University of Bath

UNIVERSITY OF
BATH

PHD

Matrix methods in combinational logic design.

Edwards, C. R.
Award date:
1973

Awarding institution:
University of Bath

Link to publication

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

MATRIX METHODS

IN COMBINATIONAL

LOGIC DESIGN.

submitted by C.R.Edwards
for the degree of Ph.D.
of the University of Bath.
1973

COPY?IGHT

Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.

This thesis may not be consulted, photocopied or lent to other librarics without the permission of the author or Dr. S.I. Hurst, University of Bath, for one year from the date of acceptance of the thesis.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest U326049
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

SUMMARY.

Phe object of this thesis is to present certain matrix tochnigucs which may be employed inthe analysis and synthesis of binary combinational loric circuits. These techniques are readily implemented on the digital computer.

In developinc these methods care has.been taken to avoid houristic alcorithms so that each technique has a firm mathomatical ¿oundation.

The first chapter of the thesis considers a Boolean matrix approach to lofic analysis and synthesis. These matrices allow the riçorous and formalised representation of logic circuits. in important property of these matrices is that they embody multiple-output circuit representation and that, together with certain matrix operations, they may be used in the synthesis of multiple output circuits on an iterative basis.

The second chapter of the thesis describes a matrix transformation technique which has properties directly applicable to locic synthesis. This technique may be employed not only in the field of conventional logic design but also in the desimn of circuits using threshold sates. Certain transform-domain operations are used to synthesise logic circuits directly from the transformed truth-table representation of Boolean functions. These operations may also be used in the classification of Boolean functions. They may also be employed in the synthesis of multiple-output circuits and pottern recognition.

The third section of the thesis concerns itself with other research work initiated by the topics discussed in chapters one and two . Of special interest is the description of a universal threshold losic gate and its role in logic synthesis.

CONTENTS

(i) Definitions
(ii) List of Symbols Used.

Chapter 1. BOOLSAN MATRICES.
1.1 Introduction. 11
1.2 Basic Concepts. 11
1.2.1 Representations. . 11
1.2.2 Matrix-Vector Multiplication. 15
1.2.3 Decimal Notation. 17
1.2.4 Matrix-Metwork Topology. 18
1.2.5 Matrix Multiplication. 18
1.2.6 Basic Properties Reviewed. 22
1.3 Further Properties . 24
1.3.1 Singular and Non-Singular Hatrices. 24
1.3.2 Dimensioning. 24
1.3.3. The True Inverse. 25
1.3.4 Valid Equations. 29
1.3.5 Inverse of Sinçular Natrices. 31
1.3.6 Multi-valued Matrices. 35
1.3.7 Conditionally and Unconditionally Valid Equations. 36
1.3.8 Matrices Raised to Exponents. 39
1.3.9 Hatrix Root Extraction. 46
1.4 Boolean Matrix Operators. 48
1.4.1 Post-multiplicative Operators. $\quad 48$
1.4.2 Pre-multiplicative Operators. 51
1.4.3 Operators of the Yarallel Composition Iype. 56
1.5 Practical Applications. 58
1.5.1 Introduction. 58
1.5.2 Matrix Multiplication. 58
1.5.3 Inverse Matrices. 60
1.5.4 Matrices Raised to Exponents. 63
1.5.5 Pepresentation of Iterative Cascades. 64
1.5.6 Extraction of the Prime Implicants of Functions. 69
1.5.7 Losic synthesis by Iterative Rethods. 77
1.6 Conclusions. 86
Chapter 2. THE APPLICATION OF THE RADEMACHER/MALSH TRANSFORM
TO LOGIC DBSIGN AND BOOLEAN FUNCTION CLABSIFICATION.
2.1 Introduction 89
2.2 The Rademacher/Valsh Transform. 90
2.2.1 Introduction. 90
2.2.2 Definitions and Properties. 90
2.3 Observations on the Significance of the Spectral Coefficients. 97
2, 4 Some Operations in the Transform Domain. 100
2.5 Spectral Translation. 107
2.5.1 The Theorem of Spectral Translation 107
2.5.2 Interpretation and Implementation of Spectral Translation. 108
2.5.3 Significance of Spectral Translation. 108
2.5 .3 a In Logic Synthesis. 108
2.5 .3 b In Boolean Function Classification. 110
2.5.4 Application of Spectral iranslation 112
2.5.4 a Application to Synthesis by Threshold Logic. 112
2.5 .4 b Application to Synthesis by Vertex Locic. 120
2.5.5 Gate Minimisation Criteria. 124
2.6 Disjoint Spectral Translation. 132
2.6.1 Defining Operation. 132
2.6.2 The Theorem of Disjoint Spectral Translation. 133
2.6.3 Interprotation and Taplementation of Disjoint SpectralTranslation. 134
2.6.4 Eignificance of Disjoint Spectral Translation. 136
2.6.4 a In Losic Synthesis. 136
2. 2.4 b In Boolean Function Classification. 136
2.6.5 Application to Threshold Logic Synthesis. 137
2.6.6 Application to Vertex Losic Synthesis. 143
2.7 A Statistical Synthesis Method.
2.7.1 Introduction. 143
2:7.2 Spectral Coefficients and the Distribution ofMinterms.146
2.7.3 Bxpected Values. 149
2.7.4 The Procedure. 152
2.7.5 Notes on the Nethod. 157
2.3 Further Applications. 158
2.8.1 Hultiple Output Synthesis. 158
2.8.2 Synthosis of Punctions Containing 'Don't Cares '. 158
2.9 Conclusions. 160
Chater 3 OMIDR RESEADCH VORI
3.1 The Application of a Universal Threshold Logic Gate to Digital Circuit Synthesis.
3.1.1 Introduction. 163
3.1.2 The Universal Threshold (D.S.T.L) Gate. 163
3.1.3 The Optimised Universal Threshold (D.w.T.L) Gate. 165
3.1.4 Use of the Ootimised Gate 166
3.2 A Cellular Arithmetic Array Uith Variable Dynomic Range 172
3.2.1 Introduction. 172
3.2.2 Dėsieg Philosophy. 173
3.2.3 Array Specification. 173
3.2.4 Brief Desien Details. 175
3.2.5 Performance. 179
3.2.6 The Prototype Array. 179
Chapter 4 GENERAL COHCLUSIONS AND RECOMEMDATIONS FOR FURTIER :ORK
4.1 General Conclusions. 185
4.2 Recommendations for Further Work. 188
4.3 Acknowledgements. 191
,

APPENDICES

Appendix 1. Karnaugh Maps of All Fourth-Order Radenacher/Walsh Functions in the Rance 0,1.

Appendix 2. The Interpretation of Spectral Translation in Terms of Field Theory.

Appendix 3. Canonic Spectra of Boolean Functions, $n \leqslant 4$, Under Translational-Equivalence.

Appendix 4. Tables of Positive Characteristic Canonic Vectors.
Appendix 5. Canonic Spectra of Boolean Functions, $n \leqslant 4$, Under Disjoint-Translational-Equivalence.

Appendix 6. Some Circuits Designed using the Optimised Universal Threshold Gate.

REFERENCES.

LIST OF PUBTIC.SLIONS BY RYE AUTHOR.

(i) DEFINITIONS.

n
the letter n will be used exclusively to denote the order of a Boolean equation. n is the minimum number of defining variables necessary to always unabiguously represent a Boolean function of order n.
$x_{i}, 1 \leqslant i \leqslant n$
will be used exclusively to denote the defining variables of a Boolean function of order n .
$F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ will denote any nth order Boolean function.
$F_{i}\left(x_{1}, x_{2}, \cdot, x_{n}\right)$ will denote a particular nth order Boolean function.
ψ_{j}
a point in n-space defined as follows :
Let 〈S〉 be the set of all possible unique values of the vector $\left.x_{1}, x_{2}, \ldots, x_{n}\right]$ in the range $\dot{0}, 1$; then each member of $\langle S\rangle: s_{i}$, $1 \leqslant i \leqslant 2^{n}$, is an n-tuple ψ. A particular $n-$ tuple ψ_{j}, called the j th n-tuple, is defined as $\psi_{j}, j=2^{n-1} \cdot x_{1}+2^{n-2} \cdot x_{2}+\cdots+2^{0} \cdot x_{n} \cdot$
True minterm
an n-tuple at which a given function has the logical value 1.

False minterm.

Canonical
representation
an n-tuple at which a given function has the logical value 0 .
a method of representing a Boolean function where the n-tuples on which such functions are defined are always written in the same positions. The function is then said to be in 'canonical form'. This terr is also applied to the positioning of the spectral coefficients of a Boolean function.

Truth table a canonical representation of a Boolean function. Each n-tuple is tabulated together with the corresponding value of the function. The n-tuples are witten in order as :
$\psi_{0}, \psi_{1}, \psi_{2}, \cdot \cdot \cdot, \psi_{2}^{n-1}$
See Fig. 1a and refercnce 1.

Karnauch map
n
a canonical representition of a Boolean function. The map consists of an area divided into $2^{\text {n }}$ adjacent squrres. Each square represents an n-tuple and contains a minterm. Squares with common sides differ only by a Hamming distance of one. See Fig. 1 b and reference 1.
$F_{\psi_{j}}\left(x_{1}, x_{2}, \cdot, x_{n}\right)$ will denote the value o \hat{i} an nth order Boolean function at the n-tuple ψ_{j}.

