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SUMMARY.

Tho object of this thesis is to present certain matrix 
techniques which may be employed in the analysis and synthesis 

of binary combinational logic circuits* These techniques are 

readily implemented on the digital computer*

In developing these methods care has.been taken to avoid 

heuristic algorithms so that each technique has a firm mathematical 
foundation*

The first chapter of the thesis considers a Boolean matrix 

approach to logic analysis and synthesis. These matrices allow 

the rigorous and formalised representation of logic circuits*

An important property of these matrices is that they embody 
multiple-output circuit representation and that , together with 
certain matrix operations , they may be used in the synthesis of 
multiple output circuits on an iterative basis.

The second chapter of the thesis describes a matrix trans­
formation technique which has properties directly applicable 
to logic synthesis. This technique may be employed not only in 
the field of conventional logic design but also in the design of 
circuits using threshold gates. Certain transform-domain operations 
are used to synthesise logic circuits directly from the transformed 

truth-table representation of Boolean functions. These operations 
may also be used in the classification of Boolean functions. They 

may also be employed in the synthesis of multiple-output circuits 

and pattern recognition*
The third section of the thesis concerns itself with other 

research work initiated by the topics discussed in chapters one 
and two .Of special interest is the description of a universal 
threshold logic gate and its role in logic synthesis.
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(i) DEFINITIONS.
n the letter n will be used exclusively to 

denote the order of a Boolean equation, 

n is the minimum number of defining variables 

necessary to always unabiguously represent a 

Boolean function of order n .

♦ 1 ̂  i ̂ n will be used exclusively to denote the
i defining variables of a Boolean function of 

order n .

F(x ^,X2» . • ,x^) will denote any n th order Boolean function.

F.(x .̂ ,X2, . . ,x^) will denote a particular n th order Boolean 

function.

K
a point in n-space defined as follows : 

Let ^S> be the set of all possible unique
values of the vector x^,x^, . . ,x^J in the 
range 6,1 ; then each member of ,
1 ^ i ^ 2 ^  , is an n-tuple ^  , A particular n-

tuple ^  , called the j th n-tuple,is defined 

as y . , j = 2""'’x.j + a^Fxg + . . . + 2?x^ .

True minterm an n-tuple at which a given function has the 

logical value 1.

False minterm • an n-tuple at which a given function has the

logical value 0.

Canonical
representation

a method of representing a Boolean function 

where the n-tuples on which such functions 

are defined are always written in the same 
positions. The function is then said to be in 

* canonical form *. This term is also applied to 
the positioning of the spectral coefficients of 

a Boolean function.
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Truth table a canonical representation of a Boolean 
function. Each n-tuple is tabulated together 

with the corresponding value of the function. 
The n-tuples are written in order as :

5^0’ ^ ’ ^ 2 ’ • • • ' ̂ 2^-1
See Fig. 1a and reference 1.

Karnaugh map a canonical representition of a Boolean 
function. The map consists of an area divided 

into 2^ adjacent squares. Each square repres­
ents an n-tuple and contains a minterm. 
Squares with common sides differ only by a 
Hamming distance of one. See Fig. 1b and 

reference 1.

, x^ 1 • ,x ) will denote the value of an n th order Booleann
function at the n-tuple



(ii) LIST OF SYMBOLS USED.
In the approximate order in which 
they appear.

[ J ] Integer matrix.

Integer vector.

• Logical AND operator.

+ Logical OR operator.

Logical COMPLEMENTATION operator.
&
© Logical exclusive-OR operator (Non-equivalence)

© Logical not-exclusive-OR operator.(Equivalence)

Îa 'J Unit or Identity Boolean matrix.
0 . . Element of an integer matrix C appearing in the

[ ]

i th row and j th column.
ix [̂ cj ap

cl j th column vector of an integer matrix [cj
expressed in decimal notation.

^  A set.
(22 Inclusion

Intersection
U  Union

-1
Inverse Boolean matrix.
Tie , used to indicate related column vectors in 
conditionally related matrices.

J Matrix raised to exponent TX .
2

j R R th root of a matrix.

Operator matrix.

^  Parallel composition operator.

^Tj Rademacher/Walsh transform matrix.
^ R >  Set of spectral coefficients or spectrum,

[/v] Matrix in Galois Field - 2
|/\| Determinant in Galois Field 2.

ê Expected value.
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CHAPTER 1. 

Boolean Matrices.
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1.1 Introduction.

The type of Boolean matrices described here were first 

developed by J.O.Campeau in the late 1930's, see references 2,3 
and 4.

Campean was particularly interested in using these matrices 

in the analysis and synthesis of counting circuits and for this
/ Hreason considered matrices of dimension nX2 almost exclusively.

These matrices, whilst having properties analogous to those 

of conventional matrices , both in terms of structure and algebra, 
may be applied directly to the analysis and synthesis of logic 
circuits. They are particularly useful in the representation of 

cascaded multiple-output logic modules and have associated oper­
ations which are easily implemented on the digital computer.
1.2 Basic Concents.

1.2.1 Representations.
Consider the representation of algebraic equations under 

conventional matrix algebra :

Coefficient

Matrix
(1.1)Defining Required

Variables Functions

It will be recalled that the coefficients are arranged in a 

particular order so that,under matrix multiplication,the correct 

coefficient is associated with a particular variable , e.g. :

[ 3  2] X.,
X,

p] defines a single function P where

definesP = 3x^ + 2x^ . Similarly ’3 2” ^1 p’
-4 1 " Q

two equations P,Q where
and

3x^ + 2Xg
-4x.̂  + x^

= P 
— Q •

Now there is no reason why Boolean equations should not be
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FIG. I a: TRUTH TABLE

% 1̂ X2 X3 X4
0 0 0 0 0 0
1 0 0 o' 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
S 1 0 0 1 0
10 1 0 1 0 1
II 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 I 1 0 1

- 15 1 1 1 1 1

F ig . lb.: KARNAUGH AV\P

x , x ^

II 10
00 0 0 0 0

01 0 1 1 0
II 0 1 1 1
10 0 0 1 1

" ^ 4

^ ^ 3

P(Xl.X2p(3,X4)



13
represented in a similar way.

Consider . . c. c 1 x
[°1 °2 • • °i • • =  U J .(1.2 )

where . . ,x^ are the defining variables of a Boolean

function U = F(x^,x^, . • ,x^) and the coefficients c^ . . c ^
are the value of the function at each n-tuple ^̂  , see 'Definitions’

For example c^ is the value of the function at n-tuple or

when x.̂ = x^= . • x^= 0 ; is the value of the function at n-
tuple or when x.= x..= . . x  = 0 , x  = 1 etc •' I \ d n-1 n

Now it will be noted that the ordering of the coefficient 
vector is precisely that of the truth table representation of a 
Boolean function , -see 'Definitions’*

The example shown in Fig*1a. may therefore be written as :

=
?

X.

[ 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1  1.X.J 
0 1 2  3 4 5 6 7 8 9 101112 131415 ^2

where U is a Boolean function F(x^ ,x^,x^,Xji^).

The numbers appearing below each member of the coefficient 

vector represent the n-tuples ÿ / , 0 2^-1 . Because the coefficient
vector has a canonical form the ordering of these n-tuples is 

implied ; nevertheless it will be found convenient to include 

this information when the manipulation of matrices by paper- 

and-pencil methods is considered.

The representation of several Boolean functions is also 

possible , as in the case of conventional matrix algebra.
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Consider

— -
"̂ 2,u • ' V , u

u

* V . v =̂ 2 V

• •

• • • •

^2,z • • v . . _ • 2
- .

. . . (1.3)

n
which represents several n th order Boolean functions* 

In general the coefficient matrix will have p rows and*2^ 

columns,where p is the number of n th order Boolean functions 

to be represented.
 ̂ As an example,the representation of three second order 

functions is given below.
AThe functions U =  x^ © x^ = x^.x^ + x^.x^ $

V = x^.x^ ,

W = x^+x^

may be represented as 0 1 1 0 U
0 0 0 1 = V
1 1 1 0 c w .
0 1 2 3

In order that the values of a given set of functions may 
evaluated simultaneously for a particular n-tuplc the column 

vector of the coefficient matrix corresponding to that n-tuple is 

extracted.
In the last example the values of the three functions 

corresponding to the n-tuple , where x^=1 and Xp=1 , is given 

by : 0 1 1 0 1 0
0 0 0 1 1 _ =  1
1 1 1 0 0

ie. the functions U,V,v/ have the values 0,1,0 respectively

when x.̂ =1 , x^=1
By re-writing the previous example with each n-tuple
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expanded as a Boolean matrix this process may be carried out by 
inspection :

0 1 1 0  
0 0 0 1 
1 1 1 0
0 0 11 

10 1 0 matrix form of 
n-tunles

If the coefficient matrix is equal to the matrix of n-tuples 

the following matrix equation results :

, for n=2.0 0 1 1 x_ U
0 1 0 1 x% = V2

Clearly U 
V

will take the values of x.
X,

0 0 11 
0 1 0  1

X.

over all n-tuples , ie,

; for this reason the matrix
of n-tuples is called the Unit or Identity matrix and is denoted 

as [a ] . The Unit matrix has , by definition, n rows and 2^ 
columns.

In general
" xj, x^

(1.4)
^1 X
Xg X2• — .
• .
X Xn n

1.2.2 Natrix-Vector Multiplication.
It is now possible to mathematically define the operation 

which enables equations of the type

{2
. . . (1.5)

n
P J

to be evaluated. This operation will be termed matrix-vector 

multiplication.
Define:^ cj as a Boolean coefficient matrix having p rowS
n *and 2 ' columns,



16

Xn

as the defining variable vector having n rows,

P

as the function vector having p rows and

,n[̂a ] as the matrix of n-tuples having n rows and 2̂  ̂ columns. 

The evaluation of equation (1.5) is then given by

(x ,X , . . ,X ) = \J 0. I d  n

n
n

n
Q  (a 
k=1

1. . (1.6)

 ̂ ^ p
where © is the equivalence operator ,U  represents union over a 

field ,Orepresents intersection over a field andHrepresents 
intersection.

Equation (1.6) is interpreted in the following way :

(a, . © X ) has the logical value 1 iff. the vector x. is
k=1 ^

equal to the j th column of[A]. That is , the vector x^

X

X,

n
is

identified with the n-tuple corresponding to the j th column of [a]; 

this n-tuple is , by definition equal to ̂ ^ ^. Because no two 

n-tuples intersect in n-space this correspondence is unique.

X T  c . .niii (a, , © X, )f serves to extract the required
jii ^’^^(kii ^  \

member , row i column j , of [ c j  corresponding to the function 

F (x^,x^, . . ,x^) and j th column of [a^ .

Thence
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The general expansion of equation (1.6) for n=2 is;

Fi(x^,X2) = © x^).(a^^^ © x^) + ® ^M^'^^2,2 ® ^2^
+ c. ,.(a. X. ) • (a^ _ © x_) + c .'i,3’'"1,3 " "1"'"2,3 “ "2' " ® ® ^2^

1.2.3 Decimal Notation.

Boolean matrices and vectors may also be expressed in 'decimal 

notation ' . j\n example of this notation has already been used to

, j = 2^ ) X. + 2^ X x^ 4- . . + 2®x Xrepresent n-tuples. viz.  ̂ ^  ̂ ^
In general any Boolean matrix column vector may be expressed 

in decimal notation in the following way:

Let [̂ C j be a coefficient matrix having p rows and 2  ̂ columns,

n

then
k=1 . . . (1.7)

1 ^ n

where cj is the j th column vector of [ c ] expressed in decimal 
notation. The same technique can , of course , be applied to both 
vectors and matrices.

An example of the conversion of a Boolean matrix equation 
to decimal notation is :

ll 0 
1 J=1

0 1 1 0  
0 0 0 1 
1 1 1 0

[0 0 1 11 
0 1 0 1J

I i

, which may be expressed as

. The unit matrix , by virtue of the fact that it is the matrix 

of n-tuples, may be defined in decimal notation as

j-1 1 ^  j < 2 n . . . (1.8)
where al is the j th column vector of [a ] expressed in decimal 

notation.
The decimal notation is useful , not only as a shorthand 

method of expressing Boolean matrices , but also as a form which 
is convenient for the manipulation of such matrices by means of the
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digital computer.
1.2.4 Matrix-lletv/ork Topology.

A practical interpretation of Boolean matrix-vector multiplic­
ation is given in Fig.2. which corresponds to equation (1.5)»

One of the most important properties of Boolean matrices is 

evident from this example , ie. it is possible to relate the row 

structure of a Boolean matrix equation to the topology of the 

logic circuit which it describes. The convention adopted here will 

be to relate the first row (function) of a coefficient matrix to 

the upper signal path at the output of the corresponding logic 

module , the second row of the coefficient matrix to the next- 

to-upper signal path at the output of the corresponding logic 

module , and so on. The same convention will be adopted for the 
defining variable vector and the corresponding logic module 
inputs.

1.2.5 Matrix Multiplication.
It is now possible to develop an operation termed 'Boolean 

matrix multiplication' which corresponds to the multiplication of 

conventional matrices.

Consider the identity [^J[^ ]
x^

n
and let [b J[c ] x  ̂

x_

= [d]

n

. . . (1.9)

n

represent a pair of cascaded logic modules as

shown in Fig.'3* where the modules B and C correspond to ^Bj and[cj 

respectively. The dimensions of the matrices [b]j[̂ C j and [d] follow 

from the discussion of the topological relationships above, 

vis. [ c  ] will have rows and 2^ columns,

[b ] will have p rows and 2^ columns
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[ c ] ;
xn

=  R

Fig. 2

Fj ( x-|,.. jXpj)

fp(X-[, . . *jX|«j)

, 1̂

B
. 1

C

n

B
=  R

Fig. 3
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and ji/ill have p rows and 2^ columns.

It should be noted that any deviation from this dimensioning 

results in a system which cannot be implemented.

A method of evaluating equation (1.9) is to first compute

[ 0 > ,

Xn X*

. . . (1.10)

Then equation (1.9) may be expressed as

X»,w Xn
. . . (1.11)

Expressing equation (1.10) in the form given by equation (1.6) ;
^n

=U c. . n
3=1 ft ] • . . . (1.12)

Using the same method,equation (1.11) may be written as :

1

Now from equation (1.13) 
b = d when; 

and from equation (1.12)

. = X, and a. = x

(1.13)

r,m r ,3 * '"k i,m i

X! = C ,

whence

d . = b

when: a, . = x.k ,3 k

iff. a. = 0 and a, . = x. . r ,3 r,m i,m 1,3 K,j k
The last equation is important because it enables the equation

1̂ b][c] = jto be evaluated by again employing the general form

of equation (I.6).
ie. given d . = b when a, = c. . then r ,3 r,m i,m 1,3

.n w

V i - y . v . "  Q “i.
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/

Equation (1.14) may be interpreted using the same arguments 

applied to equation (1.6) ; The j th column vector of^cjis identified 

as the m th column vector of the unit matrix [a ] ; the j th column 

vector of [o] must then be equal to the m th column vector of [b "] .

An example of matrix multiplication is now given; 

Evaluate [b J[c ] x ^1 = ] x^ 1 where [ b ] =J
and [ c ] = 1 0  0 1*]

0 0 1 lj .

1 0  1 0  
0 0 1 1  
0 0 0 1

For convenience the unit matrix , or matrix form of n-tuples,is
written below [b ]: 1 0  1 0  

0 0 1 1  
0 0 0 1
fo 0 1 1 Î
.0 1 0 1 J

Now the first column vector of[c]corresponds to the third 
column vector of ||aJ s o  that the first column vector of [D]is 

equal to the third column vector-of [s] . Similarly the second 

column vector of [c] corresponds to the first column vector of
[ a ]s o  that the second column vector of [bJ is equal to the first 

column vector of , and so forth. The complete solution
together with the necessary operations can be shown as :

r ü
1 0  1 0  
0 0 11

Lo 0 0 1 _

[ § n i }

Fi 0 0 1 ] x J  _ 
Lo 0 1 l j  x̂ J “

1 1 0  0 
1 0  0 1 
0 0 0 1

X.

The same equation expressed in decimal notation is

[4 0 6 3][2 0 1 3 ] X., =  [6 4 0 3]
0 12 3 "̂2

The implementation of this example is shown in Fig.4.
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In general it can be shown that the operation of matrix 

multiplication is not commutative , ie.[B][c] / [c][b]- . To show 
this consider the equations = [ D ] . • . (1.15)

and [cJ[b] = [ d] . . .  (I.16)

Let <B^ , ,<fD^ represent the sets of column vectors of [B ] ,

[ c ]  and [d] respectively.lt is required to establish under which 

conditions equations (1.15) and (1.16) are simultaneously valid.

From equations (1.l4) and (1.15) a necessary condition is that

<D>C<B> . . . (1.17)
and from equationsC1.14) and (1.16) another necessary condition 

is that <B>C<C> . . . (1.18)
Equations (1.17) and (1.18) imply <C>n<B> =<D>vFnich , in 
generql,is not true.

One notable exception is[Aj[c] = [ c ][A] , where[c]is any
coefficient matrix and [a ] is the unit matrix.

,It can be shown that the associative law holds however , 
eS.[B|o][c]]= [[b ][c ][d ] etc.

1.2.6 Basic Properties Reviewed.

Several properties of the Boolean matrices and associated algebra 
are now noted.

1/ The algebra is similarly structured to that of conventional 
matrix algebra , having operations analogous to both vector-matrix - 

and matrix-matrix multiplication.
2/ The structure of the matrices has the important property 

of defining-logic modules not only in terms of functional 

behaviour but also in terms of input/output topology.
5/ The algebra is well suited to the description of multiple- 

output logic modules and may be used to evaluate the overall 

transfer function of cascades of such modules.

\
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F|(x ^.X2) 
F^( X-|,X2) 

Fg(
B C "

F|(x^,X2)

F^(xi;X2)

Fig. A

F-|(x-|^.,Xp)

FpCx-j,. jXp)'

1 xi

B 1
1 c

^  Xo

T1

B

a  .

r "1

A  I

CO

,n

X

n —  P

,n

D

Fig .5

n
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4/ The matrices have a form well suited to manipulation by the 

digital computer.

Reference 5 should be consulted for further examples of the 

basic operations described in the previous sections

1.3 Further Properties.

1.3.1 Singular and Non-singular Matrices.

Before proceeding further it will be necessary to classify 

Boolean matrices into two categories , namely singular and non- 
singular.

A singular matrix is defined as a matrix having at least 
two column vectors identical.

A non-singular matrix is defined as a matrix having no 
column vectors identical - a special case is the unit matrix [̂ Â  .

An analogy can be drawn between the properties of singular/ 
non-singular matrices for both Boolean and conventional matrices 
as v;ill be shov/n in the discussion of inverse matrices.

1.3*2 Dimensioning.

Consider the Boolean matrix equation

= [ d ]  X.,

^2

It is now convenient to investigate the relationships between the 

dimensions of the matrices and [d ].

Nov/ the system under consideration has n defining variables ; 

therefore both[c]and[D]must have 2^ columns since they are defined 

on 2^ n-tuplos ; see also equation (1.6). Suppose that[c]has 03 

rows, ie. it describes a module with 63 outputs . Then [b } must be 

defined on 63 inputs ; see also equation (1.14) . It follows that
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[b J has 2 columns* Now if [d ] has p rows,corresponding to p 

outputs,then [Bjalso has p rows. These general dimensions are shown 

in Fig.5,p23.
In order that equations of the type discussed above may be 

solved given only the matrices[bJ and [dJ or [ c ]  and [cjit is 

necessary to introduce the concept of the inverse matrix*

1*3*3 The True Inverse.

The inverse of a matrix , say [ c ] ,  is written as [ c ] ~ ^  and is 
defined by :

[ c ] [ c ] " i  â [ a ]  â [ c ] " ' ’ [ c ]  . . .  ( 1 . 1 9 )

where [ is the unit matrix.

Let [ c ]  have W rows and2*^columns , then equation (1*19) is 
dimensioned as : _

%[ = [a ] . . .  (1*20}

and . -2^ ,
C y [ c  ]  = [ a ]  . . . ( 1 . 21)

Equation (1.20} implies that [a] has W  rows whilst equation 
(l.2l) implies that [a] has 2^ columns. The unit matrix A however, 
has n rows and 2^ columns by definition. It follows that 60 =.n .In 

order that equation (1.19) shall hold therefore [cj must have n 

rows and 2^ columns. Similarly [ c ] ~ ^  must have n rows and 2^ 

columns. Equation (1.19) is thus dimensioned :

A [ c ] - ^ [ c ] - ^  = A [a ]  = i [ c ] - ' ’ 5[ c j

Now from the arguments used to develop equations (1.1?) and 
d.lO} it follows that in equation (1.20) : <A>C<C> , and in

equation (1.21) : <A>C<C \  where <A>,<O, < C  V  represent the sets of
column vectors of [a],[c],[c2  ̂ respectively. Since[a],[ c ] , [ c ]   ̂

have the same dimensions and [a] is non-singular then <A> = <C^ =

and both [ c ]  and [ c ] " ^  are non-singular.
Two necessary properties of inverse matrices are therefore :
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1/ They are non-singular , as are the matrices from which they 

are derived.

2/ They have a row/column dimension ratio n/2^, as do the 
matrices fron which they are derived.

These matrices will be termed *true inverse matrices ' to 

distinguish them from other types of inverse matrices to be described 
later.

Now , by substitution in equation (1.14), equation (1.21) may 
be expressed as ;

1 4 r < n  $ . . .  (1.22)
i< j c a “ .

That is a .= c when a. = c. . , which may be interpreted r,j r,m i,m i$ J
as follows :

If the j th column vector of[c] is equal to the m th column 
vector of[a ] then the ra th column vector of[c]~^ is equal to the j th 

column vector o i [a ].

Consider the following simple example :

Given [c]= [ 2 3 1 0 ] , [a]= [ o  1 2 3 ]
construct [ c ]  ^ .

Now the first column vector of [ c ]  is equal to the third

column vector of [a ] so that the third column vector of [c]~^ is

equal to the first column vector of [a ] , and so on.

This gives the result

[c]  ̂ = [ 3 2 0 1 ] , which may be verified from

equation (1.20). viz.

[ c ] [ c ]   ̂ =[a] . . .  ((1.20) repeated)

that is [2 3 1 o ][3 2 0 1 ] = [0 1 2 3 J 
0 12 3
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This procedure is readily implemented on the digital computer 

and may also be executed by inspection •

It is now possible to show that the equation

fBj[c] = [d] . . .  (1.23)
is equivalent to [b ] = [”d ][c ]””* . . .  (1.24)

where [c]is non-singular and has n rows and 2̂  columns , whilst

[d ] has rows and 2^ columns.ie.[c]"^ is a true inverse.
Proof;

Using the general expression for matrix multiplication (eqn. 

equation (1.23) can be expressed as
2^

1 ^ r ^ ,
1 <2*,

and equation (1.24) can be expressed as

1 ^ W  ,
1 < m ̂ 2^.

. . . (1.23)

. . . (1.26)

Now.from equation (1.23): d . = b when a. = c. . ,r,m i,j
and from equation (l.2o) : d . = b when a. . = cT^r,o r,m i,o i+m
In order that equations (1.23) and (1.24) are equivalent it is

therefore- necessary that a. = c. •. when a. .= cT^ . But thisiiHi 1 , J 1,0 i,m
is exactly the condition which holds if [ c ]   ̂ is a true inverse, 

as shown by equation (1.22).

Equation (1.23) is therefore equivalent to equation (1.24);

Q.E.D.

It can also be shown that equation (1.23) may be expressed as 

[ c ]  = [b]"”'[d] . . . ( 1 . 27 )

From equations.(1.23)1(1.24) and (1.27) it can be concluded 

that when a matrix equation is re-expressed in terms of the true
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inverses of its components , pre- and post-multiplicative ordering 
is preserved.

For example , in equation (1.23) the matrix [c] post- 
multiplies [b] and in equation (1.24) [ c ]   ̂ post-multiplies [d] •

This is a property which is also found in conventional matrix 

algebra.

An example of the use of the true inverse matrix is now given i
»

A logic system is described by the equation

= [b]

0 1 0 1 1 0 1 0 and [ D ] = " 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0
1 1 0 1 0 1 0 0

where [c] =

Find the matrix [s] (if it exists).

Solution
Convert the system equation into a form which enables 

[b ] to be evaluated :
[ b ]  = rD][cj-',

ie. [c]  ̂ is required.
Inspection of [ c ]  shows it to have a rov//column ratio

of n/2^ and in addition it is non-singular.[c]  ̂ may therefore be

evaluated.
Express [c] in decimal notation and evaluate [c]  ̂ from 

= [a ] by inspection :

[ c ] ~ i  [ 1 7 2 5 4 3 6 0 ]  = [ 0 1 2 3 4 3 6 7 ]

[7 0,2 3 4 36 1 ] [1 7 2 5 4 3 6 0 ] = [0 1 2 3 4 3 6 7 ]
0 12 3 4 5 6 7

ie. [c]”'’ = [ 7 0 2 3 4 3 6 1 ]

Express [o] in decimal notation and evaluate [Bj from

[b ] = [d ][c ]-^ :
[ b ]  = [ 0  3 3 1 3 0 1 2 ] [ ?  0 2 5 4 3 6  = 0 3 0 3 1 1 3 ]

0 12 3 4 5 6 7
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This result can be checked by substitution in the original 

system equation.

