a smaller set of filter coefficients.

Utilization of a linear compensator results in the inability to provide effective 

cancellation in cases where significant nonlinearity is present in the actuators, sensors, or 

transmission paths of the system. For example, it is commonly the case that nonlinearities 

in the forward path result in the production of harmonics of the frequencies present in the 

disturbance signal. Since the linear compensator is able to produce a response only at the 

frequencies represented in the original disturbance, it is not possible to provide cancellation 

of such harmonics. In many acoustic environments, these harmonics can be even larger in  

amplitude than the fundamental due to the presence of high frequency resonances in the 

transmission path. To provide cancellation in such cases, a nonlinear dynamical 

compensator is required. This provides the motivation for the use of neural networks in this 

role as addressed in chapters 3 and 4.

10
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1.3 Feedforward Cancellation of Periodic Disturbance Signals

In this section, the feedforward cancellation system is reconsidered under the 

assumption that the disturbance source is a periodic signal. This a priori knowledge of 

periodicity in the disturbance source leads to several potential advantages over the 

broadband feedforward cancellation system presented in the previous section. The resultant 

cancellation algorithm is commonly referred to as narrowband feedforward cancellation. 

However, the approach is applicable to any periodic disturbance source, even those 

possessing broad spectral content.

Disturbance
Source

Cancellation
SourceSignal

G enerator C(s)

Error
Sense

D -

Figure 1.8 -  Narrowband Feedforward Cancellation.

In many applications where the disturbance is known to be periodic, it is possible to 

utilize a reference signal that is not a direct measurement of the disturbance signal, as 

depicted in figure 1.8. For example, to cancel the fundamental tone produced by a piece of 

rotational machinery, it is often possible to utilize a sensor to directly generate a sinusoid at 

the frequency of rotation. The resultant signal can then be utilized as the input to the 

compensator. There are several advantages to the use of a non-acoustic reference signal 

sensor in active noise cancellation systems. First, this eliminates the need for use of a 

reference microphone in a caustic environment, for example, in the exhaust manifold of an 

automobile engine in the case of an active muffler system. Second, non-acoustic sensors are 

often more reliable and can eliminate the environmental variability associated with sense 

microphones. Finally, the use of a non-acoustic reference signal eliminates the possibility for 

the cancellation to reference signal feedback instability as described in the previous section.

11
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Another general advantage of narrow band feedforward cancellation is th a t it allows 

for the selective cancellation of a periodic offending disturbance without interfering with 

other sounds in the environment. For example, engine noise can be reduced for a heavy 

equipment operator while other sounds, including warning alarms and even conversation, 

are unaffected. The narrowband feedforward approach also eliminates the causality 

constraint requiring that the delay through the forward path be longer than the delay 

through the secondary path. To illustrate this point, consider a forward path represented by 

a pure time delay, Px(s) =  e~‘T' , and a secondary path represented by another pure time 

delay, P2(s) = e~sTt. Assuming that the reference signal is an exact replica of the disturbance 

source, perfect cancellation will occur if  the compensator implements the transfer function 

given in (1 .1 0 ).

C(s) = =  ~ e >{T'~T̂  (1.10)
e 2

In the case of broadband feedforward cancellation, this led to the restriction that 

Tx > T 2 . However, if the disturbance signal is periodic with period T  then the compensator 

output can be delayed by any multiple of this period without affecting the output signal. 

Therefore, the ideal narrowband compensator transfer function is given by (1.11) where 

k  G {0,1, • • •}. As a result, the parameter k  can always be chosen to ensure that the

compensator is causal given any combination of forward and cancellation path delays.

C (s) =  =  _ e -.(T1+* r- r2) ( 1 .1 1 )

An additional advantage in assuming periodicity of the disturbance signal results 

from the fact that the transfer function implemented by the compensator is only required to 

be valid over the range of frequencies present in the disturbance signal. Consequently, for 

narrowband disturbance signals, the order of the compensator can be substantially lower 

than the comparable compensator required in the case of broadband signals. This generally 

leads to an improved rate of convergence and reduces the computational overhead of the 

algorithm.

12
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1.4 Feedback Disturbance Cancellation

The feedforward disturbance cancellation techniques described in the previous 

sections relied on the presence of an estimate of the disturbance signal. In contrast, the 

feedback approach presented in this section provides disturbance cancellation utilizing only 

the error signal measured at the location where the attenuation is desired. This is of 

fundamental importance in applications where an estimate of the disturbance is not 

available. For example, consider the case of an active noise cancellation system designed to 

reduce the noise created by turbulent air flow around an aircraft cabin. In this situation, the 

source of the acoustic disturbance is distributed over the entire surface of the aircraft and it 

is not possible to provide a suitable reference signal.

The general feedback disturbance cancellation algorithm is presented in the block 

diagram of figure 1.9. An unobservable disturbance source produces an undesired acoustic 

signal at the error sense after propagating through the forward path, P^s). The active 

compensator, C(s) ,  is designed to produce an appropriate output signal such that after 

propagation through the secondary path, P2(s) ,  the resultant cancellation signal 

destructively interferes with the original disturbance thereby reducing the magnitude of the 

error signal.

D isturbance
Source

Error
Sense
D-i

C ancellation
Source

C(s)

P ,(S )

Figure 1 .9 - Block diagram illustrating feedback disturbance cancellation.

In acoustic applications, a fundamental limitation of the feedback cancellation 

algorithm results from the transport delay which is present in the secondary path. This 

delay between the sensing of an error and the quickest possible response at the cancellation

13
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point can not be compensated by a causal filter. Thus, feedback cancellation is not well 

suited for broadband cancellation in any system where the secondary path delay is 

significant. However, if  the disturbance is known to be periodic, this architecture can provide 

cancellation even in the case of substantial secondary path delay.

The feedback cancellation system can be represented by the block diagram of figure 

1.10. Notice that this is simply a linear regulator control system with a zero reference input. 

As a result, linear control theory can be utilized to explore the limitations of this 

architecture.

D(s)

i r  +

-► E(s)

C(s)

Figure 1.10 -  Block diagram o f the linear feedback disturbance cancellation algorithm.

From the block diagram of figure 1.10, the closed loop transfer function from the 

disturbance signal, D(s) , to the error signal, E(s) , can be written as shown in equation 

(1.12). The disturbance rejection provided by the feedback loop is maximized by designing 

C(s) in such a way as to minimize the magnitude of the overall transfer function, H(s) . This 

goal is attained by maximizing the magnitude of the loop gain term —C(s)P2(s) . However, it 

is not possible to achieve complete cancellation since this would require an infinite loop gain. 

In practical applications, the feedback approach is often severely limited in terms of the 

cancellation bandwidth and the degree of cancellation which can be attained. These 

limitations are a direct result of stability and causality constraints imposed by the system.

E(s) _  P^s)
m[s) = (1.12)

D(s) 1 — C(s)P2(s)

In order to ensure stability of the feedback loop, the open loop gain must fall below 

unity at the point where the open loop path reaches 360 degrees of phase shift. This

14
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condition is given in equation (1.13) where the open loop transfer function is expressed for a 

sinusoidal excitation of frequency lj.

\C(joj)P2(joj)\ < 1 V w 3  Z.C{juS)P2{juj) > 360 degrees (1.13)

To illustrate the effects of secondary path delay on the feedback loop stability, 

consider the case of an acoustic cancellation system where the sense microphone is mounted 

20 cm from the cancellation speaker. For the sake of this example, the cancellation speaker 

resonances, secondary path dynamics, and microphone transfer function are ignored and it is 

assumed that the entire secondary path can be represented by a pure time delay as given in 

equation (1.14).

P2(s) =  e-*(571xl(r’) (1.14)

The time delay in (1.14) corresponds to the transport delay associated with 

propagation of the sound wave from the cancellation speaker to the error microphone. At 

25°C and 50% relative humidity, this delay is approximately 571 ps as shown. The Bode plot 

for this secondary path is depicted in figure 1 .1 1 .

0

5 , -1 0 0

-200

-BOO i 2 3
1 0 10 1 0

Frequency  (Hz)

F igure 1.11 -  Bode plot of pure time delay secondary path.

The magnitude response of the secondary path is simply equal to unity at all 

frequencies, while the phase response is linearly increasing with frequency. The
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compensator employs negative feedback and therefore will contribute a minimum of 180 

degrees of phase shift. Therefore, to ensure stability, the frequency response of the 

compensator must be designed such that its gain falls below unity well before the point at 

which the secondary path approaches 180 degrees of phase shift. For the time delay 

associated with 20 cm spacing, this occurs at about 800 Hz. Since disturbance rejection is 

optimized by maximizing the compensator gain, this limitation puts a fundamental upper 

limit on the useful frequency range of the feedback approach.

A suitable feedback compensator can be designed using the conventional frequency 

domain approach as illustrated in figure 1.12. Figure 1.12a depicts the secondary path Bode 

plot for the case of a pure time delay. The compensator transfer function is designed with 

the objective of maximizing the loop gain —C(s)P2(s) at low frequencies but reducing the gain 

below unity before the open loop phase shift reaches 180 degrees. A typical compensator 

which achieves this goal is pictured in figure 1 .1 2 b, while the resultant aggregate open loop 

transfer function is shown in figure 1.12c. Notice that the additional phase introduced by the 

compensator must also be factored into the stability calculation. It is tempting to utilize an 

extremely sharp cutoff characteristic for the compensator in order to extend the bandwidth of 

the high gain region. However, the additional phase associated with the sharper roll-off 

generally more than offsets the benefit of the faster magnitude roll-off [62].

|W )̂|

logw

lo g o ;

(a)

Figure 1.12 -  Bode plots for secondary path (a), compensator (b), and open-loop transfer function (c).
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The fundamental point illustrated by this example is that the maximum cancellation 

frequency is severely limited in cases where the secondary path has a substantial transport 

delay. In fact, the cancellation bandwidth and extent of cancellation are inversely 

proportional to the transport delay in the secondary path. This suggests that successful 

application of feedback active noise control requires that the error microphone is placed as 

close as possible to the cancellation speaker. However, in practice there is a limit on how 

close the microphone can be placed due to the effects of non-uniform acoustic fields at close 

proximity to the speaker. One application which is well suited to this approach is the case of 

headphone active noise cancellation for personal hearing protection. In this application, it is 

possible to locate the microphone in extremely close proximity to the cancellation speaker.

Figure 1.13 -  Typical secondary path with resonance and transport delay.

The difficulties associated with acoustic feedback cancellation are exacerbated 

further in cases where resonances are present in the secondary path. Such resonant 

properties often result from the speaker dynamics as well as cavity resonances in the 

acoustic path. For example, consider the case of a secondary path characterized by a single 

low frequency resonant peak as illustrated in the Bode plot of figure 1.13. Most wide range 

speakers exhibit a significant resonant peak at a frequency between ten and several hundred 

Hertz. The presence of this resonant peak has two complicating influences on design of the 

feedback compensator. First, the resonant peak adds 180 degrees of phase shift at 

frequencies above resonance. Second, the amplitude of the resonant peak must be reduced

17
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below unity or must be located at a frequency at which there is less than 180 degrees of 

phase shift. One common alternative approach is to utilize an inverse notch filter which 

reduces the impact of the resonance. This is often difficult in practice since the resonance is 

likely to vary due to physical factors such as aging, tem perature, and relative humidity. 

Additionally, the high-Q nature of typical acoustic resonances requires a high degree of 

accuracy in the inverse filter. Mismatch between the inverse filter and the resonance will 

result in degraded cancellation performance or even instability.

The regenerative feedback disturbance cancellation algorithm provides an 

alternative architecture which eliminates some of the limitations of the standard linear 

feedback approach [3] [4], This method utilizes a more sophisticated model of the secondary 

path enabling it to provide superior performance in cases where the secondary path 

possesses complicated dynamics. The regenerative cancellation architecture is shown in 

figure 1.14.

D(s)

' ■ +
X(s)

E(s)

m

P2(s)

P2(s)

Figure 1 .1 4 -Regenerative Feedback Disturbance Cancellation.

The regenerative cancellation algorithm utilizes a linear adaptive filter represented 

by P2(s) to model the actual secondary path dynamics, P2(s) . It is assumed that this model 

is created off-line prior to use of the cancellation system. Techniques for continuous on-line 

adaptation of the secondary path model will be presented in Chapter 6 . The compensator 

input, X(s) , can be expressed as given by equation (1.15). Under the assumption that the

secondary path model is a perfect representation of the actual dynamics, P2(s) =  P2(s), this 

reduces to the result in equation (1.16).
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X(s) = -------- ------------------,—  (1.15)
l  + C(s)P2(s)-C(s)P2(s)

P2(s) -  P2(s) => X(a) =  D i s ) ^ )  (1.16)

Thus, the regenerative architecture utilizes the secondary path model to eliminate 

the effects of the cancellation signal from the measured error signal. The resultant signal is 

used as input to the compensator. Consequently, X(s) is equal to the original error signal 

independent of the output of the compensator and therefore, rem ains invariant during

adaptation of the compensator. The error signal is given by equation (1.17). For complete

disturbance cancellation E(s) =  0 . This can be achieved if  the compensator implements the 

transfer function given by (1.18).

E(s) = D(s)Pl(s) +  D ^ P ^ C ^ P ^ s )  (1.17)

C(s) = --- = ----------------------- L_ (1.18)
P2(s)D (s)C (s) P2(s)

Therefore, under the assumption that the secondary path model is ideal, complete

cancellation can be attained if  the compensator implements an inverse of the secondary path. 

However, in two cases of practical significance, an inverse model of the secondary path can 

not be implemented. First, if  the secondary path is non-minimum phase, then it will not 

possess a stable inverse. Second, if  the secondary path contains a pure time delay, then its 

inverse will not be causal. However, when the inverse can be implemented, this approach 

provides the fundamental advantage that it alleviates the potential for instability in the 

feedback loop. This is due to the fact that the compensator output has no effect on the 

compensator input as long as the secondary path model is sufficiently accurate.

1.5 Compensator Adaptation with Secondary Path Dynamics

In most active disturbance cancellation problems, the dynamics of the system are 

significantly time varying as a result of changes in temperature, humidity, and the physical 

structure of the cancellation environment. Additionally, the signal paths encountered in
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typical applications are of high order and can not be conveniently derived via physical 

models. As a result, most active disturbance cancellation systems employ adaptive linear 

compensators which provide the capability to optimize the performance of the system  

without a priori knowledge of the system. The most widely used algorithm for this task is 

the Filtered-X Least Mean Square (LMS) algorithm which was developed independently for 

control applications and active noise control [62] [107],

The Filtered-X LMS algorithm is an extension of the standard LMS algorithm which 

is widely used for the adaptation of linear adaptive filters. The standard LMS algorithm will 

be derived here for the insight it provides into the Filtered-X variant. Additionally, several 

refinements of the standard LMS algorithm are presented which will also prove useful in 

augmenting the performance of the Filtered-X Algorithm.

L inear R e feren ce
M odel

x[k]

  _____________ Z ___

B(z) = b0+ bxz~l +... + bN_xz

d[k]

+

yfr] -► e[k]

Figure 1.15 -  The architecture of the conventional LMS adaptation algorithm.

Consider the adaptive linear filter shown in figure 1.15. The transfer function B(z) 

represents an FIR filter whose coefficients, b0,bx,...,bN_x, are to be adapted in a manner which 

minimizes the difference between the filter output, y[k], and the target signal d[k] . This 

filtering operation can be represented over the time interval k e  [0, M] by the single matrix 

equation (1.19) using the definitions in (1.20) and (1.21).

y =  Xb (1.19)

z[0 ] x[— 1]

r[l] r[0 ]

ar[-iV+l] 

x[-N  +  2]

x[M] x[M - 1] x[M -  N  +1]

(1.20)
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h 40] e[0 ]

\ y{i] d[i] e[l]
b = , y = m , d = 42] , e = e[2]

fyv-1 y[M] d[M] e[M]

(1.21)

The vector e as defined in equation (1.22) represents the error in the output of the 

filter over the time interval of interest. In addition, the sum squared error, S , as defined in 

(1.23) provides a single scalar error metric for gauging the performance of the adaptive filter 

over the entire time interval, k G [0, M].

e =  d - X b  (1.22)

M

S = J 2  # f  =  eTe =  (d -  Xb)T (d -  Xb)
A ;= 0

(1.23)

From equation (1.23), the aggregate error surface is a hyper-parabaloid in the filter 

parameter vector, b . Therefore, there is a single value of the parameter vector which 

minimizes the sum squared error of the adaptive filter over the entire time interval. The 

solution, represented by the optimal parameter vector b , can be found via equation (1.24). 

The result, given in (1.25), represents the standard least squares solution.

deTe
Ob

—2X d +  2bX X =  0 (1.24)

(1.25)b =  (XrX) 1 Xrd

This solution for the optimal filter parameter vector is known as the batch mode least 

squares method since all available data is utilized simultaneously to derive the result. The 

batch mode solution provides insight into the nature of the adaptive filter, but the storage 

requirements and computational delay associated with this technique make it ill-suited for 

real time implementations. Instead, an alternative approach known as the Least Mean 

Square (LMS) algorithm is typically utilized in such cases. The LMS algorithm solves this 

optimization problem iteratively on a sample by sample. Specifically, the LMS algorithm is a 

gradient descent approach whereby on each discrete time interval, all of the filter coefficients
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are updated with an increment that reduces the instantaneous squared error, e [ k f . As a 

result, the update equation for arbitrary filter coefficient i takes the form shown in equation 

(1.26). The learning gain parameter 77 controls the rate of convergence and must be 

sufficiently small in order to ensure stability of the algorithm.

ht[k + l} = h ,[k]-V ^4P -  V i e  {0 ,l,...,iV -l}  (1.26)

The partial derivative term in (1.26) is computed as shown in equation (1.27). The 

resulting LMS coefficient update is given in (1.28). This operation is performed on each filter 

coefficient at each discrete time interval.

{4 k\ -  # ] } 2 =  - 2  {d[k} -  =  -2e[k}x[k -  i] (1.27)

Wk + 1] =  b^k] + rje[k]x[k — i] (1.28)

There are several refinements to the LMS algorithm which are of particular use in 

active disturbance cancellation applications. One category of enhancements is designed to 

reduce the computational overhead required by the algorithm. Although the LMS update in 

(1.28) is in itself quite simple, the presence of extremely long filters can still represent 

unmanageable computational burden at high sampling rates. For example, typical active 

noise control applications often require filters with hundreds of coefficients in order to model 

resonances in the signal paths. One such technique for reducing the computational demand 

of the algorithm is to eliminate the multiplication operations in (1.28). The resultant signed 

error LMS coefficient update is given in (1.29).

\[k  4-1] =  bt [k] +  77 sgn (e[fc]) x[k -  i] (1.29)

In fact, the update of (1.29) can be performed without any multiplication at all if  a 

binary shift operation is u tilized to implement the learning gain scaling. As a result, the 

entire weight update can be performed by a single addition or subtraction based on the sign 

of the error signal. In addition to reducing the computational overhead, this variant of LMS

also allows the algorithm to be efficiently implemented in simple hardware which does not
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support intrinsic multiplication operations. The coefficient update can be further reduced by 

utilizing only the sign of both the error signal and the delayed input as shown in equation

(1.30). This coefficient update can be implemented by simply utilizing an XOR logic gate to 

determine whether the fixed increment rj is added or subtracted from the coefficient.

b< [k + 1] =  b( [k] + rj sgn (e[fc]) sgn(z[A; - i ) )  (1.30)

The computational reduction attained via the signed update LMS algorithms of (1.29) 

and (1.30) is largely dependent upon the nature of the hardware upon which the algorithm is 

implemented. For example, on a DSP with single cycle multiplications, these algorithms 

provide little benefit. However, in such cases, the computational overhead of the LMS 

algorithm can still be reduced through the use of partial update algorithms. Rather than 

updating all coefficients on each discrete time interval, the partial update algorithms select a 

subset of coefficients to be updated on each iteration. Therefore, in implementations on 

sequential processors, the computational burden per discrete time sample can be 

substantially reduced.

Two commonly utilized partial update algorithms are the periodic LMS algorithm 

and the sequential LMS algorithm [33]. The periodic LMS algorithm is described in 

equations (1.31) and (1.32).

l = N

( # + ! ]  =

(1.31)

bi[k] +  r)e[l]x[l — i] if (k + i)mod N  = 0
(1.32)

6Jfc] otherwise

On each discrete time step, k , a subset of {’/N\ coefficients is updated, where N  is a 

fixed design parameter. For N = 1 equation (1.31) is equivalent to I = k and th is  algorithm 

reduces to the standard LMS update in which all of the weights are updated at each time 

step. At the other extreme, if  N  =  L then only a single weight is updated on any time step 

and the computational burden is reduced by a factor of -fa . Additionally, as N  increases, the 

rate of convergence decreases proportionately. Thus, the parameter N  controls the tradeoff
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between computational overhead and rate of convergence. Additionally, notice that this 

algorithm only utilizes every iVth value of the error signal. This is a result of the 

subsampling operation of (1.31). It has been shown that this algorithm is equivalent to 

performing a standard LMS update of all the weights at a sub-sampled rate [33].

The sequential LMS algorithm is given by equation (1.33). Just as in the previous 

algorithm, a subset of [L/ N\ coefficients is updated on each discrete time step. However, 

unlike the periodic update algorithm, the sequential update algorithm always uses the 

current value of the error signal on each update. This reduces the computational overhead 

since it eliminates the need for subsampling the error signal.

b^k] + Tje{k]x[k — i\ if (k — i) mod N  = 0
bi[k + l} = (1.33)

otherwise

For a persistently exciting input signal, it has been shown that both of these 

algorithms are generally convergent with a rate of convergence proportional to the fraction of 

coefficients updated on each iteration. However, it has also been shown that the periodic 

LMS algorithm suffers from instability in many cases where the input has significant 

periodicity even in the case of signals for which the standard LMS algorithm is convergent 

[33]. This effect results from the presence of correlations between the cycling of the weight 

updates and the periodicity present in the input signal. Therefore, in cases where the input 

has limited spectral extent, the periodic LMS algorithm is a more appropriate choice.

An additional refinement of the LMS algorithm which is important in active 

disturbance cancellation is the leaky LMS variant of the algorithm as given in (1.34). The 

constant a  represents a “forgetting” term and is usually picked to be slightly smaller than 

1.0. Notice that in the absence of an error signal, the presence of a  causes the coefficient to 

decay to zero. As a result, this modification stabilizes the coefficient updates in cases where 

the excitation signal is not persistently exciting. In contrast, the standard LMS update often 

leads to unbounded coefficient growth in the case of an input signal with insufficient spectral 

content.
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bt\k +1] — a&Jfc] +  r}e[k]x[k — i] (1.34)

With these refinements, the LMS algorithm provides a robust and computationally 

efficient means by which to adapt the coefficients of a linear filter. Unfortunately, the 

algorithm is not directly applicable to the compensators utilized in disturbance cancellation 

since the error in the compensator output is generally unknown. This dilemma is illustrated 

in the block diagram of figure 1.16 where the adaptive filter, B(z) , represents a linear 

compensator and E2(z) represents the secondary path. The goal in adaptation of the 

compensator is to minimize the observed error signal, e[k] . However, the LMS algorithm 

requires a measure of the error in the output of the compensator as represented by the 

conceptual signal, e'\k] . Notice that this situation arises in both the feedforward and the 

feedback cancellation architectures due to the unavoidable presence of the secondary path 

dynamics.

d'[k]

d[k]
-► e'[k]

B(z)x[k]

Figure 1.16 -  Compensator adaptation in disturbance cancellation problems.

In order to modify the LMS algorithm for its use in the context of figure 1.16, the 

coefficient update m ust be derived in terms of the accessible error signal, e[k\. Thus, the 

form of the modified LMS algorithm is given in (1.35) where 60 [fc],6[[A:],---,&M_j[fc] represent 

the coefficients of the adaptive filter B(z) at time k .

bt [k + l\ = bi [ k \ - V ^ \  V * e { 0 ,l , - ,M - 1 }  (1.35)
ob^k]
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In the present derivation, P2(z) is represented by an arbitrarily long FIR filter with 

L constant coefficients, . This choice simplifies the formulation, but is also a

case of particular interest in disturbance cancellation problems since an FIR model of the 

secondary path is often used in practice. Additionally, given that the FIR filter can be 

arbitrarily long, this model can approximate any linear secondary path dynamics. However, 

more general derivations utilizing arbitrary linear secondary paths are available in the 

literature [39] [62] [107].

The partial derivative term in (1.35) can be expanded with the result given by 

equation (1.36).

H i= m aki‘lk]=m  -imm  ~m) ft,36)
Equations (1.37) and (1.38) denote the filtering operations performed by the adaptive

compensator and secondary path model, respectively. Substitution of these results into

equation (1.36) yields the simplification expression given in (1.39).

M - 1

y'[k] = '^2,bl[k]x\k -  /] (1.37)
1=0

# ]  =  Yunjy'\k -  d -38)
j= 0

de  [fc]_  . d=  2  e[k]-
dbt[k] db^k]

L —l  M - l

d[k) b‘ -  i W  - 3 - 1 }
j= 0 1=0

L ~  1 M - \  f t

~2e[k]'y'n V ' x[k~ j  — I] b,[k — j]
(1.39)

If the filter coefficients vary slowly with respect to the length of the impulse response 

of P2(z) then the approximation in (1.40) is valid. Notice that this condition can be met by 

reducing the learning gain parameter.

_ £ _  ~ ----- V j e { 0 , l , - - ,L  — 1} (1.40)
db.ik] db . i k - j ]  J 1 f

With the approximation of (1.40), the expression for the partial derivative of the 

instantaneous squared error can be rewritten as shown in equation (1.41).
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L—i M - l

~— =  — 2 e[fc]y~' n S ^  x[k — j  — i] 
dbt[k) { l u  1

(1.41)

Let V(z) be defined as in (1.42). Notice th a t this equation represents the fact that 

v[k] is a filtered version of x[k] where the filtering is performed by a model of the 

cancellation path dynamics, P2(z) .

V(z) 4  P2(z)X(z) (1.42)

With the definition in (1.42) and the result in (1.41), the coefficient update in (1.35) 

can be written in its final form as shown in (1.43).

b^k + 1] =  b^k] +  T}e[k]v[k — i] Vi e — 1} (1.43)

Equation (1.43) reveals that the modified coefficient update is identical to the 

standard LMS algorithm except that the input terms, x[k — i\ , are replaced with their filtered 

version, v[k — i] . This coefficient update is known as the Filtered-X LMS algorithm because 

it uses a filtered version of the input signal which was denoted as x[k] in the original 

literature. The Filtered-X LMS algorithm is shown pictorially in figure 1.17b in comparison 

to the standard LMS algorithm in figure 1.17a. The LMS block in these diagrams represents 

the standard LMS update rule given in equation (1.28).

d[kl dlk]

x[k] e[kl

LMS

B(z)

LMS
ERROR

B(z)

(a) (b)

Figure 1.17 -  Standard LMS (a) versus Filtered-X LMS (b).

A common intuitive explanation of the Filtered-X LMS algorithm is presented in 

figure 1.18. Consider the Filtered-X LMS algorithm of figure 1.17b. Under the assumption 

that the adaptive compensator B(z) is slowly varying, it can be commuted with the 

secondary path dynamics, P2(z) . Notice that in general this is not possible since the adaptive
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filter is nonlinear. However, by making the assumption that the adaptation is performed 

slowly, the adaptation inputs become decoupled in time from the input and output of the 

filter. Therefore, under this assumption, the order of the blocks are able to be swapped. The 

resulting block diagram is shown in figure 1.18a. If the secondary path model, P2(z), is 

identical to the actual secondary path, then the block diagram can be further simplified to 

that shown in figure 1.18b. This final block diagram simply represents the standard LMS 

filter update algorithm.

d[ki d[k]

e[k]x[k] e[k]P2(z) B(z)B(z)

LMSLMS
ERROR

(a) (b)

Figure 1.18 -  Equivalent view of the Filtered-X LMS Algorithm under the assumption of slow coefficient adaptation.

1.6 Applications of Active Disturbance Cancellation

Active disturbance cancellation techniques are utilized in a wide range of practical 

applications. Additionally, the field of applications is likely to grow rapidly due to the 

availability of low cost, high speed digital signal processors. In fact, the fundamental concept 

of active sound cancellation was patented in 1936 [62] [6 8 ], but practical applications of this 

technology have been enabled only more recently due to the availability of low cost hardware 

implementations for the required adaptive signal processing. This section provides a brief 

overview of some existing and potential future uses of this technology.

One the most publicized applications of active disturbance cancellation is acoustic 

noise control. In fact, many active noise control systems are presently available on the 

consumer market. One rapidly expanding application is in the automotive industry. For 

example, automobile manufacturer Honda provides an active noise cancellation system  

designed to reduce road noise using microphones and speakers mounted under the vehicle’s
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seats. In addition, Siemens Automotive manufactures a system which utilizes a speaker 

mounted in the air intake manifold to suppress low frequency engine noise. This system  

provides significant attenuation at frequencies up to 600 Hz. Another commercial 

application of significant recent interest is the use of active noise control for the reduction of 

aircraft cabin noise. As an example, the Ultra Electronics corporation manufactures active 

noise control systems which have been implemented on a number of small propeller driven 

aircraft. A typical system on the Raytheon Beech 1900D utilizes 20 loudspeakers, 40 

microphones, and a digital control system. Additionally, active noise control systems have 

been available commercially in a variety of personal hearing protection systems for many 

years.

The primary objective of most active noise control systems is the reduction of 

nuisance noise for personal comfort and minimization of operator distraction and fatigue. 

However, active noise cancellation can also lead to improved efficiency in many applications. 

For example, active noise control can reduce the need for heavy passive sound dampening 

materials allowing for lighter and more efficient vehicles and aircraft. Additionally, the use 

of active noise cancellation is being explored for replacement of the traditional baffled 

muffler found in automotive and small engines. The resultant reduction in engine back 

pressure is expected to result in a five to six percent increase in fuel efficiency for in-city 

driving [91],

It is likely that the demand for active noise control solutions will only expand in the 

future given increases in the density of population centers and the proliferation of noise 

generating devices characteristic of modem society. Additionally, there is a growing 

awareness of the negative health consequences associated with excessive noise exposure. It 

has long been known that prolonged exposure to sufficient intensity sound can result in 

permanent hearing loss. However, many additional health effects have been discovered only 

more recently. For example, recent studies have shown that exposure to loud noise increases 

the blood pressure of Rhesus monkeys with the effect lasting months after exposure to the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



noise has ended [89], Other studies have shown links between noise exposure and 

gastrointestinal maladies [91] and anti-social behaviors including increased aggression [30],

Another significant area of application for active disturbance cancellation systems is 

in active vibration control. In general, active vibration control systems are designed to 

minimize the impact of mechanical disturbances in flexible structures. As an example, the 

Micromega Dynamics corporation provides systems for active vibration damping of 

suspension bridges using hydraulic actuators located within the cable terminations. Such 

systems are able to greatly reduce the effect of traffic and wind induced vibrations. Active 

vibration control is also becoming more commonly used in fabrication equipment for deep 

submicron integrated circuits [55] [98]. As the resolution of the photolithography increases, 

minute vibrations represent a greater challenge in the manufacturing process. Active 

vibration control is often necessary at frequencies below which passive techniques are 

effective. In the future, active vibration control algorithms are also likely to play a key role 

in the design of smart structures. For example a identification algorithm can be utilized to 

identify structural damage points and active vibration control techniques can be utilized to 

reduce the stress within the damage zone. Such techniques provide a degree of fault 

tolerance in the design and consequently allow for a less conservative initial design. Active 

vibration has also been successfully applied to a variety of industrial processes. One 

interesting example is the use of active vibration control to reduce vibrations in circular saw 

blades during commercial sawing operations in order to reduce the saw kerf and thereby 

minimize the wood waste [109], Another common industrial application is the use of active 

vibration control to reduce vibration caused by mass imbalance in rotational machinery. 

This can provide improved machine performance tolerances and increased bearing life. 

Active vibration control systems have also been proposed for reducing wind and even 

earthquake induced vibrations in buildings [47].

Active noise and vibration cancellation systems represent applications where the sole 

purpose of the control system is the reduction or elimination of the effects produced by an
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external disturbance. However, active disturbance cancellation techniques can also be 

utilized to augment the performance of many standard feedback controllers by adding 

immunity to external influences. As a simple illustration of this concept, consider the 

heating system controller illustrated in figure 1.19.

P,(Z)

D --------

---------- ► Temperature

Industrial
Process

c
ou

xfk]
B(z)

LMS
INPUT ERROR

P,(Z)

D(s)

3
a .

Sensor

Heater

Temperature 
Set Point

-M +

G(z)

F igure 1.19 -  Disturbance cancellation applied to a heating system.

A local feedback loop with compensator G(z) is utilized to maintain a constant 

temperature at the sensor. An industrial process located within the room produces a 

significant amount of heat as a byproduct of its operation. The heat produced by the process 

varies over time and is represented by the function D(s) . This extra heat production 

represents an external disturbance to the primary heat source and its local feedback control 

loop. For example, consider the effects of a step change in D(s) . The resultant change in 

temperature will propagate through the room as represented by transfer function P^z) .
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After a delay, this  temperature disturbance will be recognized by the temperature sensor. 

The control loop will then adjust the heater to reduce this error. Given the delays caused by 

the dynamics of the heater and room, the disturbance can not be completely cancelled by the 

feedback controller and temperature fluctuations will be observed at the temperature sensor.

One m eans by which the temperature control can be improved is through the 

addition of an adaptive feedforward disturbance compensator as represented by the transfer 

function B(z) . The feedforward compensator utilizes information from the industrial process 

to adjust the heater output even before an error is sensed at the temperature sensor. The 

feedforward compensator must be adapted using the tem perature error signal. This requires 

application of the Filtered-X LMS algorithm since the error in the compensator output is not 

available.

1.7 Principles of Acoustic Disturbance Cancellation

The research presented in this dissertation is primarily concerned with the control 

theory utilized for active disturbance cancellation. As a result, little emphasis is placed on 

the nature of the physical environment even though this factor is a crucial consideration for 

practical application of these techniques. For example, in a vibration control problem, the 

modal response of the structure generally must be understood in order to determine an 

appropriate placement of actuators and sensors. Given the particular significance of the 

active noise control application, this section provides a brief overview of the fundamental 

acoustical issues governing implementation of such systems. The primary objective is to 

provide a description of the basic categories of active noise control techniques and an 

understanding of their fundamental capabilities and limitations.