(ii) LIST OF SYMBOLS USED.

In the approximate order in which they appear.

CHAPTER 1.

Boolean Matrices.

1.1 Introduction.

The type of Boolean matrices described here were first developed by J.O.Campeau in the late $1950^{\prime \prime}$ s, see references 2,3 and 4.

Campeau was particularly interested in using these matrices in the analysis and synthesis of counting circuits and for this reason considered matrices of dimension $n \times 2^{n}$ almost exclusively.

These matrices, whilst having properties analogous to those of conventional matrices, both in terms of structure and algebra, may be applied directly to the analysis and synthesis of logic circuits. They are particularly useful in the representation of cascacked multiple-output logic modules and have associated operations which are easily implenented on the digital computer. 1.2 Basic Concepts.

1.2.1 Representations.

Consider the representation of algebraic equations under conventional matrix algebra :

$$
\left.\left.\left[\begin{array}{c}
\text { Coefficient } \\
\text { Matrix }
\end{array}\right] \begin{array}{c}
\text { Definin } \\
\text { Variables }
\end{array}\right]=\begin{array}{l}
\text { Required } \\
\text { Functions }
\end{array}\right] \cdot(1.1)
$$

It will be recalled that the coefficients are arranged in a particular order so that, under matrix multiplication, the correct coefficient is associated with a particular variable, e.g. :

$$
\begin{aligned}
& \left.\left[\begin{array}{rr}
3 & 2
\end{array}\right] x_{1}, P\right] \quad \text { defines a single function } P \text { where } \\
& \left.\left.P=3 x_{1}+2 x_{2} \text {. Similarly }\left[\begin{array}{rr}
3 & 2 \\
-4 & 1
\end{array}\right] x_{1} x_{2}\right]=\begin{array}{l}
P \\
Q
\end{array}\right] \text { defines }
\end{aligned}
$$

$$
\begin{aligned}
\text { two equations } P, Q \text { where } \quad 3 x_{1}+2 x_{2} & =P \\
\text { and } & -4 x_{1}+x_{2}=Q .
\end{aligned}
$$

Now there is no reason why Boolean equations should not be

FIG. 10 :
TRUTH TABLE

$$
\begin{array}{|c|cccc|c|}
\hline 4_{i}^{i} & x_{1} & x_{2} & x_{3} & x_{4} & F\left(x_{1}, x_{2}, x_{3} x_{4} 4\right. \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 0 \\
4 & 0 & 1 & 0 & 0 & 0 \\
5 & 0 & 1 & 0 & 1 & 1 \\
6 & 0 & 1 & 1 & 0 & 0 \\
7 & 0 & 1 & 1 & 1 & 1 \\
8 & 1 & 0 & 0 & 0 & 0 \\
9 & 1 & 0 & 0 & 1 & 0 \\
10 & 1 & 0 & 1 & 0 & 1 \\
11 & 1 & 0 & 1 & 1 & 1 \\
12 & 1 & 1 & 0 & 0 & 0 \\
13 & 1 & 1 & 0 & 1 & 1 \\
14 & 1 & 1 & 1 & 0 & 1 \\
15 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

FIG.la.:
represented in a similar way.
Consider $\left.\left.\quad\left[\begin{array}{llllllll}c_{1} & c_{2} & \cdot & c_{i} & \cdot & c_{2}\end{array}\right] \begin{array}{c}x_{1} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x_{n}\end{array}\right]=U\right] \cdot(1.2)$
where x_{1}, x_{2}, .,x_{n} are the defining variables of a Boolean function $U=F\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and the coefficients $c_{1}, c_{2}, \cdot c_{2^{n}}$ are the value of the function at each n-tuple $\psi_{(i-1)}$, see 'Derinitions' For example c_{1} is the value of the function at n-tuple ψ_{0} or when $x_{1}=x_{2}=\cdot x_{n}=0 ; c_{2}$ is the value of the function at $n-$ tuple ψ_{1} or when $x_{1}=x_{2}=\cdots x_{n-1}=0, x_{n}=1$ etc.

Now it will be noted that the ordering of the coefficient vector is precisely that of the truth table representation of a Boolean function, -see 'Definitions'.

The example shown in Fig.1a. may therefore be written as : $\left[\begin{array}{cccccccccccccccc}0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1\end{array}\right] \quad x_{1} 1$
where U is a boolean function $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
The numbers appearing below each member of the coefficient vector represent the n-tuples $\psi_{j}, 0 \leqslant j \leqslant 2^{n}-1$. Because the coefficient vector has a canonical form the ordering of these n-tuples is implied ; nevertheless it will be found convenient to include this information when the manipulation of matrices by paper-and-pencil methods is considered.

The representation of several Boolean functions is also possible, as in the case of conventional matrix algebra.

Consider

$$
\left[\begin{array}{lllll}
c_{1, u} & c_{2, u} & \cdot & \cdot & c_{2^{n}, u} \\
c_{1, v} & c_{2, v} & \cdot & \cdot & c_{2^{n}, v} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
c_{1, z} & c_{2, z} & \cdot & \cdot & c_{2^{n}, z}
\end{array}\right] \begin{gathered}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\\
\end{gathered}
$$

which represents several nth order Boolean functions.
In general the coefficient matrix will have p rows and 2^{n}
columns, where p is the number of nth order Boolean functions
to be represented.
, As an example, the representation of three second order functions is given below.

The functions $U=x_{1} \oplus x_{2} \triangleq x_{1} \cdot \bar{x}_{2}+\bar{x}_{1} \cdot x_{2}$,

$$
v=x_{1} \cdot x_{2}
$$

$$
w=\bar{x}_{1}+\bar{x}_{2}
$$

may be represented as $\left.\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right] \begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}U \\ V \\ W\end{array}\right]$
0123
In order that the values of a given set of functions may evaluated simultaneously for a particular n-tuple the column vector of the coefficient matrix corresponding to that n-tuple is extracted.

In the last example the values of the three functions corresponding to the n-tuple ψ_{3}, where $x_{1}=1$ and $x_{2}=1$, is given by :

$$
\left.\left.\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 3
\end{array}\right] 1 \begin{array}{l}
1 \\
0
\end{array}\right]=\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

ie. the functions U, V, \because have the values $0,1,0$ respectively when $x_{1}=1, x_{2}=1$.

[^0]
15

expanded as a Boolean matrix this process may be carried out by inspection :

$$
\left.\left.\begin{array}{l}
\left.\left.\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \begin{array}{l}
1 \\
1
\end{array}\right]=\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
\left\{\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right\}
\end{array}\right\}+\begin{array}{c}
\text { matrix form of } \\
\text { n-tuples }
\end{array}\right\}
$$

If the coefficient matrix is equal to the matrix of n-tuples the following matrix equation results :

$$
\left.\left.\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\begin{array}{l}
U \\
V
\end{array}\right] \quad \text {, for } n=2
$$

Clearly $\left.\begin{array}{ll}U \\ V\end{array}\right]$ will take the values of $\left.\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ over all n-tuples, ie.

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] x_{1} x_{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text {; for this reason the matrix }
$$

of n-tuples is called the Unit or Identity matrix and is denoted as [A]. The Unit matrix has, by definition, n rows and 2^{n}. columns.

In general $\left.\left.[A] \begin{array}{c}x_{1} \\ x_{2} \\ \bullet \\ \\ x_{n}\end{array}\right]=\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ x_{n}\end{array}\right]$

1.2.2 Matrix-Vector Multiplication.

It is now possible to mathematically define the operation which enables equations of the type

$$
\left.\left[\begin{array}{c}
c] \tag{1.5}\\
x_{1} \\
x_{2} \\
\bullet \\
\dot{x}_{n}
\end{array}\right]=\begin{array}{c}
F_{1} \\
F_{2} \\
\bullet \\
\dot{F}_{p}
\end{array}\right]
$$

to be evaluated. This operation will be termed matrix-vector multiplication.

Define:[C] as Boolean coefficient matrix having p rows and 2^{n} columns,

16

$\left.\begin{array}{l}x_{1} \\ x_{2} \\ \bullet_{n} \\ \dot{x}_{n}\end{array}\right]$ as the defining variable vector having n rows,
$\left.\begin{array}{l}F_{1} \\ F_{2} \\ \bullet \\ F_{p}\end{array}\right]$ as the function vector having p rows and
[A] as the matrix of n-tuples having n rows and 2^{n} columns. The evaluation of equation (1.5) is then given by
$\left.F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigcup_{j=1}^{2^{n}} c_{i, j} \cap\left\{\bigcap_{k=1}^{n}\left(a_{k, j} \bar{\oplus} x_{k}\right)\right\},\right\} \cdot(1.6)$ where \oplus is the equivalence operator, U represents union over a
 intersection.

