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SUMMARY.

| The object of this thesis is to present certain natrix
tcchnioues which may be employed inthe analysis and synthesis
of binary combinational logic circuits. These techniqhes are
rcadily implenented on the digital computer.

In developing these methods care has.been taken to avoid
h2uristic algorithms so that each technique has a firm mathcmatic;l
foundation,

The first chapter of the thesis considers a Boolean matrix
approach to logic analysis and synthesis. These matrices allow
the rigorous and formalised representation of logic cifcuits.'

An important'property of these matrices is that they embody
multiple-output circuit representation and that , together with
certain matrix operations , they may be used in the synthesis of
multiple output circuits on an iterative basis.

| The second chapter of the thesis describes a matrix trans-
formation technique which has properties directly applicable

to logic synthesis. This technique may be employed not only in

the field of conventional logic design but also in the design of
circuits using threshold gates. Certain transform-domain operations
are used to synthesise logic cirquits‘directly from the transformed
truth-table representation of Boolean functioﬁs. These opecrations
may also be used in the classification of Boolean functionse. The&
nay also be employed in the synthesis of multiple~output circuits
and pottern recognition.

The third section of the thesis concerns itself with other
research work initiated by the topics discussed in chapters one
and two .Of special interest is the description of a universal

threshold logic gate and its role in logic synthesis.
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DEFINITIONS.

the letter n will be used exclusively to
denote the order of a Boolean eguation.

n is the minimum number of defining variables
necessary to always unabiguously represent a

Eoolean function of order n .

e

will be used exclusively to denote the
defining variables of a Boolean function of

order n .

will denote any n th order Boolean function.

will denote a particular n th order Doolean

function,.

a point in n-space defined as follows :

Let <{S) be the set of all possible unique
values of the vector Xg9Xs0 o o ,kél in the
range 0,1 ; then each member of ¢8): 5
1<&4 \<2n , 1s an n-tuple 9/ « A particular n-
tuple 9/3.", called the j th n-tuple,is defined

as 9/j y J = 2n71x1 + Znizxa + e e o * 2(.)xn .

True minternm

an n-tuple at which a given function has the

logical value 1.

False minterm -

an n-tuple at which a given function has the

logical value O,

Canonical
representation

a method of representing a Boolean function
vhere the n-tuples on which such functions

are defined are always written in the same
positions. The function is then said to be in
'canonical form'. This term is also applied to
the vositioning of the spectral coefficients of

a Boolecan function.



Truth table

a canonical represent»tioﬁ of a Boolean
function. Zach n-tuple is tabulated together
with the corresponding value of the function.
The n-tuples are written in order as :

Wor Whs s = =« afong -

See Fig. 1a and reference 1.

Karnaugh map
4

a canonical representaition of a Boolean
function. The map consists of an area divided
into 2" adjacent séuares. Each square repres-
ents an n-tuple and contains a minterm.
Squares with common sides differ only by a

-

Hamming distance of one. See Fig. 1b and

reference 1.

Fyg(x1,x2, . . ,xn)

will denote the value of an n th order Doolean

function at the n-tuple 93.
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(i) LIST OF SYMBOLS USED.

In the apvproximate order in which
they appecar.

[ ] . Integer matrix.
] Integer vector.
) Logical AND operatore.
+ Logical OR operator.

Logical COMPLIENZNTATION oparator.

0 Logical exclusive-OR operator (llon-equivalence)

8 Logical not-exclusive~OR nperator.(Equivalence)
[A] Unit or Identity 3Zoolean nmatrix.

ci,j Element of an integer matrix [C] appearing in the

i th row and j th column.

c! J th column vector of an integer matrix [C]
J expressed in decimal notation.

A set.
Inclusion

D
-
[] Intersection
U

Union
-1
[ ] Inverse Boolean matrix.
N . Tie , used to indicote related column vectors in
- conditionally related matrices.
[ ] ; lHatrix raised to exponent 7V .
[ ]IE R th root of a matrix.
_[Qﬂ Operator nmatrix.
j; | : Parallel composition oserator.
[T] Rademacher/Walsh transform matrix.
<{R> " Set of spectral coefificients or spectrun.
[fq . Matrix in CGalois Field 2
|| Determinant in Galois Field 2.
A

e Expected value,
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CHAPTER 1.

Boolean Matrices.
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117 Introduction.

The type of Boolean matriceé described here were first
developed by J.O.Campeau in the late 1950's, see references 2,3
and 4.

Campeau was particularl& interested in using these matrices
in the analysis and synthesis of counting circuits and for this
‘reason pénsidered matrices of dimension nX2® almost exclusivelye.

These matrices, whilst having properties analogous to those
of conventional matrices ,. both in terms of structure and algebra,
may be applied directly to the analysis and synthesis of logic
circuits. They are particularly useful in the representation of
cascaded multiple-output logic modules and ha&e assoclated oper-
ations which are easily implemented on the digital computer.

12 Basic Concevnts.

Te2e1 Renrésentations.

Consider the representation of algebraic equations under
conventional matrix algebra :
Coefficient Defining Required _
= e o (1.1
Matrix Variables Functions
It will be recalled that the coefficients are arranged in a
particular order " so that,under matrix multiplication,the correct

coefficient is associated with a particular variable , e.g. @

[ 3 2] X, P] defines a single function P where

X

2
P = 3x1 + 2x2 « Similarly| 3 2 X, P defines
S B N )
two equations P,Q where 3x1 + 2x2 = P
and -4x1 X, =Q .

Now there is no reason why Boolean equations should not be
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represented in a similar way.

; 1
Consider [01 S can] x U] e o(1.2)

-
i}

where Xq9X50 o e 1 X, are the defining variables of a Boolean
function U = F(x1,x2, - ,xn) and the coefficients c ¢4y o c2n
are the value of the function at each n-tuple 9{1_1) , see 'Definitions’
For example,c1 is the value of the function at n-tuple @6 or
when X4= X% o 0 X = 0 3 5 is the value of the function at n-
tuple @% or when x,= X,= « + X .= 0, x =1 etc .
Now it will be noted that the ordering of the coefficient

vector is precisely that of the truth table fepresentation of a

Boolean function , -see 'Definitions’'.

The example shown in Fig.1a. may therefore be written as :

[07000‘010100110111].}:1=U]
0123456789101112131415 zz
. xi

where U is a Boolean function F(x1,x2,x3,x4).

The numbers appearing below ecach member of the coefficient
vector re‘presen’c the n-tuples ‘//j,'osjg 2n-1 , Bec—ause the coefficient
~vector has a canonical form the ordering of these n-tuples is
implied ; nevertheless it will be found coavenient to include
this information when the manipulatidn of matrices by paper-
and-pencil mefhods is considered.

The representation of several Boolean functions is also

possible , as in the case of conventional matrix algebra.



Consider
c c . .- c T X U
1,u 2,u 2n’u 1
[o (o] PY . C X v
1,v 2,V 211’v 2
= e e o (103)
c c o . c . Z
1’Z 2’Z zn’z ‘J
¥
X
n
p

which represents several n th order Boolean functions.
In general the coefficient matrix will have p rows and- 2"
columns,vhere p is the number of n th order Boolean functions

to be represented.

- As an example, the representation of three second order

functions is given below.

The functions U.= X, Q'x2_= Kqe¥y + XpeXy
V = XqeX, '
W = ;:1+}-22
may be represented as 0110 Xy U
0001 %, |= '
1110 W .
123
In order that the values of a given set of functions may

evaluatéd simultaneously for a particular n~tuplc the column
vector of the coefficient matrix corresponding to that n-~tuple is
extracted. |

In thé last example the values of the three functions

corresponding to the n-tuple }% s where x1=1 and x2=1 y is given

by : 10110} 1 0
0001 1] =1
17110 0
0123
ons U,V,¥ have the values 0,1,0 respectively

ie. the function

when x1=1 ' x2=1.

By re-writing the previous example with each n-tuple
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expanded as a Boolean matrix this process may be carried out by

inspection :

}V matrix form of
- n-tuples

If the coefficient matrix is equal to the matrix of n-tuples

the following matrix equation results :
¢
C011|x,}] _U -
[o 10 1] x;} = VJ » for n=2.

Clearly UJwill take the values of x,|over all n~tuples , ie.
v ,

0011 P

0101 %, “‘xa ; for this reason the matrix
of n—%uples is called the Unit or Identity matrix and is denoted

as [A] o The Unit matrix has , by definition, n rows and 2?

colunns.
In general [A] x,ﬂ x,l-1
*2 1 %2
. =. [} o« * (1.4)
by by
n-d n-

1e242 Matrix-Vector llultinlication.

It is now possible to mathematically define the operation

which enables eqﬁations of the type

Lol
N . e . (1.5)
" FPJ

to be evazluated. This operation will be termed matrix-vector
multiplication.
Define:‘[ C] as ‘& . Boolean coefficient matrix having p rows. ..

n
and 2" columns,
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1 as the defining variable vector having n rows,

~

1 as the function vector having p rows and

[A] as the matrix of n-tuples having n rows and 2" columns.
The evaluation of equation (1.5) is then given by

21’1

Fo(xg0X50 o o 9% ) = KJ ¢; 5 0 Fd'(ak,j ) x ) . « (1.6)
j=1 k=1
\ 1<€igy
where © is the equivalence pperator ,[J.represents union over a
field ,(Xrepresehts intersection over a field andf\represehts
intersection;

Equation (1.6) is interpreted in the following way :

ELl (ak . © x, ) has the logical value 1 iff. the vector x
1 J k .

is

E 1

k=1 x,

X

n

equal to the j th column of[A]. That is 4, the vector X, is
. Xa
x
n

identified with the n~tuple corresponding to the j th column of [A];
this n-tuple is , by definition equal to ()Uj—’l' Because no two

. n-tuples intersect in n-space this correspondence is unique.

n
Thence Ti} ci,jn ?1 (ak,j 0 xk) serves to extract the required
j=1 k=1

member , row i colummn j , of [CJ corresyonding to the function

Fi(x1,x . . ,xn) and j th column of [A] .

2!
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The general expansion of eqguation (1.6) for n=2 is:

Fi(x1’x2) = ci’1.(a1’1 ® x1).(a2’

, 8 xa) + c.

(a

1,2'(a1,2

5 X,]).(a

v oy ze(ag s O xelay 50 %) +ey ye(ay @ xp)e(ay ),

1.2e3 Decimal Hotation.

Boolean matrices and vectors may also be expressed in 'decimal

notation' . An example of this notation has already been used to

represent n-tuples. viz. 93 y 3= 2™} X,

2

In general any Boolean matrix column vector may be expressed

~in decimal notation in the following ways:

- pos s . . n
Let [C]'be a coefficient matrix having p rows and 2= columns,

2BF

.
then cj % ck,j 2

M

1¢ig2"

k]

1 o o o

(1.7)

vhere 05 is the j th column vector of [C]expressed in decimal

notation. The same technique can , of course , be anplied to both

vectors and matrices.

(:5}}

+ 2n-§ Xa + o o + ZOxxn.

An example of the conversion of a Boolean matrix equation

to decimal notation is :

011011 o)

0001|171 s which may be expressed as
171710 0

0011

0101

155 2] 3]=2

(155 2] 5]- 2]

. The unit matrix y by virtue of the fact that it is the matrix

of n-tuples, may be defined in decimal notation as
at £
J

where a5 is the j th column vector of [A.]expressed

-1, 1<€3ig2” ‘ ...

notation.
The decimal notation is useful , not only as a
method of expressing PBoolean matrices , but also as

is convenient for the manipulation of such nmatrices

(1.8)

in decimal

shorthand
a form which

by means of the
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digital computer.

1.2.4 Hatrix-lictwork Topolozy.

A practical interprctation of Boolean matrix-vector nultiplic-
ation is given in Fig.2. which corresponds to equation (1.5).

One of the most important oproperties of Boolean matrices is
'evident‘from this example , ie. it is possible to relate the row
structure of a Doolean matrix equation to the topology of the
logic circuit which it describes. The convention adopted here will
be to relate the first row (function) of a coefficient matrix to
the upper sigpal path at the output of the corresponding logic
module , the second row of the coefficiant ﬁatrix to the next-
to-upper signal path at the output éf the corresponding logic
modulg s and so on. The same convention will be adopted for the
defining variable vector and the corresponding logic module
inputs.

125 HMatrix Multiplication.

It is now possible to develop an operation termed 'Boolean
matrix multiplication' which corresponds to the multiplication of

conventional matrices.

Consider the identity [B][C] %, =[D] X, e o o (1.9
%, X,
;n ;n

and let [B]{C] x1' represent a pair of cascaded logic modules as

x>

n
shown in Fig.3. where the modules B and C correspond to [B] and[C]

respectively. The dimensions of the matrices[B]{C] and [D]follow
from the discussion of the topological relationships above.
viz. [C] will have & rows and 2° columnns,

[B] will have p rows and 2% columns
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F1(X1,X2,..,Xn):— .
F2 (‘XTgxz, .o ,Xn) <-- C . \

Fo Xy Xy « « %) <

|
TR .
- Fig.2
F1 ( X1, e ,Xn) G . -.-Q-——-x:-- S )(1j
B B E C E
= Xy e e
B(Xps - - oXn) 4 ) e X1

DBk

Fig. 3
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. n
and [D]wlll have p rows and 2 columas.

It should be noted that any deviation from this dimensioning
results in a system which cannot be implémented.

A method of evaluating equation (1.9) is to first compute

.[C]xq- ﬁ:
2| T2 . o o (1.10)
an xzﬂ

Then equation (1.9) may be expressed as

[B]:S; =[D}§1
: : (1.11)
ymb xn

Expressing equation (1.10) in the form given by equation (1.6) :

" 2B
=[J c. fﬁ ( ® x )}
e )3 e oo (1292)

1€i<w

Using the same method,equation (5.11) may be written as :

k=1
1€r¢p

Now from equation (1.13)

br,m = dr,j when: ak,j = Xy and a ,m= Xy 3
and from equation (1.12)

1 - M =

x; = ci,j when: ak,j Xy ’
whence'

d .=0D iff. a. =c¢, . and a s =

'yl ‘r,m 1am Ly ' J

The last equation is important because it enables the equatiqn
{B]B)]: [D ]to be-evaluated by again employing the general form
of equation (1.6).

ie. given d_ . = when a, = ¢, ., then
r m i,m

ryJ
dr.j ~m: r,m {O . ) ' ! , A
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Equation (1.14) may be interpreted using the same arguments
applied to equation (1.6) : The j th column vector of[C]is identified
as the m th column vector of the unit matrix [A] s the j th column

vector of [D] nust then be equal to the m th column vector of [B] .

An example of matrix multiplication is now given:

Bvaluate [BJ[C]z1 =[D];{1] where [B]=

and [C]:"[‘l 00 1] ' i

10
00
00

O
A0

0011

For convenience the unit matrix , or matrix form of n-tuples,is

0 [1 00 1] xi] __[D]x1]
1 0011]) x B X

| 2 2
1
1

89!

L}
How the first column vector of[C]corresponds to the third

written below [B] :

01
01
0o
01
10

o0 00 -

column vector of [A] so that the first column vector of [D]is
equal to the‘iﬁigg column vector -of [B] « Similarly the second
column vector of [C] corresponds to the first column vector of
[A]so that the second column vector of [D] is equal to the first
column vector of [B] y and so forth. The comvlete solution

together with the necessary operations can be shown as :

—

t i T v v

1010 1001]}{1_1100 X,
cot11|loor1fx| (1001 x,
00 0 1 0001
0011

0101

R

The same equation expressed in decimal notation is @

[+ 06 3][201 3] x1]=[6403] :{1]

0123 X2

The implementation of this example is shown in Fig.l.
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In general it can be shown that the operation of matrix
multiplication is not comnmutative , ie.[B][C] # [C][B]- « To show
this consider the equations [B][CJ =[])] e o o (1.15)

and [c){]=[p] ... (1.1
Let <B> , <C> ,<D) represent the sets of column vectors of [B] R
[C] and [D] respectively.It is required to establish under which
conditions ‘equations (1.,15) and (1.16) are simultaneously valid.
From equations (1.14) and (1.15) a necessary condition is that

<D>CLB> e oo (1.17)
and from equations(1.14) and (1.16) another necessary condition
is that <D>CLCH> e e o (1418)
Equations (1.17) and (1.18) imply <C>n¢B> = ¢ D)vhich , in
genergl,is not true.
One notable exception is[A][C] = [C][A]. . where[c]is any

coefficient matrix and [A] is the unit matrix. |

[N

It can be shown that the associat;ve law holds however .,

eg. [’3] ][D]] [[B][CJ[D] etc.

1.2.6 DBabic Proverties Reviewed.

Several properties of the Boolean matrices and associated algebra
are now noted.

1/ The algebra is similarly structured to that of conventional
matrix algebra , having operations analogous to both vector-matrix - .
and matrix-matrix multiplication.

2/ The structure of the matrices has the important property
of defining- logic modules not only in terms of functional |
behaviour but also in terms of input/output topology.

3/ The algebra is well suitcd to the description of multiple-
output logic modules and may be used to evaluate the overall

transfer function of cascades of such nodules,
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4/ The matrices have a form well'suited to manipulation by the
digital computer.
Reference 5 should be consulted for further examples of the

basic operations described in the previous sections

~

1.3 Further Properties.

1¢3+1 Singular and Non-singular Matrices.

Before proceeding further it will be necessary to classify
Boolean matrices into two categories , namely singular and non-
singular.

A singular matrix is‘defined as a matrix having at least
two cqlumn vectors identical,

‘A non=-singular matrix is-defined as a matrix having no
column vectors identical - a sbecial case is the unit matrix [A] .

An analogy can be drawn be%weén the properties of singular/
non-singular matrices for both Boolean and conventional matrices.
as will be shown in the discussion of inverse matrices.

1.3.2 Dinmensioning.

Consider the Boolean matrix equation

[5][c] %] = [p] 21"

2 2
X b4
n n

-

It is now convenient to investigate the relationships between the
dimensions of the matrices [B],[C] and [p].

Now the system under consideration has n cdefining variables }
therefore both[C]and[D]must>have 2" columns since they are defined
on 2 n-tuples ; see also equation (1.6). Suppose that[C]has 6)
rows, ie. it describés a module with ¢ outputs . Then [B] must be

defined on & inputs ; see also equation (1.14) . It follows that
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[BJ has 2w cqlumns. Now if [D] has p rows,corresponding to p
outputs,then [B]also has p rows. These general dimensions are shown
in Fig.5,p23.

In order that equations of the type discussed above may be
solved given only the matrices[B] and [D] or [C] and [D]it is
necessary to introduce the concept of the inverse matrix.

1.3.3'The True Inverse.

4

The inverse of a matrix , say [C), is written as [C]”) and is
defined by :
[c][c)™" & [a] 2 [c]"[c] _ e« o (1.19)
vhere [4] is the unit natrix. |
Let [C] have & rous and2ncolumqs , then equation (1.19) is
dimenxioned as : »
ST [c)™ = [4] | ... (1.20)
and . -0 |
(o] ¢lc ]

Equation (1.20) inmplies that [A] has & rows whilst eguation

P
cl

!

[a] v . (1a2])

(1.21) implies that [A] has 2" columns. The unit matrix A however,
has n rows and 2 columns by definition. It follows that®w=.n .In
order that equation (1.19) shall hold therefore [C] must have n

n vt -1 n '
rows and 2 columns. Sinmilarly [C] must have n rows and 2

columnse. Equation (1.19) is thus dimensioned :

N - -2

\ 2" n-ih;q \ . i&n1|
tlelife] =y[a] =3[c] 7 glc]

Now from the arguments used to develop equations (1.17) and

(1.13) it follows that in equation (1.20) :<a>CKC> , and in
equation (1.21) : <A>Q<C~%§ where<£>,<C>,<C“1>represent the sets of
column vectors of [A],[C],[C]uq respectively. Since[h],[c],[c]—1
have the same dimensions and [&] is non-singular then <i> =<C) =

<™ and voth fc] ana [01—1 are non-singular.,

Two necessary preperties of inverse matrices are therefore
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1/ They are.non—singular , &s are the matrices from which they'
are derived.

2/ They have a row/colurmn dimensicn ratio n/2n, as do the
matrices fron which they are derived.

These matrices will be termed 'true inverse matrices ' to
distinguish them from other types of inverse matrices to be described
later.

,
Now , by substitution in equation (1.14), equation (1.21) may

be expressed as :

n .
2 - n - b
a = c a, @c. .
1€r<n ’ * L L ] (1.22)
1€ j¢2".
k)
o a _ =1 , _ . . . R
That is ar,j" cr,m when ai,m— ci,j y vhich may be interpreted

as follows :
If the J th colunmn vector of[C] is equal to the m th column
vector of[A] then the m th colusmn vector on‘.‘[C]"II is equal to the j th

column vector of[A].

Consider the folloving simple example :
given [c]=[2310] , [a]&¢ [0 2 3]
construct [C]-1.
Now the first column vector of [C] is equal to the third

column vector of [A) so that the third column vector of [C]_ll is

equal to the iigg& column vector of [A] y and so on.
This gives the result
[C]_1 = f} 2 0 1] s vwhich nmay be verified from
equatioﬁ (1.20). viz. .

[C][C]-1 =[A] o o o ((1.20) I‘epeated)

that is [2310][3201]=[01'25]
01223
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This procedure is readily implemented on the digital computer
and may also be executed by inspection .
It is now possible to show that the-equation
[8)lc]=[p] - ... (1.23)
is equivalent to [B] = [D][C]—1 | e o o (1.284)
vhere (C]is non-singular and has n rows and 2" columas y Whilst
[D] has rows and 2° columns.ie.{C]_1 is a true inverse.
Proof:
Using the general expression for matrix multiplication (egn.

(1.14)), equation (1.23) can be expressed as

n

d gl
d. . = b (a, ®c. .)
ryd E£1 r,mn j=q Lom i, } '
1¢r ¢, e o o (1.25)
° 1< 3 €2",

and equation (1.24) can be expressed as

‘2n
=
b = d . h 2. . @ .
rym 1,,9_1 r.a”{iq("‘l’a °1,m)} ' h6)
0T - Ll * L] 1.

1€r <w,
1¢mg2™.
Now from equation (1.25): d . =Db wvhen a, = C. .
N I‘,J I‘,m .l,fn 1,3
and from equation (1.26) : a . =0b shen a, . = .
Tyd Tym 1,2 R

In order that eqguations (1.23) and (1.24) are equivalent it is

-1

. o But this

therefore necessary that a, _= vhen a c

igns %iyj 143"
is exactly the condition which holds if [C]“’l is a true inverse,
as shown by equation (1.22).
Zquation (1.23) is therefore equivalent to eguation (1.24).
QeE4De
It can also be shown that equation (1.23) may be expressed as
[c]= (8]7"[p] e oo (1.27)

From equations (1.23),(1.24) and (1.27) it can be concluded

that when a matrix equation is re-expressed in terms of the true
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inverses ofAits components , pre=- énd post-multiplicative ordering
is preserved. | t
For example , in equation (1.23) the matrix [C] post~
multiplies [B] and in equation (1.24) [C]m1 post-multiplies [D] .
This is a property which is also found in conventional matrix

élgebra.

An example of the use of the true inverse matrix is now given :

A logic system is described by the equation

[810c1x,7 = [p] %,
: 2 2
3 3»
wvhere [c]=[01011010 and [D}]=fo01101001]| .
01100110 01111010
171010100

Find the matrix [B] (if it exists).
Solution

Cbnvert the system equation into é form which enables

[B] to be evaluated :
[3]=[0lc]",
ie. [01‘1 is required.