A sound wave is a periodic longitudinal disturbance which propagates through some 

compressible medium. An isolated acoustic disturbance in free space will create a spherical 

wave front which propagates radially outward in all directions at the speed of sound. The 

speed of sound is highly variable. In air, it depends on both the temperature and relative
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humidity. This is of particular concern in active noise cancellation systems as it represents a 

significant variability in the characteristics of signal propagation in the system.

In a confined space, reflections from the boundaries of the region create modal 

responses at sufficiently high frequencies. Each modal response represents a particular 

spatio-temporal distribution of pressure across the cavity. Modal responses are generally 

present whenever the wavelength of the acoustic wave approaches or decreases below the 

dimensions of the cavity. Consequently, the number of acoustic modes grows rapidly as the 

frequency of the sound wave increases. The acoustic duct is one example of a system which 

exhibits a modal response. The acoustic duct is often utilized for active noise control 

experiments, and additionally, there have been many practical active noise cancellation 

systems designed for quieting noise in heating and ventilation duct systems. At sufficiently 

low frequencies a duct is only able to propagate a plane wave in which the acoustic pressure 

is uniform across the duct cross section. However, at higher frequencies ducts allow 

propagation of higher order modes with much more complex wave fronts. For example, 

section 5.2 presents an analysis of the modal responses of a cylindrical duct system.

The variety of behaviors characteristic of sound waves in different physical settings 

allows categorization of active noise cancellation systems into three groups: global free space 

cancellation, cavity and duct cancellation, and zone-of-silence techniques [63],

TOO 200 300 400 500 TOO 200 300 400 500 TOO 200 300 400 500

(a) (b) (c)

Figure 1.20 -  Free Space Sound Fields.

Figure 1.20a depicts a spherical acoustic wave front emanating from a point source in 

free space. The gray and white circular bands represent alternating regions of compression
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and rarefaction. If a second acoustic source is introduced at some distance from the original, 

a complex sound field results as shown in figure 1.20b. The aggregate sound field has 

regions of intensity corresponding to the  compression and rarefaction peaks of the original 

disturbance but also regions with twice the intensity due to the constructive interference 

between the two sources. As a result, the only case in which global reduction of the sound 

field is possible in free space (using a limited number of cancellation sources) is when the 

cancellation source is placed in close proximity to the source of acoustic disturbance. The 

resultant acoustic fields with a nearby cancellation source are depicted in figure 1.20c. In 

this case, waves from the two sources are largely in phase and cancellation is possible 

globally. As a general guideline, the cancellation source m ust be located within 0.1 

wavelengths of the disturbance source in order to provide 20 dB global reduction in sound 

intensity at any given frequency [62].

In a confined space such as a room or equipment chassis, reflections from the 

boundaries produce modal responses at frequencies where the wavelength of the acoustic 

disturbance approaches the dimensions of the cavity. For example, figure 1.21 depicts two 

possible modal responses for a rectangular cavity of dimensions 2 X 4 X 4  meters, 

approximately the size of a typical household room.

P232 M ode P]22 M ode

2

1

0

-1
4

2

0

-1
4

Figure 1.21 -  Two Modal Sound Fields associated with a room of dimensions 2 X 4 X 4  meters.
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The modal responses shown in figure 1.21 are for an acoustic disturbance with a 

frequency of 200 Hz and a corresponding wavelength of approximately 1.75 meters. The 

results shown in figure 1.21 were produced under the assumption that the walls are perfectly 

rigid. Notice that the room forms a cavity resonator with a complicated standing wave 

pattern. In any given mode, there are regions of oscillating pressure as well as points which 

experience no pressure fluctuations. It is possible for multiple modes to be excited 

simultaneously leading to a much more complicated overall pattern. The number of 

available modes increases rapidly with frequency. In fact, the number of modes below 

frequency /  in a cavity of volume V  is given by (1.44) where c represents the speed of sound 

[62]. Notice that the number of modes is proportional to the volume of the cavity and 

increases with the third power of the frequency.

4 ttI/ „
N  = — j - f  (1.44)

3c

It is possible to design active noise cancellation systems to reduce the global 

intensity of the sound field associated with some set of modal responses. As a general 

guideline, an additional sensor and actuator is required for each additional mode [3]. 

Additionally, care must be taken in placement of the sensors and actuators such that the 

nulls of each mode are avoided. Additionally, in such cases, the cancellation system must be 

designed to accommodate multiple sensors as well as multiple cancellation actuators.

The zone-of-silence approach to active noise cancellation provides a localized 

cancellation of sound field intensity in the case of a complex wave pattern as produced by 

free space emanations or modal responses of a cavity. In this case, a single speaker is 

utilized to provide cancellation in a very small region of the overall sound field. Practical 

examples of this approach include personal hearing protection and head rest cancellation 

schemes which have been explored for use in automobiles and airlines. A typical cancellation 

zone will only be about a tenth of a wavelength in diameter [62]. Therefore, it is required
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that the cancellation speaker be located in close proximity to the desired point of silence in 

order to achieve any substantive cancellation.

Finally, it should be noted that active noise cancellation is most applicable at low 

frequencies (usually below 600Hz) for several reasons. First, at higher frequencies, the 

spacing requirements for free space and zone-of-silence techniques become prohibitive. 

Second, in acoustic cavity and duct based systems, the number of modes increases rapidly 

with increasing frequency which quickly makes active noise cancellation techniques 

unmanageable. Third, passive cancellation techniques become more effective at higher 

frequencies and often provide an adequate solution without the need for active control. 

Finally, most active noise cancellation systems are implemented digitally in hardware. The 

computational overhead results in an upper limit on the frequency at which cancellation can 

be performed.
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CHAPTER 2

THE CMAC NEURAL NETWORK

2.1 Feedforward Neural Networks

Artificial neural networks can be classified into two groups based on the  architecture 

of interconnections between the neurons. Recurrent networks are characterized by the use of 

local feedback connections. This imbues the network with an intrinsic history dependence. 

In contrast, feedforward neural networks produce a single output vector in response to any 

given input vector and therefore represent a memoryless mapping operation. The 

functionality of a feedforward neural network can be represented abstractly by the functional 

relationship shown in equation (2.1). Disregarding the slow time scale adaptation of the 

neural network relationship, this equation describes a static mapping between a between a 

set of input variables xi ,x.2,---,xN and a scalar output y . A vector output can be 

accommodated by utilizing multiple expressions of this form operating in parallel on a 

common input vector.

y ~  iXn) (2 .1 )

It is difficult to precisely define the factors which distinguish neural networks from 

amongst the larger body of general function approximation methods. However, there are 

several important factors which are typical of the majority of neural networks. One 

important distinction concerns the manner of adaptation. Most neural networks are able to 

adaptively improve their internal representations through training on individual input- 

output exemplar pairs. This capability allows neural networks to be utilized for continuous
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adaptation in an on-line fashion and is in contrast to batch mode learning which requires the 

entire tra in ing  database to be present in advance. Additionally, a neural network is able to 

generalize beyond the data pairs used in its training in order to provide reasonable responses 

in areas of its input space which have not been explicitly trained. This feature distinguishes 

the neural network from a multivariate lookup table which simply stores exemplar pairs for 

later recall. Qualitatively, the neural network is generally comprised of a relatively simple 

algorithmic structure. This property facilitates use of neural networks in real-time 

applications as it represents a reduced computational complexity in comparison to other 

function approximation methods. Finally, the neural network is distinguished by the fact 

that it is a “black box” technique. That is, use of a neural network generally requires very 

little a priori knowledge of the relationship that is being learned. This capability is achieved 

by utilizing a function approximation with very flexible capabilities coupled with an 

adaptation algorithm which operates directly from the exemplar pairs representative of the 

relationship which is to be learned by the network.

These general properties of the neural network result from the use of processing 

units often referred to as neurons, in loose analogy to the biological nerve cells. Each neuron 

represents a single basis function defined on the input space and a combination of the active 

basis functions forms the output of the neural network. The fundamental differentiating 

factor between the different categories of feedforward neural networks is the nature of the 

basis function implemented in each neuron. The choice of basis function determines not only 

the representational capabilities of the network, but also the nature and extent of its ability 

to generalize. Additionally, the nature of the basis function has direct implications on the 

requirements of the training algorithm and therefore impacts the convergence properties of 

the neural network.

A wide variety of basis functions are appropriate for use in neural network 

algorithms. One of the most important considerations in this choice is whether the input 

domain of the basis function is local or infinite in extent. As an example of the latter case,
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the multilayer perceptron (MLP) utilizes a sigmoidal nonlinearity as its basis function. This 

results in neurons which are generally active over a large region of the input space. In 

contrast, the radial basis function (RBF) network generally utilizes basis functions which are 

active over only a very limited region of the input space. As a result, the impact of any given 

neuron is limited to a relatively small portion of the input domain. This fundamental 

difference in basis functions leads to several important tradeoffs in capabilities between the 

RBF and MLP networks.

In comparison with the RBF network, the MLP is generally capable of providing a 

more global approximation to the function being learned. As a result, the MLP can usually 

be trained with fewer exemplar pairs and often provides better generalization in untrained 

regions of the input space. However, the global nature of the basis functions can also lead to 

difficulties in convergence of the learning process. The most common algorithm for 

adaptation of the MLP is the backpropagation algorithm. This learning method is based on 

the use of differentiable basis functions in order to derive analytical error gradients for each 

weight as a function of the network output error. These error gradients are then utilized to 

incrementally adjust the interconnection weights in a manner which minimizes the error in 

the approximation. However, given the global extent and nonlinearity of the basis functions, 

the error surface generally contains local minima which can result in failed convergence of 

the training process. Many heuristic refinements have been proposed to speed convergence 

and elude local minima. Two popular techniques are the addition of a momentum term in 

the weight updates and the use of an adaptive learning gain. Despite these improvements, 

convergence remains a significant challenge in many practical applications.

Given the local nature of its basis functions, the RBF network generally requires the 

use of a greater number of neurons to cover a given region of the input space. Many RBF 

networks utilize Gaussian basis functions and there are several different algorithms which 

have been developed for the placement and shaping of the basis functions. In general, the 

optimal arrangement of basis functions will depend on the nature of the relationship being
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approximated. In practice, the basis functions are often placed in advance and the on-line 

adaptation is performed solely via adjustment of the weighting factors associated with each 

basis function. As a result, the on-line adaptation is a linear operation and therefore offers 

rapid and well understood convergence properties. However, if the initial basis function 

placement is inadequate for the relationship being learned, the adaptation will fail to 

produce zero error.

The Cerebellar Model Arithmetic Computer (CMAC) is a special case of a radial basis 

function neural network [2] [16] [75], The CMAC network utilizes a fixed placement of basis 

functions distributed evenly across the entire input space. The CMAC basis function is a 

hypercube in the input domain and has a constant activation value across its entire extent. 

The fixed geometry and placement of the basis functions eliminates the computationally 

intensive basis function placement required for the Gaussian RBF network. Figure 2.1 

depicts a representative view of basis functions covering a two dimensional input space. 

Figure 2.1a illustrates the irregular placement of Gaussian basis functions typical of the 

standard RBF network. In contrast, figure 2.1b shows the footprints of the basis functions 

defined for the corresponding CMAC neural network. In this two dimensional case, the 

CMAC basis functions are implemented as an overlapping pattern of squares. In this 

illustration, one set of basis functions is represented by the dashed lines and the other by 

solid lines. The exact arrangement of the CMAC basis functions is controlled by the network 

parameters and is fully described in section 2.2.

Figure 2.1 -  Representative basis functions for Gaussian RBF network (a) and CMAC Network (b).
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The fixed, regular structure of basis functions in the CMAC network results in 

extremely efficient algorithms for computation of the CMAC output and for adaptation of the 

mapping. In the RBF network, the most computational intensive aspect of these operations 

is the determination of the active set of basis functions as selected by the input vector. For 

example, in the Gaussian RBF network, this operation requires a search among all basis 

functions to find the activated set. In contrast, the active basis functions in the CMAC 

network can be computed directly from the input vector via an efficient calculation. 

Additionally, the CMAC network does not consume any resources for the placement or 

shaping of the basis functions, since these features are fully defined by parameters which are 

selected in advance.

The fixed, regular basis function placement of the CMAC network also leads to some 

potential disadvantages. One fundamental limitation is due to the fact that the degree of 

generalization in the CMAC network is uniform across the entire input space. Consequently, 

the CMAC basis function placement must be designed to provide sufficiently small 

generalization at the most irregular region of the mapping. As a result, the generalization 

will usually be suboptimal in more gradually varying regions of the mapping. Additionally, 

the CMAC mapping has many more free parameters than most other neural networks. As a 

result, the CMAC generally requires more training and offers more limited generalization 

capabilities. Additionally, for high dimensional input spaces, sparse memory compression 

techniques are often required to accommodate the large parameter space.

The advantages and disadvantages associated with the different feedforward neural 

network architectures are summarized in the spectrum presented in figure 2.2. The left end 

of the spectrum is characterized by the advantages of extensive generalization capabilities 

and minimal memory requirements. The associated disadvantages are high computational 

overhead and the potential for convergence difficulties. In contrast, the right end of the 

spectrum represents solutions which provide computational efficiency and superior 

convergence properties, but have severely limited generalization capabilities and substantial
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memory requirements. In addition, this spectrum represents the degree of parameterization 

associated with each function approximation technique. On the right is the most over

parameterized mapping while on the left is the least over-parameterized mapping.

M ultilayer
P e rc ep tro n

G au ss ian  
RBF N etw orks

Slow C o n v e rg en ce  
Few er Free P a ra m e te rs  
G lobal G en era liza tio n  

High C o m p u ta tio n a l Burden 
Small M em ory R eq u irem en ts  

Minimal T rain ing  D ata

CMAC Lookup
Table

Fast, G u a ran te ed  C on v erg en ce  
M any Free P aram e te rs  

Local, Fixed G enera liza tio n  
Low C o m p u ta tio n  

Large M em ory R equ irem en ts 
R equires M uch T rain ing  D ata

Figure 2.2 -  Spectrum of tradeoffs between different artificial neural network architectures.

The optimal choice from this spectrum of neural network approximations is 

dependent upon the particular requirements of any given application. The most significant 

tradeoff in many applications is between the required computational speed and the extent of 

training data available. For example, consider the case of neural network handwriting 

recognition. In this application, recognition speed is often important but is usually not a 

fundamental limiting factor of the technology. Additionally, for a user customized system, 

the training database is relatively small and therefore, it is important to achieve the 

maximum extent of generalization possible. As a result, this application is best addressed by 

networks from the left side of the spectrum. In contrast, consider the typical active noise 

control application. In this case, computational speed is critically important in order to be 

able to operate in high bandwidth cancellation loops. Additionally, the amount of training 

data available is almost unlimited given the high sample rate of such systems. As a result, 

additional training can be utilized to compensate for reduced generalization capabilities. For 

these reasons, techniques from the right side of the spectrum are well suited to such 

applications.
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2.2 The CMAC Algorithm

The RBF network is based on the fundamental principle that an arbitrary function 

defined on a m ultidimensional input space can be approximated by some combination of 

locally active basis functions defined on the same domain. In practice, the individual basis 

functions are often implemented as Gaussian functions and their combination is achieved 

through a weighted linear summation. The training or adaptation of the network involves 

the adjustment of the placement and geometry of each basis function and selection of the 

weighting received by each basis function in the output computation. This adaptation is 

performed in a manner designed to minimize the network’s approximation error on a given 

set of training data. In many cases, the placement of the basis functions is performed off-line 

using the entire database of training data and the on-line adaptation is utilized solely for the 

adjustment of the linear weighting associated with each basis function. This considerably 

reduces the computational demand of on-line training at the expense of somewhat reduced 

flexibility in the function approximation capabilities of the network. However, even with this 

training procedure, the irregular placement of the basis functions results in a significant 

computational burden associated with determination of the active set of basis functions.

The CMAC algorithm represents a specialized form of a radial basis function network 

since it is based on the principle of function approximation through the weighted summation 

of locally active basis functions. However, unlike the Gaussian RBF network, the placement 

and geometry of the basis functions of the CMAC network are not dependent on the training 

data but are instead a parameterized feature of the network. The CMAC neural network 

operates under the assumption that the input space is bounded and the basis functions are 

distributed in a manner which uniformly covers the entire input space. Parameters of the 

CMAC network are used to control the degree of overlap and density of the basis functions on 

the input space. This fixed basis function placement greatly simplifies both the training and 

recall operations of the network.
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The CMAC algorithm was first proposed as a computational model of adaptive 

control performed by the cerebellum [2]. Since then it has become popular in many 

engineering applications primarily due to the efficiency of its implementation and its robust 

convergence properties [23] [60] [70] [73] [76] [77] [83] [92]. The remainder of this section will 

provide a detailed description of the CMAC algorithm. This presentation is intended to serve 

as a foundation for use of the CMAC for active disturbance cancellation in later chapters. In 

addition, many refinements to the basic CMAC network have been proposed, and those 

which are of particular significance to active disturbance cancellation will be addressed in 

this section.

Consider a CMAC network with N  inputs and a single scalar output. The mapping 

performed by this network is described as fcmac : R* —► R . In order to enable the a priori 

placement of basis functions, the input space must be bounded in each dimension. In 

addition, the CMAC algorithm utilizes a quantized representation of the input vector. Since 

the CMAC inputs are bounded and quantized, there is only a finite set of possible inputs to 

the CMAC. The set of all such possible inputs is often referred to as the input lattice [3] and 

the actual map represented by the CMAC can be expressed as fanac : —» R . As a result,

the most general mapping that can be represented by the CMAC is the production of an 

arbitrary output for each cell in the input lattice. This is exactly the capability of a look-up 

table defined on the same lattice.

Consider the input vector x for an N  input CMAC as given in (2.2). It is assumed 

that each component of the input vector is bounded such that L < xi < U . In practical 

implementations, each input would have unique bounds but a common bound is assumed 

here to simplify the notation.

x — ^x0 xx a ^ j  eK *  (2.2)

The CMAC operates on a quantized version of the input space. In the present 

description, it is assumed that the quantization is uniform and is identical for all network
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inputs. As a result, the quantization can be completely described by a single quantization 

width parameter, A . In a practical applications, it is often advantageous to implement the 

coarse coding in a fashion which utilizes quantization levels which are placed optimally 

across the range of each input. For example, depending on the nature of the input signals, 

the quantization levels could be selected to provide logarithmic spacing or levels specifically 

placed to take advantage of a priori knowledge as to the nature of an input variable.

Under the present assumption of uniform input quantization, the coarse-coded input 

vector q is given by equation (2.3) where [•] represents the floor operation. Each element of 

the quantized input vector is bounded as shown by (2.4).

| xg — L x1 — L X N - 1  L

1 A A A

o < q ,  <
U - L

(2.3)

(2.4)

Computation of the CMAC output corresponding to a given input vector begins with a 

determination of the set of basis functions which cover the active lattice cell. Once this set of 

basis functions is determined, the associated weighting factors are summed to produce the 

network output. In the CMAC network, the placement of basis functions is controlled by the 

integer generalization parameter, 0  > 1. The generalization parameter directly determines 

the area covered by a single basis function which in turn affects the degree of extrapolation 

in the resultant function approximation. Generally, larger values of the generalization 

parameter are appropriate for functions which are more slowly varying across the input 

space. The generalization is a fixed feature and is uniform across the entire input space. As 

a result, it must be selected to be appropriate for the area requiring the finest generalization 

which can result in somewhat suboptimal performance elsewhere.

The arrangement of receptive fields in the CMAC network is conveniently viewed as 

the combination of 0  conceptual overlays of the input space. Each overlay consists of a 

subset of the entire set of basis functions. The collection of basis functions within each
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overlay provides complete and non-overlapping coverage of the  input space. Therefore, any 

input vector will cause a single basis function from each overlay to be active and as a result, 

each input to the network will result in the activation of exactly f3 basis functions. Each 

basis function has a width of [3 lattice cells in each dimension and has a constant output of 

value 1 for any input within its boundaries. Thus, for a two input network the basis 

functions will have square regions of activation within the two dimensional input space. For 

a three input network each basis function will be active in a cube of the input space with 

dimension (3 x /3 x /3 . In higher dimensions each basis function will be a hypercube w ith 

dimension /3 along each axis. Within each overlay, the basis functions are stacked adjacent 

to one another across the entire input space. Additionally, the comers of the basis functions 

are offset along the hyperdiagonal in each consecutive overlay in order to produce overlap of 

basis functions between the different overlays.

Overlay 0 Overlay 1 Overlay 2

Figure 2.3 -  The CMAC output calculation for a two input CMAC with /? =  3.

In order to provide a qualitative understanding of the receptive field placement, 

consider the example of a two input CMAC with generalization width of (3 — 3 as shown in 

figure 2.3. In this case, there are three overlays and each basis function covers a square 

region of the input space with dimensions /? x /3 — 3 x 3 lattice cells. The boundaries of the
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basis functions are shown by the solid lines while the dashed lines represent the boundaries

r lT
of the lattice cells. Any given input vector for this network, x =  x2 xA , is quantized to

produce the vector q — \q2 gJ . The quantized input vector uniquely references a single cell

on the input lattice as indicated by the arrows in figure 2.3. The active lattice cell is covered 

by a single basis function on each overlay and therefore a total of three basis functions are 

selected. These active basis functions are shaded gray in figure 2.3. Each basis function has 

an associated weighting factor and the CMAC output is calculated by summing the 

weighting factors associated with the active basis functions. The weight wp is associated

with the basis function on overlay p at indices i, j  .

For the CMAC of figure 2.3, each overlay can be represented by a two dimensional 

matrix of weights. In general, the weight matrix associated with overlay p can be

represented by the function W* (dp) where dp is a vector containing the indices of the

selected basis function for overlay p.  That is, the function W p (dp) references the weights

associated with the vector of indices, dp. In the CMAC algorithm, these indices are

computed from the quantized input vector by equation (2.5). Notice that there will be as 

many indices as there are input dimensions, N , since each overlay is N  dimensional. 

Computation of the indices can be efficiently performed using fixed point hardware 

implementations since an integer division intrinsically provides the floor functionality as 

well. Additionally, if  the quantization is restricted to a power of two, then the indices can be 

computed using only a binary right shift operation.

go ~ P  
A

Qi~P
A

gjv-l V p e { 0 , l , - , / 3 - l }  (2.5)
A

The described algorithm is known as the binary CMAC since the output of each basis 

function is binary valued. The recall algorithm is summarized in figure 2.4 for the general 

case of an IV dimensional input and a single real valued output. A vector output CMAC can
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be realized by utilizing multiple single output CMAC networks in parallel on the same input 

vector. However, the overall computational burden can be reduced through realization that 

the selection of the active basis functions is common to all of the parallel networks and 

therefore needs to be performed only once.

R ecall Operation in  the Binary CMAC: Consider a CMAC network with a 

real input vector x =  |a:0 xx ••• and a single real valued output,

y — /OTa(. (x ). Let the generalization parameter be f3 G N and (3 > 1. Let input xi 

be bounded such that h  < xt < U,. Additionally let the quantization interval of 

input i  be A ,. Let W p( )  represent an N  dimensional array of weights for each 

overlay p G {0,1, • • •, (3 — 1} . With these definitions, the following equations 

describe the CMAC recall operation.

q =  \ % 9h-
1 x 0 - k 3?! Jj]' x n - i  k - i

1 1 ~ > o A , ^ N ~  1

% - P h ~ P >0 ! !

P
V p G {0,1,••-,/? -1 }

y = A”)
p—0

Figure 2.4 -  The binary CMAC recall operation.

The training or weight adaptation in the CMAC network provides a means of 

adjusting the values contained in the p weight matrices W v (•) in a m anner which minimizes 

the approximation error of the CMAC across some training data set. Usually, the weight 

adaptation is performed concurrently with recall operations on a sample by sample basis. 

For each output, the active weights are adjusted in a manner which reduces the squared 

output error associated with the present CMAC input. For example, suppose the current 

input vector is x0 and the desired output of the CMAC for input Xj, is d . The resultant
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error in the CMAC approximation for this input is defined as e — d — y , where y is the 

CMAC output corresponding to input x0. There are (3 weights, w ° , w 1, ■ ■ ■, w ^ 1 which were 

used in computing the CMAC output. Therefore, to reduce the error associated with this 

input vector, each of these weights is adjusted in the direction of the negative gradient of the 

squared error. The resulting increment to be added to weight w' is given by (2.6) where rj 

represents a learning gain parameter.

=  ~~r)~7T~j = 2j?elT 7  = 2r)e^ - r Y l wP =  2rle *€ {0,1,•••,/?-1} (2.6)
uVJ C/VJ ( jli)  p_.Q

Thus, each of the selected weights is simply updated with an increment proportional 

to the error in the output. Notice however that the contribution of each weight to the output 

is dependent upon the generalization parameter. That is, with a larger generalization, a 

fixed increment across all selected weights will have a greater influence on the output than 

the same increment with a smaller generalization. As a result, the effective learning gain in  

(2.6) varies with the generalization parameter. In order to make the learning gain 

parameter independent of the generalization width, the weight update is usually normalized 

by (3.

Weight Update in  the Binary CMAC: Consider a CMAC network with output 

y = (x) and generalization parameter 0  e  N and 0  >  1. Let W p(•) represent

the N  dimensional array of weights for each overlay p e  {0,1,•••,/? — 1} and let d 

be the desired or target output for the current input vector. Let dp represent the

pointers associated with the presented input vector. Then the following equation 

describes the CMAC weight update operation.

for p  = 0,1,•••,/? — 1

W ”(d)\ = W^d J | + ! ( d - y )  = W p( d j l  +  —e
P I post—update P I pre—update pre-update p

Figure 2.5 -  The binary CMAC weight update. 
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The CMAC weight update algorithm is given in figure 2.5. If the weight updates are 

performed concurrently with the CMAC recall then the only additional computation 

associated with the adaptation is the scaling of the output error by the learning gain and a 

single addition per weight. Notice that the adaptation algorithm is intrinsically local in 

nature since only weights within a (3 lattice cell radius are impacted by any weight update.

The selection of the active set of weights is a highly nonlinear operation. However, 

once the active weights are defined, the recall and training operations are entirely linear. 

This fact leads to analytical expressions for the CMAC recall and weight update operations 

which are often useful in the derivation of theoretical results. In this representation, all of 

the weights associated with the CMAC are represented by a single weight vector w . A 

weight selection vector, a(x), is defined as a function of the current input vector, x . The 

weight selection vector is binary valued and its length is equal to the length of the weight 

vector, w . All elements of a(x) are zero valued except for (3 entries of value one which are 

in locations corresponding to the active weights. As a result, the CMAC recall is simply 

represented as the inner product of the weight selection vector and the weight vector as 

given in (2.7). In this formulation, the entire nonlinear mapping operation performed by the 

CMAC is contained within the weight selection vector.

y = a(x)T w (2.7)

With this convention, the weight update equation can be expressed as given in (2.8) 

where e represents the output error. It is also possible to derive batch mode recall and 

weight update expressions in the case where training and recall are performed 

simultaneously across an entire training data set. The implications of this formulation are 

explored further in section 2.5.

w| =  w| +  — a(x)e (2.8)
ipost-update \pre~update j3
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The computational efficiency of the CMAC algorithm results directly from the 

uniform placement of the basis functions across the entire input space. However, this 

architecture also results in the presence of basis functions and their associated weights in 

regions of the input space which are never utilized in the mapping. Additionally, this feature 

of the CMAC leads to an enormous quantity of weighting factors especially in the case of 

large input dimensions. The dimensions of the weight matrices depend on the number of 

inputs, the range of the inputs, the quantization levels for the inputs, and the generalization 

parameter. The total number of required weights can be expressed as given in equation 

(2.9). Assuming the same number of quantized levels per input, this can be simplified to the 

expression given in (2.10).

iv— i U . - L
A.

+ 1 (2.9)

N w =  p NZi-(#  °f quantization levels per input)* 1 (2.10)

From the result in (2.10) it is evident that the number of required weights decreases 

as the generalization width increases. Additionally, the number of weights required grows 

drastically with increasing input dimensions and increased quantization levels per input. To 

illustrate the rapid growth in the number of required weights with increasing input 

dimension, consider the results presented in figure 2.6. This illustration depicts the number 

of weights required for the case of 8 bit (256 level) inputs and various input dimensions, N . 

For a single input CMAC, the generalization width has no impact on the number of required 

weights. However, at larger input dimensions, increases in the generalization parameter 

leads to a significant reduction in the number of required weights. However, regardless of 

the value of the generalization parameter, the memory space required in high dimensions 

can quickly become unmanageable. For inputs with finer quantization, the problem is 

exacerbated further. In addition to the large memory space required for storage of the
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weights, this also has implications for most real-time hardware in that larger memories must 

often be implemented in slower off-chip memories.
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Figure 2.6 -  Required CMAC weights versus input dimension and generalization.

In many applications, the volume of the input space over which the function 

approximation must be valid is a small fraction of the total input space. As a result, many 

weights in the CMAC representation of such functions are never referenced. In such cases, it 

is possible to reduce the memory requirements of the CMAC algorithm through the use of 

sparse memory techniques. The basic premise behind such methods is that a large, sparsely 

utilized memory can be adequately contained within a much smaller, more densely populated 

memory. One manner in which this can be accomplished is by mapping the memory space 

addressed by the CMAC into a much smaller physical memory space via a hashing function. 

The hashing function is time invariant function which provides a mapping such that 

consecutive addresses addressed in the virtual memory space are distributed in a random, 

uniform manner across the smaller physical memory space. It is assumed that the physical 

memory is chosen to be much larger than that required by the exercised portion of the input 

space and therefore most addressed memories will be stored and recalled without error. The 

occasional incidents in which two different virtual addresses map to the same physical
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address are referred to as a hash collisions and will result in a corruption of the CMAC 

output. There are several means by which the random hashing function can be implemented 

[79] [95], The CMAC implementations presented in later sections utilize either a fully 

implemented memory space with no hashing or hashing  via a pseudorandom linear feedback 

shift register. There are also many lossless hashing algorithms which have been developed 

to eliminate or reduce the possibility of hash collisions. However, such methods also impose 

greater computational overhead on the algorithm.

There are many refinements which have been introduced to improve on different 

shortcomings of the standard binary CMAC algorithm. One important enhancement is an 

improved receptive field placement strategy [3] [16] [79]. In the original CMAC algorithm, the 

receptive fields of the j3 overlays are offset along the hyper-diagonal of the input space. This 

receptive field placement has the important property that for a single lattice cell movement 

in any direction, exactly one weight will be dropped and one weight will be added to the 

active weight set. This property is known as the uniform projection principle [16]. This 

condition also ensures that there are no common edges of receptive fields between overlays. 

For an input dimension of two or greater and generalization of three or greater there are 

other possible offsets between the basis function layouts on the different overlays which still 

obey the uniform projection principle. Given this extra degree of flexibility, it is necessary to 

choose some criteria for deciding upon the optimal overlay placement from all those which 

meet the uniform projection principle. To obtain the most spatially uniform generalization, 

the optimal placement strategy is that which produces the most even distribution of basis 

functions across the input space. The original diagonal displacement strategy is clearly a 

suboptimal choice in this regard. For example, figure 2.7a depicts the total area of the input 

space affected by a single training point denoted by the black square. This illustration is for 

the case of two input dimensions and a generalization width of ten. As a result of the 

standard receptive field placement, the selected basis functions are located along the 

diagonal of the input space thereby creating a spatially non-uniform update in the input
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space. Different methods for determining the optimal overlay placement have been 

presented [3] [16] and are based on selecting the receptive field overlay offsets which 

maximize the average distance between basis function centers. In the case of the previous 

example, the optimal overlay placement found through these methods results in the 

activation pattern of figure 2.7b. Notice that the total impacted area is much more uniform 

than for the case of diagonal receptive field placement. This refinement in the CMAC 

algorithm comes at almost zero additional computation. The only modification is in the 

computation of the weight selection vectors as given in (2.11).

Jf? 1
(2 .11)%  ° 0 <h -

N B
$ N - l  ° N - 1

P p 0

In this equation of'5 represents the ith  element of the optimal displacement vector.

The superscript denotes the dependence of the optimal displacement vector on the input 

dimension and the generalization parameter. Tables of the optimal displacement vector for 

various values of the parameters exist in the literature [16].

(a) Albus Receptive Field Placement

±t±tti±
.X......

a
. + ..

~ r......

(b) Optimal Receptive Field Placement

Figure 2.7 -  Influence of a single training point for Albus (a) and optimal (b) receptive field placements.

In the standard CMAC weight adaptation, the same weight increment is uniformly 

applied to the entire set of active weights. Although this is a computationally efficient 

solution, this weight update often leads to a wide variation in nearby weight values even
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though the output error is reduced to zero. This large variability in nearby weight values 

tends to reduce the generalization performance of the CMAC. Additionally, such weight 

variations reduce the reliability of partial derivative information from a trained CMAC 

model. In almost all applications, the standard CMAC algorithm is an over-parameterized 

function approximation. That is, there are more degrees of freedom than  required to 

implement the desired mapping. As a result, the optimal weight vector solution is non

unique and there are many different sets of weights which will be able to reproduce the given 

set of training data with zero error. It is possible to utilize the extra degrees of freedom 

afforded by this flexibility in the weight values to impose constraints which minimize the 

differences between nearby weights. Such methods are known as weight smoothing 

algorithms. For the case of batch mode CMAC training a weight smoothing algorithm has 

been presented which provides a solution for the optimally smooth weight vector via a linear 

optimization over the entire training data set [21]. This approach has also been extended for 

use in on-line training [87], An independent heuristic approach to weight smoothing has also 

been presented [95]. In this method, all of the addressed weights are adjusted by a small 

increment toward the mean value of the selected weights as given by (2.12). This additional 

term in the weight update equation tends to move all of the weights toward the average 

weight value thereby reducing weight differences. The parameter a  controls the extent of 

the weight smoothing. This approach has the advantage that it is a very modest extension of 

the existing CMAC update rule.

n
(2 . 12)

P  !=0

There are numerous additional refinements to the CMAC algorithm which have been 

developed. One of particular significance in many applications is the replacement of the 

binary receptive field with a continuous valued basis function in order to produce a 

continuous valued output [3 5] [64]. Adaptive coding algorithms have been developed which 

enable CMAC input quantization to be adjusted to be finer in regions of the input space
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where greater resolution is required [34]. In addition, there have been many papers 

reporting on implementation aspects of the CMAC network [51] [53] [74]. Finally, there are 

many theoretical results regarding CMAC representational capabilities and convergence of 

the adaptation process [14] [15] [17] [23] [25] [42] [49] [67] [86] [95] [108].

In concluding this introduction to the CMAC algorithm, it is important to consider 

briefly the representational capabilities of the CMAC function approximation. 