Equation (1.6) is interpreted in the following way :

$$
\left.\bigcap_{k=1}^{n}\left(a_{k, j} \otimes x_{k}\right) \text { has the logical value } 1 \text { iff. the vector } \begin{array}{l}
x_{1} \\
x_{2} \\
\bullet \\
\dot{x}_{n}
\end{array}\right] \text { is }
$$

equal to the j th column of $[A]$. That is, the vector $\left.x_{1}\right]$ is
identified with the n-tuple corresponding to the j th column of $[A]$; this n-tuple is, by definition equal to ψ_{j-1}. Because no two n-tuples intersect in n-space this correspondence is unique. Thence $\bigcup_{j=1}^{2^{n}} c_{i, j} \cap\left\{\bigcap_{k=1}^{n}\left(a_{k, j} \oplus x_{k}\right)\right\}$ serves to extract the required member, row i column j, of [C] correspondine to the function $F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and j th column of $[A]$.

The general expansion of equation (1.6) for $n=2$ is:

$$
\begin{aligned}
F_{i}\left(x_{1}, x_{2}\right)= & c_{i, 1} \cdot\left(a_{1,1} \bar{\oplus} x_{1}\right) \cdot\left(a_{2,1} \bar{\oplus} x_{2}\right)+c_{i, 2} \cdot\left(a_{1,2} \bar{\oplus} x_{1}\right) \cdot\left(a_{2,2} \bar{\oplus} x_{2}\right) \\
& +c_{i, 3} \cdot\left(a_{1,3} \bar{\oplus} x_{1}\right) \cdot\left(a_{2,3} \bar{\oplus} x_{2}\right)+c_{i, 4} \cdot\left(a_{1,4} \bar{\oplus} x_{1}\right) \cdot\left(a_{2,4} \bar{\oplus} x_{2}\right)
\end{aligned}
$$

1.2.3 Decimal Hotation.

Boolean matrices and vectors may also be expressed in 'decimal notation' . An example of this notation has already been used to represent n-tuples. viz. $\psi_{j} \quad, j=2^{n-1} \times x_{1}+2^{n-2} x_{2}+\cdots+2^{0} x x_{n}$.

In general any Boolean matrix column vector may be expressed in decimal notation in the following way:

Let $[C]$ be a coefficient matrix having p rows and 2^{n} columns, then

$$
\begin{gather*}
\dot{c}_{j}^{\prime}=\sum_{k=1}^{p} 2^{n-p} c_{k, j} \tag{1.7}\\
1 \leqslant j \leqslant 2^{n}
\end{gather*}
$$

where ' c ' is the j th column vector of [C]expressed in decimal notation. The same technique can, of course, be applied to both vectors and matrices.

An example of the conversion of a Boolean matrix equation to decimal notation is :
$\left.\left.\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right] \begin{array}{r}1 \\ 1\end{array}\right]=\begin{array}{r}0 \\ 0 \\ 0\end{array}\right] \quad$, which may be expressed as
$\left\{\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right\}$
$\left.\left.\left[\begin{array}{llll}1 & 5 & 5 & 2 \\ 0 & 1 & 2 & 3\end{array}\right] 3\right]=2\right]$
The unit matrix, by virtue of the fact that it is the matrix of n-tuples, may be defined in decimal notation as

$$
a_{j}^{\prime} \triangleq j-1, \quad 1 \leqslant j \leqslant 2^{n} \quad \ldots .(1.8)
$$

where a_{j}^{\prime} is the j th column vector of [A] expressed in decimal notation.

The decimal notation is useiul , not only as a shorthand method of expressing Boolean matrices, but also as a form which is convenient for the manipulation of such natrices by means of the

18

digital computer.
1.2.4 Matrix-Metwork Topolozy.

A practical interpretation of Boolean matrix-vector multiplication is given in FiE.2. which corresponds to equation (1.5).

One of the most important properties of Boolean matrices is evident from this example, ie. it is possible to relate the row structure of a Boolean matrix equation to the topology of the logic circuit which it describes. The convention adopted here will be to relate the first row (iunction) of a coefficient matrix to the upper signal path at the output of the corresponding logic module, the second row of the coefficient matrix to the next-to-upper signal path at the output of the corresponding logic module, and so on. The same convention will be adopted for the defining variable vector and the corresponding logic module inputs.

1.2.5 Matrix Multiplication.

It is now possible to develop an operation termed 'Boolean matrix multiplication' which corresponds to the multiplication of conventional matrices.

Consider the identity

$$
[B][C]\left[\begin{array}{c}
x_{1} \tag{1.9}\\
x_{2} \\
\vdots \\
\\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
D] \\
\\
\\
x_{1} \\
\\
\\
\\
\\
\\
x_{n}
\end{array}\right]
$$

shown in FiS. 3. where the modules B and C correspond to [B] and [C] respectively. The dimensions of the matrices $[B],[C]$ and $[D]$ follow from the discussion of the topolorical relationships above. viz. [C] will have ω rows and 2^{n} columns,
[B] will have p rows and 2^{ω} columns

$$
\begin{gathered}
F_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
F_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
F_{p}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered} \quad C \begin{gathered}
x_{1} \\
\hdashline \vdots \\
\hdashline
\end{gathered}
$$

$$
\left[\begin{array}{ll}
C & \left.\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
\\
\\
\dot{x}_{n}
\end{array}\right]=\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
\dot{F}_{p}
\end{array}\right]
\end{array}\right.
$$

Fig. 2

$$
\left.\left.\left[\begin{array}{l}
\mathrm{B}
\end{array}\right]\left[\begin{array}{l}
\mathrm{C}
\end{array}\right] \begin{array}{c}
x_{1} \\
\vdots \\
\\
\\
\\
\\
x_{n}
\end{array}\right]=\begin{array}{c}
F_{1} \\
\vdots \\
F_{p}
\end{array}\right]
$$

Fig. 3

20

and [D]:ill have p rows and 2^{n} columns.
It should be noted that any deviation from this dimensioning results in a system which cannot be implemented.

A method of evaluating equation (1.9) is to first compute

Then equation (1.9) may be expressed as

$$
\left.\left[\begin{array}{cc}
B & x_{1}^{\prime} \tag{1.11}\\
& x_{2}^{1} \\
& \vdots \\
& x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
D
\end{array}\right] \begin{array}{c}
x_{1} \\
\\
x_{2} \\
\\
\\
\\
\\
\\
\\
x_{n}
\end{array}\right]
$$

Expressing equation (1.10) in the form given by equation (1.6) :

$$
\begin{array}{r}
x_{i}^{\prime}=\bigcup_{j=1}^{2^{n}} c_{i, j} \cap\left\{\bigcap_{k=1}^{n}\left(a_{k, j} \bar{\oplus} x_{k}\right)\right\} \\
1 \leqslant i \leqslant \omega
\end{array}
$$

Using the same method, equation (1.11) may be written as :
$\left.\bigcup_{m=1}^{2^{\omega}} b_{r, m} \cap\left\{\bigcap_{i=1}^{\omega}\left(a_{i, m} \bar{\oplus} x_{i}^{\prime}\right)\right\}=\bigcup_{j=1}^{2^{n}} d_{r, j} \cap\left\{\bigcap_{k=1}^{n}\left(a_{k, j} \bar{\oplus} x_{k}\right)\right\},\right\} \cdot(1.13)$
Now from equation (1.13)

$$
b_{r, m}=d_{r, j} \text { when: } a_{k, j}=x_{k} \text { and } a_{i, m}=x_{i}
$$

and from equation (1.12)

$$
x_{i}^{\prime}=c_{i, j} \quad \text { when: } a_{k, j}=x_{k},
$$

whence

$$
d_{r, j}=b_{r, m} \text { iff. } \quad a_{i, m}=c_{i, j} \text { and } a_{k, j}=x_{k} .
$$

The last equation i.s important because it enables the equation $[B][C]=[D]$ to be evaluated by again employing the general form of equation (1.6).

$$
\begin{aligned}
& \text { ie. given } d_{r, j}=b_{r, m} \text { when } a_{i, m}=c_{i, j} \text { then } \\
& d_{r, j}=\bigcup_{m=1}^{2} b_{r, m}^{n}\left\{\bigcap_{i=1}^{\omega}\left(a_{i, m} \bar{ब} c_{i, j}\right)\right\}, 1 \leqslant r \leqslant p, 1 \leqslant j \leqslant 2^{n} \quad .(1.14)
\end{aligned}
$$

21

Equation (1.14) may be interpreted using the same arguments applied to equation (1.6) : The j th column vector of [C]is identified as the m th column vector of the unit matrix [A]; the j th column vector of [D] must then be equal to the m th column vector of [B].

An example of matrix multiplication is now given:
Evaluate $\left.\left.[B][C] \begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[D] \begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ where $[B]=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$, and $[C]=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$.

For convenience the unit matrix, or natrix form of n-tuples, is written below [B]:

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] x_{1} x_{2}}
\end{array}\right]=\left[\begin{array}{l}
D]
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Now the first colurn vector of [c]corresponds to the third colurnn vector of $[A]$ so that the first column vector of $[D]$ is equal to the third column vector of $[B]$. Similarly the second column vector of [c] corresponds to the first column vector of [A]so that the second column vector of $[D]$ is equal to the first column vector of $[B]$, and so forth. The complete solution together with the necessary operations can be shown as :

The same equation expressed in decimal notation is :

$$
\left.\left.\left[\begin{array}{llll}
4 & 0 & 5 & 3
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & 1 & 3
\end{array}\right] \quad x_{1}\right]=\left[\begin{array}{llll}
6 & 4 & 0 & 3
\end{array}\right] \quad x_{1}\right]
$$

The implementation of this example is shown in Fig. 4.

