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ABSTRACT 

 
NEW APPROACH FOR TEMPORAL STABILITY EVALUATION OF 

PSEUDO-INVARIANT CALIBRATION SITES (PICS) 

   FATIMA TUZ ZAFRIN TULI 

                                                                  2019 

Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods 

for in-flight vicarious radiometric calibration of Earth remote sensing satellites. 

The fundamental question of PICS temporal stability has not been adequately 

addressed. However, the main purpose of this work is to evaluate the temporal 

stability of a few PICS using a new approach. The analysis was performed over six 

PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a 

“Virtual Constellation” was developed to provide greater temporal coverage and 

also to overcome the dependence limitation of any specific characteristic derived 

from one particular sensor. TOA reflectance data from four sensors consistently 

demonstrating “stable” calibration to within 5%—the Landsat 7 ETM+ (Enhanced 

Thematic Mapper Plus), Landsat 8 OLI (Operational Land Imager), Terra MODIS 

(Moderate Resolution Imaging Spectroradiometer) and Sentinel-2A MSI 

(Multispectral Instrument)–were merged into a seamless dataset. Instead of using 

the traditional method of trend analysis (Student’s T test), a nonparametric 

Seasonal Mann-Kendall test was used for determining the PICS stability. The 

analysis results indicate that Libya 4 and Egypt 1 do not exhibit any monotonic  



x 
 

 

trend in six reflective solar bands common to all of the studied sensors, indicating 

temporal stability. A decreasing monotonic trend was statistically detected in all  

bands, except SWIR 2, for Sudan 1 and the Green and Red bands for Niger 1. An 

increasing trend was detected in the Blue band for Niger 2 and the NIR band for 

Libya 1. These results do not suggest abandoning PICS as a viable calibration 

source. Rather, they indicate that PICS temporal stability cannot be assumed and 

should be regularly monitored as part of the sensor calibration process.
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Radiometric Calibration 

 

Remote sensing using orbiting satellite sensors is essential for detecting and 

monitoring changes in the Earth’s land surfaces, oceans, atmosphere and climate [1]. The 

number of orbiting Earth Observation (EO) satellites has increased dramatically within 

the past decade. By 2017, over 150 EO satellites were launched, mostly “small” satellites 

operated by commercial vendors. One of the challenges emerging from the growing use 

of EO satellite sensors is achieving accurate radiometric calibration of individual sensors 

and establishing a baseline calibration among multiple sensors. Radiometric calibration is 

essential for the use of remote sensing data in quantitative applications such as climate 

change monitoring, ocean measurements, vegetation measurements and so forth. Regular 

in-flight calibration assesses the sensor’s on-orbit performance throughout its operating 

lifetime. These can be performed on data acquired from an on-board calibration source, 

such as a solar diffuser panel, and/or acquisition of radiance measurements from the 

Earth’s surface through vicarious calibration methods. It is important to highlight that a 

significant portion of the cost saving is achievable with small EO satellite sensors by 

removing on-board calibration source. For these sensors, vicarious calibration is the 

preferred option. Perhaps the three most commonly used vicarious calibration methods 

are: reflectance-based approach [2], cross-calibration [3]; and analysis of Pseudo-

Invariant Calibration Sites (PICS) image data [4,5]. Performing in-situ vicarious 

calibration at many of these sites is not possible due to their geographic remoteness  
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and/or political instability. Consequently, research is increasingly focused on vicarious 

calibration based on satellite sensor observations of selected PICS [6]. The current work                    

focuses on the last method.  

1.2 PICS based Calibration 

 

There has been a significant increase in the use of PICS over the last 14 years to 

monitor the long-term top-of atmosphere (TOA) reflectance trends from different sensors 

[4,7,8]. Govaerts et al., for example, have developed an operational calibration method 

using bright desert calibration sites to support geostationary satellite data [9,10]. In order 

to evaluate the in-flight calibration performance of optical satellite sensors, the selection 

of reference PICS based on certain criteria such as the site’s radiometric and spectral 

stability is a challenging task. Sites should be chosen such that a sufficient number of 

overpasses occur for as many sensors as possible so that they can be used in a sensor’s 

long-term performance monitoring [11]. In addition, there are some intrinsic properties 

for choosing PICS which typically include data availability, spatial uniformity, temporal 

stability and spectral uniformity [12]. Moreover, the site should be located in higher 

altitude arid or desert regions to minimize atmospheric effects. The Committee on Earth 

Observation Satellites (CEOS) has developed an online catalog of candidate test sites 

meeting these criteria [6]. Six of these sites have been officially designated as “reference” 

PICS appropriate for satellite sensor calibration and monitoring sensor radiometric 

performance [6]: Libya 1, Libya 4, Mauritania 1, Mauritania 2, Algeria 3 and Algeria 5.  
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Previous research has yielded significant advances in PICS-based on-orbit sensor 

calibration and monitoring of sensor radiometric performance. Morstad and Helder [13] 

developed an approach for the calibration of the Landsat 5 TM using images of the 

Sonoran Desert as a candidate PICS. Chander et al. [14] assessed the on-orbit calibration 

stability of the Terra MODIS and Landsat 7 ETM+ sensors based on analysis of Libya 4 

image data; their results indicated a change in sensor-measured TOA reflectance of 

approximately 0.4% per year or less over a 10-year period. 

 

The underlying assumption of the PICS-based calibration is that the site is “invariant” 

– or pseudo invariant, so any detected change in the lifetime trend is attributed solely to 

sensor response. However, is it valid to assume that the sites are invariant over time? 

Previously, by assuming site invariance, little emphasis was given to developing an 

explicit assessment of a site’s temporal stability. Therefore, the main objective of this 

work is to evaluate the temporal stability of PICS using a new approach. Stability of 

pseudo invariant sites should to be tested before their use in monitoring post-launch 

radiometric calibration stability of satellite sensors. Once a site’s temporal stability is 

assured, the analysis of sensor stability based on these invariant sites can be undertaken 

with greater confidence. The key technique of this work involves the implementation of a 

process to “homogenize” TOA reflectance data from multiple sensors for a given PICS, 

creating a Virtual Constellation (VC) TOA reflectance dataset for that site. The VC is a 

recent concept developed by CEOS in support of the Group on Earth Observations 

(GEO) objectives and as the space component of the Global Earth Observation System of  
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Systems (GEOSS). According to CEOS a VC is a “coordinated set of space and/or 

ground segment capabilities from different partners that focuses on observing a particular 

parameter or set of parameters of the Earth system” [15]. Claverie et al. [16], for 

example, used this new concept to describe sensor data homogenization of the Landsat 8 

(L8) Operational Land Imager (OLI) and Sentinel 2A/Sentinel 2B (S2A/S2B) 

Multispectral Instrument (MSI) surface reflectance products. Such homogenization 

requires pre-processing before merging data from multiple sensors to create a smooth 

time series dataset. Helder et al. [17] provided valuable recommendations to achieve this 

based on observations relating to cross-calibration between the OLI and MSI sensors to 

achieve better data interoperability. 

1.3 Objective of the thesis 

 

The primary goal of this work is to determine the temporal stability of six PICS 

commonly used in calibration analyses by the South Dakota State University Image 

Processing Laboratory (SDSU IPLAB): Niger 1, Niger 2, Libya 1, Libya 4, Egypt 1 and 

Sudan 1. The four sensors studied in this work are the Landsat 8 OLI, Landsat 7 ETM+, 

Terra MODIS and Sentinel 2A MSI. These sensors were selected for the following 

reasons: (i) previous research has consistently established their radiometric calibration to 

within 5% [18–20]; (ii) the local equatorial crossing times for these sensors are close, 

thus they can image a given region under similar solar illumination and atmospheric 

conditions; and iii) large amounts of data for these sensors are widely and freely 

available. It is shown that the individual sensor’s TOA reflectance datasets, in one or 

more bands, violate one or more conditions required for proper application of the  
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Student’s T-test, which has traditionally been employed for drift analyses [14,18]. For the 

purposes of this work, the “appropriate” statistical analysis is non-parametric in nature. 