Fundamentally, the quantized input map of the CMAC results in a different class of function 

approximation capabilities in comparison to those networks which utilize a continuous input 

space. Specifically, the class of mappings which can be represented by a CMAC network is 

necessarily a subset of a multivariate lookup table defined on the same input lattice. For a 

single input dimension, it has been shown that the CMAC is a universal approximator in this 

context [16]. That is, the CMAC can be trained to provide an arbitrary response at each 

input lattice cell. This capability is enabled by the fact that there are as many free 

parameters as there are input cells in the case of a single input dimension. However, for a 

multiple input CMAC, there are fewer free parameters then there are input lattice cells if  

the generalization parameter is greater than one. As a result, the CMAC is not able to 

represent an arbitrary multivariate lookup table with zero error. In fact, it has been shown 

that the only class of functions which can be represented with zero error are those which can 

be expressed as the sum of univariate lookup tables [16], However, this result is somewhat 

pessimistic due to the fact that the complexity of the functional mapping increases w ith the 

finer generalization CMAC parameters. This does not allow for scaling of the network 

resources independent of the training data set. For example, in the MLP network, a well 

known result is that the two layer MLP is a universal function approximator given a 

sufficient number of hidden layer neurons. An somewhat analogous statement for the CMAC 

network is that given any discrete mapping {g0,<?!,•••} —> {ya,yv ---} this relationship can be 

perfectly represented by a CMAC network given sufficiently small generalization and 

quantization width.
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2.4 Time Delay and Recurrent CMAC Architectures

The feedforward neural network implements a static mapping from a vector x g R *  

in the input space to a vector y € RM in the output space. Assuming the network 

parameters are fixed, a certain input vector will always produce the same output response 

independent of the past history of inputs. Such a mapping is termed memoryless or static 

and is well suited for pattern classification and other time independent tasks. However, 

most control and identification tasks involve dynamical systems in which the response of the 

system is based not only on the current input to the system but also on the past history of 

inputs to the system. Neural network control and identification of such dynamical systems 

requires an architecture which has the capability to model such history dependent dynamics. 

In the case of linear discrete time systems, the finite impulse response (FIR) filter achieves 

this capability by transforming the time domain signal into a vector space comprised of 

delayed versions of the input signal as shown in figure 2.8b. This transformation to the 

delayed coordinate space allows the original linear dynamical system to be represented as a 

static linear mapping from a vector in the delayed coordinate space to the output space. The 

required dimension of the delayed coordinate vector depends on the nature of the system  

being represented, and it is possible for the FIR filter to model any linear dynamical system  

if the input dimension is allowed to be arbitrarily large.

Given the ability of a feedforward neural network to implement a multidimensional 

static mapping, it is possible to use it to replace the linear mapping of the FIR filter as shown 

in figure 2.8a. The resultant structure is known as the time delay neural network or tapped 

delay line neural network [90], Given that the time delay neural network is a direct 

extension of the FIR filter, it is expected that its minimal capability is the emulation of a 

linear dynamical system. This will be the case as long as the neural network is capable of 

representing a linear mapping and the number of delays is sufficient for the system being 

modeled.
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Figure 2.8 -  Time Delay network in comparison to an FIR filter.

The primary advantage of the time delay neural network is that in addition to 

representing linear dynamical systems, this architecture also has the capability to model 

nonlinear, history dependent dynamics. Theoretical support for this capability is provided by 

nonlinear systems theory. In the study of nonlinear dynamical systems, it is commonly the 

case that the only observable information from some nonlinear process is a single time 

varying scalar function that is related in an unknown fashion to the state of the process. In 

such cases, a state space representation of the system can be obtained via a state space 

reconstruction which preserves the dynamics of the original system. Such a reconstruction is 

not unique. One possibility is to utilize a reconstruction space which is comprised of the 

signal and its derivatives [82]. Another choice which is generally more appropriate for 

physical implementations is to utilize the signal and time delayed versions of the signal as 

created by the tapped delay line in the time delay neural network. It has been shown that if  

the embedding dimension is chosen sufficiently large then the dynamics of the original 

system will be preserved in this reconstruction space [82]. The embedding delay is arbitrary 

in the case of unlimited, noiseless data, but an optimal delay value can be found given an 

actual data set. This result provides a secure theoretical basis for use of the time delay 

neural network as a model of nonlinear dynamical systems.

The lack of a priori assumptions in the time delay neural network model provides the 

capacity for modeling a diverse array of nonlinear dynamics. However, this flexibility also
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reduces the generalization capabilities of the model which will be an important consideration 

in many disturbance cancellation applications. For example, the FIR filter provides a global 

interpolation capability due to its assumption of linearity. This allows an FIR model to 

provide the correct response across the entire input space even if the training is constrained 

to a small region of the input domain. In contrast, the time delay neural network generally 

must be trained with data that is quite representative of the relationship which is to be 

implemented. Additionally, this implies that the time delay neural network generally must 

be trained over the entire region of the input space where it is expected to later function. To 

illustrate this point, consider the dynamical system described by (2.13) where x[k] is the 

discrete time input signal and y[k] is the corresponding output.

y[k] — ^x[k\ + jx[k — 1] (2.13)

The FIR model of this system has exactly two free parameters and the static 

mapping is a plane defined in the delayed coordinates space as represented by the coarse 

mesh in figure 2.9. Once these two parameters are chosen, the response is fixed across the 

entire input space. In contrast, consider the use of a two input Time Delay CMAC network 

to model the dynamics of (2.13). In this example, the time delay CMAC is trained to 

accomplish this task using the input signal given in (2.14).

r[fc]=|sin(0.0837rfc) (2.14)

This input signal creates a circular closed orbit in the delayed coordinate space. The 

CMAC weights are adjusted in simulation to minimize the output error until reaching a total 

error of less than 0.1% throughout an entire period. The CMAC utilized in this comparison 

has an input quantization of 0.01 and a generalization width of 16. Upon completion of the 

training, the resultant mapping implemented by the CMAC is shown by the fine mesh 

surface in figure 2.9. Notice that the time delay CMAC mapping approximates the actual 

linear mapping only along the trajectory created by the input signal, x[k]. Outside of this 

trajectory, the network output is zero. This illustrates the fact that, unlike linear models,
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the time delay CMAC must be trained in all regions of the input space where it is expected to 

operate. For example, the time delay CMAC will produce zero output for an input equal to 

the training signal scaled by a factor of two. This fundamental attribute of the time delay 

neural network will have many implications on its use in active disturbance cancellation 

applications.

-0 .5 .

0.5
0.5

-0.5 -0.5 x[k-1]

Figure 2.9 -  Time delay CMAC map approximation to an FDR. filter.

Many active disturbance cancellation systems require the modeling of nonlinear 

dynamical signal paths. The time delay CMAC can be utilized for this purpose given the 

conventional system identification arrangement of figure 2.10. In this application, the 

CMAC weights are continuously adjusted to minimize the difference between the CMAC 

output and the target signal produced by the reference model. The time delay CMAC is 

shown with a two dimensional input, but the same technique applies given any length  

tapped delay line. In practice, the required length of the tapped delay line will be dictated by 

the characteristics of the system being modeled. In general, systems containing transport 

delays and resonances will require a longer tapped delay line for accurate representation. As 

a reasonable guideline, in the case of linear systems, the delay through the tapped delay line
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must be at least as long as the impulse response of the system. Since the memory storage 

and computation of the CMAC are directly related to the dimensionality of the CMAC, the 

implementation of such a model can become unmanageable for the identification of complex 

signal paths. However, in many active disturbance cancellation applications, there are often 

situations in which the frequency content of the disturbance is restricted to a narrow band of 

frequencies. In such cases it is possible to develop a greatly simplified narrowband model 

that is only designed to model the signal path over the frequency band of interest. In the 

extreme case where the input signal is known to be a single fixed frequency sinusoid, the 

signal path model needs to be accurate at only a single frequency. It turns out that, this 

condition is directly applicable to many narrowband feedforward cancellation systems. 

Additionally, if the signal path model is continuously adapted, this simplified model will be 

able to track slow changes in the fundamental frequency. In this manner, the adaptive 

nature of the reduced order model compensates for its inability to serve as a broadband 

model.

mx[k]

y[k]

S ign a l Path

CMAC

Figure 2.10 -  Use of a TDCMAC as a dynamic signal path model.

To demonstrate the capabilities of a reduced order model, consider the corresponding 

linear case shown in figure 2.11. The reference signal path is defined by a twentieth order 

FIR filter with coefficients b0, \ , ■ ■ ■, ft19. In general, an accurate broadband model of this path 

would require a model of equal length as shown in figure 2.11a.
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Figure 2.11 -  Broadband (a) and Narrowband (b) linear models.

However, suppose the model is only required to emulate the reference signal path for 

a single sinusoidal input of constant frequency. Then, since the signal path is linear, the 

output will be a single sinusoid of the same frequency with altered phase and magnitude. 

This transformation can be accomplished using a two input FIR filter as shown in figure 

2.11b with coefficients q,,q . To prove this result, consider the input signal represented as 

the sinusoid defined by (2.15). The corresponding output signal of any linear system will 

have the same frequency but generally a unique phase and amplitude as given by (2.16).

x[k] =  Ax sin(wk +  (/ij) (2.15)

z[k] =  A2 sin(wk + 4^) (2.16)

Given a two input FIR model with transfer function H(z) =  c0 + CyZ~l , the filtering 

operation performed on the input signal, x[k], results in the expression in (2.17). If the FIR 

model is to accurately represent the linear mapping x[k} —> z[k), then the result of this 

filtering operation must meet the condition given in (2.18).

y[k] = Cgdj sin (wk + 4\) + sin (w(k - l )  +  <̂ ) (2.17)

A} sin (wk + <f>2) = cdA1 sin (wk +  0j) +  sin (w(k — 1) +  4>i) (2.18)

Thus, if  it is possible to solve (2.18) for constant filter coefficients c0 and q then the 

resultant transfer function H(z) will perfectly model the higher order system for a sinusoidal 

input. To that end, the sinusoidal terms in (2.18) can be reduced using the trigonometric 

angle difference relation which yields the simplified expression of (2.19). Equating
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coefficients of the time varying sm(wk) and cos (wk) terms yields the linear system of 

equations in (2.20)-(2.21). The solution to this set of equations is given by (2.22) and (2.23).

Al c o s  fa sin (wk) + sin fa cos (wk) = [ c ^  cos fa +  c1Al cos(fa — w )]  sin(wk)

+  [c0j4j sin fa +  c, Al sin(</>1 — w)] cos (wk)
(2.19)

CqÂ  c o s  fa +  c1A1 cos(fa — w) = A2 c o s  fa (2.20)

c0Ai sinc^ +  <\At sin(^ —w) = A2 simfa (2.21)

A2 [ c o s  f a  — s i n < ^  c o t ( 0 j  — w )]
c0 . ..

A, [cos — sin fa cot(^j — iu)J
(2 .22)

„ _  A2sm<f>2 _  sin fa
Ci  —  < • I  , \  0 . /  , \  ( 4 . 6 0 )At sm(fa — w) sin (fa — w)

This result indicates that a two input FIR filter is able to model any linear transfer 

function in the case where the input is comprised of a single sinusoid. Additionally, if  the 

FIR filter is continuously adaptive, this filter can be used as a model of the full linear system  

for any slowly varying sinusoidal disturbance. A similar, though somewhat more general, 

result holds for the time delay neural network. In a qualitative sense, the two input time 

delay neural network has the capability to represent a transformation from a periodic input 

signal to a periodic output signal of the same period. This includes the important ability to 

model the relationship between a fundamental disturbance as an input signal and an output 

signal comprised of the fundamental in combination with its harmonics. There are, however, 

certain constraints placed on the input and output signals which will be presented in more 

detail in the following section.

If the transfer function being modeled by a time delay neural network or FIR filter 

has a long duration impulse response, then the number of taps required in the model can 

become quite large. In the case of linear systems, a more compact model is possible using an 

infinite impulse response (HR) filter as shown in figure 2.12b. The HR filter utilizes internal 

feedback to provide memory capabilities which exceed the length of the tapped delay line 

input. It is possible to extend the HR filter by replacing the linear mappings with
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feedforward neural networks as shown in figure 2.12a. The resulting recurrent neural 

network extends the capabilities of the HR filter and is therefore well suited to modeling 

nonlinear systems with significant history dependence. However, online training of these 

architectures is generally more involved then in the FIR counterparts. Additionally, these 

architectures present the possibility of internal instability, which is not the case for the FIR 

architecture.

in p u tin p u t

O u tp u t

Feedforw ard 
N eural Netw ork

Feedforw ard 
Neural Network

(a) (b)

Figure 2 .1 2 - Recurrent neural network and linear HR models.

In addition to its capability of modeling a dynamical signal path, the HR filter is able 

to function as a sinusoidal oscillator in the case where its poles are designed to be on the 

imaginary axis. Similarly, the recurrent time delay neural network can function as a 

nonlinear oscillator via the architecture shown in figure 2.13a.

-**- O u tp u t O u tp u t

Feedforw ard 
Neural N etwork

(a) (b)

Figure 2.13 -  Recurrent neural network and linear IIR oscillators.
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2.4 Representational Capabilities of Time Delay Neural Networks

In the previous section, it was shown that the time delay neural network can be 

viewed as a generalization of a linear FIR filter. As a result, the time delay neural network 

has the ability to approximate any linear transfer function, and also possesses the ability to 

represent certain nonlinear dynamical systems. In this section, some basic representational 

capabilities of the time delay neural network are considered. These results are intended to 

provide some fundamental guidelines for application of the time delay neural network to 

disturbance cancellation systems.

The first result given in theorem 2.1 simply formalizes the fact that the time delay 

CMAC can represent any quantized FIR mapping with zero error. Since the CMAC operates 

on a quantized input lattice, it cannot implement a real valued FIR filter perfectly. However, 

the time delay CMAC does possess the capability to represent the FIR mapping with zero 

error at every lattice point. Since the input quantization levels can be reduced to any 

required level, this model can be made as accurate as required by the application. 

Additionally, the effect of quantization on linear filters is well understood as this issue arises 

in the digital hardware implementation of such filters. This result pertains to an ideal 

CMAC without any hashing considerations.

T h eo rem  2.1 -  T im e  D e lay  CMAC R e p r e se n ta t io n  o f  a n  F IR  R e la t io n sh ip :  Let Q{}

represent the quantization of a real valued vector into the respective point on the input 

lattice of an ideal CMAC. Let coefficients b =  [b0,fe1 } define an arbitrary linear FIR 

filter. Then, an ideal time delay CMAC with M  input taps can represent the quantized 

mapping <2{x} —> y =  bTQ{x} with zero error.

Proof:

The FIR mapping to be represented by the time delay CMAC can be expressed as in 

equation (2.24) where q{{}  represents the CMAC quantization of the ith  input.
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M —l

y =  =  6o9oK} + bM xi }  +  •■• +  {%/-!> (2.24)
<=0

Equation (2.24) shows that the desired mapping is the sum of univariate lookup 

tables defined on the input lattice. It has been shown that an ideal multivariate CMAC can 

represent any function which is the sum of univariate lookup tables with zero error [16]. 

This shows that the mapping <3{x} -> y =  brQ{x) can be represented with zero error. 

Therefore, the time delay CMAC can model the quantized version of any FIR relationship 

with zero error.D

A two-input time delay neural network has the ability to represent a relationship 

between a periodic input and a periodic output of the same period, given certain conditions 

on the nature of the input signal. This capability is of particular interest in the case of 

narrowband disturbance cancellation since the reference signal in such systems is often in 

the form of a non-sinusoidal periodic signal. The proof of this result, presented in theorem 

2.2, is based only on the assumption that the neural network is able to represent an 

arbitrary functional mapping, and does not directly address the capabilities of any specific 

neural network architecture. As a result, the derived results are necessary yet not sufficient 

conditions in the specific case of a time delay CMAC network. However, in practice this 

result provides a minimal set of guidelines for assistance in choosing appropriate parameters 

based on the nature of the input signal.

Theorem 2.2 -  Representation o f  Periodic Signals with Time Delay Neural Networks:

Let /(■) be a universal function approximator used to create a two-input time delay network 

with time delay Ts . Let s(t) be a continuous periodic signal with period T  >  0 and with a 

time derivative s(t) that is continuous. Let v(t) be a continuous and periodic signal of the 

same period T  . If the parametrically described contour {xx = s(t),x2 =  s(t + Tg)} is simple 

(i.e. not self-intersecting) and the time derivatives x1 and x2 are not simultaneously zero for
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any t £ [0, T] , then the mapping js(t) s(t -  T5)J —>■ v(t) can be represented by the time delay

neural network.

Proof:

Consider the illustrative trajectory =' s(t),x2 — s(t + Ts)} shown in figure 2.14 and 

notice that the trajectory does not intersect. Additionally, the trajectory must be a closed 

orbit given that {x^t  +  T),x2(t + T)} = {^ (i),a:2( i)} .

Figure 2.14 -  Trajectory in the neural network input space.

The magnitude of the tangential velocity along this trajectory is expressed in 

equation (2.25). Given that the xt and x2 exist and are never zero simultaneously, the 

magnitude of the tangential velocity must always be greater than zero as given in (2.26).

Also, given that the time derivatives xx and x2 are continuous, the tangential 

velocity is a continuous function as well. Since the tangential velocity is continuous and can 

never equal zero by (2.26), it is therefore impossible for the trajectory to reverse direction. 

Additionally, the trajectory can not remain at any point for any finite amount of time given

x.

(2.25)

(2.26)
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(2.26). Therefore, for any given time t0, the point (t0) =  s(f0) ,x2(t0) =  s(t0 — Ts)} is unique

on the x1,x2 plane within any period. In conclusion, equation (2.27) holds.

{x^f + A),x2(t +  A)} ^  {x1(t),x2(t)j Vti=[0,T) (2.27)

Given (2.27), there are no two identical points in the domain of /(•). As a result,

since a universal approximator can represent any proper function, /(■) can map to an

arbitrary value for any point in the domain. As a result, the two input time delay neural 

network will be able to represent the mapping |s(f) s(t — Ts)j —» v(t) with zero error. □

The result given in theorem 2.2 is a direct result of the fact that the neural network 

must implement a single-valued functional relationship. To illustrate the implications of 

theorem 2.2, two individual cases will be considered. The first case fails to meet the 

conditions of theorem 2.2 due to the presence of a self-intersecting orbit. The second case 

fails due to the presence of zero time derivatives in the input and delayed input signals.

Consider the signal s(t) represented in (2.28) which consists of two harmonically

related sinusoids. Notice that the signal s(t) is periodic with a period of one. Additionally,

s(t) is continuous and has continuous time derivatives. For this example, the delay utilized 

in the tapped delay line is Ts = 1.4 .

s(i) =  — sin(27rf) +  — sin(47rf) (2.28)
2 5

Figure 2.15 depicts the delay space trajectory {x1 =  s(t),x2 — s(t -  Ts)} . Notice that 

the orbit is not simple and therefore the conditions of theorem 2.2 are not met. As a result, 

theorem 2.2 does not guarantee that an arbitrary periodic function mapping can be 

performed for the input signal s(t) . Qualitatively, this is due to the fact that representation

of an arbitrary mapping js(t) s(t — Ts)j —> v(t) for an arbitrary periodic signal v(t) , would

require the neural network to produce two different outputs for the same input vector at the
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point of overlap. Since th is can not be accomplished by a single-valued functional mapping, 

it can not be implemented using a feedforward neural network.

0.5

-0.5

- 0.6 TK4
 J___

- 0.2 0.4 0.6 0.80.2

*i(0

Figure 2.15 -  Delay space trajectory showing an intersecting orbit.

The problem in this case can also be observed in the time domain as shown in figure 

2.16. In this figure, the tapped delay line outputs are shown as a function of time over a 

single period of the input signal. At the two times marked by the solid vertical lines, the 

input vector {zj =  s(t),x2 = s ( t - T s )} is identical. This corresponds to the overlap point in  

the delayed coordinate trajectory of figure 2.15. In general, the desired target signal v(t) 

could be such that the neural network would be required to produce different values at each 

of these times. For the special case that v(t) has the same value at both of these points, it

would be possible to represent the mapping |s(t) s(t — Ts)j —► v(t) , however, this is not true in

the general case.

0.6

0.4

0.2

- 0.2

-0.4

- 0.6

- 0.8
0.2 0 .4 0.6

t

Figure 2.16 -  Time domain input signals.
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The geometry of the orbit in  the embedding space is directly dependent upon the 

delay utilized in the tapped delay line. Therefore, the conditions of theorem 2.2 can be 

utilized to select an appropriate choice for the tapped delay line delay. For example, consider 

the input signal s(t) from the previous example as defined in (2.28) but choosing Ts = 1 .0 . 

With this delay, the embedding space trajectory is given in figure 2.17 and the orbit is no 

longer self-intersecting. Therefore, in this case, the time delay neural network can 

implement an arb itrary  periodic function mapping from this input signal to another periodic 

signal of the same period.

x 2( t)

0 .5

-0 .5

-0 .5
J .

Xj(0

Figure 2.17 -  Delay space trajectory for Ts =  1 .0 .

The previous example presented the case of a periodic signal which failed to meet the 

non-self-interesting orbit property specified by theorem 2.2. The next example presents a 

case where the failure is due to the presence of parametric time derivatives which are 

simultaneously zero. The input signal s(t) is defined by the saturated sinusoid given in 

(2.29). The tapped delay line delay is chosen as Ts =  0 .1 .

s(t) =

if sin(27rf) >  % 

if sin(27rf) <  — j  

otherwise

(2.29)

sin(2-7rf)

Notice that the signal s(t) is continuous and periodic with a period of one. 

Additionally, its projection in the delay space forms a simple orbit as shown in figure 2.18.
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However, notice that the time derivative of s(t) is not continuous and additionally, there are 

periods of time for which s(t) — 0 and s(t — Ts) — 0 as is evident from the time domain plots 

of the signals in figure 2.19. Therefore, this input signal does not meet the requirements of 

theorem 2.2 and in general, a periodic function mapping for this input function cannot be 

represented by a two input time delay neural network.

0.5

-0.5 0 0.5
* i(0

Figure 2.18 -  Delay space trajectory for the system of equation (2.29).

The failure in this example occurs because the input space trajectory pauses at 

certain locations in the limit cycle of figure 2.18. Specifically, over the time intervals when 

both s(t) — 0 and s(t — Ts) = 0 , there is no movement along the orbit. Consequently, there

are periods of time when the orbit remains at points (x2,xl) = (1,1) and (x2,xl ) = ( -1 ,- 1 ) .

Thus production of a different value of v(t) w ithin  these intervals would violate the

requirement that the neural network represents a proper function relationship.

0.5

-0.5

0.2 0.6 0.80.4

Figure 2.19 -  Time domain trajectory o f the system given in (2.29).
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Another commonly utilized periodic signal which fails for the same reason is the 

square wave. Notice, however, that it is often possible to utilize a simple transformation to 

convert the input signal into one which meets the conditions of theorem 2.2. For example, 

the square wave can be converted into a signal which meets these conditions through the use 

of an appropriately chosen low pass filter.

In narrowband feedforward disturbance cancellation, the fundamental disturbance 

source is often represented by a single sinusoid. Due to the presence of nonlinearities in the 

system, the measured disturbance is often comprised by a linearly transformed version of the 

original tone along with components related to its harmonics. As a result, it is commonly 

necessary to represent such a relationship in the compensator of such a system. In such 

cases, the input signal can be represented by (2.30).

s(t) — Asm(wt) (2.30)

The resultant output signal is comprised of Q sinusoidal components each possessing 

an independent amplitude 4  and phase <j>t , as given by (2.31)

Q
v(t) =  ^  4  sin(lwt +  4 )  (2.31)

Z=1

With appropriate choice of the tapped delay line delay, the signal s(t) meets the 

requirements of theorem 2.2 since the orbit is a closed ellipse. Additionally, v(t) is periodic 

and has the same period as s(t) . Therefore, by theorem 2.2, this mapping can be represented 

by an ideal two input time delay neural network. This capability is of significant importance 

in the case of narrowband disturbance cancellation using a time delay CMAC compensator.

2.5 A Linear System Analysis of the Single Dimension CMAC

Most applications of the CMAC neural network in disturbance cancellation utilize a 

sequential training technique whereby the weights are updated upon presentation of each 

individual exemplar pair. An alternative training method is batch mode adaptation in which 

the weight changes associated with the entire training data set are made simultaneously. In
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this section, the convergence of the batch mode update is considered for a single dimension 

CMAC and a bound on the maximum stable learning gain is established. This approach 

provides additional insight into the nature of the CMAC representation. Furthermore, it is 

shown that the sequential update converges to the same result as the batch mode update 

given sufficient small learning gain.

For any given input vector, the CMAC output is a linear function of the active set of 

weights. Thus, the linear portion of the output computation and weight adaptation can be 

analyzed separately from the nonlinear mapping associated with the weight selection. 

Consider the simplified CMAC representation of figure 2.20 which depicts the simultaneous 

computation of all possible network outputs for a single dimension CMAC with seven 

weights, five outputs, and a generalization width of three. For the results presented in this 

section, it is assumed that sufficient memory resources are available so that hash coding is 

not required.

Weight
Vector

Vo

yi

y2

y3

y4

Aggregate 
y Network 

Output

Figure 2.20 -  A simplified representation of batch mode CMAC recall.

The simultaneous output calculation of figure 2.22 is a linear operation and can be 

represented concisely by the matrix equation (2.32) where y[fc] represents a column vector of 

outputs at time k and w[fc] represents the weight vector at time k . The matrix A 

represents the aggregate weight selection matrix. Each row of A represents the weight
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selection vector associated with a single input. For the CMAC of figure 2.20, the A matrix is 

given by equation (2.33).

y[k] = Aw[fc] (2.32)

1 1 1 0 0 0 0 

0 1 1 1 0  0 0 

0 0 1 1 1 0  0 

0 0 0 1 1 1 0 

0 0 0 0 1 1 1

(2.33)

The batch mode weight update can also be written as a matrix equation as given in 

equation (2.34) where a  represents the learning gain, and y represents the target output 

vector.

w[k +1] =  w[k] +  a A T (y — y[k]) (2.34)

Combination of equations (2.32) and (2.34) allows for the output vector to be 

expressed as a linear difference equation as given in equation (2.35).

y[k +1] =  [i — aAAr]y[fc] +  a A A Ty (2.35)

From (2.35), the stability of batch mode learning is dictated solely by the eigenvalues 

of the system matrix [i — a A A r ]. If the eigenvalues of the system matrix are all stable then

the steady state solution is found by setting y „ =  y[k +1] =  y[k] in (2.34). Assuming that the

inverse [AAr ] 1 exists, this results in equation (2.36) which shows that the steady state

output vector is equal to the target vector. Therefore, the batch mode learning will converge 

to zero error as long as all eigenvalues of the system matrix are stable.

y,» =  [ l -  «AAr]yM +  aAAry
(2.36)

=»yss=[A A T] A A T y — y

From (2.35), it is evident that the stability of the learning algorithm depends only on 

the learning gain and the nature of the weight selection matrix. To illustrate the structure 

of this matrix, consider its value for the case of figure 2.20 as given in equation (2.37).
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(1 — 3 a) —2 a  —a  0 0

—2a (1 — 3a) —2a —a 0

|I — a A A T | =  - a  - 2 a  (1 -  3a) -2 a  - a  (2.37)

0 —a  —2a (1 — 3a) —2a

0 0 —a —2a (1 — 3a)

Notice that the system matrix of (2.37) is in Toeplitz form. This will be the case for 

any single dimensional CMAC independent of the network size, generalization width, and 

learning gain. From the fact that the matrix is symmetric, its eigenvalues are 

unconditionally real-valued. Before analyzing the stability of the weight update equation in 

general, consider the special case of a generalization width of one. In this case, the system  

matrix reduces to that given by equation (2.38). The eigenvalues in this case are simply 

equal to the diagonal entries of the matrix.

I — aAA =

(1 — a) 0 0

0 (1 — a) 0

0 0 (1 — a)

0 0 0

0 0 0

0 

0 

0

(1 — a) 0 

0 (1 -  a)

(2.38)

In this case, convergence of the weight update equation is guaranteed as long as the 

learning gain is chosen according to the familiar bound given in (2.39).

0 < a < 2 (2.39)

Derivation of a learning gain bound in the general case of (5 > 1 is more complicated 

since the eigenvalues can not be readily calculated directly from the system matrix in an 

analytical fashion. However, given that the eigenvalues are all real valued, it is sufficient to 

establish eigenvalue bounds on the real axis alone. To provide insight into the dependence of 

the eigenvalue locations on the network parameters, the eigenvalues are calculated 

numerically for several example cases. Figure 2.21 depicts the location of the system matrix 

eigenvalues as a function of generalization width for a single dimensional CMAC network 

with 50 weights and a learning gain, a , of 0.005. At a generalization width of one, the
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system matrix is diagonal and all of the eigenvalues are located at (1  -  77) =  0.995 . As the 

generalization width is increased many of the eigenvalues become more negative and 

eventually some number become unstable. It is important to note that none of the 

eigenvalues become unstable by becoming greater than 1 .0 , but only by becoming more 

negative than -1 .0 .

0.8

0.6

0 .4

0.2

- 0 .4

•0.6

-0.8

5 20 3 5 4 0 4 5 5 010 15 2 5 3 0

Generalization Width

Figure 2.21 -  Eigenvalue locations as a function of generalization for a width 50 and a learning gain o f0.005.

Figure 2.22 depicts the eigenvalue locations as a function of learning gain, a , for a 

single dimensional CMAC with 50 weights and a generalization width of 5. At a learning 

gain of zero, the system matrix is diagonal and all eigenvalues are identically equal to one. 

As the learning gain increases, the eigenvalues generally become more negative and 

eventually some become unstable by becoming more negative than -1.0. Once again, no 

eigenvalues become unstable in the positive direction.

0 .0 4  0 .0 5  0 .0 6

Learning Gain

Figure 2.22 - Eigenvalue locations as a function of learning gain.
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Figure 2.23 depicts a numerically calculated plot of the maximum stable learning 

gain as a function of both the generalization width and network size. This chart was created 

using a binary search algorithm for the learning gain within the range [0,2] to determine the 

learning gain that yielded a marginally stable update (i.e. an eigenvalue at -1.0). This binary 

search was repeated at every combination of generalization width and network size to 

generate the following graph. Notice that the maximum stable learning gain depends 

strongly on the generalization width, but only weakly on the network size.

03U
ci

XIas
t/i
E3
E

10'

125 150100

Network Size = 10

Network Size = 25

Network Size = 150

Network Size = 100 c =

G eneralization  Width

Figure 2.23 -  Numerically determined maximum stable learning gain.

From the simulation results of figure 2.21 and 2.22, it appears that instability is 

always caused by eigenvalues which become unstable in the negative direction. Under this 

assumption, the stability of the weight update can be guaranteed by determining a lower
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bound for the eigenvalues of the system matrix on the real axis. Such a lower bound can be 

established using the Gershgorin theorem presented in figure 2.24 [99] [102] [103].

The G ershgorin  Theorem : Given the real valued matrix A e  Rnx", its

eigenvalues are all contained within the union ( J  where r ; are circles in 

the complex plane as defined by the following equation.

Tl
Ti =  {z E C : \z -  o j  < r j ,  q =  |oy |, i = l,...,n

Figure 2.24 -  The Gershgorin Theorem.

For the case of the general weight update system matrix, all of the Gershgorin circles 

are centered at (1 — /3a) on the real axis where (3 represents the generalization width of the 

network and a  represents the learning gain. Additionally, all eigenvalues are constrained to 

the real axis since the update matrix is symmetric. It is assumed that instability is caused 

solely by negatively decreasing eigenvalues as confirmed by simulation studies. Therefore, 

the most negative eigenvalue is found by determining the intersection of the largest radius 

Gershgorin circle with the real axis as shown in figure 2.25.

Gershgorin Circles

o>

real

Figure 2.25 -  Gershgorin circles for the general CMAC update matrix.
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To determine the nature of the Gershgorin circles in this problem, the general single 

dimension CMAC update equation matrix is given in equation (2.40). Notice that the width 

of the band depends directly on the generalization width parameter.

(1 —a/3) —(0 — l )a - ( 0  -  2)a —a  0
- ( 0  -  l) a (1 -  a0) - ( 0 - 1 )a - ( 0 - 2 ) a : —a
- ( 0 - 2 ) a - ( 0 - l ) a (1 -  a0) - ( 0 - l ) a 0̂o?iT

- { 0  -  2)a ~ ( 0  - 1)« (1 -  a0 ) —(0 - 1)a  —(0 — 2)a

—a - ( 0 - 2 ) a - i 0 - l ) a (1 — a/3) —(0 — l )a

0 —a - ( 0 - 2 ) a - ( 0 - 1 ) a  (1 — a0)

0 0 —a —( 0  — 2)a - ( 0 - 1 )a

0 0 0 —a : - ( 0 - 2 ) a

0 0 0 0 —a  :

0 0 0 0 0 —a

As shown in figure 2.25, all of the Gershgorin circles are centered at the point 

(1 -  a0 )  since all of the diagonal entries are equal. As a result, the eigenvalue bound will be 

solely determined by the Gershgorin circle with the largest radius. From matrix (2.40), the 

largest Gershgorin radius can be written as given in (2.41).

U* =  2 a ( 0 -1 )4 -  2a(0  -  2) +  2a(0  -  3) +  • ■ ■■ +  2a =  a(j3 - 1)0 (2.41)

Using the result in (2.41), the lower bound on the eigvenvalues along the real axis is 

given by equation (2.42).

>  (1 -  a/3) -  a{,3 - 1 ) 0  =  1 -  a/3'2 (2.42)

Finally, to ensure stability it is required that A^ > —1. This condition results in the 

learning gain bound given in equation (2.43). Notice that for the case of 0 = 1 this result 

agrees with the earlier result of 0 <  a  <  2 .

0 < a < J r  (2.43)

This result indicates that to maintain  the stability of the batch mode update, the 

learning gain must be normalized by the square of the generalization. Based on this result, 

the weight update equation can be modified to eliminate the dependence of the
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generalization on the learning gain parameter as shown in equation (2.44). In this case, the 

weight update will result in stable adaptation as long as the modified learning gain a'  is 

chosen according to the bound 0 < a'  < 2 . It is interesting to note that this is smaller than 

the maximum stable learning gain in the case of sequential update.

w [k +1] =  w[fc] + ^ -A r (y -  y [k]) (2.44)

Figure 2.26 provides a comparison of the derived analytical learning gain bound 

superimposed on the previous numerically derived bounds. Notice that the Gershgorin 

bound is consistent with the numerical estimates. Additionally, the Gershgorin bound 

appears to be equal to the infinite network size generalization of the numerical bounds. This 

is a reasonable result given that the Gershgorin bound is independent of network size.