The above example illustrates that the true inverse matrix 

may be used in logic synthesis. For example , in the above , [d ] 

may represent the transfer function of a required logic system 

and [c] may represent an available logic module. The example shows 
that [c] may be employed in the synthesis of [d ] giving a remaining 

module [b ] to be synthesised.
Of course it will be appreciated that in general the logic 

module corresponding to [c] in the above example is not likely 
to have a transfer function described by a non-singular matrix 

having the correct dimensions which ensures the existance of a 
true inverse. The effect of relaxing the restrictions applied 

to the evaluation of inverse matrices is therefore considered 

below.
1.3.4 Valid Equations.

In order that criteria may be developed which allow the 

evaluation of the inverse of matrices not having the special 

properties necessary for the evaluation of the true inverse , 

it is first convenient to determine what constitutes a valid 

matrix equation.
Recalling the matrix equation

[b ][c J = [d ] aJid the interpretation of

equation (1.l4),
viz. d . = b when a. = 0 . . (over the requiredr.m i,m 1,0 limits ),

the criteria which ensure the validity of the above matrix 

equation can be established.
It has already been established that one necessary condition 

that an equation of the above type shall be valid is that it has
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allowed dimensions. This will be assumed.

Consideration of the matrix [ c ]  in the above shows that if 

two column vectors of [ c ]  are identical then the two corresponding 

vectors of [d ] must be identical.

ie. if c. . = c. , = a. then d . = d , = b1.3 i,k i,m r ,3 r,k r,m
However if two column vectors of [ c ]  are different then the two 

corresponding vectors of [d ] may or may not be different , 

depending upon the composition of [b ] .

ie. if c. . = a. and c. , = a. _ then d . = b1.3 i,m i,k 1,1 r ,3 r,m

and d , = b .. where b may or may not be r $ K. PfX r ) in

equal to b _ .r,l

^These observations give rise to ;

Criterion 1.

A necessary condition that the matrix equation [ b ][c ] = [d ] 

shall be valid is that if [ c ]  is singular then the identical 

column vectors of [c] shall correspond to the identical 
column vectors of [d ] .

ooOoo

Consideration of the matrix [b ] in the above equation shows

that the set of unique column vectors of [u] must appear in the

set of column vectors of [b J since d . = b when a. = c. .r ,3 r,m i,m 1,3
It follows that [ b ] must have at least as many unique column

vectors as there are unique column vectors in [d ] • In addition

[ b 'J may be either singular or non-singular.

These observations give rise to :

Criterion 2.

A necessary condition that the matrix equation [b ][c ] = [ D ]

shall be valid is that the set of unique column vectors, of [d J
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shall appear in the set of column vectors of [  B] .

ooOoo

Now if either Criterion 1 or Criterion 2 is satisfied together 

with the dimensional restrictions, this is sufficient to guarantee the 

validity of a matrix equation of the type described above.

Specifically if , in the above equation, [ C] and [ D]are known 

and satisfy both the dimensional restrictions and Criterion 1 , then 

the matrix [ B ] may always be constructed. The same argument may 

be applied to the construction of [ O ] given [ B ] and[ D] under 

Criterion 2 and the dimensional restrictions.

Since the matrices constructed under the above criteria may 

be singular or non-singular it follows that it should be possible 

to figd the inverse of a singular matrix providing the result is 

only applied to valid matrix equations.

1.3*5 Inverse of Singular Matrices.
Let the inverse of a singular matrix be defined from :

[c][c]”  ̂ = [a] . . .  (1.28)
The evaluation of [cj  ̂ , where [̂ cj is singular is best 

illustrated by a simple example.

Sup'DOse that 1 C1 = fl 0 0 0"1 , or in decimal notation
 ̂ Li 0 1 lj

[c] = [3 0 1 l]
Substitution in equation (1.28) gives

[3011 ] [c ] ' ”' = [ 0123]
r n O  ' 2 3 r -,Since I CJ has two rows it follows that I A I has two rows and

2^ columns, therefore ĵ c]  ̂ must have 2^ columns and two- rows.

Now by inspection it is clear that the first column vector 

of must give rise to the value 0 , which is the first column

vector of |^A] , when [cj  ̂ is multiplied by [cj. The only column 

vector of [cJ having a value 0 is that column vector corresponding
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to n-tuple 1. Consequently the first column vector of [̂ cj  ̂ must 

have the value 1•

The second column vector of ĵ cj  ̂ must give rise to the value

1 when [c]  ̂ is multiplied by [cJ • But ^cj has two column vectors 

with the value 1 , these appear at n-tuples 2 and 3 • The second 

column vector of [̂ C j  ̂ may therefore take the value 2 or 3*

The third column vector of ĵ Cj  ̂ must give rise to the value

2 when [̂ cj  ̂ is multiplied by |̂ c] • Now no column vector of value

2 appears in [ c J  so that the third column vector of ĵ c]  ̂ is 

given the unspecified value •

The fourth column vector of [cJ  ̂ must give rise to the value

3 when [cj ' is multiplied by [cJ • Now ĵ cj has the value 3 only 

at n-tuple 0 ,consequently [c]  ̂ must have its fourth column vector 

equal to 0.

This gives the result :

[5 0 1 l ]  [ l I  ,  o ] = [o  1 2 3 ]
0 1 2  3

where 13 1 * J “  [  ^

Now this inverse matrix may be employed in the evaluation of 

the following system :

Given [sj^c] x^ = [d ] x ^
X,

where

or in decimal 
notation

and

or in decimal 
notation

evaluate [ b] .

[ c l  = h  0 0 Ô]
L1 0 1 1J

[ c J  = [ 5 0 1 1 ]

[ d ]  = ro 1 1 ii
|i 1 0 oj

[d] = [1 3 2 2 ]
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Solution

Substitution in the equation ['b J[c J = [d J gives

[ b ]  [ 3 0 1 1 ]  = [ 1 3 2 2 ]

This equation satisfies Criterion 1 and is dinension- 

ally correct. [ bJ may therefore be evaluated from [sj =

Now [c]  ̂ has been evaluated as ^ * o]. Substitution 

in the above equation gives

W  = [j 3 1 ^ [ 1 1 • 0]

= [3 2 .  l j

This result may be checked by substitution in the given 

equation : [3 2 * ll [3 0 1 ll x = fl 3 2 2] x .
S 1 2  3 4\ 4

 ̂ Note that the symbol **' is used to indicate that the

column vector may take any value. This must be so in the above 

equation since the relevant column vector is not involved when [*C*j 

is multiplied by [hj. However, in order that [b J shall represent 

a real system,the value of ’** must lie v/ithin the dimensional 

restrictions of [b ] •

Matrices having column vectors with more than one 

possible value will be termed ’multi-valued*.

The fact that the singular inverse of a matrix may 

always be used to solve matrix equations which are valid under 

Criteria 1 and 2 together with the dimensional restrictions 

can be proved using methods similar to those applied to equations

(1.22),(1.23) and (1.26) .

In the previous example the inverted matrix had a 

row/column dimension ratio of n/2^ , but this is not a necessary 

condition for the evaluation of inverse matrices as is illustrated 

by the following example.
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Given = [d ]

where [b] =

and w  =

or in decimal notation

or in decimal notation

0 1 1 1  
1 0  1 0  
1 1 0  1
3 5 6 5 ]
1 0  0 1'
1 1 1 0  
0 1 1 1

= [6 3 3 5 ]
find [ c j  •

Solution

Both [b J and [d ] have 3 rows , the equation therefore 

has the correct dimensions.

The set of unique column vectors of [d ] are ^3,5,6^ 

which appear in [b J .

The equation is therefore dimensionally correct and 

satisfies Criterion 2 , it is thus a valid equation.

Evaluate |^Bj~^ from “ [A j  by inspection :
* * * Q  *

0 1 2 3 ^
Note that [b ] has 3 rows therefore [a J has three rows

and columns . Then [sj  ̂ has 2? columns and 2 rows.

Find [ c j  from [ c ]  = [ b ] ~ ^  [ d ]  :

[ c j  = r ,  * « 0 * 1 2 { ] [6  3 3 3 ]

0 1 2  3 4 5 6 7
= [ 2 0 0 1]

This result may be checked by substitution in the given

equation : I? ^ ^ ^ ̂  3] ^l] “ ^ ^ ^1
0 1 2  3

[ 3  5 6 5 ] [  * • * 0 » Î  2 • ]  = [ 0 1 2 3 4 3 6 7 ]

X,
"J
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1,3*6 Multi-valued Matrices.

The study of the composition of inverse singular matrices 

has resulted in the consideration of multi-valued matrices. It is 

of interest to consider the more general aspects of multi-valued 

matrices in order that systems specified with 'don’t care’ conditions 

may be manipulated.

Consider the following equation :

, where * *’ denotes

a don’t care condition ( Ô or 1 ). For example F.̂  (x^ ,x^ ,x^) may 

take the value 0 or 1 at n-tuples 2 and 7 *

In decimal notation this equation may be written as

1 0 * 1 1 0 1 * X " = F l
0 0 1 1 1 1 1 1 Fg
* 1 * 0 0 1 * 0 Â0 1 2 3 4 5 6 7 3 3

^1 ^1 since ,for example,
^2 &
"3 ^3

2 may take any of the values 0 0 1 or 1
1 , 1 J, 1 1
0_ 1 0 ' 1

For the general equation = [̂d J it has been shown

that d . = b r,j r,m when a. = c. . (over the allowed
dimensional limits)

Nov; sunpose that | B is multivalued where b has"  ̂ L J r,m
either the value ^  or B , then d . will also take the value

' J
« 0 T  A when a. = c. . .1,0

Similarly if C is multi-valued where c. . = a. orL J 1,0 i,m
c- . = a. T then d . will take the values b or b _.1,0 1,1 r,o r,m r,l

It is therefore possible to apply the methods of Boolean

matrix algebra to general multi-valued matrices without recourse 

to special techniques.

An important property of multi-valued matrices is that it 

is possible to use them to define relationships between functions.
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Consider the following equation :

0 = F.

which may be written as either 1 0 0 o’’ X '
= a0 1 0 1 x:0 1 0 0 d.

0 1 2 3
1 1 0 6 X.

^ 40 1 0 1 x2
0 0 0 0. d.

0 1 2 3

or

Inspection of the last.two equations shows that the function 

is related to the function F^(x.^,x^) . Specifically ,

at n-tuple 1 , Fj(0,1) has the value 0 only if F^(0,1) has the

value 1 and vice-versa •

The given equation therefore defines two dependent functions
•tand in this respect differs from the type of multi-valued matrix 

considered so far.

1.3.7 Conditionally and Unconditionally valid equations.

Some care must be taken when manipulating multi-valued matrices 

to establish the correct interpretation of the functions they 

represent.

Consider the following equation '

[ b ]  [ 2  1 .  1]  x A  = [ 1 3 * 3 ]  X.,'
X-

Now this equation may be written as

[ b ]  [ 2 1 . 1 ]  x 1 = [ 1 3 . 3 ]  x ]

or [ 2 1 .  3J X j  = [ 1 3 . 3 ]  X^

In either case a valid equation is formed under Criterion 1 • 

Such an equation is termed'unconditionally valid'.

The matrix [b J may then be evaluated in the following way :
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For the first form of the equation [bJ = 3 3] [2 1 * iJ

and for the second form [ b J  = [ 1 3 * 3j|[2 1 * .

Computing the required inverses from = [a J by-

inspection : firstly [2 1 * ^ ^ *J = [̂ 0 1 2 3J

and secondly [2 I * 3||[*1 0 3 j = [ o i 2  3] •

ie. [2 1 * = [* 1 0 *] and [2 1 * 3J 1 0 3J

Evaluating^Bj from [b J = for both cases :

. ^ t o i

= [ * 3 1 *]

[ b ]  = [ * 3 1  3]
Now for both forms of [ b[| to satisfy the original equation 

the fourth column vector of [b J must satisfy both values and

. Since I * I represents an unspecified vector which includes

the value ’3* the fourth column vector of [bJ must be constrained 

to take the value '3’ •

The original equation can therefore be written as :

[* 3 1 3][2 1 * 
0 1 2  3

i] = [ 1 3  * 3j  x;

which may be checked by inspection.

Not all equations are unconditionally valid however. Consider 

the following equation :

W [ 2  0 • 2 j  = [ 1 3 *
X,

This equation may take any of the following four forms ;

[ b ]  [ 2  0 * 0 ]  = [1 3 • 1]  x |

^2 ^2
[ b ]  [ 2 0 * 0 ]  x j  = [ 1 3 * 3 ]  x^-

X2 Xg
[ b ]  [2 0 • 2j  x .,1 = [1 3 • 1] x 1̂

x̂ l
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[ b ]  [ 2 0 . 2 ]  %; = [1 3 * 3] x|

The application of Criterion 1 shows that only the second and 
third forms of this equation are valid.

This equation will be written as

[ b ]  [ 2  0 • | ]  x 3 = [1 3 * 5 ]  X., where the tie

symbol is used to indicate that certain multi-valued column vectors 
are related. The expression above indicates that 'O' in one matrix 

implies '3' in the other whilst '2' in the. first matrix implies 
'1' in the second*

Matrix equations of this type will be called 'conditionally 
valid* .

In the above example the matrix [Bj may be evaluated ( for the 
valid forms of the equation ) using the same method described in the 

previous example. This allows the original equation to be written

= 11 3 • f ]  x '[ 3  * 1 ” ] [ 2  0 
0 1 2  3

as

Another example is as follows :

[ b ]  [ 3  7 % ^7 ] x̂ -
where the

values'4' or '6' in the first matrix are related to the value '3' 

in the second matrix . Also the value '3' in the first matrix is 
related to the value '2' in the second matrix.. This gives the 

result : ______

[ • • • 2 5 * 5  3][3 7 '!''7] x' 
0 1 2  3 4 5 6 7

X.

= [2 3 ( 5 ) 3 ]  x^
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1.3.8 Matrices Raised to Exponents.

It has been shown that the multiplication of two Boolean matrices 

can be interpreted as a cascade of two logic modules. Consider the 

case where the two logic modules are identical, each being represented 

by the matrix [cj . The overall transfer function of the system is

then given by [cj[cj x^

Xn n
.For convenience this equation may be written in the form

2

Xn n
In practical terms it is clear that [cJ must have a row/column 

ratio of n/2^ . If this were not so a situation would arise whore 
the number of outputs from one module would differ from the number 
of inputs to the next , which is'topologically inconsistant. This 
also means that the number of functions generated by the cascade is

u .■ See also Fig.6 •
In general TT such cascaded modules may be represented by :

Xn Fn

. . . (1.29)

The expression [c] in the above will be refered to as raising 

the matrix [c] to the power 7T . ie 7\ is an exponent.
Consider the effect of raisingthe following non-singular 

matrix in power.

[Cj3

[3 0 1 2 ]
[3 0 1 2] [3 0 1 2] = [2 3 0 1]

[c]2 [c] = [2 3 0 l][3 0 1 2] =[l 2 3 0]
etc.
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TT

n

TT

n

Fig. 6

«V,X)

yjT

Fig.7
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For convenience this process may be expressed by means of a 
■Dov/er table :

MATRIX TT
0 1 2 3 0
3 0 1 2 1
2 3 0 1 2
1 2 3 0 3
0 1 2 3 4
3 0 1 2 5
2 3 0 1 6

• •

where any matrix raised to a zero exponent is defined as the 
unit matrix.

From the previous discussion of true inverse matrices it is 
possible to construct the negative part of the power table for the 

above example using the definition

[ c ] - =  [ c ] "

-1

. . . ( 1 . 30)

The complete table then becomes :

MATRi:( 7\

% 2*3 0 -3
0 1 2 3 -4
3 0 1 2 -3
2 3 0 1 -2
1 2 3 0 -1
0 1 2 3 0
3 0 1 2 1
2 3 0 1 2
1 2 3 0 3
0 1 2 3 4
3 0 1 2 3

• •

Mow it can be shown that the additive law of indices 

holds for this algebra.

Consider the equation ^ ~
which may be expanded as :
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[ [ » ]  w  • • • w ] [ [ = ] - n ' r  • • ■ w - ’ i  -  w
1 2 . . . P 1 2 Q

Using the relationship  ̂ ~ [_̂ J this equation may be
expressed as ;

, [ W W  • • [cj] i ]̂ [ bVb r > • [c]-'] = [r]
1 2

or
. P-1 2 5

[cf-^ = [e]

Q

After applying this technique P times the following result 
is obtained :

lO rnl-(Q-P) _

or

[C]C = [H]

[ c f -<5 =  [ e J

This gives the result

[ c f  [ c P  = [ c f - ^

In the previous power table for example

[c]' [c]-5 = f 5 f C ^ [ 5 ° 1 2 ]
= [1 2 3 0 ]

= [c]-'
Another example of a power table is as follows

. . . (1.31)

MATRIX TT

2 1 0 3 -3
0 1 2 3 -2
2 1 0 3 -1 .
0 1 2 3 0
2 .1 0 3 1
0 1 2 3 2
2 1 0 3 3

• •

In this example the value of the matrix at n-tuples ' 1 and- 3 

remain the same when the matrix is raised in power to any positive
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or negative exponent. Such column vectors , which in the defining 

matrix have the property of being identical to the n-tuples on 

which they are defined , will be called eigenvectors •

If a cascade of the type shown in Fig. 6 has a set of inputs 

corresponding to an eigenvector then it follows that the outputs of 

each of the cascaded modules will also have that value, 

eg. in the previous example

' [ 2 1 0  3]^ 1] = 1]
-i7Tor [1 0 0 1 ] 0] = d]

[O 1 0 1J lj
for all values of TT

Now Hennie , see reference 6 , has shown that such cascades 

may be considered as transformed finite-state machines. If such a 

machine is started in a state corresponding to an eigenvector then 

it will remain in that state.

It is of theoretical interest to note that the algebra upon 

which a power table is constructed forms a group with Boolean matrix 

multiplication as the group operation. A defining matrix then forms 

the generator for a sub-group. Because these sub-groups have a 

single generator they are cyclic. This is evident from the examples 

of power tables so far considered. Such cyclic groups are abelian, 

ie. for any two members of the group a,b , a*b = b*a where * 

denotes the group operation.

• A power table may also be constructed with a singular matrix 

as a generator but the group properties mentioned above no longer 

hold.

Consider the following table :
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MATRIX TT

1
0 * * 2 -3

3
1

0 * * 2 -2
3

0 * 1 1 -13
0 1 2 3 0
0 2 3 3 1
0 3 3 3 2
0 3 3 3 3

•

which has an eigenvector *0*. The inverses of the singular matrices •»
have been computed using the methods previously described.

These singular inverse matrices may only be employed in the 

solution of valid matrix equations. For example equations of the

type

n

= [d]

n

to be evaluated for [ b J ,

if they are valid , using the identity [b J = ^  .
The lav; of the addition of indices must be applied with great

care to such tables as is shown by the following example.

Suppose in the above power table only and are

knovm. It is required to evaluate [^c] .
Two identities may be established immediately , namely

[ c P  [ c ]  = [ c P

and [ c ]  [ c ] ^  = [ c ] ^  .

For the first identity |̂ cj = ĵ cl ^

= [o * * 2][0 3 3 3 ]

0 12 3
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r i  r 1 1 Inthen r c l  = [0 2 2 2 ! L J L _ _

-2and for the second identity |̂ cj = [̂ cj

= [ 0 3 3  3 ] [ 0  * * j ]
0 1 2  3 ^

= [0 • * 3 ] .

Because a cascade of identical modules is under consideration 

it is known that these two forms of [̂ c] are compatible. For ĵ c]

to lie within these restrictions it must have the form

[c] = [0 2 2 5 ]

_ 2  « H ,
Now [_C 1 is known to have the value I ̂  3 3 3j it follows
> r 1therefore that I CJcannot have eigenvectors at n-tuples 1 and 2 •

This reduces the possible form of |̂ c] to : ĵ ,̂J _ [o ^  ̂ 3l

Finally each possible form' ofj^cjis squared

[0 2 1 3 ] ^  = [ 0 1 2  3]

[0 2 3 3]^ = [0 3 3 3]

[ 0 3 1 3 ] ^ =  [ 0 3 3  3]

[0 3 3 3]^ = [0 3 3 3J .
r 12The first result does not satisfy the known result for ĵ Cj

GO that ^cjmust have a conditional form :

[c]=[o I  3] where the t ie  symbol has

the usual meaning*.

Note that the value of [̂ cj actually used to generate the power 

table falls within this definition.

If the two possible forms of ^c] are now expanded :
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[ c l  = [o 1 0 f  [0 * 1 1

[ c ]  = fo 1 1 0 
[o 1 1 q

it is evident that no denendent functions are involved.

These techniques may also be applied to circuits of the type 
shown in Fig .7, see Section 1*5«5#

1.3*9 Matrix Root Extraction.

It is of interest to be able to extract the roots of a given
matrix in order that a particular system may be synthesised as a

cascade of identical logic modules or ’iterative cascade see

references 6 and 7 • ^
 ̂The R th root of a matrix [ c j  will be written as ["c 

r 11 Rand defined by _ - -
[ c p  = [ c ]  . . .  (1 .3 2 )

It can be shown that this.equation is , in general , non­
linear and thus cannot be solved by classical methods.

A special case where root extraction is possible is when the 

given matrix generates a cyclic power table. In such a table it 

is always true that
[cj(l+ki?)_^Q] . . . (1.33)

where the matrix [^cj appears cyclically in the table at intervals 

of power q  .(k is any positive integer.)

It is then true that 1
[ç]1+kq = [c] . . .  (1.34a)

r ( i T m r )■ and [ c ]  [ c j - ^  . . (1.34b)

which enables certain roots to be evaluated.

Consider the following examnle :
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MATRIX

0 4 ^  
0 ^ 2  
0 2 5 
0 5 7

7 2 6
4 5 6

2
0 7 4 * 5

* 7 
3 4 
2 1

4 6 4
I 6

0 4 1
0 1 2 
0 2 5 
0 5 7 
0 7 4  
0 4 1 
0 1 2  
0 2 5

TT

-6

-5
-4
-3
-2
-1
0
1
2
3
4
3
6

Here '^=5 whence from equationCl, 33) [ c j .  For k=1
1
16 ■and from equation (1,34a) [cJ = [cJ, Squaring both sides of this

1
expression gives , that is the cube root of [cj
is equal to [cl^, or

1

[c]^ = [ 0 5 7 5 2 4 6 1 ] ,

Unfortunately the generation of a cyclic table represents 

a special case*
For the general case the following points are noted :

1/ There are cases where no specific roots of a given 

matrix can be found , and there are cases where more than one root 

can be found, ^

2/ ■ If ĵ cj is non-singular then [c]^ is non-singular

and if [cJ is singular then [c]

3 /  If [ c j  has no eigenvectors then [ c ] ^  ha's no 

eigenvectors.

is singular,  ̂
IR
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4/ In general the logic modules corresponding to the roots 

of a system are of comparable complexity to the logic module which 
will synthesise the overall system,

5/ The number of functions synthesisable in terms of cellular 

cascades as a proportion of the total number of possible functions 

becomes small as n becomes large. See reference 7 pp. IO5-I0I .

1,4 Boolean Matrix Operators.

1.4.1 Post-multiplicative Operators.
Consider the matrix equation

[ c j [ 0 ]  X.,' = [d] X.,

^n

Now [qj post-multiplies [cj and will be called a post- 
multiplicative operator.

From equation (1.l4)

d . = c when a. = 0. . (over the
^ a l l o w e d  limits)

Clearly the matrix [üj is composed of certain column 

vectors of [cJ which have been perturbed in n-space according to the 

composition of the column vectors of [dJ .
Suppose that |*0j is non-singular and has n rows and 2^ 

columns , then G  <̂ c)> where <(d)> and ^C) represent the sets of 

column vectors of [d] and [cJ respectively • Because [dJ is non­
singular [d] will be composed of a permutation of the column vectors 

of [jcj . That is the functions represented by [dJ are those functions 
represented by [ c ]  but permuted in n-space ; no information about 

the functions of [jc ] is lost ; they are re-con structable from •

Some special forms of [d] will now be considered.