The data from these sensors for a particular PICS were combined into a single TOA 

reflectance dataset, with the intent of reducing the effects of discrepancies in sensor 

radiometric performance such as spectral response and solar/sensor viewing geometry. 

The stability assessment of the site was determined from the TOA reflectance temporal 

trend of the combined dataset. In principle, this work could be done using the TOA 

reflectance data from an individual sensor, under the assumption the sensor response is 

not degrading over time. However, the use of multiple sensors offers increased temporal 

resolution of the dataset and also overcomes the dependence limitation of any one 

particular sensor. Moreover, the span of data acquisition is not similar across all sensors. 

Therefore, direct comparison of the trends between individual sensors might yield 

different conclusions about a given site’s temporal stability (e.g. one sensor’s trend 

suggests the site is changing while another sensor’s trend suggests it is not). Finally, 

statistical analysis was performed on the VC to identify potential monotonic trends in the 

TOA reflectance. 
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CHAPTER 2 

 

2. MATERIALS AND STUDY AREA 

 
 

2.1. Satellite Sensor Overview 

 

The Landsat series of sensors have acquired the longest continuous series of image 

observations of the Earth’s surface [19]. Prior to the launch of L8, the Landsat-7 

Enhanced Thematic Mapper Plus (ETM+) was considered to be the most stable of the 

Landsat series, with estimated uncertainties in its at-sensor radiance calibration of ±5% 

[3]. Until very recently, the ETM+ has employed radiance-based calibration [21]. The 

ETM+ detector performance has been more stable than its on-board calibrators [22]. 

Angal et al. [21] showed in their cross-calibration work of ETM+ and MODIS that both 

instruments demonstrate high temporal stability in spectrally matching bands with 2% 

long term drifts for more than 18 years. 

The OLI has been performing well, providing high quality data for Earth observation and 

the prelaunch calibration of the Landsat-8 OLI had an estimated uncertainty of 

approximately 3% in reflectance products. Subsequent post-launch reflectance-based 

calibrations have consistently demonstrated uncertainties on the order of 2% or less [23]. 

OLI radiometric calibration and stability are monitored by on-board calibrators and it was 

found that except for the Coastal/Aerosol band (CA), other bands are stable to within 

0.3% [24]. 

The MODIS is a key instrument onboard the Terra and Aqua satellites operated 

as a part of NASA’s (National Aeronautics and Space Administration) Earth Observing 

System. MODIS data is used for a wide range of applications such as ocean, land,  
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atmosphere and climate monitoring. It has operated successfully on-board for the last 19 

years. For Terra MODIS TOA reflectance products, a calibration uncertainty of 

approximately ±2% has been estimated [3,25]. The MODIS instrument acquires data at 

three spatial resolutions—250 m, 500 m and 1 km, which are coarser than the other 

sensors used in the study. In contrast, MODIS presents the highest temporal resolution 

(near-daily revisit acquisition capability). 

Sentinel-2A was the first in the Sentinel-2 series of satellites launched for the 

Copernicus program developed by the European Space Agency (ESA). The main purpose 

of this sensor is to provide stable image data of high spatial resolution (10 to 60 m) [26]. 

Time series data obtained from its onboard sensor, the Multi-Spectral Instrument (MSI), 

are comparable to OLI and other well calibrated sensor data [26]. Barsi et al. [27] 

demonstrated that OLI and MSI showed stable radiometric calibration, with consistency 

between matching spectral bands to approximately ~2.5%. According to the Sentinel-2 

Mission Requirement Document, the instrument has stringent radiometric requirements: 

(a) the absolute radiometric uncertainty shall be better than 5% (the goal is 3%); (b) the 

inter-band relative radiometric uncertainty data shall be constant from one spectral band 

to any other one to better than 3% over the reduced dynamic range; (c) the requirement 

between the satellites (cross-satellite) is 3% [28].  
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Table 1. Basic Sensor Characteristics [1,3,4,8,14,18]. 

Characteristics 
Landsat 8-

OLI 

Landsat 7-

ETM+ 

Sentinel 2A-

MSI 
Terra MODIS 

Number of Bands 11 8 13 36 

Spatial Resolution 30 m 
15 m, 30 m, 60 

m 

10 m, 20 m, 60 

m 

250 m, 500 m, 

1000 m 

Swath Width 185 km 183 km 295 km 2330 km 

Spectral Coverage 0.4–1.38 µm 0.4–14 µm 0.4–2.2 µm 0.4–12.5 µm 

Pixel Quantization 12 bits 8 bits 12 bits 12 bits 

Launch Date 
11 February 

2013 
15 April 1999 23 June 2015 18 December 1999 

Temporal Resolution 16 days 16 days 5 days 1–2 days 

Orbit Type 
Sun-

synchronous 

Sun-

synchronous 

Sun-

synchronous 
Sun-synchronous  

Equatorial Crossing 

Time 
10:13 a.m. 10:00 a.m. 10:30 a.m. 10:30 a.m. 

Altitude 705 km 705 km 786 km 705 km 

 

In order to analyze the stability of pseudo-invariant sites using the Virtual 

Constellation approach, it is necessary for all sensors to image common ground targets in 

the same regions or spectral bands of the electromagnetic spectrum. For the sensors 

investigated in this work, the common bands are designated as “Blue,” “Green,” “Red,” 

“NIR,” “SWIR1” and “SWIR2.” Table 2 gives the corresponding wavelength ranges of 

each band for each sensor. The Relative Spectral Responses in analogous bands for these 

sensors are presented in Figure 1.  

Table 2. Sensor Spectral Bands. 

Bandwidth (nm) 

Sensor Blue Green Red NIR SWIR 1 SWIR 2 

OLI 
452–512 

(b2) 

533–590 

(b3) 

636–673 

(b4) 

851–879 

(b5) 

1567–1651 

(b6) 

2107–2294 

(b7) 

ETM+ 
441–514 

(b1) 

519–611 

(b2) 

631–692 

(b3) 

772–898 

(b4) 

1547–1748 

(b5) 

2064–2346 

(b7) 

MSI 
470–524 

(b2) 

504–602 

(b3) 

649–680 

(b4) 

855–875 (b-

8a) 

1569–1658 

(b11) 

2113–2286 

(b12) 

MODIS  
459–479 

(b3) 

545–564 

(b4) 

620–670 

(b1) 

841–876 

(b2) 

1628–1652 

(b6) 

2105–2155 

(b7) 
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Figure 1. Relative Spectral Response of four Sensors for six analogous spectral bands. 

 

2.2 Study Area (PICS Sites) 

Helder et al. [29] developed an automated invariant site identification algorithm to 

locate statistically optimal regions. The results from this work suggested that temporal 

stability in the range of 1–3% could be achieved by using the CEOS referenced sites. In 

another study, Mishra et al. [30] ranked the CEOS referenced test sites according to 

temporal uncertainty estimated from an analysis of ETM+ data. In this work, the six 

SDSU IPLAB PICS across North Africa were evaluated (Figure 2). The temporal 

uncertainties of these six PICS in each of the spectral bands from visible to shortwave 

infrared (SWIR) were found to be less than other CEOS-recommended PICS (e.g., 

Mauritania 1, Mauritania 2, Algeria 3, Algeria 5 and Mali) [30]. The center latitude and 

longitude coordinates for each site are given with the corresponding site name: (1) 

Libya 4 (28.55°N, 23.38°E); (2) Libya 1 (24.70°N, 13.49°E); (3) Niger 1 (9.36°N, 

20.41°E); (4) Niger 2 (10.44°N, 21.08°E); (5) Sudan 1 (21.40°N, 27.70°E); and (6) Egypt  
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1 (27.41°N, 26.38°E). The Region of Interest (ROI) within each PICS have been chosen 

based on previous studies [31]. The algorithm was developed by the SDSU IPLAB, 

known as PICS normalization process (PNP), identified the regions within the PICS, 

which are specified as “Optimal Region.” This means that all pixels inside the selected 

ROIs in this work present at least 3% temporal, spatial and spectral variability. In other 

words, the selected ROI presents temporal, spatial and spectral stability equal or better 

than 3%. Figure 2 shows the optimal region for each site as the white pixels and the 

selected ROI for each site as a blue rectangle. Table 3 gives the corresponding corner 

latitude and longitude coordinates defining the ROI, along with the corresponding 

Landsat World-wide Reference System 2 (WRS2) path and row.  
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Figure 2. 3% Stable Optimal Regions (white masks) and Rectangular region of interests 

(ROIs) (blue rectangle) within SDSU IPLAB PICS (Niger 1, Niger 2, Libya 1, Libya 4, 

Egypt 1 and Sudan 1). 