Inspection of [C] shows it to have a row/column ratio
of n/2n and in addition it is non-singular.[c]_1 nay therefore be
evaluated.

Express [C] in decimal notation and evaluate [03_1 from
[C]"1[C] = [A] by inspection :

[c]"[17254360]=[01234567]

ie. [c]V=[70254361]
ExXpress [D] in decimal notation and evaluate [B] from
[5] = [p][c] :

[B]=[03313012)[70254361]=[2030311 3]
012345617 .
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This result can be checked by substitution in the original

system equation.

The above example illustrates that the true inverse matrix
may be used in logic synthesis. For example , in the above , [D]
may represent the transfer function of a required logic system
and [C] may represent én available logic module. The example shows
that [C] may be employed in the synthesis of [D] giving a.remaiﬁing
nodule [g} to be synthesised.

0f course it will be appreciated that in general the logic
module corresponding to [C] in the above cianple is not likely
to have a transfer function described by a non-singular nmatrix
having the correct dimensions which ensures the existance of a
true Inverse. The effect of relaxing the restrictions applied
to the evaluation of inverse matrices is therefore considered
below.

1.3.4 Valid Zouations.

In order that criteria may -be developed which allow the
evaluation of the inverse of matrices not having the special
properties neceésary for the evaluation of the true inverse ,
it is first convenient to determine what constitutes a valid
matrix equation.

Recalling the matrix equation

[B][C] = [D] and the interpretation of
equation (1.14) . ‘

vize d . =Db  vhen a, —=o, . (over the required
WD ' 1J limits ),

the criteria which ensure the validity of the above matrix
equation can be established.
It has already been established that one necessary condition

that an equation of tha above type shall be valid is that it has
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allowed dimensions. This will be assumed.

Consideration of the matrix [C] in the above shows that if
two column vectors of [C] are identical then the two corresponding
vectors of [Dj must be identicai.

1@. if ci,j = Ci,k= ai,m then dr,j = dr,k = br,m .

However if two column vectors of [C] are different then the two
corresponding vectors of [D] may or may not be different ,

dependiﬁg upon the composition of [B],

ie. if ¢, . = a, and c, = a, then d_ . =0
1,3 i,m 1.k i,l Tyl r,m
and dr,k = br,l vhere br,m may or may not be
equal to b .
4 r,l

. These obsecrvations give rise to :

Criterion 1.

A necessary condition that the matrix equation[ B][C] = [D]
shall be valid is that if.[C] is singuvlar then the iéentical
column vectors of [C] shall correspond to the identical
colunn vectors of [D] .
oo0loo
Consideration of the matrix [B] in the above equation shows
that the set of unigne column vectors of [D] nust aprear in the

set of coluwmn vectors of [B] since dr,j = br,m wvhen ai,m = ci,j

It follows that [B] nust have at least as many unique column
vectors as there are unique column vectors in [D] « In addition
[B] may be either singular or non—sinéular.

These observations give rise to :

Criterion 2

A necessary condition that the matrix equation [3][C] = [D]

shall be valid is that the set of unigque column vectors, of [D]
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shall appear in the set of column vectors of [B]. -
‘ , 00000 '

Now if either Criterion 1 or Criterion 2 is satisfied together
with the dimensional restrictions, this is sufficient to guarantee the
validity of a matrix equation of the type described above.

| Specifically if , in the above equation,[ €] and [ D]are known
and satisfy both the dimensional restrictions and Criterion 1 , then
the-matrix [ B ] may always be constructed. The same argument nmay
be applied to the construction of [©Jgiven [ B] and[ D] uader
Criterion 2 and the dimensional restrictions.

Since the matrices constructed under the above criteria may
be singular or non-singular it follows that it should be possible
to find the inverse of a singular matrix providing the result is

only applied to valid matrix equations.

1.3.5 Inverse of Singular llatrices.

Let the inverse of a singﬁlar matrix be defined from :

[c][c]”1 = [4] e oo (1.28)
. R s :

The evaluation of [C] s Where [C] is singular is best
illustrated by a simple example.

Suppose that [C] = |10

' 10

[c]=[5011]

Substitution in equation (1.28) gives

‘[3 011] [¢]?=[o1 23
0123

Since [C] has two rows it follows that [A] has two rows and

0 O] s or in decimal notation
1

22 colunns, therefore [C}—1 must have 22 colurms and twor rows.
How by inspection it is clear that the first column vector

of [C]_1 must give rise to the value O , which is the first column

vector of [A] s when [C]"1 is multinlied by [C]. The-only column

vector of [C] having a value O is that column vector corresponding
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to n-tuple ﬁ. Consequently the first column vector of [CJ-1 nust
have the value 1.
The second column vector of [C]-q must give rise to the value
1 when [C]"1 is nmultiplied by [C] . But [C] has two column vectors
with the value 1 , these appear at n-tuples 2 and 3 . The second
'éqlumn vector of [C}_1 may therefore take the value 2 or 3.
The third column vector of [01_1 nust give rise to the value
2 when [C]~1 is multiﬁlied by [C] . Now no column vector of value
2 appears in [C] so that the third column vector of [C]_1 is
given the unspecified value 's' .
The fourth column vector of [01'1 must give rise ﬁo the value
3 when [C]—1 is multiplied by [C] . low [C] has the value 3 only
at n-%uple O ,consequently [C:]“1 must have ifs fourth column vector
equal to O,
This gives the result :
[011
0123

where 1

[o 12 3]
[

Now this inverse matrix may be employed in the evaluation of

*
o

| W
{

Wiy Wiy
*
o

e
il

the following system :

s [s][e] 5]« [2]
' J

where | | [c] = E 8 EI) (1):]
or in decimal [CJ = ‘5 01 ﬂ
notation -

S O R A
or in decimal [0]= [1522]
notatiqn

evaluate [B].



33

Solution

Substitution in the equation [BJ[C] = [D] gives

[8][3011] =[1322]

This equation satisfies Criterion 1 and is dimension-
ally correct. [B] nay therefore be evaluated from [B] = [D][CJ_1 .
How [01-1 has been evaluated as [1 % * 0]. Substitution

in the above equation gives

o [2] [8??‘,2[1§*°]

b

This result may be checked by substitution in the given

it

i

equation : [32 1 [301 1] x| = [132 2%,
0123 %> x5
q Note that the symbol 'sx' is used to indicate that the

column vector may take any value. This must be so in the above
equation since the relevant column vector is not involved when [C]
is multiplied by [B]. However, i£ order that [B] shall renresent
a real system,the value of ! must lie within the dimensional
restrictions of [B] .

. Hatrices having column vectors with moré than one
possible value will be termed 'multi-valued'.

The fact that the singular inverse of a matrix may
alwvays bé used to solve matrix equations which are valid under
Criteria 1 and 2 together with the dimensional restrictions
can be proved using methods similar to those applied to equations
(1.22),(1.25) and (1.26) . |

In the previous example the inverted matrix had a
row/column dimension ratio of n/2n y but this is not a necessary
condition for the evaluation of inverse matrices as is illustrated

by the following example.
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wa (o4 } 613

1
2

where [B] = {011 ﬂ or in decimal notation
1010
j 1 0 1]
| = [356 5
e -d
and LD] = [1 00 1] or in decimal notation
17110
9 11 1_
= [6 33 5)
4 e
coa
find LC] .
Solution

Both [B} and [D] have 3 rows , the equation therefore
has the correct dimensions.,

The set of unigue column vectors of [D] are (3;5,6)
which‘appear in [BJ .

The eguation is therefore dimenéionally correct and
satisfies Criterion 2 4 it is thus a valid equation;

Evaluate [B]"1 from [B][B]-1 = [A] by inspeétion :

[3565][***0*%'2*]=[o1234567]
0123
Note that [B] has 3 rows therefore [A] has three rows

and 23 columns . Then [B]~1 has 23 colunns and 2 rowvse.
rina [¢] from [c] =[8]7" [0]
[c]:[*_* ==o*%2*]{6335_]

01234567

[zoo%]

This result may be checked by substitution in the given

equation : [3565][_200%] x| = {:.6355] x,
0123 x?jl 2

it

"
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1.3.6 ﬁulti-valued Matrices.

The study of the composition of inverse singular matrices
has resulted ;n the consideration of multi-valued matrices. It is
of interest to consider the more general aspects of multi-valued
m;trices in order that systems specified with 'don't care' conditions
ray be manipulated.

Consider the following equation :

¢

170*11017 = x| = F1
00111111 %, F2 s, where '"x' denotes
* 1T « 001 %« 0 3 F'3
01234567
a dont care condition ( O or 1 ). For exanple F1(x1,x2,x3) may

take the value O or 1 at n-tuples 2 and 7 .

In decimal notation this equation may be written as

a 2
L 3 6 2 .
1 6 63 = x| = F since ,for example
[5 § 76 x'l F‘I ’
7 2 2
. X5 FS
01234567 °~° 2

the column vector at n-tuple 2 may take any of the values O O flor 1]

1)1)1 1
of 1 o -1

For the general equation tB]fC] [D] it has been shown

i

that d. ., =b, o When &, = c. . (over the allowed
Ty T e 19 dimensional linits)
Now suppose that [B] is multivalued where br o has
4

either the value « or /3 s then dr 3 will also take the value

?

ocor/@ when ai,m = ci,j .
Similarly if [C] is nulti-valued where c, ., = a; or
i, i,m
ci,j = a, i1 then dr,j will take the values br,m or br,l'

It is therefore possible to apply the methods of Boolean
natrix algebra to general multi-vzlued matrices without recourse
to special fechniques.

An important property of multi-valued métrices is that it

is possible to use them to define relatlonohlps between functlors.
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Consider the following equation :

[ugoz]i,‘:?]

2 2

which may be written as either [1 0 0 O] x; = F,]|
0101 x, F;

0100 7] F3

0123 -

or 1100] x] = F,

0101 Xy F2

0 0 0 O ] F3

0123 -

Insfection of the-last.two equations shows that the function
F1(x1,x2) is related to the function Fs(x1,x2) . Specifiecally ,
at n-tuple 1 , F1(O,1) has the value O only if F2(0,1) has the
value 1 and vice-versa .

The given equation therefore defines two dependent functions
and iﬁ this respect differs from the type of multi-vaiued matrix

considered so far.

1¢3.7 Conditionally and Unconditionally valid equations.

Some care must be taken when manipulating multi-valued matrices
to establish the correct interpretation of the functions they
represent.

Consider the following equation

(3] [21 - %] %1

2

[13+3] x,
*2
How this equation may be written as

[8][21+1] x

or | [B],[? 1 « 3J :

In either case a valid equation is formed under Criterion 1 .

[134 3] %]

x>

L V=

T-Dsedls
2 X5

- -

Such an equation is termedtunconditionally valid'.

The matrix [B] may then be evalusted in the following way. :
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For the first form of the equation [B]

[135«3][21+1]
_[1 3+ 3)[2 1+ 3]0

Computing the required inverses from [C [C]"1 = [AJ by

- 30]-[o123]

51[* 10 3] L0123] .

2
ie..[a’n*'l]"':[*%o*] and [21*3]‘1=|'_*103J
]

and for the second form [B]

inspection : firstly [

1

and secondly [3

Evgluating[B] from [3} = [D [C]-1 for both cases :
1= D3 ;3050 ]
_.._.[*31 *_
oo [5]=[s3

yow for both forms of [B] to satisfy the original equation
the fourth column vector of [B] must satisfy both values '4' and
31 , Since 'x' represents an unspecified vector which inciudes
the value '3'" the fourth column-vector of [BJ nust be constrained
to take the value '3' .,

The original equation can therefore bg written as :

SELAN BRI

0123 x

which may be checked by inspection.
Not all equations are unconditionally valid however. Consider

the fpllowing equation :
e ] -2 30)
2 » 2

This equation may take any of the following four forms :

pllzoro]xl=[150]x
i x2J %5

:B] [2 0 * O: x{l = [1 3 % 3] X,
*2 *2

(8] 20~ 2] x) = [15+ 1] =3
XZ‘! x‘,i
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[B][20*2_]§1=[13*3]x1
2 *2

The application of Criterion 1 shows that only the second and
third forms of this equation are valid.
This equation will be written as
0 3] .
® 2 = x 2
[B] [2 0 2] X, [1 3 E X4 where the tie

X2 x2

synmbol fs used to indicate that certain multi-valued column vectors
are related. The expression above indicates that 'O' in one matrix
implies '3' in the other . whilst '2' in the first matrix implies
'*1' in the second.

Matrix equations of this type will be called 'conditionally
validt .

In the above example the matrix [B] may be evaluated ( for the
valid forms of the eguation ) us}ng the same method described in the

previous example. This allows the original eguation to be written

ERRERR I S [13 2] x]
) 0123 - x2 x%j.

Another example is as follows

e g

3

NNN

1
‘2
*3
values'4' or '6' in the first matrix are related to the value '5!

in the s2cond matrix . Also the value '3' in the first matrix is

" related to the value '2' in the second matrix.. This gives the

result : . (4)———_“‘N‘\\\\
515 78 7] =)= [2 3‘5’3]
2

o
—-—
»N
w
& U
[5) B
D \n
~N
NN
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1¢3.8 lMatrices Raised to Exvonents.

It has been shown that the multiplication of two Boolean matrices
can'be interpreted as a cascade of two logic modules. Consider the
case where the two logic modules are identical, each being represented
by the matrix [C] e The overall transfer function of the system is

then given by [C][C] X, = F1

* [
. L d
X F
b n n

. For convenicnce this equation may be written in the form

[¢]? i
;{n %n

‘In practical terms it is clear that [C] must have a row/colunn
ratio of n/2n « If this were not so a situation would arise wvhecre
the num%er of outputs from one module would differ from the number
of inputs to-thc next , which is” topologically inconsistant. This
also means that the number of functiong génerated by the cascade is
n . Sece also Fig.6_.

In general TV such cascaded modules may be fepresented by :

Al
[C] f1 =

.

X
n n

1
L J L L (1.29)

={e e 1

The expression [C] in the above will be refered to as raising
the matrix [C] to the power TU. ie TN is an exvponent.
Consider the effect of raisingthe following non-singular

matrix in power.
]
[c]°
[¢]

[; 01 2]
[3012][3012]:[2301]
[ [e] =[50 507 2] fr2 50]

etc.
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R xp) = ST ZZZ = —
- - C ----- C i C _
R (X - %) -- == - T
. - )
, R .F'
4 X =
[ C ] :1 !
Xn| Fn
Fig.6
E(Y,X) FlysX)  FX)
| } i f |
SR b I wfadietien NN o I oot
JC oo Cld© L
F(X,Y )+ aintaiaiiaiiadie ) "
n .J i I t "
Y RS g
Fig.7
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For convenience this process may be expressed by means of a

vower tavle :

MATRIX ™
0123 0
3012 1
2301 2
1230 7
0123 L
3012 5
2301 6

where any matrix raised to a zero exponent is defined as the
unit matrix.
From the previous discussion of trus inverse matrices it is
possiBle to construct the negative part of the power table for the
above example using the definition

[c];n-= [[cln]-1 .. ; (1.30)

The conmplete table then becomes :

MATRIX IAY
1230 -5
0123 -4
2012 -3
2301 -2
1230 -1
0123 o)
3012 1
2301 2
1230 3
0123 L
3012 g

How it can be shown that the additive law of indices
holds for this algezsbra,.
Consider the equation [C]P [c]'Q - [h]

which may be expanded as :
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(el le] - - L el - o L[] - 6]
1 2 . . . P 1 2 . . . Q
Using the relétionship [C][CJ-1 = [A] this equation may be
expressed as

[ o] - [<]] [AJ'[[;T"[]"- - [e]] = [R]

C
. P“"I 3

T e [el M <[]

After applying this technique P times the following result

[e]° [e] ™ = [7)]
P - I

or

‘This gives the result

[¢]F [e]T® - [¢]™¢ .o . (1.31)
In the previous power table for example
[ [e]” =391 2
[ 230]

hnother example of a power table is as follows

MATRIX IAY
2103 -3
0123 -2
21053 -1
0123 0
2103 1
0123 2
21053 3

In this example the value of the matrix at n-tuples 1 and 3

remain the same when the matrix is rzised in power to any positive
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or negative exponent. Such column vectors , which in the defining
matrix have the property of being identical to the n-tuples on

wvhich they are defined , will be called eigenvectors .

If a cascade of the type shown in Fig. 6 has a set of inputs
corresponding to an eigenvector then it follows that the outputs of
each of the cascaded modules will also have that value.

eg. in the previous example
[210 3]1‘ 1] = 1]

or 1001 m 0 0 for all values of 1™ .
0101 1 1

1]

ilow Hennie , see reference 6 , has shown that such cascades
may be considered as transformed finite-state machines. If such a
nachine is started in a state corresponding to an eigenvector then
it will remain in that state.

It is of theoretical interest to note that the algebra upon
which a power table is constructed forms a group with Boolean matrix
nultiplication as the group overation. A definingmatrix then forms
the generator for a sub-group. Beéause these sub-groups have a
sinéle generator they are cyclic. This is evident from the examples
of power tables so far considered. Such cyclic groups are abelian,
ie. for any two members of the group a,b , a*b = b*a where =«
denotes the group operation.

- A power table may also be constructed with a singular matrix
as a gencrator but the group properties mentioned above no longer
hold. |

Consider the following table @
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MATRIX YA
1
0**2 -3
3
1
o**g _2
3
2
* — L]
9 1 3 1
012273 0
0233 1
0333 2
0333 3

N
which‘has an eigenvector '0O', The inverses of the singular matrices
have been computed using the ﬁethods previously described.

These singular inverse matrices may only be employed in the
solution of valid matrix equatiohs.'For example eguations of the

(o] []"

= [DJ X, to be evaluated for [B],

1

HKoe o X

X
n| - n
if they are valid , using the identity [B] = [D]{C]~“ .

The law of the addition of indices must be applied with great
care to such tables as is shown by the following e:amvle.
Supoose in the above power table only [C]Z and [C]3 are
known; It is required to evaluate [C] .
Two identities may be establishediimmediately s namely
[ [c] - [oP
ana  [c] [e¢F=[c] .

For the first identity [C] = [C]-Z [CJ3

ICEEENE

i 1]

n
—
o
*
#
& \NINE
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11 1

h = 555

S £ 1

and for the éecond identity [C] = :cJB [C]"E
[o333]p 2]
0123 3

“[o- -3l

chause a cascade of identical modules is under consideration
it is known that these two forms of [C] are compatible. Tor [C]
to lie within these restrictions it must have the form
[c]=[o225]

) 0 3
Now [CJz is known to have the value [O 33 é] it follows

NEPOL
PONI VI

1

and 2 .

3]

.Y

-
therefore that [C}cannot have eigenvectors at n-tuples

This reduces the possible form cof [C] to : [C] - [O 2
3

Wit

Finallj each possible form‘of[C]is squared

[02135]%=[0123]
[0233]%= {033 3]
0313]%=[0333]
[03331°=[0333] .

The first result does not satisfy the known result for [0}2

s0 that [C]must have a conditional form :

2
olefo B o oymvol b
[C]—B) i 3] vhere the tie gjmbol has
the usual meaning.. '
Hote that the value of [C} actually used to generate the power

table falls within this definition.

If the two possible forms of [C] are now expanded :



o
(o]

[c]
or [c]

]
-
oo
% =S
-0
. . §
| WO— |

i
‘o o'

1710
1710
it is evident that no dependent functions are involved.

These technlques may also be applied to c1rcu1ts of the type

shown in Fig .7, see Section 1.5.5.

e . . e . L

1¢3.9 HMatrix Root Extraction.

It is of interest to be able to extract the roots of a given
matrix in order that a particular systen may be synthesised as a
cascade of identical logic modules or 'iterative cascade ', see

references 6 and 7 .

At

2 The R th root of a matrix [C] will be written as [C]

and defined by [[c]ﬂ R _ fc] . L (s

It can be shown that this.equation is , in general , non-
linear and thus cannot be solved by classical methods.

A special case where root extraction is possible is when the
given matrix gencrates a cyclic powver table. In such a table it
is always true that

[c]“*km:[c] .o . (1.33)

where the matrix [C] appears cyclically in the table at intervals
of power T .(k is any positive integer.)

It is then true that 1
| [c]™ET = [c] ... (138

" and [C] ( +kT1) [C] =1 e (1.34b)

which enables certain roots to be evaluated.

Consider the following example :
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MATRIX 77
04%*'7265 -6
0 % 2*L4L 567 -5
025 * % 764 -4
0572463 -3
07 kx5 % 6 2 -2
0 4 % *+ 7265 -1
01234567 0
‘02521764 1
05752461 2
07475162 3
ob147265 4
01214567 | 5
02521764 6

Here M =5 whence from equation(1.33) [C](q+5k)= [C]. For k=1
: 1

and from equation (1.34ka) [c]5 = [C]..Squaring both sides of this

expression gives [0]3 = [C]2 ", that is the cube root of [C]‘
is equal to [C]Z, or ; .
[_c]g')= =fos7s52461] .

Unfortunately the generation df a cyclic table represents
a special casec.

For the general case the following points are noted :

1/ There are cases where no specific roots of a given
matrix can be found , and there are cases vhere more than one root
can be found.

1

, : : R | .

2/ If |C is non-singular then |C is non-singular
[&)

1

and if [C] is singular then [C]R is singular. 1

3/ If [C] has no cigenvectors  then [C]ﬁ has no

eigenvectors.
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4/> In general the logic modules corresponding to the roots
of a system are of comparable complexzity to the logic module which
will synthesise the overall system.

5/ The number of functions synthesisable in terms of cellular
cgscades as a proportion of the total number of possible functions

becomes small as n Dbecomes large. See reference 7 ppe. 105-161 .

1.4 Boolean Matrix Operators.

1.%.1 Post-multiplicative Operators.

Consider the matrix equation

1] 5] - 2]

X
k| n n

Now [¢] post-multiplies [CJ end will be called a post-
multiplicative operator.

From equation (1.14)

d, . =c¢, ~ vhen a, =g (over the
J ' ' T1d  allowed limits)

Clearly the matrix [D} is composed of certain column
vectors of [C] which have been perturbed in n-space according to the
composition of the column vectors of [ﬁ] .

Suppose that [ﬁJ is non-singular and has n rows and 20
columns , then <D>C— {c) where {D) and {C)> represent the sets of
column vectors of [D] and [C] respectively . Because [ﬁ] is non-
singular [D} will be composed of a perrutation of the column vectors
of [C] . That is the functions represented by [D] are those functions
represented by [C] but permuted in n-space ; no information about
the functions of [C] is lost ; they are reconstructable from [D] .

Some special forms of {ﬂ} will now be considercd.

Supvose that {ﬁj is equal to the unit matrix [Az .

-t



men  [c][g] x,] = [¢] x,] .
.2 .2

Consider now the effect of making [ﬁ]identical to [A] except

that the h th row of [g] is equal to the complement of the h th row

of [A] « 'Then apvlying equafion (1.6) to [ﬁJ x1- = F11
L
9 *n P
A i
gives the results :
Fi(x1 ,XZ, o e ,Xn) = ﬁi’j When Xk = ak’j 9 :‘lﬁiﬁﬁ Y
For ifh Fi(x1,x2, . o ,xn) =2y when x, = ak,j ,
. a | ~
and s::nce 3j.5 = X 1€jg2 , then Fi(x,],xz, . . ,xn) = X .