Suppose that is equal to the unit matrix [a "| .
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Then

Xn

= [ c ]

Xn
Consider now the effect of making [jdjidentical to [a J except 

that the h th row of is equal to the complement of the h th row 

of [a ] • Then applying equation (1.6) to x^

Xn

= F

n
gives the results :

F. (x ,Xp, . . ,x ) = /  when x = a . , 1 < i ^ n  ,' n K K,j l < k < n  .

• n x ,o

and since a. . = x. , 1 ^ j ̂  2^ , then F.(x.,x , * . ,x ) = x. •h 1 $ J 1 i i c -  n 1

For i/h : F̂. (x^,x.^, • . ,x_) = â   ̂ when x^ = a^  ̂ ,

For i=h : F, (x. ,x , . . ,x ) = a, . when x. = a. . ,n I c n n , J i i, j
and since a. . = x. , 1 ^ j ^ 2 ^  , then F, (x. ,x , • . ,x ) = x, .X | j x  • ü i ^  n n

If , in the equation x^

X

=  [ d J  X.,'
x^

n

is of this

orra then the functions represented by the matrix [c] will be the 

function' represented by [d J but re-defined upon i'he variables 

(x^fX^, . . ,x^, . . ,x^) instead of (x^iX^, • . ,x^, . . x^).

Consider the effect of making j identical to [a] save that 

the h th row of ^0 j  is made equal to the g th row of A j  and vice- 

versa.
Applying similar arguments to those used above it can be shown

that , in the equation [cj[0 ] x^

n

= [d ] X.,

Xn

the functions renresentod
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by the matrix will be exactly the functions represented by the 

matrix but re-defined upon the variables (x^jX^, • . ,x^,x^, . , x^)

instead of (x^^x^» . . ,x^,x^, • • ,x^) .

In general it can be shown that if , in x^ = x^

n
consist of a

Xn
the rows of the post-multiplicative operator [̂0 j 

permutation of the rows of the |̂ aJ matrix complemented or un­

complemented, then the functions represented by [̂ cj will be those 

functions represented by |̂ Dj but re-defined in terras of the same 
permutations and complementations of the defining variables 
corresponding to those rows.

1 simple example of a post-multiplicative operator matrix 
constructed as the [a] matrix but with certain rows complemented is ;

w 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0

, where the first and third

rows are the complements of the first and third rows of the j^A^matrix 
and the second row is identical to the second row of the |̂ Aj matrix. 

Then [̂ 0j x^
X,
x̂

If [̂0] post-multiplies a single function matrix [̂ cj , where 

l^c] = ^0 1 1 0 1 0 1  o j ;  writing |̂0 j in decimal notation gives :

-

= 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1 4 4
.1 0 1 0 1 0 1 0. ''3 "3.

[0 1 1 0 1 0 1 0] [5 4 7 6 1 0 3 2] x^
0 12 3 4 5 6 7

whence ĵ Dj = ^ 0 1 0 1 1 0 0  lj 

To show that the function represented by [̂ cj is in fact a re­

definition of the function represented by [̂ b], with x^ replaced by

x^ and x^ replaced by x^ , construct the Karnaugh map for ,[̂d J :
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*1'^2\ 00 01 11 10
0 0 0 0 1
1 1 1 1 0

Now replace by x^ ( this constitutes a reflection of the

map about the axes which separate x^ from x^) :

00 01 11 10
01 1 0 0 0
1 0 1 1 1

Finally replace X-, b;\
%1,x^

3 \ 0 0 01

:)

11 10
0 0 1 1 1
1 1 0 0 0

If this is re-expressed as a matrix : |̂ 0 1 1 0 1 0 1 oJ it is 

seen to be equal to [ c ]  • See also Fig.8.

An example of a post-multiplicative operator consisting of a•»
row permutation of the ["a J matrix (without complementation ) appears 

in Fig.9.

Of course may be constructed of both permutations and 

complementations of the |̂ A j matrix simultaneously . An example of 

this type of operator appears in Fig.10.

Not all non-singular post-multiplicative operator matrices can be 

categorised under variable complementation or interchange but these 

operators are the most useful, not only in terms of the representation 

of circuit synthesis but also Boolean function classification, see 

also Section 2.4 .

1.4.2 Pre-multinlicative operators.

Consider the matrix equation

Xn

= [d ]
x_

Xn
Now 1̂ 0 j  pre-multiplies j c  I and will be called a pre- 

multiplicative operator.



52

- K l "

0

or

Implements [ c ] [ 0 ] ’̂ l
X2

=  [ o ] ^ i

where

[0 ] =
1 1 1 1 0 0 0 0  
0 0 1 1 0 0 1 1  
1 0 1 0  1 0 1 0

Fig. 8
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F(x,,X2

1̂

*3

of F ( X ^ ; X 2 »

Implements
X2
^3

[ d ] ?

X2

Xi

where

[ 0 1 =

0  1 0 1 0 1 0 1  
0 0 0 0 1 1 1 1  
0 0 1 1 0 0 1 1

Fig.9
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F(x^,X2 ,

0

or F(x-|,x 2 ) X

Implements [ ^ ] [ 0 ] =  [ d ]

X

whore

[0] = 1 1 1 1 0 0 0 0  
0 1 0  1 0  1 0 1  
0 0  1 1 0 0 1 1

Fig.10
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From equation (1.14)

d . = / _ when a. = c. . (over the allowed
limits )

Suppose .that ĵ 0j = then in the above equation J'd J = [cj.

Alternatively if ^ .n
r ,ra i,m » m ̂ 2  , then d = c .i »0

1 that is if the r th row of is equal to the complement
of the i th row of |̂A j then the r th row of will be equal to the

complement of the i th row of ĵ cj •
This approach can be extended to include é = F(a. ,a, ) ,^r,m i,m’ k,m ’

1 ̂ m  ̂ 2^ , where F is some logical function, then d . = F(c. .,c, .)•I' $ 0 110 K, j
Then if the r th row of ĵ 0j is some logical function of the i th and 

k th rows of ^a J then the r th row of jwill be the same logical 
function of those functions defined by the i th and k.th rows of .

These observations show that the pre-multiplicative operators 

allow the manipulation of whole logical functions.
For example consider the equation :

, and suppose that three other

and

0 1 1 1 X,1 = F '

0 1 0 0 'A Fg
p 0 0 1 d

functions are required , namely F̂  ̂= F^OF^ , . F^ = F^U F^ 

F^ = F^ • These functions may be evaluated as follows :

Using the general equation

Xn

= [d J

n

then

from the

0 0 0 0 0 0 1 1 0 1 1 1 "1'1 0 1 0 1 1 1 1 0 1 0 0 X
0 0 0 0 1 1 1 1 0 0 0 1 c.

[ 1̂ matrix 0 0 0  0 1 1 1  1 
0 0 1 1 0 0 1 1  
0 1 0 1 0 1 0 1

This evaluation is derived in the. following way :
The first row of the pre»*multiplying matrix ĵ 0j is equal to
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the intersection of the first and second rows of The second

row of is equal to the union of the complement of the third 
row of [̂a J with the first row of j . The third row of |̂ 0j is 

equal to the first row of ^a J • The implementation of this example 
is given in Fig.'ll •

The consideration of pre- and post-multiplicative operators 
together with their associated properties is ef:sential in the 

interpretation of both the advantages and versatility of Boolean 

matrix algebra. They will be refered to again when circuit synthesis 

is considered in later sections.

1.4.3 Operations of the Parallel Composition Tyne.

Another useful class of operators are those of the parallel 
composition type. These are written as

[b ] ^ [ c ] . . .  (1.35)
where / signifies the logical manipulation of the matrices j B̂ j  and 

l^cjon an element by element basis.

For example [ • ] « [ ' ]

n Xn

signifies

d , . = b. , + c. . over the dimensional limits.

[^J the same dimension;
This example may be interpreted as shown in Fig. 12 .

It is also possible to apply different operators to 

different rows of the matrices which are to undergo parallel 

composition , giving rise to equations such as

*1 = [d ] where
^2 *2

*2,j = ^2,j * *2,j
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which results in the circuit of Fig* 15 •

This type of operator is used in the extraction of prime 

irnplicants , see Section 1*5*6.

1*5 Practical Applications »

1*5*1 Introduction*
It has already been demonstrated that Boolean matrices 

provide an excellent method of evaluating both the logical transfer 

functions and topology of multi-output combinational logic circuits* 
It is now possible , by means of worked examples whenever possible , 

to show the special importance of certain of the properties of 

Boolean matrix algebra developed above , in the analysis and 
synthesis of logic circuits.

1*5.2 Matrix Multiplication.

Worked example*
Given Two logic modules ĵ sj and j^cjhave been designed 

according to the specifications ;
[b ] =

w  =

1 * 0 1 * 1 0 0  
0 * 1  1 0 0 0 0  
1 1 1 1 0 0 * 0

0 0 0 1 0 1 1 1* 

1 0  0 * 1 1 1 0  
1 0 0 0 0 * 0 1

A system specification is given by where

[d 1 = pi 1 1 * 0 0 0 l‘
1 * 0 0 1 0 * 0

( * signifies don’t care) 

Is it possible to synthesise this system by cascading 

the modules represented by |^bJ and [c  j  ?

Solution

= [e J X,"Try cascading |̂b J and ĵ cj as [̂B ;|cj
X.

In decimal notation this is
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R
2

JK

Fig.13

X.

Fig.lA
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[5 I 3 7 ^ A 2 o][3 0 0 ^ 2 I 6 5] x̂ ' 

7 X,

0= [7 5 5 p  2 0
4 X_

0 1 2  3 4 5 6 7
Comparing j with ^d 1 (in decimal notation ) :

[ d ]  = [7  f  5 ^  3 5 p ]

[e ] = [7 5 5 p  5 p ] it can be seen that [ B ]

falls within the specification of

It may therefore be concluded that the proposed method of 

cascading the modules will indeed synthesise the system.
This example illustrates how Boolean matrices may be used to 

advantage in the synthesis of partially specified systems.

1.5*3 Inverse Matrices.

Worked example 1 .

A logic system has been designed . It has been decided to 
extend the capabilities of the system by producing three extra 
outputs specified by , where

'1 0 1 1 1 1 1 1'* 0 1 1 0 0 0 1 4J 1 1 1 0 * 1 1 4
It has been suggested that these three outputs may be generated from 

two outputs already available and specified by the matrix C , where
[ 0 1 0 0 1
[ * 0 1 1 1

0 0 X
0 0 11 X.

xt

Is this possible ? - If so find the required module 

Solution

Represent the problem as

[ # ] = [ ® ]

X.

Substitute the given information (decimal notation ) :
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[b][2 2 1 1 3 § 0 i] x;
X,

X.

Check the validity of the equation :
1/ The equation is dimensionally correct.

2/ Criterion 1 shows that the equation is conditionally valid
v/here

The outputs may therefore be generated.

Now the matrix |̂ bJ can be evaluated by inspection by noting 

that in [̂ bJ ; the value at n-tuple 0 must have thé value '5 *

1 must have the value *7 '
2 must have the value * 1 *
3 must have the value *4*

viz.

[5 7 1 4] [5 2 1 1 3 I 0 1] X- 
0 1 2  3 %2

= [| 1 7 7 4

X.

Alternatively the singular inverse may be calculated for [̂ cj , 

from [^][^]  ̂ = [Aj , where^cj may take any convenient allowed form.
le.

.0 2
[ 0 2 1 1 3 0 0  l][g 3 1 a] = [0 1 2 3]
0 12 3 4 5 6 7 5 7

Then [̂ B j  may be calculated from [ b J = for the
corresponding value of [̂d J .

le 0 2
[b] = [5 1 7 7 4 3 5 7][5 3 1 4] = [3 7 1 4].

0 1 2 3 4 5 6 7
By either method the required module has been evaluated as :

"1 1 0 1 X,
0 1 0 0 Xp
1 1 1 0 d
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Worked example 3

A system specification is given by | D where
0 1 0 1  0 1 1 0  
0 0 0 0 1 1 1 1 
1 1 1 1 1 0 0 0

It is proposed to employ an output module 
system where

[ 3]

[b]to synthesise this

0 1 0 1 1 0 0 0 X '
1 1 0 0 1 1 0 0
1 0 1 1 0 0 0 0

Design a logic module to be placed before ^b J which will 
synthesise the system • Can each output function of this module be 

synthesised separately ?
Solution.

L*et the oroblem be renresented as :
[b ][c ]

X,
x̂

Substitution of the given information (in decimal notation ) 

gives :
[ 3 6 1 5 6 2 0  o ] [ c ]  x [ = [1 5 1 5 3 6 6 2] x^

Check the validity of the equation :

1/ The equation is dimensionally correct.
2 /  Criterion 2 is satisfied •

Construct [̂ b J  ̂from [̂b J[b J  ̂ = [a J :

[3 6 1 5 6 2 0 o l f l  2 5 0 » 3 2 • ]  = [0  1 2 3 4 5 6 7 ]1 2 3 4 5 6. 7J[V 4 J L
Compute î cj from ĵ cj = ĵ Bj | DJ :

[ c ]  = [| 2 5 0 • 3 Ç •] [1 5 1 5 3 6 6 2 ]

0 12 3 4 5 6 7
= [ 2 5 2 3 0 ^ ^ 5 ]

0 1 2  3 4 5 6 7
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Now the value of ĵ cj at n-tuples 3 and 6 is , or in

. It follows that if the upper functionvector form or 0 
0 
1

has the value 'O’ at these n-tuples then the lower function must 

have the value '1' and vice-versa. The functions are therefore 

dependent and cannot be synthesised separately.

If ĵ cj is chosen to have the form

, [2 3 2 3 0 1 4 3 ] = 0 0 0 0 0 0 1  1 
1 1 1 1 0 0 0 0  
0 1 0 1 0 1 0 1

then [G ]

3

may be synthesised by constructing the Karnaugh

maps : X. ,x. x^ ,x.
\ 00 01 11 10 00 01 11 10 \ 00 01 11 10
0 0 0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1 0 0 1 1 1 1 1

F^(x^,Xp,x^)^i(xi»Xp,X^)

%1 " %2 = %1 . - -3
The corresponding circuit implementation is shown in Fig.14.

= X.

1.3.4 Matrices Raised to Exponents.
V/o.rked example.

Tests have been carried out on a cascade of logic modules , 

each defined by the matrix [c] .  The overall transfer function of 

five such cascaded modules gives the result :
[ 5 1 2 3 4 0 6  7]x^'

and the overall transfer

function of three such modules gives the result :

[5 2 3 4 7 0 6 1]
X.
^3

Find the matrix which defines the transfer function of one such 

module .
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Solution.

Now and [cj^ are known. First compute from
[ c ]2 { c j  [ c ] - 5.

Find [ c j  ^ from [ c  [ c

[ 5 2 3 4 7 0 6  l j [ 5  7 1 2 3 0 6  4 ] =  [ 0 1 2 3 4 5 6  7]

• =[5 7 1 2 3 0 6 4 ]
Then [ c ^  = [c]^ [c][^ = [5 7 1 2 3 05 1 2 3 4 0 6 7  

0 7 1 2 3 5 6 4
Second .compute [ c ]  from [ c ]  = [ c ] ^  [ c ] ' B .

Find [cJ'B from [ c J  [c]"^ = [&];

[ 0 7 1 2 3 5 6  4l[o 2 3 4 7 5 6 1 ]  = [ 0 1 2 3 4 5 6 7 ]‘̂ 0 1 2 3 4  5 6 7 B L J
ie. [c]"B = jo  2 3 4 7 5 6 1]

Then f c ]  = [ c F  | c ] " B  =[5 2 3 4 7 0 6  l ] [ o  2 3 4 7 5 6 1]L J L J L J  '-0 1 2 3 4 5 6  7-'
= [5 3 4 7 1 0 6 2 ] .

Which is the required result.

The known power table is then.

6 4]

MATRIX 7T

3 7 1 2 3 0 6 4
0 2 3 4 7 3 6 1

?
0 1 2 3 4 3 6 7
3 3 4 7 1 0 6 2
0 7 1 2 3 3 6 4
5 2 3 4 7 0 6 1

o

5 1 2 3 4 0 6 7

1.3.3 Representation of Iterative Cascades.

The concept of an iterative cascade of logic modules of the 

type shown in Fig. 6 . has already been introduced together with 

the associated matrix representation. See p 39*



6 5
The representation of cascades of the type shown in Fig.7. p 40 ,

will now be considered.

A simplified version of this cascade appears in Fig. ’.p. In order
to distinguish easily the direction of signal flows in this cascade

the horizontal flows, input/output , are labelled x /p p i?

and the vertical flows , input/output , are labelled y^iy2 »y? /
F ,F -p ■ respectively,
y g  Yg yj

Such arrays have been considered by Hennie , see reference 6 , 

and can be shown to be transformable to ideal finite - state machines. 

The inputs x^fX^ are termed the starting state of the cascade and the 
corresponding inputs to the second logic module are called the next , 
or second , state and so on. In general the starting state of the 

cascade is fixed for a particular application and the cascade is 

used to compute a function of the input variables y^iyg^Y^ . It is 
not the purpose here however to investigate the general properties

I
of such cascades , but to show that they may be expressed in matrix
form. Reference 7 should be consulted for a detailed treatment of

the properties of cascaded iterative arrays.
Now the type of iterative cascade which has been shown to be

easily represented by Boolean matrices heretofore is that of Fig.6.

Comparison between the cascade of Fig.6 and that of Fig. 7 shows

that they differ in that the former case has a single (horizontal)
flow path wheras the latter has two flow paths (horizontal and

vertical ). At first sight it would appear that the cascade of Fig.7
is not amenable to Boolean matrix representation because each module

of the cascade is furnished with a unique input y,j ,y^,y^ etc.

To show that this problem is surmountable consider the circuit of
Fig.lo which is an alternative representation of the simple cascade

of Fig.13. The inputs/outputs ; y.,yp,y^ / F ,F ,F have been• • - P  1 2 3
re-orientated so that they are applied in a horizontal direction,
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Fig.15

Fig. 16
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and between each module is a simple crossover network which enables 

each input to be applied to the correct module and also enables 

the corresponding output to appear correctly orientated at the 

termination of the cascade ; moreover each crossover network is 

identical. Now it has already been shown that a crossover network 

of the type shown in Fig.lo may be represented by a pre-multiplicative 

matrix operator.

The cascade of Fig.l6 may therefore be represented by the 

equation
[ 4 c X 0 ] [ c l 0 j [ c ] x . = F

X,
y.

or

^1 = FX.x_ 1F
^1

% ■

The operator 0̂~\ will have the form :

6 , j  " , A , j

6 , j  = "3,i

5,3 1 < 3 < 2 -

This technique can be applied to any cascade of the type shown 

in Fig.7* including such cascades having multiple y inputs/outputs 

for each module.
The finite-state machine corresponding to the cascade of Fig.15 

is shown in Fig.17* The horizontal , or x inputs , to the combinational 

logic module being initially applied to give the starting state , and 

each y^ , i=1,i=2,i=5 being applied to the module at times T=1 , T=2

and T=3 respectively.
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This example illustrates that Boolean matrices may be used to 

represent finite-state machines!

It is also possible to show that Boolean matrices may be used 

to represent arrays of the type shown in Fig.l8.
This method of representing iterative cascades has the disad­

vantage that it is limited by the large size of matrices necessary 

to represent long ..cascades or large arrays.
Because of the difficulties described in extracting the roots 

of Boolean matrices they are not readily applicable to the synthesis 

of such systems.

1,5^6 Extraction of the Prime Irnplicants of Functions.
Consider a Boolean function F(x^,x^, . . ,x_, . . ,x^) , 

let th^s function be denoted by F(X)•
Take the function derived from the function above by 

complementing the variable x^ ; let this function be denoted by

Fj(X).
Let r\(X) = F(X)nFj(X) . . .  (1.j6)

Now F\(X) constitutes the true rainterms of F(X) which are 

independent of the variable x. ; that is F\(X) may be defined upon 

the variables (x^iX^# • • alone. If F(X) has no true
minterras independent of x^ then F^(x) = 0 , where 0 is a null set*

Now for any function F(X) , each F\(X) , 1 ̂  i ̂  n , F̂. (x) / 6, will 

contain true minterms which lie in pairs of adjacent states. If these 

minterms are plotted on a Karnaugh map they will fall into squares with 

adjacent sides.This must be so since such minterms differ only in 

the complementation of one defining variable.

Each F\(X) will be called a partition of F(X).
It is therefore possible to generate n such partitions, each 

partition containing terms independent of a partcular variable.

 ̂ With certain restrictions
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Clearly , if the function contains adjacent terras which are

indenendent of both x. and x. :1 J
Fj^Cx)Af.(x) K e , i / j , i é i , j ^ a  . ,(1.37)

In itself the partition listing outlined above establishes 

whether a function is ‘reducible* (it partitions in at least one 

variable ) and if so in which variables this is possible. If a 

function fails to partition in every one of its defining variables 

it is irreducible.
As will be shown shortly , the manipulation of such a set of 

partitions enables the function to be reduced to a number of prime 
-irnplicants.

Now the partitions F\(X) , 1 ^ i ^ n ,  may be generated using 

the post-multiplicative Boolean matrix operators which have previously 
been developed. Moreover each partition may be evaluated for several 
functions simultaneously. The functions to be partitioned are 
defined by ĵ C j where

X.

n

X .
2.

Xn

[X]‘, and 0 is an operator

matrix identical to the A matrix except that the row a. . ,
L J 11J

1 ^ j ̂  , is "complemented, then defines F?(X) for each of

the functions specified by

If the parallel composition ^  j is evaluated then the

result will be equal to F \ ( X )  = FT(X) jTlF(X) for each function 

defined by FcJ.

Examole.
As an example of the extraction of the partitions F\(x)  ̂

1 < i ^ n  , applied to a single function , consider the function

shown in Fig. 19a.
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F-(X) is computed from [ o M  «;

X.
X
X

= [d] X., y where

j^cjdefines the given function and j is identical to |̂a J 

that the first row is corapleraented.j^D'jthen specifies F-(X).
save

VIZ.
[00100100000101OlJ 1111111100000000] X . = [ d 1 X '

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 '4 4
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 j 4 A
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 <

or in decimal notation
[0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 ] 
01 23 A 56 789101112131A15

= Fd I x^1 L J 1
^2x^ x^

""4 ^4

v/nence [d] = [0001010100100100

The corresponding function F^(X) appears in Fig. 19b. It 
should be noted that this operation corresponds to a reflection 
of the function,as depicted by a.Karnaugh map , about the axes 
which separate x^ from x^ .

Computing F;j-(X)QF(X) from [ Djn[c j gives
[0000010000000100j which is equal to 

F^(X) , the result is shown in Fig. 19c.

If this procedure is repeated for the evaluation of F^(X) 
and F^(X) the results are as shown in Fig. 19d and Fig. 19e 

respectively. F̂ (̂X) can be shown to be a null set.

From these results it is clear that F(X) has a pair of true 

minterms independent of x^ , a pair independent of x^ and a pair 

independent of x^ .. In addition , one minterm is irreducible as 

it appears in none of the partitions.

F(X) may thus be expressed as :

F(X) = x^.x^.x^^ + x^.x^.x^ + x^.x^.x^^ + x^.x^.x^.x^.
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Consider now the effect of re-partitioning F\(x) in terms of

another variable x. . Then if F. ,(X) defines this operation :
J 1 » 0

F (X) = F (X)n F:r( F. (X)] . . (I.38)
1 J L 1 J

If this second partition exists , all terms it contains must
lie adjacent in at least two variables, (Blocks of at least four

true minterms adjacent when plotted on a Karnaugh map )

Suppose that all the possible one-variable partitions (P ) of a
n

function' defined upon n variables are taken. Then P. = U  F.(X)
 ̂ i=1 ^

constitutes all true minterms of a function which are adjacent in at
least one variable.

Then F(X)nP>j constitutes all terms having no adjacencies.
(They are irreducible)

•»
Suppose now that all possible two-variable partitions (P^) of 

the function are taken. Then F. . constitutes all terms
o a < d < n

of the function which are adjacent in at least two variables.
Then P^ H  constitutes all terras adjacent in one variable 

only. (They exist in pairs on a Karnaugh map)

This idea may be extended to • • *P^ .
It should be noted that the result of each

be decoded into specific pairs , duo-pairs etc. by means of the 

partition variables leading to the result . Alternatively , 

specific decoding algorithms may be used.

The result of these operations is the extraction of the 

redundent and irredundent prime irnplicants of the function, and 

represents an attractive alternative method to that of Quine- 

KcCluskey , see references 9,10.
In addition the function may be selectively analysed for its 

dependence upon any particular variable(s).
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Fig. 20 shows the exhaustive partitioning map of a four-variable 

problem. The evaluation of all the partitions shown is sufficient 

to enable the evaluation of the redundent and irredundent prime 

irnplicants of any fourth order function.Note that once a map is 

generated in the form shown , removal of branches associated with ̂  of 

the variables reduces the map to that of order (n-^) without 

recourse to re-arrangement.