In general it can be show that the operation of matrix multiplication is not commutative, ie. $[B][C] \neq[C][B]$. To show this consider the equations $\quad[\beta][C]=[D] \quad .(1.15)$
and $[C][B]=[D] \quad \bullet \cdot(1.16)$
Let $\langle B\rangle,\langle C\rangle,\langle D\rangle$ represent the sets of column vectors of $[B]$, [C] and [D] respectively. It is required to establish under which conditions equations (1.15) and (1.16) are simultaneously valid. From equations (1.14) and (1.15) a necessary condition is that
$\langle D\rangle \subseteq\langle B\rangle$
. . . (1.17)
and from equations(1.14) and (1.16) another necessary condition is that $\langle D\rangle \subset\langle C\rangle \quad . \quad$ (1.18) Equations (1.17) and (1.18) imply $\langle C\rangle \cap\langle B\rangle=\langle D\rangle$ which, in general,is not true.

One notable exception is $[A][C]=[C][A]$, where $[C]$ is any coefficient matrix and $[A]$ is the unit matrix.

It can be shown that the associative law holds however., eg. $[B][[C][D]]=[[B][C]][D]$ etc. 1.2.6 Basic Proverties Reviewed.

Several properties of the Boolean matrices and associated algebra are now noted.

1/ The algebra is similarly structured to that of conventional matrix algebra, having operations analogous to both vector-matrix and matrix-matrix multiplication.

2/ The structure of the matrices has the important property of defining logic modules not only in terms of functional behaviour but also in terms of input/output topology.

3/ The algebra is well suited to the description of multipleoutput logic modules and may be used to evaluate the overall transfer function of cascades of such modules.

Fig. 4

Fig. 5

4/ The matrices have a form well suited to manipulation by the digital computer.

Reference 5 should be consulted for further examples of the basic operations described in the previous sections

1.3 Further Properties.

1.3.1 Singular and Non-singular Matrices.

Before proceeding further it will be necessary to classify Boolean matrices into two categories, namely singular and nonsingular.

A singular matrix is defined as a matrix having at least two column vectors identical.

A non-singular matrix is defined as a matrix having no column vectors identical - a special case is the unit matrix [A].

An analory can be drawn between the properties of siñular/ non-singular matrices for both Boolean and conventional matrices as will be shown in the discussion of inverse matrices.
1.3.2 Dimensioning.

Consider the Boolean matrix equation

$$
\left.\left.[B][C] \begin{array}{cc}
x_{1} \\
x_{2} \\
& \bullet \\
& \dot{x}_{n}
\end{array}\right]=[D] \begin{array}{cc}
x_{1} \\
& x_{2} \\
& \\
& \dot{x}_{n}
\end{array}\right]
$$

It is now convenient to investigate the relationships between the dimensions of the matrices [B],[C] and [D].

Now the system under consideration has n ¿efining variables ; therefore both[C]and[D] must have 2^{n} columns since they are defined on 2^{n} n-tuples ; see also equation (1.6). Suppose that [c] has 6 rows, ie. it doscribes a module with ω outputs. Then [B] must be defined on ω inputs ; see also equation (1.14). It follows that

25

[B] has 2^{ω} columns. Now if [D] has p rows, corresponding to p outputs, then [B]also has prows. These general dimensions are shown in Fis.5,p23.

In order that equations of the type discussed above may be solved given only the matrices $[B]$ and $[D]$ or $[C]$ and $[D]$ it is necessary to introduce the concept of the inverse matrix.

1.3.3 The True Inverse.

The inverse of a matrix, say $[c]$, is written as $[C]^{-1}$ and is defined by :

$$
\begin{equation*}
[c][c]^{-1} \triangleq[A] \triangleq[c]^{-1}[c] \tag{1.19}
\end{equation*}
$$

where [A] is the unit matrix.
Let [c] have ω rows and 2^{n} columns , then equation (1.19) is dimensioned as :

$$
\dot{\psi}\left[\begin{array}{l}
-2^{n}+ \tag{1.20}\\
c
\end{array}\right][C]^{-1}=[A]
$$

and

$$
[\mathrm{c}]^{-1} \stackrel{\omega^{-2}[\mathrm{C}]}{\mathrm{R}^{n}}=[\mathrm{A}]
$$

...(1.21)

Equation (1.20) implies that [A] has ω rovs whilst equation (1.21) implies that $[A]$ has 2^{n} columns. The unit matrix A however, has n rows and 2^{n} columns by definition. It follows that $\omega=n$. In order that equation (1.19) shall hold therefore [C] must have n rows and $2^{\text {n }}$ columns. Similarly $[c]^{-1}$ must have n rows and 2^{n} colurns. Equation (1.19) is thus dimensioned :

Now from the arguments used to develop equations (1.17) and (1.18) it follows that in equation (1.20) : $\langle\mathrm{A}\rangle \subseteq \subseteq<C\rangle$, and in equation (1.21) : $\langle A\rangle \subset\left\langle C^{-1}\right\rangle$, where $\langle B\rangle,\langle C\rangle,\left\langle C^{-1}\right\rangle$ represent the sets of column vectors of $[A],[C],[C]^{-1}$ respectively. Since $[A],[C],[C]^{-1}$ have the same dimensions and $[A]$ is non-singular then $\langle\hat{A}\rangle=\langle C\rangle=$ $\left\langle C^{-1}\right\rangle$ and both $[C]$ and $[C]^{-1}$ are non-sincular.

Two necessary properties of inverse matrices are therefore :

1/ They are non-singular, as are the matrices from which they are derived.

2/ They have a row/column dimension ratio $n / 2^{n}$, as do the matrices fron which they are derived.

These matrices will be termed 'true inverse matrices ' to distinguish then fron other types of inverse matrices to be described later.

Now ", by substitution in equation (1.14), equation (1.21) may be expressed as :

$$
\begin{aligned}
& a_{r, j}=\bigcup_{m=1}^{2^{n}} c_{r, m}^{-1} n\left\{\bigcap_{i=1}^{n}\left(a_{i, m} \bar{\oplus} c_{i, j}\right)\right\} \\
& 1 \leqslant r \leqslant n \\
& 1 \leqslant j \leqslant 2^{n}
\end{aligned}
$$

?
That is $a_{r, j}=c_{r, m}^{-1}$ when $a_{i, m}=c_{i, j}$, which may be interpreted as follows :

If the j th column vector of $[\mathrm{C}]$ is equal to the a th column vector of $[A]$ then the m th column vector of $[C]^{-1}$ is equal to the j th column vector oi $[A]$.

Consider the following simple example :
Given $[C]=\left[\begin{array}{llll}2 & 3 & 1 & 0\end{array}\right] \quad,[A] \triangleq\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$
construct $[\mathrm{C}]^{-1}$.
Now the finst column vector of [c] is equal to the third column vector of [A] so that the third column vector of $[C]^{-1}$ is equal to the first column vector of $[A]$, and so on.

This gives the result

$$
[c]^{-1}=\left[\begin{array}{llll}
3 & 2 & 0 & 1
\end{array}\right] \text {, which may be verified from }
$$

equation (1.20). viz.

$$
\begin{aligned}
& \quad[C][C]^{-1}=[A] \\
& \text { that is } \quad\left[\begin{array}{llll}
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 2 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]
\end{aligned}
$$

27

This procedure is readily implemented on the digital computer and may also be executed by inspection.

It is now possible to show that the equation

$$
\begin{equation*}
[B][C]=[D] \tag{1.23}
\end{equation*}
$$

is equivalent to $[B]=[D][C]^{-1}$
where [C]is non-singular and has n rows and 2^{n} columns, whilst [J] has rows and 2^{n} columns.ie. $[C]^{-1}$ is a true inverse.

Proof:

Using the general expression for matrix multiplication (eqn. (1.14)), equation (1.23) can be expressed as

$$
\begin{array}{r}
d_{r, j}=\bigcup_{m=1}^{2^{n}} b_{r, m} \cap\left\{\bigcap_{i=1}^{n}\left(a_{i, m} \bar{\oplus} c_{i, j}\right)\right\}, \\
1 \leqslant r \leqslant \omega, \tag{1.25}\\
1 \leqslant j \leqslant 2^{n},
\end{array}
$$

ง
and equation (1.24) can be expressed as

$$
\begin{align*}
& b_{r, m}=U_{m=1}^{n} a_{r, j} \cap\left\{\bigcap_{i=1}^{n}\left(a_{i, j}-\frac{c_{i, m}^{-1}}{}\right)\right\} \tag{1.26}\\
& 1 \leqslant r \leqslant \omega \\
& 1 \leqslant m \leqslant 2^{n}
\end{align*}
$$

Now from equation (1.25): $\quad d_{r, j}=b_{r, m}$ when $a_{i, n i}=c_{i, j}$, and from equation (1.26) : $d_{r, j}=b_{r, m}$ when $a_{i, j}=c_{i, m}^{-1}$. In order that equations (1.23) and (1.24) are equivalent it is therefore necessary that $a_{i, m}=c_{j, j}$ when $a_{i, j}=c_{i, m}^{-1}$. But this is exactly the condition which holds if $[C]^{-1}$ is a true inverse, as shown by equation (1.22).