   

             Table 3. WRS-2 Path/Row and Center ROI coordinates of selected PICS. 

PICS 
WRS-2 

Path/Row 

Minimum 

Latitude 

Minimum 

Longitude 

Maximum 

Latitude 

Maximum 

Longitude 

Center 

Latitude 

Center  

Longitude 

Libya 

4 
181/40 28.38 23.09 28.81 23.86 28.55° N 23.38° E 

Libya 

1 
187/43 24.55 13.32 24.86 13.66 24.70° N 13.49° E 

Niger 

1 
189/46 20.28 9.19 20.53 9.52 9.36° N 20.41° E 

Niger 

2 
188/45 21.25 10.38 21.47 10.71 10.44° N 21.08° E 

Sudan1 177/45 21.40 27.81 21.75 27.59 21.40° N 27.70° E 

Egypt1 179/41 26.91 26.31 27.13 26.62 27.41° N 26.38° E 

 

                
         Libya 1 (WRS2-187/43)                  Libya 4 (WRS2-181/40)                Niger 1 (WRS2-189/46)   

  
           Niger 2(WRS2-188/45)             Sudan 1 (WRS2-177/45)                  Egypt 1 (WRS2-179/41) 
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CHAPTER 3 

 

3. METHODOLOGY 

 

Due to differences in sensor design, the radiometric responses for each sensor are not the 

same. As part of the data processing described in this section, these differences must be 

reduced such that all sensors measure a common radiance/reflectance level.  

3.1. Image Pre-processing  

All of the Landsat ETM+ and OLI images used in this study were downloaded to 

the SDSU IPLAB archive from the United States Geological Survey (USGS) Earth 

Resources Observation and Science (EROS) Data Center 

(https://earthexplorer.usgs.gov/). Similarly, Sentinel 2 MSI images were retrieved from 

the Copernicus Open Access Hub (https://scihub.copernicus.eu/). All MODIS data 

products can be accessed from the Earth Data website (http://earthdata.nasa.gov/). Here, 

the MODIS Collection 6.1 was used, since it represents the best available MODIS data. 

Lyapustin et al. [32] describes the latest version of the algorithm used for processing the 

MODIS Collection 6 data record. Finally, the MODIS Characterization Support Team 

(MCST) provided the Terra MODIS imagery. All of the downloaded image products 

were pre-processed by each group to remove radiometric and geometric artifacts. The 

OLI, ETM+ and MSI products were then scaled to 16-bit integers representing TOA 

reflectance; the MODIS products were processed to produce TOA reflectance values 

[14]. Additional details describing the various pre-processing steps can be found on each 

group’s web site. 



13 
 

 

3.2. Conversion to TOA Reflectance 

For the OLI, ETM+ and MSI, the pixel values for each ROI at each site were then 

converted to TOA reflectance using linear scaling factors given in the associated product 

metadata. For the ETM+ and OLI, the TOA reflectance is directly obtained as follows 

[33]: 

ρ
λ
' = Mρ*Q

Cal 
+Aρ (1) 

where ρ
λ
'  is the estimated TOA reflectance, Q

Cal 
 is the calibrated DN pixel value and  Mρ 

and Aρ are band-specific, reflectance-based multiplicative and additive scaling factors, 

respectively. These scaling factors were designed to account for the estimated 

exoatmospheric solar irradiance that is needed for radiance-to-reflectance conversion, 

which can vary according to the model (Chance-Kurutz (ChKur) solar spectrum) used to 

calculate it [34], as well as the seasonal variation in the Earth-Sun distance. However, 

these coefficients do not account for solar zenith angle (SZA), so an additional cosine 

correction is required: 

ρ
λ
= 

ρ
λ
'

cos (SZA)
 (2) 

Conversion of MSI pixel values to TOA reflectance just involves scaling by a single 

constant which accounts for the exoatmospheric irradiance, Earth-sun distance and any 

required cosine correction: 

 

ρλ= 
DNcal

g
 (3) 
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where DNcal is the 12-bit (calibrated DN) pixel value and g = 10000 is the currently 

established scale factor. 

For MODIS, the reflectance information for the six PICS was received from the 

NASA MCST. Using the same region of interest as shown in Figure 2, the at-sensor 

reflectance values on a per-pixel basis were extracted for each MODIS band used in this 

study. These values were computed at the native spatial resolution of each MODIS band 

(250 m for bands 1, 2, 3 and 4 and 500 m for bands 6 and 7) and then averaged over the 

ROI. The Level 1B calibrated products used for this work are from Collection 6.1, the 

version reflecting the latest calibration algorithms from MCST. The irradiance model 

used by the MODIS instrument is basically the combination of different irradiance 

models [35–37]. 

3.3. Data Filtering 

Once the mean TOA reflectance value for each image’s ROI was calculated, 

filtering was required to ensure only cloud-free image data were analyzed. ETM+ and 

OLI image data were filtered in part using the associated quality band information. In the 

case of MODIS, the MODIS cloud-mask product was used—which provides the 

information about cloud-presence at 1 km spatial resolution [38]. If over 50% of the 

pixels were flagged as “cloudy” for any scene, then it was excluded from the process. For 

all sensors, an empirical 2-sigma (2σ) filtering approach (i.e., 2 standard deviations from 

the mean of the temporal TOA reflectance derived from all scenes) was applied, as 

Median Absolute Deviation (MAD) and other mean-based approaches were found to be 

too “aggressive” in removing potential outliers. Any image’s mean TOA reflectance for  
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the ROI exceeding the 2σ threshold resulted in visual inspection of the image for all 

spectral bands; if the visual inspection indicated clouds/shadows or other artifacts not 

identified in the quality data, the scene was excluded from further analysis. Note that 

when cloud/shadows were detected in the ROI for any spectral band of an image, the 

entire scene (all spectral bands) was discarded from the analysis. 

3.4. Bidirectional Reflectance Distribution Function (BRDF) correction 

The TOA reflectance of a given target can vary significantly from one acquisition 

to the next depending on the solar and sensor positions at each acquisition time. This 

effect is modeled by the Bidirectional Reflectance Distribution Function (BRDF). BRDF 

effects can also occur due to variations in orientation between multiple sensors co-

incidentally imaging the same target with the same solar position. 

For this analysis, BRDF correction of the mean TOA reflectance data from each 

scene was based on a multilinear regression model derived from the solar zenith/azimuth 

and sensor zenith/azimuth angles. Additional details describing this multilinear BRDF 

correction can be found in Reference [39]. 

ρmodel= β0+β1Y1+β2X1+β3Y2+β4X2 (4) 

where β
0
, β

1
, β

2
, β

3
, β

4
are the model coefficients. Y1, X1, Y2 and X2 are Cartesian 

coordinates representing the planar projections of the solar and sensor angles originally 

given in spherical coordinates:  

Y1= sin(SZA) * sin(SAA) (5) 

X1= sin(SZA) * cos(SAA)  (6) 

Y2= sin(VZA) * sin(VAA) (7) 



16 
 
 

X2= sin(VZA) *cos(VAA) 

 

(8) 

where SZA, SAA, VZA and VAA are the solar zenith, solar azimuth, view zenith and 

view azimuth angles, respectively. The BRDF-corrected TOA reflectance for each sensor 

was determined as follows:  

ρ
BRDF-corrected

 = 
ρ

obs

ρ
model

× ρ
ref

 (9) 

Here, ρobs is the observed mean TOA reflectance from each scene. ρmodel is the 

model predicted TOA reflectance.  ρref is the TOA reflectance with respect to a set of 

“reference” solar and sensor position angles; for this analysis, the reference SZA, SAA, 

VZA and VAA angles were calculated as the mean of the corresponding SZA, SAA, 

VZA and VAA angles from all processed scenes.  