The number of partitions required for the solution of an n- 

variable problem is n
TL  = 2 " - ' 'r=1

The exhaustive partitioning is normally not required however 

since if F. (X) = 0 then F. .(X) = 6 , 1  ̂ ■zq'\1 1 $ J y . . \ l . )
F. . , (X) = 0 etc. 3  ̂ 1,0,k

Similarly if F. .(X) = 0 then F , , .v , (X) = 0 etc. . . (1.40)1,0 \iiO/$^

Also if = 0 then = 0 , a;^(a+b)^n . etc, (l.4l)

and if F (X) F.(X) = 0 then. F. .(X) =0 etc. . . (1.42)1 0 i$0

The number of variables in which partition and re-partition 

is possible is therefore limited from the beginning.

An example of the extraction of the prime irnplicants of a third 

-order function is now given.

Consider the function shown in the table below. Let F(X) = Pq 

Now if (X) ,Fg(X) ,F^(X) are derived as described above , 

inspection shows that none yield a null set, ie. they are all 

re-partitionable.(See tableP76)
3

P is evaluated from P F. (X) , and then P . yields
1=1 ^

a null set .This means that all true minterms of the function are 

adjacent in at least one variable , none being irreducible.
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F (X)

F̂ .(X)

F.CX)

Fg(X) 3̂ Fg t̂X)

1 1i
1
i

F2,4(X)

1
FgfX) X4 F3,4(X)

1̂,2,3,

/2

Exhaustive Partitioning Map 

for a Fourth-Order Function

Fig. 20
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Similarly if F (X) , F (X) , F, ,(X) and P. are

' t ̂  ' t $ V ï-

derived it can be seen that P^ClP^ yields a true minterm at n-tuple 
7 , which must be adjacent in one variable only. Inspection of F^CX)

shows that the minterm at n-tuple 7 is adjacent to minterm 5 in
variable number 2.

The only remaining partition possible is F. _ ?(X) which

must be a null set since F _(X) = 0 , see equation (1.40).1 * c

Thence P^ = 0 and ^2 ̂  “ 0,1,4,$ . The minterms at these n-tuples

are adjacent in variables 1 and 3 from F. ^(X).• ' $ V
The function may thus be expressed as :

F(X) = (5,7)A0,1,4,5)

TABLE.

0 1 2 3 4 3 6 7 n-tuple
1 1 0 0 1 1 0 ’ 1 F(X)
1 1 0 0 1 1 0 0 F^(X)
0 0 0 0 0 1 0 1 Fg(X)
0 0 0 0 1 1 0 0 F^(X)
1 1 0 0 1 1 0 1 PoH = 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0

^2 1 1 . 0 0 1 1 0 0 PiOPa = 7

^3 0 0 0 0 0 0 0 0 p^nPj = 0,1,4,$

Note "1 .2,3 (X) 0

The Karnaugh map corresponding to this result is

^1*^2
% 3 \  00 01 11 10

0 1 0 0 1
1 1 0 { T - T )
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yOotent/all

This method has the following^advantages over the method of 
Quine-MeCluskey :

1/ The intermediate results comprise vectors of known 

dimension whereas the Quine-HcCluskey method generates tables of 
indeterminate size* The storage of intermediate data is thus 

simplified which is important when computer implementation is 

considered (usmg. storo.^
2/ Because of its simple and recursive nature the Boolean 

matrix method of prime-implicant extraction is to be preferred 

from a programming viewpoint*

3/ The simultaneous extraction of prime-implicants of 

several functions is possible which , together with the restrictions 

on re-partitioning given in equations (1*39 - 1.42) , makes the 
matrix method more efficient than that of Quine-McCluskey.

4/ The dependence of a function , or functions , upon 
particular variables may be determined without recourse to the 
evaluation of all possible partitions using the matrix method.

See also reference 11.

1.3.7 Logic Synthesis by Iterative methods.

It has been shown that a logic system specified by may 
be represented as :

[ b ][c J x ; = [ d ]

In addition if is known in this equation then
[b J = niay be evaluated providing

that the original equation is valid .
Now it follows that if ĵ cj represents a logic module of 

the type available to synthesise ^Dj,it is possible to determine 

if in fact [̂C j may be used in the synthesis of |"d J by establishing
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the validity of the above equation. If [̂ C j  does satisfy ^D^then 

may be evaluated and represents the remainder of the system 

to be synthesised. may then be copied into |̂b J and the procedure

repeated until ĵ BJ is found to be equal to the unit matrix • The 
system is then synthesised.

In many cases ĵ C 1 will represent particular configurations 

of NAND,NOIÎ,EX-OR gates , but in general there is no restriction 

on the type of module that may represent.
In its simplest form this synthesis algorithm gives rise to 

an iterative procedure which does not afford optimisation except on 
a comprehensive search basis. In this respect the method is 
similar to that of Roth and Ashenhurst , see references 12 and Ip* 

It differs from the methods of Roth and Ashenhurst however in that 

multiple-output systems may be synthesised without resort to special 
techniques.

In order that this algorithm may be executed with maximum 
efficiency on the digital computer it is advantagous to employ 

an implementation that avoids the generation of the intermediate 

results arising from the application of Criterion 1 and the 

evaluation of ĵ C J ^,
The' method illustrated in the following example is proposed.

Consider ^1 ” [^] ^1 where

Let

[ B ln  0 0 01 X 1 = f1 * 0 1] X ‘
 ̂ -'Li 1 1 lJ x^ Li 1 1 OJ Xg

Îb J be filled initially’ with don’t care states :

r* * * *iri 0 0 01 x"
L* * * ♦JLi 1 1 iJ x ‘

= n
LI 1

form

, or in decimal
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-umn

Now execute the following trial multiplication :

The first column of j^cj has the value 'p' , therefore the 

value of j at n-tuple 3 must take the value of the first col 

of [d ]
* 3]\3 1 1 o l X 1 = [ 3 5 1  2] x-‘

^0 1 2  3 y  4

the second column of j^cj has the value *1' ; therefore the value

of l^njat n-tuple 1 must take the value of the second column of

[*  A  5][3 1 0] ^ i l  = [ 4  '' ^1’0 1 2  3 ^2 ^2

the third column of j has the value * 1 ’ therefore the value of 

j^sjat n-tuple 1 must take the value of the third column of 

Since the value of [̂b J has already been established as 'g ’ it is 

necessary to check if the value now proposed is compatible.

ie. is = compatible with ’1 ’ ? - or is3 compatible

with 0 
1

Clearly these two values are compatible only if

j^B^ and take the value oj .

Then _

in both

[■* 1 * 3][3 1 1 0] = [3  1 1 2 ]

0 1 2  3 2
Finally the fourth column of [ ^ c j  has the value ' O ’ therfore 

the value of |^Bj at n-tuple 0 must take the value of the fourth 

column of |^dJ :
[2 1 * 3 ]  [3  1 1 0] x j  = [3 1 1 2] x^"

0 12 3 ^2 ^2
The module ^cj can thus be used to synthesise |̂d J , the 

function remaining to be synthesised being

r i  0 * 11 X
Lo 1 * 1 J X
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This trial-and-error method of solving [b ][c ] x ;

Xn

= [d]
Xn

thus overcomes the problems associated with applying Criterion 1 

and evaluating the inverse matrix • If the equation is not valid 

j^cj will force to talce incompatible values •

will force theeg.. [b][2 2 1 3] x d  = [ 1 2 0  3] X.,'
^2 ^2

value of j^sjat n-tuple 2 to take the simultaneous values ’1' and ’2',

or 0 
1

and 1 
0

which is impossible. The detection of such

incompatible cases will , in general , occur before the whole trial 

multiplication is complete , this results in a fast procedure.

As an example of a system synthesis consider the following 

simple example.

A system is defined by the matrix j  where

[d] = [3 3 2 I 7 5' 6 5] .
Synthesise the system using the logic module of Fig. 21a 

together with the comprehensive set of interconnection modules 

and associated matrices shown in Fig.21b - g.

Solution

Let the system be represented by

[b ][c ] x ; = [b] , where [ G ] is composed of the

matrix corresponding to the given logic module post-multiplied 

by one of the possible interconnection modules of Fig. 21 •

For interconnection 21 b, the equation [_s][cj = [l J is ;

[b] [i 1 3 2 5 5 7 e] [0 1 2 3 4 5 6 7 ! = [3 3 2 T 7 5 6 5] 
 ̂ ^ 0 1 2  3 4 56 f :  ̂  ̂ ^

. [ c ]

livaluating ^ C 1 and letting JBj have initially don't care states:

, . . , , , »J 3 2 5 5 7 6] = [3 3 2 j 7 5 6 5]



[ 1 1 3 2 5 5 7 6 ]

[0 1 2 3 4 5 6 7 ]

[0 2 1 3 4 6 5 7 ]

[0 1 4 5 2 3 6 7 ]

[0 2 4 6 1 3 5 7 ]

[0 4 1 5 2 6 3 7 ]
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.Xi

•X2
X 3

21a

2 1 b

21c

21d

.Xi

"̂ 2 21  e

X 3

•X,
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4 ...
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■"3

Fig. 21.
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Carrying out the trial multiplication described above :

[• 3 g 2 * 7 *■ *] [l 1 3 2 5 5 7 6] = [3 3 2 g 7 5 6 s]
0 12 3 4 5 6 7 I 1

t______________
the multiplication fails at the point shown. The equation is not 
valid.

Try interconnection 21c :

[bJ [1 1 3 2 5 5 7 6 ] [ 0 2 1 3 4 6 5  7] = [3 3 2 ^ 7 5 6 5 ] L o  1 2 3 4 5 6 7  -*
then ■ r* 1 I.  ̂  ̂ n, - _ 2[’ 3 ■" -5 * * ’ *] [1 3 1 2 5 7 5 

0 1 2  3 4 5 6 7
tfails at point shown.

Try interconnection 21d

6] = [3 3 2 I 7 5 6 5] 
1

then

Fb] [1 1 3 2 5 5 7 6 ] [ 0 1 4 5 2 3 6  7] =[3 3 2 1 7 5 6 5 ]
10 1 2 3 4 5 6 7  J
[• 3 5 7 * 2 5 6] [1 1 5 5 3 2 7 6] = [3 3 2 (2)7 5 6 5]

rives a solution. Note that

Try interconnection 21e

it iis restricted as shown •

then

[ b] [1 1 > 2 5 5 7 6] [0 2 6 1 3 5 7] = b  3 2 r 7 3 6 3]
. 0 1 2 3 4 5 6 7  J

3 * 3 " 2 * ^][l 3 3 7 1 2 3 6] = [3 3 2 ^ 7 3 6 3 ]
0 12 3 4 5 6 7

1fails at point
shown•

Try’interconnection 21i

[b] [1 1 3 2 3 3 7 6 ] [0 4 1  3 2 6 3 7 ] 
[0 1 2 3 4 5 6 7

then * 3 * * * 3 " 5 1 3 3 7 2 6
0 1 2 3 4 5 6 7

fails at point .__\_____________
shown.

Try interconnection 21g

= [3 3 2 ^ 7 5 6 5 ] 

= [3 3 2 ^ 7 5  6 5]

then

fails at point

[b] [1 1 5 2 5 5 7 6] [0 4 2 6 1 5 3 7] = [3 3 2 I 7 5 6 5J 
[0 1 2 3 4 5 6 7 J

6 5 ]2 ' 2 * 3 ■' g] [1 5 3 7 1 5 2 6] = [3 3 2 I 7 5
0 12 3 4 5 6 7

X  ____ t
shown.

All interconnection possibilities have been tried giving only 

one solution , ie. b] = 3 3 7 * 2 3  6j, and sincefBj is
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singular it cannot be a pertubation of the |̂ a ] matrix. A second 

stage of synthesis is therefore necessary. The implementation of 

the first stage of synthesis is given by Fig. 22 a .

To evaluate the second stage of synthesis the remainder [b J 

is copied into |̂d J and the process is repeated.

Then [ b]|*Cj = 3 3 7 * 2 5 6 ]
Try interconnection 21b

then

r b1 |l 1 3 2 5 5 7  el [0 1 2 3 4 5 6 7 ] 
A o  1 2 3 4 5 6 7; r J

* 3 5  7 * 2 6 5 ! [ 1 1 3 2 5 5 7 6  
'-0 1 2 3 4 5 6 7/'-

= [ * 5 5 7 * 2 5 6 ] 

= ^ 3  5 7(2)2 5 6]
gives a solution . Note that |̂ D J is restricted as shown.

Since [b J is singular it cannot be a pertubation of ĵ Aj •

Try interconnection 21c

=  [ * 3 5 7 * 2 5 6 ]  

= ^ 3  5 7 © 2  5 6]
[b1 1 1 3 2 5 5 7 el [0  2 1 3 4 6 5 7] A  t) , 2 3 4 5 6 r  r -I

* 5 7 3 * 5 6 2 ! 1 3 1 2 5 7 5 6then
0 1 2 3 A 5 .6 r

gives a solution. Note that ĵ D I is restricted as shown .

Since [̂b J is singular it cannot be a pertubation of [a J*
Try interconnection 21d

r 1
] I I I I  ^ e][o 1 5 2 3 6 7| = [* 3 5 7 * 2 5 6]

then [* 3 * * * 5 '■■ *] [1 1 3 3 3 2 7 6 =[ 3  3 5 7 * 2 3
0 12 3 4 5 6 7fails at point shown._______ _̂_______________________  j

Try•interconnection 21e

[ b] [1 1 3 2 5 5 7 e] [0 2 4 6 1 3 5 7] = [* 3 5 7 * 2 5 e]
'■ -’L/o 1 2 3 4 5 6 r '• ■'J I- ]

then [ * * 2 3 * 5  6 7 ] [1 3 5 7 1 2 5 6 1 = * 3 5 7 * 2 5 6
'01 2 3 4 5 6 7^' J I-

gives a solution . Moreover [b ] is non-singular and can take the

form of the [a ] matrix . The synthesis is therefore completed 

using this interconnection.
The complete synthesis is shown incircuit form in Fig. 22b.

A test programme, written in Fortran IV / Machine code,has been

run successfully for the above algorithm employing gates of the KAND,

NON,FX-rON type for problems of up to fifth order.
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Fig. 22b



8 5
In practice it has been found advantagous to search for 

disjunctive decompositions initially and , if none are found , 

proceed with the search for non-disjunctive decompositions.
See also reference

The abovementioned computer programme is able to find all 

possible disjunctive and non-disjunctive decompositions for 
a fifth-order system , using up to three input L-AITD/NOK gates , 

in approximately 2 seconds for each stage of synthesis. The 

storage required (P.D.P.Ss) is 11901 K/words.
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1.6 Conclusions.

It has been demonstrated that Boolean matrices , of the type 

defined , enable cascaded , multi-output logic modules to be both 

described , in terms of functional capability and topology , and 

manipulated. It has been shovm that the algebra associated with these 

matrices is capable of analysing and synthesising such systems even 

where unspecified conditions ( don't care states) are involved in the 

system description. The algebra is also able to define dependent 

functions ; the full implications of this are not yet known.

Two novel methods of logic circuit synthesis have been described 

which follow naturally from the consideration of 'Boolean matrix 

operators* and 'valid equations' . The first of these enables the 

dependence of a function upon any chosen set of its defining variables 

to be determined. It has been shown that the exhaustive implementation 

of this technique , using Boolean matrices , enables the prime 

implicants of several functions to be extracted simultaneously. This 

method is an attractive alternative to that of Quine-McCluskey. The 

second synthesis method arises from the consideration of 'valid 

equations' and the 'inverse singular matrix* . It is an iterative 

technique which , on an exhaustive search basis , enables optimum 

syntheses of multi-output systems to be found. Again these systems 

may be partially specified. Both of these synthesis methods , 

particularly the latter , are especially easy to implement using 

the digital computer.

Several iterative synthesis procedures , of various types ,
+have been published in recent years. It is felt that the method 

described herein probably, represents the most effective simple multi­

output synthesis to date.

The main disadvantage of iterative techniques is that they

See-for aocampî e
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are relatively slow to 'converge' to an optimum solution , especially 

when the number of defining variables is large. (In this respect the 

method developed in this chapter is no exception.) Moreover the 

expertise of the logic designer can play little or no part in their 

execution. (In the author's opinion the rather unsucessful attempts 

to introduce 'heuristics' into such methods is an attempt to do this.) 

At this point in the research therefore, a search was instigated for 

possible techniques which would a) generate an acceptable synthesis 

very quickly ,and b) enable the logic designer to assimilate the 

pertinent features of the system to be designed very easily and to 

be able to act on this information. At present the best method of 

evaluating the properties of a Boolean function quickly is with the 
aid of a Karnaugh map. This method however is of limited value when 

the number of defining variables is large.
The result of the search for a new method of interpreting 

Boolean functions according to the above criteria appear in Chapter 2.
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CHAPTER 2.

The Application of the 

Rademacher / Walsh 

Transform to Logic Design 

and Boolean Function 

Classification.
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2.1 Introduction.

In 1922 Rademacher published a new set of orthogonal functions 
taking the value ^  1 in the interval (0,1), see reference 15 . This 

set of functions however was incomplete - a finite set of such 

functions does not form a sub-group.

Working independently,in 1923 , Walsh published a set of 
orthogonal functions taking the value + 1 in the interval (0,1), 

see reference 16, The Walsh functions , in addition to forming 

a complete set , have the Rademacher functions as a generating set. 

That is to say , any set of Walsh functions may be generated from 

a suitable set of Rademacher functions. See also references 17 ,l8.

Because the Walsh functions have properties analogous to 

trigonometric functions , considerable research has gone into 

employing 'Walsh waves' for the transmission of sampled-data 

digital information. Other areas of application have been in the 

fields of signal filtering and pattern recognition.

In the field of logic design the Walsh functions appear to 

have been employed relatively little.Chow , reference 19» showed 

that certain parameters were sufficient to characterise threshold 

functions, and Dertouzos, reference 20 , showed that these parameters 

were in fact Walsh transform coefficients. Dertouzos also developed 

operators for the manipulation of these coefficients to facilitate 

threshold logic synthesis.(it is largely an extention of the work 

of Dertouzos that will be considered herej In addition Ito, 

reference 21 , has considered the - application of Walsh functions 

to the recognition of binary-valued functions on a statistical 

basis. Hurst, reference 22 , has considered the general possibilities 

of the application of Walsh functions to the synthesis of binary 

functions both in terms of threshold and conventional logic . 

circuitry.
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The justification for the analysis of Boolean functions 

under the Rademacher/V/alsh transform lies in the fact that 

certain Boolean operations may be executed more easily in the 

transform domain and that many of the properties of Boolean functions 

which are normally difficult to determine , eg. linear separability , 

are best characterised in this domain. In this respect an 

analogy can be drawn between this transform and the Fourier . 

transform.

It is the purpose of this chapter to show that particular

operations in the transform domain have certain properties which

lend themselves naturally to the synthesis of logic functions ,

and to illustrate how these operations may be extended to

facilitate the solution of more complex problems.*»
The synthesis of logic functions both in terms of threshold 

gates and vertex (KAND,NOR,AND,OR) gates is considered.

In addition it is shown that these operations lead to a 

very efficient method of classifying Boolean functions.

2.2 The Rademacher/V/alsh Transform.

2.2.1 Introduction.

In this section a particular form of the above 

transform will be defined which has properties which are 

especially relevant to the field of logic synthesis. For an 

alternative definition of this form of the above transform see 

reference 23»
The more general properties of the Walsh transform 

may be found in references l6 and l8.

2.2.2 Definitions and Properties.

Consider the square Boolean matrix of Fig. 23»

For reasons that will become apparent later a 2^ matrix is

said to have an order n . For example in Fig.23 » n=4 .
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The matrix [ t ] has , by definition , the follcv/ing properties 

for any n ;

1/ The members of the first row of [̂ t J are equal to zero.

t. . = 0 , 1 ^  j ̂  2^ . . .  (2.1)* » J
2/ The second to (n+1) th rows have the property 

t. . = 1 when f( j-1) modulo . . (2.2)
t. = 0 otherwise. 2 ^ i ^ ( n + 1 )  , 1 ̂  j ̂ 2 ̂* J

These are the Rademacher functions , reference 15 , 

with range 0,1

5/ The remaining (n+2) to 2^ rows are equal to all possible

combinations of the exclisive-OIî ‘s of rows 2 to (n+1) of |̂ Tj

•?aken one-at-a-time two-at-a-time. . . • n at-a-tiine.

These combinations are taken in ascending order , ie, in

Fig. 25, where n=4. î t^ . =(t_ . © t^ .), t„' . =(t_ . © t. ,)^ $ J ^ $ Ü $ J ^ $ J tJ

^8,j =(*2,j ® • • • ’*11,j =(*4,j ® *5,j) ’

*12,j =(*2,j ® *3,0 ® *4,j) • • • etc.

The complete set of functions defined above are the Walsh 
*

functions in the range 0,1 .

* Originally \/alsh defined these functions in the range 

1,-1 . It is convenient for the applications to be considered to 

replace the value 1 in the range 1,-1 by 0 and to replace the value 

-1 in the range 1,-1 by 1 . This gives the Walsh functions in

the range 0,1 defined above. Although it is convenient to 

develop-logic synthesis theory using the Walsh functions in the range 

0,1 in practice the transformation operation dscribed on page $4 is

carried out in the range 1,-1 for reasons of computational speed. See 

also reference 2-4.
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It is a property of the Rademacher functions in the range 

0 ,1  that any Boolean function may be defined upon them . For 

example in Fig. 23 , where n=4 , the set of column vectors of 

the Rademacher functions constitute the set of n-tuples of a 
fourth order function.

In general the j th n-tuple of an n th order function may be

defined as : . ^ j = t, , . . . (2.3)
0 i=2

It is therefore possible to label each of the Rademacher 
functions as defining variables in the same way as in a truth 
table ; namely

the rows of [t 1 , t. . , 2 ̂  i ̂  (n+1 Hare labelled x.
L -J 1 , 3 I 1- 1

1 c jÿ 2". J

the rows t. . , (n+2)^ i ^ 2^ 1 aro labelled as1 » d IJ
^1,2 »^1,3 » • • ♦ ^(n-1),n ’ ^^1,2,5 ’ * ‘ * ’̂ (n-2) ,(n-1 ) ,n * "

Where x^ ^ denotes x^jôx^ etc. This labelling follows from the

definitions given in 3/ above. An example of this labelling for a 

fourth order function is given in Fig. 23*
The row of [t J , t^  ̂ , 1 ^ j ̂  2^ is labelled,by

convention , as x^

The matrix [̂t J has thus been partitioned row-wise into 

several areas.

Now :
1/ The first row , having the subscript of x as a 0 , 

will be called the -zero-ordered partition*

2/ The second to (n+l) rows , having a single subscript, 

will be called the first —order partition.

3/ The rema.ining rows , having in ascending order , q
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subscripts, will be called the q th order partitions.

This particular method of row ordering has been chosen to 

best illustrate the use of the transform matrix |̂ Tj in the field 
of logic design.

The definition of the transform operation is as follows :

r 2^ 1
r. = 2^ - 21 51 @ F (x ,x , . . ,x )[ ,

‘■^=^ j-' y  y . , . (2.4)

where 21 denotes arithmetic summation , and © denotes the exclusive- 
OR operator.

It can be shown that r^ under this definition can be simply 
stated as ;

"jrhe number of agreements between row i of and the 
function F(x^,x^, . . ,x^)^ - -^the number of disagreements

between row i of [̂ tJ and the function F(x^,X2 , . . ,x^)j

In order that the value r^ may be related to the corresponding 

row labelled x^ , where s represents the subscript given to the 
i th row of [̂ tJ , r^ will be labelled R^. For example in Fig. 23

= ^12  ̂ ""16 = ^1234
Under this transformation the sample Boolean function shown 

in Fig. 23 transforms to the vector :

0 0 4 0 0 -4 0 0
^0 ^1 "̂ 2 ^4 "̂ 12 ‘̂ 3 , %14
4 4 0 •-4 -4 0 4 12
^23

T)
"24 ^34 ^123^124^134 P

-23 4^1234

It can be shown that the Rademacher/Walsh transform may be 

executed in the range -1,+1 instead of the range 0,1 as above.

Specifically if the Boolean value 1 is replaced in T above 

by -1 and the Boolean value 0 is replaced by +1 , the transform
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operation may be accomplished by simple matrix multiplication.

Equation (2.4) then becomes :

^i " • • *^nO* 1 ^ i ^ 2  . . .  (2.5)

where t?  ̂ refers to a member of [tJ »[t] being defined in the 

range ~1,+1 . Fig. 25 shows the sample function of Fig.25 and Fig.

24 transformed in this way.

It has been pointed out that this transform is in some ways 

analogous to the Fourier transform , see reference 20. In 

particular it is noted that the zero-ordered coefficient 

is in a sense a 'd.c* term in that it is a measure of the number 

of false minterme of the function F(x^,x^, , , ,x^) . The first 

-ordered transform coefficients R^^R^, . . ,R^ are a measure of 

the dependence of the function on the defining variables x^jX^, . . ,x^.