Equation (1.23) is therefore equivalent to equation (1.24):
Q.E.D.

It can also be shown that equation (1.23) may be expressed as

$$
[C]=[B]^{-1}[D]
$$

-. . (1.27)
From equations (1.23), (1.24) and (1.27) it can be concluded that when a matrix equation is re-expressed in terms of the true
inverses of its components , gre- and post-multiplicative ordering is preserved.

For example, in equation (1.23) the matrix [c] postmultiplies [B] and in equation (1.24) [C] ${ }^{-1}$ post-multiplies [D].

This is a property which is also found in conventional matrix algebra.

An example of the use of the true inverse matrix is now given : :
A logic system is described by the equation

$$
\left.\left.\left.[B]\left[\begin{array}{r}
{[}
\end{array}\right] x_{1}\right]=[D] \begin{array}{r}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \begin{array}{r}
x_{2} \\
\\
x_{3}
\end{array}\right]
$$

where $[C]=\left[\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0\end{array}\right] \quad$ and $[D]=\left[\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}\right]$.
Find the matrix [B] (if it exists).
Solution
Convert the system equation into a form which enables
[B] to be evaluated :

$$
[B]=[D][C]^{-1},
$$

ie. $[c]^{-1}$ is required.
Inspection of [C] shows it to have a row/column ratio of $n / 2^{n}$ and in addition it is non-singular. $[C]^{-1}$ may therefore be evaluated.

Express [C] in decimal notation and evaluate $[C]^{-1}$ from $[C]^{-1}[C]=[A]$ by inspection :

$$
[C]^{-1}\left[\begin{array}{llllllll}
1 & 7 & 2 & 5 & 4 & 3 & 6 & 0
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]
$$

$\left[\begin{array}{lllllll}7 & 0 & 2 & 5 & 4 & 3 & 6 \\ 0\end{array}\right]\left[\begin{array}{lllllll}1 & 7 & 2 & 5 & 4 & 3 & 6\end{array}\right]=\left[\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]$ 01234567

$$
\text { ie. } \quad[c]^{-1}=\left[\begin{array}{llllllll}
7 & 0 & 2 & 5 & 4 & 3 & 6 & 1
\end{array}\right]
$$

Express [D] in decimal notation and evaluate [B] from

$$
\left.\begin{array}{l}
{[\mathrm{B}]=[\mathrm{D}][\mathrm{C}]^{-1}:} \\
{[\mathrm{B}]=}
\end{array} \quad\left[\begin{array}{llllllll}
0 & 3 & 3 & 1 & 3 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{llllllll}
7 & 0 & 2 & 5 & 4 & 3 & 6 & 1
\end{array}\right]=\left[\begin{array}{llllllll}
2 & 0 & 3 & 0 & 3 & 1 & 1 & 3
\end{array}\right] \quad \begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]
$$

29

This result can be checked by substitution in the original system equation.

The above example illustrates that the true inverse matrix may be used in logic synthesis. For example, in the above, $[D]$ may represent the transfer function of a required logic system and [C] may represent an available logic module. The example shows that [C] may be employed in the synthesis of [D] giving a remaining module $[B]$ to be synthesised.

Of course it will be appreciated that in general the logic module corresponding to $[C]$ in the above exanple is not likely to have a transfer function described by a non-singular matrix having the correct dimensions which ensures the existance of a true Inverse. The effect of relaxing the restrictions applied to the evaluation of inverse matrices is therefore considered below.

1.3.4 Valid Equations.

In order that criteria may be developed which allow the evaluation of the inverse of matrices not havins the special properties necessary for the evaluation of the true inverse, it is first convenient to determine what constitutes a valid matrix equation.

Recalling the matrix equation

$$
[B][C]=[D] \quad \text { and the interpretation of }
$$

equation (1.14).
viz. $d_{r, j}=b_{r, m}$ when $a_{i, m}=c_{i, j} \quad \begin{gathered}\text { (over the required } \\ \text { limits }\end{gathered}$ the criteria which ensure the validity of the above nacrix equation can be established.

It has already been established. that one necessary condition that an equation of the above type shall be valid is that it has

30

allowed dimensions. This will be assumed.
Consideration of the matrix [C] in the above shows that if two column vectors of [C] are identical then the two corresponding vectors of [D] must be identical.

$$
\text { ie. if } c_{i, j}=c_{i, k}=a_{i, m} \text { then } d_{r, j}=d_{r, k}=b_{r, m}
$$

However if two column vectors of [C] are different then the two corresponding vectors of [D] may or may not be different, depending upon the composition of [B].

$$
\begin{aligned}
& \text { ie. if } c_{i, j}=a_{i, m} \text { and } c_{i, k}=a_{i, 1} \text { then } d_{r, j}=b_{r, m} \\
& \text { and } d_{r, k}=b_{r, I} \text { where } b_{r, m} \text { may or may not be } \\
& \text { equal to } b_{r, 1} \text {. }
\end{aligned}
$$

, These observations give rise to :

Criterion 4.

A necessary condition that the matrix equation $[B][C]=[D]$ shall be valid is that if [C] is sineular then the identical column vectors of [c] shall correspond to the identical column vectors of [D].

00000
Consideration of the matrix [B] in the above equation shows that the set of unique column vectors of [D] must appear in the set of column vectors of $[B]$ since $d_{r, j}=b_{r, m}$ when $a_{i, m}=c_{i, j}$. It follows that [B] must have at least as many unique column vectors as there are unique column vectors in [D]. In addition [B] may be either singular or non-singular.

These observations give rise to :
Criterion 2.
A necessary condition that the matrix equation $[B][C]=[D]$
shall be valid is that the set of unique column vectors, of [D].

31

shall appear in the set of column vectors of $[B]$.
00000
Now if either Criterion 1 or Criterion 2 is satisfied together with the dimensional restrictions, this is sufficient to guarantee the validity of a matrix equation of the type described above.

Specifically if , in the above equation, [C] and [D]are known and satisfy both the dimensional restrictions and Criterion 1 , then the matrix [B] may always be constructed. The same argument may be applied to the construction of [C] given [B] and [D] under Criterion 2 and the dimensional restrictions.

Since the matrices constructed under the above criteria may be singular or non-singular it follows that it should be possible to fing the inverse of a singular matrix providing the result is only applied to valid matrix equations.

1.3.5 Inverse of Sincular llatrices.

Let the inverse of a singular matrix be defined from :

$$
[C][C]^{-1}=[A] \quad \cdots(1.28)
$$

The evaluation of $[\mathrm{C}]^{-1}$, where $[\mathrm{C}]$ is singular is best illustrated by a simple example.

Suppose that $[C]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1\end{array}\right]$, or in decimal notation

$$
[c]=\left[\begin{array}{llll}
3 & 0 & 1 & 1
\end{array}\right]
$$

Substitution in equation (1.28) gives

$$
\left[\begin{array}{llll}
3 & 0 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right][C]^{-1}=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]
$$

Since $[C]$ has two rows it follows that [A] has two rows and 2^{2} colurns, therefore $[C]^{-1}$ must have 2^{2} colums and two rows.

No: by inspection it is clear that the first column vector of $[C]^{-1}$ must give rise to the value 0 , which is the first column vector of $[A]$, when $[C]^{-1}$ is nultiplied by $[C]$. The only column vector of $[\mathrm{C}]$ having a value 0 is that column vector corresponaing
to n-tuple 1. Consequently the first column vector of $[c]^{-1}$ must have the value 1.

The second column vector of $[C]^{-1}$ must give rise to the value 1 when $[C]^{-1}$ is multiplied by $[C]$. But $[C]$ has two column vectors with the value 1 , these appear at n-tuples 2 and 3 . The second column vector of $[\mathrm{C}]^{-1}$ may therefore take the value 2 or 3 .

The third column vector of $[C]^{-1}$ must give rise to the value 2 when $[\mathrm{c}]^{-1}$ is multiplied by $[\mathrm{c}]$. Now no column vector of value 2 appears in $[C]$ so that the third column vector of $[c]^{-1}$ is given the unspecified value '*'.

The fourth column vector of $[C]^{-1}$ must give rise to the value 3 when $[\mathrm{C}]^{-1}$ is multiplied by $[\mathrm{C}]$. Now $[\mathrm{C}]$ has the value 3 only at n-tuple 0 , consequently $[C]^{-1}$ must have its fourth column vector equal to 0 .