It is important to highlight that the MODIS Field of View (FOV) is approximately 

±49.5°. However, in this work only at nadir or near-nadir viewing images were used. The 

variation in the view zenith angles for different PICS is less than 10 degrees. The scenes 

with larger view angles have not been included in the analysis. In addition, for the 

Sentinel and Landsat instruments the effect of angular variations within the ROI may not 

be negligible. Both instruments have a per-pixel solar zenith angle variation product. For 

the purposes of this work, BRDF correction was performed using the angular information 

for the pixels within the selected ROI (and not the scene-center angle information). 

3.5. Scaling Adjustment  

PICS site stability was initially evaluated based on analyses of an individual 

sensor’s BRDF-corrected TOA reflectance trend. As will be shown in Section 5, this  
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initial approach produced contradictory conclusions among the sensors, primarily due to  

significant differences in their operating lifetimes affecting the amount of available data 

(e.g., the Sentinel-2A MSI has actively acquired image data for only three years, while 

the Landsat-7 ETM+ has actively acquired image data for almost 20 years). To provide a 

“common” operating lifetime, the BRDF-corrected mean TOA reflectance datasets for all 

sensors were pooled to produce a single time series dataset. The responses of the ETM+, 

MODIS and MSI were scaled by an adjustment factor to match the observed OLI 

response. For each sensor, the required adjustment factor was calculated as the mean of 

the ratios of the BRDF-corrected mean TOA reflectance values from near-coincident 

acquisitions with the OLI.  

 “Near-coincident acquisitions” refer to the scenes which are imaged within a 

maximum acceptable window of days; as for MODIS and OLI, “near-coincident” refers 

to the scene pairs imaged approximately 8 days apart. Finally, the TOA reflectance of 

each sensor was then normalized by the adjustment factor. It should be stated here that 

the proposed scaling adjustment can account for all types of differences (including the 

RSR differences) between the OLI and other sensors. Therefore, the SBAF normalization 

using Hyperion was not performed here.  

3.6. Linearity Check for Individual Sites 

Once the BRDF-corrected mean TOA reflectance datasets were generated for 

each sensor at each site, linear regressions were performed to characterize the temporal 

responses: 

ρ
i
= α1ti + α0 (10) 
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where ti  is the decimal year, ρi is the BRDF-corrected mean TOA reflectance for a  

test site for a given sensor,  α1 is the slope of the regression line and α0 is the associated 

intercept. To determine whether a linear relationship between mean TOA reflectance and 

decimal year could be identified, a correlation test was performed for each site for each 

individual sensor. Tables 4 and 5 present the correlation test results for Libya 4 for 

individual sensors and for the virtual constellation, respectively. In summary, there was 

sufficient statistical evidence to indicate a linear relationship between BRDF-corrected 

mean TOA reflectance and decimal year only for the OLI and ETM+ in most bands. For 

the MSI there was insufficient evidence to indicate a linear relationship in most bands 

and for MODIS, there was insufficient evidence in any band. Correlation tests performed 

for the other sites also exhibited inconsistencies in identification of a linear relationship 

across all bands. Based on these results, application of any statistical test expecting a 

linear relationship between BRDF-corrected mean TOA reflectance and time would 

likely lead to potentially misleading conclusions. It is possible that higher-order 

polynomial or even nonlinear relationships are present in the data. 
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Table 4. Correlation between Decimal Year and BRDF Corrected Mean TOA 

Reflectance of Libya 4. 

 L8-OLI L7-ETM+ S2A-MSI Terra MODIS 

Bands Pvalue Correlation Pvalue Correlation Pvalue Correlation Pvalue Correlation 

Blue 0.0046 Yes 0.035 Yes 0.509 No 0.128 No 

Green 0.0012 Yes 0.190 No 0.052 No 0.695 No 

Red 0.0252 Yes 0.005 Yes 0.014 Yes 0.194 No 

NIR 0.0004 Yes 0.003 Yes 0.192 No 0.342 No 

SWIR1 0.0150 Yes 0.069 No 0.322 No 0.213 No 

SWIR2 0.5118 No 0.009 Yes 0.111 No 0.656 No 

 

Table 5. Correlation between Decimal Year and BRDF Corrected band adjusted 

combined Mean TOA Reflectance of Libya 4. 

Virtual Constellation (OLI, ETM+, MSI and MODIS) 

Bands P value Correlation 

Blue 0.4848 No 

Green 0.4467 No 

Red 0.0104 Yes 

NIR 0.0130 Yes 

SWIR 1 0.1949 No 

SWIR 2 0.1595 No 
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3.7. Normality Check for Individual Sites 

Mendes and Pala (2003) [40], studied the power of three normality tests. 

According to the authors Shapiro-Wilk was the most powerful test regardless of 

distribution and sample size and they recommend it to be used when testing for 

normality. In addition, in a more recent study, Yap and Sim (2011) [41], compared the 

power of eight normality test based on Monte Carlo simulation. According to their study, 

the results show that Shapiro–Wilk test is a powerful test regardless of distribution 

(symmetric short-tailed, symmetric long-tailed or asymmetric distributions). That is why 

this test was performed to determine whether the BRDF-corrected mean TOA reflectance 

values for each sensor and site represent samples obtained from a normally distributed 

population. Figure 3(a), (b), respectively, show the histograms of ETM+ Blue and 

SWIR2 band TOA reflectance obtained for Libya 4. Visual inspection of these 

histograms shows the appearance of a right-skewed tail in the Blue band histogram and a 

slight left-skewed tail in the SWIR2 band histogram, suggesting a non-normal 

distribution. This hypothesis is confirmed with the Shapiro-Wilk test results for all ETM+ 

bands from Libya 4, indicating the data are not normally distributed. The MODIS and 

MSI test results indicate their data are not normally distributed in some bands for this 

site. Interestingly, the OLI test results indicate its data are normally distributed in all 

bands. The particular Shapiro-Wilk results for each band using the Libya 4 data are 

summarized in Table 6. 
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Figure 3. Histogram of ETM+ BRDF-corrected Mean TOA Reflectance of Libya 4; (a) 

Blue band; (b) SWIR2 band. 

 

 

Table 6. Shapiro-Wilk Normality Test of BRDF-corrected Mean TOA Reflectance of 

Libya 4 by Sensor, α = 0.05. 

 

Band L8-OLI L7-ETM+ S2A-MSI Terra MODIS Combined Sensor 

Blue Normal Non-normal Normal Non-normal Non-normal 

Green Normal Non-normal Normal Non-normal Non-normal 

Red Normal Non-normal Normal Normal Normal 

NIR Normal Normal Normal Normal Non-normal 

SWIR 1 Normal Normal Non-normal Non-normal Non-normal 

SWIR 2 Normal Normal Normal Normal Normal 

 

The Shapiro-Wilk normality test result for combined sensor data also shows non-

normal (Table 6) distribution of TOA reflectance for 4 bands whereas for the remaining 

two bands normal distribution is indicated. Application of the Shapiro-Wilk test to the 

reflectance data from the other sites suggests non-normality of reflectance data in at least 

some of the bands for all the sensors. Based on these results, application of any statistical  

(a) (b) 
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test expecting normally distributed BRDF-corrected mean TOA reflectance values could 

likely result into potentially misleading conclusions. 

3.8. Statistical Tests for Trend Analysis  

 

As mentioned previously, the Student's T-Test has traditionally been used to 

evaluate satellite sensor performance based on PICS data analysis. Chander et al. [14] 

used linear regression as well as the T-Test to evaluate long term sensor stability of the 

ETM+ and MODIS. Angal et al. [42] used the T-Test to evaluate long term drift of TOA 

Reflectance over CEOS reference test sites for ETM+ and MODIS Collections 5 and 6. 