The second-order transform coefficients R^^,R^^, • . ^

arc a measure of the dependence of the function upon x^Ox^ , x^Ox^ ,

For these reasons the transform coefficients will be called 
'spectral coefficients' of relevant order. For example R^^is a 

second order spectral coefficient , is a third order spectral

coefficient , and so on.

To gain some insight into the composition of a Boolean 

function which is characterised by a particular spectral coefficient, 

reference should be made to Appendix 1, where the Boolean functions 

corresponding to the 2^ rows of |̂t J (in the range 0,1 ) are 

plotted on Karnaugh maps for n=4.

It i& important to note that the distribution of true minterms 

of any function in any variable , say x^ , (that is the number 

of true minterms lying in x^ , and the number lying in x^) can be
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j j-1 ^1 ^2 "3 ^4

1 0 0 0 0 0 0
2 1 0 0 0 1 1
3 2 0 0 1 0 1
4 3 0 0 1 1 0
3 4 0 1 0 0 1
6 5 0 1 0 1 0
7 6 0 1 1 0 0
8 7 0 1 1 1 1
9 8 1 0 0 0 0
10 9 1 0 0 1 0
11 10 1 0 1 0 0
12 11 1 0 1 1 1
13 12 1 1 0 0 1
14 13 1 1 0 1 1
15 14 1 1 1 0 1
16 13 1 1 1 1 0

Truth Table Representation of the Sample Function
of Fig. 25.

Fig. 24

1 
1 
1
1

1-1 
1 1 
1 1 
1-1 
1 1 
1-1 
1-1  
1 1 
1-1 
1-1 
1-1 
1-1

0
0
4
0
0

-4
0
0
4
4
0

-4
-4
0
4

12

Execution of the RacCemacher/l/alsh Transform of 
the Sample Function , in the Range 1,-1.

Fig. 25
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determined exactly given the value of the corresponding spectral 

coefficient together with the value of the zero-ordered coefficient 
Rq. See also Section 2.7.2.

The Rademacher/.valsh transform matrix defined in the range -1,1 

has the very important property that it is orthogonal , ie

[^]  ̂ ■ . . .  (2.6)

That is the inverse of the transform matrix |̂t J is equal to the 

transpose of [̂t J multiplied by a constant.

Because of this property algorithms can be generated which 

allow the transform to be executed at a much higher speed than is 

possible using conventional matrix multiplication. This means that 

it is possible to employ the techniques to be described for 

systems defined upon a large number of variables without undue 

sacrifice of computer execution time. See also reference 24.

2.5 Observations on the Significance of the Spectral Coefficients.

It was noted above that the’ correlation between a given 

Boolean function and a particular row of the transform matrix 

is given by the value of the corresponding spectral coefficient in 

the transform domain.

It follows therefore that a function having a relatively 

large positive spectral coefficient , say R.̂  ̂ $ has a high 

correlation with x^Gx^ . On the other hand if the coefficient R^^ 

is large and negative , the function has a high correlation with

In general this interpretation may be extended to the overall 

distribution of the spectral coefficients in the transform domain. 

If, for example the function has its largest spectral coefficients 

in second-order positions it will be termed a ’predominantly 

second-ordered function ', whilst a function whose predominant
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spectral coefficients are high-ordered will be termed a'high-ordered' 

function.etc. Examples of high- and low-ordered functions appear 

in Fig.2oa and Fig.26b. respectively. Comparisons between these 

functions and the Karnaugh maps of Appendix 1 is instructive.

Note that the spectral coefficient does not enter into this 

classification as it does not contribute any information about the 

ordering of the function ; it is zero-ordered.

Since any Boolean function is uniquely reconstruetable from 

its spectrum , see reference 20 , it follows that each of the 

spectral coefficients contain some information about the function.

It has been shown that this information is not, in general , evenly 

distributed among the coefficients, see also reference 25. A special 

case 5̂ s that of the linearly-separable or threshold functions, in 

which all the information is contained in the first (n+1) 

coefficients. These are the Chow parameters as shown by Dertouzos,see 

references 19 and20. It follows that threshold functions are 

predominantly first-ordered.

Inspection of the high-ordered function of Fig. 26a shows it 

to be ’ classically ’ C Ü mberSQ(Dc.to synthesise from a circuit designers 

point of view since the true minterms of the function are scattered 

on the Karnaugh map and do not fall predominantly into areas 

corresponding to the intersection or union of any particular 

defining variables. The opposite is true of the low-ordered function 

of Fig. 26b.
These observations lead to the intuitive supposition that 

high-ordered functions are most easily synthesised with the aid of 

exclusive-OR gates '. This supposition will be verified later.

In the light of the above discussion it would also appear that 

it is advantageous to be able to convert high-ordered functions
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into lower-ordorod functions by sorno method. Such methods will be 

described later.

2.Zf Some operations in the Transform Domain•

It is of importance to investigate the relationships between 

operations in the transform domain and those in the Boolean function 

domain , or 'Boolean domain By doing so it is possible to show 

that certain Boolean o%:erations may be enocutod more easily in the 

transform domain and also that certain operations in the transform 

domain may be immediately interpreted in terms of logic circuit 

synthesis.

Consider the following operation :

Operation 1 •------
The interchange of variables with , 1: / 1 , k /  0.

From equation (2.4)
^n •

r ,  ^ 2“  - 2 { z  ® • • ’" n ^ ]  ' ^

1 i S' 2“ .
equn.(2.4) 

repeated.

Substituting x, . for t. . and R, for r, ■.1,3 k 1
in the above gives

Define a now function

where = x^

x^) = F(x^ ,x.,, . . , . . ,::̂ ) • * (2.3;

k / 1 0 .
ind '"1 " "k
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Then equation (2.7) can be written as

j ® • • »^k’* • >^rd} |- (2.9)1<k^n J
or . (2.10)

K K n
The equations (2.9) and (2.10) are therefore equivalent , and

^  = h  "•

It can also be shown that , under this operation ,

= \  -

' % 1  “ = ®ni • 2‘ci = ^0 Gtc.

That is the resulting set of spectral coefficients arc

generated from <( 2 ̂ by replacing k by 1 in the subscripts of ^

and vice-versa.

For example if is interchanged with %. , the resulting

spectrum is generated as ;

"43 “ ^23 ’ ^23 ^ ^13 "le34 ^134 ’ ^134 ^ ‘̂234
It is now possible to interpret the above operation in terms 

of general logic circuitry.

Fig. 27a shows the implementation of the Boolean function 

F(x^,X2* . . ,x^,x^, . . ;X^) which has the corresponding spectrum

<H>.
According to the above , variables x^ and x^ are now inter­

changed and a new module corresponding to F'(x^,X2, . . ,x^,xj^, , . ,x^) 

is defined , as shown in Fig. 27b.

This new module has the spectrum*^R’̂  . Note that , from
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n

<R>
Fig.27a

F ' ( x . , x ^ ,

<K‘>

<■>

Fig. 27b
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equation (2.8) , the overall transfer function of the system has not 

changed.

The above is an illustration of an operation in the transform 

domain which may be directly interpreted in terms of logic circuitry. 

Dertouzos , reference 20 , has considered several of these operations 

and the most important of these are given , without derivation , 

below.

Operation 1 (repeated)

Interchange of variables with x^ , k / 1  / 0.

The new spectrum may be generated from the original

spectrum <^R^ under the interchange of x^ and x^ if in ̂ R ^  the 

subscript k is replaced by the subscript 1 and vice-versa.

Operation 2.
•»
Complementation of the variable x^ : x^ becomes ^  .

The new spectrum ^R'^ may be generated from the original 

spectrum ^under the complementation of variable x^ if in ^ R ^  

the spectral coefficients having subscripts containing k are 

changed in sign.

Fig. 2oa shows the implementation of this operation.

Operation 3*

The generation of the Dual of a function.

That is , given a function F(x^, . . ,x̂ ,̂ • . ,x^) having a

spectrum ̂ R  )> generate a function F(x^, . . ,x^, . . ,x^) having a 

spectrum .

The new spectrum ^R'^ may be generated from the original 

spectrum <^R^ under the above operation if in the oven-ordered

spectral coefficients are changed in sign. Roto: R^ is even-ordered.

Fig. 23b shows the implementation of this operation.
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Operation 4.

The generation of the complement of a function.

That is I given the function F(x^, . . ,x^, . . ,x^) having 
a spectrum generate a function F(x^, . . ,x^, . , ,x^) having 
a spectrum •

The new spectrum may be generated from the original

spectrum )> under the complementation of the function if in 

all spectral coefficients are changed in sign.

Fig. 23c shows the implementation of this operation.

— — oOo---
So far certain operations in the transform domain have been 

have been considered which certainly facilitate operations in the 
Boolean domain , but which appear to contribute little to the actual 
synthesis of logic functions. However Golomb , reference 2b * has 
shown that the ordering and complementing of the defining variables 
of functions enables certain functions to be classified into 

equivalent classes. That is , certain functions of the same order n , 
and. which differ only in the permuta.tion and/or complementation of 
their defining variables are termed equivalent. Such a classification 

can clearly be established by using Operations 1 and 2 .

In logic synthesis the concept of equivalent classes is 

important since i,f the synthesis of one member of such a class is 

known then the synthesis of any other member of the class follows 

by simply permutating and/or complementing the defining variables 

of the known system.
The number of equivalent classes is of course much smaller than 

the total number of functions possible , for any given n .

In order that the idea of equivalent functions may be extended 

it is necessary to introduce a new operation which not only facilitates 

logic synthesis on an equivalence basis but also finds application
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in the synthesis of logic functions by means of threshold gates as 

will be described later. This operation will be called the 
•translational operation';

Operation 3»

The replacement of the defining variable by x^ 0 x^ ,

k / 1 / 0.
Recalling equation (2.4) :

,n
= 2 ^ - 2 f  Z  • • ’ V l  > 1

'• y. . (2.
1$:i^n . J r

4)
repeated.

Let the given function be F(x^,x^, . . ,x^, . . ,x^)

Define a new function F'(x^,x^, . . ,x^, . . ,xw)
. . (2.11)

. . ,x^, . . ,x^) where @

The fact that this definition gives rise to 

a unique new function under a basis transformation is shown in 
Appendix 2.

Substituting for the defining variables in equation (2.4) 

in the usual v/ay gives,for the new function :

E. = 2“ - 2 (fe "k.j ® • • '=k' * •J"' >. . . (2.12)
1 < k <n

or , from equation (2.11) :
,n

R» = 2 ^ - 2
■ a

J

Now equation (2.13) is,by definition, equal to R,. . That
1 ̂  k ^ n

is E^ = .

It can also be shown that = R^ ,

^klm “ "'km * '̂km " "\lm

. . (2.13)
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and ,

%  = ^0 etc-
If this operation is extended to the replacement of by x^^^ 

the following results are obtained:

^klm  ^k '  %  \ l i n  ’

‘ ^klnin ’ *'kn ^klran ’

and ,

%  = etc.

It is important to note that this operation constitutes a 

re-ordering of the minterms of F(x^, . . ,x^) and that no information 

about'the function is lost.

2.3 Spectral Translation.

Consideration of Operation 5 » above , gives rise to the 
following theorem :

2.3*1 The Theorem of Spectral Translation.
If in a Boolean function F(x^, . . . . ,x^) having a

spectrum <^R^, Xy is replaced by -ĵ x̂ ® x^ . . . © x^^ ® Xy where 

the set of subscripts <^a,b, . . .  ,h^ is denoted by <(S)>, then the 

spectrum <^R'^of the new function is generated from the spectrum ^ R ^  
if :

in every subscript of the spectral coefficients of <^R^ 

containing k , the members of ̂ S ^  are deleted if they exist,and 

appended if they do not.
—— oOo — '

Notes on the theorem

1/ When a first-order spectral coefficient is replaced by 

a higher-ordered coefficient under the above theorem , no other
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first-ordered spectral coefficient is replaced. This follows from

the fact that no other first-order coefficient has the same subscript#

2/ If the operation of spectral translation is executed twice

for the same variable replacement , the original spectrum results.

2.3*2 Interpretation and Implementation of Spectral Translation

Fig. 29a shows the implementation of the Boolean function

F(x., . . ,x, , . . ,x ) in terms of logic circuitry. Suppose that • X n
it is required to replace x̂  ̂ by x^ = x̂  ̂ © x^ • This is accomplished 

by means of an exclusive-OR gate and produces a new logic module

. . ,x^, . . ,x^) as shown in Fig. 29b. The overall transfer 

function of the system remains unchanged ,from equation (2.11).
Fig. 29c shows thé implementation of this operation for the 

variable x^ replaced by x̂  ̂“{'̂ 3 ® ® ^f}® *

2.3*3 Significance of Spectral Translation.
2 .3.3a In Logic Synthesis.'

Because the theorem of spectral translation has the

fundamental property of translating high-ordered spectral coefficients

to low-ordered positions , it is clear that , in general , given

a high-ordered function then a function of lower order may be

generated from it. Now it has already been established that low-

ordered functions have the property that they may be more easily
t

synthesised in terms of threshold gates and vertex (BAND,NOR,AND,OR) 

gates , than may high-ordered functions. ^

The fact that spectral trc.nslation itself is easily 

implemented by exclusive-OR gates means that a novel , and sometimes 

complete , synthesis procedure is possible, as will later be 

demonstrated.'_________________________________________________________________
It is assumed that the exclusive-OR gate is an integral 

gate having a propagation delay comparable to that of a vertex gate.



109

F(X. • • $X, ; .

- y
J

<R> Fig. 29a

F ' ( x . , x _ ,  . . , x ' ,

<r'>
J

■ V<R> Fig. 29b
X1

Xc

X f

n n

- V - -
<H‘>
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In Boolean Function Classification.

As has been mentioned above , Golomb, reference 26 , has 

shown that certain Boolean functions of given order n may be classified 

as * equivalent' under the complementation and/or permutation of 

their defining variables.

In the light of the theorem of spectral translation 

a new , and more embracing , classification may be proposed,:

J
A Boolean function F^Cx^, . , of order n is

classified as trans1ationa11y -equiva1ent to another 

Boolean function • • ,x^) of the same order,if

F^(x^, . . ,x^) can be mapped onto F^Cx^, • . ,x^) by 

the permutation and/or complementation of its defining 

** variables and/or the , perhaps repeated , application

of the theorem of spectral translation.

Clearly all Boolean functions which are equivalent fall 

into the sametransiationally-equivalent class. It follows that the 

number of translationally-equivalent functions which exist for a 

given n is smaller than the number of equivalent functions.

The practical importance of this new classification lies 

in the fact that translationally-equivalent functions can be 

synthesised from a representative , or canonic , function whose 

synthesis is known,by the complementation and/or permutation of 

the defining variables and/or the appending of suitable exclusive-OR 

logic.

If tables of representative canonic functions are 

generated , therefore , together with optimum syntheses , it is 

possible to synthesise any given function by
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1/ establishing the translationally-ecuivalent class to which it 

belongs,

2/ finding the operations necessary to convert the 

given function to canonical form,

3/ to implement these operations in terms of logic circuitry, 

and then

4/ to append the optimum synthesis.

The choice of form of canonic function is arbitrary,but in 

order that an optimum synthesis be achieved it is clearly an 

advantage that the canonic . function for each class should be 

predominantly first-ordered for reasons previously described.

With this in mind the following method of generating the 

canonic function in each class is proposed :

1/ Generate the lowest-ordered function possible in a given

class by the operation of spectral translation.

2/ Render all first-order spectral coefficients positive 

(Operation 2 ).

3/ Perrautate the defining variables so that the. first-order 

spectral coefficients are arranged in descending order of magnitude, 

followed , whore possiHe/by the second-order coefficients etc. 

(Operation 1 ).

This method has been used to generate a table of canonic

functions for n ̂  4 . 'Tliis table appears in Appendix 3* The power

of this form of Boolean function classification now becomes'" 

apparent. The total number of Boolean functions for n ^ 4  is 

63,336 and under this classification the number of canonic 
functions is 18 . In practical terras this means that I8 unique 
logic modules are required to synthesise all possible Boolean 

functions,n ̂  4, under the application of the operations 1,2 and 3* 

Because this table does not specifically enumerate all possible
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complements of functions it is also necessary to invoke Operation 4.

Of those 18 functions one is trivial (function N0.I) since it 

specifies a function with all false minterms. It is worth noting at 

this stage that all but three of these canonic functions are 

threshold functions ,(the threshold functions are marked ’T ‘). The 
importance of this will become clear later.

The 'optimum syntheses' of these functions have not been 
shown since the definition of optimum will depend upon the criterion 

of optimality used. This may be minimum number of gates or inter­
connections , cost etc.

It will be shown later that a more powerful classification 

method is possible but before embarking on the details of this it 

is neaessary to investigate the application of spectral translation.

2 .3*4 Application of Spectral Translation.

2•5•4a.Application to Synthesis by Threshold logic.
Dertousos, reference 20 , has shown that a threshold function 

is uniquely characterised by the values of the first (n+l) spectral 
coefficients. These in fact are the Chow parameters , see reference 

19» Moreover these coefficients may appear in any order and with 

any sign. All threshold functions are linearly separable and , 

because the evaluation of linearly separable functions is a 

complex procedure,tables of such functions have been prepared, see 

references 20 and 27* In those tables the first (n+1) spectral 

coefficients of each threshold function appear in ascending order 

of magnitude and are positive. These vectors a.re sufficient to 
characterise all n th order threshold iunetions and aie calloo. oooiüivo 

characteristic canonic vectors- In order to establish if a given 

function is a threshold function it suffices to arrange the first

* If operation 4 is invoked then this function characterises a function 
with all true minterms.
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(n+l) spectral coefficients of the function in ascending order of 

magnitude, change all negative coefficients to positive and 

determine if this characteristic vector appears in the tables 

of of positive characteristic canonic vectors.

In order that the threshold gate corresponding to a particular 

canonic vector may be designed it is necessary to evaluate the 

weights associated with that vector. Again these threshold weights 

normally appear in the canonic vector tables,A representative set of 

such tables appears in Appendix 4,

The use of such tables is best illustra.ted by means of an 

example.

Consider the fourth-order function of Fig. pO*

The first (n+l) spectral coefficients of this function are

4 12 4 -4 0 ,
Rq ^  ^2 ^3
re-arranging these coefficients into ascending order of 

magnitude £ind changing all negative signs to positive the vector 
12 4 4 4 0 is obtained.

Inspection of the tables of Appendix 4 , for n=4 , shows

that this characteristic vector indeed defines a threshold function

for v.'hich :

Characteristic vector C : 12 4 4 4 0

Weights. W : 2 1 1 1 0

How because there is a one-to-one correspondence between 

each weight and associated member of the characteristic vector , 

both .in magnitude and sign , it is possible to re-express the 

original function in terms of the weights by re-arrangement and 

change of sign as appropriate.
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In this example

4 12 4 - 4  0 are the original coefficients
Rq R^ R^ R̂ ^

1 2 1 - 1  0 are the corresponding weights.
^6 '4 "4 "4 '4

From these weights the parameters of the threshold gate 
may be calculated. For a more detailed treatment see references5'
20 and 28.

The input weightings for each gate input are given by : 

Weighting at input x^ is equal to vH , 1.< i < n  . . .  (2.14)

The output weighting of the gate is given by :

. . . (2.13)
t {* n 1

Weighting at output = -̂ ](SI I • I ) + w* + 1
i=1 ^ °

As threshold gates with a negative weight capability will 
not be considered it is important to note that if any wl are. 

negative the respective input must be complemented and the 

corresponding weight changed in sign. In this particular example 
therefore, w^ is changed in sign and an inverter is placed before 
input x^.

From equation (2.13), the weighting at the output of this 

gate is -J( 4 + 1 + 1 ) = 3* The gate is shown in Fig. 30.
Note that the input weighting of 0 is equivalent to a no­

connection. That is , the original function is independent of 

variable x^.. (The function is in fact third-ordered).

The description of the operation of this gate is now 

straightforward. Clearly if x^ and x^ have the value 1 then the output

^ Note that some authors define this weighting with -w^  ̂ this is 

because Chow parameters were not originally defined using,t^e 

Rademacher/Walsh transform . This results in a difference of sign for
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threshold of 3 will be equalled since is weighted 2 and is 

weighted 1 . The gate will thus give an output of one. Similarly 

the gate will also give an output of one if x^ = 1 and x^ = 0 since 

x^ is complemented. Also if x^ = 1 x^ = 1 and x^ = 0 the sum of 

the weights at the input is k which exceeds the output threshold 3 , 

the gate output will then again be 1 . In all other cases the output 

threshold is not reached so that the gate output is 0 .

The gate function may therefore be concluded to be 

x^ * ( » where signifies logical’ AND ,

’+ ’ signifies.logical OR.

This result can be checked from the Karnaugh map of the 

function shown in Fig. 30 •

•» The role of the èpectral translation operation in the synthesis 

of Boolean functions by means of threshold functions is now 

considered by means of a simple example.

Given : the function shown on the Karnaugh map of Fig. 31 »

The spectrum of this function is as follows

0 0 4 0 0 -4 0 0
^0 R2 %4 ^12 ^13 %14
4 4 0 -4 -4 0 4 12
^23 ^24 ^34 ^123 ^124 ‘̂134 ^234 ^1234

If the first (n+1) spectral coefficients of this function are 

ordere.d by magnitude and rendered positive the result is :

4 0 0 0 0 which does not appear in the tables

of positive .characteristic vectors (Appendix 4- ) » that is , it is 

not a threshold function.

Now apply the operation of spectral translation to generate 

a new spectrum from the above spectrum ^ , v;here •
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0 0 4 0 4 -4 0 .4
% ^2 %4 %12 4 3 4 4

4 0 4 -4 0 12 0 0

^23 '^24 ^34 ^123 ^124 "154 434 % i234

Applying the operation again for the generation of a new 

spectrum from where R” = :
0 0 4 12 4 ..4 4 .4
^0 4 4 4 4 2 4*3 4 4

0 ' 0 0 0 0 0 -4 4

"23 4 4 4 4 si'23 ^124 4*34 %234 ^1234
Finally , applying the operation for the generation of a 

new spectrum from ^R"^> where R” * = R”^ •
0 -4 4 12 4 0 0 0
R - R'“ X)1t 1 R"' 4 ' 4 A 4 4
\) 0 0 4 ..4 4 .-4 0
4 3 4 4 4 4 ''Ï23 4 k 4 k 2%234
Now if the first (n+1) spectral coefficients of this function

are ordered by magnitude and rendered positive the result is :
12 4 4 4 0 which appears in the tables of

positive characteristic vectors (Appendix 4) , that is , it is a

threshold function.

The threshold gate parameters may now be calculated using the

method described above :
The coefficients 0 - 4  4 12 4 give the

R^‘ RIJ» 2”» R"' R|J»

corresponding weights 0 - 1 1 2 1  , see Appendix 4 •
"'Ô "2 ''g ”4

From equation (2.15) > the output weight is
-J(5 + 0 + 1) = 3 ,

The resulting gate appears in Fig. pi a together with the 

exclusive-OR circuitry necessary to carry out the spectral translations.
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That is , initially is replaced by and so on .

Because w* is negative an inverter is placed on the input 
line before the gate.

This example illustrates a property common to many non-threshold 
Boolean functions , that is that such functions may be rendered 

linerarly-separable (threshold functions) , by the application 
of the operation of spectral translation. Such functions will 

be said to have threshold functions ’embedded' within them.

The importance of this result of course lies in the fact that 

the versatility of threshold logic is increased many-fold by the 
straightforv/ard appending of equivalence (exclusive-OR) -type logic.

In fact the tables of Appendix 3 show that there are only three 
classe'fe of functions out of eighteen which do not have embedded 
threshold functions , n ^ 4  .

It has been argued*that the continuing non-appearance of any 
satisfactory technology for making threshold gates commercially 
available limits the practical usefulness of these methods. In 

fact the difficulties in the fabrication of these gates have been 
overcome by a novel design method devised by Dr.G.L. Hurst , 

University of Bath. The implications of the.use of this gate are 

discussed in Chapter 3 .
In practice the application of spectral translation to 

convert a high-ordered function into a low-ordered function,so 

that embedded threshold functions may be employed in the synthesis 

of given functions, may be carried out in several different ways.

Each of the alternative methods for carrying out the translations 

results in a differing number of gates employed in the final

* Refereeb comment on paper on this subject submitted to 

I.E.E.E. Transactions on Computers by the author.
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synthesis. The criteria governing the optimum choice of spectral 

translations for the minimisation of the number of gates used in 

a given synthesis appears in Section

2•5•4b Application to Synthesis by Vortex logic.

As explained previously , functions having high-ordered 

spectra are generally more difficult to synthesise using vertex 

(AND,0R,iJAIID,::0?v) logic than are functions with low-ordered spectra 

because their true minterms do not fall predominantly into areas 

corresponding to the intersection or union of any particular defining 

variables.