This gives the result :

$$
\begin{array}{rl}
{\left[\begin{array}{llll}
3 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & \frac{2}{3} & *
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]} \\
0 & 1
\end{array} 2 \begin{array}{ll}
3 & {\left[\begin{array}{ll}
1 & \frac{2}{3} *
\end{array}\right]=[c]^{-1}}
\end{array}
$$

Now this inverse matrix may be employed in the evaluation of the following system :

$$
\begin{aligned}
& \text { Given } \\
& \left.\left.[B][C] \begin{array}{ll}
x_{1} \\
& x_{2}
\end{array}\right]=[D] \begin{array}{ll}
x_{1} \\
& x_{2}
\end{array}\right] \\
& \text { where } \\
& {[c]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1
\end{array}\right]} \\
& \text { or in decimal } \\
& {[\mathrm{c}]=\left[\begin{array}{llll}
3 & 0 & 1 & 1
\end{array}\right]} \\
& \text { notation } \\
& {[D]=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]} \\
& \text { or in decimal } \\
& {[D]=\left[\begin{array}{llll}
1 & 3 & 2 & 2
\end{array}\right]} \\
& \text { notation } \\
& \text { evaluate }[B] \text {. }
\end{aligned}
$$

Substitution in the equation $[B][C]=[D]$ gives

$$
[B]\left[\begin{array}{llll}
3 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & 2 & 2
\end{array}\right]
$$

This equation satisfies Criterion 1 and is dinensionally correct. $[B]$ may therefore be evaluated from $[B]=[D][C]^{-1}$. Now $[C]^{-1}$ has been evaluated as $\left[1 \frac{2}{3} * 0\right]$. Substitution in the above equation gives

$$
\begin{aligned}
{[B] } & =\left[\begin{array}{llll}
1 & 3 & 2 & 2 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
3 & 2 & * & 1
\end{array}\right]
\end{aligned}
$$

This result may be checked by substitution in the given equation :

$$
\left.\left.\left[\begin{array}{llll}
3 & 2 & * & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 0 & 1 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & 2 & 2
\end{array}\right] \mathrm{x}_{1}\right]
$$

Note that the symbol '*' is used to indicate that the column vector may take any value. This must be so in the above equation since the relevant column vector is not involved when $[C]$ is multiplied by $[B]$. Hovever, in order that $[B]$ shall represent a real system, the value of '*' must lie within the dimensional restrictions of $[B]$.

Matrices having column vectors with more than one possible value will be termed 'multi-valued'.

The fact that the singular inverse of a matrix may always be used to solve matrix equations which are valid under Criteria 1 and 2 together with the dimensional restrictions can be proved using methods similar to those applied to equations $(1.22),(1.25)$ and (1.26).

In the previous example the inverted matrix had a row/column dimension ratio of $n / 2^{n}$, but this is not a necessary condition for the evaluation of inverse matrices as is illustrated by the following example.

34

Given

$$
\left.[B]\left[\begin{array}{ll}
C & x_{1} \\
x_{2}
\end{array}\right]=[D] \begin{array}{l}
x_{1} \\
x_{2} \\
\\
\end{array}\right]
$$

where

$$
\begin{aligned}
{[B] } & =\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \quad \text { or in decimal notation } \\
& =\left[\begin{array}{llll}
3 & 5 & 6 & 5
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
{[D] } & =\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] \quad \text { or in decimal notation } \\
& =\left[\begin{array}{llll}
6 & 3 & 3 & 5
\end{array}\right]
\end{aligned}
$$

find $[C]^{\prime}$.

Solution

Both $[B]$ and $[D]$ have 3 rows, the equation therefore has the correct dimensions.

The set of unique column vectors of $[D]$ are $\langle 3,5,6\rangle$ which" appear in [B].

The equation is therefore dimensionally correct and satisfies Criterion 2 , it is thus a valid equation.

Evaluate $[B]^{-1}$ from $[B][B]^{-1}=[A]$ by inspection :
$\left[\begin{array}{llll}3 & 5 & 6 & 5\end{array}\right]\left[\begin{array}{llllll}* & * & * & 0 & * & \frac{1}{3} \\ 3 & 2 & *\end{array}\right]=\left[\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline\end{array}\right]$
0123
Note that $[B]$ has 3 rows therefore $[A]$ has three rows and 2^{3} columns. Then $[B]^{-1}$ has 2^{3} columns and 2 rows.

Find $[C]$ from $[C]=[B]^{-1}[D]$:

$$
\begin{aligned}
{[\mathrm{C}] } & =\left[\begin{array}{llllllll}
* & * & * & 0 & * & \frac{1}{3} & 2 & * \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llll}
6 & 3 & 3 & 5
\end{array}\right] \\
& =\left[\begin{array}{lllll}
2 & 0 & 0 & \frac{1}{3}
\end{array}\right]
\end{aligned}
$$

This result may be checked by substitution in the given
equation :

$$
\left.\left.\left[\begin{array}{llll}
3 & 5 & 6 & 5 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{lllll}
2 & 0 & 0 & \frac{1}{3}
\end{array}\right] \begin{array}{lll}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
6 & 3 & 3 & 5
\end{array}\right] x_{1} \begin{array}{llll}
& & & \\
x_{2}
\end{array}\right]
$$

1.3.6 Multi-valued Matrices.

The study of the composition of inverse singular matrices has resulted in the consideration of multi-valued matrices. It is of interest to consider the more general aspects of multi-valued matrices in order that systems specified with 'don't care' conditions may be manipulated.

Consider the following equation :

* $\left.\left[\begin{array}{cccccccc}1 & 0 & * & 1 & 1 & 0 & 1 & * \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ * & 1 & * & 0 & 0 & 1 & * & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]=\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ F_{2} \\ F_{3}^{2}\end{array}\right] \quad$, where ${ }^{\prime}{ }^{\prime}$ ' denotes a don't care condition (0 or 1). For example $\mathrm{F}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right.$) may take the value 0 or 1 at n-tuples 2 and 7 .

In decimal notation this equation may be written as
?
the column vector at n-tuple 2 may take any of the values $\left.\left.\left.\left.00 \begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \begin{array}{l}1 \\ 1\end{array}\right] \begin{array}{l}\text { or } \\ 0 \\ 0\end{array}\right]$
For the general equation $[B][C]=[D]$ it has been shown that $\quad d_{r, j}=b_{r, m}$ when $\quad a_{i, m}=c_{i, j} \quad \begin{aligned} & \text { (over the allowed } \\ & \text { dimensional limits) }\end{aligned}$

Now suppose that $[B]$ is multivalued where $b_{r, n}$ has either the value α or β, then $d_{r, j}$ will also take the value α or β when $a_{i, m}=c_{i, j}$.

Similarly if $[\mathrm{c}]$ is multi-valued where $c_{i, j}=a_{i, m}$ or $c_{i, j}=a_{i, 1}$ then $d_{r, j}$ will take the values $b_{r, m}$ or $b_{r, 1}$.

It is therefore possible to apply the methods of Boolean matrix algebra to general multi-valued natrices without recourse to special techniques.

An important property of multi-valued matrices is that it is possible to use them to define relationships between functions.

Consider the following equation :

$$
\left.\left.\left[\begin{array}{llll}
4 & 3 & 0 & 2
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

which may be written as either

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1} \\
& 0
\end{aligned} 112230\left[\begin{array}{l}
\mathrm{F}_{1} \\
\mathrm{~F}_{2} \\
\mathrm{~F}_{3}^{2}
\end{array}\right]
$$

or

$$
\left.\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \mathrm{x}_{1}\right]=\begin{aligned}
& \mathrm{F}_{1} \\
& 0
\end{aligned} 1
$$

Inspection of the last.two equations shows that the function $F_{1}\left(x_{1}, x_{2}\right)$ is related to the function $F_{3}\left(x_{1}, x_{2}\right)$. Specifically, at n-tuple $1, F_{1}(0,1)$ has the value 0 only if $F_{2}(0,1)$ has the value 1 and vice-versa.

The given equation therefore defines two dependent functions and in this respect differs from the type of multi-valued matrix considered so far.

1.3.7 Conditionally and Unconditionally valid equations.

Some care must be taken when manipulating multi-valued matrices to establish the correct interpretation of the functions they represent.