10'

N etw ork Size * 1 0

N etw ork Size *  25

N etwork Size *  100

N etw ork Size = 150

A nalytical Bound

100 125 150

G e n era liz a tio n  W idth

Figure 2.26 -  Analytical bound plotted with previous numerically determined bounds.
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The plot in figure 2.27 depicts the eigenvalues of a CMAC network of width 25 and 

learning gain 0.005 for different values of the generalization parameter. Figure 2.28 depicts 

the same results except for a network of width 100. The vertical line in each plot depicts th a t 

maximum stable generalization width as calculated via the analytical bound. Notice that the 

analytical bound provides an accurate bound in each case and the bound is closer to the 

numerical result in the case of the larger network.

<v
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>c
4)CJ>
lD

1

0.5

0
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-0.5

10 20 255 15
G eneralization Width

Figure 2.27 -  Eigenvalues versus generalization width for a network with 25 weights and learning gain 0.005.

J3
<0>
C<uO)

LU

1
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Figure 2.28 - Eigenvalues versus generalization width for a network with 100 weights and learning gain 0.005.
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Another important aspect of the weight adaptation is the rate of convergence. In 

general, the convergence is more rapid as the learning gain is increased. This can be 

explained in terms of the eigenvalue plots by the fact that the eigenvalues move toward the 

origin as the learning gain is increased. However, if  the learning gain is increased 

sufficiently, the most negative eigenvalues decrease to the neighborhood of -1.0 where they 

represent very slowly decreasing underdamped eigenvalues. Consequently, this can lead to 

an overall reduced rate of convergence. As a result, it is reasonable to expect that the 

optimal convergence rate is obtained for some intermediate learning gain, rather than 

exactly at the maximum stable learning gain.

The plot of figure 2.29 depicts the convergence rate versus learning gain for three 

different CMAC networks with 50 weights and generalization width of three. In each case, 

the initial weight vector is all zeros and the target vector is comprised of random numbers 

uniformly selected from the interval [0,1]. Convergence is defined here as achieving a total 

sum squared error over the entire vector of outputs of 0.01. The graph of figure 2.29 depicts 

the number of iterations required to reach convergence as a function of learning gain. The 

vertical line represents the analytical stability bound, above which the network is unstable. 

The maximum number of cycles tested was 100,000 and this results in the flat curve seen in 

the unstable region.

Analytical
Stability-
Bound

0.05 0.15 0.250 0.1 0.2

Learning Cain

Figure 2.29 -  Rate of Convergence versus learning gain.
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This result suggests that the optimal convergence rate is attained using a learning 

gain that is the largest gain which maintains stability. However, figure 2.30 presents rate of 

convergence results for the same network except instead of having randomly generated 

target vectors, the target vector is comprised of all ones. Notice that the convergence is much 

faster in this case and the nature of the convergence curve is fundamentally different in that 

the fastest convergence occurs at some point below the largest stable gain.

Analytical
Stability
Bound

T3

0.05 0.1 0.250.15 0.2

Learning Cain

Figure 2.30 -  Convergence rate versus learning gain for uniform target vector.

In conclusion, despite the fact that stability of the CMAC update is independent of 

the data being learned, the convergence rate is highly dependent upon the target data. At 

first consideration this seems implausible since the nature of the transient response of a 

linear system is determined by its eigenvalues, independent of the initial conditions and 

external inputs. However, the explanation is that not all of the eigenvalues necessarily 

contribute to the rate of convergence. Furthermore, the set of eigenvalues which are 

expressed in the output is dependent upon the target vector. The reason for this is that each 

eivenvalue governs the nature of the response in the direction associated with its 

eigenvector. If the initial conditions are chosen to lie on a line defined by a single 

eigenvector, then the dynamics will be governed solely by the associated eigenvalue.
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As an example of this phenomenon in a physical linear system, consider the simple 

circuit of figure 2.31. Solving the circuit equations for the two node voltages indicates that 

the system has two eigenvalues: one slow eigenvalue at -jfc and one fast eigenvalue at 

— If the system begins with initial conditions 1^=1 and V.2 =  1 then only the

dynamics associated with the slow eigenvalue will be expressed. However, if  the initial 

conditions are chosen as 1^=1 and V2 =  —1 then the dynamics are totally governed by the 

fast eigenvalue and evolve along its associated eigenvector.

R R2

rW V v w W \ n

T  T
Figure 2.31 -  Simple circuit to demonstrate the dependence of initial conditions on the transient response.

The coupling in the circuit in figure 2.31 is qualitatively similar to the effect of 

overlapping receptive fields in the CMAC weight update. Specifically, if  training points with 

overlapping receptive fields are similar in value, then the convergence will be more rapid. If 

nearby training points are dissimilar, the convergence rate will decrease. As a result, 

smoother functional relationships will generally experience more rapid convergence rates 

than rapidly varying maps. This agrees with the previous simulation results for the cases of 

a constant valued target versus the randomly generated target vector.

The batch mode update analyzed to this point is not well suited for use in real-time 

active disturbance cancellation applications. Instead, in such cases it is advantageous to 

utilize a sequential update algorithm whereby the error at each time interval is used to 

update only the selected weights at that instant. This reduces the storage requirements and 

distributes the training computation evenly over time. The weight dynamics associated with 

sequential update are different than for the batch mode updates even if  the same training 

data are utilized. This is due to the fact that in the sequential update there is an 

opportunity for interference between the weight updates produced by different training pairs
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within a single training epoch. However, it will be shown that for sufficiently small learning 

gain, the sequential weight update algorithm converges to the batch mode weight update 

result.

The sequential weight update will be considered for the case where the entire set of

M  training pairs is presented to the network in a fixed sequence. The sequential weight

update is given in equation (2.45) where a[&] represents the weight selection vector at 

discrete time interval k . The weight selection vector is binary valued and contains exactly 

(3 non-zero elements. Additionally, y[k] and y[k] represent the scalar CMAC output and 

scalar target value at time k . The CMAC output is calculated via the inner product of the 

weight selection vector and the weight vector as given in (2.46).

w[& +1] =  w[&] +  aa[fc] [y[k] — y[k}) (2.45)

y[k} = a[fc]rw[fc] (2.46)

Given that there are only M  training pairs, there are also only M  distinct values for 

the weight selection vector and target output. These will be denoted as a0,ax ,aw_L and 

&>■■■> yM-i > respectively. As a result, an entire epoch of training can be represented by the 

set of M  weight update equations given in (2.47) -  (2.50).

w[fc +1] =  w[k] + aa0 (y0 -  y[k]) (2.47)

w[fc + 2] =  w[ft +1] +  aax (yx -  y[k + 1]) (2.48)

w[fc +  3] =  w[k + 2] + aa2 (y2 -  y[k +  2]) (2.49)

w[fc + M}=w[k + M - 1 }  + aa (yM̂  - y[k  + M - 1]) (2.50)

Given that y[k + i) =  af w[k -h i] this set of weight updates can be rewritten as given

by (2 .51)-(2.54).

w[k +1] =  a a 0y0 + ( i  -  aa0a^ | w[k] (2.51)
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w[k +  2] =  aa^! +  ( i  -  a a^ f j w[fc +1] 

w[fc +  3] — a a j 2 +  ( /  — a a 2a2 j w[fc +  2]

(2.52)

(2.53)

w[k + M] — aaw_1yM_1 + ( / -  a a ^ a ^  ] w[fc +  M  -1 ] (2.54)

This set of equations can be combined into the single result given in (2.55) which 

expresses the aggregate change in the weight vector over an entire epoch of sequential 

training updates.

w[fc +  M] =  ( l  -  aa.jaTj )&iy i + jQ ( / -  aa^ajWfc] (2.55)
i= 0 i = M - \ - i  j= M -l

Under the assumption that the learning gain is small, higher order terms in a  can 

be neglected. After elimination of terms of a 2 and greater, this expression reduces to that 

given in equation (2.56).

t n —i  m  — i

w[& + M} = B.iyi +  I — â a? r[k] (2.56)

The cumulative weight update equation can be further reduced via algebraic 

manipulation to yield the expression in (2.57).

w[fc + M} = w[&] +  a ^ a ;  {yi -  afw[&]) (2.57)

The batch mode weight selection matrix, A , can be expressed as a composition of the 

individual weight selection vectors as given in (2.58). Additionally, the batch mode output 

vector, y , is given by (2.59).

y =  % Vi Vm --i] =[&>[&] &fw[k] a^jwffc]]

(2.58)

(2.59)
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Let k' denote a new discrete time index which is updated once per training epoch. 

Then, using (2.58) and (2.59), the approximate sequential weight update equation is given by 

(2.60) under the assumption that a  -C 1.

w [kr +1] =  w\k'} +  aA  (y — y[k\) (2.60)

Notice that equation (2.60) is exactly equal to the batch mode weight update equation 

given previously in (2.34). As a result, this shows that for sufficiently small learning gain, 

the sequential weight update algorithm will have properties which are well approximated by 

those derived for the batch mode update.
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CHAPTERS

FEEDFORWARD DISTURBANCE CANCELLATION 

USING NEURAL NETWORKS

3.1 Introduction

The concept of feedforward active disturbance cancellation was introduced in chapter 

two. In particular, it was shown that this approach is capable of effective cancellation in 

many linear time varying systems through use of an adaptive linear compensator. However, 

in many practical systems, the effectiveness of this approach is limited due to the presence of 

nonlinearities in the actuators and transmission paths of the system. For example, one 

common manifestation of nonlinearities in vibration and acoustic cancellation systems is the 

presence of energy at harmonics of the fundamental disturbance source. Effective 

cancellation in such environments is only possible by utilizing a compensator which is 

capable of representing the nonlinear dynamics of the system. This provides the motivation 

in the present chapter for considering the use of a time delay neural network as an adaptive 

compensator in feedforward disturbance cancellation.

The feedforward time delay CMAC disturbance cancellation architecture is shown in 

figure 3.1. The signal u[k\ represents a disturbance which propagates through the generally 

nonlinear history-dependent dynamics of g() and /2(-) to produce the observed error signal, 

e[k]. Usually, an exact measurement of the original disturbance is not available and instead 

some related estimate of that signal is used. This possibility is represented in the block 

diagram by the function /i(-) which represents a nonlinear distortion of the actual
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disturbance signal. The time delay CMAC utilizes the estim ate of the original disturbance to 

generate a cancellation signal which influences the original disturbance at the summing 

junction. The functions f ^ )  and j£Q represent the path of the cancellation signal which is 

commonly referred to as the secondary path. The first component of this path, £(■), 

represents the dynamics associated with the cancellation actuator and the signal 

transmission path which is unique to the cancellation signal. The second component, 

represented by ,£(•), represents the portion of the secondary path which is common to both 

the original disturbance signal and the secondary cancellation signal. Finally, /3() 

represents the possibility for dynamics introduced in the sensing of the error signal. This 

includes any distortion produced by the error sensor as well as the delay and quantization 

associated with conversion of the error signal into the digital domain.

u{k] g{')

* ( ■ )

/ ( • )

/,(•)

CMAC

Figure 3.1 -  The Time Delay CMAC feedforward disturbance cancellation algorithm.

In order to provide attenuation of the error signal, the CMAC must be trained such 

that the combined cancellation path comprised of h( ) , the time delay CMAC, and /;(■), 

approximates the forward path, g(-). Given the nonlinear mapping capabilities of the 

CMAC, this architecture can be used to accommodate a wide range of nonlinearities in both 

the forward path as well as the reference signal path. This architecture provides a particular 

advantage in the case of narrowband feedforward cancellation since the time delay CMAC 

allows for the use of a reference signal which is not linearly related to the actual disturbance.
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For example, a suitable reference signal can be provided by a sensor generated sawtooth 

waveform at the fundamental frequency of the disturbance.

The usual method of training the CMAC neural network is via an incremental weight 

adjustment designed to implement a stochastic gradient descent of the instantaneous output 

error. However, in the present case, the output error is unknown due to the presence of the 

secondary path dynamics represented by JJQ and /2(-). If an inverse model of the secondary 

path were available, it could be utilized to transform the observed error signal, e[k), into the 

corresponding error at the output of the compensator. However, the secondary path often 

contains time delays and non-minimum phase dynamics which render the inverse noncausal 

and unstable, respectively. As a result, in order to provide effective adaptation of the CMAC 

compensator, the weight update algorithm must be revised to directly utilize the observed 

error signal, e[k] . In general, the modified weight update algorithm will be dependent upon 

the nature of the secondary path. In this chapter, suitable modifications to the training 

algorithm will be presented which ensure stability of the adaptation for a variety of 

secondary paths including those characterized by: linear gains, static nonlinearities, time 

delay, linear dynamical systems, and full nonlinear dynamics.

3.2 Static Linear Secondary Path

In this section, performance of the time delay CMAC compensator will be considered 

in the case of a secondary path which is comprised solely of static linear gain elements. 

Stability of the weight update algorithm will be considered in the context of figure 3.2 where 

the nonlinear portion of the forward path is itself represented by a time delay CMAC. This 

technique has been utilized previously to attain convergence results for open and closed loop 

CMAC learning [49]. In essence, this approach circumvents the issue of whether a particular 

relationship can be represented by the time delay CMAC by focusing instead on the 

convergence of the algorithm under the assumption that the desired relationship can be 

modeled by a CMAC with appropriately chosen parameters. The parameters of the forward
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path model (CMAC A) are unconstrained and therefore, with appropriate choices, this model 

can represent a wide variety of nonlinear dynamical signal paths. These parameters include 

the CMAC receptive field placement, the generalization width, the input coarse-coding 

structure, the tap delay, and the number of taps in the tapped delay line.

m
m

m

CMAC

CMAC

Figure 3.2 -  Time Delay CMAC compensator with linear secondary path.

At each discrete time instant, the CMAC outputs are computed as a linear 

combination of the f3 active weights, where (3 represents the CMAC generalization 

parameter. This is true independent of the input dimension of the CMAC. A convenient 

representation of the CMAC is afforded by organizing the complete set of CMAC weights into 

a single vector. Using this convention, the selection of the active weight set can be performed 

by a time varying binary weight selection vector, a[&], which contains exactly (3 elements of 

value 1 at the locations of the active weights. As a result, the CMAC output at each instant 

of time is concisely represented by the inner product of the weight selection vector and the 

weight vector. Thus, the nonlinearity of the CMAC mapping is contained entirely in the 

formulation of the vector a[&]. Utilizing this technique, the output of CMAC A is given by 

equation (3.1) where w represents the weight vector for the forward path CMAC. It is 

assumed that the forward path model is not time varying and therefore, the weight vector is 

constant valued.
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y[k) — a[fcfw (3.1)

The fundamental assumption to be utilized in this approach is that the architecture 

of the compensator is a direct match to the forward path model. Specifically, it is assumed 

that all parameters of time delay CMAC A are identical to the corresponding parameters of 

CMAC B. With this assumption, and given that both networks have the same input vector,

the weight selection vector is also identical in both cases. As a result, the output of CMAC B

is given by (3.2) where w[fc] represents the time varying compensator weight vector.

y[k] =  a[*fw[fc] (3.2)

The error signal to be minimized by the compensator is given by equation (3.3) and 

the compensator weight update is performed using the standard CMAC algorithm given in 

(3.4) except that the observed error signal, e[k], is used to replace the CMAC output error. 

The parameter a  specifies the learning gain, while the parameter j3 represents the 

generalization width.

e[k] =  G, {Giy[k) -  G2y[k\) =  G f i A ^ f  w -  G2G3a[kf w[k] (3.3)

CV
w[k+ 1] = w[k] + —a[k\e[k] (3.4)

Given this description of the operation of the disturbance cancellation algorithm of 

figure 3.2, it will be shown that the error signal e[k] is convergent to zero under the condition 

that the learning gain parameter satisfies the bound given in (3.5).

0 < a < ——  (3.5)
G/G,

Notice that the learning gain bound depends only on the gain within the path of the 

cancellation signal. Additionally, for G2 =  1 and G3 =  1 this result reduces to the standard 

CMAC output error learning gain bound of 0 < a  <  2 . Before presenting the proof of this 

learning gain bound, Lemma 3.1 is derived as an intermediate result for use in this and later 

theorems.
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Lemma 3.1 -  Convergence o f a  D iscre te  Increment: Given a discrete time signal V[k] 

such that V[*] is a decreasing sequence (i.e. V[k +  1] < V[k]) and V[fe] is bounded below (i.e.

V[k] > K  e  R V*), then lim (V[k + 1] -  V[k}) =  0.
k~»oo

Proof:

Since V[k) is a decreasing sequence which is bounded below, its limit exists and is 

finite as given by equation (3.6) [65],

lim V[k] = L >  K  (3.6)
k—*oc

Let an arbitrary e > 0 be given. Let £ ' = ^ £ > 0 .  Then statement (3.7) follows from 

the definition of the limit in (3.6).

3 K '  a IV[k] -  L\ < e' Vfc > K '  (3.7)

Use of the triangle inequality and the definition of e ' yields the inequality in (3.8).

I V[k +1] -  V[k] I =  \(V[k + 1 ) -L )  + ( - V[k} + L) |

< \V[k +1] — L| + 1—U[fc] +  L\ (3.8)

=  IV[k + 1] -  L\ +  |n*] -  L\ <  2 s ' =  £

It has been shown that given any arbitrary e > 0, there exists K '  such that

|F[* +1] -  V[k}\ < e for all k > K ' . Therefore, lim (V[k +1] -  F[fc]) =  0. □

Theorem 3.1 -  Convergence o f  CMAC with a  Linear Gain Secondary Path: Consider 

the block diagram of figure 3.2 with dynamics specified in equations (3.1) through (3.4). 

Implicit in these equations is the fact that CMAC A and CMAC B have identical 

architectures. Let /3 > 0 denote the common CMAC generalization parameter. It is 

assumed that the path gains are strictly positive. That is, G^> 0 , G2 > 0 , and G3 > 0 .

Under these assumptions, i f  the learning gain is chosen such that 0 < a <

then lim e[k) =  0, thereby proving that the system is convergent.
k—>oo
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Proof:

Let D[fc] be the weight difference vector scaled by the respective path gain to the 

observed error signal as defined in equation (3.9). Additionally, let V[k] be as defined by 

(3.10) and notice that it is non-negative for axxyk .

D[jfc] ^  Gf i3w -  G2G3w[k] (3.9)

F[fc] =  D[JbfD[A;]>0 (3.10)

Notice that V[k] is a measure of the aggregate difference in the CMAC outputs over

all possible inputs. To determine the variation in V[k\ per discrete time interval, its value at

time k + 1 can be derived as shown in equations (3.11M3.15).

V[k +1] =  D[fc +  l]rD[A; +1] (3.11)

=  {G ^ w  -  G2Gsw[k +  l ] f  {GtG3w -  G2G,w[* +1]} (3.12)

a
G1G3w  -  g2g3w[k\ -  G2G3 y[k)a[k)

aG f i3w -  G2G3w[k] -  G2G3 ^e[k]a[k) (3.13)

= V{k) + G l G l ~ e 2m k f ^ [ k }  -  2 G2G3 ^e[k]a[k)T {Gfi3w  -  G2G3w{k}}

V[k] + G l G l ^ j e 2[k}a[kfa[k) -  2G2G3 - e 2[k)

(3.14)

(3.15)
{3 2 6 P

It follows directly from the CMAC algorithm that a[k]T a[k] — fi . With this result, the 

expression in (3.15) can be further reduced as shown in (3.16). Additionally, with the given 

bound on the learning gain, the increment V[k + 1] — V[k] is strictly non-positive although it 

may be zero, specifically in the case where e[k] — 0 .

2
V[k +1] — V[k] — — GjG|e2[ 

P
a  — -

g2g3
< 0 (3.16)

From (3.16), V[k\ is a decreasing sequence and V[k\ is bounded below by zero. 

Therefore, the conditions of Lemma 3.1 hold and the limit in (3.17) exists.
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Since the multiplicative constant of e2[k] is strictly non-zero, this result implies that 

lime2[k] =  0 and therefore, lime[k] = 0 . □
k—> oo k—*oo

Notice that the result of theorem 3.1 indicates that the stability of the compensator 

weight update depends only on the loop gain of the secondary path, G2G3 , and not on the 

forward path gain Gl . Additionally, for any finite value of gain in the secondary path, the 

learning gain can be set so as to guarantee convergence of the algorithm. This result is 

independent of the architecture of the tapped delay line and CMAC parameters.

For a qualitative explanation of this proof, consider the illustration of figure 3.3 

which depicts V[k\ as a function of time. Result (3.16) follows directly from the operational 

equations of the CMAC and shows that V[k] is a decreasing function. That is, on each 

discrete time interval, V[k] either decreases or remains the same value. Since V[k] is also 

strictly non-negative by its definition, it must converge to some (unknown) limiting value, 

f i > 0 .

L - e

r
Figure 3.3 -  Convergence of F[fc].

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Given the existence of a limit for V\k], there exists some time K '  such that for all 

k >  K '  the sequence V[k] is constrained to remain within the shaded region of figure 3.3. As 

a result, any increment in V[k] must be bounded by 2e . However, e2[k] is linearly related to 

the increment in V[k\ as shown by (3.16). As a result, e2[k] is also bounded. Since this 

bound can be made arbitrarily tight by going out further in time, this proves that e2[k] —► 0. 

Notice that, despite the fact that V[k] is monotonically decreasing, the error signal e2[k] is 

generally not monotonically decreasing.

As an alternative to the presented proof of Theorem 3.1, it is reasonable to consider 

V[k] as an energy function and directly apply the second method of Lyapunov. However, 

there are several difficulties associated with this approach. First, the energy function 

increment, V[k + 1] — V[k], can equal zero even if V[k] does not equal zero. Therefore, the 

LaSalle Invariance principle must be employed to show that the increment could not remain 

zero for all time [3]. Additionally, the discrete time system for D[fc] is not an autonomous or 

time independent system since the weight selection vector varies independent of the states 

D[fc] and therefore represents an external forcing term. That is, the next state vector 

D[fc +  1] is not solely a function of D[ft], but also depends on a[fc] which varies independent of 

J}[k]. This must be taken into consideration by utilizing the Lyapunov method for time 

variant systems. Finally, a fundamental dilemma in this approach is that the successful 

application of the Lyapunov method would show that D[&] —> 0 as k —* oo . This is a 

sufficient but not necessary condition to show that e[k] 0 as k —> o o . Specifically, it is not 

necessary for all weight differences to converge to zero in order for the observed error to 

converge to zero. There are two reasons for this. First, there can be dormant weights which 

are not accessed and therefore do not contribute to the output in the long term. Second, 

there are different linear combinations of weights that produce the same CMAC output. 

These two cases are demonstrated using a simplified three weight CMAC network.
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Consider the three weight reference and target CMAC weight vectors of figure 3.4 

where the weights happen to have the values shown at some discrete time instant. It is 

assumed that the CMAC input signal is a constant so that the same three weights are 

selected at every time interval and let Gl = G2 — G3 — 1. Since the reference and 

compensator CMAC have the same output, the error signal e[fc] will be equal to zero for all 

time. However, D[fc] =  [1 0 if  ̂0. Thus, different linear combinations of weights can

yield zero error without requiring the weight vectors to match. Since the CMAC generally 

represents a significantly under-specified function approximation, it will usually be the case 

that there will be many weight vectors which produce the same outputs over the training 

data set. Therefore, the error can be reduced to zero without requiring that the reference 

and compensator weight vectors match identically.

w w[fc]

Figure 3.4 -  Different weight vectors producing identical outputs.

A second example of this phenomenon occurs when certain dormant weights are not 

accessed in the long term and therefore due not contribute to the long term error. Consider 

the situation illustrated in figure 3.5 where it is assumed that the CMAC input is a constant 

which addresses the first three weights as shown. With the weight values shown, the 

outputs match and as a result, the error will be zero. However, the weight vectors do not 

match and therefore D[fc] =  [0 0 0 9 f  ** 0 . Such dormant weights can be produced in two

ways. First, they can be created as a result of differing initial conditions on weights which 

are never visited. Second, they can result from weights which are visited a finite number of 

times, but then never visited again (as perhaps on an initial transient response). As a result, 

the weight values will never match, but since they are not accessed as time goes to infinity, 

they have no contribution to the observed error in the long term.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



w w[jfc]

Figure 3.5 -  Dormant weights with identical network outputs.

These examples indicate that there are many cases where the weight vector of the 

compensator will not converge to the weight vector of the reference CMAC and yet the 

observed error is still convergent to zero. To accommodate such situations, the proof of 

Theorem 3.1 is based directly on the definition of the limit of the error signal, e[k].

In summary, it has been shown that the nonlinear feedforward CMAC cancellation 

algorithm shown in figure 3.2 is asymptotically stable for appropriate choice of the learning 

gain. The proof is based on the fact that the nonlinear signal path can be modeled as a time 

delay CMAC. The Time Delay CMAC has the ability to model a wide variety of nonlinear 

behaviors, and therefore, this is not an unreasonable assumption. Additionally, it was 

required that the compensator CMAC have the same parameters as the reference CMAC. In 

practical applications, this means that there may be some experimentation required to set 

the compensator CMAC parameters to adequate values. Notice that the result of theorem  

3.1 holds regardless of the length of the tapped delay line input to the reference CMAC.

3.3 Static Nonlinear Secondary Path

In this section, the approach used in the case of a linear secondary path will be 

employed to determine the stability of the algorithm for a secondary path comprised of a 

static nonlinearity. This situation is depicted in figure 3.6 where /(•) represents a 

memoryless nonlinearity while linear gains Gx and G2 allow for a difference in gain between 

the forward and cancellation paths. As in previous section, it is assumed that the 

parameters of CMAC A are appropriately chosen to model the actual forward path and that 

the parameters of CMAC B are chosen to match identically.
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u[k}

*■ e[k]

m

/ ( • )
CMAC

CMAC

Figure 3.6 -  Feedforward CMAC disturbance cancellation with a static nonlinear secondary path.

The operational equations for this system are given by equations (3.18)-(3.21). The 

CMAC output equations are given in (3.18) and (3.19). The error signal is computed via 

equation (3.20). The weight update in (3.21) is based on the standard CMAC algorithm 

except that the observed error signal is used in place of the CMAC output error.

y[k] — a.{k]Tw (3.18)

y[k\ — a[A;f w[fc] (3.19)

e[k] =  /  (x[k\) =  f  ((?!#] -  G.2y[k]) (3.20)

It is necessary to impose certain constraints on /(•) in order to establish the 

convergence of this algorithm. Specifically, it is assumed that there exists some parameter 

m >  0 such that the nonlinearity is bounded according to (3.22M3.24).

mx  >  f(x)  >  0 Vx > 0 (3.22)

mx < f(x)  <  0 Vx < 0 (3.23)

/(0) =  0 (3.24)

If these conditions are met, then the error signal will be convergent to zero as long as 

the learning gain is chosen according to the bound in (3.25).
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a < (3.25)
mG2

Depicted graphically, the nonlinearity must be contained within the shaded region of 

figure 3.7. Since the constant m  can be chosen arbitrarily large, the region of allowable 

nonlinear functions can be readily extended. However, an increase in the parameter m 

requires a proportional reduction in the learning gain. Notice that there are no additional 

constraints on /(•) aside from these bounds. In particular, it is not required that /(•) be 

differentiable or even continuous. The proof of this result is given in Theorem 3.2.

y=f ( * .

Figure 3.7 -  Boundary of permissible nonlinear plant functions.

Theorem 3.2 -  CMAC Convergence with a S ta tic  Nonlinearity in the Secondary Path:

Consider the feedforward disturbance cancellation system shown in figure 3.6 with dynamics 

specified by equations (3.18M3.21). Implicit in these equations is the fact that CMAC A and 

CMAC B have identical architectures. Let (3 > 0 denote the common generalization width 

parameter. It is assumed that there exists some m > 0 such that mx > f(x) > 0 Vx > 0 , and 

—mx < f(x) < 0 \fx < 0 . Additionally, /(0 ) =  0 . It is also assumed that Gx > 0 and G2 > 0 .
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Under these conditions, if the learning gain parameter is chosen such that 0 < a < , then

lim elk] — 0.
k—> oo

Proof:

Let D[k] be the weight difference vector defined by (3.26). Additionally, let V[k] be 

defined by (3.27) and notice that V[k] is non-negative for all k .

D^G jW -G ^w Ifc] (3.26)

V{k] 4  B[kfB[k} >  0 (3.27)

Using these definitions and the operational equations (3.18M3.21), it is possible to 

derive an expression for the change in V[k] over any discrete time interval as follows.

V[k +  1] =  T>[k +  If D [k + 1] (3.28)

=  {GjW — G.2-w[k +  l)}f {GjW -  G2w[k + 1]} (3.29)

T
G1 w — G2vf[k] — G2 ■̂ •e[fc]a[A;] G,w -  G.2w[k] -  G2 ^e[k]a[k] (3.30)

of= V[k] + G\ - y e 2[fc]a[A;f a[&] -  2G2 -e[k]a[kf  {Gtw -  G2w[&]} (3.31)
P P

Given that a[kf  a[fc] =  P and e[k] — f(x[k}) this expression can be utilized to derive 

the following result for the incremental change in V[k] as given by equation (3.32).

V[k + 1 ] - V[k] =  ^ - f ( x [ k ] f  - ^ X[k}f(x[k}) (3.32)

Inequalities (3.33) and (3.34) follow directly from the bounds on /(■). Additionally, a

combination of these inequalities provides the result in (3.35).

|/(r[&])| < |mr[fc| (3.33)

x[k]f(x[k}) > 0 (3.34)

x[k]f(x[k}) > — f(x[k]f  (3.35)
m
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The inequality in (3.35) can be utilized to place a bound on the expression in (3.32) as 

the following result shows. The final inequality in this expression follows directly from the 

learning gain bound.

V[k + l]-V[k]  = ^ f { x [ k ] j -2 2G2n x[k]f(x[k})

<
s~i2 2
( j r «  QL

(3
Gga

P

/(a 2G2a
pm

(3.36)

a  — -
G„m

< 0

Since V[k] is a decreasing sequence by (3.36) and since V[k] is bounded below by 

zero, the conditions of Lemma 3.1 are met and the limit (3.37) exists.

lim (V[k +1] — V[fcl) =  0 (3.37)
k—*oo

By the sequence squeeze theorem [65] and the inequality shown in (3.36), the limit in

(3.38) exists.

G'ja 
] S3

a ■
G2m

e2 [k] = 0 (3.38)

The multiplicative constant of e2[k] in (3.38) is strictly non-zero given the learning

gain bound, and therefore lim e2[k\ =  0 and lim e[k) = 0. □

3.4 Band-Limited CMAC Compensators for Dynamical Systems

The systems considered to this point in the chapter have been characterized by 

secondary paths which contained only static or memoryless transfer properties. In most 

practical applications, this is far from the case. In fact, most physical secondary paths 

contain significant and unavoidable transport delay as well as phase delay which varies with 

frequency. For example, consider the case where the signal paths are represented by linear 

dynamical systems as shown by figure 3.8. In this illustration, the secondary path is 

modeled by the linear transfer function P2(s) while P^s) represents the forward disturbance
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signal path. The transfer function P3(s) represents a linear distortion of the disturbance 

source which accounts for the fact that the disturbance signal may not be directly accessible 

to the compensator.

Observed
Error
E(s)

D isturbance 
Source _  

D(s)

P2(S)

CMAC

Figure 3.8 -  CMAC Compensation with Dynamical Secondary Path

Implementation of the pictured disturbance cancellation algorithm requires a means 

to update the CMAC network in a manner which reduces the observed error signal. In the 

previous two sections, the standard CMAC weight update was used directly with the 

observed error signal. However, this was only possible because there was no phase delay 

present in the secondary path in either of those cases. In the case of figure 3.8, direct use of 

the CMAC will often lead to instability and lack of convergence. As an example, consider the 

extreme situation where the secondary path, P2(s) , is comprised of a 180 degree phase shift. 

In that case, the error signal will be inverted, leading directly to instability of the weight 

update.

The standard CMAC weight update requires a measure in the error of the CMAC 

output. In the system of figure 3.8, this signal is not observable and the only available error 

signal is that measured at the other end of the secondary path. One possible solution to 

provide convergent adaptation is to utilize an inverse model of the secondary path to 

transform the observed error signal into an error signal at the CMAC output by essentially 

inverting the dynamics of the secondary path. This approach is shown in figure 3.9. 

Unfortunately, this approach is not feasible in most active disturbance cancellation problems
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since a stable, causal inverse model of the secondary path does not exist. A causal inverse 

will not exist if the secondary path contains a pure time delay as is commonly the case in 

acoustic cancellation systems. A stable inverse will not exist if  the secondary path is non

minimum phase as is also common in active noise and vibration control applications.

D isturbance
Source _  

D(s)
P ,(S )

P2(S)

CMAC

Figure 3.9 -  CMAC adaptation with inverse secondary path modeL

As described in Chapter 2, this same obstacle is faced in the case of a linear adaptive 

compensator. In that case, a common and effective solution is to utilize the Filtered-X LMS 

algorithm. However, this technique is not applicable to the case of a nonlinear adaptive 

element. To demonstrate its failure in this case, consider use of the Filtered-X LMS 

algorithm with the adaptive filter replaced by a time delay CMAC network as shown in 

figure 3.10.

D isturbance 
Source _ 

D(s)

O bserved
Error
E(s)

Y(s)

X(s)

X{s)

P3(s)

Adaptation
Algorithm

TDCMAC

Figure 3.10- Attempt at using Filtered-X LMS Technique.
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The transfer function P2(a)r is a model of the true secondary path P2(s). The CMAC 

adaptation is performed using pointers formed by a filtered version of the input. To achieve 

perfect cancellation, the time delay CMAC must transform its input X(s) into the signal

Y(s)p-l(s) as represented by the mapping given in (3.39).

X(a) -+ Y(s)Pf L(s) (3.39)

However, the actual input to output relationship being used to train the CMAC 

network is given by (3.40), assuming P2(s)' =  P2(s).

X(s)P2(s) -+ Y(s) (3.40)

Notice that these two mappings are linearly related since multiplying each side of

(3.39) by P2(s) results in (3.40). Therefore, if  the compensator is constrained to represent 

only a linear relationship, the implementation of the mapping (3.40) implies that the 

relationship given in (3.39) is realized as well. Thus, in the case of an adaptive linear 

compensator, this algorithm is appropriate. However, a nonlinear compensator such as the 

time delay CMAC does not have the constraint of linearity and therefore, training on the 

relationship in (3.40) does not generally result in the implementation of the desired mapping 

of (3.39).