For i=h Fh(x1,x2, . . ,xn) = A when x, = a5 1

np

. . o1 -
and since 3,55 %5 1 j<2" , then ,Fh(x1,x2, . e ,xn) =X .

If , in the equation [C][#] x{- = [n] %, J[#] is or this
o2 22 |
S I

form then the functions represented by the matrix [CJ will be the
function' represented by [D] but re-defined upon +he variables
(x1,x2, . o g o . ,xn) instead of (x1,x2, e e aXpy e e xn).

Consider the effect of making [ﬁ] identical to [A] save that
the h th row of [ﬂ] is made equal to the g th row of [A] and vice-
versa.

Applying similar arguments to those used above it can be shown

that , in the ecuation [C][ﬁ] x1- = [D] x1- the functions representcd
Xa x2
an xnl
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by the natrix [C] will be exactly the functions represented by the

matrix [D] but re-defined upon ths variables (x1,x2, . . ’Xh’xg’ . e xn)

instead of (xq,xa, . . ,xg,xh, o o ,xn) .

In genefal it can be shown that if , in [C][ﬁ] x,| = [D] x; ,
*2 *2
n| . *n

the rows of the post-multiplicative operator [ﬁ] consist of a
permutafion of the rows of the [A] matrix complemented or un-
complemented,then the functions represented by [C] will be those
functions represented by [D] but re~defined in terms of the same
permutations and complementations of the defining variables
corresponding to those rowse.

3 simple example of a post-multiplicative operator matrix

constructed as the [A] natrix but with certain rows complemented is :

[g]=p 1110 '
001160 , where the first and third
0101 ’

[oNeNe)
A D
O = 0O,

-

rows are the complements of the first and third rows of the [A]matrik

and the second row is identical to the second row of the [A] matrix.

Then [#lx] =[11110000] x, %,
X5 tO 0110011 e X5
01010 0
x3 1 1 xB x3
If [ﬁ} post-multiplies a single function matrix [C} s where -

[C] ='[O 1710101 Cﬂ; writing [ﬂ] in decimal notation gives :

[01101070][5,#761032]}{1 =[D]x1
X X2

01234567 2

X

3

[0.1011001]

n

whence [D}
To show that the function represented by [C} is in fact a re-

. - . .
definition of the function represented by [Di’ wvith x, renlaced by

1

x, and x

1 3 replaced by §3 , construct the Karnaugh mao for_[D] :



X40%5

X3\ 00 | 01 | 11 | 10
ofo o010 1
11111110

Now replace X, by §1 ( this constitutes a reflection of the

map about the axes which separate x, from §1) 2

1
3 00101111110
o1 o] o] o]
1{ O 1 1

Finally replace xz by EB :
*9172

3 00 101 |11 } 10
(o] 0] 1 1 1

17 To 17070

If this is re-expressed as a matrix :[O 110101 0] it is

X

secen to be equal to :C] . See also fig.B.

An example of a post-multiplicative operator consisting of a
row permutation of the [ﬁ] matrix (without complementation ) appears
in Fig.9.

of coursé [ﬁ] may be constructed of both permutations ;nd
complementations of the [A] matrix simﬁltaneously . An example of
this type of operator appears in fig.jo.

Not all non-singular post-multiplicative operatér matrices can be
categorised under variable complementation or interchange but these
operators are the most useful, not only in terms of the representation
of circuit synthesis but also Boolean function classification, sce
also Section 2.4 .

1.4.2 IPre-multivlicative ozerators.

Consider the matrix equation

- 5]

[¢}[C] *q X4 y
*2 *2
;cn ;cn

Hlow fﬁ} pre-multiplies iC? and will be called a pre-

nmultinlicative operator.
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F(x],xz,k3)'@———- C

or F(X1,x2,X3)‘a——— D

Implements [ C (2] "1] =[p] ’;12}
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FOgxoxg)=—1 C , ;E“"‘z
— X3

or F(X1,X2.X3)"'—‘ D

Implements [_C][Q)] %

00001111

Where [ 01010101
00110011

Fig.9
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F(x,, xz,x3) —_— C >< )

or Flixpxgrey)

Implements [c][¢]’;1 ’—'[D] :1
-

where

117110000
00110011

[¢]=[o1010101

Fig.10



55

From equation (1.14)

d . = when a. = ¢, . (over the allowed
ryd = Prym ol 3y ) 1im§t§ )owe

Suppose .that [g] = [A] then in the above equation [D] = [CJ.
. . n -
Alternatively if ﬂ@,m = a, y 1{mg2 4, then d_ ., =c¢, . ,

n , that is if the r th row of [ﬂ] is equal to the complement

132
of the 1 th row of [A] then the r th row of [D] will be equal to the
complement of the i th row of [C] .

),

This approach can be extended to include ;dr m = F(ai %k .m
9 L 1

1 énhgzn , where TF is some logical function, then d_ ., = F(c., .,c, .).
TyJ 1,1 %43

Then if the r th row of [ﬁ] is some logical function of the i th and
k th rows of [A] then the r th row of [D]will be the same logical
funct%on of those functions defined by the i th and k.th rows of [C] .

These observations show that the pre-multiplicative overators
allow the manipulation of whole logical functions.

For example consider the equation :

0111 x| = F , and suppose that three other
1 1 ,

0100 x2 Fy

000 1 FS

functions are required , namely I, = F1(\F2 ' . F5 = 3L3F1 and

.

F6 = F, « These functions may be evaluated as follows

1
Using the general equation [¢J[C] X, = [DJ X1 3
X, EN
X
n n
then 000000114101 11 X 0 = F4
170101111101 00 X5 '5
000011110001 F6
from the [A] matrix 00001111 :
0011001 1 .
01010101

This evaluation is derived in the. following way :

The first row of the pre-nultiplying matrix [¢] is equal to



56

the intersection of the first and second rows of [A]. The second
row of [ﬁJ is equal to the union of the complement of the third
row of [AJ with the.first row of [A] « The third row of [ﬂ] is
equal to the first row of [A] .« The implementation of this example
is given in Fig.11 .

The-consideration of pre~ and post-multiplicative operators
together with their associated properties is essential in .the
interpretation of both the advantages and versatility of Boolean
matrix algebra. They will be refered to again when circuit synthesis
is considered in later sections.

1.4.3 Operations of the Parallel Commnosition Tyne.

Another useful class of operators are those of the parallel
composition type. These are written as
[B]$[c] e o o (1.35)
where 5 signifies the logical manipulation of the matrices [B] and

[C}on an element by element basis.

For exanmple (i[B]U[C ]} ’.‘1.- - [D] x17 signifies
. X x

2 2
o [ ]
b'e
n n |
d, . =b., . +c¢. . over the dimensional limits.

i, ie] 1,3
[B}[CJ and [D] have the same dimensions.

This example may be internreted as shown in Fig. 12 .

It is also possible to apply different operators to
different rows of the matrices which are to undergo parallel
composition , giving rise to equétions'such as

[218[c] =] - [2]

x1 where
b 4 X, b -
2
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X1
-u-n-&%‘--..
\ L

po oo o e w w\D e -

n




which results in the circuit of Fig. 13 .
This type of operator is used in the extraction of prime

implicants , see Section 1.5.6.

1.5 Practical Zoplications.

1.5.1 Introduction.

It has already been demonstrated that Boolean matrices
provide an excellent method of evaluating both the logical transfer
functions and topology of multi-output combinational logic circuits.,
It is now possible , by means of worked examples wﬁenever possible ,
to show the special importance of certain of the properties of
Boolean matrix algebra developed above , in the analysis and
synthisis of logic circuits.

1.5.2 HMatrix Multiplication.

Worked example.
Given Two logic modules [B} and [C]have been designed

according to the specifications :

[B]:_‘I*O'I*’IOO
0*110000
111100¢*0

[cJ:"ooo1o111
100%1110
10000 *01

A system specification is given by [D] where

[D] =

* O *
S SO
* O O
* * O
O O -

11
1 =*
11

O

( * signifies don't care)
Is it possible to synthesise this system by cascading

the modules represented by [B} and LC] ?

Solution
Try cascading'[B] and [C] as [B e %, | = [EJ X,
3 31

In decimal notation this is
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-’ x1
F2 { il X9
N )
Y
p— — X
1
D
Py —X)
Fig.13
T | X
; CP 2 1
] %
F3 3
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1
[5?37»24%0][300%‘2%65]?=[755§3(1-)$
0?234567 x§

Comparing [E] with [D] (in decimal notation ) :
o o
[P]=[r3553373¢%]
5 3
[z]=[755 E 392 1] it can be seen that [E]

falls within the specification of [D}.
' It may therefore be concluded that the proposed method of
cascading the>modules wili indeed synthesise'the system,
This example illustrates how Boolean matrices may be used to
advantage in the synthesis of partially specified systems.
1.5.3‘ Inverse llatrices.

Worked example 1 .

A logic system has been designed . It has been decided to
extend the capabilities of the system by producing three extra

outputs specified by [D] , where

[D]x1=10111111 x,
x) *0110001 x
x5 11110%11] x5 .

It has been suggested that these three outputs may be generated from

two outputs alregdy available and specified by the matrix C , where

[c]x1=o1oo1*oo x,{!
x «0111001 %
x2 x2
; :

Is this possible ? - If so find the regquired module.
Solution
Représent the problem as
[e]le] =] = [»] x,
<2 2
3 Xz

Substitute the given information (decimal notation )

I o]
WiV =



[B][g 211330 d x,] = [g 17 74 % 5 7] x,
x5 x5

Check the validity of the equation :
1/ The equation is dimensionally correct.
2/ Criterion 1 shows that the equation is conditionally valid

where

)52 11580 x] = [frrregsa]

X

:" 1
| w2 X2

3 3

The outputs may therefore be generated.
Now the ﬁatrix [B] cén be evaluated by inspection by noting
that in [B] : the value at n—tuplé 0 nmust have the value A
1 must have the value '7!
2 must have the valus '1!

3 must have the value ‘4!

vize /’—7<\
sr1d[fers§oi) Brrrsisdx
0123 ‘ x? | x5

Alternatively the singular inverse may be calculated for [C] .

from [C][C]"1 = [A] s where[C] may take any convenient allowed form.

ie..
[o 211300 1][% % 1 4] = [b 12 3]
01234567 07

o’

.Then-[B may be calculated from [B] = [D][G]~1 for the

corresponding value of [D] .

(B]=[s17724557]

01234567

By either method the required module has been evaluated as :

ie.

1’4] = [5 71 4].

(oA AN @)
=N

1101 x{
0100 x2
1110
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Worked example 2.

o X . . 7
A system specification is given by [DJ where

(]

iy
x2
3
It is proposed to employ an output module [B] to synthesise this

0
0
1

A0
0O O
SO -
a0
O -
O -
O -0
\NXNX_\M
.

system where

i

]

—
oy ]

=S a0
Qo
-~ OO0
e Y
(@ JL QN
O =0
loNoNe]
O O O

X
X
X

n KX

NV =

W=
.

Design a logié module to be placed before [BJ which will
synthesise the system . Can each output function of this module be
synthesised separately ?

Solution.

Lkt the problem be represented as :

[B]{C] = [D} X,
X2 *2
: x3 x3_

Substitution of the given information (in decimal notation )

gives : o
[36156200][_c]§;=[15153662:|§;
XB X3

Check the validity of the equation :
1/ The equation is dimensionally correct.

2/ Criterion 2 is satisfied .

Construct [BJ-1 from [B][B]-1 ='[A] :

jia3taggleoe il freseoed
Compute [C from [C} = LB]-1 [D‘ :
[c]s 2250*3%*:[15153662]
01234567
rrsolis]
012345617
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1t

Now the value of [C] at n-tuples 5 and 6 is L s Or in
vector form : 1} or O « It follows that if the uvper function
o A
has the»value '0' at these n-~tuples then the lower function must
have the value '1' and vice-versa. The functions are therefore

dependent and cannot be synthesised separately.

If [C] is chosen to have the form

[é 323014 5J =[0000001 1
171110000
01010101
then [C] X4 = F1 may be synthesised by constructing the Karnaugh
3 3
maps i %
12%2 . Xq1%5 *q91%5
X3 00]01]11110 X 00]01]11110] x, \ 00]01[11][10
0l0|0[1]0 AENERERE 2 o0olofofojo
110101 1]0 111111010 M ERENERE
F1(x1,x2,x3) Fz(x1,x2?x3} F3(x1,x2,x3)
= X,l . X2 = x,l . = X3

The corresponding circuit implementation is shown in Fig.1%4.

1.5.4 ¥atrices Raised to Exponents.

Worked example.

Tests have been carried out on a cascade of logic modules ,
cach defined by the matrix [CJ. The overall transfer function of
five such cascaded modules gives the result :

[51234067]}:1
X

2
X
2

and the c¢verall transfer ‘

function of three such modules gives the result :

[5 234706 1]x1
X
}:3

Tind the matrix which defines the transfer function of one such

module .
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Solution.
, Now [c]5 and [0]3 are known. Tirst compute [0]2 from
[oF {7 []:
o Find [c]‘3 from [c}5 [c}“3 = (4]
[52347061][57123064]:[01234567]
ie. [c}3=[57123064]
Then[Cf’:[CJB[C]'B =['51231+o67:][57123064]
-fo7123564)
Second _compute [C] from [c] = [0]3 [c]‘a.
Find [c‘]"2 from [c]z [c]'2 = [A]:
;][o 2‘3 L 756 1] = [b 123456 7]
L 756 1]
2

Tigszgelosseroed

:[53471062].
Which is the required result.

The known power table is then

MATRIX ™
57123064 -3
023472561 -2
‘ s -1
01234567 0
53471062 1
0712356%4 2
52347061 3

2 L
51234067 5

15.5 Representation of Iterative Cascadese.

The concept of an itcrative cascade of logic modules of the
type shown in Fig. 6 . has already been introduced together with

the associated matrix represesntation. See p 39.
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The representation of cascadeérof tﬁe type shown in Fig.7. p 4O ,
will now be considered.
A simplified version of this cascade appears in Fig.i5. In order
to distinguish easily the direction of signal flows in this cascade

the horizontal flows, input/output , are labelled Xq 9%, /7 JF ,F
. X

X -
1 2 3
and the vertical flows , input/output , are labelled y,l,ya,y_j /
F ,F_,F_- respectively.
Y 9o YB
Such arrays have been considered by Hennie , see reference 6 ,
and can be shown to be transformable to ideal finite - state machines.

The inputs X 1%, are termed the starting state of the cascade and the

2
corresponding inputs to the second logic module are called the next ,
or second , state and so on. In general the starting staté of the
cascaie is fixed for a particular application and the cascade is
used to compute a function of fhe input variables y1,y2,y3 . It is
not the purpose here however to investigate the general properties

. '
of such cascades , but to show tﬁatAthey may be expressed in matrix
form. Reference 7 should be consulted fér a detailed treatment of
the properties of cascaded iterative arrayse.

Now the type of iterative cascade which has been shown to be
easily represented by Boolean matrices heretofore is that of Fig.6.
Comparison between the cascade of Fig.6 and that of Fig.:? shows
that they differ in that the former case has a single (horizontal)
flow path wheras the latter has two flow paths (horizontai and
vertical ). At first sight it would appear that the cascade of Fig.?
is not amenable to Boolean matrix reéresentation because each module
of the cascade is furnished with a unique input y1,y2,y3 etc.

To show that this problem is surmountable consider the circuit of
Fig.16 which is an alternative representation of the simple cascade

of Fig.15. The inputs/outputs : y1,yp,y3 / F have been

PR U £

re-~orientated so that they are applied in a horizontal direction,
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y3 Yy i
$ i }
,—;( -t . -‘-——X
1
F’ ‘ C | C | C
Xz - 7 - | ""—"Xz
A Y, Y,
Fig.15
| | | |
FX] J <: : ! “'!"—X]
l - ‘ i :
o C 1 C C [
YN N | N
2 X | | %2
FY3 | I | I Y3
B l | |
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and between each module is a simple crossover network which enables
each input to be applied to the correct module and also enables

" the corresponding outvput to appear correctly orientated at the
termination of the cascade ; moreover each crossover network is
identical. Now it has already been shown that avcrossover network
of the type shown in Fig.16 may be represented by a pre-multiplicative
matrix ovnerator.

The cascade of Fig.16 may therefore be represcnted by the

eguation : ] - A
DL EDld]- 5] e

yi an
ga Fy1
3] iyg

" y3 ]

3 %l r ]
2l |
3] Fy

The operator [ﬁ] will have the form :

P15 5,50 P

f1
o
J

1,3 2,3 ;
P35 % B,y 0 Puyy T ey 0 1LICE
#5,3 = %53 ‘

This technique can be applied to any cascade of the type shown
in Fig.7. inclﬁding such cascades having multiple y inputs/outputs
for each module.

The finite-state machine corresponding to the cascade of Fig.15
is shown in Fig.17. The horizontal , or x inputs , to the combinational
logic module being initially applied to give the starting state , and
each Yi oo i=1,i=2,i=3 being applied to the module at times T=1 , T=2

and T=3 resvectively.
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This example illustrates that Boolean matrices may be used to
represent finite-state machines.

It is also possible to show that Boolean matrices may be used
to represent arrays of the tyve shown in Fig.18.

This method of revresenting iterative cascades has the disad-
vantage that it is limited by the -large size of matrices necessary
to represent long.cascades or large arrays.

Because of the difficulties described in extracting the roots
of Boolean matrices thej are not readily applicable to the synthesis

of such systems.

1.5.6 Extraction of the Prime Implicants of  TFunctions,

Consider a Boolean function F(x1,x2, I SRR ,xn) s
let this function be denoted by F(X).

Take the function derived from the function above by
complementing the variable X 3 let this function be denoted by
F-— 3,

-i(x).

Let F, () £ FOONF(X) e o o (1.36)

Now Fi(X) constitutes the true minterms of F(X) which are
independent of the variable x5 3 that is Fi(X) nmay be defined upon
the variables (x1.x2, o g7y o }xn) alone. If F(X) has no true
minterms independent of xs then Fi(x) =@ , where 6 is a null set.

Now for-an&iunction F(X) , each Fi(X) , 1<ign , Fi(x)v# 8, will
contain true minterms which lie in pairs of adjacent states. If these
minterms are piotted on a Karnaugh map they will fall into squares with
~adjacent sides.This must be so since such minterms differ only iﬁ
the complementation of one defining variable,

Each Fi(X) will be called a partition of F(X).

It is -therefore possible to generate n such partitions, ecach

partition containing terms independent of a vartcular varlable.

T ., ) .
With certain restrictions
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Clearly , if the function contains adjacent terms which are

independent of both X, and zj :
Fi(}i)ﬂFj(X) A6 ,i#i, 1€ii€n o +(1.37)
In itself the partition listing outlined above establishes
whether a function is '‘reducible' (it partitions in at least one
wvariable ) and if so in which variables this is possible. If a
function - fails to partition in every one of its defining variables
it is irreducible.

As will be shown shortly , the manipulation of such a set of
partitions enables the function to be reduced to a number of prime
-implicants. -

How the partitions Fi(X) y 1€ig¢n, may be generated using
the post-multiplicative Boolean matrix operators which have previously
been éeveloped. lloreover each partition may be evaluated for several
Afunctions simultancecously. The functions to be partitioned are

defined by [C] where

r - . - )
[C}Lﬂ] X, = [D] X4 , and [ﬁ]xs an operator
X, X,
i i
X ) X
n | n|
matrix identical to the [A] matrix except that the row a; ;0
9

'1<;j42n , 1is complenmented. [D] then defines F{(X) for each of
the functions spécified by [C].

If the parallel composition [C][\ [D] is evaluated then the
result will be equal to Fi(X) = FE(X)[]F(X) for each function

defined by [CJ.

Examnle.
Ag an exauple of the extraction of the partitions Fi(x) .

1<i¢n apnlied to a single function consider the function
N N 2 i 5] 3 X

shown in Fig. 19a.
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F#(X) is computed from [C][ﬁ] x| = [D] X4 » where
x x
2 2
*3 *3
X, XQJ
[C]defines the'given function and [ﬂ] is identical to AJ save

that the first row is complemented.[D]then specifies FE(X).

V1iZe -
@010010000010101] 1111111100000000) x,] = [D] 3
0000111000011 x x)

0011001100110011 . x %

0101010101010101J xi xﬁ
| ]

or in decimal notation

[0010010000010101] [8910M2BUB01234567] . - - [0] %]

X X
0123456 78910112B%15 x; x;

X, X

A xy

wvhence [D] = [0001010100100100 .

“The corresponding function Fz(X) avpears in Fig. 19b. It

3
should be noted that this operation corresponds to a reflection
of the function,as depicted by a.Karnaugh map , about the axes
which separate X, fron §1 .

Computing Fﬁ(x)le(X) from [DJQ[C] sives

EOOOOO1000OOOO100] wvhich is equal to
F1(X) , the result is shown in Fiz. 19c.

If this procedure is repecated for the evaluation of FE(X)
and FB(X the results are as shown in Fig. 12d and Fig. 19e
respectively. FQ(X) can be shown to be a null set.

From these results it is clear that F(X) has a pair of true
‘ and & pair

minterms independent of x, , a pair independent of x

1 2

independent of x3 e In addition , one minterm is irreducible as
it appears in none of the partitions.
F(X) may thus be expressed as :

60 T s 5 - S g
(Y = 52.x3.xa + x1.x3.xq X geXye Ky * x1.x2.x3.z4
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Consider now the effect of re-partitioning Fi(x) in terms of
another variable X3 Then if Fi,j(x) defines this operatian
Fy 5% = R 000 F3{ Fi(}{)} . . (1.38)
If this second partition exists , all terms it contains nmust
lie adjacent in at least two variables. (Blocks of at least four
true minterms adjacent when plotted én a Karnaugh map )
Suppose that all the possible one-variable partitions 691) of a

n
function’ defined upon n variables are taken. Then P, s Ivai(X)
i=1

constitutes all true minterms of a function which ére adjacent in at
least one variable.

Then F(X)[]§1 constitutes all terms having no adjacencies.
(They are irreducible)

kY

Supposcé now that all vossible two-variable partitions (PZ) of

the function are taken. Then P, = [y} L constitutes all terms
. 0¢i<ign T3 '

of the function which are adjacent in at least two variables.

Then P1[l§2 constitutes a;l terms adjacent in one variable
only. (They exist in pairs on a Karnaugh map)

This idea may be extendedto PB’P4’ <« P

It should be noted that the result of each Pirlﬁ(i+1) may
be decoded into svecific paire y duo-pairs etc. by means of the
partition variables leading to the result . Alternatively ,
specific decoding algorithms may be uéed. |

The resuit of these operations is the extraction of the
_redundent and irredundent prime implicants of the function, and
represents an attfactive alternative method to that of Zuine-
¥cCluskey , see references 9,10.

In acdition the function may be selectively analysed for its

dependence upon any particular variable(s).



74

Fig. 20 shows the exhaustive partitioning map of a four-variable
problem. The evaluation of all the partitions shown is sufficient
to enable the evaluation of the redundent and irredundent prime
inplicants of any fourth order function.Note that once a map is
generated in the form shown , removal of branches associated with x of
the variables reduces the map to that of order (n-¥) without
recourse to re-arrangement.

The number of partitions required for the solution of an n-
variable problem is n

n n

Z Cp =2 -1
r=1

The cxhaustive partitioning is normally not required however
since iz Fi(X) =8 then Fi,j(X) =0 , “k. . (1.39)

etc.