Consider the following equation

$$
\left.\left.[B]\left[\begin{array}{llll}
2 & 1 & * & \frac{1}{3}
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & 3
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Now this equation may be written as

$$
\left.\left.[B]\left[\begin{array}{llll}
2 & 1 & * & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & 3
\end{array}\right] \begin{array}{ll}
x_{1} \\
x_{2}
\end{array}\right]
$$

or

$$
\left.\left.[B] \cdot\left[\begin{array}{llll}
2 & 1 & * & 3
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & *
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

In either case a valid equation is formed under Criterion 1 •
Such an equation is termed'unconditionally valid'.
The matrix $[B]$ may then be evaluated in the following way :

For the first form of the equation $[B]=\left[\begin{array}{llll}1 & 3 & * & 3\end{array}\right]\left[\begin{array}{lll}2 & 1 & *\end{array}\right]^{-1}$
and for the second form
$[B]=\left[\begin{array}{llll}1 & 3 & * & 3\end{array}\right]\left[\begin{array}{llll}2 & 1 & * & 3\end{array}\right]^{-1}$.
Computing the required inverses from $[C][C]^{-1}=[A]$ by $\left.\begin{array}{rl}\text { inspection : firstly }\end{array} \begin{array}{llll}2 & 1 & * & 1 \\ 0 & 1 & 2 & 3\end{array}\right]\left[\begin{array}{llll}* & \frac{1}{3} & 0 & *\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$.
ie. $\left[\begin{array}{llll}2 & 1 & * & 1\end{array}\right]^{-1}=\left[\begin{array}{lll}* & \frac{1}{3} & 0\end{array}{ }^{*}\right]$ and $\left[\begin{array}{llll}2 & 1 & * & 3\end{array}\right]^{-1}=\left[\begin{array}{llll}* & 1 & 0 & 3\end{array}\right]$ Evaluating $[B]$ from $[B]=[D][C]^{-1}$ for both cases :

$$
\begin{aligned}
{[B] } & =\left[\begin{array}{llll}
1 & 3 & * & 3 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
* & \frac{1}{3} & 0 & *
\end{array}\right] \\
& =\left[\begin{array}{llll}
* & 3 & 1 & *
\end{array}\right]
\end{aligned}
$$

or $\quad[B]=\left[\begin{array}{llll}* & 3 & 1 & 3\end{array}\right]$
Now for both forms of $[B]$ to satisfy the original equation the fourth column vector of $[B]$ must satisfy both values '*' and '3': . Since '*' represents an unspecified vector which includes the value ' 3 ' the fourth column vector of [B] must be constrained to take the value '3'.

The original equation can therefore be written as :

$$
\left.\left.\left[\begin{array}{llll}
* & 3 & 1 & 3
\end{array}\right]\left[\begin{array}{llll}
2 & 1 & * & \frac{1}{3} \\
0 & 1 & 2 & 3
\end{array}\right] \begin{array}{lll}
x_{1} \\
& & \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & 3
\end{array}\right] \begin{array}{lll}
& x_{1} \\
& & \\
x_{2}
\end{array}\right]
$$

which may be checked by inspection.
Not all equations are unconditionally valid however. Consider the following equation :

$$
\left.\left.[B]\left[\begin{array}{llll}
2 & 0 & * & \left.\frac{0}{2}\right]
\end{array}\right] x_{1}\right]=\left[\begin{array}{llll}
1 & 3 & * & \frac{1}{3} \\
x_{2}
\end{array}\right] x_{1}\right]
$$

This equation may take any of the following four forms :

$$
\left.\left.\begin{array}{l}
{[B]\left[\begin{array}{llll}
2 & 0 & * & 0
\end{array}\right] x_{1} x_{1}=\left[\begin{array}{llll}
1 & 3 & * & 1
\end{array}\right] x_{1}} \\
\left.\left[\begin{array}{l}
B
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & * & 0
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & 3
\end{array}\right] \\
x_{1} \\
{[B]\left[\begin{array}{llll}
2 & 0 & * & 2
\end{array}\right]} \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & 1
\end{array}\right] \begin{array}{l}
x_{1}
\end{array}\right]
$$

$$
\left.\left.[B]\left[\begin{array}{llll}
2 & 0 & * & 2
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & 3
\end{array}\right] \begin{array}{ll}
x_{1} \\
x_{2}
\end{array}\right]
$$

The application of Criterion 1 shows that only the second and third forms of this equation are valid.

This equation will be written as

$$
\left.\left.[B]\left[\begin{array}{llll}
2 & 0 & * & 0 \\
\frac{2}{2}
\end{array}\right] \begin{array}{lll}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & \frac{3}{1}
\end{array}\right] x_{1}\right]
$$

where the tie
symbol is used to indicate that certain multi-valued column vectors are related. The expression above indicates that ${ }^{\prime} O$ ' in one matrix implies '3' in the other. whilst '2' in the first matrix implies '11 in the second.

Matrix equations of this type will be called 'conditionally valid.

In the above example the matrix $[B]$ may be evaluated (for the valid forms of the equation) using the same method described in the previous example. This allows the original equation to be written as:

$$
\left.\left.\left[\begin{array}{llll}
3 & * & 1 & * \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & * & 0 \\
2
\end{array}\right] \begin{array}{lll}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 3 & * & \frac{3}{1}
\end{array}\right] x_{1} \begin{array}{lll}
& & \\
& &
\end{array}\right]
$$

Another example is as follows :

$$
\left.\left.[B]\left[\begin{array}{llll}
3 & 7 & \left(\frac{4}{6}\right) & 7 \\
3 & 7
\end{array}\right] \begin{array}{lll}
x_{1} \\
x_{2} \\
& & \\
& & x_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & \left(\frac{5}{2}\right) \\
3
\end{array}\right] \begin{array}{ll}
& x_{1} \\
& \\
& \\
x_{2} \\
& \\
x_{3}
\end{array}\right] \quad \text {, where the }
$$

values'4' or '6' in the first matrix are related to the value '5' in the second matrix. Also the value '3' in the first matrix is related to the value ' 2 ' in the second matrix.. This gives the result :

1.3.8 Natrices Raised to Exponents.

It has been show that the multiplication of two Boolean matrices can be interpreted as a cascade of two logic modules. Consider the case where the two logic modules are identical, each being represented by the matrix $[\mathrm{C}]$. The overall transier function of the system is

. For convenience this equation may be written in the form

$$
\left.\left[\begin{array}{cc}
c
\end{array}\right]^{2} \begin{array}{cc}
x_{1} \\
& \vdots \\
& \dot{x}_{n}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \\
\\
\\
\\
F_{n}
\end{array}\right]
$$

In practical terms it is clear that [C] must have a row/column ratio of $n / 2^{n}$. If this were not so a situation would arise where the number of outputs from one module would differ from the number of inputs to the next, which is topolorically inconsistant. This also means that the number of functions generated by the cascade is n. See also Fig. 6 .

In general π such cascaded modules may be represented by :

$$
\left.\left[\begin{array}{cc}
c]^{\pi} & \tag{1.29}\\
& x_{1} \\
& { }_{1} \\
& \dot{x}_{n}
\end{array}\right]=\begin{array}{c}
F_{1} \\
\\
\\
\\
\dot{F}_{n}
\end{array}\right]
$$

The expression [C] in the above will be refered to as raising the matrix $[C]$ to the power π. ie π is an exponent.

Consider the effect of raisingthe following non-singular matrix in power.

$$
\begin{aligned}
& {[\mathrm{c}]^{1} }=\left[\begin{array}{llll}
3 & 0 & 1 & 2
\end{array}\right] \\
& {[\mathrm{C}]^{2} }=\left[\begin{array}{llll}
3 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{llll}
3 & 0 & 1 & 2
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 0 & 1
\end{array}\right] \\
& {[\mathrm{C}]^{3} }=[\mathrm{C}]^{2}\left[\begin{array}{c}
\mathrm{C}
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
3 & 0 & 1 & 2
\end{array}\right]=\left[\begin{array}{llll}
1 & ? & 3 & 0
\end{array}\right] \\
& \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.[C]^{\pi} \begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\begin{array}{c}
F_{1} \\
\vdots \\
F_{n}
\end{array}\right]
\end{aligned}
$$

Fig. 6

Fig. 7

For convenience this process may be expressed by means of a nower table :

Matrix	7
0123	0
3012	1
2301	2
1230	3
0123	4
3012	5
23.01	6
.	-
-	-

where any matrix raised to a zero exponent is defined as the unit matrix.

From the previous discussion of true inverse matrices it is possible to construct the negative part of the pover table for the above example using the definition

$$
\begin{equation*}
[c]^{-\pi}=\left[[c]^{\pi}\right]^{-1} \tag{1.30}
\end{equation*}
$$

The complete table then becomes :

MATRIX	π
-	-
-	-
-	-
1230	-5
0123	-4
3012	-3
2301	-2
1230	-1
0123	0
3012	1
2301	2
1230	3
0123	4
30.12	5
-	-

Now it con be shown that the additive law of indices holds for this algebra.

Consider the equation

$$
[c]^{P}[c]^{-Q}=[R]
$$

which may be expanded as :

Using the relationship $[C][C]^{-1}=[A]$ this equation may be expressed as ;

$$
\begin{gathered}
\left.\left.\left[\begin{array}{ccc}
{[C][C]} & \cdot & {[C]} \\
2 & \cdot & P-1
\end{array}\right] \begin{array}{c}
{[A] \cdot[C]^{-1}[C]^{-1} \cdot} \\
3
\end{array}\right) \cdot[C]^{-1}\right]=[R] \\
\text { or } \\
\\
\\
{[C]^{P-1}[C]^{-(Q-1)}=[R]}
\end{gathered}
$$

After applying this technique P times the following result is obtained :

$$
\begin{aligned}
{[C]^{0}[C]^{-(Q-P)} } & =[R] \\
\text { or } \quad & {[C]^{P-Q} }
\end{aligned}=[R]
$$

${ }^{3}$ in gives the result

$$
[c]^{P}[c]^{-Q}=[c]^{P-Q} \quad \cdots(1.31)
$$

In the previous power table for example

$$
\begin{aligned}
{[c]^{2}[c]^{-3} } & =\left[\begin{array}{llll}
2 & 3 & 0 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 0 & 1 & 2
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 2 & 3 & 0
\end{array}\right] \\
& =[c]^{-1}
\end{aligned}
$$

Another example of a power table is as follows

In this example the value of the matrix at n-tuples' 1 and 3 remain the same when the matrix is raised in power to any positive

43

or negative exponent. Such column vectors , which in the defining matrix have the property of being identical to the n-tuples on which they are defined, will be called eigenvectors •

If a cascade of the type shown in Fig. 6 has a set of inputs corresponding to an eigenvector then it follows that the outputs of each of the cascaded modules will also have that value.
eg. in the previous example
:

$$
\left.\left.\left[\begin{array}{llll}
2 & 1 & 0 & 3
\end{array}\right]^{\pi} 1\right]=1\right]
$$

or

$$
\left.\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]^{\pi} \quad 100 \times \begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { for all values of } \pi \text {. }
$$

Now Hennie, see reference 6 , has shown that such cascades may be considered as transformed finite-state machines. If such a machine is started in a state corresponding to an eigenvector then it will remain in that state.