However, it is possible to utilize this technique directly in the special case where the 

secondary path is comprised of a pure time delay as shown in figure 3.11. In this case, the 

desired mapping to be learned is given by (3.41) and the relationship used for the adaptation 

is given by (3.42).

X(s) Y(s)eaT (3.41)

X(s)e~sT -* Y(s) (3.42)

Notice that these two mappings represent the same functional relationship at two 

different instants of time. Given that the CMAC mapping is time invariant (neglecting the

slow time scale adaptation), adaptation using a delayed version of the input and output

signals will produce the same final result as if the original signals were used. This technique
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can be directly extended to the case where the secondary path is represented by a pure time 

delay in combination with a static mapping. As long as the mapping does not reverse sign 

then there will generally be a learning gain which allows for stable adaptation in this case.

Disturbance 
Source _  

D(s)

Observed
Error
E(s)

Y(s)

X(s)

X(s)

,-sT

-sT

TDCMAC

A d a p ta tio n
A lg o rith m

Figure 3.11 -  CMAC compensation o f a plant with transport delay.

Another potential application of this approach is the case of a narrowband 

disturbance signal and a secondary path which has a relatively linear phase response across 

the frequency band of interest. In this case, the secondary path can be adequately 

approximated by a static gain in combination with a time delay. As a result, the time delay 

method of figure 3.11 can be utilized if  the training pointer delay is chosen to estimate the 

average phase delay through the secondary path at the frequency of interest. However, it is 

important to note that a stability problem can still arise in this case. This can occur if  the 

secondary path phase shift is sufficient to induce instability at any frequency, even outside 

the frequency band of interest. Even though the fundamental disturbance may be well 

removed from such unstable frequencies, it is possible that energy at the unstable 

frequencies can be introduced by noise or as a result of the adaptation process itself. If 

sufficient energy is introduced at the unstable frequencies, the architecture can become 

unstable.

As an example of this phenomenon, consider the simulation result presented in 

figure 3.12. In this case, the disturbance source is a single sinusoid and the secondary path 

is represented by a second order linear transfer function. The phase delay of the disturbance 

through the secondary path was used as a time delay for the training pointers. Notice that
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the error signal converges to near zero error initially. However, application of an external 

noise source during the time interval t=190 to t=200 results in the introduction of noise at 

frequencies which make the adaptation unstable. As a result, the weight update process 

becomes unstable and remains unstable even after the disturbance is removed. In other 

cases, the effects of this phenomenon are not so dramatic. Often it can result in a higher 

level of residual noise rather than full instability. Additionally, the effects can often be seen 

without the introduction of an external disturbance due simply to noise created by the 

training process.

O) |***
fc -0.5

-1.5
300 450 500100 150 200 250

Time
350 400

Figure 3.12 -  Error signal for the case of a second order linear secondary path.

A means to eliminate this potential instability is provided by the band limited CMAC 

presented in figure 3.13. In this algorithm, the input to the CMAC is filtered by a linear 

bandpass filter designed to pass only the narrow frequency band of interest. Additionally, 

the output of the CMAC is filtered so that it is unable to produce frequencies outside of the 

range of interest. By using linear phase digital FIR filter implementations, the total phase 

response of the filters is simply a time delay. This time delay can then be added to the plant 

phase estimate time delay. As a result of the band pass filters, the CMAC input and output 

are confined to the frequency band of interest. This reduces the possibility that the CMAC 

training process will introduce noise which will result in unstable learning. Additionally, as 

a result of the input and output filtering, noise from external sources will be eliminated from 

the feedback path as well.
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Figure 3.13 -  Band-limited CMAC Compensator.

Figure 3.14 depicts simulation results for the band limited CMAC implemented on 

the same secondary path as used in the simulation of figure 3.12. Notice that in this case the 

introduction of external noise at the CMAC output over the time interval of t=350 to t=375 

no longer results in instability of the learning process.

1.5

0.5

u i -0.5

-1.5 0 50 100 150 200 250 300 350 400 450 500

Time

Figure 3.14 -  Simulation of the band limited CMAC.

3.5 Time Delay Secondary Path

In the previous section, it was shown that the presence of a time delay in the 

secondary path could be accommodated by the learning algorithm through the addition of a 

model of that delay in the training input. In this section the convergence of this algorithm is 

considered in more detail. In general the presence of the delay complicates the convergence 

proof considerably. In fact, it will be shown the convergence no longer depends solely on the 

learning gain but also on the degree of overlap in neighboring inputs, the length of the time 

delay, and the rate of variation in the error signal.

Convergence of the algorithm will be considered in the context of figure 3.15. The 

forward path is represented by the nonlinear dynamics of time delay CMAC A and linear
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gain (?!. The secondary path is modeled by the linear gain G3 and a pure transport delay of 

M  discrete time intervals. The compensator, realized by CMAC B, is represented by two 

conceptual networks to indicate that the weight adaptation is performed using a different 

input than is used for generating the compensator output. Specifically, the input used for 

the weight adaptation is a delayed version of the compensator input where the delay is 

chosen to match the secondary path delay. It is assumed that all parameters of the 

compensator CMAC are identical to the corresponding parameters of the forward model 

CMAC.

m

m

AM

AM
CMAC

CMAC

CMAC

Figure 3.15 -  CMAC Disturbance Cancellation with Secondary Path Time Delay.

The reference and compensator CMAC outputs are given by equations (3.43) and 

(3.44), respectively. The error signal is calculated via equation (3.45) and the compensator 

adaptation is performed using the weight update given in (3.46). Notice that the weight 

selection vector used for the weight update, a[k — M ] , is simply a delayed version of the 

selection vector used for computing the compensator output.
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y[k] =  a[k]Tw  (3.43)

y{k] = a[k]T w[k] (3.44)

e[k] = G, {G,y[k] -  G2# ] )  (3.45)

/•v
w[& +1] =  w[k] -)— a[k — M]e[k — M] (3.46)

/3

For any given input vector, the CMAC network references a set of /? weights which 

lie within the selected receptive field. In the case where the same weights are referenced by 

two different inputs, there is said to be a receptive field overlap between those two training

inputs. In the present architecture, the CMAC parameters are generally picked such that

there is significant overlap between inputs which occur nearby in time. This provides 

generalization between adjacent time instants which usually results in smoother and more 

rapid convergence. However, in the case of the time delay update algorithm, overlapping 

receptive fields can impair the stability of the algorithm. The reason for this is that any 

given weight update is not reflected in the error signal until M  samples after the 

adjustment is made. Therefore, adjustments made on the weights referenced by multiple 

nearby inputs will be performed without knowledge of previous updates already 

implemented on those weights. As a result, weights which are referenced by multiple nearby 

points can become over-compensated leading to instability in the adaptation process.

It will be shown that conditions for guaranteeing the convergence of this algorithm 

can be established. In general the learning gain must be reduced based on the degree of 

receptive field overlap, the amount of secondary path time delay, and the rate of variation in  

the error signal. However, before considering the general convergence result, a simplified 

case is considered where it is assumed that there is no receptive field overlap between any 

two CMAC inputs within any M  time step interval. In this case, it will be shown that the 

algorithm is convergent as long as the learning gain is chosen such that 0 < a < .

Therefore, if  there is no receptive field overlap, the learning gain bound is the same as in the 

case where there is no time delay present. This indicates that the potential deleterious
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effects to the convergence are directly a result of overlapping weights. In practice, 

overlapping receptive fields could be eliminated in most cases by choosing sufficiently fine 

input quantization and sufficiently small generalization with respect to the spacing of points 

in the sampled disturbance signal. However, such parameter choices would limit the CMAC 

generalization to the point where the convergence would be adversely affected.

Theorem 3.3 -  CMAC Convergence w i t h  a  Time Delay Secondary Path for the case  o f  

Non-Overlapping Receptive Fields: Consider the feedforward disturbance cancellation 

system of figure 3.15 with dynamics described by equations (3.43M3.46). Implicit in these 

equations is the fact that CMAC A and CMAC B have identical architectures. Let 0  > 0

denote the common CMAC generalization parameter. It is assumed that there is no

receptive field overlap in any M  time step window. More precisely, it is required that

a[A;fa[fc-i] =  0 Vi 6 . It is assumed that Gl > 0 , (?2 > 0 ,  andG3 > 0 . Under

these conditions, if  the learning gain parameter is chosen such that 0 < a  < then 

lim e[k] — 0 showing that the algorithm is convergent.
fc—► o o

P roof:

Let D[&] and V[k] be defined by (3.47) and (3.48) and notice that V[k] is non-negative 

by its definition.

D[k] 4  G f i 3w -  G2G3w[k] (3.47)

V[k) =  D[&f D[&] > 0 (3.48)

An expression for the increment in V[k) can be derived as shown by the following 

expressions, utilizing the fact that a[k — Mf&[k — M] = 0 .

V[k + 1} =  D [Jfe +  I f  D [Jfc +1] (3.49)

=  { G & w  -  G2G3w[k + 1}}T {G1G3w -  G.2G3w[k +1]} (3.50)
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aG f i3w  -  G2G5w[k] -  G2G3 -  e[k -  Af]a[Ar -  M]
0

aG f isw -  G2G3w[&] - G 2G3-  e[k -  M]a[fc -  M]
(3.51)

F[fc +  i]-y[fc] =  - -2G,G,a a 2GlGli ^ e [ fc _  M]a[fc -  M]r(G1G3w -  G2G3w[fc]) +  ■ f ^ -e2[A: -  M] (3.52)

Notice that the last term in (3.52) contains the product of the weight selection vector 

at time k — M  and the weight vectors at time k . To simplify this expression, it is necessary 

to derive an expression for the compensator weight vector at time k as a function of the 

weight vector at time k — M .  To that end, consider equations (3.53) -  (3.55) which depict the 

weight updates performed at consecutive time instants.

(3.53)aw[fc] =  w [k — 1] -I— a[k — M  — 1 }e[k — M  — 1] 
0

aw[& — 1] =  w[k — 2] +  — &[k — M  — 2 ]e[k — M — 2] (3.54)

w[k — M  + l] — w [k — M]+ — a[k — 2 M]e[k - 2  M) (3.55)

These equations can be combined into a single expression by starting with (3.55) and 

then back-substituting into each of the previous equations. The result of this operation given 

in (3.56) represents the total change in the compensator weight vector from time k — M  to 

time k .

W re =  W\k -  M] + — Va[fe -  M  -  i\e[k - M - i }
0 i ^

(3.56)

Substituting this result into equation (3.51) yields the modified V[k) update 

equations given in (3.57) and (3.58).

V[k +1] -  V[k) = 2G2Gi - e[k -  M]a[k -  M f  (G fiw  -  G2G3w[k -  M ])
0

2°  G&  e[k — M]&[k -  M f J  a[fc - M -  i]e[k - M - i }  + a G} Gj - e2[ k -M ]
(3.57)

0l 0
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V{k + 1}-V[k] = - -2G2G3oc jr. G2G2G3 2n s/Ti
(3 13

+ -
2 a 2GlGl

(3.58)

/32 «
J 2  a [k -  M f  a [ k - M -  i}e[k -  M]e[fc — M  — *]

However, given the assumption of non-overlapping receptive fields, 

a[kf a[k -  i] — 0 V* € , the expression in (3.58) reduces to (3.59).

V[k +1] -  V[k] =  ^ — e2[k -  M] — — — — e2[fe -  M]

a
a  -

(3.59)
e2[ k - M } <  0

Since V[k] is a decreasing sequence by (3.59) and since V[k) is bounded below by 

zero, the conditions of Lemma 3.1 are met and statement (3.60) follows.

2r G2G;a 
lim 2 3...
/e—»c o m . ,

e [k — M)= 0 (3.60)

Since the multiplicative constant of e2[k — M] in (3.60) is strictly non-zero, this 

implies lime2[k -  M] =  0 and therefore, lim e\k\ =  0. o
k—+oo k—y o c

In order to obtain a result a more general result, it is necessary to impose a bound on 

the rate of change of the error signal. Specifically, it is assumed that there exists some value 

of R  which serves as a bound on the rate of change of the error signal over any M  time step 

interval as given in (3.61).

V* € {1,2, —,M}
|e[k -  i]| < K|e[A;]| (3.61)

The value of R  can be made arbitrarily large to accommodate rapidly varying error 

signals. Initially, with no contribution from the compensator, the error signal is completely 

specified by the influence of the disturbance signal at the error sensor. Therefore, this signal 

can be utilized to estimate the value of R . Additionally, if  the convergence is reasonably

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



uniform, this value will be a reasonable estimate of the parameter through adaptation of the 

compensator.

It is assumed that the receptive field overlap in any M  time step interval is bounded 

by some constant <f> ■ Notice that this is not a restriction since it  is possible to choose <p =  (3 

to allow for the maximum possible overlap. Under these conditions, it will be shown that the 

algorithm is convergent if  the learning gain is chosen subject to the bound given in (3.62). 

The proof of this result is presented in Theorem 3.4.

20 <  a <
1 +  2MR MlW.

(3.62)

This bound indicates that to ensure convergence, the learning gain must be reduced 

given increased length of the delay M , the rate of change of the error signal R , and the 

degree of overlap between receptive fields 0 .  In the case of zero time delay this result 

reduces to the bound presented in section two for the case of a linear gain secondary path. 

Additionally, for zero overlap (0  =  0 ) this result reduces to the bound presented for the case 

of non-overlapping receptive fields given in Theorem 3.3.

T he ore m  3.4 -  CMAC Convergence  w i t h  a  T i m e  Delay  S e c o n d a r y  Pa th:  Consider the 

feedforward disturbance cancellation system of figure 3.15 with dynamics described by 

equations (3.43M3.46). Implicit in these equations is the fact that CMAC A and CMAC B 

have identical architectures. Let (3 > 0 denote the common CMAC generalization

parameter. It is assumed that there exists some constant R  such that \e[k — •1<  R\e[k]\ for

all i G {1,2,---,M} and for all k such that e[k] ^  0 . Additionally, it is assumed that the

maximum receptive field overlap in any M  time step window is limited to 0 . More

precisely, it is required that a\ k f  a[k — i]<<fi V* e  {1,2, • • •, M}  . Additionally, let G2 > 0 and
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Gs > 0 . Under these conditions, and with the learning gain selected according to the bound 

(3.62), then lim e[k) =  0 showing that the system is convergent.

0 <  a  <  ■

G2G3 1 +  2
(3.63)

Proof:

Let D[fc] and V[k] be defined by (3.64) and (3.65) and notice that F[fc] is non-negative 

by its definition.

B[k] 4  G & w  -  G2G3w[k) (3.64)

V[k] =  D[&f D[fc] > 0 (3.65)

The value of V\k] at time k + 1  can be expressed using the weight update equation of 

(3.46) to yield the following expressions in (3.66)-(3.68).

V[k +1] =  {GjG3w -  G2G,w[fc +  1]}T {G ^ w  -  G2G3w[k +1]}

G& w  -  G2Gsw[k] -  G2G3- e [ k  -  M]a[k -  M] 

GjG3w  -  G2G3w[k] -  G2G3 ^  e[k -  M]a[k -  M ]

(3.66)

(3.67)

= F[fc] +  G22G| [* -  M]a[fc -  M f a[fc -  M] -

2G2G3^e(fc -  M]a[fc -  M f {G1G3w -  GaGsw[*]}
(3.68)

It follows directly from the CMAC algorithm that a[k — M f a[fe -  M] = fj . Using this 

fact and the previous result of (3.56), the expression in (3.68) can be rewritten to yield (3.69).

V[k + l )-V[k}. GoGoCX2 2 r>  i / i  2 G 0 G 3 Q :  j n—̂ — -e [k -  M ] ------2- 1- e l {k -  M]
P P

m

+  -
2 G G fa

(3.69)

P
■ a[fc — M f a[fc — M — — M]e[fc — M — i]
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From the assumptions on the maximum overlap and the maximum rate of change of 

the error signal, inequalities (3.70) and (3.71) can be written.

a[k — M]Ta[k — M  — i]<(f> V i € {1 ,2 ,- ,M}  (3.70)

e[k — M  — i]e[k - M ] <  |e[k -  M  -  i}e[k - M ]  | <  Re2[k — M] (3.71)

These results can then be utilized to obtain a bound on the expression in (3.69) given 

by expression (3.72). The second inequality is due to the bound on the learning gain.

V[k + 1] -  V[k) < G*G& ~  e2[k — M] — 2GiGza e2[k — M}+ 2G*G&-M<j>Re2[k -  M]
(3 (3

GlGla
(3

1 +
2 MR<j> a —

G A fl  +  ^ 1

(3.72)
e2[k — M] < 0

Since V[k] is a decreasing sequence by (3.72) and since V[k] is bounded below by 

zero, the conditions of Lemma 3.1 are met and statement (3.73) follows.

lim (V[k +1] -  V[k\) =  0 (3.73)
k -*o :

By the sequence squeeze theorem and the inequality in (3.72) the limit given in (3.74)

exists.

G;Gia km ■ :
k~,x (3

1 +  2MR— a ■ e2 [k — M] =  0 (3.74)
P)\ g2g3(i  + ' ^ )

Since the multiplicative constant of e2[ k -  M] in (3.74) is strictly non-zero, this

implies lim e2[ k ~ M ] ~  0 and it follows directly that lim e[k] =  0. □
k—*xi k-»<x>

It is expected that the learning gain bound derived in Theorem 3.4 is conservative 

since the average overlap will generally be below the maximum overlap specified by the 

parameter 4> ■ Additionally, the parameter predicting the maximum rate of change of the 

error signal, R , must be chosen for the worst case variation in the error signal and most 

often, the actual variation will be less. These derived bounds are sufficient to guarantee the 

stability of the algorithm in each case. However, they do not represent necessary conditions.
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As a result, the derived hounds could be quite conservative in nature. A brief consideration 

of this subject is provided via comparison of the analytical bounds with simulation results for 

the case of a time delay secondary path.

-► y[0]

y[l]

Figure 3.16 -  Single Dimension CMAC used in simulations.

The presented simulations are for the single dimension CMAC as depicted 

conceptually in Figure 3.16. The generalization width is /3 =  30 and the input signal is 

designed to sequentially activate receptive fields with an overlap of exactly <j> weights. The 

secondary path is comprised of a pure time delay of M  samples. Notice that this simulation 

corresponds to the block diagram of figure 3.15 with the gains chosen as G.2 — 1 and G3 =  1. 

The maximum stable learning gain for a given set of parameter values <f> and M  was 

determined using a binary search algorithm over the range a  e  [0,2].

Figure 3.17 depicts the maximum stable learning gain as a function of the degree of 

overlap for two different values of the secondary path delay, M  . In each case, the solid line 

represents the analytical result calculated via equation (3.63) while the dotted line is the 

numerically computed bound from simulation. From these results, it is evident that in cases 

where the overlap is comparable to the generalization width, the analytical and simulation 

bounds are in close agreement. However, in the case of long secondary path delays and small 

values of overlap, the analytical bound underestimates the corresponding simulation result.
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The explanation for this discrepancy is in the worst case assumption made by the analytical 

bound that all receptive fields within any M  time step interval necessarily overlap all other 

fields within that window by an amount <j>. In practice, it is unlikely that such complete 

overlap will actually occur. In the present case of a single dimension CMAC, it is not even 

possible to achieve such an extent of overlapping receptive fields. In the case of a multi

dimensional CMAC it is possible to have a greater extent of overlap. However, it still 

becomes less likely to have complete receptive field overlap as the secondary delay increases 

or extent of overlap decreases.

2

1.5

1
M  — 1

0.5

M  ~ 5

o
20 25 300 5 10 15

Number of Overlapping Weights

Figure 3.17 -  Numerical results for time delay secondary path.

Figure 3.18 depicts the maximum stable learning gain as a function of the secondary 

path delay for two different values of the overlap parameter, <p • For the reasons previously 

described, the analytical bound tends to be more conservative as the overlap decreases or the 

secondary path delay increases. For example, in the case of <fi = 5 , there is no overlap 

between samples for a time delay of more than one. As a result, the maximum stable 

learning gain does not decrease for delays of longer duration. In contrast, the analytical 

result makes the assumption that even in the case of longer delays, all receptive fields within  

any M  sample window will have <j) =  5 overlapping weights. As a result, the analytical
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bound is more conservative. Tighter analytical bounds could be attained by utilizing more 

realistic models of the overlap distribution throughout the M  step time window. However, 

such results would require more assumptions to be made regarding the nature of the input 

signal.

05
_C
ctC<D_l
£3
£x
to

0.5

=  29

0 10 155

Secondary Path Delay (M)

Figure 3.18 -  Numerical and analytical stability bounds.

In conclusion, the presented bounds provide a guarantee of stability in the case of 

sufficiently small learning gain. Additionally, the derived results provide an indication of 

the variation of the maximum learning gain with the degree of overlap, generalization width, 

rate of change of the error signal, and secondary path delay. These parameters can be 

estimated based on the characteristics of the system and used to appropriately de-rate the 

learning gain to ensure convergence.

3.6 The Filtered-X  Backpropagation Algorithm

This section presents a method for utilizing the multi-layer perceptron (MLP) in  

feedforward disturbance cancellation for cases where the secondary path is nonlinear and 

history dependent. This approach was developed by Snyder and Tanaka [97] and more 

recent refinements have been proposed to improve its convergence [11]. It is included here
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as background material, but also to serve as inspiration for the Filtered-X CMAC algorithms 

to be introduced later in this chapter. The basic architecture used by the Filtered-X 

Backpropagation algorithm is shown in figure 3.19.

D isturbance
Source

D(s)
P ,(S)

\

Source
Sense C ancellation

Source

Error
Sense

O n

C o m p en sa to r Secondary
N etw ork Path Model

Figure 3 .1 9 - The Filtered-X Backpropagation Algorithm.

The Filtered-X Backpropagation algorithm utilizes a time delay MLP network to 

serve as a general nonlinear dynamical compensator. The most common technique for 

training a MLP network is the backpropagation algorithm which is based on a gradient 

descent of the error surface. That is, each weight is adjusted in a manner which reduces the 

instantaneous error in the network output. However, in the system of figure 3.19, the error 

in the compensator output is not directly known since the only available error signal is 

located at the output of the secondary path. The solution proposed in the Filtered-X 

Backpropagation algorithm utilizes a second time delay MLP network to model the 

secondary path. This secondary path model is adapted off-line and its weights are assumed 

to be constant during adaptation of the compensator. Assuming that this neural network is 

an accurate model of the actual secondary path, it can then be utilized to backpropagate the 

observed error signal to the compensator. The resultant weight update rule for the 

compensator will be derived in this section. However, the approach utilized here differs from 

that used in the original derivation. This alternate approach, though only valid for a fixed 

architecture, yields qualitative insight into the algorithm and provides a closer analogy to 

the Filtered-X CMAC algorithm which will be introduced in the following section.
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The weight update utilized in the Filtered-X Backpropagation algorithm is an 

extension of the standard backpropagation algorithm utilized for training a standard 

feedforward MLP [44] [90]. Consider the single output, two layer MLP network as shown in 

figure 3.20. The neuron activation function, /(•), is assumed to be a differentiable sigmoidal 

function. There are two layers of network weights. In layer one, weight w ̂[k] connects input 

i to hidden layer neuron j . In the second weight layer, weight v,[k] connects the output of 

hidden layer neuron I to the output neuron. It is assumed that there are M  inputs to the 

network and N  hidden layer neurons.

zjfe]  >■ e[k\UM

j j Y---
Layer 1

— v --------

Layer 2
W eights W eights

Figure 3 . 2 0 - A two layer MLP network with a single output.

With appropriate network weight values, the MLP network can represent a desired 

static mapping between an input vector t0{k] u^k] ■■■ wM_j[fc]j and an output value y[k]. 

The operational equations for this network are given in (3.75) and (3.76).

(3.75)
( N - l

# ]  = /
,  i-o

i m —x

2 # ]  =  /  V ( € {0,L• -,TV — 1} (3.76)
\ i=0 ,

The weight update algorithm must be derived separately for each layer. For a weight 

wjfc] in layer two, the weight update will take the form of (3.77) where rj represents a 

learning gain parameter.
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v, [k +1] =  vt [k] -  T] V I e  {0,1, • • •, N  — 1}
dv^k]

(3.77)

Let /'(•) denote the derivative of the activation function. Then, the partial derivative 

in the weight update equation can be reduced via the chain rule and equation (3.75) to 

produce the result given in (3.78) and (3.79).

dv^k] dv,[k]
(3.78)

=  - 2 # ] / '
(N-l

4 kl (3.79)

The weight update algorithm for each weight contained in the first layer is of the 

form (3.80) where r/ again represents a learning gain parameter. The partial derivative can 

be represented as given by (3.81) and reduced to the expression (3.85).

de2[k] V / * e { 0 , l , - , M - l }
tow[* +  l] =  whj[k]-ri

dwJk]  V j  e { 0 , 1 , - 1 }
(3.80)

=  2e[Ar]— ——r(d[fc] -  y[k}) = 2e[Jb]— ^—r 
dwh][k] dwhJ[k} dwhj[k}

( N - l

- f [k]xi [k]
v*-o

N~1
- —

9wh,[k] j=0

(  N - l

- 2 e[k]f
Q N - l  ( M - l

o — rrr £ * # ] /dwhi[k]j^  ^\l=0

( N - l

=  —2e[k]f' £ « ,[* ] / '
( M - l

(=0 dwhj[k\ 1=0

( N - l M - l

=  - 2 e\k\ f  v3[k}f Y ^ w ^ u ^ k ]
V 1=0

uh[k]

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

Given these results, the weight updates can be written as (3.86) and (3.87) for first 

and second layer weights respectively. In each case, the factor of two has been absorbed into 

the learning gain coefficient.
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( N - l  M - l

whj{k +  !] =  whM +  v4k]f' vMf' J2WMUM uh\k 1 (3 -86)
\ i=0 z=o

Vj[k +1] =  Vjlk) +  rje[k]f x^k] (3.87)
i=0

These coefficient update equations can then be utilized to adapt the coefficients of the 

netw ork shown in  figure 3.20 to minimize the m apping error across a tra in ing  da ta  set. 

Notice that there are terms which are common to both weight updates. Standard 

implementations of the gradient descent learning usually utilize a backpropagation of these 

common terms to reduce the computational overhead of the algorithm. The general 

backpropagation algorithm for any number of hidden layers can be found in numerous 

sources [44] [90],

The off-line adaptation of the secondary path model can be performed by direct 

implementation of the standard backpropagation algorithm. However, the backpropagation 

algorithm cannot be directly utilized to adapt the weights of the compensator network since 

the error associated with the compensator output is unobservable. Instead, a modified 

weight update must be derived based on a gradient descent of the observable error at the 

output of the secondary path. Figure 3.21 presents a alternative block diagram to the system  

of figure 3.19. In this figure, multiple conceptual compensator networks have been utilized 

to eliminate the tapped delay line associated with the secondary path model. Each 

conceptual network represents the operation of the actual compensator at a delayed instant 

of time. Since the weights are updated on every discrete time interval, each conceptual 

network has a slightly different set of weights. For example, the weight &.[&] in network I

becomes weight b^k — 1] in network II, the value of the same weight at the last discrete time

step. Notice however, that this block diagram is mathematically equivalent to the actual 

block diagram of figure 3.19. The variable M  represents the number of taps in the tapped 

delay line of the secondary path model. Since each input to the secondary path model is fed 

by a separate instantiation of the compensator network, there are exactly M  conceptual
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compensator networks. The tapped delay line of the compensator has P  taps and the 

compensator has Q hidden layer neurons.

« # ]

4 k - P + 1] ~  ”

| ^ _ 13 z0[k]
v,[k]

x{k — 2'

QP

Figure 3.21 -  Filtered-X BP Compensator Unwrapped in Time.

In figure 3.21, the weight â .[At] represents the connection between compensator input 

i and hidden neuron j  while weight b^k] represents the connection between neuron j  and 

the output neuron of the compensator. Additionally, let r denote the value of the respective 

signal r before the sigmoidal nonlinearity. That is, u0[k] is defined by «„[&] = /(?20[A;]). With

these definitions, the output of the network is given by (3.88). Notice that since the weights 

of the secondary path model are assumed to be fixed, they are represented without a time 

index.

# ]  = /
( N - l

< e~0
(3.88)

The output, zc[k), of each hidden layer neuron in the secondary path model is given 

by (3.89). The output of each instantiation of the compensator network, s[k -  g] , is expressed
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in (3.90). Finally, equation (3.91) describes the output of each hidden layer neuron in each 

instantiation of the compensator. Thus, equations (3.89M3.91) fully describe the mapping 

through the aggregate signal path comprised of the compensator and secondaiy path model.

M - l

s[k - g ]  — f

g=l) 

(Q ~ l

Y \ b h[k -g \uh[k-g]
h= 0

“J  k - g }  =  f ^ ^ [ k  -  g]x[k -  g -  m]
4m=0

(3.89)

(3.90)

(3.91)

Given the analytical description of this mapping in (3.89)-(3.91), it is possible to 

derive a gradient descent weight update rule for each layer of the compensator network. 

This will be performed independently for each layer of weights in the compensator network. 

For any given weight in the second layer of the compensator, the weight update will take the 

form (3.92) where e[k} is not the error in the compensator output but rather the error as 

measured at the output of the secondary path. In active disturbance cancellation systems, 

the desired output is zero and therefore, e[k] — —y[k\ .

hj[k +  !] =  bi [fc] -  r?
de2[k]
dbj[k]

(3.92)

The partial derivative term of (3.92) can be rewritten using the chain rule to generate 

equation (3.93). Notice that y[k\ represents the signal in the output neuron immediately 

after the summing junction.

dbj[k] dbj[k}
-  —2 e[k\f

f) N~l
(3.93)

u=o dbj[k] c=0

Using (3.89) to replace ze[k) yields expressions (3.94)-(3.96).

f )  iV-1 f i  M - l
-H k ] f  (y[k} ) £«. / (*«[*])  =  - 2e[k}f (y[k}) J ) v j ' ( z e[A:]) ™ A k ~  9] (3.94)

db-[k]

N - l
-2 e[k\f (y[k]) ̂  v j ’ (zc [* ])£ W n.

o db^k] f ( s [ k - g } ) (3.95)
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N - l  M - l  f t  Q- 1
= -2 e[4]/'(»[*])£ »,/'(5, [*])£ wse/'(s[fc -  ffD-rTTrrXX  ̂“ ^Kl* -  »] (3.96)

e=0 g =  0 C/Oyl/C] f t-o

Assuming that the weights change slowly with respect to the length of the secondary 

path tapped delay line, the approximation in (3.97) is valid.

db-[k — g] dbAk\ r /
s 4 i= 1  V9£{0'l -'M- 1} <3-97)

With this assumption, equation (3.96) can be rewritten as (3.98) and the weight 

update rule for the output layer weights of the compensator is given by (3.99).

-2e[fc]/' (y[k})J2vJ '  (4  lk})j2 -  5]) Uj[k -  9} (3.98)
e ~ 0  g —Q

IV —J. IV]— I

b j l k  +  ! ]  =  * # ]  +  v4k\f' ( # ] ) £ «./' ( 4  [ * ] ) £  (s[k -  g])Uj[k -  g] (3.99)
e=0 p=0

In a similar fashion, given assumption (3.100), the weight update rule can be 

expressed as given in (3.101).

=  S t =  1 V<?g { 0 , 1 , - , M - 1 }  (3.100)
d a j k } datn[k]

a t n i k  + 1 ]  =  a tn [k \  +

N - l  M - l  0-1 (3.101)
rtelkjf (y[k]) J 2  {K M)]C WJ '  ~  9}) k f  («,• [k ~  d}) #  -  5 ~ A

e=0 5=0 h— 0

Equations (3.99) and (3.101) represent the Filtered-X Backpropagation weight 

updates. These equations show that it is possible to perform a gradient descent update on 

the compensator using only the observed error signal. In a practical implementation, the 

redundant computations in these weight updates can be eliminated by backpropagating the 

common terms for use by both updates. In comparison to the standard backpropagation 

weight updates of (3.86) and (3.87), the Filtered-X update equations have an additional 

summation with M  terms. In effect, this provides a parallel update of the M  conceptual 

compensator networks.
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The primary disadvantages of this approach are its large computational overhead 

and the possibility of convergence problems. The likelihood of convergence problems can be 

reduced by utilizing many refinements which have been made to the backpropagation 

algorithm including the addition of a momentum term in the learning gain and 

implementation of an adaptive learning rate. However, the computational overhead of the 

algorithm remains a significant concern in real time applications. This is particularly true 

given the significant order of typical secondary path models required for modeling time 

delays and resonant dynamics.

3.7 The Filtered-X CMAC Algorithm

The Filtered-X Backpropagation algorithm introduced in the previous section extends 

the Filtered-X LMS technique for use with a nonlinear compensator, in that case, the multi

layer perceptron. This provides the capability for effective disturbance cancellation with 

nonlinearities in the forward path as well as in the cancellation path. However, the Filtered- 

X Backpropagation algorithm suffers from several deficiencies intrinsic to the multi-layer 

perceptron. These include a slow rate of convergence, the potential lack of convergence due 

to the presence of local minima in the error surface, and the significant computational 

overhead of the algorithm which limits the maximum cancellation frequency in real-time 

implementations.

This section presents a method by which nonlinear feedforward disturbance 

cancellation can be implemented using a Time Delay CMAC neural network. The CMAC, 

described previously in section 2.3, is a type of radial basis function neural network which 

utilizes a uniform receptive field placement with static localized generalization. Through 

this architecture the CMAC attains fast and robust convergence at the expense of reduced 

generalization capabilities. This tradeoff is ideally suited to the case of active noise and 

vibration control where there is typically an abundance of training data available and
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additional tra in in g  can be utilized to compensate for the limited generalization capabilities of 

the CMAC.

The Filtered-X CMAC algorithm utilizes two CMAC neural networks with tapped 

delay line inputs as shown in figure 3.22. CMAC A is used as a nonlinear compensator 

while CMAC B is trained off-line to represent the secondary path transfer function. The 

number of taps in each delay line must be chosen appropriately based on the nature of the 

system and the signal content of the disturbance source. This issue was previously discussed 

in section 2.4. In this section, the general case is considered using a compensator with N  

taps and a secondary plant model with M taps. For the system shown in figure 3.22, M=3 

and N=2.

( + ) —  e[k]

CMAC

Jo

CMAC

Figure 3.22 -  The Filtered-X CMAC Algorithm.