F. .. (X) =8

(X) e etC. ° 0(101'}‘0)

Similarly if Fi,j(x) = 6 then F(i,j),k

Also if P, =6 then P =8 , af(atb)g¢n . etc, (1.47)

a+b)

and if Fi(x) Fj(X) = 6 then. Fi j(x) =0 etc. e o (1.42)

?

The number of variables in which partition and re-partition

is possible is therefore limited from the beginning.

An example of the extraction of the prime implicants of a third
-order function is now given.
Considur the function shown in the table below. Let F(X) 2 Py

Now if F1(X),F2(X),F3(X) are derived as described above ,

-

~inspection shows that none yield a null set, ie. they are all

re-partitionnble.(See tableP76)

3 -
P, is ovaluated from P, =}£2F1(X) , and then POI)P1 yields

a null set .This means that all true minterms of the function are

adjacent in at least onc variable , none being irreducible.
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| I | I
[ | ]
X2 X3 X4

I Fy(X) > Fy2() » Fy,2,30%) f—- F12,3,40
. ! [
| ' '
; Fio 4()() |
! 2 |
| | |
I Fy,3,4X) I
T .
Fp 3,404 I
| |
Ny |
| |
| |
R
| |
} }
P3 P4

Exhaustive Partitioning Map

for a Fourth-Order Function

Fig. 20
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Similarly if F1’2(X) , F1'5(X) , FE’B(X) end P, are

derived it can be seen that P1(1§2 yields a true minterm at n-tuple

7 o which must be adjacent in one variable only. Inspection of FZ(X)

slows that the minterm at n-tuple 7 is adjacent to minterm 5 in
variable number 2.

The only remaining partition possible is (X) which

F1,2,3

must be a null set since F, _(X) = & , see equation (1.40).

142

= : b
Thence P3 6 and szll

= 0,1,4,5 . The minterms at these n-tuples

3
are adjacent in variables 1 and 3 from F1 3(X).
: ]
The function may thus be expressed as :

F(X) = (5’7)/(0g1a495)

TLBLE.
0o 12 3 4 5 6 7 n-tuple
P, 1.7 0 0 1 1 0 "1 (X)
11 0 0 1 1 0 O F1(X)
O 0 0 0 0 1 0 1 F2(X)
O 0 001 1 0 O FB(X)
P, 11 0 0 1 1 0 1 PO[)P1 =0
O 0 0O 0 0O 0 0 O F, (X
‘ 1,2
110 0 1 1 0 O r, (X
1,3
O 0 0 0 0 0 0 O F 3(x)
P, 17 1.0 0 1 1 0 © p1[)€2 = 7
P3 0O 0.0 0 0 0 0 O P2[)P3 = 047,4,5
.Note F1,2’3(X) = 0

The Karnaugh map corresponding to this résult is :

.X1’X2
X3 00 01 11 10
O | 0 0

1 o {7

- -
-/

|
|




. - Iogkent ial :
This method has the following,advantages over the method of

©4
_Quine-McCluskey :

1/ The intermediate results comprise vectors of known
diﬁension whereas the Quine-McCluskey method generates tables of
indeterminate size. The storage of intermediate data is thus
simplified which is important when computer implementation is
considered (usfng non—djnam'.c Sl.'oro.gﬂ- Fraarammes).

2/ Because of its simple and recursive nature the Boolean
matrix method of prime-implicant extraction is to be preferred
from a programming viewpoint.

3/ The simultaneous extraction of pfime—implicants of
several functions is possible which>, together with the restrictions
on rezpartitioning given in equations (1.39 - 1.42) , makes the
matrix method more efficient than that of Guine-McCluskey.

L/ The depcndence of a function , or functions , upén
particular variébles may be determined without recourse to the
evaluation of all possible partitions using the matrix method.

See also reference 11.

1¢5.7 Logic Synthesis by Iterative methods.

It has been shown that a logic system specified by [D1 may

be represented as

In addition if [C] igs known in this eguation then
[B] = [D]{C]~1 may be evaluated providing
that the original equation is valid .
How it follows that if [CJ reprecents a logic module of
the type available to synthesise [D},it is rossible to determine

if in fact [C] may be used in the synthesis of fDJ by establishing
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the validity of the above equation. If [C] does satisfy [D]then
[B] may be evaluated and represents the remainder of the system
to be synthesised. [D] may then be copied into [B] and the procedure
repeated until LB] is found to be equal to the unit matrix . The
system is then synthesised.
In many cases [C} will represent particular configurations
of NAND,NOR,EZ-CR gates , but in general there is no restriction
on the type of module that {C] may represent,
In its simplest form this synthesis algorithm gives rise to
an iterative procedure which does not afford ppﬁimisation except on
a comprehensive search basis. In this respect .the method is
similar to that of Roth and Ashenhurst , see references 12 and 13.
It differs from the methods of Roth and Ashenhurst however in that
nmultiple-outvut systems may be synthesised without resort to special
techniques. }
In order that this algorithg méy be executed with maximum
efficiency on the digital computer it is advantagous to employ
an implementation that avoids the.generation of the intermediate
results arising from the application of Criterion 1 and the
evaluation of [01"1.
The method illustrated in the following example is prgposed.
Consider [B][C] X4 = [D] X, where
. X5 X5
[B][1000J x| =[1*01] ]
1111 x; 1110an

Let [B} be filled initially with don't care states :

[* * X *][1 00 0] x1" =1 *0 1} X,"’
v dl 11 1] kg t111 04 x, , or in decimal

J _

worm lr_* * = *][3 11 ’l] x,l“ =-[3 % 1 2] X{

X2 xa

d J
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Now execute the following trial multiplication :
The first column of {CJ has the value '3' , therefore the
value of [BJ at n-tuple 3 must take the value of the first column
of[D] B

T L L = 1 : . :
R ALERS R

the second column of [C] has the value '1' § therefore the value

of [B]at n-tuole 1 nust take the value of the second column of [D] :

I AL PN R
0123 *2 *2

the third column of [C} has the value '1' therefore the value of
[B]at n-tuple 1 must take the value of the third column of [D].
Since the value of [B] has already been established as '%' it is
necesgary to check if the value now proposed is compatible.

'

t
ie. is % compatible with '1' ? - or is ?] compatible
1

with O} ¢
1
Clearly these two values are compatible only if {] in both
1
[8]) ana [p] take the value o] .

_ 1
Then ' A
[frx3]110)x) =[3112]x]
0123 *2 xa_l
Finally the fourth column of [CJ has the value '0O' therfore
the value of [B] at n-tuple O must take the value of the fourth
column of LD] :

[21*5][31’10]:{1 =[3112]x,l
0123 21 *2

The module [CJ can thus be used to synthesise [D] s the
function remaining to be synthesised being

[10*1}xq
e 1 x 1l
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This trial-and-error method of solving [B][C]‘x1 = [D] ¢

.

1

e o M

X
n n

b

thus overcomes the problems associated with applying Criterion 1
and evaluating the inverse matrix . If the equation is not valid

[C] will force [B] to take incompatible values .

eg. . [B][e 21 3] x| =120 3] x,] will force the
*2 *2

value of [B]at n-tupnle 2 to take the simultaneous values '1' and '2°',

or O] and 1] which is imvpossible. The detection of such
1 ol '

incompatible cases will , in general , occur.before the whole trial
multinlication is complete , this résults in a fast procedure.

As an example of a system synthesis cénsider the following

k'
simple e:anmple.

4 system is defined by the matrix [D] vhere

[p]=[33287565] .

Synthesise the system using the lggic module of Iig. 21a
together with the comprechensive sét of interconnection modules
ond associated matrices shown in Fige.21b - g

Solution

Let the system be represented by

»

X5 2
3 3

matrix corresponding to the given logic module post-multiplied

[B][C] x40 = [D] X, s where [C] is composed of the

"
”

by one of the possible interconnection modules of Fige 21 .
For intzrconnsction 21 b, the equation [B][CJ = [D] is
[B][1 1325576][0n 23456‘7]]: 33277565
012

- [} -

Zvaluating [C] and letting {B] have initiglly don't care states:
[#*=»sssxJ11325576]=[33257565]




Matrix.

[11325576]
A[o1234567]
[02134557]
k]
[o1452367]
02461357

[o4152637]

[ou26153?,]

81

Module.

.

x 21a

2 21b

x 21c

X2 | 21d

4

" a

X2 2le

X 21§

CITRIRI




Carrying out the trial multinlication described above :

[362*7**][11325576] [332F7565]
01234 §76 7 J t

the multiplication fails at the point shown. The equation is not

valid.

Try interconnection 21c¢ :

[B][[11325576][02134657]}=[33227565]
01234567
then [352.32;;;][131'25756]=[33?27565]

fails at point shown.

Try interconnection 214

[B][[’l 325576][0145236?]]=[332§7565]
01234567 |
then [f357+256][11553276]=F3207565]

Sives a solutione. Hote that [D] is restricted as shown .

Try intcrconnection 21e

Bllh 1325576 02461357}=37227r65
[ ]ﬂg 1234 g 6 71[ ] [ CeEne ]
then [#35°5:2+2]1s571256]=[35227565]
, , 01234567 | '
fails at point = ¢

shown.

Try-interconnection 217
325 6o & 637 =1[3352572565

#3323k resd - basgroed
then [Sf;;:gé;][15;53726]=["322756'5_|
fails ‘2t point 3 t

shown.
Try interconnection 21g ‘
slfi1325576]los261537]=[332272565
=16 155530 9 J-borgrsed
then Fs+2+3+%][1s371526]=[p3227565]
, , 01234567 |
fails at vnoint ¢

showvm.

411 interconnection possibilities have been tried giving only

one solution , ie. [B] = [* 357 *25 6}, and since[B]'is
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singular it cannot be a pertubation of the [A} matrix. A second

stage of synthesis is therefore

the first stage of synthesis is

necessary. The implementation of

given by Fig. 22 a .

To evaluate the second stage of synthesis the remainder [B]

is copied into [D} and the proc
Then [B’}fc} = [* 357

Try interconnection 21b

Bl

15255

: t012345

then #3572+ 2
012345

gives a solution . Hote that

Since [B] is singular it cannot

Try interconnection 21c¢

b

ess is repeated.

*256]

[*357+25
57@25

1]

g][o1234567:|]

sl[11325576]

It
Ul

D| is restricted as shown.

be a pertuba£ion of [A] .

[B]ﬂ 152557?][021346571: .*357*25
" ‘01234567 -
then * 573 %56 2 B 312575 6] = (535 7(3“2 5
01234567 ' -
gives a solution. lote that LD% is restricted as shown .
Since [B] is singular it cannot be a pertubation of [A..
Try interconnection 214
r 1 1
Bij11 3255761101452 36 7] =|*557*25
[]LLO1)234567][ , )= L2
then seses5-2)[11553276]=[3357"25
01234567
fails at point shown. 4

Try.interconnection 21e

Bl ygsaaggloercrssr Loz
ghen {aiégz*6;/”13571256}:[*357*25

5
gives a solution . ilorcover EB

form of the.[A] matrix . The sy
using this interconnection.
The complete synthesis is
A test programme, written
run successiully for -the above

HOR,ZX<0R type for problems of

is non-singular and can take the

—=o

nthesis is therefore conmpleted

shown incircuit form in Fig. 22b.
in TFortran IV / Machine code,has been
algorithm emnloying sates of Lthe HAND,

up to fifth order.

[oaY (@)
—d 3
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Fig.22a

Fig.22b
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In practice it has been found advantagous to search for
disjunctive decompositions initially and , if none are found ,
proceed with the search for non-disjunctive dzcompositions.

See also reference 14 .

The abovementioned computer programme is able to find all

possible disjunctive and non-disjunctive decompositions for
a fifth-order system , using up to three input AND/NOR gates ,
i

n aprroximately 2 szconds for each stage of synthesis. The

storage required (F.D.P.8E) is 11901 K/words.
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1.6 Conclusions.

It has been demonstrated that Boolean matrices , of the type
defined , enable cascaded , multi-output logic modules to be both
described , in terms of functional capability and topology , and . -
manipulated. It has been shown that the algebra associated with these
matrices is capable of analysing and synthesising such sy$tems even
where'uqspecified conditions ( don't care states) are involved in the
system description. The algebra is also able to define dependent
functions ; the full implications of this are not yet known.

Two novel nmethods of logic circuit synthesis have been described
vhich follow naturally from the consideration of 'Boolean matrix
operators! and 'valid equations' . The first of these enables the
depen&ence of a function upon any chosen set of its defining variables
to be determined. It has been shown that the exhaustive inmplementation
of this technique , using Boolean matrices , enables the prime
implicants of several functions to be extracted simultaneously. This
method is an attractive alternative to that of Quine-icCluskey. The
second synthesis method arises from the consideration of 'valid
equations' and fhe 'inverse singular matrix! . It is an iterative
technigue wvhich , on an exhaustive search basis , enables optimum
syntheses of multi-output systems to be found. Again these systemns
may be partially specified. Both of these synthesis methods ,
partiéularly the latter , are especially easy to implement using
the digital cémputer;

Several iterative synthesis procedures , of various types ,
have been published iﬁ reccnt yearst It is felt that the method
described herein probably reprcsents the most effective simple multi-
outyut synthesis to date.

The main disadvontage of iterative techniques is that they

f See {or a/xa.mPQe Ref.12
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are relatively slow to 'converge' to an optimum solution , especially
when the number of defining variables is large. (In this respect the
method developed in this chapter is no exception.) Moreover the
expertise of the logic designer can play little or no part in their
execution. (In the author;s opinion the rather unsucessful attempts
Mto introduce 'heuristics! into such methods is an attempt to do this.)
At this point in the research therefore, a search was instigated for

possible techniques which would a) generate an acceptable synthesis
4

very quickly ,and b) enable the logic designer to assimilate the
pertinent features of the system to be designed very easily and to
be able to act on this information. At present the best method of
evaluating the properties of a Boolean function quickly is with the
aid of a Karnaugh map. This method however is of limited value when
the number of defining variables is large.

The result of the search for a new method of interpreting

Boolean functions according to the above criteria appear in Chapter 2.
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CHAPTER 2.

The Application of the

Rademacher/Walsh

Transform to Logic Design

and BooleanFun_ction

Classification.
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261 Introduction.

In 1922 Rademacher published a new set of orthogonal functions
taking the value + 1 in the interval (041), see reference 15 « This
sef of functions however was incomplete -~ a finite set of such
functions does not form a sub-group.

Working independently,in 1923 , Walsh published a set of
orthogonal functions taking the value + 1 in the interval (0,1),
see reference 16. The Walsh functions , in addition to forming
a complete set , have the Redemacher functions as a generating set.
That is to say , any set of Walsh functions may be generated from
a suitable set of Rademacher functions. See also references 17 ,18.

Because the VWalsh functions héve properties analogous to
trigoeometric functions , considerable research has gone into
employing 'Walsh waves' for the transmission of sasmpled-data
digital information. Other areas of application have been iﬁ the
fields of signal filtering and péttarn recognition.

In the field of logic design the Walsh functions appear to
have been employed relatively ligtle.Chow-, reference 19, showed
that certain parameters were sufficient to characterise threshold
functions. and Dertouzos, reference 20 , showed that these parameters
were in fact Walsh transform coefficients. Dertouzos also developed
operators.for the manipulation of these coefficients to facilitgte
threshold logic synthesis. (It is largely an extention of the work
of Dertouzos that will be considersd here) In addition Ito,
reference 21 , has considered the-application of Yalsh functions
" to the recognition of binary-valued functions on a statistical
basis. Hurst, reference 22 , has considered the general possibilities
of the apvnlication of ialsh functions to the synthesis of binary
fuﬁctions béth in terms of threshold and conventional log}c

circuitry.
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The justification for the analysis of Boolean functions
under the Rademacher/Walsh transform lies in the fact that
certain Boolean operations may be executed more easily in the
transform domain and that many of the properties of Boolean functions
which are normally difficult to determine , eg. linear separability ,
are best characterised in this domain., In this respect an
analogy can be drawn between this transform and the Fourier
transforﬁ.

It is the purpose of this chapter to show that particular
operations in the transform domain have certain properties which
lend themselvés naturally to the synthesis of logic functions ,
and to illustrate how these operations may be extended to
facilitate the solution of more complex problems.

The synthesis of logic functions both in terms of threshold
gates and vertex (NAKD,NOR,AND,OR) gates is considered.

In addition it is shown that these operations lead tq a

very efficient method of classifying Boolean functions.

2.2 The Rademacher/%alsh Transform.

2e2e¢1 Introduction.

In this section a particular form of the above
transforh will be defined which has properties which are
especially relevant to the field of logic synthesis. Tor an
alternative definition of this form of the above bransform sece
reference 23.'

The more zeneral yroverties of the Walsh transform

may be found in references 16 and 18.

2e2e2 Definitions end FProverties.

Consider the square Boolean matrix [T] of Fig. 23.
- n .n o
For reasons that will become apporent later a 222 natrix 1is

said to have an order n . For example in Fig.23 , n=hk .
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The matrix [T] has , by definition , the following proverties
for any n :

1/ The members of the first row of [T] are equal to zero.

up

t o , 1<jg2 . oo (2.7)

143

2/ - The second to (n+1) th rows have the property

a . n-i+2 n-i+1
£ 8 1 uhe: {-—1.(11 }):z
i3 1 whea {{j-1) modulo (2 )2 . o (2.2)
i E.j 2 0 otherwise. 2&ig (n+1) 1\<j\<2n .
]

These are the Rademacher functions , reference 15 ,
with range 0,1 .
%/ The remaining (n+2) to 2™ rous arevequal to all possible
combinations of the exclisive-~OR 's of rows 2 to (n+1) of [T}
faken one-at-a-time two-at-a-time. . o . n at-a-time.
These combinations are taken in ascending order , ie. in

Fige 23, where n=&. ! tg i =(t 0 t.
. 9

. Dy bt =k, L0t L)
243 993)’ 73 24 Lyj

o=t L Bt )y e e e gt . o=(t, . @ t. .
tS’J (2,:1 5,:1)’ *11,3 (4,3 5,3)’

t =(t ] tB". 0] t[}. ) e o o etc.

12,3 24 J 2 J
The complete set of functions defined above are the VWalsh

*
functions in the range 0,1 .

* Originally Valsh defined these functions in the raenge
1,-1 . It is convenient for the anplications to be considered to
replace the value 1 in the range 1,~1 by O and to renlace the value
-1 in the range 1,-1 by 1 . This gives the Walsh functions in
the range 0,1 defined above. Although it is convenient to
develop logic synthesic thecry using the Valsh functions in the range
0,71 in practice the transformation operqtion dscribed on pege 94 is
carried out in the ronge 1,-1 for reasons of comnutaticnal speed. See

also reference 24.
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It is a property of the Rademacher functions in the range
0,1 that any Boolean function may be defined upon them . For
example in Fig. 23 , vhere n=4 , the set of column vectors of
the Rademacher functions constitute the set of n-tuples of a
fourth order function.

In general the j th n-tuple of an n th order function may be
n+1

4 M . A - 2"" -
deflned'as Vﬁ’ j = j{:a(n+ 1& ti,j e . . (2.3)

It is therefore possible to label each of the Rademacher
functions as defining variables in the same way as in a truth:
table ; namely

" the rows of [f] ) ti y 2€1i € (n+1)}are labelled X

1 i-1
1¢3ig 2"
* the rows ti,j s (n+2)$i$2n} are labelled as
1€¢5¢2"
x1,2 ,x1’3 s o o X(n—1),n , x1;2’3 ,“. .« ’x(n~2),(n—1),n . - etc,
Where x1’2 denotes x1®x2 etc. This labelling follows from the

definitions given in 3/ above. in example of this labelling for a
fourth order function is given in Fig. 23.

"The row of [T], trg 1¢5<2®  is labeTed,by
]

convention , as Xq .

The matrix [T] has thus been partitioned row-wise intb
several areas.

Now ¢t

1/ The first row , having the subscript of x as a 0 ,
will be called the .zero-ordered partition.

2/ The second to (n+1) rows , having a single subscript,
wiil be called the -tirst —order partition.

3/ The remaining rows , having in ascending order , q
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subscripts, will be called the q th order partitions.
This particular method of row ordering has been chosen to
best illustrate the use of the transform matrix [T] in the field
of logic design.

The definition of the transform operation is as follows

=1

n . :
" 2
4 .n
r., = 2 -2 ?;% ti,j ®F (xq,xz, o e ’Xn{} ’
J 0 e 2o (2.0)
2

1€i< .
vhere E: denotes arithmetic summation , and ® denotes the exclusive-
OR operator.
It can Be shown that r, under this definition can be sinply
stated as :
{?he number of agreements between row i of [T] and the
funct;on F(x1,x2, . e ,xn)}l - {the nunber of disagreements

between row i of [T] and the function F(x1,x2, .. ,xn)} .

In order that the value r, ﬁay be related to the corresponding
row labelled Xg o where s represents the subscript given to the

i th row of [TJ y Ty will be labelled Rs. For example in Fig. 23

Te = R12 v Tag Z R1234 etce.
Under this transformation the sample Boolean function shown
in Fig. 23 transforms to the wvector :

O 0 4 o o -4 0 O

| 0
Ry R By Ry Ry Ryp Ryz Ry

b 4 0 b -4 0 4 12
o3 Ray Ray R348 30 050 03
It can be shown that the Rademacher/'alsh transform may be
executed in the raﬁge -1,+1 instead of the range 0,1 as above.
Swecifically if the Boolean value 1 1is replaced in T above

by -1 and the Boolean value O is replaced by +1 , the transiorm
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operation may be accomplished by simple matrix multiplication.,

Equation (2.4) then becomes :

n
4 .
I':’{ = jz:,'{t;,jx F{;}. (X1 ,Xa’ e o ,Xn)}, 1 \<1S2 . . . . (205)

J=1

vhere t; j refers to a member of [T] ,ET] being defined in the

]
range -1,f1 o Fig. 25 shows the sample fgnction of Fig.2% and Fig.
2k transformed in this way.

It has been pointed out that this transform is in some ways
analogous to the Fourier transform , see reference 20. In
particular it is noted that the zero-ordered coefficient RO
is in a sense a 'd.c' term in that it is a measure of the number

of false minterms of the function F(x1,x y o . ,xn) . The first

2
‘ . .
~ordered transform coefficients R1’R2’ . o ,Rn are a measure of

2, e o ,Xn,

the devendence of the function on the definihg variables X 9%
The second~o£der transform coefficients R,_,R.,., « « SR/

_ 129713 (na=1),n
arc a measure of the dependence of the function upon x1@x2 ’ x1®x3 ’
o o ,x(an)@xn etc. |

For these reasons the transform coefficients will be called
'spectral coefficients' of relevant order. For example R1Eis a
second order spectral coefficient , 3234 is a third order spectral
coefficient , and so on.

‘To gain some insight into the composition of a Boolean
function which is characterised by a particular spectral coefiicient,
refercnce should be made to Appendiz 1, where the Boolean functions
corresponding to the 2" rows of [TJ (in the range 0,1 ) are
plotted on Karnaugh maps for n=h,

It 18 important to note that the distribution of true minterms

of any function in any variable , say x, , (that is the number

4]
of true minterms lying in X4 and the number lying in §1) can be
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determined exactly given the value of the corresponding spectral
coefficient together with the value of the zero-ordered coefficient

R See also Section 2.7.2e

o.
The Rademacher/talsh transform matrix defined in the range ~141

has the very inportant proverty that it is orthogonal , ie

[z] -—--;—n['l‘]t . SRS (2.6)

That is the inverse of the transform natrix [T] is equal to the
transpose of [T] multiplied by a constant.