However, as shown in Sections 4.6 and 4.7, the linearity and normality assumptions for 

the T-test do not apply to all bands in the individual and combined TOA reflectance 

datasets. Nonparametric statistical tests, such as the Mann-Kendall test, do not require 

assumptions of linearity and/or normality in the dataset. Thus, this test was selected for 

detection of potential monotonic trends.  

3.8.1. Mann-Kendall Trend Test 

The Mann-Kendall test is a widely used non-parametric test for identification of 

trends in a time series dataset [43–45]. The test has been extended to account for seasonal 

variation within the dataset, leading to its use in analyses of environmental and 

climatological data [43]. The Mann-Kendall test evaluates whether a series of values tend 

to increase or decrease over time through what is essentially a nonparametric form of 

monotonic trend regression analysis. This test analyzes the sign of the difference between 

later-measured data and earlier-measured data (see Equation (11)). For the purposes of 

this analysis, the seasonal Mann-Kendall test was performed at the 0.05 significance level  
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on the hypotheses:  

H0. no monotonic trend/Observations are random 

H1. monotonic trend, with the direction of trend dependent on the sign of the Mann-

Kendall statistic, Sk, for each season k, calculated from the temporally sorted dataset: 

Sk= ∑ ∑ sgn(Yjk-Yik)

nk

j = i +1

nk-1

i = 1

 (11) 

where Yjk and Yik are observations from season k in years j and i, respectively and nk is 

the number of years including season k. The sign of certain argument X is defined as 

follows:  

sgn (X) = {
 1 if X > 0
 0 if X = 0
-1 if X < 0

 (12) 

These statistics are summed up for the p different seasons to estimate the overall test 

statistic Sn: 

  Sn = ∑ Sk

p

k = 1

      (13) 

If Sn is positive, later values tend to be larger than earlier values and an upward trend is 

indicated. If Sn is negative, later values tend to be smaller than earlier values and a 

downward trend is indicated. If the p-value for Sn is less than the empirical significance 

level (0.05), there is sufficient evidence to reject the null hypothesis and conclude that 

there is a monotonic trend. Otherwise, there is insufficient evidence to conclude that a 

monotonic trend exists. It has already been stated that the sensors in this study are well 

calibrated with some degree of uncertainties, so if a monotonic trend (upward or  
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downward) is found, it indicates changes to the site’s stability. 

In any kind of hypothesis testing, the choice of decision making is a challenging 

task. Therefore, the concept of “Type I” and “Type II” errors should be mentioned here. 

“Type I” error arises for rejecting null hypothesis when it is actually true, also known as a 

“False Positive.” In other words, this error is because of accepting alternative hypothesis. 

Type I error is generally reported as the p-value. Usually, the common practice is to set 

Type I error as 0.05 or 0.01—this means there is 5 or 1 in 100 chance that the trend that 

we are observing is because of chance. This is called “Level of Significance.” 

Significance level needs to be chosen very carefully for getting rid of “Type I” error. 

“Type II” error arises for not rejecting null hypothesis when the alternative hypothesis is 

true. In case of trend analysis, “Type II” error occurs when we fail to observe the 

presence of a monotonic trend when the truth is the presence of a monotonic trend. 

3.8.2. Chi-Square Test 

In this work one more statistical test was also performed, the Chi-Square test. 

This test is used to determine if there is significant difference between the expected and 

observed values. The value of the Chi-Square statistic indicates the disagreement between 

the observed values and the values expected under a statistical model, including any 

uncertainties. The test has the following statistic: 

X2= ∑
(yi-f(xi))

2

σ2
 (14) 

where yi is the measurement of the quantity y, when the quantity x is 𝑥𝑖; 𝑓(𝑥𝑖) is the 

expected value obtained from the linear models and σ2 is the uncertainty of yi. In the 

analysis, chi-square test statistics have been calculated for two linear models for the mean  
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TOA reflectance—one model includes the slope (y = mx + c), while the other model is  

based on the mean TOA reflectance (y = c). Thereafter, the chi-square test statistics were 

compared from these two models to see whether they matched with the monotonic trend 

analysis results. This similarity/dissimilarity of results would indicate the effect of all 

types of calculation uncertainty in the trend analysis. 
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CHAPTER 4 

 

4. RESULTS AND DISCUSSION 

 

In the following sections, trend analysis results are shown for the Libya 4 site 

exclusively. This is because Libya 4 has been extensively used for sensor performance 

determination for a long time [5,14]. For the remaining PICS, a summary of the results is 

included thereafter. 

4.1. Individual Sensor Trend Analysis  

Figure 4 shows the long-term TOA reflectance trends over the Libya 4 PICS for 

spectrally matching bands of ETM+, OLI, MODIS and S2A MSI. The trends shown here 

have been BRDF corrected to minimize effects due to seasonal behavior. The 

normalization is effective in the visible and NIR bands; residual seasonality is apparent in 

NIR and both SWIR bands, particularly in SWIR 2. The trends for the ETM+, OLI and 

MSI overlap in the visible bands and are offset slightly in the NIR and SWIR bands. 

However, the MODIS reflectance is lower in the visible bands and significantly higher in 

the SWIR bands, with larger offsets occurring at the longer wavelengths. These offsets 

are caused by several factors, including the spectral signature of the ground target, 

differences due to the RSR (as described in Section 2) and atmospheric effects. In the 

NIR band, the MODIS and ETM+ reflectance trends are offset from the OLI and MSI 

trends.  
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Figure 4. Temporal trend of BRDF-corrected TOA Reflectance over Libya 4 Site [L7 

ETM+, Terra MODIS, L8 OLI and S2A MSI]. Blue (a), Green (b), Red (c), NIR (d), 

SWIR 1 (e), and SWIR 2 (f) spectral bands. Note that in this figure the scaling adjustment 

factor has not been applied. 

 

To evaluate the long-term stability of the four sensors, the non-parametric Seasonal 

Mann-Kendall test was applied to the individual sensor datasets, according to the 

hypotheses stated in Section 4.7.2. Table 7 shows the analysis results. For the given 

significance level (0.05), there is insufficient evidence to indicate a monotonic trend in  

 

(a) (b) 

(c) (d) 

(e) (f) 
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any band of the MODIS and MSI TOA reflectance datasets; for the ETM+ and OLI 

datasets, there is sufficient evidence to indicate monotonic trends are present in some of 

the bands. In this case, the individual sensor results are contradictory with respect to 

potential change in the site; no definite conclusion can be drawn. In addition, the 

potential trends identified in the ETM+ and OLI datasets appear to be in opposite 

directions for some of the analogous bands. Again, no definite conclusions regarding site 

stability can (or should) be drawn based on these results. To overcome this limitation, the 

TOA reflectance virtual constellation approach using multiples satellite Sensors is 

presented in the next section. 

 

Table 7. Seasonal Mann-Kendall Test Results by Sensor for Libya 4 PICS, Significance 

level α = 0.05. 