It has been shown however that the application of the 

operation of spectral translation enables a high-ordered function 

to be Ve-expressed as a function of lower order under exclusive- 

OR synthesis.

The techniques of spectral translation can therefore 

be used , without the necessity of employing threshold gates , to 

problems employing conventional vertex gates. Moreover the synthesis 

of Boolean functions by this method gives rise , in general , to 

more elegant solutions than would be the case in circuits employing 

no exclusive-OR gates. This follows from the observation that 

exclusive-OR functions are not easily synthesised by vertex logic.

Consider the function given by the Karnaugh map of Fig. 5*2.3.

This function has the spectrum

2 2 2 2 6 2 -6 6
4 ®2 "3 4 ^12 4 3 4 4

-6 “2 6 2 -2 -2 6 '-2
4 5 ^24 . ^34 P

125 4 2 4 ^134 ^̂ 234 ^4 234
Koto : this function does not have an embedded threshold function.

Applying the operation of spectral translation to generate 

a now spectrum ^R'^from the above spectrum <^R)> ,where RJ| = R^^ :
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0 1 1 1 1 0

00 0 0 0 0

01 1 1 0 1

11 0 1 1 0

10 0 0
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0 0 0 0 0 0
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F"(XyX2,X3,x^)

- 4 - \  ■

•Xi
X 2
.X3
X,

F i g . 3 2 c .  F u n c t i o n  a f t e r  2 n d . t r a n s l a t i o n
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F i g  3 2 d .  F u n c t i o n  a f t e r  3 r d . t r a n s l a t i o n
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2
%

6
«1

2 2
%3

6 -2 -2 
^4 ^12 ^13

2
4 4

-6
^23

-2
«24

6
^34

-2
%i23

2 - 6  6 
^d24 ^^34 ^234 ^1234

Again , generating a new spectrum from the above spectrum

where R” = R44 :
2

,
6
«'l

2
R-

6
«3

6 —2 —6 
«Ç «Ï2 «13

2
%14

6
E''3

-2
«24 % 4 ^'23

2 -2 -6 -
'̂124 ^134 ^234 ^1234

Finally , generating a new spectrum ^R"'^ from the above spectrum

< ^ R w h e r e  Rtt 1 _
2 " ^23 •

2
, «o'

6
Rlj ’

6
R” '

6
R^'

6 2 - 6  
^12 ^13 «Ï4

2
«23

-6
«24

2
^34 '̂123 ^124 ^134 '̂234 «1234

A point has now been reached where the spectrum is maximally 

first-ordered , that is to say no further translations can increase 

the magnitudes of the first (n+1) coefficients.

The functions generated by each of these translations are shown 

in Figs. p2b , 32c and 32d respectively. Note that at each step 

the true- minterms of the function tend to come together in larger 

groups; that is , the true minterms fall more predominantly in areas 

corresponding to the intersection of the defining variables.

Fig*33a shows a simple , conventional two-level synthesis 

(AND,OF) of. the original function of Fig. 32a together with 

necessary inverters. The same figure shows the synthesis accomplished 

with the aid of the above translations , implemented by exclusive-OR 

gates, Fig. 35b.

The saving in circuit complexity is considerable in this
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example , the number of interconnections required being 20 and 12 
respectively.

It is worth noting that because only positive spectral coefficients 
have been translated no inverters are required in the latter synthesis. 

This would not necessarily be the case , of course , if NAND,NOR 
logic were employed.

In the case of threshold logic synthesis it was noted that 
the appearance of a 0 in the weighting vector , 1 ^ i^ n ,

implied a no-connection , that is the function was independent of 
variable • It is true of all functions that if 0 appears in every 

spectral coefficient having a subscript containing i then that 
function is independent of x^. It is clear by inspection that the 

function considered here has no variable redundancies.

Again the spectral translations in this example have been carried 
out with no obvious plan to minimise the number of gates generated.
In fact this solution does employ the minimum number of necessary 
exclusive-OR gates for reasons developed in the next section.

2.5*5 Gate minimisation Criteria.
In order that the minimisation criteria pertaining to the synthesis 

of digital circuits under the operation of spectral translation may 

be developed it is necessary to employ Galois Field 2 theory. For 

this reason reference should be made to Appendix 2 before proceeding 

with this section.

A GF(2) matrix is able to represent an operation of the type : 

replace x. by x! = x. @ x ..which corrosnonds to a soectral translation. 

For example : replace x^ by x* = x^ © x^ would be represented as
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1 1 0 0
0 1 0 0 ^2
0 0 1 0
0 0 0 1

© X^) 4
^2 = ^2

^3
^4 "̂ 4

, in G?(2) .

In field theory a matrix of this type , where the main diagonal

consists of allowed values other than zero and only one other allowed

value , other than zero , appears off the main diagonal , defines

an elementary operation • An elementary operation thus corresponds to

a spectral translation where a second-order spectral coefficient

replaces a first-order spectral coefficient» since if is replaced

by x! = X. © X. then R. is replaced by R! = R . . •1 1 j 1 1 ij
It also follows that if it is required to represent a spectral 

translation where a spectral coefficient of above second-order 
replaces a first-order coefficient then this can be achieved by the 

multiplication of a number of suitable matrices in GF(2) , each of 
which define an elementary operation of the type above*

For example , the replacement of x^ by xjj = © x^
be represented by

(x^@Xg©X^)
X,

x^ can

0 1 o’ 1 0 0 ‘1 1 1 0 ^ 1"
0 1 0 0 0 1 0 0

^2
0 1 0 0 ^2

0 0 1 0 0 0 1 0 0 0 1 0
^3

0 0 0 0 0 0 1 0 0 0 1
\

X
Xf

where x^ has first been replaced by x* = x^ © x^ and then x^ has been 

replaced by xjj = x* © x^ = x^ © x^ © .

In general,a series of elementary operations in GF(2) can 

represent any single spectral translation.
'These ideas may be extended to the representation of several 

consecutive spectral translations* For instance, in the example of 

the previous section the overall result of the series of spectral 
translations was to replace x^ by x||'= x^ © x^ , x^ by x” '•= x^ @ x^ © x̂ ,̂
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%3 by X3 ' = %3 @ X̂ , and by xJJ*= x^ . See also Fig. 33.

The result of this series of translations can thus be 

represented as

, in GF(2) .

'1 0 0 1" '̂1 (x^Ox^^
0 1 1 1 ^2 (x.Ox_©x,) = 2 p 4- = 4
0 0 1 1 (x^Ox^) yU 1

3_0 0 0 1 ^4 xj|'

It follows that the above matrix may be re-expressed in terms of 

a number of matrices , in GF(2) , each representing an elementary 

operation which corresponds to the spectral translation of a second- 

order spectral coefficient to a first order position.

Now it is a property of GF(2), and indeed any field , that 

the matrix resulting from the multi%)lication of a series of matrices, 

each matrix defining an elementary operation , has a determinant which 

is non-zero. (In the case of GF(2) the matrix has a determinant of 

value 1 ).

It is therefore possible to test the validity of a proposed 

series of spectral translations in the following way :

Test 1.

If the result of a proposed series of spectral translations 

is represented as a matrix ̂ A] in GF(2) , then such a series of 

translations is possible only if the determinant of [A] has the 

value 1 .

— oOo~“
eg. for the last example

[Al- 1 0  0 1 
0 1 1 1  

10 0 1 1  
[ 0 0 0 1

The author is indebted to Mr. B.Ireland ,University of Bath , 

for his advice on the aspects of field theory discussed here.
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Expanding the determinant o f[A]by the first column in the 

usual way gives

|A| = 1. 1 1 1 1.1. 1 1
0 1 1 0 1
0 0 1

= 1 .1 . { (1 .1) + (0 .1)|
= i.i.Ci + 0)

j =  1 • 1 • 1

= 1
where and '+' denote multiplication and addition 

in GF(2) respectively. See Appendix 2 .

This result shows that a series of spectral translations is 

possible for this example.

One other elementary operation exists in GF(2) which can be 

shown to correspond to the interchange of defining variables. 

(Operation 1 , section 2.4), This is equivalent to an interchange 

of the rows of ̂ Ajwhich does not invalidate Test 1 and is implemented 

by a simple interchange if input lines to the final logic module 

of the circuit.

The functions defined by 

and spectral translation is equivalent to a Basis Transformation.

Note that Test 1 is sufficient to define a basis but does not 

give any information about the spectral translations , and thus 

number of gates , necessary to generate that basis. Test 1 then 

does not assist in the gate minimisation problem.

It has been shown that spectral translation is best used , from 

a synthesis point of view , in mapping a high-ordered function onto 

a lower-ordered function. The most significant spectral coefficients 

are then translated to first-ordered positions. It follows that the 

choice of basis is made from the set of spectral coefficients whose

A. 1 where | A| = 1 , are called a Basiz
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magnitudes are the greatest.

For the example of Fig. 33 the spectrum is
2 2 2 2 6 2 -6 6
% "1 ^2 ^3 %4 "12 ^13 %14

-6 -2 6 2 •2 -2 6 .-2
"23 ^24 ^34 ^123 ^124 ^134 ^234 ^1234

The most significant spectral coefficients are 31 /̂]2̂ 1̂ 23*

R3^ and ^23^̂ * each of which have a magnitude of 6. The basis is 
therefore chosen from the functions x^, x^@x^ , x^Gx^^ , ,

x^©x^^ and x^Qx^Sx^ • Of course if no set of these functions form 

a basis it would be necessary to include other functions whose 

corresponding spectral coefficients have a magnitude of 2 •
Once a basis has been chosen , that is a set of n of such 

functions satisfying Test 1 , it is required to find the minimum 
number of exclusive-OR gates which will generate that basis. A 
method which enables such a basis to be generated using the 

minimum number of exclusive-OR gates is'given,by means of an example, 
below.

Suppose , for the function of Fig.'33 the following set of
is chosen :

Function No. Function
1
2
3
4

Xi ©
x„ © x^ ®2 3

^4

The corresponding [ A matrix is 1 0  0 1 
0 1 1 1  
0 0 1 1  
0 0 0 1

It has already been established , see above , that this matrix has 

a determinant of value 1 , and therefore passes Test 1 • These 

functions therefore form a basis.
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Nov; inspection of these functions shows that function 4 can 

be generated without employing any exclusive-OR gates , function 3 

can be generated using one exclusive-OR gate, function 2 requires 

two exclusive-OR gates and function 1 requires one exclusive-OR 

gate. In addition , function 3 can be generated from function 

4 using one exclusive-OR gate since x^ © = x^ ®{^4} * function
2 can be generated from function 3 using one exclusive-OR gate since 
x^ © © x̂  ̂ = x^ 0^X3 © x̂ l̂ and function 1 can be generated from

function 2 using three exclusive-OR gates since x^ © x^ = 

x^ © Xg © x^ ®{^2 ® etc. These results can be obtained
directly from the[A matrix by noting that

1/ The number of exclusive-OR gates required to 
syntho»sise any basis function is given by;-^he number of 1’s appearing 

in the corresponding row of [A] | - 1 •
2/ The number of exclusive-OR gates required to 

generate the i th basis function from the j th basis function is 
given by the number of differences between the i th and j th rows

of[A].

This information is best presented as a difference table , denoted 

as l\ • For the above basis the /\ table is 

Function No.

Fn.
No.

1 2 3 4
1 1 3 2 1
2 3 2 1 2
3 2 1 1 1
4 1 .2 1 0

, where the entries S . . , 1 ^ i ^ n  , are the1 ,1 ^ ^

number of exclusive-OR gates required to synthesis the i th basis 

function and the entries cT. . , 1 ^ i ,j ̂  n , are the number of1 » 0
exclusive-OR gates required to generate the i th basis function from 

the 3 th basis function. From the result © x^ = x^ © x^ it
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follows that o i, j =
of this table need be ge]

1 2 3
1 1
2 3 2
3 2 1 1
4 1 2 1 0

Suppose that it is

of the basis . This is an
<̂ 2̂ ^ is then ringed and
show that they are avail;

v/
1 2 3 4
1

2__ 3 2
3 2 1 1

uy  4 1 2 1

-n

contains all the required information.

functions.

• Now several equally attractive alternat­

ives are possible. Functions 1 or 3 may be generated from function 
V using only one gate. On the other hand functions 1 or' 3 may be 
generated directly using only one gate. Suppose that in this case 
it is decided to generate functions 1 and 3 directly , the table 

then becomes

• Now only function 2 remains to be

synthesised. The minimum number of gates necessary to do this is .one 

if function 2 is generated from function 3 » which is available. This 

gives the final A  table as

\/ 2 . All the basis functions have,now been
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synthesised and the total number of gates used, which is the sum of 
the ringed numbers,is threet In practice,when an equal choice is 

presented between elements on the diagonal of A  and elements not 
on the diagonal ,the diagonal elements are chosen • This

reduces the propagation time of the final circuit.
In general , if a basis is chosen where a spectral trajislation 

from say, third order to first order is implied then it is clear that 
at least two exclusive-OR gates will be required , irrespective of 

the actual method of synthesis. This observation gives rise to
Lemma 1.

The absolute minimum number of exclusive-OR gates required 
to synthesise a basis is equal to the highest number of exclusive-OR 

gates .Required to generate any function of that basis.

— oOo—
In the example above the basis function requiring the 

highest number of exclusive-OR gates for its direct generation is 

function 2 which requires two gates . The absolute minimum number 
of gates required to synthesise the basis is thus two,which is 

one gate less than that found necessary in practice.

The minimisation of the number of exclusive-OR gates 

required to convert a function to its maximally first-ordered form 

is given by :
1/ Arrange the spectral coefficients in order of magnitude

(Excepting R^)
2/ Find the bases which correspond to the highest and

equal-highest magnitude sets of spectral coefficients,

3/ Apply the gate minimisation procedure to each of these

candidate bases in turn.
4/ Select the solution giving the minimum number of gates.

In practice the number of candidate bases , n^-?, turns
* Fig. 33^bows the implementation of this solution. (See p.123)
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out to be small. This procedure is therefore quickly executed by 

means of the digital computer.

In the case of threshold logic,where a negative weight capability 

does not exist, it has been shown that for every negative valued 

spectral coefficient translated to first-order a complementing 

gate must be introduced in the final circuit. If therefore it is 

required to minimise the number of gates under these circumstances 

a modified minimisation procedure must be employed.

As an illustration of these methods consider the function shown 

in Fig. 31 »P 117. The circuit of Fig. 31a was synthesised without regard 

to gate minimisation by the repeated application of spectral 

translation. See Section 2.3.4a. If gate minimisation is employed 

however the circuit of Fig. 31b results,which shows both a saving 

of one exclusive-OR gate eind one inverter gate together with a 

reduction in circuit complexity._

2.6 Disjoint Spectral Translation.

2.6.1 Defining operation.
*An operation will now be considered which differs in 

implementation from those considered above in that a feed-forward 

signal path is created.

Operation 6

The interchange of spectral coefficients and R̂ ,̂

1 ^ k ̂  n .

Let the given function be F(x^,x^, . . ,x^, . . ,x^).

De fine a new function by F(x^,x^, . . ,x^, . . ,x^)

A  . .
“ 0 • • *'“n * * * (2.16)

* Dertousos has considered an operation similar to this 'under the 

heading of *equidualisation*^ Ref.20.
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where the given function has the spectrum ^ R ^ a n d  the new function

has the spectrum *

Substitution of equation (2.7) in equation (2.16) gives

■

C 2“  •'I

^ ® *k,j ® % .  * • ’̂ n r  *J-• ^ 3 - I
17)

1 {C n

A Ù.But X, @ X. . = 0 = x_ . ,see section 2.2.2, and the right handn,j ic,j u,3
side of equation (2.17) reduces to

M ft2

which is by definition equal to R^ • See section 2.2.2 . 

Similarly

■ n
Rl = 2“ - 2 { Ê  ® F '• • ,%k, • • ,%%)}

J - ' ' .1-1

2*
= 2 - 2 { f  3l,j ® %k,j ® 'Z. ' ' '%k' ' ' >Vl* ^2.19)J ~ I

It can also be shown that

%  %  ’

, " \ i  ’
= \ l m  ^tc.

These results give rise to the following theorem :

2.6.2 The Theorem of Disjoint Spectral Translation.

If , given a Boolean, function F(x^, . , . . ,x^)

having a spectrum <^R^ it is required to generate a new function
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F ’(x , • • ,x, , . . ,x ) having a spectrum R* , whereI K n

• • 1 ® F*(x^, « • ,x̂ ,̂ • • $x^) then ^ R ^
may be generated from / R ^  if :

in every subscript of the spectral coefficients o f ^ R ^

k is deleted if it exists and is appended if it does not.

■*— oOo —
Ilotes on the theorem .

The theorem is termed'disjoint' because it enables one of the 

defining variables of the original function to be separated from its 

fellows and gives rise to a feed-forward signal path , as described 
below. Unlike the operations that have so far been considered , 

disjoint spectral translation has the property that it can , where 

applicVole , convert one function to another even though the functions 
have different ratios of true/false minterms.

2/ For the special spectral coefficients R^,R̂  ̂ the theorem is 
applied as follows :

= %6k = 3^ -,

\  = %  •
3/ The theorem defines an operation which allows the zero-

ordered spectral coefficiont of any Boolean function to be inter­

changed with any first-ordered spectral coefficiont. If the operation 

is repeated it follows that the zero-ordered coefficient may be 

interchanged with any spectral coefficient.
2.6.3 Interpretation and Implementation of Disjoint

Siiectral Translation.

Fig. 34a shows the implementation of the Boolean

function F(x^, . . ,x̂ ,̂ . . ,x^) having a spectrum <^R^ . According

to the above this function is replaced by x̂  ̂0 F'(x.^, • .

where F'(x^, . . ,x^, . . ,x^) is a new function with spectrum
This implementation is shown in Fig. 34b. The overall transfer
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function of the cystcm renainc unchanged.

This operation has resulted in the creation of a feed-forward 

signal path. If the operation is repeated for two different defining 

variables then two forward signal paths will be created , and so on.

2.6.4 Significance of Disjoint Snectral Translation.

2.6.4a In Logic Synthesis.

The operation of disjoint spectral translation permits 

certain ■'functions , which are not translationally equivalent, to 

be converted one into another. The practical importa^nce of this lies 

in that it extends the versatility of threshold logic and permits 

more elegant syntheses in terms of vertex logic.

The implementation of this operation is very straight­

forward as was shown in the previous section.

2.6.̂ !-u In Boolean Function Classification.

Disjoint secctral translation gives rise to a 

classification of Boolean functions which is more compact than 

that of translational equivalence (Section 2.1.la) as is shown below 

The following classification of Boolean functions is

proposed

A Boolean function F^(x^, . . ,x̂ )̂ is classified 

d i s j o i n t ]. y -1Ï- an s 1 a t i on a 11 y -equivalent to another 

Boolean function F^Cx^, . . ,x^) , of the same order, 

if F^(x^, . . ,x^) can be mapped onto F^(x^, . . 

by the permutation and/or complementation of the 

defining variables and/or the , perhaps repeated, 

application of the theorems of spectral translation 

and/or disjoint spectral translation 

—  oOo —
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Again the tables of canonic function spectra can be drawn up 

together with optimum syntheses , as in section 2.3.3b . In this 

case however is designated the highest magnitude then the first- 
order coefficients , and so on.

This procedure has been carried out for all Boolean functions, 
n ^ 4 j  and the associated table- appeals in Appendix 3- The complement: 

of these functions do not appear and are given by Operation 4.

This table shows that the 63,336 functions are classifiable 
into 8 categories. In practical terms this means that eight logic 

modules together with the necessary exclusive-Oh gates and inverter 
gates are able to synthesise any Boolean function , n ̂  In fact 
only seven logic modules are required in practice since function Bo.
1 in "Wie table corresponds either to a simple connection or a no- 
connection.

Perhaps more suprising is the fact that only one of the 
classes of functions is not a threshold function.(Threshold 
functions are marked 'T’).This shows that single threshold gates 
may be used to synthesise the majority of Boolean functions , n^^4, 
using the above techniques. Some comment will bo made on the 
synthesis of the non-threshold function , function No. 8 , later.

The fact that this classification is more compact than that 

of translational equivalence is shown by noting that the latter 
gives'eighteen classes of functions wheras this method gives eight. 

Bee also Appendix 3«

2,6.3 Application to Threshold logic Synthesis,

Boolean functions which may be converted to threshold 
functions by the operation of disjoint spectral translation will 
be said to have threshold functions ' dis jointly-embedded' \;itiiin 

them.



138

As an example of a function which contains a disjointly- 
onboddcd threshold function consider the function given by the 

ICnrnau.pi map of Fig. 33 jP 123 » which has the spectrum
2 2 2 2 6 2 - 6 6  
Pq ^2 ^3 ^4 ^12 ^13 ^14

-6 -2 6 2 —2 —2 6 —2 
^23 ^24 "34 ^123 ^124 ^^34 ^234 ‘̂1234 .
Now it is clear from the tables of positive characteristic 

vectors , Appendix 4 , that the only threshold function that can 
be embedded in the above function is that which has a characteristic 
vector 6 6 6 6 6 .  However the above function
cannot be converted to this form by spectral translation ,(Operation 
5),since would retain its value '2'. If disjoint spectral 
translation,(Operation 6 ), is employed however this problem is 
overcome as shown below.

1/ Translating = R^ under disjoint spectral translation
gives 6 

%
6
4

-2

"̂ 2

6
23

2

^4
-2 -2

4 2  4 3
2

4 4

6
"23

2

"24
2

"34
-2

%i23

2 -6 -6 1 n t ■D1
"124  "134 234 ^1254

2/ Transla ting R^ = R^^ under spectral translation

(Operation 3 ) gives

6
"0

6 6
‘̂ 2

6
"‘3

2
24

-2 -2
4'2 4-3

2
-Ï4

-2
"23

—6
^24

p
"34

-2ptt123 '̂124
-6 2 
4 '3 4  %234 4 '2 3 4

3/ Translating R|' ' = R^^ under specikrai translation

(Operation 3 ) gives

6
n -

6
R'̂' ’

6 6 —6 
R^ ' R)| *

-2 -2
4 2  4 3 4 4

-2pir 123
2
^24 ^124 4 3 4  434 '

-s
K Ï234
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The first (n+1) spectral coefficients of this function have a 

magnitude of 6 which characterises it as a threshold function. 
Computing the gate parameters in the usual way , see Section 
2.5.4a , and implementing the above translations in terms of 

exclusive-02 gates gives the circuit of Fig. 35*
It has been shown , see the previous section , that the 

majority of fourth-order Boolean functions may be synthesised 

by using both spectral translation and disjoint spectral translation, 

A possible method for the synthesis of functions which do 

not have threshold functions embedded or disjointly embedded 
within them is to divide the function into two parts ,

. ,X^) andx^,AF(x^, . , . ,x^),
and to apply the above synthesis procedures to each of these 

functions in turn. Since these functions do not intersect in n- 
space the resultant syntheses may be 02-ed together. In the case 
where this procedure produces another function which does not have 
an embedded threshold function the division is repeated in terms 
of another defining variable.

Consider the function of Fig. 36a which does not contain a 

threshold function.(It falls into canonic class 8 Appendix 3)• 
Suppose that this function is divided as A F ( x  ̂,x^ and

x^ n  F(x^ ,Xg ). See Fig. 36b and Fig. 36c respectively,If ..the
syntheses of those two functions are carried cut in the usual way 
the circuit of Fig. 36d results.

It can be shown that any Boolean function can be synthesised 
in this way. This follows from the fact that if this division  ̂

procedure is repeated exhaustively each true minterm will 

ultimate]^" be extracted separately, how a function having only one 

true r.iinterrn is always linearly-separable. (A threshold function).



<2-

<r

<r

< -

< -

I

OJr-ro: —
K\
COK
-d-rA

-M'
<\\

r K ‘

OJ
«

ff\«
OJ ,Ctt —
rO\
OJ

J"
V"

Oi

tr\
-K«
ru
K

.4'K

lA«

OJ«

«

O«•

Io

- >

■2>

- >

■5^

141

OJ
CO
00
C T

L

I
< r

I

IC M
?

< -

Ioo
+ 4*

.d"rAOJr-
«

roy
(M

«

Sd-
bP-

pP
.d"r“

«

roy
T“

«

rvjV-
«

pp

OJ

-«•

«

I
O

I

g o •> o 6 ■ g E5O «»o 'o To
— ao 3o ST” ' * —

3O O ao ■to
o

fo K o o CO r*- o
CMo X O o o K)o INo CMo X  o o o fOo No

Ô — o 5 — o
> r >r>



< 2-

<3

<5-
I

CO

-d*
C\1T—r«—
K\OJCd
•d"K\

hoi*
-d’c\jT-m
OJr-«

-d"rov01
-d-

rAOJhoi*
-d-T-«

OJV-01

pT

C\J«

OS

pp
I

O

142

u
CD
CO
O )

^  L
u
CD
0 0
C T

Li.