Because of this property algorithms can be generated which
allow the transform to be executed at-amnuch nigher sveced than is
possible using conventional matrix multiplication. This means that
it is possible to employ the techniques to be described for

k) . . . 5
systems defined upon a large number of variables without undue

sacrifice of computer execution time. Scc also reference 2k.

2e¢3 Observations on the Significance 'of the Snecctral Coefficients.

It was noted above that the correlation between a given
Boolean function and a particular row of the transform natrix [T]
is given by the‘value of the corresponding speciral coefficient in
the transform domain.

It follows therefore that a function having a relatively

large vositive spectral coefficient say R s has a high
< - - ]

12-

correlation with x1®x2 « On the other hand if the <coefficient R,..D

is large and negative , the function has a high correlation with

x,6x
17772 °
In general this interpretation may be extended to the overall
distribution of the spectral coefficients in the transform domain.
If, for exanple the function has its largest spectral coefficients

in second-order positions it will be termed a ‘'predominantly

second-ordered function ', whilst a function whose predominant
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spectral coefficients are high-ordered will be termed a'high-ordered!

function.etc. Zxamples of high- and low-ordered functions anpear

in Fig.26a and Fig.26b. respectively. Comparisons between these

c3

functions and the Karnaugh neps of Appendix 1 is instructive.
Hote that the spectral coefficient RO does nof enter into this
classification as it does not contribute any information about the
ordering of the function ; it is zero-ordered.

Sihce any Boolecan function is uniquely reconstructable from
its spectfum s See reference 20 , it follows that cach of the
spectral coefficients contéin some information about the function.
It has been shown that this information is not, iﬁ general , evenly
distributed among the coefficients, see elso reference 25. A special
case is that bf the linearly-separable or threshold functions, in
wvhich all the information is containzd in the first (n+1)
coefficien?s..These are the Chow paraneters as shown by Dertouzos,sece
references 19 and20, It follows %hat threshold functions are
pradoninantly first-ordered.

Inspection of the high—orderéd function of Fig. 26a shows it
to be'clgssically' cumbersomto synthesise from a circuit designers

weint of view since the true minterms of the function are scattered

on the Karnaugh map and do not fall predoninantly into areas

(4

corresnonding to the intersection or union of any narticular

defining variable

9}

. The owposite is true of the low-ordered fuanction

)

These obszrvations lead to the intuitive supposition that

U

high-ordered functions are most easily synthesised with the aid of
exclusive-OR gates . This supposition will be verified later.
In the lizht of the above discussion it would also appear that

it is advantagecous to be able to convert high-ordered functions
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into lower-ordered functions by cone nethod. Such methods will be

described later.

2.4 Some owerations in the Transform Domain,.

It is of imnortancz to investigote the relationshins between
overations in the transform domain and those inthe Boolean function
domain 4 or 'Zeolean dormnin ', Iy doing so it is oossible to show
that certain Boolenn ownerctions nay be executed nore easily in the
transform domnain and also that certain operations in the transform
domain may be immediately interpreted in terms of logic circuit
synthesis.

Consider the following operction :

Overation 1 .

k]

The interchanze of voriables x, with X1 s ¥#1 , k#O.

k

From equation (2,4)

of
4 .n < N
I‘i - 2 - 2 { ‘.—1 ti,j @ L‘(/.—'](.(,],a.a, ) ® ’Xn)} [}
J= J _ equn.(2.4)
'I{iSZn . ‘repeated.
Substituting xk,j for ti,j and Rk for ry.
in the above gives
o
n
R, =2 -213335 x_ .0F (X, 9%59 o o 9% )¢
k 521 b 1 1
L] [ ] L[] (2.7)
o<kgn .
Define a new function

™
o

where 2! =

A
_ kAL #C.
= =1 = =z
and = 1

Y(x, % xt, =t x ) = ¥(x, ,x. o 33 4 e 42 ) e e (
-+ ( 1’ 2, e "k."""l’ e o 9 n 1, (29 . ""’1:9 ].’ L4 * n

S

o

N
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Then equation (2.7) can be written as

n
2
N = n - - Enl ~ - - -
S F 2 2 Z-'I -\.I'C’j & .'-',‘ (4-1’4{2, * . gzcl'{,o . ’“n)} . (2.9)
i= 3-1
1<k<€n
n
or 2
Rl = 2n -2 Xl . @ Fw (x1’x2’ e o ’xl’ o o ¢X ) . (2.10)
=1 3-1 i
1€1<&n

The equations (2.9) and (2.10) are therefore equivalent , and

K

=Rla

It can also be shown that , under this operation ,

Bl =Ry
t =
“km le ' le ka and
RY. = R ' = R R = R tc.
N Rkl LJ:l ’ Rm “m * 70 o ¢v¢

That is the resulting set of spectral coefficients <R'> arc
generated from (R )by replacing k by 1 in the subscrints of <R>,

and vice-versa.

For example if x, is interchanged with %, , the resulting

1 2
spectrun <§‘> is generated as ;
R = R'_ = R, and R'., = R,. ' =R, .

It is now possible to interprzt the above operation in terns
of general logic circuitry.
fig. 27a chows the implementation of the Loolean function

o

F(x1,x

{RrR>.

51 e o 3Xpa¥yy e e ,xn) which has the corresponding spectrum

According to the above , varicbles %, and X, are now inter-
chonged and a new module corresvonding to F'(xq,xa, SRS SRR ,xn)

is defined , as shown in Fig. 27b.

This new :module has the sgectrum'<:; . llote that , from
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X4
*2
P - F(x,]’xa, o o XXy .,xn)
. x
2
*n
| J

B

Gt F'(x,‘,xa, . . ,r{{.xk, . .,xn)

. <
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equation (2.8) , the overall transfer function of the system has not
changed.
The‘above is an illustration of an operation in the transform
domain which may be directly intsrpreted in terms of logic circuitry.
Dertouzos 4 reference 20 , ﬂas considered several of thazse operations

and the most important of these are given , without derivation ,

belov.

Operation 1 (repeated)

Interchange of variables X, with X1 k1 #O0.

The new spectrun <?'> may be generated from the original
spectrumn (R under the interchange of x, and x; if in {RD the
subscript k is replaced by the subscript 1 and vice-versa.

Cperation 2.

k] .
Conplementation of the variable o ot xi becomes X, .

The new spectrum <ﬂ{> may be generated from the original
spectrun <R>under the complemeni‘:ation of variable e if in R>
the spectral coefficients having subscripts containing k are
choanged in sign.

Fig. 282 shows the implementation of this oneration.

Overation 3.

The generation of the Dual of a function.

"hat is , given a function F(x1, R I ,xn) having a
39

spectrum <R>generéte a function 2«"(;:1, . . ,;_ck, . . ,in) having a
spectrun EN) .

The new spectrun R'> may be generated from the original
4spectrum <“> under the above oneration if in <?> the even-~ordered
spectral coefficients are changed in sign. ilote: RO is evenfordered.

Fig. 20b shows the implenmeatation of this operation.
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Operation L.

The generation of the com»vlement of a function.

That is , given the function F(x1, RIRE A ,xn) having

-

a spectrum { R ) generate a function Flxgy o 04Xy o . yx ) having
a spectrun <R'> .

The new sw»ectrum R'> nmay be penerated from the original
spectrum <R>under the complementation of the function if in <R> |
all spectral coefficients are chonzed in sign.

Fig. 28c¢ shows the inplementation of this operation.

e 000 e

S50 far certain operafions in the transférm domain have been
have been considered which certainlj facilitate operations in the
Boolean domain , but which apvear to contribute little to the actusal

k}
synthesis of logic functions. liowever Golomb , reference 26 , has
shown that the ordering and complementing of the defining vériables'
of functions énables certain functions to be classified into
equivalent classes. That is , certain fﬁnctions of the same order n ,
and which differ only in the permﬁta%ion and/or comylementction of
their defining variables are termed cecauivalent. Suchla classification
can clearly be established by using Operations 1 and 2 .

In logic synthesis the concept of equivalent classes is
important since if the synthesis of one member of such a class is
known then the synthesis of any other member of the class follovs
by simply pernmutating and/or comslementing the defining variables
of the known system.

The number of equivalent classes is of course much smaller than
the total number of functions possible , Ior an§ siven n .

In order that the idea of equivalent functions may be extended

logic synthesis on an equivalence basis but also finds apnlication
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in the synthesis of logic functions by means of threshold gates as
will be described later. This operation will be called the
'translational operation':

Operation 5.

The replacement of the defining variable %, by X, o Xy
k #1 # 0.

Recalling equation (2.%) :

15>

an
n z in) -
I‘i 2 -2 2 ti,j @ l(l/- (A»lixa, o o 'Xn)} ]

=1 31 .. (2.0)

1<€ign . repeated.
Let the given function be F(x1,x2, e 02Xy e e 4X )

Define a new function F'(x1,xq, o o ¢%!
[

k’ L] .”Xn)

npy

, e o (2.11)
o D L .
l(x‘, T R ,xn) where X=X o] %

The fact that this definition gives rise to
a unique new function under a bagis transformation is shown in
Appendix 2.
Substituting for the defining variables in equation (2.4)

in the usual way gives,for the new function :

n

2
¢ = ot _ 1 ! ; '
Ry = 2 2 { j;; x5 ® Fy“-q(xq, SR ST ,xn)}
J= J e o o (2.12)

1<k <n

or , from eguation (2.11) :

n
r 2
n .
2 - 2 X .8 x .0 F (X e o X e o X)
k %;1k” T4d 1° S ’

—
R 1 k n
J | . o (2.13)
1kgn
Now equation (2.13) is,by definition, egual to R, - That
3 | -
is Rk = Rkl .
It can also be shown that Rﬁl =R,

“k
R!. =R, R =R
klm - “ka * “km %

klm



and RY = R, ,

1 1
3 =
m R 0
Pé = RO etCo

If this operation is extended to the replacement of Xy by X1 1

the following results are obtained:

| - P mt -
Rklm S T Rklm !
! hlnn Rkn ' J‘ = Rklmn !
1 -~
and le - le ’
R(') = QO etC¢

It is important to note that this operation constitutes a
re-ordering of the minterms of F(x1, . o ,xn) and that no information
‘ 3 -
about the function is loste.

2e5 Sveetral Tronslation.

Consideration of Cperation 5 , above , gives rise to the
following theoren :

2e5.1 The Theorem of QOOptral Translation.

If in a Boolean function F(x1, R ,kn) having a
spectrum(R), Xy is replaced by {Xa ® Ly ooe e 2] xh} G X where
the set of subscripts {a,b, « . . ,h> is denoted by S, then the

sctrun <Q'>o1’ the new function is generated from the spectrum <R >

f:

e

in ‘every subscript of the spectral coefiicients of<¢R>
containing k , the members of <S>are deleted if they Iexist,and
appended if they do not.
— 000 —
Hotes on the theoren
/ When a first-order svectral coefficient is replaced by

a higher-~ordered coe sfficient under the above theorem s no other
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first~ordered spectral coeffiéient is replaced. This follows from

the fact that no other first-order coefficient has the same subscript.
2/ If the operation of spectral translation is executed twice

for the .same variable replacement , the original spectrum results.

2¢5.2 Internretation and Imvnlementation of Snectral Translation

Fig. 29a shows the implementation of the Boolean function

41 .. ;x}, . o ,xn) in terms of logic circuitry. Suppose that

it is reﬁuired to revlace ) by x' = X, ® Xq . This is accomplished
by means of an exclusive-OR gate andf&vdwes a new logic module
Ft Xqe o e ,xﬁ, o . ,xn) as shown in Fig. 29b. The overall transier
function of the system remains unchanged ,from equation (2.71).

Fig. 29c shows thé implementation of this operation for the

variakle x,_ replaced by x {x 9 X, @ x }@ X, .

k

2e¢5e3 Sisgnificance of Spectral Translation.

2.5.3a In Logic Synthesis.-

Because the theorem of spéctral translation haé the
fundamental »roperty of translatihg high-ordered spectral coefficients
to low-ordered positions , it is clear that , in general , given
a high-ordered function then a fuanction of lower order may be
generated from it. Fow it has already been established that low-
ordered functions have the proverty that they may be more easily

-t
synthesised in terms of threshold gsates and vertex (i1 211D, 02, AND,0R)
gates., than may high-ordered functions. .
The fact that spectral translation itself is easily”
imnlemented by exclusive-OR gates neans that a novel , and sonetines
comvlete , synthesis procedure is possible, as will later be

demonstrated..

It is assumed that the exclusive-OR gate is an integral

gate having a propagation delay comparable to that of a vertex gate.
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2.5.3b In Boolean unciion Classification.

As has been mentioned above , Golomb, reference 26 , has
shown that certain Boolean functions of given order n may be classified
as 'enuivalené' under the complementation and/or permutation of
their defining variables.

| In the light of the theorem of spectral translation

a new , and nmore embracing , classification may be proposed.:

A Boolean function F1 Kgr o o ,xn) of order n is

tal

classified as translationally-equivalent to another

=

Boolean funétion Fz(x1, . . ,xn) of the same order,if
Fq(x1, . . ,xn) can be mapped onto Fa(xq, . . ,xn) by
the pernutation end/or complementation of its defining
variables and/or the , perhoos repeated , application

of the theorem of spectral translation.

Clearly all Boolean functions which are equivalent fall
into the sametraﬁslationally-equivalent class. It follows that the
nunber of translationally-equivalent functions which exist for a
given n is smaller than the number of equivalent functions,

The practical inmportance of this new classification lies
in the fact that translationally-eauvivelent functions can be
synthesised from a representative , or canonic , function whose
synthesis is known,by the complementation and/or permutation of
the defining variables and/or the appending of suitable exclusive-OR
logic.

If tables of representative canonic functions are
cenerated , therefore , together with optinunm syntheses , it is

nossible to synthesise any given function by
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1/ esfablishing the translationally-ecuivalent class to which
belongs,

2/ finding the operations necessary to convert the
given function to canonical fornm,

3/ to implement these opcrations in terms of logic circuitry,
‘énd then

L/ to append the optimum synthesis.

Thé choice of form of canonie' function is arbitrary,but in
order that an optimum synthesis bes achieved it is clearly an
advantage that the canonic. . function for each class should be
predoninently first-ordered for reasons previously described.

With this in mind the following method of generating the
canonic function in each class is proposed :

1/ Generate the lowest-ordered fﬁnction possible in a given
class by the operation of spectral translation.

2/ Render all first-order spectral coecfficients positive
(Operation 2 ).

3/ Permutate the defining variasbles so that the first-order

it

spectral coefficients are arranged in descending order of magnitude,

followed , where possible,by the second-order coefficients etc.
(Operation 1 ).

This method has been used to generate a table of canonic
functions for n<4 . This table appears in Appendix 3. The power
of this form of Boolean function classification now becomes"
apparcnt. The total number of Booleanifunctions for ngk is
65,536 and under this classification the number of canonic
functions is 186 . in practical terms this/means that 18 unique
logic nodules are required to synthesise all possible Doclean

functions,n ¢ %, under the application of the operations 1,2 and 5.

Because this table does not specifically enunerate all possible
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complements of functions it is also necessary to invoke Operation 4.

Of these 18 functions one Is trivial (function No.1) since it
specifies a function with all falsé minterms. It is warth noting at
this stage that all but three of these canonic functions are
threshold functions ,(the threshold functions are marked 'T!). The
importance of this will becoﬁe clear latere.

The 'optimum syntheses' of these functions have not been
shown since the definition of optimum will depend upon the criterion
of optimality used. This may be minimum number of gates or inter-
connections , cost etc.

It will be shown later that a more powerful cloccsification
method is wossible but before embarking on the details of this it

is neasssary to investigate the application of spectral translation.

Y

2.5.k4 Lpnlication of Spectral Translation.

2.5.ba.Apnlication to Synthesis by Threshold logic.

Dertoucos, reference 20 , has showan that a threshold function
is uniquely characterised by the values of the first.(n+1) spectral
coefTicients. These in fact are the Chou paraneters , see reference
19. Moreower these coeificients may avpear in any order and with
any signe. All threshold functions are linearly sevarable and
because tﬁe evaluation of linearly senarable functions is a
conplex procedure,fables of such functions have becen prepared, ses

eferznces 20 and 27. In thzge tables the first (n+1) spectral

2]

conrfficients of each threshold function anvear in ascending order
of magnitude and are nositive, These vectors are sufficient to
tive

characterise all n th order threshold functions and are called posi

charactzristic canonic vectors. In order tc estzblish if a given

.

o
by

t suffices to arronge the first

e

G

function is a threchold function

* If operation 4 is involzed then this function characterises a function

with all true minterms.
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(n+1) spectral coefficients of the function in ascending order of

nagnitude, change all negative cozfficients to positive and
determine if this characteristic vector appears in the tables
of of positive characteristic canonic vectors

In order that the threshold gate corresponding to a particular
éanonic vector may be designed it is necessary to evaluate the
weights associated with that vector. Again these threshold weights
noxnully appecr in the canonic vector tables.i representative set of
such tables appears in ippendix 4.

The use- of such tables is best illustrated by means of an

examnple,

0.

(93

Consider the fourth-order function of Fig.
n The first (n+1) spectral coefficionts 6f this function are
b 12 b <4 o0
RO R1 R2 R3 34
"re-artanging these coefficients into ascending order of
magnitude and changing all negative signs to vositive the vector
12 4 4 4 0 is obtained.
inspection of the tebles of Appendix & , for n=h , shows
that this characteristic vector indeed defines a threshold function
for which :
Characteristic vector C : 12 4 4L L 0
Weichts Voo 2 1 1 1 0
'Now because there is a one-to-one correspondence. vetween
cach weight and associzted meamber of the characteristic vector ,
_both in mgunitu end sipgn , it is possible to re-express the

original function in terms of the weights by re-arrangement and

change of sign as appronriate.
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In this example

L 12 4 -4 0 are the original coefficients
RO R1 R2 LB R4

and 1 1 -1 0 are the corresponding weights.
t BAd 5A a B3
wh o Wi vl wioowj

From these weights the parameters of the threshold gate
may be calculated. For a more detailed itreatment see references
4
20 and 28,
The input weightings for each gate input are given by :

Veighting at input x, is equal to wi o, 1<i<n ... (2.18)

The output weighting of the gate is given by :
+ n
*  Vleighting at output =>%{k§:|w£|)+ wé + 1} e o o (2.15)
i=1

As th?eshold gates with a negative weight capability will
not be considered it is importané toAno?e that if any wi are.
negative the respective input mus# be complemented and the
corresponding weight changed in sign. In this oparticular exzample
therefore, wé is changed in sign and an inverter is placed before
input x3.

"From equation (2.15), the weighting at the output of this
gate is 2( & + 1 + 1 ) = 3. The gate is shown in Fig. 30.

Hote that the input weighting of O is eguivalent to a no-
connectioan. That is , thé original function is indewnendent of
variable x .. (The function is in fact third-ordered).

The description of the operation of this gate is now

straightforward. Clearly if x, and x5 have the value 1 then theout»ut

1

t lote that some authors define this weighting with -wé , this is

because Chow parameters wvere not originally defined using. the

Rademacher/i/alsh transform . This results in a difference of sign for RO.
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threshold of 3 will be equalled since > is weighted 2 and x, is
veighted 1 « The gate will thus give an output of one. Similarly
the gate will also give an outvut of one if x, = 1 and %, = O since

L 3

xB is comnlemented. Also if x, = T & X, = 1 and x3 = O the sum of
the weights at the input is 4 which exceeds the output threshold 3 ,
the gate output will then again be 1 . In all other cases the output
threshold is nbt reached so that the gate ouﬁput is 0 .

The gate function may therefore be concluded to be

}:,].(x2 + EB) s Wwhere '.' signifies logical AND ,
'+' gignifies.logical OR.

This result can be checked from the Karnaugh man of the
function shown in Fig. 30 .

nThe role of the &pectral translation operation in the synthesis
of Boolean functions by means of threshold functions is now
considered by means of a sinmple gxamplc.

Given : the function shown on the Harnaugh map of Fig. 31.

The spectrum of this function is as follows

0 0 L 0 0 =k 0 0

Ro Bq By Ry Ry Ry Ryg Ry

b4 L 0 -4 -k 0 L 12

Rz Bou Rsi Rqpz Rqoy Ryzy Rozy Ry

If the first (n+1) spectral coefficients of this function are
ordered by magnitude and rendered positive the result is :

L 0O O o) 0 vhich does not appear in the tables
of positive .characteristic vectors (Apvendix 4 ) , that is , it is
not a threshold function.

Now apply the operation of spectral translation to generate

a new spectrunm <§'> from the abvove spectruﬁ1<T2>, vhere RL = R,4 :
[
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0 0
R

L
6 % R R! R}

! ] 1
2 ® RL Ry N
4 0] L -4 0 12 0 0

1 1 nt ' 1
R23 R 2k P34 T{'123 oL ¢ 134 234 R1234
Applying the operation again for the generation of a new

.

spectrum <R"> from <§!>, vhere Rg = % 3l

0 L 12 L <4 -
Ro R Ry Ry R Ry Ry Ry,
o° o o o0 0o 0 -k 4
R3z Ry BBy Ripz Rliay Rizy Bigy Riszy

Finally s applying the operation for the generation of a

n

Ry :

nev spectrum <R“'> from <P">, vhere qu 4

0] -l L 12 L 0 0 0
j)

" " " i N " M "
RO R1 2 33 RL R12 R13 R 4

0 0 0 L -4 Tt 0
RIH 71"! ll' Iﬂ" R"l PH! ntre ?H'

23 P24 B3l W43z Ry Riiy Ry 34

Now if the first (n+1) spectraT coefficients of this function -
are ordered by nmagnitude and rendered positive the result is

12 L 4L L O which appears in the tables of
positive characteristic vectors (Appendix 4) , that is , it is a
threshold function.

The threshold gate parameters may now be calculated using the

nethod described above

The coefficients O -4 L 12 L give the
. RHl RH' :,ZH‘ P"! R 't
(0] 2 3
corresponding weights 0 -1 1 2 1 , See hApvendix 4 .
w(') w% wé wl "11

From equation (2.15) , the output weight is
(5 + 0+ 1) =

The resulting gate appears in Fig. 51a together with the

]

xclusive~0R circuitry necesscary to carry out the spectral translationse.
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vt is', initially %y, is replaced by X, @ Xy, and so on .

3
=2
r

Because w% is negative an inverter is placed on the input

line X, before the gate.

This example illustrates a property comimon to many non-threshold
Boolean functions , that is that such functions may be rendered
iinerarly~separable (threshold functions) , by the apnlication
of the operction of spectral translation. Such functions will
be szid ;o have threshold functions 'embedded' within them.

The importence of this result of course lies in the fact that
the versatility of threshold logic is increased many-{old by the
straightforwvard avpending of equivalence (exclusive-OR) -type logice

In fact the tables of Appendix 3 show that there are only three

clessces of functions out of eighteen which do not have embedded

[}

threshold functions , ngh .

It has been argued*that the continuing non-appsarance of any
satisfactory technology for making threshold gates comnercially
available limits the practical usefulness of these methods, In
facf the difficulties in the fabrication of these gates have been
overcome by a novel design method devised by Dr.5.L. Hurst ,
Universit& of Bath. Ths implicatioﬁs of the use of this gate are
discussed in Chapter 3 .