Band Kendall Correlation Coefficient S Statistic Value P Value Decision 

Landsat -7 ETM+ 

Blue −0.066 −71 0.2691 No Trend 

Green 0.086 93 0.1466 No Trend 

Red 0.151 163 0.0106 Upward Trend 

NIR 0.269 289 0.0000 Upward Trend 

SWIR 1 0.278 299 0.0000 Upward Trend 

SWIR 2 0.213 229 0.0003 Upward Trend 

TERRA MODIS 

Blue 0.088 111 0.1211 No Trend 

Green 0.072 91 0.2046 No Trend 

Red 0.089 113 0.1146 No Trend 

NIR 0.076 97 0.1761 No Trend 

SWIR 1 −0.063 −80 0.2656 No Trend 

SWIR 2 −0.004 −5 0.9551 No Trend 

Landsat-8 OLI 

Blue −0.254 −15 0.1319 No Trend  

Green −0.424 −25 0.009 Downward Trend 
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Red 

 

−0.373 

 

−22 

 

0.023 

 

Downward Trend 

NIR −0.39 −23 0.0166 Downward Trend 

SWIR 1 −0.458 −27 0.0051 Downward Trend 

SWIR 2 −0.085 −5 0.6668 No Trend  

Sentinel-2A MSI 

Blue 0.150 3 0.6721 No Trend 

Green 0.500 10 0.0624 No Trend 

Red 0.300 6 0.3006 No Trend 

NIR 0.300 6 0.3006 No Trend 

SWIR 1 0.350 7 0.2042 No Trend 

SWIR 2 −0.200 −4 0.5346 No Trend 

 

Note: Kendall correlation coefficient is a nonparametric measure of the strength and 

association that exists between two variables measured on at least an ordinal scale. It 

returns a value between 0 and 1; 0 value of it refers to no relationship and 1 refers to a 

perfect relationship. 

 

The Kendall correlation coefficient is also a good indicator for the presence of trend in 

any dataset. From Table 7, it can be stated that where the S statistic value is higher, the 

Kendall correlation coefficient is also higher. This coefficient provides consistency with 

the S statistic value to indicate trend. 

4.1.1. Libya 4 PICS Stability Analysis 

        To address the ambiguous result described in the previous section, a data 

homogenization technique was applied to create a “combined” TOA reflectance dataset 

(Virtual Constellation). The technique consisted of applying a sensor-specific scaling 

adjustment factor to the TOA reflectance datasets, as described in Section 3.5. Figures 

5(a) - 5(f) show the resulting trends for all sensors in each band; Table 8 shows the 

estimated factors for the four sensors. 
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          In comparison to the non-adjusted datasets shown in Figures 4(a) - 4(f), there is 

excellent agreement between each sensor’s TOA reflectance values (even though 

seasonality effects are still observable in the SWIR bands). As a result, a seamless TOA 

reflectance dataset was created. As mentioned in Section 4.5, this scaling adjustment can 

account for additional sources of disagreement between sensors, including RSR 

differences. 

  

  

 
 
Figure 5. Temporal trend of BRDF-corrected Scaling Adjusted TOA reflectance over 

Libya 4 site (L7 ETM+, Terra MODIS, L8 - OLI, S2A - MSI) in (a) blue band; (b) Green 

band; (c) Red band; d) NIR band; e) SWIR 1 band; f) SWIR 2 band. 

(c) (d) 

(e) (f) 

(a) (b) 
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      Table 8 includes the estimated Scaling Adjustment factors for each of the 3 sensors 

(ETM+, MODIS and MSI) over Libya 4 site to normalize the TOA reflectance to OLI’s 

TOA reflectance. 

Table 8. Scaling Adjustment Factors for Libya 4 PICS for each Sensor, by Band. 

Band L7- ETM+ Terra-MODIS S2A-MSI 

Blue 1.015 0.980 1.021 

Green 1.010 1.027 1.005 

Red 1.004 1.028 0.994 

NIR 0.992 1.004 0.996 

SWIR 1 1.004 0.994 0.995 

SWIR 2 1.002 1.001 1.005 

 

 

Table 9 shows the agreement in mean TOA reflectance between the OLI and the other 

sensors before and after scaling adjustment normalization. The maximum disagreement 

between the OLI and S2A-MSI is consistently less than 3% before normalization and less 

than 0.1% after normalization; this is mainly due to mismatches in their RSRs. 

Disagreement between the OLI and MODIS significantly decreased, from over 8% before 

normalization to less than 0.3% after normalization. Similarly, disagreement between the 

OLI and ETM+ decreased from over 8.6% before normalization to approximately 0.4% 

after normalization. Clearly, the scaling adjustment has significantly reduced effects due 

to all differences in sensor response, including differences in relative spectral response, 

and perhaps accounting for atmospheric effects as well. The increased agreement should 

allow for a more definitive analysis of site stability.  
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Table 9. Mean Percentage difference of mean TOA reflectance of L8 and the other 3 

sensors before and after Scaling Adjustment normalization over Libya 4 site. 

 

Sensor L7- ETM+ Terra-MODIS S2A-MSI 

Bands Before After Before After Before After 

Blue -3.13 -0.07 -5.39 -0.27 2.06 0.06 

Green -0.98 0.13 -5.03 0.01 -1.07 0.03 

Red 0.78 0.18 -5.10 -0.11 2.76 0.02 

NIR -8.62 0.35 -2.38 -0.06 0.45 0.02 

SWIR 1 -2.16 0.33 3.65 0.10 0.67 0.01 

SWIR 2 -5.86 0.40 8.34 -0.16 -0.35 0.04 

 

      Figure 6 shows the combined TOA reflectance datasets over Libya 4 for 

corresponding bands in all sensors. The Seasonal Mann-Kendall test was applied to the 

combined dataset at the same significance level as that used for the tests on the individual 

sensor data. Table 10 shows the results from this test. For the given significance level and 

estimated p-values, there is insufficient statistical evidence to indicate the presence of a 

long-term monotonic trend in TOA reflectance for any band of the combined dataset. 

However, the presence of short-term trends cannot be ruled out.  

This section presented the results of a stability analysis of the combined Libya 4 dataset. 

The next sections present the results of similar analyses conducted at the remaining PICS 

studied in this work. 
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4.1.2. Virtual Constellation Trend Analysis 

 

The concept of virtual constellation has been introduced in the previous sections. Table 

11 shows the number of datasets available after pre-processing for combining TOA 

reflectance data from the four sensors. It is clear that the number of 

combined/homogenized scenes of each PICS is sufficient for temporal analysis to detect 

small changes in the time series datasets.  

 

 

 

 
 

Figure 6. Virtual constellation – homogenized 4 sensor’s TOA reflectance trends for 

the 6 spectrally matched bands over Libya 4 site. 
 

 

 

Table 10. Seasonal Mann Kendall test result of Trend Analysis of Libya 4 (homogenized 

TOA reflectance data). 

 

 

Band 

Kendall 

Correlation 

Coefficient 

 

S Statistic 

value 

 

p-value 

 

Decision 

Blue 0.072 120 0.1507 No Trend 

Green 0.098 162 0.0979 No Trend 

Red 0.119 197 0.1408 No Trend 

NIR 0.131 217 0.0862 No Trend 

SWIR 1 -0.063 -105 0.3717 No Trend 

SWIR 2 0.077 127 0.2878 No Trend 
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Table 11. Total number of scenes used for each site in trend analysis. 

 

Sites  Libya 4 Egypt 1 Niger 1 Niger 2 Sudan 1 Libya 1 

Number of homogenized 

Scenes 

 642 769 702 727 732 712 

 

4.1.3. Egypt 1, Sudan 1, Niger 1, Niger 2, and Libya 1 Stability Analysis  

Figure 7 shows the BRDF-corrected band adjusted homogenized mean TOA 

reflectance trend for the Egypt 1, Sudan 1, Niger 1, Niger 2, and Libya 1. As with Libya 

4, seasonal variability and sensor response differences are significantly accounted for 

with the BRDF and scaling adjustment normalizations. At Libya 1, however, there appear 

to be outliers in TOA reflectance, particularly in the longer wavelength bands. These 

potential outliers should not be cloud-related, as pixels in the ROIs were visually checked 

and excluded from analysis if obvious clouds and/or cloud shadows were identified. Even 

though they appear as potential outliers, they were not excluded for the trend analysis,  

as all TOA reflectance data from each scene represent valid measurements used for trend 

detection. 
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Figure 7. Homogenized TOA reflectance trends of Egypt 1 (a), Sudan 1 (b), Niger 1(c), 

Niger 2 (d), and Libya 1(e) PICS. 