I

o o «» 'o 'i

. — o L)o a

O
4-O lOo o *#o

,Tg O *o t nO o
- ^ 8
>r

5 o



14 3
2.6.6 Application to Vortox jp.iic Syn t \ i on is.

It has boon found in practice that the application of 
disjoint spectral translation often gives a more elegant synthesis than 
the operation of spectral translation. This hoi,'over is not always 

the case. At present the criteria which determine if the use of disjoint 
spectral translation will give an optimum solution are not Icnown.

As an interesting example of a case where disjoint
spectral translation may be used to advantage consider a 2 out

-of 5 circuit. A synthesis , which is believed to employ the
minimum number of vertex gates has been published by Karp et al ,

see reference pO . This is shown in Fig. p?. An attempt to synthesise
this function using spectral translation did not show any advantage
over t]ie synthesis of Karp, although admittedly only a simple two-
level synthesis of the final logic module was attempted . Under
disjoint spectral translation however the circuit if Fig. $8 was 

*ijroducod. This circuit shows a saving of throe gates and two 
interconnections over the circuit of Fig. 37» It should be noted 
that the circuit produced by the author may still not be minimal 
since again only a simple two level synthesis of the function 
produced by translation methods has been attempted. The maximum 

propagation delay for both circuits is identical.

2.7 A statistical Synthesis method.

2.7.1 Introduction .

It has been shown by dearie, see reference 23 , and others 

that the distribution of information in the spectrum of a function 
is not linear. Indeed in many cases only a small number of the 
spectral coefficients of a function are necessary to completely 

define the function, the remainiig coefficients being redundant.

* With the aid of the statistical method described in Section 2.7
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An example of a function having this property is a thresiiolcl function 

where only (n+1) of its coefficients are required.

how each spectral coefficient is a measure of the correlation 

between the defining function and each of the hademacher/Ualsh 

functions. It follows that coefficients of relatively large magnitude 

indicate that the associated function closely resembles the Bademacher 

/Walsh functions on which these coefficients are defined.

It seems intuitively correct to suppose that if some of the 

largest spectral coefficients of a function are known it should bo 

possible to predict the distribution of the minterms of that function 

on a statistical basis. If this is possible it follows that functions 

may be synthesised on a s ttistic al b a sis from only the most 

significant spectral coefficients, with a consequent saving of both 

data, storage and computer program:.ic execution time.

2.7.2 S'oectra.l Coefficients and the Distribution of minterms 

The transform operation, see 3ection 2.2.2, may be

defined as
R . . •- n “ n , . . .  (2.20)ij..m a d

where n^ is the number of agreements between the defining 

function and the function x^ Q 0 . . © x̂.̂ , and n^ is the

number of disagreements between the defining function and

X @ X1 J .

how n + n •- 2̂"̂ . . .  (2.21)a d
since the defining function must either agree or disagree with

X. © X. © • • G X at all n-tuulos.1 0 rn
Substituting for n^ in equation (2.20) gives

R . . = n - (2" - n )1J.. m a a
= 2n - 2̂  ̂ . . .  (2.22)a

whence p ^n
n = . . . (2.25)a 2
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2’* - R. .

Similarly , (2.24)

For tho special case R^

2“" - ïîg
n , = — ------ --- M . . .  (2.25)

2
where II is the number of true minterme of the function.

For all spectral coefficients with the exception of R^

n = T + F . . .  (2.26)
Cl

where T is the number of true minterms of the defining function

in the space x.Gx.G . . ©x = 1  and. F is the number of false 1 0  m
minterms of the defining function in the space x.Gx.G . . ©x = 01 0  m

Since the space covered by x .© x .© . . ©x = 0 is 2 /2 n-tuplei1 0
it follows that the number of true minterms in this space is 

~ - F , and thus the total number of true minterms of the defining

function ,i', is given by ^n
M = T + ( ~ - F) . . .  (2.27)

Substituting for F in equation (2.27) from equation (2.26)

gives • pYi
ÎÎ = T + ~ -1- T - n2 a

pn
= 2T + 4 - n . . .  (2.23)2 a

Substituting for n^ in equation (2.2o) from equation (2.2p) 

Gives - 2  ^

M = 2Ï + 1  ^  - I
R. .

= 2T  . . (2.29)

.Equating (2.29) and (2.29) gives

f " 4

then T = 4 ( 2^ + R .. - R„) . . .  (2.39)-L J • ♦ ill V
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Now T is the number of true minterms in the space where

X. © X .  © .  . © X = 1 . The number of true minterms of the function
1. J Hi

is given by equation (2.29) .

The importance of this result lies in the fact that the

distribution of true and false minterms of a function with respect
to any Rademacher/l/alsh function can be determined exactly given
the corresponding spectral coefficient and

For example suppose that a fourth-order Boolean function has
the spectrum 10 6 6 2 2 -6 -2 -2

Rq R^ ^2 ^3 ^12 ^13 ^14

-2 -2 2 2 2 -2 -2 2
"̂ 23 ^24 ^34 ^123 ^124 ^134 ^234 ^1234

The number of true minterms , from equation (2.29), is

G i v o n V  2” - Rq .,g _ 10
M  = --- 2---  =   1-  =  ^  •

The number of true minterms in the space where x^ = 1 , 
from equation (2.30), is given by

T = {: (2'̂ + - ^0^
= i (16 + 6 - 10)

= 3
Similarly the number of true minterms in the space where 

x^ G x^ = 1 is given by

T = -1 (2” +
= -g: (16 + 2 - 10)
= 2 and so on.

Appendix 1 shows all the fourth order Rademacher/V/alsh 

functions plotted on Karnaugh maps.
Mow it is of interest to bo able to calculate the number 

of true minterms occuring in spaces corresponding to the inter­
sections of different Rademacher/Walsh functions in order-that the
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complete distribution if true and false minterms may bo established. 

For example if , for a fourth order Boolean function, it is known 

that the space H  (:x:p © x_) = 1 contains four true minterms then, 

since this space contains only four n-tuples, it follows that

G x_) is a factor of the defining function. See Fig. 39.
It is possible to statistically/ predict the distribution of 

true and false minterms at the n-tuplos corresponding to the 
intersection of two or more Rademacher/dalsh functions by using the 

statistical theory of expected values.

2.7.3 fxpected Values.
Suppose that a random set of objects are classified 

under two independent catagories and that the number of objects 

lalliiYs into each catagory is noted. The number of objects , on 
average ,falling into both catagories is then given byrp - qi. 1 2  . . . (2.31)

where is the number of objects falling into the
first catagory , is the number of objects falling into the
second catagory and M is the total number of objects.(It is assumed
that all objects fall into one or other of the catagories ). e is
called an estimated value , set: reference 31 •

If the objects are classified . under three independent

catagories then the number of objects falling into all three

catagories is then , on average,
T X 'f X T _

o = m — ^— 2 . . . (2.32)
■li"

and so on.
The same theory may be applied , with restrictions,

to the estimation of the number of true minterms of a randomly
selected Boolean function which lie in a space defined by two or more

f
linearly inde rendent functions.

.j.
r̂sofial commonicatJOn Opiv. /?72
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oupooGG that in a Boolean function it is known that the total 

number of true r.rinterms , H , is ? ; the number of true minterras ,

1 in the space = 1 is 7 , and the number of true m i n t e r m s ,

the space @ x^ = 1 is 4. This data may be derived from the 

spectrum of the function as previously described. Since the functions 

x^ and Xp © x_ are linearly independent , see Appendix 2 , the

estimated number of true mintcrms in the space x^ H(x.^ © x^) is

given from equation (2 ,pl) by

^ 4 .
If this function is fourth order the space corresponding to 

the intersection of those two functions occupies only h n-tuples, 

thus cm average H(xp © x^) can be expected to be a factor of 

the defining function.

Unfortunately this estimated value is only approximate*because 

although the functions x^ and x^ © x_ are linearly independent the 

results T^ and T^ are not mutually exclusive . This arises from the 

fact that a finite n-space is being considered. The fact that two 

such tests,T^ and T^ , are in fact related can be shown by the 

extreme example of Fig. 40 . The total number of true mintcrms is 

8 and the number of true minterrns in the space x^ = 1 is also 3,

It follo'./G that the number of true minterme in the space x_ = 1 

must be 4 . That is , the last result may be predicted from the 

two previous results ; the measurements are therefore not mutually 

exclusive. This is in effect a re-statement of the fact that the 

information about a function is not evenly distributed about the 

snectral coefficients of that function.

* A method of evaluating e exactly is known but is very 

complex and is not suitable for implementation on the digital computer
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AIn practice the statistic e has been found sufficiently accurate 

for it to he employed in the synthesis method described in the next 

section, nevertheless further research is warranted to investigate 

the general relationships between the exact and approximate forms of
Ao .

2.7.4 The Procedure.

The method of Boolean function syn:hesis using the
* Aapproximate statistic e is now given by means of an example.

Consider the fourth-ordor Boolean function of Fig. 4la. 

Tŷ e spectrum of this function is

6 6 2 -2 2 2 -2
^0 '̂2 ^3 ^4 "12 ^13 ^14

2 -2 2 2 .-2 2 -10 6 ̂ p u n p p T? p"23 24 '̂ 34 "M23 124 "134 234 "1234
step 1

Choose a sub-set of four of the most significant of the 

spectral coefficients whose defining P.ademacher/'Jalsh functions 

form a Basis , see Section 2.3.3 and Appendix 2 .

A suitable sub-set is *

-10 6 2 - 2p n p p
"234 "1 2 3

Step 2

Compute the number of true minterrns of the function

from equation (2.23)
1 6 - 6

I ' l  - 2 2
= 3

* libte that the apparently more significant sub-set

-10 5 6 2
"'234 ^'1234^1 ''2  I I .

I A |  1 1 00e Section 2.3-3 •

does not define a basis since
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Step 3

Compute the number of true minterrns in the spaces 
corresponding to the functions on which the basis has been defined
using equation (2.30).

Drav; up a table showing the result together with the
basis functions.

Spectral
Coeff.

I
! Value

Basis
Function T

-10 (x- © X_ © X,,) 2 p V 3

h 6 ^1 4

h  . 2 3

-2 ^3 3
•»

Note that in the case whore a spectral coefficient is
negative the basis function is complemented and T is evaluated for

the corresponding value of R made positive. In the case of li.:34
above the result is interpreted as there being 3 true minterrns
lying in the space defined by (x^ © © x̂, )=1 . Similarly 3 true
minterrns lie in the space x., = 1 .

S t e p  4
ni

Find any factors of the*function which occupy - , (8),

n-tuples .
Since this function contains only 3 true minterrns no 

such factors exist.

Step 3
^n

Find any factors of the function which occupy ^ , ('0,

n-tuples.
A factor space of 4 n-tuples corresponds to the space 

defined by the intersection of any tv'o of the functions
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of th j clior.on br.cis. The iDr.ir of f-unctionG which corroswond to 

til: liifiiioGÜ v'uiGG of T o.ro firtt chosen since those ^ivc the 

( str;tistic;:lly; hijhe.st probability of finding 4 true rn in terms 
at their intorsoction.

dhoosin.r the space = 1 ojid calculating
ïstim'i.tod average 

equation (2.p1) gives
the estimated average number of true minterrns in this space , from

It is therefore expected that 4 true minterrns exist in thiz 
space . In fact this is so , see Fig. 4lb.

(Xp @ x^ © x^)n x^ is therefore a factor of the given function. 
If this procedure is repeated for the next two most significant 

basis functions , (Xp © x_ © x, ) O x  , e is found to be = 3*P T" id ^
This is interpreted as a small chance of finding 4 true minterrns at
the intersection space.

In practice , for fourth-order functions ,having embedded or
disjointly-embedded threshold functions , see Sections 2.3.3b and
2.6.4b ,if the ratio e/(Uo. of n-tuples in intersection space)^ .9
then the function defining the space is always a factor. This
result is empirical and the equivalent result for functions of
higher thcoi fourth-order is not known.

In the case of the function under consideration no further 
?n

factors occupying ÿ n-tuples can be found.

Stop 3
2^ ,Find any factors which occupy ? ,(2), n-tuples.

A factor space of 2 n-tuples corresponds to the space 
defined by the intersection of any three of the basis functions.
■‘.gain the functions related to the highest values of T are chosen.
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It is important to note that in this case there is no noint

in considering the space (;a, © 0  Xp = 1 as this i;

included in the factor space (Xp © x_ © x̂, ) H  x^ = 1 which has 
alroady been found.

The space next most likely to be a factor space is given by

(x,j © x_ © ::ĵJ f] x^fl = 1 ,see- previous table.

Computing e for this space , from equation (2.32) gives

S -  _  5j<3jo

Cr 1.8

That is , the average number of true minterrns in this 2 n- 
tuplo space is , on average , approximately 1.8 .

The ratio / (no. of n-tuples in intersection space)| =

= .9
This space is a factor . See Fig. 4lc.
In fact all factors necessary to synthesise the function 

have been found.
Stop 6

Design the circuit.
The expression for the second factor must first be

simplified.
The following relationships are noted

(x © X, ) = X © X, = X G x. . . .  (2.33)a b a b a b

X il (x © X, ) = X n  X, . . .  (2.34)

Using these relationships the second factor may be simplified as

(x_ © x_ G X, ) il x-il x_ = (x„ © x_ G X, ) n  x.,rix_2 p 4 2 p 2 p 4 a p

= (x_. © n., ) f)x^ 0  X..p 4 a p

= (x-, © X, ) fix^ n  X-,p 4 2 p
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ri:y

Now the first factor : x^Q(::^ G x_ © may be written

as x^ n  (xg ^ © x̂, )
The implementation of each of these functions appears in Figs. 

4lb and 4lc and the final synthesis is shown in Fig. 4ld .

——o0o“—

The method described above auTiears o. little tedious but in 
fact fast interactive designs can be achieved by employing these 
techniques on the digital computer. The simplification of the 
factor equations is also readily computable.

2.7.3 Notes on the Method
More research is necessary into gate minimisation criteria

Afor this method and also the significance of the statistic e for 
functions of order n ^ 3  • The following points are noted.

1/ A more elegant synthesis is often obtained if the true
minterrns of a given factor arc removed from the function and the 
metiiod repeated for the remaining true minterrns. This is because 
the method evaluates the highest common factors irrespective of the 

number of gates required.
?y -Che choice of basis set has a large influence on the

number of gates employed in the final circuit.

3/ The method has been employed successfully for the synthesis
of functions of up to ninth-order. Because the nature of the statistic 

e is not well known for orders of greater than four each factor is 

checked , in tlicse cases , by executing the (inverse) fast Walsh 
transform, for the, required spectral coefficients. The factors czin 

then bo compared with the defining function in the Boolean domain.
4/ The method is difficult to apply to functions which do not

• t
have embedded or disjunctively-ombedded threshold functions, see

 ̂ For such functions are rare.
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Sections 2.3*3b and 2.6.%b . For those functions the statistic o 
is very approximate . This follows from the fact that more than 

(n+1) spectral coefficients are required to define these functions.
Some of the required information to compute e therefore lies outside 
of the basis functions on which e is computed. It is felt that 

another statistic may be found which will enable the synthesis of these 
functions.

2 . 8 Further Apnlications.

2 .0.1 Multiple-oatput Bynthesis.

When many functions must be simultaneously realised 

it is clearly advantageous to malic the best use of any common factors 
the functions may have.

If , therefore , spectral translation is to be employed
in the synthesis of such a set of equations , it is possible to set
aside a logic module which is capable of executing all of tlie required 
translations for the sot of equations. Now if some of these translation: 
are identical then this module will bo simplified. This amounts to 
the extraction of the common factors of the functions.

It follows that the judicious choice of coefficients

to be translated enables the general method of spectral translation

to simplify multiple-output synthesis.
Further research is necessary to find tlie best methods 

of determining such common factors.

2.U.2 Synthesis of Functions Containing ' l'on ' t Caros* .
So far only functions which are completely specified 

have been considered. Functions with don't care conditions give rise 
to spectral coefficients which may t"ko a range of values , but 

not independently. ..t present the optimum method of synthesising
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such functionG is not known.

One approach to this problem is to give the don't care minterm 
the value -y , that is a value half way between the Boolean values 
0 and 1. The spectrum of the function may then be evaluated and 
analysed statistically as shown in Section 2,7 • The don't care 
minterrns may then be set to 0 or 1 in turn , the final selection of 
values being determined by those values which produce the highest 

common factors of the function.
Further research is necessary in this area.
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2.9 Conclusions.

A matrix transformation technique has been described which 
enables the Rademacher/Nalsh spectrum of any Boolean function to 

be evaluated. It has been shown that certain pertinent properties 

of the Boolean function,from which the spectrum is genorated^may 

be established by inspection of the spectrum alone. In particular 
it is possible to establish if the Boolean function is most easily 

synthesised with or v/ithout the aid of exclusive-OR gates.

Certain known operations in the 'spectral domain' have been 

described and it has been shown that these operations enable 
'equivalent' Boolean functions to be classified and synthesised.
In the search for a more powerful method of Boolean function 
classification two novel operations have been developed which 
generate elegant syntheses of Boolean functions both in terms of 
vertex and threshold logic. Moreover these operations have been 
shown to give rise to a very powerful method of Boolean function 
classification. A method of minimising the number of gates necessary 
to implement these operations has been demonstrated.

It has been shown that many Boolean functions are characterised 
by only à few of their spectral coefficients . In the future this 
means that it may be possible to specify such functions , especially 
those having a large number of defining variables , using only a 

small percentage of the data space required at present.
One of the most important results arising from this investigation 

is that threshold functions , and therefore threshold logic , play 
an important role in the composition of Boolean functions. This 
is especially important in view of the optimised universal threshold 

gate developed in Chapter
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A statistical approach to logic synthesis , using the spectral 

coefficients of Boolean functions , has been formulated. Although 

this method is as yet based upon an approximate-estimated-value 
technique , practical results have been very encouraging. The great 

advantage of this method is the ease with which certain 'factors’ 
of a given Boolean function may be extracted. Further research is 

required in this area.
The execution of the Badcmachsr/\7alsh transform may be carried 

out, without resorting to matrix multiplication , by means of the 
fast Walsh transform. This enables the spectrum of functions 
defined upon large numbers of defining variables to be computed at 

a much higher speed than would otherwise be possible. In future 
this *»jhould enable functions to be synthesised , using the above 
techniques, which heretofore have been considered too unwieldy.

Clear indications have been given that the above techniques 
are applicable to partially specified and multi-output systems.
There are also indications that the above methods may be applied 
to general pattern recognition. Unfortunately time has not allowed 

a full investigation into these topics.
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CHAPTER 3.

Other Research Work
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3.1 Tlie App1.icr.tion of a Univrrnal '"hroahold Logic Gate to

Dig i t a 1 0 i r c i ’ i t a n v. h o r i a .

3.1.1 Introduction.
♦A univoroal threshold logic gate developed by Dr. 3.L. 

Hurst , University of Bath , is described. This gate has the 

advantage that the problems associated with thresholding tolerances, 

encountered in conventional analogue threshold gate design , have been 

overcome,

It is shown that , by employing the theory developed 

in Section 2 ,a simplified version of this gate is sufficient to 

enable the synthesis of any Boolean function of fourth-order or loss.

The use of this gate in logic design is expected to 

provide a considerable cost saving over designs produced by 

conventional methods,

3.1.2 The Universal Threshold (D.ScT.L) Gate.

S.Ii. Hurst , University of Bath , has proposed a 

Digito.l-3ummation-“Threshold-Logic (D.3.T.L) gate of the type shown 

in Fig. 42 .

In this design each of the eight inputs , labelled A~II, 

are applied to a logic cell. This row of cells contains conventional 

digital circuitry and is so connected that if one or more of the 

inputs A-H have the logical value 1 then a 1 appears at the output

In addition, supposing that M of the inputs A-H have the value 

1 , this first row of cells transmits (N-1) values of 1 to the inputs 

of the next , identical , row of cells. Consequently the second row 

of cells produces an output of 1 on if two or more of the inputs

At the time of writing this design is under consideration for 

a patent application. The design details should therefore bo considered 

as privileged inform.a tion.
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A-H he:VO the value 1 . CChic process is continued so that the output 

is set to 1 if three or nore of the inputs A-H have the value 1 , 

and so on . In practice the number of cells required at each stage 

reduces by one < see Fig. 42 .

Nov; this configuration implements a threshold gate where all 

inputs A-II are weighted 1 and the required output threshold weight 

may be selected by a suitable connection to one of the outputs 

If an input threshold of weight other than 1 is required , this may 

be achieved by connecting a suitable number of the inputs A-II together.

In fact » by making suitable input and output connections , 

any threshold function of order n ̂  4 may be synthesised using this 

gate. Because of this property it is termed a Universal threshold 

gate. ^

Note that , because digital circuitry is used throughout , no 

analogue thresholding problems arise.

.■5.1.5 The Optimised Univorsa 1 Thresho 1 d (.D .3 .1.7■) lo.'ic Gate.

How , using the theory developed in Section 2 , it is 

possible to show that a reduced version of the gate of Fig. 42 is 

sufficient to synthesise any threshold"^ function of order nr^'r .

The positive canonic threshold weighting vectors for

4

from Appen dix 4 , are

No. t, 1 '1 '■'2 wl2 w
1 1 0 0 0 0
2 5 1 1 1 1
3 2 1 1 1 0
4 5 2 2 1 1
5 1 1 1 0 0
6 2 2 1 1 1
7 1 1 1 1 1

Cons ider ve ctor No. 4

The corresponding threshold gate input weights are

2,2,1,1 , see equation (2.14) dection 2.5/;a. 1 total input weighting

of 2+2+1-f1 = 6 is therefore required for this gate.

*Under disjoint saoctral translation and Oneration 4.
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The output weighting is given by equation ( 2 . 1 5 ) Section 2.5.4a , 

as n
"2 11 -I- V/' 4-1) . . (2.15) repeated.

j=i •'
y(6 + 3 + 1)

= 5 .
Using Operation 4 Section 2.4 however , it is always possible

to render w^ negative . The minimum output weighting in this case

is then ‘ -g(6 - 5 + 1)
= 2.

Now if the same analysis is applied to each of the positive 
cc-.nonic weighting vectors of order n 4 it is found that a universal
form of the above gate is sufficient to synthesise them all. That is,
a universal logic gate having a total input weighting of 6 and a total 
output weighting of 2 suffices to synthesise all threshold functions 
of order n^4.

This gate is shown schematically in Fig. 4p.
The corresponding implementation in terms of D.G.T.L circuitry

is given in Fig. 4̂ ta. This can be seen to represent a considerable
saving in complexity over the circuit of Fig. 42 .

This optimised D.S.T.L. gate has 14 logic gates and a maximum 

propagation delay of 6 gates.

5.1, A- Use of the Optimised Gate ._
Now it has been s'novm , see Faction 2 , that any Boolean 

function of order n<2 4 may be synthesised using threshold logic gates 
together with the necessary exclusive-ON and inverting gates necessary

to carry out the operations described in Lection 2 .

It follows therefore that the optimised universal threshold 

gate described in the previous section can be used in the synthesis 
of any Boolean function of order n 4 . Note that functions falling

* 11 logic gates if the 5-input ON gate version is used.
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into the disjoint translationally equivalent class 8 , Appendix 5 , 

require two such gates , see also Section 2.6.5 . If the synthesis of 
functions of higher than fourth-order is required this can be 
accomplished by re-expressing the given function in terms of several 

fourth-order functions and synthesising each of these in turn. Some 

further research is necessary to determine the most suitable way of 
doing this.

If the optimised universal threshold gate in its D.S.T.L 

form 5 Fig, 44a, is inspected it will be noted that the propagation 

delay from input A to the outputs is shorter than from input B to 
the outputs . Similarly the propagation delay from input B to the 

outputs is shorter than that of input C to the outputs,and so on.
If , say, only four inputs are to be utilised for a particular 
synthesis it is clear that to minimise the'propagation delay only 
the top four inputs should be employed. The increase of propagation 
delay with choice of input is shown schematically in Fig. 43 by an 

arrow.
The method of synthesising functions using this gate follows 

closely the general methods of synthesis using threshold logic 
described in Section 2 . The only differences being the use of 
Operation 4 and the frequent use of disjoint spectral translation 
to ensure that the input and output thresholds fall within the bounds 

of the optimised gate.

In practice it is convenient to employ an optimised 

universal threshold gate with inverted input capabilities. This 
ensures that no external inverting gates are necessary at the 

input to the gate to implement negative thresholds,see Section 2.5.4a. 
Fig.44b shows the optimised gate with this capability . It would 
also be convenient to have inverted outputs available but this 
would result in an 13 pin pachage which is non-standard.
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Some examples of tlie use of the gate of Fig. 44b are given in 

Appendix 6.