In practice éhe application of snectral translation to
convert a high-ordered function into & low-ordered function,so
that embedded threshold functions nay be employed in the synthesis

of ziven Tuanctions, may be carried out in several different ways.
Bach of the alternative methods for carrying out the translations

results in o differing number of gates enmnloyed in the final

* Neferees comment on paper on this subjoct submitted to

I.35.2.%., Transactions on Computers by thz auvthor.



synthesis. The criteria governing the optimum choice of spectral
translations for the minimisation of the number of gates used in

a piven synthesis apnears in Section 2.5.5.

2.5.Ub iovlication to Synthesis by Vertex logic.

Ag explained v»reviously , functions having high-ordered
;pectra are generally more difficult to synthesise using vertex
(AND,O0R,IAHD,Y0R) logic than are functions with low-ordered spectra.
bocause %heir true ninterms do not fall prédominantly into areas
corresponding to the intersection or union of any particular defining
variables.

It has been shown however .that the apolication of the
operation of svyectral translation enables a high-ordered function
to be we-expressed as a function of lower ordér under exzclusive-
OR synthesis.

The techniquecs of spectral translation can therefore
be used , without the nccessity of employing threshold gates , to
problems employing cowentional ve?tex gates. Moreover the synthesis
of Boolean functions by this method zives rise , in general , to
more elegant solutions than would be the case in circuits employing
no exclusive-OR gates, This follows from the observation that
exclusive~OR functions are not easily synthesised by vertex logic.

.

cr the function given by the ¥arnaugh nav of Fiz. 32a.

jar

Consi

0]

his function has the spectrum

6 2 -6 6
R4 R12 R13 R

=3

2 2
3
o ™ 2 3

=
o

14

-6 -2 6 2 -2 =2 6 -2
Roz Roy  Ra Rqp3 Rqpn Rzy oz Raasy

Lote : this function does not have an embeddied thresheld fuaction.

Applying the operation of snectral translation to gencrate

a new spectrun <R">from the above spectrum <R> ywhere R,‘i = R’IL} :
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00 O 0 O O X
—X
o1} 11110] 1] | F(X) 2 X9 %33%,) —-——-—x§
1101110 %,
10{ O Ol 111 Fig.32a, Sample function.
x{x
X3%,\00 01 11 10 o
00{0(0(0(0| | .
01 {110!1111] ~—F(Xq3X0sX3: %) \\ x%
1110111110 —
101010 ]1 |1 Fig 32b.Function after 1st. translation.
XX |
x3rz\0 0 01 11 10
010101010 | B
010 1]1]0]  =—Ftxxaxgy) N \ >><(32
1111101711 ‘ ——X,
10 O O [ 1 Fig.32c. Function after 2nd.translation
X%
*3%,\00 01 11 10
00 H—x
0107010 ) ~ A\ x;-
01 O 111 O < ‘(X19x2»>‘3!x[,), :L@_%—X3
10151711 —%,
101010111 Fig-32d. Function after 3rd.translation.




-6 -2 6 -2 2 -6 6 2
! Rt : n Rt n 1
23 Ran Ray Rias Roy Rizy Rizy Riosy
Again , generating a new spectrum ,<§u> from the above spectrun

{R where RY = RY),

2 6 2 6 6 -2 -6 .2
1] th it 1" ! 1 n 3]
Ro R1 R2 R3 RL R12 P13 R1
6 -2 2 2 2 -2 —6 -2
it n U H 1!
Rpz Rou Roy Rpz Ripy Rizy Ry Rinzy
Finally-, generating a new spectrum <R"'> from the above spectrun

5 1 - 1" .
<?”>, where Ré' = Fd3 :

2 6 6 6 6 2 =6 2
Rtl' RH' RHI RHV Rll RHI Rll' RHL

. o f1 f20 B3 12 Rq3 R4
2 =6 2 -2 =2 -2 w2 2
e it Tz"' 'L"' 4_"' "' "'
Ro3 R3h B3l Rz Rygy B3y Bizy Ridsy

A point has now been reached where the spectrum is maximally
first-ordered , that is to say no further translations can increase
the magnitudes of the first (n+1) coefficients.

The functions generated by each of these translatiocns are shown
in Figs. 32b , 32c and 324 respectively. llote that at each sten
the true minterms of the function tend to come together in larger
groups; that is , the true minterms fall more predominantly in areas
corresponding to the intersection of the defining variables.

Fige.33a uhoho a simple , conventiocnal two-level synthesis
(AHD,0R) of the original function of Fig. 32a tozether with
necessary inverters. The same figure shows the synthesis accomplished
with the aid of the above translotions , implemented by exclusive-OR
gates, Fig. 3%b.

The saving in circuit compleuity is considerable in this
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example , the number of interconnections required being 20 and 12
respectively.

It is worth noting that because only positive spectral coefficients
have been traﬁslated no inverters are required in the latter synthesis.
This would not nzcessarily be the case , of course , if HAIID,NOR
logic ware em>loyed.

In the case of threshold logic synthesis it was noted that
the appearance of a O in the weighting vector w! , 1£ign , 4

1

imy

-

)

lied & no-connection , that is the function was independent of
variable X . It is true or all functions theat if O appears in every
spectral coefficient having a subscrint containing i then that

function is independent of x.. It is clear by inspection that the

i
funct%on considered here has no variable redundancies.

Azain the spectral translations in this example have been carried
out with no obvious »lan to minimise the number of gates generated.

In fact this solution does employ the ninimum number of necessary

exclusive-0OR gates for reacons developed in the next section.

2565 Gate liinimisation Cri
In order that the nmininisation criteria pertaining to the synthesis
of digitél circuits under the operation of snectral translation may
be developed it is nccessary to employ Galeis Field 2 theory. ror
this reason reference should be made to Apnendix 2 before procecding
with this section,.
A GF(2) matrix is able to represent an operation of the type :
replace xg by xi = xi-@ xj,which corresponds to a svectral translation.

by x! = x, & x, would be represented as

T'or example : replace x
P pLe 1 1% %

1
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_ 7 - 1
1100 x, (x, @ x,) x}
0100 %1 X5 x5 , in GF(2) .
0010 x, X bd
o
_O 00 1_ xq X4 x4

In field theory a matrix of this type , where the main diagonal
consists of allowed values other than zero and only one other allowed

value , other than zero , apvears off the main diagonal , defines

an clementary oneration . An elementary operation thus corresponds to

a spectral translation where a second-order spectral coefficient
replaces a first-order swectral coefficient, since if %, is replaced

by %! = x.
J i

® x, then R, is replaced by R! = R .
i J i i

5 3
It also follows that if it is required to represent a spectral

translation where a
k]

spectral coefficient of above second-order
replaces a first-order coefficicent then this can be achieved by the

multinlication of a number of suitable matrices in GF(2) , each of

which define an elementary operation of the tyve above.

@ el ¥ i) T 1 -— Yy &
For exemple , the replacemv?t of X, by X x, ® X5 @ x3 can
be represented by
, )] b Y] 7 ] <t ]
1010(f1100 x, 10} %, (x1®x2@x3) x4
0100/|10100 %, ) 00 X, _ X, ) X,
00 o110 0 1 0| =x.,| ~ 10 i ‘ S
| 1 0 y) xj x3 3
0001|1000 t x%‘ 00O 1~ x4J Xy, i xh;
where x, has first been replaced by x* = X4 ® X, and then X has been
o 1 = ok = : .
renlaced by x5 x5 2} x3 X, e X, @ x3

In general,a series of elementary operations in GF(Q) can
represent ony single spectral translation.

"These ideas may be extended to the representation of several
consecutive spectral translations. Ior instance, in the examnle of

the previous section the overall result of the series of spectral

translations was to renlace %z by x%'z X, e X, 0 %y by xWit= X5 & XB ) XL,y



wr o= oy Py - DAL . . also Fig. .
x3 by xB yj 0] x), and ), by L X), Sece also Fige. 33
The result of this series of translations can thus be

represented as

1001 x; (x402,) 1 x',‘”-

011 1) x,]| _ (XZQKBQX#) _ xg' , in GF(2) .
0011 %3 (x3®x4) xg'

00O j qu X | X"J

It follows that the cbove matrix may be re-expressed in terms of
a number of matrices , in GF(2) , each representing an elementary
operation which corresponds to the spectral translation of a second-
order spectral coefficient to a first order position.

Fow it is a property of GF(2), and indeed any field*, that
the mafrix resulting from the multiplication of a series of matrices,
each matrix defining an elementary overation , has a determinant which
is non-zero. (In the case of GF(2) the matrix has a determinant of
value 1 ). |

It is therefore possible to ?est the validity of a proposed
series of spectral translations in the following way :

Test 1.

If the result of a proposed series of snectral tronslations
is represented as a matrix[[\}in Gr(2) , then such a series of
translations is possible only if the deternminant of [[\]has the
value 1 . |

=000~

es. for the last exanmple [
3

The zuthor is indebted to lre. B.Ireland ,University of Bath ,

for his zdvice on the aspects of field theory discussed here.
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Expanding the determinant of[[\]by the first column in the

usual wvay gives

| A

Te1e]1 1
01

1. () (0.1)}

1¢1.(1 + 0)

il

= T.7.1

e

where '.' and '+' denote multiplication and addition

in GF(2) respéctively. Seé ipprendix 2 .
This result shows that a series of spectral translations is
possible for this example.
, .

One other clementary overation exists in GI(2) which can be

bleS .

o

shown to correspond to the interchange of defining vari
(Operation 1', section 2.4). This is equivalent to an interchange
of the rows of[/\]which does not invali@ate Test 1 and is implementod
by a simple interchange if input iines to the final logic module

of the circuit.

The functions defined by[]\ s Where [\,= 1 4, are called a Basis

and spectral tronslation is equivalent to a Basis Transformatione.

[}

.

Note that Test 1 is sufficiznt to define a basis but does not
give any infornation about the spectral translatibns , and thusl
numbzar of gates , necessary to gencrate that basis. Test 1 then
does not assist in the gate minimisation problém.

It has been shown that spectral translation is best used , from
a syhthesis point of view , in mapping a high-ordered function onto
a lower-ordered function. The most significant spectral coefficients

arc then translated to first-ordered positions. It follows that the

.

choice of basis is made from the set of spectral coefficients vhose
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magnitudes are the greatest.
For the example of Fig. 33 the spectrun is
2 2 2 2 6 -6

2
7 D »
RO 51 R2 R3 Rl+ R12 R13 "

g O

-6 -2 6 2 =2 -2 6 -2
Ros Ron Bay Ripz Rypy Ryzy Rpziy Rypsy
T most signifi spe affici I )
The n? t significant spectral cocfflClepts are RQ,R13,Q14,R23,
R,, and R,,, , each of which have a magnitude of 6. The basis is
24 S23h
therefore chosen from the Tunctions X) x1©x3 ’ xq@x# ’ X2@X3 ’
x5®x4 and xz@x3@x4 « Of course if no set of these functions form
a basis it would be necessary to include othér functions whose
corresponding spectral coefficients have a magnitude of 2 .

Cnce a basis has been chosen , that is a set of n of such
functions satisfying Test 1 , it is required to find the minimum
number of exclusive-OR gates which will generate that basis. A
method which énables such a basis to be generated using the
minimum number of exclusive~CR gates is given,by means of anhexample,
below.

Suppose , for the function of Fig. 33 the following set of

functions is chosen :

Function No. Function
1 x1 @ xq
2 x2 8 x3 @ xu
3 x3 0} Xy,
l+ Xl{.
The corresponding [/\J matrix is 1001
' 0111
00611 ‘
000

It has already been established , see above , that this matrix has
a determinant of value 1 , and therefore passes Test 1 . These

functions therefore form a basis.



Now inspection of these functions shows that function 4 can
be gencrated without employing any exclusive-OR gates , function 3
can be generated using onc exclusive-OR gate, function 2 requires
twvo exclusive-OR gates and function 1 requires one exclusive-OR
sate. In addition , function 3 can be generated from function
4 using one exclusive-OR gate since x3 ) X, = x3 @{xq}, function
2 cun be gencrated from function 3 using one exclusive-OR gate since
x5 ® K} b X = %5 @{x3 6 xq} and function 1 can be generated fronm
function 2 using three exclusive-OR gates since x_. @ X, =

1

1 P 3 0] x4} etc. These results can be obtained

x, & x, 0 x3 @{XZ,@ X
directly from thel[\ matrix by noting that

1/ The number of exclusive-OR gates required to
synthmsise any basis function is given by%%he number of 1's appearing
in the corresponding row of[f\]} - 1.

2/ The number of exclusive-OR gates required to
gensrate the i th basis function from the J th basis function is
given by the number of differences between the i th and j th rows

This information is best presented as a difference table , denoted

as [ﬁ « 'or the above basic the [& table is

Function Ho.

B
111 211
Fn. -
No. 217 G I , Where the entries Si P 1<ign , are the
212111111 '
Lit}l2)11}0

number of exclusive-OR gates required to synthesis the i th basis

function and the entries J; 5 y 1<i,j<n , are the number of
]
exclusive-0R gates requircd to generate the i1 th basis function from

the j th basis function. From the result zy 2] Xj = xj @ % it
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follows that <§i 3 = cgj ;o Because of this symmetry only a part
’ ] .

of this table need be generated. I, this example

1121314
111
21312 . . . .
contains all the required information.
312 1
Lbi11211]0

Supposs that it is first decided to generate the fourth function
of the basis. This is an obvious choice becauss no gates are required.
({4 L is then ringed and the fourth row and column of [ﬁare ticked to

]

show that they are available for the generation of the remaining

v
1121314 functions.
111
21312
? zl211]1 « Mow scveral equally attractive alternat-
V| 1]2]1 (o)

ives are possible. Functions 1 or 23 may be generated from function
L using only one gate. On the other hand functions 1 or’ 3 may be
generated directly using only one-gate. Suprose that in this case
it is decided to generate functions 1 and 3 directly , the Zﬁ table

then becomes

v v o/
11234
V1)
21312 » How only function 2 remains to be
- —
vil2|afa)
vil1]z]1 (o)

synthesised. The minimum number of gates necessary to do this is .one
if function 2 is generated from function 3 , which is available. This

zives the final A table as

VoV oS
112 (3| 4
10
vel3 Ed. e 4311 the basis functions have.now been
ZIHOON
/u121®L
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synthesised and the total number of gatcs used, which is the sum of

=

the ringed numbers,is threet In practice,when an cqual choice is
presented betyeen elements on the diagonal of Zl‘ and elements not
on the diagonal sythe diagonal elements are chosen . This
reduces the pwragation time of the final circuit.

In general , if a basis is chosen where a spectral translation
from say, thirc order to first order is implie:d then it is clear that
at least two exclusive-OR gates will be required , irrespective of
the actuzl method of synthesis. This observation gives rise to

Lemma 1.

The absolute minimum number of exclusive-OR gates required
to synthesise a basis is equal to the highest number of exclusive-OR
gates .,required to generate any function of that basis.

000~

In the example above the basis function requiring the
highest number of exclusive-OR gates for its direct generation is
function 2 which requires two sates . The absolute minimum number
of gates required to synthesise thé basis is thus two,which is
one gate less than that found necessary in practice.

The minimisation of the number of exclusive-OR gates
required to convert a function to its maximally first-ordered form

is given by : .
1/ Arrange the spectral coefficients in order of magnitude.

(Excepting RO)
2/ Find the bases which correspond to the highest and

equal-hizhest magnitude sets of spectral coefficients.
3/ Appl& the gate minimisation procedure to each of these
candidate bases in turn. |
L/ Select the solution giving the minimum number of gates.

In practice the number of candidate bases , n&7, turns

* Fig. 33 shows the implementstion of this solution.(see P.12%)
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out to be small. This procedure is therefore quickly executed by
means of the digital computer.,

In the case of threshold logic,vhere a negative weight capability
does not exist, it has been shown that for every negati;e valued
spectral coefficient translated to first-order a compleméﬁting
gate must be introduced in the final circuit. If therefore it is
required té mininise the number of gates under these circumstances
a modifiéd minimisation procedure must be employed.

As an illustration of these methods consider the function shown
in Fig. 31,p 117. The circuit of Fig. 31a was synthesised without regard
to gate minimisation by the repesated application of spectral
translation. See Section 2.5.4a. If gate minimisation is employed
howevdr the circuit of Fige. 31b results,wnich shows both a saving
of oné exclusive~0OR gate and one inverter gate together with a

reduction in circuit complexity..

2.6 Disjoint Spectral Translation.

2.6.1 Defining overation.

* ) :
An operation will now be considered which differs in
implenmentation from those considered zbove in that a feed-forward
signzl path is created.

Operation 6

The interchange of spectral coefficients RO and Rk’

Let the given function be F(x1,x2, e o aXpy e e X ).

n
Define a new function by F(x1,x2, AN S ,xn)
_I: . .
= Xk @ F'(X'I’XP’ “« o ’:{k, . e inn) . . . (2.16)

* Dertouzos has considered an operation similar to this under the

heading of 'equidualisation',Ref.20,
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where the niven function has the spectrUﬁ1<R:>and the new function
FU(x, 49X,y o « 3%y = o« 3X_) has the spectrum <§'> .
1172 k n

Substitution of equation (2.7) in equation (2.16) gives

2
R = o _ 2-{§£1xﬂ,j 0 th‘1(x1,x2, © e aXpa . .',xn)}
=an-2{2n~< O x_ . 0OF (% ,5,, )} (
j=14k»j Xy 3 ¢3-1 IEE IO ,xk? SRREE ) 2.17)
1€kgn .

- A - et o iohE he
But Xk,j @ K:,j =0 0,3 g8ce section 2.2.2, and the right hand

side of equation (2.17) reduces %o

n
2
n
2 =2 ZX-@'F' (x,x,..,x,..,x)}...(2.‘18)
521 0,3 ya;q 1’72 k n
" .
vhich is by definition equal to Ré « See section 2.2.2 .

Similarly
n 2n .
= -2 1 ¥ ‘ X . » X = e X
=2 {JZ:,IXLJ ® 9/3._1(“1’ 2! 1%y ”‘n)}
n 2n
= - - me - )
2 2 {Z:,lxl,:] ‘{lc’j @ fpjj’.'] (X1 ’:’na’ . o ’X}.{, o e ,Xn)}. (2.19)
& pe ’
- P"kl

It can also be shown theot

L 1
By =R o
PAJ - e - D
l\lclm - le ] J\,lm —_— .u.klm_ etc.

These results give rise to the following theorem :

2¢6¢2 The Theorem of Disjoint Snectral Translation.

If , given a Doolean. function F(x1, PR PR ’Xn)

haviag a spectrum(?-}> it i3 required to generate a new fupnction
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F'(x1, e o 4%y e e oX ) having a spectrum R' , where

A
= Xk @ F' (X,l, e o ’}:1(’ L ,Xn) then <R'>

n

F(xq, EERE AR ,xn)
may be generated from <R> if s

in every subscriost of the spectral coefficients of <R>

if it exists and is appended if it does not.

]
o

k is delet

ermed'disjoint' because it enablesone of the

P
~
-
j=3
(0]
d-
=
16}
8]
¥
o]
93
].h
L‘I
<

dzfining variables of the original function to be separated from its
fellous and gives rise to a fesd-forward signal path , as described
below. Unlike the operations that have so far been consicdered ,

disjoint spectral translation has the property that it can , vhere

lichible , convert onc Ffunction to another even though the functions

]

(9]

apl
have different ratios of true/false mintorms.
2/ For the special sncctral coefficients RO,Rk the theorem is

applied as follows :

Apr Ao
Ro = Rox = %
é A é |
R, SRy =Ry .

3/.The theorem defines an'operation which allows the zero-
ordered spectral coeflicient of any Boolean function to be inter-
changed Qith any first-ordered spectral coefficient. If the operation
is repeated it follows that the zero-ordered coefficient may be

interchanged with any spectral coefficient.

2.6.3  Interoretotion and Invpleomentation of Disjoint
Snactral “ronslistion.

-

Fig. 3%z shows the implemcntation of the Boolean
function F(x,l, oo 3Ny . e ,xn) having a spect1~um<R>. Lccording

to the above this function ic re

Y

laced by x @ F'(xq, SRR SRR ’Xn)

where F‘(x1, P SR ,Xn) is a nev function with spectrum

<R:>. Mhis implementsation is shoun in Tig. »4b. The overall transfer
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F(x1’ [ J [ 3 ’Xk' ° °

jus oo @ o &

n
~ J
~
<RY .
Fig.34a
Cu“ ' F'.(X,la e o ,Xk, o o ’xn) It

| 8
<R’
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function of the cystcm renainc unchanged.

This operation has resulted in the creation of a feed-forward
signal path. If the operation is repeated for two different defining
variables then two forward signal paths will be created , and so on.

2.6.4 Significance of Disjoint Snectral Translation.

2.6.4a In Logic Synthesis.

The operation of disjoint spectral translation permits
certain BMfunctions ,which are not translationally equivalent, to
be converted one into another. The practical importa“nce of this lies
in that it extends the versatility of threshold logic and permits
more elegant syntheses in terms of vertex logic.

The implementation of this operation is very straight-
forward as was shown in the previous section.

2.6."'-u In Boolean Function Classification.

Disjoint secctral translation gives rise to a
classification of Boolean functions which is more compact than
that of translational equivalence (Section 2.1.1la) as is shown below

The following classification of Boolean functions is
proposed

A Boolean function F~(x*, . . ,x™) 1is classified

disjointly-1lfanslationally -equivalent to another

Boolean function F~Cx”, . . ,x*) , of the same order,

if F*(x*, . . ,x") can be mapped onto F* (x*,

by the permutation and/or complementation of the

defining variables and/or the , perhaps repeated,
application of the theorems of spectral translation
and/or disjoint spectral translation

— o00o—
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Again the tables of canonic function spectra can be drawn up

together with optimum syntheses , as in section 2.3.3b . In this
case however is designated the highest magnitude then the first-
order coefficients , and so on.

This procedure has been carried out for all Boolean functions,
n~“4j and the associated table- appeals in Appendix 3- The complement:
of these functions do not appear and are given by Operation 4.

This table shows that the 63,336 functions are classifiable
into 8 categories. In practical terms this means that eight 1logic
modules together with the necessary exclusive-Oh gates and inverter
gates are able to synthesise any Boolean function , n % In fact
only seven logic modules are required in practice since function Bo.
1 in '"Wie table corresponds either to a simple connection or a no-
connection.

Perhaps more suprising is the fact that only one of the
classes of functions is not a threshold function. (Threshold
functions are marked 'T’).This shows that single threshold gates
may be used to synthesise the majority of Boolean functions , n**4,
using the above techniques. Some comment will bo made on the
synthesis of the non-threshold function , function No. 8 , later.

The fact that this classification is more compact than that
of translational equivalence is shown by noting that the latter
gives'eighteen classes of functions wheras this method gives eight.

Bee also Appendix 3«

2,6.3 Application to Threshold logic Synthesis,
Boolean functions which may be converted to threshold
functions by the operation of disjoint spectral translation will
be said to have threshold functions 'dis jointly-embedded' \;itiiin

them.
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As an example of a function which contains a disjointly-
onboddcd threshold function consider the function given by the
ICnrnau.pi map of Fig. 33 JP 123 » which has the spectrum

2 2 2 2 6 2 - 6 &6
Pq A2 A3 A4 A12  A13 A4

-6 -2 6 2 -2 -2 6 —2
~23 “*24 "34 ~123 ~124 ~7~34 ~234 ~1234 .