The standard CMAC weight update requires a measure of the error in the network 

output. Since this signal is unavailable here, a means of computing the necessary 

compensator weight updates for the minimization of the observed error m ust be derived. If 

CMAC B is a perfect model of the secondary path then the observable error, e[k], can be 

viewed as having been measured at the output of CMAC B as represented by signal e[k]. In

this case, d[k] represents the contribution of the primary disturbance as measured at the
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error sense. Thus, m inimizing the instantaneous error signal efkf will be the sam e as 

minimizing the error signal e[k]2 . The tapped delay line associated with the secondary path 

model can be conceptually eliminated by unwrapping the compensator network in time as 

shown in figure 3.23. The three conceptual networks represent the operation of the single 

actual compensator at the present time and all of the delayed time instants as required for 

input to the secondary path model. It is clear from this view that the current output error is 

due not only to the currently addressed compensator weights but also to the M sets of 

weights corresponding to previous compensator inputs.

z[k]

CMAC

CMAC

CMAC

CMAC

Figure 3.23 -  The Filtered-X CMAC Algorithm unwrapped in time.

Operation of the CMAC can be represented by the matrix equation (3.102) where 

w[k] represents a single column vector of all of the network weights and &[k] represents the 

binary weight selection vector computed via the standard CMAC algorithm as a function of 

the current inputs. The weight selection vector contains exactly /? values equal to 1.0 and 

all other elements are zero, where (3 represents the generalization parameter. Both w[fc] 

and a[k] are functions of the discrete time index k .

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



y[k] =  &{kf  w[k] (3.102)

The standard CMAC weight update is based on a stochastic gradient descent which 

incrementally reduces the instantaneous squared error in the output of the CMAC. This is 

given in (3.103) where (3 represents the learning gain parameter and e[k] is a measure of the 

error in the CMAC output.

w[k + 1] =  w[fc] — a  - ^ 7 7 7  (3.103)
aw[Kj

If r[k] represents the target output value then the CMAC output equation in (3.103) 

can be used to express the error as given by (3.104).

e[k] = r[k] — y[k\ = r[k] — a[Ar]r w[fc] (3.104)

Substituting (3.104) into (3.103) and combining scalar gain terms into the learning

gain results in the standard CMAC weight update given by (3.105).

w[k + 1] — w [k] — ae[A;]a[fc] (3.105)

Thus, on each iteration, the standard CMAC weight update increments each of the 

selected weights with a term proportional to the present output error. However, in the 

disturbance cancellation architecture of figure 3.23, the output error is not observable. 

Instead, it is necessary to derive a weight update which incrementally reduces the 

instantaneous squared error at the error sense, e2[k]. This is expressed in (3.106).

d i m
w[fc +1] — w[fc] — a    (3.106)

dv[k\

The partial derivative in (3.106) can be expanded via the chain rule with the result 

shown in (3.107). Notice that the time index is fixed with respect to the gradient descent of 

the error surface.

(3.1.07)
dvf[k] dy{[k] 0w[fc]
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The partial derivative terms related to the relationship between the inputs and 

output of the secondary path model can be approximated numerically as given in (3.108). 

These can then be computed via an additional perturbation and evaluation of CMAC B given 

that the secondary path model is trained prior to adapting the compensator.

S M .  ~  M i  =  v ,[t] (3.108)
dy,[k] A yfk)

Assuming that changes in the weight vector occur at a rate which is slow compared 

to the length of the secondary path delay line M, then the approximation (3.109) is justified. 

Notice that an analogous condition applies to the Filtered-X LMS algorithm in that the filter 

coefficients are assumed to vary slowly with respect to the signal dynamics.

— ^ — - V i e { 0 , V " , M - l }  (3.109)
dw[k} dw[k — i\

With this assumption and the CMAC output equation (3.102), it is possible to write 

expression (3.110).

M S  =  _iL_(a[* _  i f w[k -  *]) ^  a[Jfc -  i f  (3.110)
dw [k\ dw[kf

Finally, substituting (3.110) and (3.108) into (3.106) and absorbing the factor of 2 into 

the learning gain constant allows the Filtered-X CMAC weight update to be written as in  

equation (3.111).

M - l

w[fc +1] =  w [k] + ae[fc]y~̂  — i] (3.111)
i = 0

Thus, the Filtered-X CMAC weight update is performed on M  pairs of delayed

pointers with each update weighted by the respective numerically estimated gradient V(

through the secondary path model. This is in contrast to the standard CMAC weight update

in (3.105) which modifies only the weights associated with the current input. From a

computational point of view, there are M  times as many weights to be updated on each 

cycle. However, the weight selection vectors need only be calculated once and then shifted 

for use on the lagged updates. The quality of the CMAC partial derivative computation can
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be significantly improved by CMAC weight smoothing methods which have been recently 

introduced [21] [87] [95],

3.8 An Alternative Derivation of Filtered-X LMS Algorithm

In this section, the approach developed for derivation of the Filtered-X CMAC 

algorithm is applied to a linear FIR compensator. The result is an alternative derivation of 

the familiar Filtered-X LMS algorithm. This reveals that the Filtered-X CMAC algorithm 

represents a generalization of the Filtered-X LMS algorithm. Additionally, this derivation 

provides additional insight into the function of the Filtered-X LMS technique.

-► e[k\

*■ e '[k ]

Figure 3.24 -  A FIR cancellation system unwrapped in time.

Consider the linear cancellation architecture shown in figure 3.24. This corresponds 

to the Filtered-X CMAC algorithm with the compensator and secondary path model replaced 

by linear FIR filters. The compensator is described by the coefficients a0, Oj, • • •, aN__t while the 

secondary path model is described by filter coefficients . It is assumed that the

secondary path model is adapted off-line prior to cancellation so that the coefficients are
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considered to be constant during cancellation. The compensator filter is shown unwrapped 

in time in order to depict the dependence of the present error on past compensator outputs. 

The compensator coefficients can then be adjusted via a gradient descent of the 

instantaneous squared output error. Assuming that the secondary path model is ideal, 

minimization of e2[k] is identical to minimization of the observed error, e2[k]. In the 

following derivation the general case is considered where the compensator has N  coefficients 

and the secondary path model has M  coefficients. The form of the compensator coefficient 

update is given in (3.112), where a  represents the learning gain parameter.

d(e2{k\)
a,[fc +  l] =  ai[ f c ] - a - ^ f  V* G { 0 ,1 ,- ,N  — 1} (3.112)

oa^k]

The secondary path model output, z[fc], can be represented by the double linear 

filtering operation shown in (3.113).

M - 1 M - l  N - 1

=  = 5 2 bi J 2 aAk ~  ~ j ~ 1} (3.H3)
M -l

?=0 *= 0

Using this expression for the secondary path model output, it is possible to simplify 

the partial derivative in the update equation (3.112) as shown by the result in (3.114).

Notice that d[k) is independent of the compensator output and therefore its derivative with

respect to any compensator coefficient is zero.

=  2e[k\ -^— (d[k\ -  z[k]) =  - 2 e { k } - ^ -  
da,[k] [ i dat[ k } \ [ i  L V da^k]

B  M - l  N - l  ( 3 ' 1 1 4 )
=  —2e[k] - y biy  a,[k -  l]x[k — j  — 1}

1 Jd a M tt  'U

Assuming that the rate of change of the coefficients is relatively slow then the 

approximation (3.115) can be made.

s  i  (3.115)
da^k]

Application of this approximation to (3.114) yields the expression in (3.116).
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f)p2 i t i
— — =  - 2 e[k]J2 &,-# -  *1 (3.116)
da,[k]

Substitution of (3.116) into the learning rule of (3.112) yields the compensator 

coefficient update given in equation (3.117).

M - l
ffljfc +1] =  ajfc] +  a e [ f c ] y ^ — 1} Vi € {0,1, —, AT — 1} (3.117)

•=o

Let x'[k] be equal the input signal, x[k], filtered by a perfect FIR model of the 

secondary path as given by (3.118).

M - l
x'[k] =  ^ 2  btx[k — i] (3.118)

i=0

This allows the coefficient update rule to be written in its final form as shown in 

equation (3.119). Notice that this is exactly the Filtered-X LMS algorithm. That is, this 

result is the standard LMS update performed using a filtered version of the input signal.

a{\k +1] =  a,-[fe] +  ae[k]x\k —1} Vi € {0,1, —,iV — 1} (3.119)

This result demonstrates that the Filtered-X CMAC algorithm can be viewed as an 

extension of the Filtered-X LMS algorithm. Additionally, the conceptual block diagram of 

figure 3.24 provides insight into operation of the standard Filtered-X LMS algorithm. It is 

evident that the observed error signal at any instant is influenced not only by the present 

contents of the tapped delay line of the compensator, but also delayed versions of that vector. 

As a result, the compensator coefficients must be updated according to the error associated 

with each set of delayed input vectors.

3.9 The Reduced Filtered-X CMAC Algorithm

In many practical applications, the secondary path can be modeled using a linear 

dynamical system. This simplification results in reduced computational overhead and better 

convergence properties in comparison to the use of time delay CMAC secondary path model 

as described in section 3.7. In sections 3.4 and 3.5, it was shown that the time delay 

secondary path could be used in the case of a linear secondary path and narrowband
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disturbance. However, in cases where the disturbance signal is broadband or the phase 

characteristic varies rapidly with frequency, as in a resonant system, then the secondary 

path cannot be approximated using a time delay model. The Reduced Filtered-X CMAC 

algorithm presented in this section can be utilized with any disturbance signal in 

combination with any linear dynamical secondary path, including those which contain 

resonance and time delay. Additionally, the accuracy requirements of the secondary path 

model are not stringent. As a result, in practice most mild nonlinearities do not have 

significant impact on the convergence of the algorithm even when the secondary path is 

approximated by a linear model.

The Reduced Filtered-X CMAC algorithm is depicted in the block diagram of figure 

3.25. The forward path is represented by Pt() while the secondary path is represented by 

the linear transfer function, P2(s) . It is assumed that FIR filter B is adapted off-line to serve 

as a model of the actual secondary path.

d[k]
u[k]

m

Coefficients
Filtered-X

CMAC

m

P2( s )

FIR Filter B

CMAC

Figure 3.25 -  The Reduced Filtered-X CMAC Algorithm.

The error signal is computed by the filtering operation given in (3.120) where 6, 

represent the secondary path filter coefficients for i =  0,1, • • •, M  — 1 . The CMAC output is
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given in equation (3.121) using the standard notation for the weight vector and weight 

selection vector.

M -l 

=0
=  Y l k  (d[k - » ] -  y[k -  i]) (3.120)

y[k] = a[fc]rw[fc] (3.121)

The standard CMAC weight update algorithm incrementally reduces the error in the 

output of the CMAC. However, in the present case, the desired CMAC output is unknown 

and instead the objective is the minimization of the observable error, e[k]. Therefore, the 

CMAC weight update must be revised to directly implement a gradient descent of the 

squared error signal e[kf . The modified adaptation takes the form of (3.122).

w[k +1] =  w[k] — a  (3.122)
<9w[fc]

Using expressions (3.122) and (3.120), the partial derivative of the squared error can 

be derived as given in the following result.

® £ M  =  2e[jfc]-^I =  _2e[jfc]V——  a[fc -  i fw[k  -  i] (3.123)
dw[k] 1 J0w[fc] L Jt^Sw[jfc] 1 J 1 J

Under the assumption that the weight vector varies slowly with respect to the filter 

impulse response, the approximation in (3.124) is justified.

i 4 r a i ib j  <3-124)
Under this assumption the weight update of (3.123), can be expressed in its final 

form as given by (3.125). In this expression, the factor of two has been absorbed into the

learning gain parameter. Additionally, the learning gain parameter has been normalized by

the generalization parameter.

m £=i
w[fc +1] =  w[k] d—  ̂ 2  ̂ ia[k — i]e[k] (3.125)

P  i= 0

This weight update algorithm reflects the fact that the output error at any time is a 

function not only of the present CMAC output, but also the CMAC output at previous time
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instances. As a result, weight updates are performed for M  sets of delayed pointers. This 

technique is referred to as the Reduced Filtered-X CMAC algorithm since it can be viewed as 

an extension of the Filtered-X LMS algorithm utilized in the case of a linear adaptive 

compensator. An implementation of the Reduced Filtered-X CMAC algorithm is shown in 

figure 3.26. A model of the secondary path, represented by FIR Filter B, is adapted offline 

prior to operation of the compensator. The coefficients of the secondary path model are 

utilized in conjunction with the error signal to update the compensator CMAC via the weight 

update algorithm of (3.125).

Despite the use of a linear secondary path model, the reduced algorithm is still 

applicable in many nonlinear systems. In particular, the impact of nonlinearities in the 

locations specified by dashed blocks in figure 3.125 will be considered here.

!___i

• i! i

m

d[k]Coefficients

T

P M

FIR

F-X
CMAC

CMAC

Figure 3.26 -  Nonlinearities and the Filtered-X CMAC algorithm.

The first nonlinearity to be considered is located in the forward transmission path as 

indicated by block ‘1’ in figure 3.26. Its presence results in disturbance signals at the error 

sense which are not linearly related to the reference signal and therefore require a nonlinear 

compensator for their removal. However, given that the cancellation path is linear in this 

case, there is no need for a nonlinear secondary path model and the reduced Filtered-X 

CMAC algorithm is adequate.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To illustrate a specific example of this case, we now consider a narrowband active 

noise cancellation application in simulation. The reference signal is a single tone sinusoid 

phase-locked to the primary 300 Hz disturbance. Often such a reference signal is generated 

via a non-acoustic sensor such as a tachometer on a rotational disturbance source. The 

forward path consists of a nonlinearity which passes the fundamental and generates the first 

three harmonics with amplitudes equal to half the primary disturbance. The fundamental 

and its harmonics then propagate through the remainder of the forward path which is 

modeled by a first order linear low pass filter. The cancellation path is a resonant linear 

fourth order system with a 2 millisecond transport delay which is approximated by a 300th 

order linear FIR model. Figure 3.27 depicts the reduction in the measured disturbance e[k] 

after the CMAC weight adaptation is enabled at time 50 milliseconds. Figure 3.28 shows 

three periods of the fundamental disturbance overlaid on the reference signal. Finally, 

figure 3.29 depicts the compensator output and secondary path output after convergence is 

attained.

0  0 .1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6

Time (s)

Figure 3.27 -  Error signal convergence for a feedforward harmonic-generating nonlinearity. Parameters for this 
simulation are: N=2, p=20, quantization width = 0.03, r| — 0.055, disturbance amplitude = 1.0, sample period = 50 ps.

2

1

0
Q.

-2 l—  
0 . 5 5 0 . 5 5 5 0 . 5 6 0 . 5 6 5 0 . 5 7 0 . 5 7 5
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Figure 3.28 -  Reference Signal (dashed line) and compensator output (solid line). Note the harmonic content of the 
disturbance which is not linearly related to the reference signal.
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Figure 3.29 — Compensator output (solid line) and secondary path output (dashed line).

The second nonlinearity to be considered is located in the reference signal path as 

shown by block ‘2’ in figure 3.26. This nonlinearity represents a transformation of the CMAC 

inputs. A thorough investigation of allowable nonlinearities in this location is beyond the 

scope of the present research. However, simulations indicate that most soft nonlinearities in 

this path can be accommodated. As a fundamental guideline, in order to ensure that the 

desired CMAC mapping is one-to-one, the CMAC input vector should represent a closed non

self-intersecting orbit in the embedding space with no regions of zero tangential velocity. 

However, a fundamental point is that those nonlinearities in location ‘2’ which can be 

accommodated are unaffected by whether a linear or nonlinear secondary path model is 

utilized. Therefore, the Reduced Filtered-X CMAC algorithm is an appropriate choice in the 

case of such a nonlinearity.

Finally, a nonlinearity located in the cancellation path is considered. This is 

represented by block ‘3’ in figure 3.26. At first consideration, it might seem that the reduced 

algorithm is not well suited to this case given its use of a linear secondary path model. 

However, it can in fact be successfully applied in cases where the nonlinear secondary path 

can be represented by a static nonlinearity followed by a linear dynamical system and an FIR 

model of the linear portion of the secondary path can be extracted. A common example of 

such a situation is the case of a static nonlinearity generated by the cancellation path 

actuator (e.g. dead zone, nonlinear gain) followed by a linear transmission path.
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The process of modeling the linear portion of the cancellation path can be 

complicated in such cases, however, it is often possible to either derive the linear portion via 

a physical model or extract the model using a small excitation signal to reduce the impact of 

a large signal nonlinearity. Additionally, simulation studies suggest that the secondary path 

model does not require great accuracy to ensure convergence. As a guideline, in the case of 

the Filtered-X LMS algorithm, the secondary path model can have phase errors up to ±90 

degrees and the system will still be convergent [62].

To illustrate a particular example, consider the case of a secondary path containing a 

dead-hand nonlinearity followed by a fourth order resonant linear system with transport 

delay as used in the previous simulation. The dead-band nonlinearity is of width 1.0 and is 

centered at the origin. The disturbance and reference signals are the same as used in the 

previous simulation. Figure 3.30 provides an indication of the degree of distortion produced 

by the nonlinearity by showing its effect on the disturbance signal.

0 .5ffl•o
Q.£

<
- 0 .5

- 1 .5 0 0.001 0.002 0 .0 0 3 0 .0 0 4 0 .0 0 5 0 .0 0 6 0 .0 0 7 0 .0 0 8 0 .0 0 9 0.01
Time (s)

Figure 3.30 -  This figure depicts the disturbance signal (dashed line) and the disturbance after passing through the
cancellation path nonlinearity (solid line).

2

0

•2
0 . 0 5 0.20 0.1 0 . 1 5 0 . 2 5 0 . 3 0 . 3 5 0 . 4 0 . 4 5 0 . 5

Time (s)

Figure 3.31 -  Error signal versus time for the case of a deadband nonlmearity in the cancellation path. All parameters 
are the same as used in the previous simulation. Adaptation is enabled at time 50 ms.
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3.10 Convergence of the Reduced Filtered-X CMAC Algorithm

In this section, the convergence of the reduced Filtered-X CMAC algorithm is 

considered analytically. Figure 3.32 represents a typical application of the algorithm where 

a disturbance source u[k] propagates through a nonlinear dynamical plant modeled by 

CMAC A. The compensator is represented by CMAC B which monitors the original 

disturbance source and influences the disturbance signal at the summing junction. To 

facilitate the analysis, it is assumed that both the original disturbance and the cancellation 

signal pass collectively through a common secondary path represented here by M  tap FIR 

filter A. Thus, the block diagram considered by this proof is slightly less general than the 

system used in derivation of the algorithm in section 3.9. The compensator is updated via 

the reduced Filtered-X CMAC algorithm. It is assumed that a secondary path model has 

been identified off-line as represented by FIR filter B. Additionally, it is assumed that the 

secondary path model is a perfect model of the actual secondaiy path.

u[k]

4k]

m

C o e f f i c i e n t s
Filtered-X

CMAC

FIR Filter B

FIR Filter ACMAC

CMAC

Figure 3.32 -  Block diagram utilized in the convergence proof.

Given that both CMAC networks share the same input vector, the weight selection 

vector for each network is identical. The output equation for CMAC A and CMAC B are 

given by (3.126) and (3.127) respectively.
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y[k] =  a[k]T w (3.126)

y[k] =  a[fcf w[&] (3.127)

The weight update equation for the compensator CMAC is performed via the reduced 

Filtered-X CMAC algorithm as given in (3.128). Operation of the secondary path filter is 

defined in (3.129).

The present analysis requires an additional assumption on the nature of the error 

signal. Specifically, it is assumed that the rate of change of the error signal is bounded over 

any time interval of length M , as given in (3.130).

Additionally, it is assumed that the maximum overlap between any two inputs in an 

M  time step interval is cf>. For complete generality, it is possible to pick <j> =  j3 to allow any 

possible overlap. To further simplify the results, the parameter b represents a bound on the 

magnitude of the filter coefficients such that |&,|<6 V i e  {0,1,---,M — 1}. With these

definitions, it will be shown that the algorithm is convergent as long as the learning gain is 

chosen according to the bound given in (3.131). From this result it is evident that the 

learning gain must be reduced to accommodate increased secondary path length, larger 

degrees of overlap, increased filter coefficient magnitudes, and larger rates of change in the 

error signal. The proof of this result is provided in Theorem 3.5.

(3.128)

M -l

e[k\ =  Y.'  bA k =  bi (yik y\k -  *1) (3.129)

\e[k-i]\<R\e[k]\ Vi € {L,2,--,M} 

Vfc 3 e[k] ^ 0
(3.130)

0 < a < (3.131)
1 +  ( j R ( M  — 1) +  i? +  j ) ( M  — 1)]
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In the case of M = 1, this algorithm reduces to a simple linear gain secondary path 

with gain i>0. In this case, the learning gain bound reduces to that given in (3.132). This is 

the same result as derived in the case of a linear gain secondary path given that Gt =  0 and 

G2 =  0 and given the extra factor of 60 inherent in the Filtered-X CMAC weight update.

0 < a  < \  (3.132)
K

In the case where there is no restriction on the extent of receptive field overlap, 

<j> — 0 , and the learning gain bound reduces to the expression given in (3.133).

0 < a < —r——  ----------   (3.133)
M b  [RM - R  + l]

Theorem 3.5 -  Convergence o f the Reduced Filtered-X CMAC Algorithm: Consider the 

feedforward disturbance cancellation system of figure 3.22 with dynamics described by 

equations (3.126M3.129). Implicit in these equations is the fact that CMAC A and CMAC B 

have identical architectures. Let (3 > 0 denote the common CMAC generalization

parameter. It is assumed that there exists some constant R  such that |e[A; — i| < l?|e[fc| for

all i G {1,2,-",M}  and for all k such that e[k\ ^  0 . Additionally, it is assumed that the

maximum receptive field overlap in any M  time step window is limited to (j>. More

precisely, it is required that a[kfa.{k — i\<<f> V* € {1,2, • • •, Af} . Let bt represent the secondary

path coefficients for i e {0,1, — 1}. Additionally let these coefficients be bounded such

that |^| < b V*€{0,1,---,M-1}.

0  < a  <  ? ------  r (3.134)
[1 +  ( j  R ( M  — 1) 4 -1?  + -|) (M — 1)

Under the stated assumptions, with the learning gain parameter chosen according to

bound (3.134) then lim e[k) =  0 showing that the system is convergent.
k—*oc
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Proof:

Let V[k] be the inner product of the weight difference vector as given by (3.135) and 

notice that this quantity is non-negative.

V{k) = (w — w[fc])r  (w — w[fc]) > 0 (3.135)

Using the Filtered-X weight update of equation (3.128), an expression for V[k +1] can 

be derived as shown in the following expressions.

V[k +1] =  (w — w[fc + 1])1 (w — w [k +1]) (3.136)

n  M -l 2 M -l M -l
=  V[k] -  2e[k] -  6,.a[k -  i f  (w -  w[k}) +  —  e2 [fc] J )  bp3&[k -  i f  a[k -  j] (3.137)

P 0 P *=0 0

To simplify this expression further it is necessary to derive an expression for w[k -  i\

as a function of w[k]. To that end, consider equations (3.138M3.140) which represent the 

weight updates performed at consecutive intervals of time.

n  M~l
w[k] =  w[fc — 1] -1—  b-&[k — 1 — j)e[k — 1] (3.138)

0  3=0

w[k — 1] =  w[k — 2] H—  bj&[k — 2 — j]e[k — 2] (3.139)
0  3=0

w [k — « + !] =  w[k — *] H—  f f f  bjSfk, — i — j]e[k — i] (3.140)
0  j=o

Combining equations (3.138M3.140) into a single equation yields the result in

(3.141). Notice that for the case i =  0 the last term in this expression is equal to zero.

i  M - l

w[k] =  w[k — i] H— bj&[k — I — j]e[k — I] (3.141)
0 1=1 ]= 0

Substituting this expression into (3.137) yields the result given in (3.142)

l i t + ii -  m= g  £  -  *T ■[* - 1 -  ,Hk -1
1 P ^  '-1 J“° (3.142)

n - V ff r l

p  i= 0 3= 0
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It is possible to split the summations in (3.142) according to whether the term 

represents complete or partial overlap receptive field overlap. That is all terms containing 

a[k — i f  a[k -  j] for i = j  are isolated fro m  those terms containing &[k — i ] T  a[k — j] where 

i ^  j . The result is given in (3.143).

V[k +1] -  V[k] =  +  ̂ £ £ £  \ bA k -  *F #  ~ 1 -  M k}elk ~ l\ +
P  P  i=1 1=1 0

(3.143)
9  2 M - l  1 2 2 r u  M - l  M - l  n , 2 r 2 \ b ]

P  *=3. 1*1 P  i=0 y=0 P **0

Inequalities (3.144)-(3.146) follow directly from the conditions on the maximum 

coefficient magnitude, the maximum rate of change of the error signal, and the maximum 

overlap.

\bt\<b=>b,b3 <b2 (3.144)

\e[k -  Zj < R\e[k]\ => e[k}e[k - 1 } < R  e2[k] (3.145)

a[kfa.[k-l\<4> (3.146)

With these inequahties, it is possible to establish a bound on the expression in

(3.143) as shown in (3.147).

V\k +1] -  V[k] <  +  ̂ r £ E £  6 W M  +
P p  i=1 1=1 j=0

/ q  -j a r j\

<y 2 M-l i 2 2r, , M-l M-l ✓vVl'frl M-l
^ E E ^ ’M + ^ E E ^ + ^ E 1-”

P  «=1 i=l P t=0 y=0 P i=0

Notice that all of the terms in (3.147) are independent of the summation indices. 

Given this fact and the result in (3.148), this bound can be rewritten as shown in (3.149).

M -l i

£ £ x = j {M2 - M )  (3.148)

V[k +1] -  V[k\ < (M2 l )e2[k) ■
(3 j3

k ° ( M 2 - M )e2[ife] +  M ( M - l ) e 2[jfc] +  —  Me2[A;]
2aVi?

(3.149)
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By factoring out common terms, the bound in (3.149) can be rewritten as given by

(3.150).

V[k +1] -  V[k\ < ^  e2 [At] | -  2 +  a (Mb2 +  Mb2 J  R (M - 1)2 

+Mb2R (M  - 1 )  +  M>2 ^ ( M  - 1 )  +  < 0
(3.150)

The second inequality in (3.150) follows directly from the learning gain bound. From

(3.150) and given that V[k] >  0, the conditions of Lemma 3.1 are met and therefore statement

(3.151) is valid.

lim iV[k +1] — F[fc]) =  0 (3.151)
fc—+ c o

By the sequence squeeze theorem and inequality (3.150), the limit given in (3.152)

exists.

lim—e2 [fcl 
/3

- 2  +  ab2R(M2 -  M) + - b 2<f>R{Mi -  M)(M - 1)
(3.152)

=  0

Since the multiplicative constant of e2[k] is strictly non-zero due to the learning gain

bound, this implies lim e2[k] — 0 and therefore, lim e[fc] =  0. □
k~* o o  fc—+oo
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CHAPTER 4

ALTERNATIVE NEURAL NETWORK DISTURBANCE 

CANCELLATION ARCHITECTURES

4.1 Introduction

This chapter presents three additional architectures for active disturbance 

cancellation utilizing the time delay CMAC network. Section 4.2 describes a regenerative 

CMAC algorithm which provides narrowband cancellation without requiring a reference 

signal estimate of the primary disturbance. This approach is an extension of the 

regenerative technique described in section 1.4 for the case of linear adaptive systems. 

Section 4.3 describes a disturbance cancellation algorithm in which the CMAC network is 

trained via reinforcement learning rather than the conventional adaptation based on a 

gradient descent of the error surface. This allows the compensator to be trained without 

knowledge of the phase characteristics of the secondary path. Finally, section 4.4 describes a 

means by which the time delay CMAC can be used as a recurrent nonlinear oscillator and 

adapted to provide an appropriate cancellation signal. As with regenerative cancellation, 

this technique does not require an estimate of the original disturbance. In addition, this 

approach does not require a model of the secondary path in cases where the secondary path 

does not introduce phase distortion in the error signal. The algorithms presented in this
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chapter are of a more experimental nature than the feedforward techniques described in the 

previous chapter. The description of these techniques is limited to a brief presentation of the 

algorithm and representative simulations indicating basic functionality of each technique. 

General conclusions regarding stability, applicability, and utility of the presented techniques 

have not been established.

4.2 Regenerative Feedback Neural Network Cancellation

In section 1.4, the regenerative approach to feedback active disturbance cancellation 

was introduced. In the present section, this technique is extended for use with the time 

delay CMAC compensator. The basic architecture is shown in figure 4.1. Notice that the 

only input signal to the cancellation algorithm is provided by the error signal. This 

represents a significant advantage over the feedforward approach since a reference signal is 

often difficult or even impossible to obtain in many practical systems.

d[k]

m

FX-CMAC
U pdate

CMAC

Figure 4.1 -  Regenerative Feedback Neural Network Cancellation.

Initially, it is assumed that the secondary path can be represented as a linear 

dynamical system. An adaptive filter represented by P2(z) is trained off-line to serve as a 

model of the cancellation path dynamics. During operation, the secondary path model serves 

two purposes. First, it is utilized to remove the compensator’s contribution in the error
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signal. As a result, the signal z[k\ remains equal to the original error signal e[k] 

independent of the CMAC output. Second, the coefficients of the secondary path model are 

utilized to provide convergent adaptation of the CMAC compensator through use of the 

Reduced Filtered-X CMAC algorithm which was presented in section 3.9. However, even 

when utilizing the linear secondary path model, this algorithm is capable of functioning in a 

variety of nonlinear systems. A preliminary survey of the nature of acceptable nonlinear 

systems is presented in this section.

600 Hz

400 Hz

200 Hz

C oeffic ien ts

-2 0

- 5 0

P2{z)

FX-CMAC
Update

0.05

0.05

CMAC

e[k \

Figure 4.2 -  Regenerative CMAC cancellation in a linear system.

Before considering the effects of system nonlinearities, the basic feasibility of this 

approach is demonstrated via simulations of the system shown in figure 4.2. The 

disturbance source is represented as the superposition of three harmonically related 

sinusoids. This composite disturbance propagates through a forward signal path represented 

by a second order resonant system in combination with a transport delay of 50 discrete time 

intervals. The secondary path is represented by a resonant second order system in followed 

by a pure time delay of 20 discrete time intervals. Given the significant resonance of the
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secondary path, the FIR model must contain a large number of coefficients. In these 

simulations, a 300th order FIR filter is utilized.

Figure 4.3 depicts the convergence of the error signal during adaptation of the 

compensator while figure 4.4 depicts the disturbance and cancellation signals after a 

significant level of convergence has been attained. The parameters used in these simulations 

were as follow: Sample Rate = 20 ps, Pointer Delay = 75 Samples, Learning Gain = 0.05, 

Generalization = 50, Quantization Width = 0.02, Disturbance Frequencies = 200Hz, 400Hz, 

600Hz, and corresponding Disturbance Amplitudes = 1.0, 0.5, 0.5.

2

1

0

1

•2 0 100 15050 200 250 300 350 400
Time (ms)

Figure 4.3 -  Error Signal during adaptation for the system of figure 4.2.

1

0.5
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-0.5

-1
385 390 400395Tim e (ms)

Figure 4.4 -  Disturbance signal (solid) and Cancellation signal (dashed) at the error sense summing junction. On this 
scale, the two can barely be distinguished from each other.
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Figure 4.5 -  CMAC inputs for the system o f figure 4.2.
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One important aspect of the regenerative technique is that a nonlinear compensator 

is not required in order to provide effective cancellation in the case of nonlinearities in the 

forward path. This is due to the fact that the compensator must only represent the transfer 

function relating the disturbance measured at the error sense to the required cancellation 

signal. This transfer function depends only on elements in the secondary path. However, 

nonlinearities in the cancellation loop generally do require the use of a nonlinear 

compensator. In the remainder of this section the presence of nonlinearities in the locations 

marked by dashed boxes in figure 4.6 will be considered.

Coefficients

P2(z)

FX-CMAC
Update

CMAC

Figure 4.6 -  Regenerative Filtered-X CMAC with nonlinearities.

Location one and two represent nonlinearities in the forward path. Such 

nonlinearities can be accommodated even in the case of regenerative cancellation using a 

linear adaptive compensator. A nonlinearity in locations three or four will result in two 

potential problems. First, this nonlinearity will result in a degradation of the regenerated 

signal due to the mismatch between the actual secondary path and the linear model. Second, 

for severe nonlinearities, this mismatch can lead to instability in the Filtered-X weight 

update of the compensator. However, for many soft nonlinearities which do not introduce 

phase distortion in the secondary path, this architecture can be utilized directly. As a

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



particular example, figure 4.7 depicts the error signal for a simulation in the case of a 

deadband nonlinearity of width 1.0 at location three. All other aspects of the system are 

identical to that shown in figure 4.2.

2

0

2
0 100 200 300 4 00 500 600 700

Tim e (ms)

Figure 4.7 -  Error signal for simulation with a deadband nonlinearity in the secondary path.

A nonlinearity in location five is generally handled adequately by the present 

algorithm. This nonlinearity represents a transformation of the regenerated signal. 

However, since this effect takes place after the removal of the compensator output, the 

resultant regenerated signal will remain invariant during adaptation of the compensator. 

Additionally, the nonlinear nature of the CMAC compensator can be utilized to reverse the 

effects of this nonlinearity in order to create the appropriate cancellation signal. In 

conclusion, the algorithm depicted in figure 4.2 is capable of compensating for a variety of 

system nonlinearities. However, for sufficient nonlinearity in the secondary path, it is 

necessary to utilize a nonlinear secondary path and implement the compensator adaptation 

using the full Filtered-X CMAC algorithm as shown in figure 4.8. In this case, a second time 

delay CMAC is adapted to model the cancellation path which is then utilized in place of P2{z) 

to create the regenerative compensator input. Additionally, CMAC secondary path model is 

utilized to adapt the compensator using the Filtered-X CMAC approach described previously 

in section 3.7. As a result, this allows the algorithm to be used in cases where the secondary 

path is characterized by significant nonlinearity.
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P2(z)

FX-CMAC
U pdate

CMAC

CMAC

Figure 4.8 -  Regenerative Time Delay CMAC Disturbance Cancellation.

4.3 Reinforcement Learning Active Disturbance Cancellation

In this section, a novel approach to nonlinear disturbance cancellation is presented. 

The proposed algorithm is based on the use of reinforcement learning to adapt the weights of 

a time delay CMAC compensator. In contrast, all of the previous techniques considered in 

this dissertation have utilized adaptation mechanisms based on gradient descent of the error 

surface. Such gradient descent algorithms are characterized by the use of a continuously 

available error signal in order to provide incremental updates to the CMAC weights. To 

ensure convergence of the weights it was necessary for these algorithms to take account of 

the dynamics associated with the secondary path. However, in the case of reinforcement 

learning, it will be shown that such a priori knowledge is unnecessary.