 

Table 12 summarizes the Seasonal Mann-Kendall test results obtained for the Egypt 

1, Sudan 1, Niger 1, Niger 2, and Libya 1. For Egypt 1, there is insufficient statistical 

evidence to indicate the presence of a monotonic trend in any band, suggesting that the 

site is temporally stable. For Sudan 1, however, there is sufficient statistical evidence to 

indicate the presence of a monotonic trend in all bands except SWIR 2. For Libya 1, there  

(a) (b) 

(c) (d) 

(e) 
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is again sufficient statistical evidence to indicate a trend only in the NIR band. For the  

Niger sites, there are indications of trends in some of the visible bands. For Niger 2, the 

trend presents in the Blue band only, while at Niger 1 the trend presents in the Green and 

Red bands. It should be emphasized that the presence of these trends is inferred from this 

statistical approach; as the threshold for detecting the presence of a trend is not known, 

therefore, confirming the existence of these trends in reality requires additional study. 

 

Table 12. Seasonal Mann-Kendall test results for Combined Sensor TOA Reflectance 

Datasets at Remaining SDSU Sites, α=0.05. 

 

 

Band 

Kendall 

Correlation 

Coefficient 

 

S-Statistic 

value 

 

P-value 

 

Decision 

Egypt 1 

Blue 0.088 176 0.1285 No Trend 

Green 0.082 164 0.2659 No Trend 

Red 0.098 196 0.1880 No Trend 

NIR 0.144 287 0.0616 No Trend 

SWIR 1 0.051 102 0.6014 No Trend 

SWIR 2 0.161 321 0.0510 No Trend 

Sudan 1 

Blue -0.195 -365 0.0500 Downward Trend 

Green -0.275 -516 0.0040 Downward Trend 

Red -0.193 -362 0.0178 Downward Trend 

NIR -0.175 -328 0.0210 Downward Trend 

SWIR 1 -0.259 -485 0.0033 Downward Trend 

SWIR 2 -0.006 -11 0.9058 No Trend 

Niger 2 

Blue 0.207 377 0.0002 Upward Trend 

Green 0.055 100 0.2744 No Trend 

Red 0.079 145 0.1444 No Trend 

NIR 0.071 130 0.2498 No Trend 

SWIR 1 -0.090 -164 0.3031 No Trend 

SWIR 2 0.035 63 0.6517 No Trend 

Blue 0.078 145 0.1286 No Trend 

Green -0.147 -272 0.0191 Downward Trend 

Red -0.164 -305 0.0080 Downward Trend 

NIR -0.120 -222 0.0624 No Trend 
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SWIR 1 

 

-0.129 

 

-240 0.0533 

 

No Trend 

 

SWIR 2 

 

-0.038 -70 0.6164 

 

No Trend 

Libya 1 

Blue 0.047 78 0.3833 No Trend 

Green 0.031 51 0.5715 No Trend 

Red 0.078 129 0.1473 No Trend 

NIR 0.124 205 0.0209 Upward Trend 

SWIR 1 0.023 38 0.6754 No Trend 

SWIR 2 0.010 17 0.8563 No Trend 

 

The temporal coefficient of variation (CV) was calculated, for each PICS, as the 

ratio of the TOA reflectance standard deviation to the temporal mean. Table 13 shows the 

estimated CV for each site. It is clear that Libya 4 and Egypt 1 exhibit somewhat smaller 

CVs across all of the common bands compared to the other PICS, even though the 

estimated CV at all sites is less than 3% across the common bands. Clearly, the 3% 

criterion used in PICS-based sensor calibration is maintained even after VC. Libya 4’s 

CV is within 1.5% in these bands, providing additional corroboration for concluding that 

the Libya 4 site is exhibiting long-term temporal stability. 

 

Table 13. Temporal Coefficient of Variation (Standard Deviation/ Temporal Mean TOA 

Reflectance) of 6 selected PICS (%). 

Bands Libya 4 Egypt 1 Niger 1 Niger 2 Sudan 1 Libya 1 

Blue 1.26 1.78 2.64 2.86 2.13 2.83 

Green 0.98 1.58 1.86 2.19 1.78 2.08 

Red 0.89 1.45 1.50 1.76 1.61 1.50 

NIR 1.05 1.33 1.41 1.69 1.65 1.46 

SWIR 1 1.01 1.24 1.37 1.41 1.47 1.42 

SWIR 2 1.25 1.53 1.65 1.59 1.64 1.61 
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4.2. Chi-Square Test Result (Goodness of Fit Test) 

 

As currently implemented, the Seasonal Mann-Kendall test does not account for 

uncertainty in the calculated mean TOA reflectance values. To determine the best fits of  

the mean TOA reflectance data (both including and excluding any trend) that account for 

uncertainty, the Chi-Square test was performed as described in Section 4.8.2. The 

estimated ‘goodness of fit’ between the two regressions is based on the Akaike 

Information Criteria (AIC) [46] associated with the χ2 test statistic, (see Equation (15). 

The AIC compares the quality of a set of statistical models to each other. A good model 

is the one that has minimum AIC among all the other models. In other words, a lower 

AIC value indicates a better fit. 

 

                                                  AIC = X2+ 2p + 
2p (p + 1)

N - p - 1
                                                    (15)  

 

Here, X2 is the Chi-Square test statistic value; p is the number of regression parameters (p 

= 1 when the regression model is y = c and p = 2 when the regression model is y = mx + 

c); and N is the total number of observations (i.e., the number of processed scenes used in 

the analysis). Lower AIC values indicate a better degree of fit. For the Chi-Square test 

statistic calculation, four types of uncertainty are considered: (1) the BRDF correction 

uncertainty; (2) the spatial coefficient of variation (CV) in calculated mean TOA 

reflectance (defined as the ratio of the spatial standard deviation to the TOA reflectance  

mean); (3) the calibration uncertainty for each sensor; and (4) the uncertainty in the 

scaling adjustment factor calculation. The range of uncertainties arising from each source  
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is summarized in Table 14. 

 

Table 14. Estimated range of average homogenized TOA reflectance uncertainty for 4 

different sources across 6 PICS. 

Source of Uncertainty 
Uncertainty 

Range (%) 
Remarks 

Spatial CV of TOA 

reflectance 
0.57%–3.57% For all common bands 

Sensor calibration 

uncertainty 
2%–5% For all common bands 

BRDF calculation 

uncertainty 
0.65%–2.09% 

Within 2.09% for VNIR bands; 1.89% for 

SWIR bands 

Scaling Adjustment 

uncertainty 
0.86%–3.22% 

0.91% to 3.22% for VNIR bands and 

0.86% to 2.73% for SWIR bands 

 

The total uncertainty was estimated for each of the analogous spectral bands assuming 

that the individual uncertainties were not significantly correlated. Therefore, total 

uncertainty was found by taking the square root of the squared sum of each of the 

uncertainty: 

𝑈𝑡𝑜𝑡𝑎𝑙 =  √𝑈𝑠𝑝𝑎𝑡𝑖𝑎𝑙
2 +  𝑈𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

2 +  𝑈𝐵𝑅𝐷𝐹
2 +  𝑈𝑠𝑐𝑎𝑙𝑖𝑛𝑔

2  (16) 

 

The maximum uncertainty ranges between approximately 4.22% to 6.01% in the 

Blue band and between approximately 4.61% to 5.42% for the SWIR 2 band. This is 

basically due to atmospheric scattering and water absorption effects in these two bands. 

The total estimated uncertainty for the six PICS is shown in Table 15. 

 

 

 

 

 



40 
 

 

Table 15. Total average estimated uncertainty (%) for all six spectrally matched bands, 

by PICS. 

Bands Libya 1 Libya 4 Niger 1 Niger 2 Sudan 1 Egypt 1 

Blue 6.01% 4.32% 5.25% 5.06% 4.74% 4.22% 

Green 4.93% 4.18% 3.96% 4.06% 4.31% 4.50% 

Red 4.33% 4.32% 3.72% 3.92% 4.30% 4.59% 

NIR 4.45% 4.52% 3.72% 4.00% 4.37% 4.51% 

SWIR 1 4.65% 4.20% 3.88% 3.66% 4.25% 3.81% 

SWIR 2 5.42% 5.35% 5.19% 4.61% 5.07% 4.79% 

 

Table 16 summarizes the AIC results of the test for all PICS. Based on these 

results and the estimated uncertainty result from the previous section, the following 

conclusions can be drawn: 

• At Libya 4, the estimated AIC values assuming no trend (Without Slope Fit) are less than 

the values assuming a trend (With Slope Fit) in all bands. This result indicates that Libya 

4 TOA reflectance does not appear to exhibit a trend in any band within the estimated 

uncertainty. Similar AIC behavior was observed at Egypt 1, resulting in a similar 

conclusion. 