Now it is clear from the tables of positive characteristic
vectors , Appendix 4 , that the only threshold function that can
be embedded in the above function is that which has a characteristic
vector 6 6 6 6 6 . However the above function
cannot be converted to this form by spectral translation ,(Operation
5) ,since would retain its value '2'. If disjoint spectral
translation, (Operation 6 ), is employed however this problem is

overcome as shown below.

1/ Translating = R” under disjoint spectral translation
gives 6 6 -2 6 2 -2 -2
% 4 "2 23 ~4 42 43 44

6 2 2 -2 2 -6 -6
1 nt Dl
"23 "24 "34 %i23 "124 "134 234 ~1254

2/ Translating R* = R** under spectral translation

(Operation 3 ) gives

6 6 6 6 2 -2 -2 2
"0 w2 "3 24 4'2 4-3 -Is4
-2 -6 p -2 -6 2

ptt
"23 ~24 "34 123 "'124 4'34 %234 4'234
3/ Translating R|'' = R** under specikrai translation

(Operation 3 ) gives

6 6 6 6 —6 -2 -2

n- RlAll RAv R)l* 42 43 44
-2 2 -s
pir 1

23 *24 ~124 434 434'Ki234
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| Fig.35
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The first (n+l) spectral coefficients of this function have a
magnitude of 6 which characterises it as a threshold function.
Computing the gate parameters in the usual way , see Section
2.5.4a , and implementing the above translations in terms of
exclusive-02 gates gives the circuit of Fig. 35%*

It has been shown , see the previous section , that the
majority of fourth-order Boolean functions may be synthesised
by using both spectral translation and disjoint spectral translation,

A possible method for the synthesis of functions which do
not have threshold functions embedded or disjointly embedded
within them is to divide the function into two parts ,

,X*) andx”,AF (x*, . , .
and to apply the above synthesis procedures to each of these
functions in turn. Since these functions do not intersect in n-
space the resultant syntheses may be 02-ed together. In the case
where this procedure produces another function which does not have
an embedded threshold function the division is repeated in terms
of another defining wvariable.

Consider the function of Fig. 36a which does not contain a
threshold function. (It falls into canonic class 8 Appendix 3)-
Suppose that this function is divided as AF (x*,x* and
x*n F(x* ,Xg ). See Fig. 36b and Fig. 36c respectively,If ..the
syntheses of those two functions are carried cut in the usual way
the circuit of Fig. 36d results.

It can be shown that any Boolean function can be synthesised
in this way. This follows from the fact that if this division *
procedure is repeated exhaustively each true minterm will
ultimate]*" be extracted separately, how a function having only one

true r.iinterrm is always linearly-separable. (A threshold function).
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2.6.6 Application to Vortox Jjp.iic Syntlionis.

It has boon found in practice that the application of
disjoint spectral translation often gives a more elegant synthesis than
the operation of spectral translation. This hoi,'over is not always
the case. At present the criteria which determine if the use of disjoint
spectral translation will give an optimum solution are not Icnown.

As an interesting example of a case where disjoint
spectral translation may be used to advantage consider a 2 out
-of 5 circuit. A synthesis , which is believed to employ the
minimum number of vertex gates has been published by Karp et al ,
see reference pO . This is shown in Fig. p?. An attempt to synthesise
this function using spectral translation did not show any advantage
over t]ie synthesis of Karp, although admittedly only a simple two-
level synthesis of the final logic module was attempted . Under
disjoint spectral translation however the circuit if Fig. $8 was
ijroducoé. This circuit shows a saving of throe gates and two
interconnections over the circuit of Fig. 37» It should be noted
that the circuit produced by the author may still not be minimal
since again only a simple two level synthesis of the function
produced by translation methods has been attempted. The maximum

propagation delay for both circuits is identical.

2.7 A statistical Synthesis method.

2.7.1 Introduction .

It has been shown by dearie, see reference 23 , and others
that the distribution of information in the spectrum of a function
is not linear. Indeed in many cases only a small number of the
spectral coefficients of a function are necessary to completely
define the function, the remainiig coefficients being redundant.

* With the aid of the statistical method described in Section 2.7
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An example of a function having this property is a thresiiolcl function
where only (n+l) of its coefficients are required.

how each spectral coefficient is a measure of the correlation
between the defining function and each of the hademacher/Ualsh
functions. It follows that coefficients of relatively large magnitude
indicate that the associated function closely resembles the Bademacher
/Walsh functions on which these coefficients are defined.

It seems intuitively correct to suppose that if some of the
largest spectral coefficients of a function are known it should bo
possible to predict the distribution of the minterms of that function
on a statistical basis. If this is possible it follows that functions
may be synthesised on a sttistical basis from only the most
significant spectral coefficients, with a consequent saving of both
data, storage and computer program:.ic execution time.

2.7.2 S'oectra.l Coefficients and the Distribution of minterms

The transform operation, see 3ection 2.2.2, may be

defined as

R e— n “ ' n

. 2.2
ij..m a d ( 0)

where n” is the number of agreements between the defining

function and the function x* Q 0 . . © ¥~ , and n” is the

number of disagreements between the definingfunction and

X @ X
1 J

how n + n_ e 2% .. (2.21)
a d

since the defining function must either agree or disagree with

X. © X._ © . e G X at all n-tuulos.
1 0 m

Substituting for n” in equation (2.20) gives

Rig..m = "a ~ Ca na)
= 2na -~ Co.e (2.22)
whence P “n
n = . . . (2.25)
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2'* - R.
Similarly , (2.24)

For tho special case R*

n, =— —————— —— M ... (2.25)

where Il is the number of true minterme of the function.
For all spectral coefficients with the exception of R*
n =T+ F (2.26)

where T is the number of true minterms of the defining function

in the space xiGg.G .. ©xm =1 and. F is the number of false
minterms of the defining function in the space x.GE):.G . . x =0
m
Since the space covered by x1©xo.© . .0x =0 is 2 /2 n-tuplei

it follows that the number of true minterms in this space is

~ - F ,and thus the total number of true minterms of the defining
function ,i', is given by “n
M =T+ (~ - F) co. (2.27)

Substituting for F in equation (2.27) from equation (2.26)

gives . pYi
=T+~ T - n
2 a
pn
=2T+%—na (2.23)

Substituting for n” in equation (2.20) from equation (2.2p)

Gives - PR

21 +1 A —I

=
I

2T .. (2.29)

.Equating (2.29) and (2.29) gives
f"4

then T =4 (2 + R (2.39)

tyeem ~ B¢
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Now T is the number of true minterms in the space where
X, ©X.J<D. .0 X i 1 . The number of true minterms of the function
is given by equation (2.29)

The importance of this result lies in the fact that the
distribution of true and false minterms of a function with respect
to any Rademacher/l/alsh function can be determined exactly given
the corresponding spectral coefficient and

For example suppose that a fourth-order Boolean function has

the spectrum 10 6 6 2 2 -6 -2 -2
Rq R ~2 ~3 ~12 +13 ~14

-2 -2 2 2 2 -2 -2 2
"A23 24 ~34 ~123 ~124 ~134 ~234 ~1234

The number of true minterms , from equation (2.29), is
GivonV 2”7 - Rq .9 _ 10
M = -—- 2-—- = 1— = ~ .
The number of true minterms in the space where x* =1 ,

from equation (2.30), is given by

T

= (2" + - ~07

i (16 + 6 - 10)
=3
Similarly the number of true minterms in the space where
x* G x* = 1 is given by

T =4 (27 +

g (16 + 2 - 10)
= 2 and so on.
Appendix 1 shows all the fourth order Rademacher/V/alsh
functions plotted on Karnaugh maps.
Mow it is of interest to bo able to calculate the number
of true minterms occuring in spaces corresponding to the inter-

sections of different Rademacher/Walsh functions in order-that the
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complete distribution if true and false minterms may bo established.
For example if , for a fourth order Boolean function, it is known
that the space H (xp © x ) = 1 contains four true minterms then,
since this space contains only four n-tuples, it follows that

G x ) is a factor of the defining function. See Fig. 39.

It is possible to statistically/ predict the distribution of
true and false minterms at the n-tuplos corresponding to the
intersection of two or more Rademacher/dalsh functions by using the
statistical theory of expected values.

2.7.3 fxpected Values.

Suppose that a random set of objects are classified
under two independent catagories and that the number of objects
lallii¥s into each catagory is noted. The number of objects , on

average ,falling into both catagories is then given by

»-q
12 ... (2.31)
where is the number of objects falling into the
first catagory , is the number of objects falling into the

second catagory and M is the total number of objects. (It is assumed
that all objects fall into one or other of the catagories ). e is
called an estimated value , set: reference 31 ¢
If the objects are classified .under three independent
catagories then the number of objects falling into all three
catagories is then , on average,
T X'f XT_

o=m-— = 2 ... (2.32)

and so on.
The same theory may be applied , with restrictions,
to the estimation of the number of true minterms of a randomly
selected Boolean function which lie in a space defined by two or more

£
linearly inde rendent functions.

3
~rsofial commonicatJdn Opiv. /2?72
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oupooGG that in a Boolean function it is known that the total

number of true r.rinterms , H , is ? ; the number of true minterras ,
1 in the space = 1 is 7 , andthe number of trueminterms,
the space @ x* = 1 is 4. This data may be derived from the

spectrum of the function as previously described. Since the functions
x* and Xp © x_ arelinearly independent , see Appendix 2 , the
estimated number of true mintcrms in the space x* H(x.~© x*) is

given from equation (2 ,pl) by

If this function is fourth order the space corresponding to
the intersection of those two functions occupies only h n-tuples,
thus cm average H(xp © x"*) can be expected to be a factor of
the defining function.

Unfortunately this estimated value is only approximate*because
although the functions x* and x* © x_ are linearly independent the
results T* and T* are not mutually exclusive . This arises from the
fact that a finite n-space is being considered. The fact that two
such tests,T* and T* , are in fact related can be shown by the
extreme example of Fig. 40 . The total number of true mintcrms is
8 and the number of true minterrns in the space x* = 1 is also 3,

It follo'./G that the number of true minterme in the space x_ =1
must be 4 . That is , the last result may be predicted from the
two previous results ; the measurements are therefore not mutually
exclusive. This 1is in effect a re-statement of the fact that the
information about a function is not evenly distributed about the

snectral coefficients of that function.

* A method of evaluating e exactly is known but is very

complex and is not suitable for implementation on the digital computer
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A
In practice the statistic e has been found sufficiently accurate
for it to he employed in the synthesis method described in the next
section, nevertheless further research is warranted to investigate
the general relationships between the exact and approximate forms of
A
o
2.7.4 The Procedure.
The method of Boolean function syn:hesis using the
* A
approximate statistic e 1is now given by means of an example.

Consider the fourth-ordor Boolean function of Fig. 4la.

Ty"e spectrum of this function is

6 6 2 -2 2 2 -2

7O N2 A3 N M2 M3 M4
2 -2 2 2 2 2 -10 6
~ P u n P ™ p
"23 24 '~34 "M23 124 "134 234 "1234

step 1
Choose a sub-set of four of the most significant of the
spectral coefficients whose defining P.ademacher/'Jalsh functions
form a Basis , see Section 2.3.3 and Appendix 2
A suitable sub-set is *

-10 6 2 - 2

P n p |
"234 "1 2 3

Step 2
Compute the number of true minterrns of the function

from equation (2.23)
16-6

* libte that the apparently more significant sub-set

-10 5 6 2 does not define a basis since

"'234 -1234M "2 I I
IA | 1 1 00e Section 2.3-3 =«
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Step 3
Compute the number of true minterrns in the spaces
corresponding to the functions on which the basis has been defined
using equation (2.30).
Drav; up a table showing the result together with the

basis functions.

Spectral I Basis
Coeff. ! Value Function T
-10 - © X o X
(x2 - V) 3
h 6 a1 4
h 2 3
-2 A3 3

*»

Note that in the case whore a spectral coefficient is
negative the basis function is complemented and T is evaluated for
the corresponding value of R made positive. In the case of ﬁ”34
above the result is interpreted as there being 3 true minterrns
lying in the space defined by (x* © © x4, )=1 . Similarly 3 true
minterrns lie in the space x.,=1

Step 4
ni

Find any factors of the*function which occupy - , (8),
n-tuples

Since this function contains only 3 true minterrns no
such factors exist.

Step 3
“n

Find any factors of the function which occupy * , ('O,

n-tuples.

A factor space of 4 n-tuples corresponds to the space

defined by the intersection of any tv'o of the functions
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of th j clior.on br.cis. The ibr.ir of f-unctionG which corroswond to
til: 1iifiiioGy v'uiGG of T o.ro firtt chosen since those “ivc the
(str;tistic;:11y; hijhe.st probability of finding 4 true minterms
at their intorsoction.

dhoosin.r the space = 1 ojid calculating
the distimiatesd average number of true minterrns in this space ,from

equation (2.pl) gives

It is therefore expected that 4 true minterrns exist in thiz
space . In fact this is so , see Fig. 4lb.

(Xp @ x» © x*)n x* is therefore a factor of the given function.

If this procedure is repeated for the next two most significant
basis functions , (Xp © x_P © x,r')Oxjd , € is found to be A = 3%
This is interpreted as a small chance of finding 4 true minterrns at
the intersection space.

In practice , for fourth-order functions ,having embedded or
disjointly-embedded threshold functions , see Sections 2.3.3b and
2.6.4b ,if the ratio e/(Uo. of n-tuples in intersection space)” .9
then the function defining the space is always a factor. This
result is empirical and the equivalent result for functions of
higher thcoi fourth-order is not known.

In the case of the function under consideration no further
?n
factors occupying ¥y n-tuples can be found.
Stop 3
~ s
Find any factors which occupy ? ,(2), n-tuples.
A factor space of 2 n-tuples corresponds to the space

defined by the intersection of any three of the basis functions.

HMgain the functions related to the highest values of T are chosen.
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It is important to note that in this case there is no noint
in considering the space (;a, © 0 Xp = 1 as this i;
included in the factor space (Xp © x_ © x*, )H x* = 1 which has

alroady been found.

The space next most likely to be a factor space is given by

x3J © x © jJTf]x*fl = 1 ,see- previous table.
Computing e for this space , from equation (2.32) gives
S - _ 53<3jo
Cr 1.8

That is , the average number of true minterrns in this 2 n-

tuplo space is , on average , approximately 1.8
The ratio / (no. of n-tuples in intersection space)| =
= .9
This space is a factor . See Fig. 4lc.
In fact all factors necessary to synthesise the function
have been found.
Stop 6
Design the circuit.
The expression for the second factor must first be
simplified.
The following relationships are noted
(xa© ¥;)=Xa ©X,b=XaG X. b ... (2.33)
X il(x © X, ) =X n X ... (2.39)

Using these relationships the second factor may be simplified as

(x2 © x_P G X,4)ilx§il x_p = (x,2 © x_PG X,4)n x.a,rixP

. © n,)£)x* 0 X..
P 4 a p

(x—Is © X, 4) fix'\il X—15
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ri:y

Now the first factor : x%Q(::* G x_ © may be written
as x*n (xg * © x4)

The implementation of each of these functions appears in Figs.
41b and 41lc and the final synthesis is shown in Fig. 41d

—o0o™

The method described above auTiears o little tedious but in
fact fast interactive designs can be achieved by employing these
techniques on the digital computer. The simplification of the
factor equations is also readily computable.

2.7.3 Notes on the Method

More research is necessary into gate minimisation criteria
for this method and also the significance of the statistic Z for
functions of order n”~3 ¢ The following points are noted.

1/ A more elegantsynthesis is often obtained if the true
minterrns of a given factor arc removed from the function and the
metiiod repeated for the remaining true minterrns. This is because
the method evaluates the highest common factors irrespective of the
number of gates required.

?y -0e choice of basis set has a large influence on the
number of gates employedin the final circuit.

3/ The method hasbeen employed successfully for the synthesis
of functions of up to ninth-order. Because the nature of the statistic
e is not well known for orders of greater than four each factor is
checked , in tlicse cases , by executing the (inverse) fast Walsh
transform, for the,required spectral coefficients. The factors czin
then bo compared with the defining function in the Boolean domain.

4/ The method is difficult to apply to functions which do not

ot
have embedded or disjunctively-ombedded threshold functions, see

A For such functions are rare.
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Sections 2.3*3b and 2.6.%b . For those functions the statistic o

is very approximate . This follows from the fact that more than

(n+l) spectral coefficients are required to define these functions.

Some of the required information to compute e therefore lies outside

of the basis functions on which e is computed. It is felt that

another statistic may be found which will enable the synthesis of these

functions.

2.8 Further Apnlications.
2.01 Multiple-ocatput Bynthesis.

When many functions must be simultaneously realised
it is clearly advantageous to malic the best use of any common factors
the functions may have.

If , therefore , spectral translation is to be employed
in the synthesis of such a set of equations , it is possible to set
aside a logic module which is capable of executing all of tlie required
translations for the sot of equations. Now if some of these translation:
are identical then this module will bo simplified. This amounts to
the extraction of the common factors of the functions.

It follows that the judicious choice of coefficients
to betranslated enables the general method of spectral translation
to simplify multiple-output synthesis.

Further research is necessary to find tlie best methods

of determining such common factors.

2.U0.2 Synthesis of Functions Containing 'l'ama't Caros¥* .

So far only functions which are completely specified

have been considered. Functions with don't care conditions give rise
to spectral coefficients which may t"ko a range of wvalues , but

not independently. ..t present the optimum method of synthesising
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such functionG is not known.

One approach to this problem is to give the don't care minterm
the value -y , that is a value half way between the Boolean values
0 and 1. The spectrum of the function may then be evaluated and
analysed statistically as shown in Section 2,7 < The don't care
minterrns may then be set to 0 or 1 in turn , the final selection of
values being determined by those values which produce the highest
common factors of the function.

Further research is necessary in this area.
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2.9 Conclusions.

A matrix transformation technique has been described which
enables the Rademacher/Nalsh spectrum of any Boolean function to
be evaluated. It has been shown that certain pertinent properties
of the Boolean function,from which the spectrum is genorated”may
be established by inspection of the spectrum alone. In particular
it is possible to establish if the Boolean function is most easily
synthesised with or v/ithout the aid of exclusive-OR gates.

Certain known operations in the 'spectral domain' have been
described and it has been shown that these operations enable
'equivalent' Boolean functions to be classified and synthesised.

In the search for a more powerful method of Boolean function
classification two novel operations have been developed which
generate elegant syntheses of Boolean functions both in terms of
vertex and threshold logic. Moreover these operations have been
shown to give rise to a very powerful method of Boolean function
classification. A method of minimising the number of gates necessary
to implement these operations has been demonstrated.

It has been shown that many Boolean functions are characterised
by only a few of their spectral coefficients . In the future this
means that it may be possible to specify such functions , especially
those having a large number of defining variables , using only a
small percentage of the data space required at present.

One of the most important results arising from this investigation
is that threshold functions , and therefore threshold logic , play
an important role in the composition of Boolean functions. This
is especially important in view of the optimised universal threshold

gate developed in Chapter



1ol

A statistical approach to logic synthesis , using the spectral
coefficients of Boolean functions , has been formulated. Although
this method is as yet based upon an approximate-estimated-value
technique , practical results have been very encouraging. The great
advantage of this method is the ease with which certain 'factors’
of a given Boolean function may be extracted. Further research is
required in this area.

The execution of the Badcmachsr/\7alsh transform may be carried
out, without resorting to matrix multiplication , by means of the
fast Walsh transform. This enables the spectrum of functions
defined upon large numbers of defining variables to be computed at
a much higher speed than would otherwise be possible. In future
this *»jhould enable functions to be synthesised , using the above
techniques, which heretofore have been considered too unwieldy.

Clear indications have been given that the above techniques
are applicable to partially specified and multi-output systems.
There are also indications that the above methods may be applied
to general pattern recognition. Unfortunately time has not allowed

a full investigation into these topics.
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CHAPTER 3.

Other Researéh Wor k
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3.1 Tlie Appl.icr.tion of a Univrrnal '"hroahold Logic Gate to

Digital Oirci’it a nvhoria.
3.1.1 Introduction.
¢
A univoroal threshold logic gate developed by Dr. 3.L.
Hurst , University of Bath , is described. This gate has the
advantage that the problems associated with thresholding tolerances,
encountered in conventional analogue threshold gate design , have been
overcome,
It is shown that , by employing the theory developed
in Section 2 ,a simplified version of this gate is sufficient to
enable the synthesis of any Boolean function of fourth-order or loss.
The use of this gate in logic design is expected to
provide a considerable cost saving over designs produced by
conventional methods,
3.1.2 The Universal Threshold (D.ScT.L) Gate.

S.Ti. Hurst , University of Bath , has proposed a
Digito.l-3ummation-“"Threshold-Logic (D.3.T.L) gate of the type shown
in Fig. 42

In this design each of the eight inputs , labelled A~II,
are applied to a logic cell. This row of cells contains conventional
digital circuitry and is so connected that if one or more of the

inputs A-H have the logical value 1 then a 1 appears at the output

In addition, supposing that M of the inputs A-H have the wvalue

1 , this first row of cells transmits (N-1) values of 1 to the inputs
of the next , identical , row of cells. Consequently the second row
of cells produces an output of 1 on if two or more of the inputs

At the time of writing this design is under consideration for
a patent application. The design details should therefore bo considered

as privileged inform.ation.
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A-H he:VO the value 1 . CChic process is continued so that the output
is set to 1 if three or nore of the inputs A-H have the value 1 ,
and so on . In practice the number of cells required at each stage
reduces by one < see Fig. 42
Nov; this configuration implements a threshold gate where all
inputs A-IT are weighted 1 and the required output threshold weight
may be selected by a suitable connection to one of the outputs
If an input threshold of weight other than 1 is required , this may
be achieved by connecting a suitable number of the inputs A-II together.
In fact » by making suitable input and output connections ,
any threshold function of order n * 4 may be synthesised using this
gate. Because of this property it is termed a Universal threshold
gate.
Note that , because digital circuitry is used throughout , no
analogue thresholding problems arise.
B.1.5 The Optimised Univorsal Threshold (D.3.1.7 lo.'ic Gate.
How , using the theory developed in Section 2 , it is
possible to show that a reduced version of the gate of Fig. 42 is
sufficient to synthesise any threshold"” function of order nr’'r

The positive canonic threshold weighting vectors for

from Appendix 4 , are

No. H% m w% w4
1 1 0 0 0 0
2 5 1 1 1 1
3 2 1 1 1 0
4 5 2 2 1 1
5 1 1 1 0 0
6 2 2 1 1 1
7 1 1 1 1 1

Consider vector No. 4
The corresponding threshold gate input weights are
2,2,1,1 , see equation (2.14) dection 2.5/;a. 1 total input weighting

of 2+2+1-f1 = 6 is therefore required for this gate.

*Under disjoint saoctral translation and Oneration 4.
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The output weighting is given by equation (2.15) Section 2.5.4a ,

as n
2 11 F V' 4-1) . . (2.15) repeated.
j=j_ J

y(6 + 3 + 1)

= 5.

UsingOperation4 Section 2.4 however , it isalwayspossible
to render w” negative .The minimum output weighting inthis case
is then g6 -5 + 1)

= 2.

Now if the same analysis is applied to each of the positive
cc-.nonic weighting vectors of order n 4 it is found that a universal
form of the above gate is sufficient to synthesisethem all. That is,
a universal logic gate having a total input weighting of 6 and a total
output weighting of 2 suffices to synthesise all threshold functions
of order n*4.

This gate is shown schematically in Fig. 4p.