Reinforcement learning is a technique for neural network training which is based on 

experimentation rather than on a priori knowledge of the structure of the system which is 

being controlled. The learning takes place in a trial and error fashion. As an example, 

consider a hypothetical control task in which a given, finite set of parameters define the 

operation of the control algorithm. Design of the optimal controller consists of choosing the 

best set of parameters under some performance criterion. One means by which the optimal 

parameter settings can be found is via reinforcement learning. The reinforcement learning
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algorithm begins with an initial set of parameter values. A small random perturbation is 

made to each parameter to form a new experimental parameter set which is then utilized in 

performing the control task. The performance of the experimental parameter set is gauged 

through use of some predefined error metric. However, unlike the error metric available in 

gradient descent methods, the reinforcement learning error metric is only required to provide 

a single value as a measure of the performance of the system over the entire task. If the 

experimental perturbation resulted in better performance according to the error metric, then 

the current values of the parameter are replaced by those of the experimental parameter set. 

Conversely, if  the experimental parameter set resulted in degraded performance, then the 

original parameter set is restored. After repeated trials of experimentation, it is generally 

possible for the learning algorithm to converge to a parameter set which optimizes the error 

metric over a range of control tasks.

The fundamental advantage of the reinforcement learning methodology is that it 

requires very little knowledge of the system being controlled. This eliminates the potential 

for instability resulting from modeling inaccuracies and generally simplifies the design 

process. The primary disadvantage of reinforcement learning is its slow rate of convergence 

due to the relatively small amount of information utilized by the controller. Additionally, the 

reinforcement learning can fail to reach the optimal parameter set due to the presence of 

local minima in the error metric.

Figure 4.9 depicts the reinforcement training variant of the time delay CMAC 

compensator in the context of a feedforward disturbance cancellation system. It is assumed 

that the disturbance source u[k] is periodic and that the resultant trajectory in the CMAC 

input space is not self-intersecting in order to provide an appropriate input signal to the 

CMAC. The error metric used for the reinforcement algorithm is based on the average 

power of the error signal. This is created by the operation of low pass filtering the absolute 

value of the error signal, e[k]. The bandwidth of the error averaging filter is chosen such
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that the effective period of the averaging is long compared to a period of the disturbance

fundamental.

R einforcem ent

CMAC

Error Averaging 
Filter

Power
Calculation

Figure 4.9 -  The Reinforcement CMAC Method of Disturbance Cancellation.

Details of the reinforcement training algorithm are given in figure 4.10. At random 

time intervals, small experimental perturbations are performed on the active set of weights 

at that instant of time. After the perturbation is made, the impact of that modification is 

evaluated by observing the change in the error metric over a duration of time which contains 

many periods of the input disturbance. If the perturbation resulted in reduced power in the 

error signal, the weight changes are made permanent. Otherwise, the weight changes are 

eliminated by restoring the affected weights to their previous values. In this manner, the 

CMAC weights are gradually adjusted in a manner which reduces the average power of the 

error signal.

The error averaging filter is subject to conflicting constraints which can lead to a 

significant implementation tradeoff. One important consideration is that the filter m ust be 

designed to provide significant attenuation over the expected frequency range of the 

disturbance. In particular, the residual ripple of the disturbance must be smaller than the 

impact of a single experimental perturbation. If this is not the case, then the ripple will 

interfere with the learning process. Additionally, it is generally desirable to minimize the
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size of learning perturbations in order to improve the final accuracy of the solution. This 

results in even tighter requirements on the residual filter ripple. The error averaging filter 

is also subject to the opposing constraint of maximizing the speed of the transient response. 

This is desirable since the transient response of the filter generally determines the maximum 

rate at which consecutive experiments can be performed. As a result, a more rapid transient 

response leads to the ability to perform experiments more rapidly and therefore leads to 

more rapid convergence of the algorithm. These opposing constraints are best met by using a 

low pass filter with a very sharp transition and significant attenuation in the stop band.

R einforcem ent CMAC Algorithm : Let Ts specify the maximum settling 

time of the error filter and let r? represent the increment size parameter. Then, 

the following steps describe the operation of the reinforcement learning CMAC 

algorithm for disturbance cancellation.

1. Wait for a period of time, Tule, chosen from a random uniform 

distribution over the range [0,7},] where TP should be chosen to be

similar to the period of the disturbances to be cancelled.

2. Store a pointer, P , to the set of referenced weights.

3. Update all referenced weights by an increment ±r) where the sign is 

chosen randomly.

4. Record error metric value, eimM .

5. Wait time Ts for effect of the change to be realized in the error signal.

6. Record new error metric value, efinal.

7. If efiHal >  e,-,,-., , , reset weights pointed to by P to their initial values, and 

wait for period Ts .

8. Go to step 1.

Figure 4 .1 0 - The Reinforcement CMAC Algorithm.

To provide an estimate of the required attenuation in the stop band of the error 

averaging filter, consider the simplified case where the disturbance is a single sinusoid of
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unity amplitude and period one as shown in figure 4.11. The influence of a single weight 

perturbation in the compensator output is approximated by the triangular region shown in 

the figure. The amplitude of the experimental perturbation must be sm aller than the 

absolute error tolerance required at the CMAC output. In the present example, it is assumed 

that a single experiment results in a triangular adjustment with an amplitude equal to 2% of 

the disturbance signal and a duration equal to 2% of the disturbance period. As a result, the 

total area of the perturbation is 200 x 10~6. This area is the same area as created by a 

sinusoid of period one and amplitude 314 x 10-6 . Therefore, the disturbance signal must be 

attenuated to an amplitude less than this in order for the impact of a single CMAC update to 

be evaluated. In the present example, this translates into the requirement of 70.1 dB 

attenuation at the frequency of the disturbance fundamental.

1
Disturbance 
- Signal

I -H  H—
0

Impact of a 
single CMAC 
Experiment

Figure 4.11 -  Impact of a single experiment.

To demonstrate the basis functionality of this algorithm, simulations of the system  

shown in figure 4.9 are presented. The disturbance signal is represented by a single sinusoid 

of amplitude one and frequency 1 rad/s. The error averaging filter is implemented as a 

fourth order Chebychev Type II digital filter. It has a comer frequency of 0.02 

radians/sam ple and a designed stopband attenuation of 154 dB. The filter provides 84 dB 

attenuation at the frequency of the disturbance fundamental (1 rad/s). The step response of 

the filter settles within 10 cycles of the fundamental disturbance period and therefore this 

value is used for the minimum time between experiments Ts . The tapped delay line of the
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CMAC network has two taps with a delay of 1.5 seconds. The sampling rate of the filter and 

CMAC is set to 0.01 seconds. The generalization and quantization with used for the CMAC 

are 100 and 0.05 respectively. In this system, the forward and secondary paths are 

represented by the same continuous time resonant second order system as given by (4.1).

a?5;
^ 0  =  P2() =  1 ---- — ------- (4.1)

s + 10s +  62-5

Figure 4.12 depicts the averaged error signal for this system as a function of time. 

The non-monotonic noise in the graph is the searching noise produced by the algorithm. The 

convergence is quite slow since an experimental perturbation is only applied every ten cycles 

of the disturbance signal. However these convergence rates are not unreasonable for may 

disturbance cancellation applications where the disturbance changes only slowly over time 

and the disturbance is of sufficiently high frequency. For example, in the case of a 10 kHz 

acoustic disturbance cancellation system, the convergence time of this system would 

correspond to approximately 2.1 seconds of training. Therefore, as long as the disturbance 

source changed frequency much slower than this, the algorithm would be able to track it.

0.6

0.5

§  0 .4  5
s 03

“  0.2

24 ,0003,000 6,000 9 0 0 0  12 ,000

Time (in cycles of the disturbance fundamental)
1 5,000 18 ,000 21,000

Figure 4.12 -  Error signal for a typical simulation.

Figure 4.13 depicts a comparison of the disturbance source and the compensator 

CMAC output after convergence has been achieved. Notice that since />(•) =  P2(-) the error 

signal is zero if  these two signals are equal in value. In this case, the two signals are so 

similar that they can not be differentiated from one another on this graph.
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Figure 4.13 -  Disturbance source (dashed line) versus cancellation signal (solid line).

The reinforcement learning algorithm can be viewed as a stochastic gradient descent 

of the error surface. As a result, if  there are local minima in the error surface, the algorithm 

may not converge to zero error. Such an occurrence is common in the system of figure 4.9 

and the presence and extent of the problem depends on the nature of the input signal and the 

parameters of the CMAC. A typical demonstration of the local minima problem is shown in  

the time domain waveforms of figure 4.14. In this case, the primary and secondary plant are 

implemented as unity gains and therefore the error signal is equal to the difference between 

the disturbance and the CMAC output. The CMAC output has converged to the point where 

its output straddles the desired waveform but will converge no further given any amount of 

additional training.

Disturbance
Signal

0,5 Error Signal

■o
3

a
£
<

-0.5
CMAC
Output

3227 28 29 30 31
Time (seconds)

Figure 4 .1 4 -  Illustration of the local minima problem.

An intuitive explanation for this phenomenon is provided by the representative 

drawing of figure 4.15 where the dashed line represents the desired output and the solid line 

represents the actual CMAC output at some instant of time. Suppose an upward increment
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is made at the location indicated by arrow 1. This clearly would lead to the eventual optimal 

solution. However, due to the generalization behavior of the CMAC, this increment produces 

an increased output at points 2 and 3 as well. Often, the increase in error at points 2 and 3 

will be more significant than the decrease in error at point 1. As a result the perturbation 

will not be accepted even though it would have ultimately lead to a better overall solution.

Figure 4.15 -  Representative drawing showing local minima problem.

One technique commonly utilized to elude local minima is to add noise to the 

learning. This can be implemented in the reinforcement learning by occasionally keeping an 

experiment even if  the experiment was not beneficial. The drawback of this solution is that 

it further slows the convergence of the network. Another possibility is to utilize multiple 

CMAC networks of decreasing generalization width operating in parallel. As the 

generalization of the CMAC is reduced, the periodicity and amplitude of the residual noise is 

generally decreased. However, a CMAC with finer generalization width generally takes 

longer to converge. By utilizing multiple CMAC networks with varied generalization, the 

coarse generalization CMAC allows for rapid convergence for the bulk of the signal while the 

fine generalization CMAC reduces the amplitude of the residual noise caused by the local 

minima problem. Additionally, the residual noise can be shifted higher in frequency to the 

point where it is filtered out by the secondary path.

A second refinement of the reinforcement learning CMAC algorithm is to utilize a 

momentum term to speed the convergence rate. Specifically, the momentum term is 

implemented by repeating successful experiments until that particular perturbation is no
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longer useful. Figure 4.16 depicts the result of adding the momentum learning to the 

simulation of the previously described system.

0.6

With Momentum 
Learning0.5

2  0.4

i
Without

Momentum
Learning

2  0.3

0.2

1,000 2,000 3,000

Time (in cycles of th e  d isturbance fundam ental)

4 ,000 5,000 6,000 7,000

Figure 4.16 -  Error metric with and without momentum learning.

4.4 Narrowband Cancellation using Recurrent Neural Networks

In section 2.3, it was shown that the time delay neural network could be configured 

within a feedback loop in order to function as a nonlinear oscillator. It was also shown that 

this capability can be viewed as an extension of the marginally stable HR oscillator. In this 

section, a recurrent CMAC network will be utilized for active disturbance cancellation in the 

case of a narrowband periodic disturbance signal. A fundamental advantage of this approach 

is that it allows cancellation to be attained using only the observed error signal. The basis 

architecture to be considered is shown in figure 4.17.

u [k \

m

U )

CMAC

Figure 4.17 -  Recurrent CMAC disturbance cancellation architecture.
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A periodic disturbance source denoted as the signal u[k] propagates through the 

forward path represented by g{•) and /2 (•). The recurrent CMAC compensator is 

implemented using a time delay CMAC with a feedback loop consisting of a single delay 

element. Cancellation of the feedforward disturbance is achieved by training the CMAC to 

produce the limit cycle which produces an appropriate cancellation signal. Under the 

assumption that the secondary path is represented by a linear gain or odd static 

nonlinearity, the relatively simple adaptation algorithm of figure 4.18 is feasible. Since 

there is no phase delay in the secondary path, the observed error signal, e[£], is proportional 

to the error in the CMAC output. As a result, the CMAC weight update can be performed 

utilizing the observed error signal. The feedback loop filter represented by the Z domain 

transfer function, L(z) , improves convergence properties by attenuating high frequencies 

induced by the CMAC learning. The filter must have low pass characteristics and the 

bandwidth must be approximately equal to the upper frequency limit of the disturbance 

signal. However, the precise nature of the filter response and its bandwidth are not critical 

to convergence of the algorithm.

* ( ■ )

/(■)

L( z )

CMAC

Figure 4.18 -  Recurrent NN cancellation for a static secondary path.

The simulation results of figures 4.19 and 4.20 attest to the basic functionality of the 

recurrent neural network cancellation algorithm. These results are for the simplified case of 

a single tone disturbance source with all paths represented as unity gains. That is, yjQ =  1,
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^(•) =  1, and g{) — 1. The tapped delay line contains two taps and the CMAC parameters 

are as follow: 10 ps sample rate, learning gain a = 0.01, generalization width /? =  40, and 

quantization width A — 0.05. The feedback loop filter is implemented as a first order 

continuous time transfer function with a single pole located at a frequency of 50 Hz. Figure 

4.19 depicts the error signal, e[k], as a function of time for the simulation of the system of 

figure 4.18. Adaptation of the CMAC compensator is enabled at time 0.1 seconds, after 

which a rapid decrease in the error signal magnitude is apparent as the CMAC approximates 

the limit cycle required to attain cancellation. The disturbance signal is comprised of a 

single sinusoid of frequency 50 Hz and unity amplitude. At time 0.5 seconds in this 

simulation the disturbance signal undergoes a step change in frequency to 100 Hz. As 

result, the error signal increases momentarily and then is gradually reduced as the CMAC 

adapts to the new limit cycle. This simulation demonstrates the basic convergence of the 

algorithm and its ability to track changes in the disturbance signal. Additionally, it reveals 

that the loop filter parameters are not critical since, in this case, the same loop filter provides 

convergent adaptation of the CMAC at both disturbance frequencies.

1.5

0.5

0

-0.5

•1

1.5
0.7 0.80 0.1 0.2 0.3 0.4 0.5 0.6 0.9

Time (s)

Figure 4.19 -  Error Signal for the recurrent Neural Network Cancellation System.

Figure 4.20 depicts the original disturbance signal and the cancellation signal over a 

small region of time about the transition in the disturbance frequency. Given the unity gain 

nature of the signal paths, perfect cancellation occurs when these two wave forms are equal
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in value. This illustration shows the transient response as the recurrent CMAC adapts to 

the new limit cycle required for the higher frequency disturbance.

0 . 5  -<u
3 0 rQ.
I

- 0 . 5

0 . 4 5 0 . 5 0 . 5 5

Time (s)

Figure 4.20 -  Disturbance and cancellation signals near the frequency step.

Figure 4.21 depicts the trajectory of the CMAC input vector in the delayed coordinate 

space for the same simulation. That is, x1 and x2 represent the CMAC inputs created by the

tapped delay line. The presence of two limit cycles corresponding to sinusoidal oscillations at 

the two distinct disturbance frequencies is clearly visible.

l

-i ---------------------- 1-----------------------1-----------------------1-----------------------
-1 -0 .5  0  0 .5  1

X 1
Figure 4.21 -  Embedding space pointer trajectory.
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The stability of the limit cycle implemented by the recurrent CMAC is dependent 

upon the nature of the trajectory and the CMAC parameters. However, the stability is also a 

function of the rate of convergence during training. Consider the simulation result depicted 

in figure 4.23. In this case, a two input recurrent CMAC is trained to produce a periodic 

waveform which is the sum of two harmonically related sinusoids. Training is initiated at 

time zero. In this simulation a relatively large learning gain (a  =  0.2) was utilized. As a 

result, the convergence is very rapid. At time 125 ms., the adaptation is disabled and it can 

be seen that the CMAC output rapidly drifts away from the trained limit cycle. This shows 

that the limit cycle is not very stable and continuous adaptation would be required to 

maintain operation within the periodic orbit.

2

1
■p
3 0
t
<

•1

•2
0.05 0.15 0.2 0.250 0.1

Time (s)

Figure 4.22 -  Recurrent CMAC output (solid) and reference (dashed) for a learning gain o f 0.2.

Figure 4.23 depicts the same simulation except for a reduction in learning gain to 

a — 0.03. In this case, the same period of training results in a much more stable limit cycle 

as evidenced by the fact that the CMAC output remains closely correlated to the reference 

signal even after the CMAC adaptation is disabled at time 125 ms. This is a counterintuitive 

outcome since it would be reasonable to expect that the higher learning gain should produce 

more rapid training and therefore result in a more stable limit cycle.

2

1
■o
3 0
Q.£
<

-1

-20 0.05 0.1 0.15 0.2 0.25

Figure 4.23 -  Recurrent CMAC output (solid) and reference (dashed) for a learning gain o f 0.03.
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The explanation for th is phenomenon is due to the different areas of the CMAC input 

space which are visited in each case. Figure 4.24 depicts the input space trajectory of the 

CMAC in the previous simulations. Figure 4.24a is for the case of the lower learning rate of 

0.03 while figure 4.24b is for the higher learning gain of 0.2. Notice that the exercised region 

of the map is greater in the case of the lower learning gain since there is more of a transient 

response before the limit cycle is reached. As a result, the CMAC mapping is trained along a 

wider region about the trajectories in this case. Therefore, slight perturbations from the 

ideal trajectory will be corrected. In contrast, the faster adaptation rate results in tra in ing  

only very close to the actual limit cycle. As a result, perturbations from the limit cycle can 

result in inappropriate CMAC outputs due to a lack of train ing  at nearby points. As a result, 

slight perturbations can lead to a significant drift away from the limit cycle. More robust 

training can also be provided through the utilization of additive noise during the adaptation 

process.
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Figure 4.24 -  Limit cycle trajectories for learning gain o f  0.03 (a) and 0.2 (b).

In the general case where the secondary path has dynamical properties, the

recurrent CMAC algorithm can be combined with the Filtered-X CMAC or reduced Filtered-

X CMAC algorithms in order to provide convergent training. For example, figure 4.25

depicts the case of a secondary path which can be modeled by a linear dynamical system. In
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this case, a linear FIR filter is adapted to represent the characteristics of the secondary path. 

The resultant model is then utilized to perform the reduced Filtered-X CMAC updates on the 

recurrent CMAC compensator.

I C oefficients

g ( - )

L(z)

/ , ( ■ )

FIR

F-X
CMAC

CMAC

Figure 4.25 -  Recurrent CMAC cancellation using the reduced Filtered-X CMAC algorithm.

This approach requires a model of the secondary path dynamics and if  such a model 

exists, then it is also possible to provide cancellation via the regenerative technique 

described in section 4.2. However, the recurrent CMAC approach has the advantage that a 

relatively crude model of the secondary path can be utilized since it is only utilize to invert 

the phase characteristics introduced in the error signal. In contrast, the secondary plant 

model required in the regenerative approach must be a very precise model of the secondary 

path in order to accurate estimate the exact value of the compensator contribution in the 

error signal.
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CHAPTER 5

ACOUSTIC CANCELLATION LABORATORY 

PLATFORM

5.1 Introduction

This chapter describes a practical implementation of the Reduced Filtered-X CMAC 

algorithm on an acoustic duct laboratory model. The primary objective of this effort is to 

confirm that the proposed algorithm can provide effective performance even when subject to 

the constraints of a physical implementation. In typical active disturbance cancellation 

applications, these constraints include: limited computation time, limited precision math 

operations, limited sensor ranges, sensor noise, and the presence of unexpected higher order 

vibrational modes. As in any acoustic cancellation problem, the efficacy of the solution 

depends in large part on the nature of the acoustic environment. In the case of an ideal 

cylindrical duct it will be shown in section 5.2 that there is a fundamental cut-on frequency 

below which the duct is only able to sustain a fundamental mode. The fundamental mode is 

characterized by equipressure across the duct cross-section and therefore fundamental mode 

disturbances can be attenuated using a single speaker source. The present model considers 

only the case of fundamental mode cancellation and the disturbance signal is limited in 

frequency to ensure that higher order modes are not excited.

An additional outcome in development of the experimental model was the generation 

of several refinements to the algorithm in order to make it more amenable to hardware 

implementation. These modifications include a linear variant of the algorithm introduced in 

section 5.3 and the use of partial updates to reduce the computational overhead as described
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in section 5.2. A detailed description of the actual hardware implementation and an 

evaluation of the cancellation performance is provided in section 5.4.

5.2 Cylindrical Duct Acoustics

In order to understand the capabilities and limitations of single source active noise 

cancellation in a cylindrical duct, it is necessary to have a basic understanding of the 

behavior of acoustical disturbances in such an environment. For that reason, this section 

reviews the fundamentals of acoustics in cylindrical ducts, focusing primarily on deriving the 

modal responses of such systems and the cut-on frequencies associated with the higher order 

acoustic modes.

An acoustic disturbance, or sound, is simply a minute fluctuation in air pressure 

superimposed on the much greater background atmospheric pressure. When such a 

disturbance is created in free space it travels outward in spherical wavefronts at a speed of 

approximately 350 meters per second, although the exact velocity varies with temperature 

and relative humidity. Air is unable to support a transverse wave due to insufficient binding 

force between air molecules and therefore sound waves propagate as longitudinal

disturbances with alternating regions of rarefaction (regions of lower than background

pressure) and compression (regions with greater than background pressure). Acoustical 

waves are completely specified by a single scalar function representing the differential air 

pressure as a function of space and time as given in equation (5.1). The pressure distribution 

must obey the scalar wave equation or Helmholtz equation given in (5.2) in addition to any 

boundary conditions applicable to the region under study.

p(x,y,z,t) (5.1)

=  (5.2)
c at

In this section, the propagation of sound waves in a cylindrical duct of radius a  and 

infinite length will be considered. The derivation will utilize the cylindrical coordinate 

system depicted in figure 5.1. The speed of sound, c , is taken to be uniform and only time

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



harmonic solutions to the wave equation are considered. It is assumed that the walls are 

perfectly rigid and the effect of friction along the walls is neglected.

Figure 5.1 -  Acoustic duct in cylindrical coordinate system.

The time varying distribution of pressure within the cylindrical duct is found via 

solution of the scalar wave equation given in (5.2). For the special case of time harmonic 

solutions the wave equation reduces to the expression given in (5.3). Additionally, given the 

cylindrical geometry of the problem, it is natural to express the Laplacian in cylindrical 

coordinates which produces the Helmholtz equation given in equation (5.4). Finally, care 

must be taken to enforce the boundary conditions presented by the duct walls on the solution 

of this partial differential equation.

V2p +  w2p =  0 (5.3)

d2p d2p 1 dp 1 d2p - u p  — 0 (5.4)
dx2 dr2 r dr  r2 dB2 

Analytical solution of this partial differential equation can be obtained using the 

separation of variables technique to yield the complete solution given in equations (5.5) [94]. 

The solution is time harmonic as assumed and has radial variation in the form of a varying 

order Bessel function of the first kind. The constants a mfl, k x are specified by the boundary 

conditions and frequency of the harmonic solution while the parameters wi and fj, are 

integers related to particular modes where m = 0 , 1,2, • • • and p = 0, 1,2, • • • .

/(J f l
p(x,r,9) =  A Jm    cos(m9)e~jklXe3Llt (5.5)
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The present analysis assumes an infinitely long duct and therefore the only boundary 

condition in effect is that presented by the cylindrical duct wall. This boundary condition 

requires that the radial partial derivative of the pressure go to zero at the duct radius as 

given by equation (5.6) [14].

dp
dr

=  =  0 (5.6)

In order to satisfy this boundary condition, a. must be chosen as the fx th root of

the derivative of the Bessel function of the first kind and order m  . These roots can be 

numerically computed and are given in table 5.2 for several lower order modes.

m =  0 m =  l m  =  2

oII 0 1.84 3.05

n  =  \ 3.83 5.33 6.71

=  2 7.02 8.54 9.97

Figure 5 .2 -Roots a mfi of J '( i

The wave number in the direction of propagation is given by equation (5.7) which can 

be found by substituting the solution (5.5) into the wave equation (5.4). If the wave number 

is real for a given frequency u> and mode m , ji  then the respective mode will be able to 

propagate. If the wave number is imaginary, the solution will be an evanescent wave which 

will decay rapidly.

«.7>

The frequency above which a given mode will sustain a propagating wave front is 

known as the cut-on frequency of the mode. The cut-on frequency can be determined from 

solution of equation (5.7) with kx =  0 given that this is the boundary at which the wave 

number transitions from real to imaginary. This results in equation (5.8) for the cut-on 

frequency f c in Hertz.
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It is common to refer to the various possible modes by the designation P . Notice

that the mode number m  indicates the number of half wavelengths contained in the 

circumference of the duct while both wave numbers help specify the more complicated 

behavior of the wave in the radial direction. The fundamental duct mode is the plane wave 

mode P00. Notice that a mfl =  0 and therefore the cut-on frequency for this mode is zero

indicating that any frequency acoustic wave can be propagated in this mode. Spatially, this 

mode represents equipressure wave fronts across the duct cross section and time harmonic 

traveling waves in the x direction.

m =  0 m — l m — 2

/i =  0 0 Hz 2.02 kHz 3.34 kHz

n  =  1 4.20 kHz 5.85 kHz 7.36 kHz

-R II to 7.70 Khz 9.36 kHz 10.93 kHz

Figure 5.3 -  Cut-on Frequencies for Lower Order Duct Modes.

Cut-on frequencies for several of the lower order cylindrical duct modes are presented 

in figure 5.3. The first higher order mode is P0I which begins propagation at about 2 kHz.

This mode is characterized by having no pressure variation in the theta direction but 

variation in the radial direction. In order to visualize the pressure distribution for the 

different possible modes, consider the plane cross section of the duct shown in figure 5.4. 

Figures 5.5 -  5.7 depict the pressure distribution on this cross section as surfaces where the 

height of the surface represents the differential pressure. Notice that for the plane wave the 

pressure is uniform across the duct and represents a traveling wave in the x direction. For 

higher order modes, there is substantial variation in the pressure across the duct.
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Figure 5.4 -  Planar cross section o f duct.

Figure 5.5 depicts the pressure distribution associated with the fundamental mode of 

the duct. Notice that the pressure is uniform across the duct and varies sinusoidal in the 

direction of travel. To a first order approximation, a speaker located inside the duct with a 

diameter approximately equal to the duct diameter will produce a uniform pressure 

disturbance across the duct cross-section. Additionally, the uniformity of the pressure 

distribution means that a single sensor located anywhere across the duct cross-section is 

adequate for sensing the error signal.

Radius

Figure 5 .5 -  Plane wave (Poo mode) pressure distribution.
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Figure 5.6 -  Mode P01 pressure distribution.

Figures 5.6 and 5.7 depict the pressure distribution associated with two higher order 

duct modes. Notice that in both of these cases, the pressure is not uniform across the duct 

cross-section. In general, cancellation of these higher order modes requires an additional 

cancellation source per mode in a location that is not located near a null of the mode to be 

cancelled.

Radius

Figure 5.7— Mode P10 pressure distribution. 
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5.3 Partial Updates in the Reduced Filtered-X CMAC Algorithm

One of the fundamental limiting factors in real-time disturbance cancellation 

implementations is the computational overhead of the algorithm. Even though the 

computational overhead of the Filtered-X CMAC algorithm is modest in comparison to other 

approaches, it is still a limiting factor at high frequencies as well as in the case of high order 

compensators and secondary path models. For example, in the duct system described in 

section 5.4, the secondary path FIR filter is required to have 500 taps in order to adequately 

model the time delay and resonant structure of the secondary acoustic path. Consequently, 

this results in the storage of 500 delayed sets of CMAC pointers and requires the updating of 

500 sets of CMAC weights on each control cycle as can be seen from the Reduced Filtered-X 

CMAC weight update shown in (5.9). This represents a substantial computational burden.

a
w[k +1] =  w[k] H—  e[*]V 6-a[fc — i] (5.9)

0  0

At the expense of reducing the convergence rate of the algorithm, the computational 

burden per control cycle can be reduced by performing only a subset of the weight updates on 

each cycle. Such partial update algorithms are commonly utilized to reduce the overhead of 

LMS coefficient updates in high order FIR filters as described in section 1.5. The 

differentiating factoring in the different partial update algorithms is the means by which the 

subset of weights to be updated is chosen. In the remainder of this section, three different 

partial update algorithms will be considered. The first two are inspired by commonly 

utilized approaches in adaptive FIR filters. It will be shown that these are generally not 

appropriate for use with the Filtered-X CMAC algorithm. Finally, a random partial update 

algorithm is proposed which is effective even in the case where the error signal is highly 

correlated with the update pointer.

The first partial update technique is given in equations (5.10) and (5.11). This 

algorithm is based on the sequential LMS partial update method described in section 1.5. 

On each iteration, a single delayed set of weights is updated using the appropriate secondary
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path filter coefficient and the current observed error. The index of the weight set to be 

updated is incremented on each discrete time step so that the algorithm linearly cycles 

through a single Filtered-X CMAC update in M iterations.

w[k + 1] — w[fc] +  ae[k}bi[k]a[k — i[k]] (5.10)

i[k] +  1 if i[k] < M  — 1
i[k +1] = (5.11)

0 otherwise

Simulation and laboratory experiments reveal that this approach often results in 

undesirable performance. In particular, this partial update technique can lead to instability 

in cases where the standard update algorithm is stable. Additionally, in many cases this 

update technique results in extremely slow rates of convergence. These problems occur due 

to correlation between the error signal and the pointer update signal i[k}. As a result, the 

problems are most noticeable when the period of the pointer update signal is comparable to 

the fundamental period of the error signal. This in turn depends on the length of the 

secondary filter, the update rate, and the nature of the error signal. To illustrate the 

problem, consider the extreme case where the disturbance is a single tone with a period that 

happens to be exactly equal to the length of the secondary path impulse response. In this 

case, the pointer update i[k] will be exactly synchronized with the error signal. As a result, 

each set of lagged values will only ever get updated with a single value of the error signal.

A second method which is based on the periodic update LMS algorithm is shown in 

equations (5.12)-(5.14). In this case, the error signal is subsampled at the rate of the entire 

filter update and each value of the subsampled error signal is used to update the entire set of 

weights.

es[k + 1]:
e[k] if k% M  =  0 

es [Ar] otherwise
(5.12)

w[A; +1] =  w[&] +  aes [k]b^a[k — *[&]] (5.13)

i[k] = k% M  (5.14)
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In the case where the subsampled error signal has similar properties to the original 

error signal, then this algorithm will have stability requirements which are the same as the 

full algorithm. For example, if  the filter is fed by a white noise source, this might be a good 

approximation. However, in the Filtered-X CMAC algorithm, the error signal is often highly 

periodic and therefore, the subsampled version of the error signal can have much different 

properties than the full signal. Thus, this algorithm also suffers from the problem of 

correlation between the updating and the error signal.

Due to the problems with the traditional approaches to partial updates, the 

recommended partial update algorithm for use with the Filtered-X CMAC algorithm is given 

in equations (5.15) and (5.16).

i[k] =  random selection from {0,1,---,M — 1} (5.15)

w[k +1] =  w[fc] +  ae[k]bi[k]a[k -  i[k]] (5.16)

In this case, the index of the weight to be updated is selected randomly on each 

iteration. As a result, every value of the error signal is utilized and given the random 

selection process, each set of delayed pointers will on average get trained utilizing values of 

the error signal evenly distributed across the period. As shown in (5.15) and (5.16), the 

algorithm provides the largest possible decrease in computations by performing only a single 

update per cycle. However, in general, any desired number of updates could be made per 

cycle thus allowing a tradeoff between computational overhead and rate of convergence.

Figure 5.8 provides a comparison of the convergence rate of the Filtered-X CMAC 

algorithm for different size updates using the random partial update algorithm. Each trace 

shows the average power in the error signal as a function of time. The parameter R indicates 

the number of randomly selected weights which are updated on each interval. These results 

are from simulation with a resonant secondary path modeled by a 300 tap FIR filter and a 

300 Hz sinusoidal disturbance signal. Notice that the time required to reach a certain error 

threshold is inversely proportional to the number of pointer sets updated at each cycle. For 

example, with R=150, the algorithm requires 0.5 seconds to converge to less than 0.001. In
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comparison, with R=50, the algorithm takes 1.3 seconds which is approximately three times 

longer.

010

10 R=10

-2
10

R=50•3
10
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■4
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Standard
Algorithm

—1_________________   1.....    I  1--------------m
0.5 1 1.5 2 2.5 3
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Figure 5.8 -  Convergence rate versus partial update size.

5.4 The Linear Filtered-X CMAC Algorithm

In chapter two, it was shown that the complexity of a linear model can be reduced by 

utilizing a narrowband approximation which is accurate only over a limited range of 

frequencies. In the case of a single sinusoid, a suitable model at any given frequency is 

simply a two input FIR filter. Analogously, in the case of a time delay CMAC, a two input 

Time Delay CMAC can represent a mapping between two periodic signals given that certain 

conditions on the input are met. This capability is well suited for narrowband cancellation 

since in such cases the models are only required to be accurate over a small range of 

frequencies. In such cases, the time delay CMAC has a single closed orbit trajectory in its 

input space as represented by figure 5.9. For a time invariant input, the CMAC is 

constrained to this trajectory. As a result, the input space can be represented as a single 

dimension thereby permitting the use of a single input CMAC for a compensator.
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CMAC

Figure 5.9 -  Typical input space trajectory.

This reduction in the input space dimension can be accomplished via the technique 

demonstrated in figure 5.10. Figure 5.10a depicts a typical periodic input signal and its 

corresponding input space trajectory. Suppose a repetitive ramp waveform can be generated 

from the disturbance signal as shown in figure 5.10b. It is assumed that this sawtooth 

waveform is synchronized to the fundamental period of the actual disturbance signal. For 

example, such a waveform can be easily generated from a synchronization pulse provided by 

a tachometer. The sawtooth waveform can be used as input to a single dimension CMAC as 

shown. As a result, an entire period of the disturbance signal is mapped into a single pass 

through the one dimensional CMAC input space.

Time Domain CMAC input Space

(a)

© ©

<t»)

© ©1 ' 1

Figure 5.10 -  Two and One dimensional input space trajectories.
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Figure 5.11 depicts a possible hardware implementation of the linear Reduced 

Filtered-X CMAC algorithm. A synchronization pulse is provided by the disturbance source. 

