1,192 research outputs found

    Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO). Ocean Surface Topography (OST) Workshop, Ruedesheim an Rhein, Germany. [CEOS SEO Status Report]

    Get PDF
    The CEOS Systems Engineering Office will present a 2007 status report of the CEOS constellation process, present a new systems engineering framework, and analysis results from the GEO Societal Benefit Area (SBA) assessment and the OST constellation requirements assessment

    New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)

    Get PDF
    Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of PICS temporal stability has not been adequately addressed. However, the main purpose of this work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a Virtual Constellation was developed to provide greater temporal coverage and also to overcome the dependence limitation of any specific characteristic derived from one particular sensor. TOA reflectance data from four sensors consistently demonstrating stable calibration to within 5%the Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI (Multispectral Instrument)were merged into a seamless dataset. Instead of using the traditional method of trend analysis (Students T test), a nonparametric Seasonal Mann-Kendall test was used for determining the PICS stability. The analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic trend in six reflective solar bands common to all of the studied sensors, indicating temporal stability. A decreasing monotonic trend was statistically detected in all bands, except SWIR 2, for Sudan 1 and the Green and Red bands for Niger 1. An increasing trend was detected in the Blue band for Niger 2 and the NIR band for Libya 1. These results do not suggest abandoning PICS as a viable calibration source. Rather, they indicate that PICS temporal stability cannot be assumed and should be regularly monitored as part of the sensor calibration process

    The United States' next generation of atmospheric composition and coastal ecosystem measurements : NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Get PDF
    Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 93 (2012): 1547–1566, doi:10.1175/BAMS-D-11-00201.1.The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.Funding for GEO-CAPE definition activities is provided by the Earth Science Division of the National Aeronautics and Space Administration.2013-04-0

    THE UNITED STATES’ NEXT GENERATION OF ATMOSPHERIC COMPOSITION AND COASTAL ECOSYSTEM MEASUREMENTS

    Get PDF
    Change of the NRC report. The U.S. National Research Council (NRC), at the request of the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey, conducted an Earth Science Decadal Survey review to assist in planning the next generation of Earth science satellite missions [NRC 2007; commonly referred to as the “Decadal Survey” (“DS”)]. The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission measuring tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit was one of 17 recommended missions. Satellites in geostationary orbit provide continuous observations within their field of view, a revolutionary advance for both atmosphere and ocean science disciplines. The NRC placed GEO-CAPE within the second tier of missions, recommended for launch within the 2013–16 time frame. In addition to providing information for addressing scientific questions, the NRC advised that increasing the societal benefits of Earth science research should be a high priority for federal science agencies and policy makers

    The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Get PDF
    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the NPP, POES, JPSS, and MetOp satellites, which are used to improve the precipitation sampling over land. Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori cloud/hydrometeor database constructed from GPM Core sensor measurements. As a science mission with integrated application goals, GPM will (1) provide new measurement standards for precipitation estimation from space, (2) improve understanding of precipitation physics, the global water cycle variability, and freshwater availability, and (3) advance weather/climate/hydrological prediction capabilities to directly benefit the society. An overview of the GPM mission concept, NASA program status, science activities in the United States, as well as a wide range of international scientific collaborations in radiometer inter-calibration, retrieval algorithm development, and ground validation will be presented

    On the Feasibility of Monitoring Carbon Monoxide in the Lower Troposphere from a Constellation of Northern Hemisphere Geostationary Satellites (PART 1)

    Get PDF
    By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the "instrument simulator" step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements

    European Capacity for Monitoring and Assimilating Space-based Climate Change Observations - Status and Prospects

    Get PDF
    This report, which is based on the findings of a workshop at Ispra in March 2009, provides the scientific background to a forthcoming Commission response to the Space and Competitiveness councils requests that the commission assess the needs for full access to standardised climate change data, the means to provide these data and together with ESA, EUMETSAT and the scientific community define how GMES services can contribute effectively to providing these data. The report therefore focuses primarily, but not exclusively, on space-based Climate data sources. Standardised climate data are needed for climate monitoring, prediction and research, while climate information informs the policy cycle at four key points - Policy definition; Management and scenario building; Reporting requirements; Alarm functions. The workshop identified the 44 Essential Climate Variables defined by GCOS as the minimum set of standardised climate data that the commission should be considering and a gap analysis for the provision of these observations was undertaken. In addition European capacity is analysed according to maturity, differentiating between sustained operational capacity (Envelope Missions/EUMETSAT), non-operationally funded repetitive capacity and additional infrastructure needs in order to fill the gaps are identified. Finally the report discusses co-ordination and governance issues and how to overcome them. The key findings and recommendations are contained in an executive summary.JRC.DDG.H.2-Climate chang

    Geosynchronous continental land-atmosphere sensing system (g-class): persistent radar imaging for earth science

    Get PDF
    More frequent imaging of Earth system processes is recognised as one of the emerging needs in Earth observation. Conventional low Earth orbit satellites are limited in their ability to provide this, whereas satellites in geosynchronous orbit can in principle provide continuous imaging. A new mission de- sign has been developed from studies for a previous geosynchronous radar mission concept (GeoSTARe) to improve its technical feasibility and geographical coverage, and to rein- force its science focus. This new mission (Geosynchronous - Continental Land Atmosphere Sensing System (G-CLASS)) is presented. G-CLASS is in fact a family of missions: we present a version focussed on the diurnal water cycle - G-CLASS:H2O - for which geosynchronous radar has great potential. G-CLASS:H2O is being developed as a proposal for ESA’s Earth Explorer programme

    New Approach for Temporal Stability Evaluation of Pseudo-Invariant Calibration Sites (PICS)

    Get PDF
    Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of PICS temporal stability has not been adequately addressed. However, the main purpose of this work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a “Virtual Constellation” was developed to provide greater temporal coverage and also to overcome the dependence limitation of any specific characteristic derived from one particular sensor. TOA reflectance data from four sensors consistently demonstrating “stable” calibration to within 5%—the Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Terra MODIS (Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI (Multispectral Instrument)–were merged into a seamless dataset. Instead of using the traditional method of trend analysis (Student’s T test), a nonparametric Seasonal Mann-Kendall test was used for determining the PICS stability. The analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic trend in six reflective solar bands common to all of the studied sensors, indicating temporal stability. A decreasing monotonic trend was statistically detected in all bands, except SWIR 2, for Sudan 1 and the Green and Red bands for Niger 1. An increasing trend was detected in the Blue band for Niger 2 and the NIR band for Libya 1. These results do not suggest abandoning PICS as a viable calibration source. Rather, they indicate that PICS temporal stability cannot be assumed and should be regularly monitored as part of the sensor calibration process
    • …
    corecore