62 research outputs found

    Matrix methods in combinational logic design.

    Get PDF

    Spectral Methods for Boolean and Multiple-Valued Input Logic Functions

    Get PDF
    Spectral techniques in digital logic design have been known for more than thirty years. They have been used for Boolean function classification, disjoint decomposition, parallel and serial linear decomposition, spectral translation synthesis (extraction of linear pre- and post-filters), multiplexer synthesis, prime implicant extraction by spectral summation, threshold logic synthesis, estimation of logic complexity, testing, and state assignment. This dissertation resolves many important issues concerning the efficient application of spectral methods used in the computer-aided design of digital circuits. The main obstacles in these applications were, up to now, memory requirements for computer systems and lack of the possibility of calculating spectra directly from Boolean equations. By using the algorithms presented here these obstacles have been overcome. Moreover, the methods presented in this dissertation can be regarded as representatives of a whole family of methods and the approach presented can be easily adapted to other orthogonal transforms used in digital logic design. Algorithms are shown for Adding, Arithmetic, and Reed-Muller transforms. However, the main focus of this dissertation is on the efficient computer calculation of Rademacher-Walsh spectra of Boolean functions, since this particular ordering of Walsh transforms is most frequently used in digital logic design. A theory has been developed to calculate the Rademacher-Walsh transform from a cube array specification of incompletely specified Boolean functions. The importance of representing Boolean functions as arrays of disjoint ON- and DC- cubes has been pointed out, and an efficient new algorithm to generate disjoint cubes from non-disjoint ones has been designed. The transform algorithm makes use of the properties of an array of disjoint cubes and allows the determination of the spectral coefficients in an independent way. By such an approach each spectral coefficient can be calculated separately or all the coefficients can be calculated in parallel. These advantages are absent in the existing methods. The possibility of calculating only some coefficients is very important since there are many spectral methods in digital logic design for which the values of only a few selected coefficients are needed. Most of the current methods used in the spectral domain deal only with completely specified Boolean functions. On the other hand, all of the algorithms introduced here are valid, not only for completely specified Boolean functions, but for functions with don\u27t cares. Don\u27t care minterms are simply represented in the form of disjoint cubes. The links between spectral and classical methods used for designing digital circuits are described. The real meaning of spectral coefficients from Walsh and other orthogonal spectra in classical logic terms is shown. The relations presented here can be used for the calculation of different transforms. The methods are based on direct manipulations on Karnaugh maps. The conversion start with Karnaugh maps and generate the spectral coefficients. The spectral representation of multiple-valued input binary functions is proposed here for the first time. Such a representation is composed of a vector of Walsh transforms each vector is defined for one pair of the input variables of the function. The new representation has the advantage of being real-valued, thus having an easy interpretation. Since two types of codings of values of binary functions are used, two different spectra are introduced. The meaning of each spectral coefficient in classical logic terms is discussed. The mathematical relationships between the number of true, false, and don\u27t care minterms and spectral coefficients are stated. These relationships can be used to calculate the spectral coefficients directly from the graphical representations of binary functions. Similarly to the spectral methods in classical logic design, the new spectral representation of binary functions can find applications in many problems of analysis, synthesis, and testing of circuits described by such functions. A new algorithm is shown that converts the disjoint cube representation of Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME). Since the known fast algorithm that generates the GRME, based on the factorization of the Reed-Muller transform matrix, always starts from the truth table (minterms) of a Boolean function, then the described method has advantages due to a smaller required computer memory. Moreover, for Boolean functions, described by only a few disjoint cubes, the method is much more efficient than the fast algorithm. By investigating a family of elementary second order matrices, new transforms of real vectors are introduced. When used for Boolean function transformations, these transforms are one-to-one mappings in a binary or ternary vector space. The concept of different polarities of the Arithmetic and Adding transforms has been introduced. New operations on matrices: horizontal, vertical, and vertical-horizontal joints (concatenations) are introduced. All previously known transforms, and those introduced in this dissertation can be characterized by two features: ordering and polarity . When a transform exists for all possible polarities then it is said to be generalized . For all of the transforms discussed, procedures are given for generalizing and defining for different orderings. The meaning of each spectral coefficient for a given transform is also presented in terms of standard logic gates. There exist six commonly used orderings of Walsh transforms: Hadamard, Rademacher, Kaczmarz, Paley, Cal-Sal, and X. By investigating the ways in which these known orderings are generated the author noticed that the same operations can be used to create some new orderings. The generation of two new Walsh transforms in Gray code orderings, from the straight binary code is shown. A recursive algorithm for the Gray code ordered Walsh transform is based on the new operator introduced in this presentation under the name of the bi-symmetrical pseudo Kronecker product . The recursive algorithm is the basis for the flow diagram of a constant geometry fast Walsh transform in Gray code ordering. The algorithm is fast (N 10g2N additions/subtractions), computer efficient, and is implemente