This pulse is used to reset an integrator which produces a repetitive ramp, r(t) , that is phase 

locked to the disturbance signal. Meanwhile, a counter generates an estimate of the 

disturbance signal period which is then used to normalize the ramp signal. As a result, u(t) 

represents a fixed amplitude sawtooth waveform independent of the period of the input 

signal. This provides two advantages. First, this allows for full utilization of the CMAC 

input space at all disturbance frequencies. Second, this allows the generalization to scale 

with the period of the input signal. Specifically, the generalization width remains a constant 

percentage of the disturbance period even as the frequency of the signal varies.

|!J1
r { t ) u{t)

 * .
Reset

Latch

Coefficients
-----
Reset

m

Counter

FF

P2(s)

Filtered-X 
Weight Update

CMAC

Figure 5.11 -  The linear Filtered-X CMAC Algorithm.

There are several advantages of the linear CMAC algorithm described in this section. 

First, the reduced dimension of the CMAC compensator leads to decreased memory 

requirements and reduced computational overhead. Second, this technique eliminates the 

need to choose an appropriate delay for the tapped delay line in order to ensure an 

appropriate input space trajectory under various conditions. Additionally, this approach 

does not require an actual estimate of the reference input, but only a digital start-of-period 

pulse, as could be produced by a tachometer. Additionally, this approach does not allow for
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interference produced by nearby trajectories. Finally, this technique provides for a 

generalization width which automatically scales with the period of the disturbance.

However, there are disadvantages associated with this technique as well. First, it is 

only applicable to the case of periodic input to periodic output relationship. Additionally, the 

CMAC must be retrained for any change in the relationship. Finally, the end points have 

slightly different generalization effects then the rest of the network (i.e. there is no 

generalization from the end of the cycle to the beginning of the cycle). However, this effect 

can be eliminated through use of a circular CMAC structure.

5.5 Implementation Details and Results

This section presents results for application of the Reduced Filtered-X CMAC 

algorithm to an acoustic duct laboratory model. This experimental platform is intended to 

validate the basic functionality of the algorithm in the presence of practical limitations 

presented by a realistic physical setting. Some common non-ideal features include 

quantization effects, limited sensor range and resolution, limited computational capability, 

and the presence of higher order dynamics. The results presented in this section reveal that 

the Filtered-X CMAC algorithm is capable of providing substantial levels of attenuation even 

in the presence of such factors.

The laboratory system used in this research is shown in the block diagram of figure 

5.12. The duct is constructed from Schedule 40 FVC pipe with an inner diameter of four 

inches. A midrange four inch polypropylene cone 40 Watt speaker is utilized to generate the 

disturbance signal in one branch of the duct work while a second speaker of the same type is 

utilized as the cancellation actuator. The speakers have a frequency response of 

approximately 85 Hz to 10 kHz and have a significant resonance located at approximately 

130 Hz. A wide bandwidth uni-directional condenser microphone element is used as the 

error sensor and is located at the center of the duct cross-section. The microphone has a 

sensitivity of -64 dB and a typical frequency response of 30 Hz to 10 kHz.
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Figure 5.12 - Block Diagram of Experimental Acoustic Environment.

The signal processing hardware is designed to restrict the frequency of the 

disturbance and cancellation signals such that only the fundamental acoustic mode can be 

excited. To accomplish this goal, both of these signal paths are filtered utilizing fourth order 

active analog Bessel filters with a cut-off frequency of 600 Hz. The cancellation signal is 

generated using a 16 bit Digital to Analog converter with a maximum sample rate of 150 k 

samples per second. The cancellation and disturbance speaker are driven using high power 

operational amplifiers with maximum output current of 2 amps and a gain-bandwidth 

product of 1.4 Mhz. The error microphone signal is AC coupled and amplified by gain Gm- A 

fourth order low pass Bessel filter is utilized as an anti-aliasing filter. The amplified error 

signal is converted to the digital domain using a 16 bit successive approximation analog to
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digital converter. The high resolution of this converter eliminates the need for an automatic 

gain control on the error signal.

The control algorithm is implemented on the Texas Instruments Digital Signal 

Processor (DSP) TMS320C6711. The ‘C6711 is a floating point processor with a clock rate of 

150 Mhz in this application circuit. However, it superscalar architecture allows for 

simultaneous execution of up to eight instructions in a single clock period. As a result, under 

ideal circumstances, the ‘C6711 can operate at 1200 MIPS. The ‘C6711 variant used in this 

research has 72 kB of on-chip memory which can be allocated to serve either as cache or 

RAM. Additionally, the DSP is interfaced to an external synchronous dynamic RAM with 16 

megabytes capacity. The on-chip memory has an access time of one to four CPU clocks 

depending on whether it is located in the level 1 or level 2 cache memory. However, the 

external memory can have up to a 16 clock cycle latency for single address accesses. This 

overhead is a significant consideration in implementation of the memory intensive CMAC 

algorithm.

The results presented in this section pertain to the linear Reduced Filtered-X CMAC 

algorithm as described in section 5.4. This variant of the Filtered-X CMAC algorithm is 

designed solely for cancellation of periodic disturbance signals. In this experimental 

platform the periodic disturbance is generated by an arbitrary waveform generator which is 

controlled by a PC through a GPIB interface. The only reference signal provided to the DSP 

is a synchronization pulse which is phase locked to the fundamental of the disturbance 

signal. In practical applications, such a signal is often generated by a tachometer on a piece 

of rotational equipment.

Figure 5.13 depicts the interrupt based execution flow of the algorithm as 

implemented in the DSP. The implementation is based on the single dimension version of 

the Filtered-X CMAC algorithm as described in section 5.4. In this case, the compensator 

input is a ramp which is generated by an integrator. The integrator update loop increments 

the integrator on 10 ps intervals while the integrator reset loop resets the integrator in
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response to receiving a synchronization pulse. The control loop is timer initiated at a 100 ms 

period. The majority of the algorithm is performed in this loop and as a result, this execution 

thread occupies most of the DSP execution time. The interrupt priorities are established 

such that all other interrupts are capable of interrupting the control loop. During normal 

operation, the control loop performs all of the functionality necessary to create the 

cancellation signal and to update the CMAC compensator. During initialization, the control 

loop drives the cancellation speaker with a random noise sequence and performs 

identification of the linear FIR secondary path model. In this implementation, the secondary 

path is represented by a 500th order FIR filter. This filter length allows the modeling of an 

impulse response of 50 ms duration. In this application, the measured transient response is 

approximately 42 ms.

High Priority Timer Interrupt 
10 us Intervals

Integrator 
Update Loop

Integrator Reset 
LoopIntegrator

Reads ADC 
value from error 

microphone, 
computes 

CMAC 
compensator 
output, and 

trains CMAC.

Control Loop

Synch Pulse External Interrupt 
High Priority

Low Priority Timer Interrupt 
100 ms Intervals

Figure 5 .1 3 -  Execution loops in the DSP implementation.

Figure 5.14 depicts the cancellation performance of the system as a function of 

frequency. In this experiment, the disturbance signal is a single sinusoid which was swept in
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frequency from 50 Hz to 800 Hz. At each frequency, a 100 ms pause was implemented to 

allow the CMAC to converge and the average power at each frequency was recorded. This 

experiment was repeated with the cancellation algorithm disabled. Comparison of the two 

plots indicates that the algorithm provides over 30 dB attenuation over most of the frequency 

range. The low frequency resonant peak in the uncancelled power spectrum is produced by 

the speaker resonance and the gain roll-off above 600 Hz is due to the presence of the low 

pass filter in the disturbance signal path.

y—"VOQ
T3 Cancellation Disabled

Cancellation Enabled

-20

-30
25050 150 350 650 750450 550

Frequency (Hz)

Figure 5.14 -  Power Spectrum with and without cancellation enabled.

One principle advantage of the Time Delay CMAC compensator is its ability to 

provide cancellation in nonlinear systems. This capability is demonstrated by the present 

system given that the disturbance signal can be chosen such that it is nonlinearly related to 

the reference signal. In practical applications, this situation often occurs when the 

disturbance source contains harmonics of some fundamental frequency and yet the 

harmonics are not represented in the reference signal. To illustrate the performance of the
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present system in this case, the external disturbance was configured as a square wave as 

shown in figure 5.15. The presence of ringing in this signal is a result of the low pass filter in 

the disturbance signal path which eliminates some of the high frequency content of the 

square wave. In this figure, the compensator is disabled and therefore the cancellation 

signal is zero. The resultant error signal as measured by the error microphone is depicted in 

the bottom trace.
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Figure 5.15 -  Cancellation for a nonlinear disturbance signal.

Figure 5.16 depicts the same set of signals as shown in figure 5.15 after the CMAC 

compensator has been enabled and given sufficient time to converge. Notice that the error 

signal has been reduced to near zero indicating that the compensator output is producing an 

appropriate cancellation signal. In particular, this reveals that the compensator is producing
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energy at frequencies which are not present in  its input signal. This particular example is 

for the case of a square wave with frequency 100Hz.
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Figure 5.16 -  Cancellation for a nonlinear disturbance signal.
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CHAPTER 6

IMPLEMENTATION ISSUES

6.1 Introduction

This concluding chapter addresses several topics of concern to practical 

implementation of the CMAC compensator in active disturbance cancellation systems. To 

that end, section 6.2 provides an estimate of the computational requirements of the 

algorithm. This topic is of particular importance since the computational efficiency is the 

key factor in determining the upper operating frequency for the algorithm. The presented 

results indicate that the time delay CMAC compensator requires only marginally greater 

computation per control cycle then the conventional adaptive linear techniques.

In the development of the Filtered-X CMAC algorithms, it was assumed that a 

secondary path model was developed off-line prior to use of the CMAC compensator. Since 

the precision required of the secondary path model is quite minimal, this approach is 

suitable for most systems. However, in cases where there is great temporal variation in the 

secondary path, a means for continuously adapting the secondary path model during 

operation must be utilized. In the case of linear adaptive cancellation, several techniques for 

continuous secondary path modeling have been developed. In section 6.3, these techniques 

are reviewed in order to consider their applicability in the case of a time delay CMAC 

compensator.

The time delay CMAC compensator was developed in the context of single input, 

single output systems. However, in many practical problems, effective cancellation requires 

the use of multiple actuators. For example, in the case of acoustic cancellation within a
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cavity, at least one additional cancellation source will be required for each modal response to 

be attenuated. In addition, it is often necessary to minimize the disturbance at an array of 

error sensors rather than at a single location. Therefore, most practical disturbance 

cancellation systems utilize an array of cancellation sources and minimize the error over a 

set of error sensors. In general, it is possible for any cancellation source to influence any 

error sensor. In section 6.4, a multi-channel extension of the Reduced Filtered-X CMAC 

algorithm is presented which is suitable for such applications.

6.2 Computational Requirements of the Filtered-X CMAC Algorithms

The computational overhead associated with the CMAC neural network can be 

divided into that required by three separate tasks: active weight addressing, output 

calculation, and weight updating. Referring to the binary CMAC algorithm described in 

section 2.2, the active weight addressing requires the computation of (3 indices. It is 

assumed that the coarse-coding is performed via dedicated hardware and therefore, each 

index is created via a single subtraction and division as shown in equation (2.3). Often, the 

division is performed using a binary right shift operation, but in the present derivation it will 

be considered as an additional computation. It is assumed that the floor operation in (2.3) 

occurs intrinsically within the integer divide operation and therefore does not require a 

separate operation. Therefore, for a CMAC with T  inputs and generalization (3, the weight 

addressing operation requires 2(3T computations. The output calculation involves a 

summation of the (3 active weights which requires (3 — 1 operations. Finally, the standard 

CMAC error-based weight update requires a single multiplication and addition per weight 

resulting in a total of 2(3 operations. Often, the learning gain is implemented as a binary 

shift operation to reduce the computational overhead, but will be considered here as a 

separate multiplication operation. Figure 5.1 provides a summary of the computational 

requirements for the binary CMAC algorithm.
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Operation Computations

Active Weight Computation 2 (3T

Output Calculation 0 - 1

Weight Updates 2(3

Figure 6.1 -  Computational requirements of the CMAC algorithm.

In the Filtered-X CMAC algorithm, there are two separate time delay CMAC 

networks. One is used as the compensator while the other models the secondary path. Let 

N  represent the number of inputs to the compensator network and M  represent the number 

of inputs to the secondary path model. The compensator weights are updated via the 

Filtered-X CMAC weight update which is repeated in (6.1).

u  =̂1
w[A; +1] =  w [&] H— e[fc]y  ̂V â [k — i) (6.1)

P >=o

The secondary path gradients, V ,, are numerically estimated using the secondary 

path CMAC. The simplest method for attaining these estimates is via the single sided 

estimate given in (6.2). In this equation, represents the recall operation of the

secondary path model CMAC and yAi represents the present input vector to the secondary 

path with a perturbation A y  applied to the i th element. Since the perturbation magnitude 

A y  is constant, a division operation is not required since this can be merged into the 

learning gain.

  fcmac (Va . ) fcmac (V) ^g
A y

From equation (6.2), computation of each gradient requires two evaluations of the 

secondary path model CMAC. However, one evaluation is common to the entire set of 

gradients. Therefore, computation of all M  gradients requires M +  l  evaluations of the 

secondary path CMAC in addition to M  subtraction operations. Using the results from 

figure 6.1, the total computational requirement for calculation of the gradients is given in 

(6.3).
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M  +  (M + 1)(2 (3M + (3-1) = 2 (3M2 +  3 (3M + (3 -1  (6.3)

Computation of the current compensator output simply requires a standard CMAC 

output calculation comprising 2/3JV + ((3 — 1) computations. It is assumed that past values of 

the weight selection vector are stored in a tapped delay line and therefore do not require 

additional computation. As a result, the compensator weight updates requires 2M(3 +1 

operations. The additional operation is the multiplication of the error signal, e[k], by the 

learning gain which needs to be performed only a single time since that term is common to 

all weight updates. The total computational requirements of the algorithm are given in 

figure 6.2. Notice that the total requirements of the algorithm are proportional to the 

generalization width and also increase with the square of the input dimension of the 

secondary plant model.

Operation Computations

Gradient Calculations 2 (3M2 + 3(3M + (3 -1

Compensator Addressing 2(3N

Compensator Output (3 -1

Weight Updates 2M/3 +  1

Total ■2(3M2 + 5/3M +  2(3N + 2(3-1

Figure 6.2 -  Computational requirements of the Filtered-X CMAC algorithm.

The Reduced Filtered-X CMAC algorithm utilizes an FIR model of the secondary 

path. The computational overhead is similar to the standard Filtered-X CMAC algorithm 

except that the gradient calculations are not necessary. This is due to the fact that the 

gradients are simply equal to the coefficients of the secondary path model and therefore 

require no additional computation. As a result, the total computation for the reduced 

Filtered-X CMAC algorithm are given in Figure 6.3. Notice that the reduced variant of the 

algorithm has substantially less computational overhead than the full version. In particular
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this is the case for long secondary paths since the computational in the reduced algorithm 

only increases linearly with this dimension.

Operation Computations

Compensator Addressing 2 (3N

Compensator Output (3 -1

Weight Updates 2M/3 + 1

Total 2 (3M +  2(3 N  + (3

Figure 6.3 — Computational requirements of the Reduced Filtered-X CMAC algorithm.

To provide a context for these results, it is instructive to compute the corresponding 

computational cost of the Filtered-X LMS algorithm. Consider the analogous case where the 

secondary path filter has M  coefficients and the linear compensator has N  coefficients. The 

compensator output is simply an FIR computation requiring 2N  operations. The weight 

updates are performed using the standard LMS update (2 N  operations) using a filtered 

version of the input signal. The filtering is performed via the secondary path model which 

requires an additional 2M  computations. The total number of computations for the Filtered- 

X LMS algorithm is tabulated in figure 6.3. Thus, the computational cost of the Reduced 

Filtered-X CMAC algorithm is approximately a factor of (3 greater then the conventional 

Filtered-X LMS algorithm. In the limit as (3 —»■ 1, the computational requirements of the 

Reduced Filtered-X CMAC algorithm are on the same order of magnitude as the Filtered-X 

LMS algorithm.

Operation Computations

Compensator Output 2 N

LMS Weight Updates 2 N

Secondary Path Filter Output 2 M

Total 2M + 4N

Figure 6.4 -  Computational requirements of the Filtered-X LMS algorithm.
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6.3 Continuous Secondary Path Adaptation

In  the CMAC active disturbance cancellation algorithms presented previously in 

chapters three and four, it was assumed that a model of the secondary path was trained off

line prior to activation of the cancellation algorithm. Given that the accuracy requirements 

of the secondary path are not critical, this methodology is appropriate in many practical 

applications. For example, typical results for the Filtered-X LMS algorithm indicate that the 

secondary path model can have up to 90 degrees of phase error and the algorithm remains 

convergent [62]. Additionally, in the majority of applications, there is more flexibility in the 

design of the cancellation path than in the forward path and the physical environment can be 

designed so as to reduce the time variability of the secondary path. In some applications, it 

is also possible to provide occasional updates to the secondary path model in order to 

accommodate long term changes in the environment. For example, a cancellation system can 

be designed to provide identification of the secondary path on each initialization. However, 

there are other applications in which the secondary path can vary drastically during 

operation and the only feasible solution is for the secondary path to be adapted during 

cancellation in order to track these changes and maintain stability of the algorithm. In the 

case of a linear adaptive compensator, several techniques to accomplish this have been 

developed [62], In this section, a brief overview of the most popular approaches is presented 

and the applicability of each to the Filtered-X CMAC algorithm is addressed.

Consider the standard feedforward cancellation architecture depicted in figure 6.5. 

Off-line adaptation of the secondary path model, P2 (z) , requires only a straightforward 

application of linear system identification techniques. In particular, it is assumed that the 

disturbance is not present, and therefore d[k] =  0 . Additionally, it is assumed that the

compensator, C(z) , is disabled and has zero output. A white noise source, represented by 

N(z) , is used as excitation for the secondary path. It is important that this excitation have 

spectral content which extends over the entire frequency range over which cancellation is to
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be required. Since the disturbance signal is zero, the error signal, e[k], provides a measure of 

the error in the secondary path model. As a result, this error signal can be utilized directly 

to provide LMS adaptation of the secondary path model.

d[k]D isturbance
Source

a +

mW hite Noise
Source

<P]

V(z)

N(z)

P2(z)

Figure 6.5 -  Off-line adaptation of the secondary path model.

This algorithm is not well suited for continuous adaptation of the secondary path due 

to the fact that during cancellation the assumptions of zero disturbance and zero 

compensator output are obviously invalid. Furthermore, the compensator and disturbance 

signals will generally have magnitudes that are much larger then the white noise source in  

order to ensure that the identification noise source contributes little to the overall error. In 

terms of the secondary path identification, the disturbance signal represents a measurement 

error in the output of the secondary path. If this additive error is uncorrelated with the 

secondary path input, the secondary path model can still be adapted to the optimal solution 

in a statistically average sense. However, in this architecture, the disturbance is always 

highly correlated with the secondary path input whenever effective cancellation is achieved. 

In fact, if  the error signal has been driven to zero for completely cancellation, the disturbance 

and cancellation signals are directly related by the secondary path transfer function. In this 

case, the secondary path appears to take an input signal and produce zero output from the 

perspective of the adaptation algorithm. This is obviously not at all indicative of the actual 

characteristics of the secondary path. This problem generally renders the use of this 

algorithm inadequate for continuous on-line adaptation of the secondary path.
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In acoustic cancellation applications, on-line adaptation of the secondary path can be 

achieved using the third sensor method illustrated in figure 6.6 [62]. This approach is only 

applicable in cases where the secondary path can be divided into two segments. The first is 

represented by a static model while the second is modeled by a continuously adapted filter. 

As its name implies, this method requires an additional sensor located at the summing 

junction as marked by an asterisk in figure 6.6. The secondary path model is a series 

connection of two separate transfer functions, P2(z) and P3(z) . The first transfer function, 

P2(z), models the cancellation actuator, the transmission path to the third sensor, and the 

dynamics of the third sensor. This portion of the secondary path is modeled off-line using the 

previously described approach and is then held constant during cancellation. The second 

portion of the cancellation path model, P3(z) ,  represents the transmission path from the 

third sensor to the error sensor and the dynamics associated with the error sensor. This 

portion of the secondary path is adapted continuously during operation. Notice that there is 

no correlated disturbance associated with continuous adaptation of P3(z) since, in this case, 

the disturbance is added at the input to the model rather than the output. The third sensor 

method is most applicable to cases with long secondary paths in which case, the time 

variability of the secondary path can be substantially reduced by using an adaptive model for 

the majority of the signal path.

Disturbance
Source

mm

m m

e[k]

V(z)

C(z)

Pl(z)

Figure 6.6 -  Three sensor algorithm for on-line secondary path modeling.
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The primary disadvantages of the third sensor method are its inability to provide 

continuous adaptation of the entire secondary path and its requirement of an additional 

sensor. Additionally, notice that the excitation signal used in adapting P3(z) is dependent 

upon the nature of the disturbance signal and the forward path dynamics. For example, in a 

linear system with a single tone disturbance, this excitation source will be a single sinusoid 

as well. As a result, the secondary path model will be narrowband and will require 

additional adaptation to function at other frequencies. Additionally, the minimal spectral 

content generally dictates use of the leaky LMS algorithm in order to maintain stability of 

the coefficient updates.

It is possible to utilize the third sensor method for continuous adaptation with the 

Reduced Filtered-X CMAC algorithm. Let pt V i € {0,1, • • •, P  — 1} represent the coefficients of

the continuously adapted portion of the secondary path and let b{ V i e  {0,1, • • •, L — 1}

represent the coefficients of the static portion of the secondary path. With these definitions, 

the compensator output, z[k] , can be represented by the sequential filtering operation given 

in equation (6.4) where y[k] represents the output of the compensator.

P- 1 L - 1

Ak\ =  Y Y  Pnbmyik - n - m }  (6.4)
n=0 m=0

From (6.4), the gradients through the complete secondary path model can be 

calculated with the result shown in equation (6.5).

f ) r \ h \  min{P-l,t}

(6-5)dy[k -  *] ^

Using the gradients given in (6.5), the reduced Filtered-X CMAC weight update rule 

for use with the third sensor method is given in equation (6.6).

w [k +1] =  w[fc] +  r)e[kf^2
min(P-M)

Y Pnk- „ [ # - * ]  (6 .6)

Notice that the same result can be obtained by multiplying the Z domain polynomials 

of the two secondary path models to obtain a single FIR filter with P  + L taps and then
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using that filter in the standard Filtered-X CMAC algorithm. However, the multiplication 

must be performed on every iteration to ensure that the most recent secondary path model is 

utilized. Notice also that this algorithm has more computational overhead then a fixed 

length secondaiy path model of the same overall length.

In the case of a periodic disturbance source, a technique known as the time difference 

algorithm can be utilized for continuous adaptation of the secondary path model [62]. It is 

assumed that the period of the disturbance, T  , can be estimated directly from the reference 

signal. The time difference algorithm is depicted in the block diagram of figure 6.7.

m

m

m

m
,~T

-T

C(z)

P2(z)

Figure 6.7 -  Time Difference Algorithm for continuous secondary path modeling.

The time difference algorithm utilizes the a priori knowledge of periodicity in the 

disturbance signal to remove the effect of the cancellation signals from the input and output 

of the identification model. This is accomplished through the use of two comb filters as 

denoted by the dashed lines in figure 6.7. The comb filter results in the elimination of any 

signal content with period T  . Such filters are simple to implement but are only effective 

given an accurate measurement of the fundamental period of the disturbance. By removing 

the periodic portion of the secondary model input and output signals, the rem aining portion 

is uncorrelated with the disturbance and cancellation signals. Therefore, the standard LMS 

algorithm can be utilized for adaptation of the secondary path model. However, since most of
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the input signal has been eliminated, there is a concern as to whether the residual noise has 

sufficient spectral content to ensure convergent adaptation of the secondary path model. Use 

of an additive white noise excitation and the leaky LMS algorithm can alleviate this problem. 

The time difference algorithm can be used directly with the Reduced Filtered-X CMAC 

algorithm. In that case, the time difference algorithm is utilized to adapt the secondary 

model and the resultant coefficients can be used directly in the Reduced Filtered-X CMAC 

weight updates.

The final on-line secondary path modeling technique to be presented in this section is 

known as the additive noise method [62], Figure 6.8 depicts an implementation of this 

algorithm. In this approach, an additive small amplitude noise source is continuously added 

to the compensator output and the secondary path model is driven solely by the additive 

noise source. Notice that the secondary path model does not receive the compensator output. 

As a result, the disturbance signal, d[k] , is uncorrelated with the excitation signal and the 

resultant adaptation is convergent in a statistical sense. In the steady state case where the 

disturbance is completely cancelled, the error signal, e[k], will reflect only the error due to

the white noise source. In this case, the algorithm reduces to the standard noiseless system  

identification model.

D istu rb an ce
Source

n{k] mW hite Noise 
S ource

m

V(z)

N{z)

C(z)

Figure 6.8 -  Additive noise technique for continuous secondary path adaptation.

There are several shortcomings associated with the additive noise technique. First, 

the additive noise source places a limit on the m aximum, attainable cancellation. Second, the
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disturbance signal, although now uncorrelated with the model excitation, is always much 

larger than the excitation signal and therefore represents a very significant interference in 

the adaptation of the filter. This can result in a significant reduction in the rate of 

convergence. However, even with these limitations, this algorithm can be used without 

modification for adaptation of the secondary path model in the reduced Filtered-X CMAC 

algorithm.

The methods reviewed in this section provide the capability for continuous 

adaptation of the secondary path model. Each of these techniques is applicable for training 

of the secondary path model for use in the Reduced Filtered-X CMAC algorithm. However, 

these techniques cannot be utilized for continuous adaptation of a nonlinear secondary path 

model as required by the full Filtered-X CMAC algorithm. The reason for their failure in 

this case is that each of these techniques relies on the linearity of the secondary path model. 

In particular, each of these approaches is based on utilizing a linearly related set of training 

signals. However, the greater flexibility provided by a nonlinear model requires that it be 

trained with the actual signals which will present during operation. For example, a linear 

model can be trained using a low signal level white noise source and the corresponding 

secondary path output. Once the model converges, it will be accurate for any input signal. 

However, training of a time delay neural network in the same fashion will not produce a 

global model of the path. For example, the network would not produce the correct response 

for a larger amplitude signal for example. As a consequence, none of the small signal 

continuous identification techniques presented in this section are suited for on-line 

adaptation of a nonlinear secondary path model.

6.4 A Multi-Channel Filtered-X CMAC Algorithm

In most active noise and vibration cancellation applications it is not possible to 

achieve significant cancellation using a single actuator and single error sensor. For example, 

any physical system which possesses a modal response will generally require the use of an
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additionally actuator per mode to be cancelled. Additionally, it is often desirable to provide 

attenuation of the disturbance at multiple spatial locations. In such systems, each actuator 

is generally able to influence each error sensor through a unique dynamical transmission 

path. The disturbance cancellation algorithm must be capable of adapting all of the 

cancellation signals in a manner which reduces the collective error over the set of error 

sensors. In this section, an extension of the reduced Filtered-X CMAC algorithm is 

developed for use in such multi-channel cancellation applications. The block diagram for this 

system is shown in figure 6.9.

D is tu r b a n c e  __
Source

UN (z) TDCMACN

T 7”

M ulti-C hannel
Filtered-X

U pdate

U,(z) TDCMAC 1*

X  A

U2(z) TDCMAC 2

Figure 6.9 -  The Multi-Channel Reduced Filtered-X CMAC Algorithm

The multi-channel cancellation system of figure 6.9 has N  actuators denoted as 

SUS2,---,SN. Each actuator is driven by an independent time delay CMAC network. The 

objective of the cancellation system is the minimization of the error signal at the set of M
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error sensors denoted Tl,T2,---,TM. In general, the forward path between the disturbance 

source and each sensor is unique. These forward paths are represented in figure 6.9 by the 

transfer functions Rl(z),Ri (z),---,RM(z) . The secondary paths consist of the transfer 

functions relating each actuator to each error sensor. Assuming that each of these paths can 

be approximated by a linear transfer function, the aggregate secondary path model can be 

described in the matrix equation of (6.30). The element B I3(z) represents the linear transfer 

function from the output of time delay CMAC i to the error sensor T3.

E^z) D M B u(z) B n {z) ■• B1N(z) s M
EAz) D2(z)

—

B21(z) B22(z) B2N(z) S2(z)

E m(z) Em(z) B m {z) B m (z) Bmn(z) BA*)

The transfer function B v (z) is modeled as an FIR filter with coefficients b"m 

Ml G {0,1, • • •, P  — 1}. For a simplification of the notation, it has been assumed that each of the 

secondary path transfer functions B v(z) can be modeled by the same length filter. In a 

practical application, the actual filters could be chosen of different lengths if  that suited the 

application. It is assumed that the matrix secondary path model is adapted off-line and is 

then held constant during adaptation of the compensators. The off-line adaptation must be 

performed in N  phases. On phase i an excitation signal is presented at actuator St and

transfer functions B v (z) V j  € {1,2, • • •, M } are adapted.

The objective in adapting the compensator is to minimize the instantaneous sum  

squared error, E , as defined in (6.8).

M
E = J 2 e 2m[k] (6.8)

The weight updates for training of the N  CMAC compensators are based on a 

gradient descent of the sum of the instantaneous sum square error. Thus, the weight update 

for CMAC i takes the form of equation (6.9).
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(6.9)

The error signal at sensor M  is given by equation (6.10) where dm [fc] represents the 

contribution of the original disturbance sense in the respective error signal.

e jk )  =  dm[k) - 1} (6-10)
» = 1  2 = 0

The partial derivative term of equation (6.9) can be simplified using this expression 

for the error signal. The result is given in (6.11).

If the compensator weights vary slowly with respect to the secondary path filter 

length P , then the approximation given in (6.12) is justified.

y 77T  = 1 V I € {0,1,"-jP — 1} (6.12)

With assumption (6.12), the partial derivative term of (6.9) can be further reduced 

producing the result given in (6.13).

Finally, substitution of this result into the weight update equation of (6.9) yields the 

final form of the weight update equation for the multi-channel Reduced Filtered-X CMAC 

algorithm as shown in (6.14).

This weight update is valid for each of the N  CMAC compensators. The overall 

computational demand of the multi-channel algorithm is a factor of M N  times the 

computational requirements of the single channel variant with the same secondary path 

filter length.

(6 .11)

(6.14)
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CHAPTER?

CONCLUSION

Neural network based active disturbance cancellation methods offer the ability to 

provide effective cancellation in systems characterized by significant nonlinear dynamics. 

This is a considerable advantage in comparison to adaptive linear approaches given that 

such nonlinear dynamics are commonplace in many practical applications. In addition, 

neural network approaches maintain the ability to adapt to changes in the structure of the 

system and are able to function with little a priori information regarding the nature of the 

system.

Of the many neural network architectures which have been developed, the CMAC 

neural network has particular advantages in the application of active disturbance 

cancellation. The primary strengths of the CMAC are its computational efficiency and robust 

convergence properties which are generally offset by its limited generalization capabilities. 

However, the typical active disturbance cancellation system has available an abundance of 

training data and therefore, additional training can be used to compensate for the limited 

generalization capabilities of the CMAC. Additionally, the high operational speed of the 

CMAC network allows the algorithm to be utilized to attain cancellation at frequencies 

which are not achievable via other neural network algorithms.

This dissertation has presented means by which conventional linear adaptive 

disturbance cancellation architectures can be extended for use with the Time Delay CMAC
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neural networks. In general, the CMAC weight adaptation must be modified to take account 

of the secondary path characteristics. For a general nonlinear secondary path, this resulted 

in derivation of the Filtered-X CMAC algorithm while for a linear dynamical secondary path 

the Reduced Filtered-X CMAC algorithm is appropriate. It was shown that these algorithms 

could be viewed as an extension of the Filtered-X LMS algorithm which is used in the case of 

linear adaptive compensators. Convergence of the Time Delay CMAC compensator was 

shown analytically for cases where the secondary path is comprised of a linear gain, a static 

nonlinearity, a time delay, or a linear dynamical system. Additionally, in each of these cases, 

a bound on the maximum stable learning gain was derived. These bounds provide guidance 

as to the necessary reduction in learning gain as a function of the system parameters.

Chapter 5 described a laboratory implementation of the Filtered-X CMAC algorithm. 

This demonstrates the basic feasibility of the algorithm for application to practical systems. 

Additionally, several practical refinements of the algorithm were introduced including the 

partial update schemes of section 5.1, the single dimension variant of the algorithm in 

section 5.3, and the multi-channel extension of the algorithm in section 6.2.

There are numerous directions in which the present research could be extended. One 

potential research area concerns the representational capabilities of the Time Delay CMAC 

network. The convergence proofs established in this research were based on the assumption 

that the nonlinear system could be represented by a fully trained Time Delay CMAC. 

However, it is evident that the Time Delay CMAC is not capable of representing any 

arbitrary nonlinear system. Some preliminary results concerning the types of signals which 

can be represented by the Time Delay CMAC were presented in section 2.3. Future work is 

necessary to provide a more general answer to this problem. For example, it may be possible 

to define certain class of periodic signals which can be represented by the Time Delay CMAC. 

In addition to their theoretical significance, such results would be useful in guiding practical 

selection of appropriate CMAC parameters for representing certain types of signals.
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Another potential research direction is the extension of the alternative neural 

network architectures presented in chapter 4. The prelim inary results presented indicate 

the basic feasibility of these ideas, but no attempt was made toward theoretical analysis or 

even rigorous empirical studies of these architectures. For example, in the case of the 

recurrent CMAC approach, it would be beneficial to gain insight as to the requirements of 

the loop filter in order to maintain stability of the algorithm.

The learning gain bounds derived for the cases of a secondary path time delay and 

the Reduced Filtered-X CMAC algorithm are quite conservative in nature. This was 

demonstrated via simulation in section 5.4. It is possible to refine these proofs so that they 

are tighter bounds on the actual learning gain requirements. One possibility in this regard 

is to implement more realistic assumptions on the overlap between nearby points. The 

present derivation is based on allowing a fixed amount of overlap between all nearby data 

points. However, in most practical applications, the degree of overlap is a function of the 

time difference between the data points. Therefore, one could assume a linear decrease in 

the degree of overlap as a  function of temporal separation between the points. This should 

lead to a less conservative bound on the learning gain.

In conclusion, there are a variety of directions in which the present research can be 

extended to both increase the theoretical understanding as well as to improve the practical 

application of CMAC based active disturbance cancellation. It is hoped that this dissertation 

will provide useful assistance for such endeavors.
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