The corresponding implementationin terms of D.G.T.Lcircuitry
is given in Fig. 4"ta.This can be seen torepresent a considerable
saving in complexity over the circuit ofFig. 42

This optimised D.S.T.L. gate has 14 logic gates and a maximum

propagation delay of 6 gates.

5.1, A Use of the Optimised Gate .

Now it has been s'novm , see Faction 2 , that any Boolean
function of order n<24 may be synthesised using threshold logic gates
togetherwith the necessary exclusive-ON and invertinggates necessary
to carry out the operations describedin Lection 2

It follows therefore that the optimised universal threshold
gate described in the previous section can be used in the synthesis

of any Boolean function of order n 4 . Note that functions falling

* 11 logic gates if the 5-input ON gate version is used.
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into the disjoint translationally equivalent class 8 , Appendix 5 ,
require two such gates , see also Section 2.6.5 . If the synthesis of
functions of higher than fourth-order is required this can be
accomplished by re-expressing the given function in terms of several
fourth-order functions and synthesising each of these in turn. Some
further research is necessary to determine the most suitable way of
doing this.

If the optimised universal threshold gate in its D.S.T.L
form 5 Fig, 44a, is inspected it will be noted that the propagation
delay from input A to the outputs is shorter than from input B to
the outputs . Similarly the propagation delay from input B to the
outputs is shorter than that of input C to the outputs,and so on.

If , say, only four inputs are to be utilised for a particular
synthesis it is clear that to minimise the'propagation delay only
the top four inputs should be employed. The increase of propagation
delay with choice of input is shown schematically in Fig. 43 by an
arrow.

The method of synthesising functions using this gate follows
closely the general methods of synthesis using threshold logic
described in Section 2 . The only differences being the use of
Operation 4 and the frequent use of disjoint spectral translation
to ensure that the input and output thresholds fall within the bounds
of the optimised gate.

In practice it is convenient to employ an optimised
universal threshold gate with inverted input capabilities. This
ensures that no external inverting gates are necessary at the
input to the gate to implement negative thresholds,see Section 2.5.4a.
Fig.44b shows the optimised gate with this capability . It would
also be convenient to have inverted outputs available but this

would result in an 13 pin pachage which is non-standard.
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Some examples of tlie use of the gate of Fig. 44b are given in
Appendix 6.

In practice it has been found that , in general , the total
number of gates and/or interconnections required in a logic synthesis
using this gate are considerably smaller than in a synthesis produced
by more conventional methods. The cost of implementing such designs
is thus smaller than in conventional methods. (This makes the
assumption that the D.S.T.L gate can be produced at a reasonable
cost. Consultations with integrated circuit manufacturers indicate
that this gate can be produced at a cost comparable with that of
conventional T.T.L.)

It is envisaged that a cost saving will also result if this
gate is used in Large-Scale-Intégration circuits.

Because of the advantages outlined above and also because the
methods of designing circuits with this gate are straightforward
it is hoped that this gate will , in future , become a standard

building block for digital circuit fabrication.
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3.2 A Cellular Aritlimotic Array with Variable Dynamic Range.
3.2.1 Introduction.

The research work described below was carried out*during
a general investigation of the properties of iterative arrays and
the ways in which such arrays could be represented by Boolean matrices,
see doction 1.5*%5 o

A particular class of these arrays , often termed
cellular arithmetic arrays ,has been investigated by several authors,
see references 6,32,33 » and present attractive alternatives to more
conventional arithmetic units when extremely fast operation is
required. Because these arrays are of an iterative nature they are
readily fabricated using Large-Gcale-Integration (L.G.I) techniques ,
and have the additional advantage that they may be readily extended
on a modular basis

A disadvantage of conventional arithmetic arrays is
that they produce more significant'bits] in their results than in
each of the numbers offered to them. The design described below
overcomes this disadvantage and embodies a principle which allows
for the multiplication of full floating point numbers.

Following the publication of this design , see reference
34 ,Brecon and Clair sho\/ed that arrays of this type may be used
in a digital computer design which employs far fewer separate
arithmetic instructions than conventional computers . See also
reference 35«

A provisional patent for this design was granted in
1970 and a full patent (51122/71), which includes certain additional

circuits to extend the versatility of the array , was filed in January
1573.

At the beginning of the research period.
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3.2.2 DoGign Philosophy.

Arithmetic units employing iterative arrays have recently
been investigated because of their speed and their ease of fabrication
by L.o.I techniques. To take full advantage of the L.3.I methods
they consist of tv/o--dir,iensicnal arrays of identical logic 'cells' |,
the interconnections between cells being identical and having
(ideally) no 'crossovers. All array progrcUiniing is 'edge-fed' to
avoid oVerlays.

The arrays function asynchroncusly and achieve a very
high computing speed determined solely by the cell and inter-cell
propagation delays.

Recent research has centered on integral arithmetic units
of thir* type, see refercncespR,33. The multipliers and dividers
developed produce many more significant 'bits' in their results than in
the numbers offered to them. In practice this means that truncation
and conversion to floating point format must follow , with a
corroG%)onding overall speed penalty.

3.2.3 Array Specification.

The multiplier described hero overcomes the drawbacks of
other systems outlined above and also has other unique features.

Two numbers , each liaving a binary floating point format,
may be multiplied 'together. The result is expressed as a binary
floating point number having the same number of significant 'bits'
as the multiplier or multiplicand.

'alternatively , by external programming , the
multiplication of two binary integers may be computed to an accuracy
determined by the size of the array.

Finally, the number of cells allocated to the calculation
of the exponent and the number of cells allocated to the significance

part of the result may be varied , within the bounds of the array size.
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For example , an initial calculation may require an answer of two
significant 'bits’ and an exponent range of 10 'bits' (2 ,
wdiereas a second calculation may require 9 significant 'bits'
n
and an exponent range of 3 'bits' (2 ). Both of these calculations
may be executed consecutively using the same (12 bit) array of the
type described below. The allocation of the cells employed for
significance and exponent calculation being determined by external
programming. This feature is termed 'variable dynamic range'.
3.2,4 Brief Design Botails.
The operation of an integral multiplier is very straight-
forward and is illustrated by Fig. 43 . The multiplicand is
shifted at each stage and then added to a running subtotal if end
only if the relevant multiplier 'bit' is 1 . The now subtotal and
the shifted multiplicand are then passed on to the next rank of
cells. This operation results in tlie number of significant 'bits’
appearing in the subtotal being increased by one at each stage.

Inspection shows that this operation is that of

conventional multiplication

1011 Multiplicand
101 Multiplier

0000 lst. Subtotal

1011 ?Iultiplicr bit 'l1', add

1011 2nd. Subtotal
0000 Shift Multiplicand times
01011 3rd. Subtotal
1011 Shift Multiplicand times
110111 4th. Subtotal . (Answer)

Generally the maximum number of 'bits' appearing in the
result is the sum of the number of 'bits' appearing in the multiplier
and multiplicand,

To reduce the number of significant 'bits' produced, the
non; design employs cells having a 'return shift' facility, see Fig. 46,
Thenever an overflow of the most significant multiplicand 'bit' and/or

subtotal carry 'bit' occurs the resultant multiplicand and subtotal
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v;ordG arc shifted one 'hit' by the next rank of colls, the least
significant 'bits' boinr; lost. ('OJruncation '). This results in a
square array. I.lach tine a return shift is carried out the exponent
of the result must be increased by one, This is accomplished by
moans of an identical array of cells ,set aside for this purpose,
to the left of the main array . This 'exponent portion ' of the
system is set aside by moans of external programming.

The logic to accomplish the return shift is contained in the

'lower part' of each cell and was designed using finite-state machine

theory, see reference 6 , .Specifically , if theinput , Fig. 46 ,
is at a 1 then inputs and y, become the new subtotal and
multiplicand 'bits' respectively ¢ Outputs and y* carry the

origin"*.! subtotal and multiplicand 'bits' to the next adjacent cell.

The 'upper part' of each cell contains the circuitry of the
previously described integral multiplier.

In order that a certain portion of the array may be set aside
to calculate the exponent , an inhibit 1lino ,E,is connected to each
cell. This lino a) inhibits both the shifting of information (by
return shift) into the cell and also the shifting of the output

multiplicand 'bit',and b) ensures that full addition (in the upper

part of the coll ) always occurs. A rank of such inhibited cells
will act as an adder for a subtotal input , external carry input
and'multiplicand input . The first rank of such cells is

employed to add the two exponents of the numbers to be multiplied

and succeeding ranks add to this result any overflows occuring from
the 'significance portion'of the array. This is achieved by a suitable
coupling of the output x.* lines to the external carry inputs. Gee Fig.
43.

j'Ug. 4? shows some logic design details of the required colls.
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In use care must bo taken to ensure that no overflow from the
exponent portion of the array into the significance portion of the
array can occur.

Fig. 43 shows an example of the array in use. The inhibit 1linos
have been set to give a significance range of 4 'bits' (27-1]) and an
exponent range of 4 'bits' (215), The numbers appearing within each
cell represent the inputs to the upper part of the cell , P,Q , and
are the multiplicand and subtotal (left-right) respectively.

3.2.5 Performance.

Since all return shifts depend upon the carry from the
previous rank they represent the greatest propagation delay within
the array. Since however, the return shifts operate in 'parallel' ,
that i¢ the return shift from one cell to its neighbour is
independent of any other return shifts taking place, the delay per.
rank introduced over that of an integral multiplier is that of only
two or three gates. In addition a small propagation delay is
introduced by the shifting circuitry of the lower part of each cell.

Overall the array can bo said to compare favourably with
that of a comparable integral multiplier.

3.2,6 The Prototype Array.

A prototype array*has been designed and built which
comprises 96 cells arranged,for test purposes, in an array of
dimensions o by 12 . T.T.L 7400 series D.X.L logic was employed
throughout. The logic design for each cell appears in Fig. 49.

The array has been found to function as nredicted.

* The logic design was carried out by the author. The design was
verified using a logic ojnalysis programme ('B.CA.P-see 1973 Internal report
University of lath.)The cells were manufactured by Jasmin Electronics
Ltd. The assembly and testing were carried out by T.Bond , University
of Bath as a final year project. Finances were provided by The Dept.

Electrical 'engineering, University of Bath.
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In its ilor-.tin” point configuration the array will function
fastest if the binary nunbers offered to it are most-significant- 'bit*
orientated, that is a 1 appears on the input of the array which
corresponds to the most significant 'bit' of tlie number. This ensures
that the shift command , input , in each row of the array is set
up with the least possible delay. Under these circumstances the maximum

time for the array to multiply two numbers is g:von by

T = + (S-1) e (2~.1)
where is the maximum propagation delay through a
cell from multiplier’bit’or subtotal ’'bit’
input to sum 'bit' or carry 'bit' output,
is the maximum propagation delay as for
but with shift command instigated.
S is the maximum number of significant 'bits'
being processed.

In the prototype array the predicted values for the above were

Po = 60 nS
= SO nS and, in the configuration used,
s =8

The expected maximum delay time was therefore T = 60 + 7 80 = 620 nS

The measured maximum time was $40 nS. The discrepency is probably
accounted for by differences between the manufacturer's estimate of
gate propagation delay times (possibly pessimistic) and the delay
times of the gates in practice.

The average power consumed by each cell,in the quiescent state , was
0.44 watts, ho figures are yet available for power consumption
during computation.

If these figures are extrapolated for an array capable of handling

929
nuribors of the order : 7 significant digits (decimal), range 10 j
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then the estimated time for multiTilication is 1.9 )u5 and quiescent
power consumption is approximately watts. The time for multiplic-
ation represents a considerable saving over modern conventional
multipliers.

In practice an array of the size just mentioned would
be more economically produced in integrated circuit form , several
cells being implemented by one of such circuits. It is unlikely
that the whole array would be produced as one integrated circuit
because of the difficulties in dissipating the heat produced.

An array of the same size as the one just discussed but
employing devices of low power consumption , eg. C.0.S.X.0.S.F.E.T's*,
could be produced as one integrated circuit 'chip' and would be an
attractive circuit for incorporation in modern'pocket calculators'.

Although the array described in this section does not
strictly come under the heading of a 'matrix method' , the
investigation of the properties of this , and like, arrays was
prompted by the need to fully understand the behaviour of general
iterative arrays in the light of Boolean matrix theory. It has
therefore been included as a piece of research closely related to
matrix methods.

In the final analysis , liowever, it has been found th.at
the representation of such arrays by Boolean matrices does not facilitate

their synthesis for reasons described in Section 1.1.9 ,p 46.

* Complementary-Symmctry Metal Oxide Semiconductor Ficld-dffect

Transistor.
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CHAPTER 4

General Conclusions and
Recommendations for
Further Work
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4.1 General Conclusions.

This thesis has presented some new approaches to logic synthesis
by matrix methods.

In Chapter 1 an investigation into the properties of Boolean
matrices,of a particular type, was described. It was shown that
the properties of the algebra associated, with these matrices give
rise to a method of analysing a function in terms of its dependence
upon ojiy chosen set of its defining variables. The exhaustive
application of this technique , using Boolean matrices, was shown
to permit the extraction of the prime implicants of several functions
simultaneously and to have certain advantages in this respect over the
method of Cuine-McCluskey. An iterative method for the synthesis of
Boolean functions, which generates optimum solutions on an exhaustive
search basis , was also developed. This technique enables partially
specified systems having multiple outputs to be synthesised using
any chosen logic modules as 'building blocks'. Other concepts of
general interest wore those of pro- and %iost-multiplicative operators
and the possibility of defining 'dependent' functions.

Chapter 2 was concerned with a matrix transformation technique
which enables the Badomacher/V/alsh transform of any Boolean function
to be determined. The choice of this transformation as a tool for
logic, synthesis arose from a search for techniques of synthesis
which do not have an iterative structure and which allow the logic
designer both to readily grasp the properties of the system to be
designed and also influence the resulting synthesis. It was shown
that certain pertinent properties of a Boolean function could be

gleaned from a study of the Badcmacher/’/alsh transform of that

function. Certain novel siiectral operations were developed which
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allow elegant syntheses of Boolean functions both in terms of
threshold and vertex logic. A straight forward method of gate
minimisation was derived. It was also shown that these operations
enable Boolean functions to be classified in a very concise way.
This classification showed that threshold functions play an
important part in the composition of Boolean functions. A novel
synthesis method based upon an approximate statistic was proposed.
The results of this method are , at present , very encouraging.
Further research into this topic is necessary.
Chapter 3 was concerned witli the rosea: ch work arising from

the wor]: of Chapters 1 and 2 . Of special interest was the development
of an optimised universal threshold gate which , under the operations
described in Chapter 2 , is able to synthesise any fourth-order
Boolean function havinge* an embedded or disjointly embedded threshold
function. Fourth-order functions not falling into this category
may be synthesised by using two of such gates. It also follows that
functions of order n >4 may be synthesised by several of such gates.
It is felt that this gate may , in future , become a standard modulo
for the design of logic circuits since , in practice , it has been
found that the use of this gate allows circuits to be designed at
a lower cost than is possible at present. The design procedures
for the synthesis of Boolean functions using this gate are
straight!orv/ard , following closely the methods of Chapter 2

The Boolean matrix methods of Chapter 1 allow for the
representation and synthesis of cascaded logic modules . This
property does not seem to be shared by the techniques of Chapter 2
however. It is felt that an investigation into the relationships
between those two disciplines may result in an approach to synthesis

which embodies the special advantages of both of them.
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The fact that , at least in the fourth-order case , inor.y Boolean
functions are characterised by only a small number of their spectral
coefficients nay indicate that,for higher-order functions,it may
be possible to completely specify the majority of functions using
only a small amount of the data space required at present. Tor this
reason , and also because of the existance of the 'Fast V/a.lsh
Transform ' it may be possible to synthesise functions , using the
techniques developed in this thesis , of a highor-order than has

been attempted wusing conventional methods.
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4.2 PecommOndationo for Further '.'ork.

1/ The trcuisformation toc}\niqucs of Chapter 2 , unlike the
Boolean matrix methods of Chapter 1 , do not seem to facilitate the
representation , and thus synthesis , of cascaded logic modules. A

cursory examination of this problem indicates that some form of
éonvolution in the Hademacher/V/alsh spectral domain is necessary
to represent such cascaded modules. Further investigation is
required to establish the relationships between the methods of
Chapters 1 and 2 in order that optimal synthesis methods for
cascaded logic modules , and indeed finite state machines , may be

established.

2/ The ability of Boolean matrix algebra to define 'dependent'
*
functions warrants further research , see Section 1.3*7 e The

property of one function influencing another appears to have

applications in adaptive logic systems.

3/ More research is required into the specification of ’‘don't
care ' minterms under the Bademacher/V'alsh transform. To date this
problem has only been given a small amount of consideration.See

Section 2.8.2.

4/ It is felt that gate minimisation methods for multi-output
logic synthesis under the Rademacher/V/alsh tra.nsform can be
developed with little effort. A theoretical approach to this

problem has beeii given in Section 2.8.1.

3/ The fact that the great majority of fourth-order Boolean
functions are characterised by only a small proportion of their
spectral coefficients is felt to bo very important. It indicates
that functions having a large number of defining variables may

be specified using a far smaller data space than is required at

A With certain restrictions
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present. Specifically , it may be possible to specify most functions
by means of the (basis) positions of their most significant spectral
coefficients. In addition , under disjoint-translational-equivalenee,
certain pertinent properties of a Boolean function may be evaluated
immediately from the properties of the 'class' in which the function
lies. To this end it is important that the disjoint-translational-
equivalent classes of functions of order n * 3 should be evaluated.The
results given in Chapter 2 for all fourth-order functions (and 1loss)
wore generated by classifying all the fourth order functions in turn.
This process took approximately 1? hours. This method becomes
impractical for functions of order n,). 3» (The estimated time

required for the classification of functions of order n=3 on this
basis is approximately 100 years I) This problem may be solved by
finding the number of functions which may be generated from the
(known) canonic characteristic threshold vectors,under disjoint-
translational-equivalenco, and then instigating a search (on a

random basis) for the remaining , non-threshold disjointly-

translationally-equivalent ,functions.

6/ For reasons explained in Section 2.7 further research
is necessary into the significance of the approximate estimator
e for functions of order n* 3 , and also for functions not having

disjointly-embedded threshold functions.

7/ It is known that functions not having disjointly -
embedded threshold functions may be synthesised if the function
is 'divided' ,soo Section 2.6.3* Optimal methods of carrying out
this division , and the role that such functions play in the

composition of functions of order n 3 * remain to be investigated.
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8/ The optimal universal threshold gate was developed towards
the end of the research period and only a small amount of time has
been devoted to the investigation of its properties. In view of its
importance in the low-cost synthesis of logic systems and the ease
with which such syntheses may be established , compared to more
conventiaidl methods , further research into the automated design

01 circuits using this gate appears to be of great importance.
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APPBUM;: 2
Tho Intirni'otation of focctrr-.1 Translation iii torrns of Field Theorv.

Tho spectral translation operation concerns itself with the

g nieration of a new function ?' (x*, . e ) from a given
function F(x., . . . , X ) , where x_' has the form

I ic n e
x £x_ U x 8 .. .0X and F(x., . . . =
':'v.@ b U ’:]1j ( I $x’iZ ! n)
F'(x*, . . ,x"» .o , ") . It is required to establish that a unique
function F'(x*, .. , , . . x*) 1is always generated under these

constraints. If this is so the validity of the spectral translation
operation is guaranteed for any Boolean function.
In order that a unique mapping between the two functions exist:

it is necessary that the functions defined by the set of defining

variables (x*, . . . . *”) are linearly independent. TIf this
were not so the expression F(x* , . . .. ,xN) =

F' (x*, . .M, e xN) would imply that the variables

(x*, . . ,x*, . .,x") wore not linearly independent , whereas in
fact they are. (They represent the minimum number of defining

variables necessary to define all points in n-spacc). A unique

mapping of F(xi, . .nm,, ‘m ,X") onto F’(x} .. ,x%/ .o« ,xn)

is therefore guaranteed provided that tho functions given by the

defining variables (x*, . . ,Xj* . . ,x”) are linearly independent.
Using Galois Field 2 , ( GF(2) ), theory it is possible to
represent the set of defining wvariables (x*, . . ,xl1, ¢ . ,x*) in

matrix form and establish the linear independence of each member of
the set.

GF(2) f cory applies to integers in the range (0,1) together
with the operation addition modulo 2. ( 0 ). Because a field is
being considered conventional matrix algebra may be employed

and the normal criteria of singularity and non-singularity applies
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to the linear independence of functions.
Under G?(2) the follovring relationships hold

1/ Multiplication

-
-
[

-

2/ Addition 'r'
040 = 1+1=0
0+1 = 140 = 1

3/ Subtraction is equivalent to addition.

In order that the linear independence, of a set of functions
may be tested it is necessary to establish that the matrix , in

GF (2), describing those functions is non-singular.

“dxample
set OI o.eiining v;iriables is given by (x* ,x* x . ,X;") , where
XD = x* © Xp . Are the functions corresponding to these defining

variables linearly independent *?

Expressing the problem in matrix form G?(2) gives

"1

OOO-

Xy = x!
F

In order that the functions corresponding to the defining

OO OoOR
O OoOpRpR
o R OO

variables are linearly independent it is necessary that the above
matrix is non-singular. ie. it has a determinant of value 1
Let this matrix be denoted by [a ].

Expanding the determinant of [Ajby the first column in the
usual way gives

1.
ho-expansion of this doteruinantby the

O O

0
1
0

= OO

first column gives
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l1.41. 10 = 1.1.fv(1.1) +(0.O)1r
01
= 1.1.{ 1 4 o]
= 111
= 1
That is Det.[A]= 1 , thereioi’e the defining variables are
linearly independent.
For the more general case idiere the variable is replaced
by a [ . 0 [A] ®BecocioG
A * * x 5 A A *
01000 .. .00
00 100 .« .00
oo0oo010 .. .00
000OO0OOOO . 01

whore * denotes a value of 0 or 1

Expanding the determinant of[A]about the first column gives

1.1000 . . «». 00
010 0 . . . 00
0010 . 00
0 000O00O0 . .01.

which again give a value of the determinant of [AJSS 1.

'ITb- aame result is obtained for tlie general case where x,_
is replaced by xé = x§ © %xa © xb © . . .0 xﬁé where the determinant
of[A ]is evaluated by expansion about the k th column.

It can be concluded therefore that the operation of spectral
translation maps a given function uniquely onto a new function. That
is , the linterms of the original function are perturbed in n-spaco

and no information about the original function is lost - it is

reconstructable.



198

The set of defining variables of a function are also termed
a Basiu3 and operations of the type considered arc often called Basil

Transformations. See also reference 29
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APPENDIX 4.

CANONIC CHARACTERISTIC WEIGHT-THRESHOLD VECTORS,

or CHOW PARAMETERS, FOR THRESHOLD FUNCTIONS
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" APPENDIX 6

Some Circuits Designed Using the s
Optimised Universal Threshold Gate.

X1>’(2
MAX N 00 o 1110
A ER
ol0]0171°
07071170
0l07071"0°
Compare with the solution of Fig.30
XaX
X3)(4 Togo 014 nm IO‘
0|0[11110
/1107170
u{0l11071
O[T T

X1
. \xJ
--' é X4
B Note disjunctive
translation.

Compare with Fig.31b.

1-(O UT.G) with complemented input capability,
see Fig.44Db. A6
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2/5 Circuit (Saving of 3 gates & 5
interconnections on Fig.38)

SUM

XI

X2

CARRY

Full Adder

26.2
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Output threshold 1 used

AG6.3
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