• At Libya 1, the estimated AIC values assuming a trend (With Slope Fit) are less than the 

corresponding AIC values assuming no trend (Without Slope Fit) in the NIR band. This 

suggests the presence of a trend in that band’s TOA reflectance data within the estimated 

uncertainty. The estimated no-trend AIC values are less in the other bands, that is, no 

significant trend was detected.  

• At Sudan 1, the estimated AIC values assuming trends (With Slope Fit) for all bands 

except SWIR 2 are less than the corresponding AIC values assuming no trend (Without 

Slope Fit). Within the estimated uncertainty, these results suggest the existence of trends  
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in all bands except SWIR 2.  

• At Niger 1, the estimated AIC values assuming trends (With Slope Fit) for the Green and 

Red bands are less than the corresponding AIC values assuming no trend (Without Slope 

Fit). This suggests the presence of trends in those band’s TOA reflectance data within the 

estimated uncertainty. The estimated no-trend AIC values are less in the other spectral 

bands, suggesting no significant trend was detected.  

• At Niger 2, the estimated AIC value assuming a trend (With Slope Fit) for the Blue band 

is less than the corresponding AIC value assuming no trend (Without Slope Fit). This 

suggests the presence of a trend only in this band’s TOA reflectance data within the 

estimated uncertainty.  

In general, the Seasonal Mann-Kendall test results agree very well with the χ2/AIC 

results. The overall conclusions regarding statistically significant evidence for trends in 

the combined reflectance dataset do not change. Whether these candidate trends are 

physically significant, however, remains to be determined.  
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Table 16. Goodness of fit based on AIC score of Chi-Square test for the fits - without 

slope (𝑦 = 𝑐) and with slope (𝑦 = 𝑚𝑥 + 𝑐). 

 

Bands 

Without 

Slope Fit 

𝐲 = 𝐜 

With Slope 

Fit 

𝐲 = 𝐦𝐱 + 𝐜 

 

    Bands 

Without 

Slope Fit 

𝐲 = 𝐜 

With Slope 

Fit 

𝐲 = 𝐦𝐱 + 𝐜 

Libya 4 Egypt 1 

Blue Lower AIC Higher AIC Blue Lower AIC Higher AIC 

Green Lower AIC Higher AIC Green Lower AIC Higher AIC 

Red Lower AIC Higher AIC Red Lower AIC Higher AIC 

NIR Lower AIC Higher AIC NIR Lower AIC Higher AIC 

SWIR 1 Lower AIC Higher AIC SWIR 1 Lower AIC Higher AIC 

SWIR 2 Lower AIC Higher AIC SWIR 2 Lower AIC Higher AIC 

Libya 1 Sudan 1 

Blue Lower AIC Higher AIC Blue Higher AIC Lower AIC 

Green Lower AIC Higher AIC Green Higher AIC Lower AIC 

Red Lower AIC Higher AIC Red Higher AIC Lower AIC 

NIR Higher AIC Lower AIC NIR Higher AIC Lower AIC 

SWIR 1 Lower AIC Higher AIC SWIR 1 Higher AIC Lower AIC 

SWIR 2 Lower AIC Higher AIC SWIR 2 Lower AIC Higher AIC 

Niger 1 Niger 2 

Blue Lower AIC Higher AIC Blue Higher AIC Lower AIC 

Green Higher AIC Lower AIC Green Lower AIC Higher AIC 

Red Higher AIC Lower AIC Red Lower AIC Higher AIC 

NIR Lower AIC Higher AIC NIR Lower AIC Higher AIC 

SWIR 1 Lower AIC Higher AIC SWIR 1 Lower AIC Higher AIC 

SWIR 2 Lower AIC Higher AIC SWIR 2 Lower AIC Higher AIC 
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CHAPTER 5 

5. CONCLUSIONS 

 

The work analyzed the TOA reflectance time series of six PICS (Libya 4, Libya 1, 

Niger 1, Niger 2, Egypt 1 and Sudan 1) using four sensors (Landsat 7 ETM+, Landsat 8 

OLI, Terra MODIS and Sentinel-2A MSI). Initially, individual sensor time series were 

analyzed. However, this approach led to contradictory conclusions about a site’s temporal 

stability in corresponding bands among the four sensors. Inconclusive result generated by 

the traditional method (individual sensor-based trend analysis) is due to the time series 

period being different among the sensors—each sensor did not possess a common “start” 

time due to differences in launch date. In order to overcome these limitations, a 

homogenization process was performed, that is, a Virtual Constellation with the four 

sensors was created by combining the individual sensor time series datasets pre-

processed to minimize all differences in the sensor response. A beneficial side effect of 

the homogenization process is a significantly increased temporal resolution of the dataset, 

which should allow quicker detection of small changes in TOA reflectance.  

The new approach presented in this paper is robust compared to the traditional 

single-sensor approach, as it is not constrained by the limitations imposed by sensor 

design and/or operating characteristics (e.g., temporal coverage, spatial resolution, 

geometric and radiometric calibration accuracy, on-orbit calibration variability etc.) or by 

the statistical behavior of the resulting time series dataset. The VC approach can be used 

in trend detection not only for the selected PICS but for any PICS used by the sensor  
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calibration community. The addition of sensors to the VC with higher temporal and 

spatial resolution may make this analysis more powerful.  

Based on the results of the homogenized dataset analysis, it can be concluded that 

the Libya 4 and Egypt 1 PICS are temporally stable in the six reflective band ranges 

common to the four sensors. In contrast, the Sudan 1 PICS data indicate the presence of a 

decreasing monotonic trend in all common bands except SWIR 2; a decreasing 

monotonic trend is also indicated statistically in the Niger 1 Green and Red band datasets; 

The Niger 2 PICS data indicate an increasing monotonic trend only in the Blue band; An 

increasing monotonic trend is also indicated by the statistical test in the Libya 1 NIR 

band dataset. 

The analysis presented here suggests there is sufficient statistical evidence to 

conclude that with respect to common spectral band ranges among the four sensors, some 

of the PICS are indicating monotonic trends in some specific bands. However, these 

trends do not suggest that the sites are changing greatly over time. The changes detected 

in this analysis are generally quite small to be considered physically significant. The 

stability requirement of PICS based on each of the Satellite Sensor mission is an 

important aspect to consider. For example, the highest temporal change detected in all 

evaluated sites was in the Blue band for Sudan 1; the percentage change in mean TOA 

reflectance between the periods 1999–2012 and 2013–2018 is approximately 0.8%. This 

amount of temporal change may be ignored by some sensors, whereas it may not be 

acceptable for calibration of others due its associated uncertainties. For other spectral 

bands of this site, as well as for other sites, the change ranged from 0.14% to 0.65%.  
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These changes are less than the stated mission requirements (e.g., 5% calibration 

uncertainty for MODIS, 2% calibration uncertainty for OLI), therefore, the evaluated 

sites are safely considered as a viable source of calibration. However, if any sensor 

demonstrates less calibration uncertainty (e.g., <0.1%), the Sudan 1 site should not be 

used. From this analysis, it can be stated that despite very minor changes, all of the 

selected PICS can be used for calibration and performance monitoring of the sensors 

considered in this work. 

The analysis presented here could be extended to determine whether the official 

CEOS recommended PICS exhibit temporal stability at this time and whether they 

maintain temporal stability over time. Overall, this work has demonstrated that even with 

the slight changes detected at some of the SDSU PICS, they are suitable for use in long-

term monitoring of sensor performance. 
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