In practice it has been found that , in general , the total 

number of gates and/or interconnections required in a logic synthesis 
using this gate are considerably smaller than in a synthesis produced 
by more conventional methods. The cost of implementing such designs 

is thus smaller than in conventional methods. (This makes the 

assumption that the D.S.T.L gate can be produced at a reasonable 

cost. Consultations with integrated circuit manufacturers indicate 

that this gate can be produced at a cost comparable with that of 

conventional T.T.L.)

It is envisaged that a cost saving will also result if this 
gate is used in Large-Scale-Intégrâtion circuits.

Because of the advantages outlined above and also because the 
methods of designing circuits with this gate are straightforward 

it is hoped that this gate will , in future , become a standard 

building block for digital circuit fabrication.
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3.2 A Cellular Aritlimotic Array with Variable Dynamic Range.

3 .2.1 Introduction.
The research work described below was carried out^during 

a general investigation of the properties of iterative arrays and 

the ways in which such arrays could be represented by Boolean matrices, 

see doction 1.5*5 •
A particular class of these arrays , often termed 

cellular arithmetic arrays ,has been investigated by several authors, 
see references 6,32,33 » and present attractive alternatives to more 
conventional arithmetic units when extremely fast operation is 
required. Because these arrays are of an iterative nature they are 
readily fabricated using Large-Gcale-Integration (L.G.I) techniques , 
and have the additional advantage that they may be readily extended 

on a modular basis .
A disadvantage of conventional arithmetic arrays is 

that they produce more significant'bits] in their results than in 
each of the numbers offered to them. The design described below 
overcomes this disadvantage and embodies a principle which allows 
for the multiplication of full floating point numbers.

Following the publication of this design , see reference 

34 ,Brecon and Clair sho\/ed that arrays of this type may be used 
in a digital computer design which employs far fewer separate 
arithmetic instructions than conventional computers . See also 

reference 35«
A provisional patent for this design was granted in 

1970 and a full patent (51122/71), which includes certain additional 
circuits to extend the versatility of the array , was filed in January

1573.

At the  b e g in n in g  of the research per io d .
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3.2.2 D o G i gn Phi1o s o phy.

Arithmetic units employing iterative arrays have recently 

been investigated because of their speed and their ease of fabrication 
by L.o.I techniques. To take full advantage of the L.3.I methods 
they consist of tv/o--dir,iensicnal arrays of identical logic 'cells' , 

the interconnections between cells being identical and having 
(ideally) no ' crossovers. All array progrcUiniing is ' edge-fed' to 
av o i d oV e r 1 ays.

The arrays function asynchroncusly and achieve a very 
high computing speed determined solely by the cell and inter-cell 
propagation delays.

Recent research has centered on integral arithmetic units 

of thir̂  type, see refercncespR,33. The multipliers and dividers 
developed produce many more significant 'bits' in their results than in 
the numbers offered to them. In practice this means that truncation 
and conversion to floating point format must follow , with a 
corroG%)onding overall speed penalty.

3.2.3 Array Specification.
The multiplier described hero overcomes the drawbacks of 

other systems outlined above and also has other unique features.
Two numbers , each liaving a binary floating point format, 

may be multiplied 'together. The result is expressed as a binary 

floating point number having the same number of significant 'bits' 
as the multiplier or multiplicand.

'alternatively , by external programming , the 
multiplication of two binary integers may be computed to an accuracy 

determined by the size of the array.
Finally, the number of cells allocated to the calculation 

of the exponent and the number of cells allocated to the significance 
part of the result may be varied , within the bounds of the array size.
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For example , an initial calculation may require an answer of two 

significant 'bits’ and an exponent range of 10 'bits' (2 ,

wdiereas a second calculation may require 9 significant 'bits'
n

and an exponent range of 3 'bits' (2 ). Both of these calculations 

may be executed consecutively using the same (12 bit) array of the 

type described below. The allocation of the cells employed for 

significance and exponent calculation being determined by external 

programming. This feature is termed 'variable dynamic range'.

3.2,4 Brief Design Botails.

The operation of an integral multiplier is very straight­

forward and is illustrated by Fig. 43 . The multiplicand is 

shifted at each stage and then added to a running subtotal if end 

only if the relevant multiplier 'bit' is 1 . The now subtotal and 

the shifted multiplicand are then passed on to the next rank of 

cells. This operation results in tlie number of significant 'bits’ 

appearing in the subtotal being increased by one at each stage.

Inspection shows that this operation is that of 

conventional multiplication :

1011 Multiplicand
101 Multiplier

0000 1st. Subtotal
1011 ?Iultiplicr bit ' 1 ' , add :
1011 2nd. Subtotal

0000 Shift Multiplicand times
01011 3rd. Subtotal
1011 Shift Multiplicand times
110111 4th. Subtotal . (Answer)

Generally the maximum number of 'bits' appearing in the 

result is the sum of the number of 'bits' appearing in the multiplier 

and multiplicand,

To reduce the number of significant 'bits' produced, the 

non; design employs cells having a 'return shift' facility, see Fig. 46, 

Thenever an overflow of the most significant multiplicand 'bit' and/or 

subtotal carry 'bit' occurs the resultant multiplicand and subtotal
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v;ordG arc shifted one 'hit' by the next rank of colls, the least 

significant 'bits' boinr; lost. ( ' OJruncation ' ). This results in a 

square array. I.lach tine a return shift is carried out the exponent 

of the result must be increased by one, This is accomplished by 

moans of an identical array of cells ,set aside for this purpose, 

to the left of the main array . This 'exponent portion ' of the 

system is set aside by moans of external programming.

The logic to accomplish the return shift is contained in the 

'lower part' of each cell and was designed using finite-state machine 

theory, see reference 6 , .Specifically , if theinput , Fig. 46 , 
is at a 1 then inputs and y,̂  become the new subtotal and 

multiplicand 'bits' respectively • Outputs and y^ carry the 

origin"*.! subtotal and multiplicand 'bits' to the next adjacent cell.

The 'upper part' of each cell contains the circuitry of the 

previously described integral multiplier.

In order that a certain portion of the array may be set aside 

to calculate the exponent , an inhibit lino ,E,is connected to each 

cell. This lino a) inhibits both the shifting of information (by 

return shift) into the cell and also the shifting of the output 

multiplicand 'bit',and b) ensures that full addition (in the upper 

part of the coll ) always occurs. A rank of such inhibited cells 

will act as an adder for a subtotal input , external carry input 

and'multiplicand input . The first rank of such cells is 

employed to add the two exponents of the numbers to be multiplied 

and succeeding ranks add to this result any overflows occuring from 

the 'significance portion'of the array. This is achieved by a suitable 

coupling of the output x.̂  lines to the external carry inputs. Gee Fig. 

43.

j'Ug. 4? shows some logic design details of the required colls.
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In use care must bo taken to ensure that no overflow from the 

exponent portion of the array into the significance portion of the 

array can occur.

Fig. 43 shows an example of the array in use. The inhibit linos

have been set to give a significance range of 4 'bits' (2^-1) and an
15exponent range of 4 'bits' (2 ), The numbers appearing within each

cell represent the inputs to the upper part of the cell , P,Q , and 

are the multiplicand and subtotal (left-right) respectively.

3.2.5 Performance .

Since all return shifts depend upon the carry from the 

previous rank they represent the greatest propagation delay within 

the array. Since however, the return shifts operate in 'parallel' , 

that iç the return shift from one cell to its neighbour is 

independent of any other return shifts taking place, the delay per. 

rank introduced over that of an integral multiplier is that of only 

two or three gates. In addition a small propagation delay is 

introduced by the shifting circuitry of the lower part of each cell.

Overall the array can bo said to compare favourably with 

that of a comparable integral multiplier.

3.2,6 The Prototype Array .

A prototype array*has been designed and built which 

comprises 96 cells arranged,for test purposes, in an array of 

dimensions o by 12 . T.T.L 7400 series D.X.L logic was employed 

throughout. The logic design for each cell appears in Fig. 49.

The array has been found to function as nredicted.

* The logic design was carried out by the author. The design was 

verified using a logic ojnalysis programme (’B.CA.P-see 1973 In ternal report 

University of lath.)The cells were manufactured by Jasmin Electronics 

Ltd. The assembly and testing were carried out by T.Bond , University 

of Bath as a final year project. Finances were provided by The Dept. 

Electrical 'engineering, University of Bath.
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In its ilor-.tin^ point configuration the array will function 

fastest if the binary nunbers offered to it are most-significant- 'bit* 

orientated, that is a 1 appears on the input of the array which 

corresponds to the most significant ’bit' of tlie number. This ensures 

that the shift command , input , in each row of the array is set 

up with the least possible delay. Under these circumstances the maximum 

time for the array to multiply two numbers is g:von by

T = + (S-1) . . .  (2̂ .1)

where is the maximum propagation delay through a

cell from multiplier’bit’or subtotal ’bit' 

input to sum 'bit' or carry 'bit' output, 

is the maximum propagation delay as for

 ̂ but with shift command instigated.

S is the maximum number of significant 'bits'

being processed.

In the prototype array the predicted values for the above were

Pq = 60 nS
= So nS and, in the configuration used,

S = 8

The expected maximum delay time was therefore T = 60 + 7 80 = 620 nS

The measured maximum time was $40 nS. The discrepency is probably 

accounted for by differences between the manufacturer's estimate of 

gate propagation delay times (possibly pessimistic) and the delay 

times of the gates in practice.

The average power consumed by each cell,in the quiescent state , was

0.44 watts, ho figures are yet available for power consumption 

during computation.

If these figures are extrapolated for an array capable of handling
99nunibors of the order : 7 significant digits (decimal), range 10 j
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then the estimated time for mult i Til i cat ion is 1.9 )u5 and quiescent 

power consumption is approximately watts. The time for multiplic­

ation represents a considerable saving over modern conventional 

multipliers.

In practice an array of the size just mentioned would 

be more economically produced in integrated circuit form , several 

cells being implemented by one of such circuits. It is unlikely 

that t h e 'whole array would be produced as one integrated circuit 
because of the difficulties in dissipating the heat produced.

An array of the same size as the one just discussed but 

employing devices of low power consumption , eg. C.O.S.X.O.S.F.E.T's*, 

could be produced as one integrated circuit 'chip' and would be an 

attractive circuit for incorporation in modern'pocket calculators'.

Although the array described in this section does not 

strictly come under the heading of a 'matrix method' , the

investigation of the properties of this , and like, arrays was 

prompted by the need to fully understand the behaviour of general 

iterative arrays in the light of Boolean matrix theory. It has 

therefore been included as a piece of research closely related to 

matrix methods.

In the final analysis , liowever, it has been found th.at 

the representation of such arrays by Boolean matrices does not facilitate 

their synthesis for reasons described in Section 1.1.9 ,p 46.

* Complementary-Symmctry Metal Oxide Semiconductor Ficld-dffect 

Transistor.
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CHAPTER A

General Conclusions and 
Recommendations for 
Further Work
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4.1 General Conclusions.

This thesis has presented some new approaches to logic synthesis 

by matrix methods.

In Chapter 1 an investigation into the properties of Boolean 
matrices,of a particular type, was described. It was shown that 

the properties of the algebra associated, with these matrices give 

rise to a method of analysing a function in terms of its dependence 
upon ojiy chosen set of its defining variables. The exhaustive 

application of this technique , using Boolean matrices, was shown 
to permit the extraction of the prime implicants of several functions 
simultaneously and to have certain advantages in this respect over the 
method of Cuine-McCluskey. An iterative method for the synthesis of 

Boolean functions, which generates optimum solutions on an exhaustive 

search basis , was also developed. This technique enables partially 

specified systems having multiple outputs to be synthesised using 
any chosen logic modules as 'building blocks'. Other concepts of 

general interest wore those of pro- a_nd %iost-multiplicative operators 
and the possibility of defining 'dependent' functions.

Chapter 2 was concerned with a matrix transformation technique 

which enables the Badomacher/V/alsh transform of any Boolean function 

to be determined. The choice of this transformation as a tool for 
logic, synthesis arose from a search for techniques of synthesis 
which do not have an iterative structure and which allow the logic 

designer both to readily grasp the properties of the system to be 

designed and also influence the resulting synthesis. It was shown 

that certain pertinent properties of a Boolean function could be 
gleaned from a study of the Badcmacher/’/alsh transform of that 

function. Certain novel siiectral operations were developed which
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allow elegant syntheses of Boolean functions both in terms of 
threshold and vertex logic. A straight forward method of gate 
minimisation was derived. It was also shown that these operations 

enable Boolean functions to be classified in a very concise way.
This classification showed that threshold functions play an 

important part in the composition of Boolean functions. A novel 

synthesis method based upon an approximate statistic was proposed.
The results of this method are , at present , very encouraging.

Further research into this topic is necessary.
Chapter 3 was concerned witli the rosea: ch work arising from 

the wor]: of Chapters 1 and 2 . Of special interest was the development 
of an optimised universal threshold gate which , under the operations 

described in Chapter 2 , is able to synthesise any fourth-order 
Boolean function having• an embedded or disjointly embedded threshold 
function. Fourth-order functions not falling into this category 

may be synthesised by using two of such gates. It also follows that 

functions of order n > 4 may be synthesised by several of such gates. 
It is felt that this gate may , in future , become a standard modulo 

for the design of logic circuits since , in practice , it has been 
found that the use of this gate allows circuits to be designed at 

a lower cost than is possible at present. The design procedures 

for the synthesis of Boolean functions using this gate are 
straight!orv/ard , following closely the methods of Chapter 2 .

The Boolean matrix methods of Chapter 1 allow for the 

representation and synthesis of cascaded logic modules . This 

property does not seem to be shared by the techniques of Chapter 2 
however. It is felt that an investigation into the relationships 
between those two disciplines may result in an approach to synthesis 
which embodies the special advantages of both of them.
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The fact that , at least in the fourth-order case , inor.y Boolean 

functions are characterised by only a small number of their spectral 

coefficients nay indicate that,for higher-order functions,it may 

be possible to completely specify the majority of functions using 

only a small amount of the data space required at present. Tor this 

reason , and also because of the existance of the ' Fast V/a.lsh 

Transform ' it may be possible to synthesise functions , using the 

techniques developed in this thesis , of a highor-order than has 

been attempted using conventional methods.
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4.2 Pecomm0ndationo for Further '.'ork.

1/ The trcuisformation toc}\niqucs of Chapter 2 , unlike the 

Boolean matrix methods of Chapter 1 , do not seem to facilitate the 

representation , and thus synthesis , of cascaded logic modules. A 

cursory examination of this problem indicates that some form of 

ôonvolution in the Hademacher/V/alsh spectral domain is necessary 

to represent such cascaded modules. Further investigation is 

required to establish the relationships between the methods of 

Chapters 1 and 2 in order that optimal synthesis methods for 

cascaded logic modules , and indeed finite state machines , may be 

established.

2/ The ability of Boolean matrix algebra to define 'dependent'
•»

functions warrants further research , see Section 1.3*7 • The 

property of one function influencing another appears to have 

applications in adaptive logic systems.

3/ More research is required into the specification of ’don't 

care ' m in terms under the Bademacher/V'alsh transform. To date this 

problem has only been given a small amount of consideration.See 

Section 2.8.2.

4/ It is felt that gate minimisation methods for multi-output 

logic synthesis under the Rademacher/V/alsh tra.nsform can be 

developed with little effort. A theoretical approach to this 

problem has beeii given in Section 2.8.1.

3/ The fact that the great majority of fourth-order Boolean 

functions are characterised by only a small proportion of their 

spectral coefficients is felt to bo very important. It indicates 

that functions having a large number of defining variables may 

be specified using a far smaller data space than is required at

 ̂With certain restrictions
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present. Specifically , it may be possible to specify most functions 

by means of the (basis) positions of their most significant spectral 

coefficients. In addition , under disjoint-translational-equivalenee, 

certain pertinent properties of a Boolean function may be evaluated 
immediately from the properties of the 'class' in which the function 

lies. To this end it is important that the disjoint-translational- 

equivalent classes of functions of order n ̂  3 should be evaluated.The 

results given in Chapter 2 for all fourth-order functions (and loss) 

wore generated by classifying all the fourth order functions in turn. 

This process took approximately 1? hours. This method becomes 
impractical for functions of order n,). 3» (The estimated time 

required for the classification of functions of order n=3 on this 

basis is approximately 100 years I )  This problem may be solved by 

finding the number of functions which may be generated from the 

(known) canonic characteristic threshold vectors,under disjoint- 

translational-equivalenco, and then instigating a search (on a 

random basis) for the remaining , non-threshold disjointly- 

translationally-equivalent ,functions.

6/ For reasons explained in Section 2.7 further research 
is necessary into the significance of the approximate estimator 
e for functions of order n^ 3 , and also for functions not having 

disjointly-embedded threshold functions.

7/ It is known that functions not having disjointly - 
embedded threshold functions may be synthesised if the function 

is 'divided' ,soo Section 2.6.3* Optimal methods of carrying out 
this division , and the role that such functions play in the 
composition of functions of order n 3 * remain to be investigated.
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8/ The optimal universal threshold gate was developed towards 
the end of the research period and only a small amount of time has 
been devoted to the investigation of its properties. In view of its 

importance in the low-cost synthesis of logic systems and the ease 
with which such syntheses may be established , compared to more 

conventiaiâl methods , further research into the automated design 
01 circuits using this gate appears to be of great importance.
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APPENDIX 1

Karnaugh maps of 
all fourth-order 
Rademacher/Walsh 
functions in the 
range 0,1 .
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APPBüM;: 2

Tho Intürni'otation of focctrr-.l Translation iii torrns of Field The or v.

Tho spectral translation operation concerns itself with the

g nieration of a new function ? ’(x^, . • ) from a given

function F(x., . . , ,x ) , where x ' has the formI iC n Jc
x,̂  @ f X Ü X, 8 . . . Ü X,] and F(x., . . $x, , . . ,x ) =iv. 1% Ü nj I iZ n
F'(x^, . . ,x,’̂, . o ,x̂ )̂ . It is required to establish that a unique

function F ’(x^, . . , ,  . . x^) is always generated under these

constraints. If this is so the validity of the spectral translation

operation is guaranteed for any Boolean function.

In order that a unique mapping between the two functions exist:

it is necessary that the functions defined by the set of defining

variables (x^, . . . . *x^) are linearly independent. If this

were not so the expression F(x^ , . . . . ,x^) =

F'(x^, . . ,x̂ ’̂, • . ,x^) would imply that the variables

(x^, . . ,x,̂ , . . ,x^) wore not linearly independent , whereas in

fact they are. (They represent the minimum number of defining

variables necessary to define all points in n-spacc). A unique

mapping of F(x., . . ,x, , . . ,x^) onto F ’(x^, . . ,xl, . « ,x_) i n n  I iv n
is therefore guaranteed provided that tho functions given by the 

defining variables (x^ , . . ,Xj’̂, . . ,x^) are linearly independent.

Using Galois Field 2 , ( GF(2) ), theory it is possible to 

represent the set of defining variables (x^, . . ,xl, • . ,x^) in 

matrix form and establish the linear independence of each member of 

the set.
GF(2) f  cory applies to integers in the range (0,1) together 

with the operation addition modulo 2. ( 0 ). Because a field is 

being considered conventional matrix algebra may be employed 

and the normal criteria of singularity and non-singularity applies
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to the linear independence of functions.

Under G?(2) the follovring relationships hold :
1/ Multiplication

0.0 =  1.0 -  0.1 =  0 

1.1 = 1

2/ Addition 'r'

0+0 = 1+ 1 = 0  

0+1 = 1+0 = 1 

3/ Subtraction is equivalent to addition.

In order that the linear independence, of a set of functions 
may be tested it is necessary to establish that the matrix , in 
GF(2), describing those functions is non-singular.

"«dxample

iriables is given by (x^ ,x^ ,x._. ,X;̂ ) , whereset OI o.eiining v;

xJJ = x^ © Xp . Are the functions corresponding to these defining 
variables linearly independent ?

Expressing the problem in matrix form G?(2) gives

1 1 0 o’ "10 1 0 0
0 0 1 0 Xy
0 0 0

F
X

= x!

In order that the functions corresponding to the defining 

variables are linearly independent it is necessary that the above 
matrix is non-singular. ie. it has a determinant of value 1 .

Let this matrix be denoted by [a ].
Expanding the determinant of [Ajby the first column in the 

usual way gives 
1. 1 0  0 

0 1 0 
0 0 1

ho-expansion of this doteruinantby the

first column gives
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1 . 4 1 . 1 0 
0 1

= 1 .1 .  f  ( 1 .1 )  + ( 0 .0 ) ]V J
r= 1.1. { 1 4- oj

= 1.1.1

= 1

That is Det.[A]= 1 , thereioi’e the defining variables are 

linearly independent.

For the more general case idiere the variable is replaced
by æ [ . 0 [A] I

/j * * * »  ̂ ^
0 1 0 0 0 . .
0 0 1 0 0 . .
0 0 0 1 0 . .

0 0 0 0 0 0 0

oecocioG

. *. 0 0. 0 0 . 0 0

. 0 1

whore * denotes a value of 0 or 1 .
Expanding the determinant of[A]about the first column gives

1 . 1 0 0 0 . . 
0 1 0  0 . .
0 0 1 0 .  .

. 0 0. 0 0

. 0 0

0 0 0 0 0 0  . . 0 1 .
which again give a value of the determinant of [ A jSS 1.

'I'b- aame result is obtained for tlie general case where x,_
is replaced by x,’ = x,̂  © j x © x, © . . . © x, | where the determinant X X I a D i\j

of[a ]is evaluated by expansion about the k th column.

It can be concluded therefore that the operation of spectral 
translation maps a given function uniquely onto a new function. That 
is , the linterms of the original function are perturbed in n-spaco 
and no information about the original function is lost - it is 
reconstructable.
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The set of defining variables of a function are also termed 

a _Basiu3 and operations of the type considered arc often called Basil 

Transformations. See also reference 29 •
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APPENDIX 4

CANONIC CHARACTERISTIC  W EIGUT-THRESHOLD VECTORS, 
o r  CHOW PARAMETERS, FOR THRESHOLD FUNCTIONS  
OF UP TO n = 5 .

n (max) No, c] w]

3
1 8 0 0 0 1 0 0 0

•» o 6 2 2 2 2 1 1 1
3 4 4 4 0 1 1 1 0

4
1 16 0 0 0 0 1 0 0 0 0
2 14 2 2 2 2 3 1 1 1 1
3 12 4 4 4 0 2 .1 1 1 0
4 10 6 6 2 2 3 2 2 1 1
5 8 8 8 0 0 1 1 1 0 0
6 8 8 4 4 4 2 2 1 1 1
7 6 6 6 6 6 1 1 1 1 1

5
1 32 0 0 0 0 0 1 0 0 0 0 0
2 30 2 2 2 2 2 4 1 1 1 1 1
3 28 4 4 4 4 0 3 1 1 1 1 0
4 26 6 6 6 2 2 5 2 2 2 1 1
5 24 8 8 ' 4 4 4 4 2 2 1 1
6 24 8 8 8 0 0 2 1 1 1 0
7 22 10 10 6 2 2 5 3 3 2 1 1
8 22 10 6 6 6 6 3 2 1 1 1 1
9 20 12 12 4 4 0 3 2 2 1 1

10 20 12 8 8 4 4 4 3 2 2 1 1
11 20 8 8 8 8 8 2 1 1 , 1 I 1
12 18 14 14 2 2 2 4 3 3 1 1 1
13 18 14 10 6 6 2 5 4 3 2 2 1
14 18 10 10 10 6 6 3 2 2 2 1 1
15 16 16 16 0 0 0 1 1 1 0 0
16 16 16 12 4 4 4 3 3 2 1 1 1
17 16 16 8 8 8 0 2 2 1 1 1
18 16 12 12 8 8 4 4 3 3 2 2 1
19 14 14 14 6 6 6 2 2 2 1 1 1
20 14 14 10 10 10 2 3 3 2 2 2 1
21 12 12 12 12 12 0 1 1 1 1 1 0
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• APPENDIX 6

Some Circuits  Designed Using the  
Optimised Universal Threshold Gate.

lO
0  4  
 ̂ 0 0 0^' o' T‘ 1*

01 o' o' 1” 1‘
II o' o' 1“0 “

10 o' o' 1" o'
Compare with the solution of Fig.30

X^X\oo 01 I) 1000 0̂ r Là1 o'01 1 o' T1 o'
I I o' r O' 1"10 r o' 1" 0"

Note disjunctive 
translation.

Compare with Fig.31b.

.L
(O.U.T.G) w ith complemented input capability,

see Fig.A4b.
A6.1
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2 /5  Circui t (Saving of 3 gates & 5
interconnections on Fig.38)

SUM

CARRY

Full Adder

XI
X2
X -

A6.2
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If C=0 z= A  
If C=1 z = B

Electronic Switch

XiXr2
0 0 0 “ 1 O l 0 ^
01 1 ' O' o ' o '
II O' o ' o ' 0 "
10 O' o ' o ' o '

-* 0<}

Output threshold 1 .used

A 6.3
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