    A study of switching function representations.

    Get PDF

    Discrete Function Representations Utilizing Decision Diagrams and Spectral Techniques

    Get PDF
    All discrete function representations become exponential in size in the worst case. Binary decision diagrams have become a common method of representing discrete functions in computer-aided design applications. For many functions, binary decision diagrams do provide compact representations. This work presents a way to represent large decision diagrams as multiple smaller partial binary decision diagrams. In the Boolean domain, each truth table entry consisting of a Boolean value only provides local information about a function at that point in the Boolean space. Partial binary decision diagrams thus result in the loss of information for a portion of the Boolean space. If the function were represented in the spectral domain however, each integer-valued coefficient would contain some global information about the function. This work also explores spectral representations of discrete functions, including the implementation of a method for transforming circuits from netlist representations directly into spectral decision diagrams

    Processing and Transmission of Information

    Get PDF
    Contains reports on two research projects.National Aeronautics and Space Administration (Grant NsG-334)National Aeronautics and Space Administration (Grant NGR 22-009-304

    AN IMPROVED SPECTRAL CLASSIFICATION OF BOOLEAN FUNCTIONS BASED ON AN EXTENDED SET OF INVARIANT OPERATIONS

    Get PDF
    Boolean functions expressing some particular properties often appear in engineering practice. Therefore, a lot of research efforts are put into exploring different approaches towards classification of Boolean functions with respect to various criteria that are typically selected to serve some specific needs of the intended applications. A classification is considered to be strong if there is a reasonably small number of different classes for a given number of variables n and it it desir able that classificationrules are simple. A classification with respect to Walsh spectral coefficients, introduced formerly for digital system design purposes, appears to be useful in the context of Boolean functions used in cryptography, since it is ina way compatible with characterization of cryptographically interesting functions through Walsh spectral coefficients. This classification is performed in terms of certain spectral invariant operations. We show by introducing a new spectral invariant operation in the Walsh domain, that by starting from n≤5, some classes of Boolean functions can be merged which makes the classification stronger, and from the theoretical point of view resolves a problem raised already in seventies of the last century. Further, this new spectral invariant operation can be used in constructing bent functions from bent functions represented by quadratic forms

    Reducing the Multiplicative Complexity in Logic Networks for Cryptography and Security Applications

    Get PDF
    Reducing the number of AND gates plays a central role in many cryptography and security applications. We propose a logic synthesis algorithm and tool to minimize the number of AND gates in a logic network composed of AND, XOR, and inverter gates. Our approach is fully automatic and exploits cut enumeration algorithms to explore optimization potentials in local subcircuits. The experimental results show that our approach can reduce the number of AND gates by 34% on average compared to generic size optimization algorithms. Further, we are able to reduce the number of AND gates up to 76% in best-known benchmarks from the cryptography community

    Minterm-interchange applications to digital circuit design.

    Get PDF

    An investigation into the properties of multi-valued spectral logic.

    Get PDF
    corecore