It is of theoretical interest to note that the algebra upon which a power table is constructed forms a group with Boolean matrix multiplication as the group operation. A defining matrix then forms the generator for a sub-group. Because these sub-groups have a single generator they are cyclic. This is evident from the examples of power tables so far considered. Such cyclic groups are abelian, ie. for any two members of the group $a, b, a * b=b * a$ where * denotes the group operation.

- A power table may also be constructed with a singular matrix as a generator but the group properties mentioned above no longer hold.

```
Consider the following table :
```


44

which has an eigenvector '0'. The inverses of the singular matrices have been computed using the methods previously described.

These singular inverse matrices may only be employed in the solution of valid matrix equations. For example equations of the type

if they are valid, using the identity

$$
[B]=[D][C]^{-\pi} .
$$

The law of the addition of indices must be applied with great care to such tables as is shown by the following example.

Suppose in the above power table only $[C]^{2}$ and $[c]^{3}$ are known. It is required to evaluate [C].

Two identities may be established immediately, namely

$$
[c]^{2}[c]=[c]^{3}
$$

and

$$
[c][c]^{2}=[c]^{3}
$$

For the first identity $\quad[c]=[c]^{-2}[c]^{3}$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
0 & * & * & \frac{1}{2}
\end{array}\right]\left[\begin{array}{llll}
0 & 3 & 3 & 3
\end{array}\right] . \\
& \\
& 0
\end{aligned} 1 \begin{array}{lll}
3 & 3
\end{array}
$$

45

$$
\text { then } \quad[\mathrm{C}]=\left[\begin{array}{llll}
0 & 1 & 1 \\
0 & \frac{1}{2} & \frac{2}{2} \\
& 3 & 3 & \frac{3}{3}
\end{array}\right]
$$

and for the second identity

$$
\left.\begin{array}{rl}
{[\mathrm{c}]} & =[\mathrm{c}]^{3}[\mathrm{c}]^{-2} \\
& =\left[\begin{array}{llll}
0 & 3 & 3 & 3
\end{array}\right]\left[0 * * \frac{1}{2}\right] \\
0 & 1
\end{array} 2 \begin{array}{l}
3
\end{array}\right] \quad \begin{array}{llll}
0 & *
\end{array}
$$

Because a cascade of identical modules is under consideration it is known that these two forms of [C] are compatible. For [C] to lie within these restrictions it must have the form

$$
[\mathrm{c}]=\left[\begin{array}{llll}
0 & 1 & 1 & \\
0 & \frac{2}{2} & 3 \\
0 & \frac{3}{3} & 3 & 3
\end{array}\right]
$$

Now $[C]^{2}$ is known to have the value $\left[\begin{array}{llll}0 & 3 & 3 & 3\end{array}\right]$ it follows therefore that [C]cannot have eigenvectors at n-tuples 1 and 2 . This reduces the possible form of [C] to : $[C]=\left[\begin{array}{lll}0 & \frac{2}{3} & \frac{1}{3}\end{array}\right]$

Finally each possible form of [C]is squared

$$
\begin{aligned}
& {\left[\begin{array}{llll}
0 & 2 & 1 & 3
\end{array}\right]^{2}=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 2 & 3 & 3
\end{array}\right]^{2}=\left[\begin{array}{llll}
0 & 3 & 3 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 3 & 1 & 3
\end{array}\right]^{2}=\left[\begin{array}{llll}
0 & 3 & 3 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll}
0 & 3 & 3 & 3
\end{array}\right]^{2}=\left[\begin{array}{llll}
0 & 3 & 3 & 3
\end{array}\right]}
\end{aligned}
$$

The first result does not satisfy the known result for $[C]^{2}$ so that [C]must have a conditional form :

$$
[c]=\left[\begin{array}{lll}
0 & \left(\frac{2}{3}\right)(3) & (3) \\
\frac{3}{3} & 3
\end{array}\right] \quad \text { where the tie symbol has }
$$

the usual meaning.
Note that the value of [C] actually used to generate the power. table falls within this definition.

If the two possible forms of $[C]$ are now expanded :

$$
\begin{gathered}
46 \\
{[c]=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & * & 1 & 1
\end{array}\right]} \\
{[c]=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]}
\end{gathered}
$$

it is evident that no dependent functions are involved.

These techniques may also be applied to circuits of the type shown in Fig. 7 : see Section 1.5.5.
1.3.9 Fatrix Root Extraction.

It is of interest to be able to extract the roots of a given matrix in order that a particular system may be synthesised as a cascade of identical lofic modules or 'iterative cascade ', see . references 6 and 7 .
, The R th root of a matrix $[C]$ will be written as $[C]^{\frac{1}{2}}$ and defined by $\left[[c]^{\frac{1}{R}}\right]^{R}=[c] \quad \cdots(1.32)$

It can be shown that this.equation is, in general, nonlinear and thus cannot be solved by classical methods.

A special case where root extraction is possible is when the Given matrix generates a cyclic power table. In such a table it is always true that

$$
[c]^{(1+k \eta)}=[c] \quad \ldots(1.33)
$$

where the matrix [C] appears cyclically in the table at intervals of power η • (k is any positive integer.)

It is then true that

$$
\begin{aligned}
& {[c]^{\frac{1}{1+k \eta}}=[c] \ldots(1.34 a)} \\
& {[c]^{-\left(\frac{1}{1+k \eta}\right)}=[c]^{-1} \ldots(1.34 b)}
\end{aligned}
$$

and
which enables certain roots to be evaluated.

Here $\eta=5 \quad$ whence from equation (1.33) $\quad[c]^{(1+5 k)}=[c]$. For $k=1$ and from equation (1.34a) $[c]^{\frac{1}{6}}=[c]$. Squaring both sides of this expression gives $[C]^{\frac{1}{3}}=[C]^{2}$, that is the cube root of $[C]$ is equal to $[C]^{2}$, or

$$
[\mathrm{c}]^{\frac{1}{3}}=\left[\begin{array}{llllllll}
0 & 5 & 7 & 5 & 2 & 4 & 6 & 1
\end{array}\right] .
$$

Unfortunately the generation of a cyclic table represents a special case.

For the general case the following points are noted :
1/ There are cases where no specific roots of a given matrix can. be found, and there are cases where more than one root can be found.

2\%If $[C]$ is non-sincular then $[C]^{\frac{1}{R}}$ is non-singular
and if $[C]$ is singular then $[C]^{\frac{1}{2}}$ is singular.
3/ If $[C]$ has no eigenvectors then $[C]^{\frac{1}{R}}$ has no eigenvectors.

4/ In general the logic modules corresponding to the roots of a system are of comparable complexity to the logic module which will synthesise the overall system.

5/ The number of functions synthesisable in terms of cellular cascades as a proportion of the total number of possible functions becomes small as n becomes large. See reference 7 pp . 105-161.

1.4 Boclean Matrix Operators.

1.4.1 Post-multiplicative Operators.

Consider the matrix equation

Now $[\varnothing]$ post-multiplies $[C]$ and will be called a postmultiplicative operator.

From equation (1.14)

$$
d_{r, j}=c_{r, m} \text { when } a_{i, m}=\phi_{i, j} \quad \begin{aligned}
& \text { (over the } \\
& \text { allowed limits) }
\end{aligned}
$$

Clearly the matrix $[D]$ is composed of certain column vectors of $[C]$ which have been perturbed in n-space according to the composition of the column vectors of $[\varnothing]$.

Suppose that $[\varnothing]$ is non-singular and has n rows and 2^{n} columns, then $\langle D\rangle \subseteq\langle C\rangle$ where $\langle D\rangle$ and $\langle C\rangle$ represent the sets of column vectors of $[D]$ and $[C]$ respectively . Because $[\varnothing]$ is nonsingular $[D]$ will be composed of a permutation of the column vectors of $[C]$. That is the functions represented by [D] are those functions represented by [C] but permuted in n-space ; no information about the functions of $[C]$ is lost ; they are reconstructable from [D].

Some special forms of $[\varnothing]$ will now be considered.
Suppose that $[\varnothing]$ is equal to the unit matrix $[A]$.

Then

$$
\left.\left.[C][\phi] \begin{array}{rl}
x_{1} \\
x_{2} \\
& \bullet \\
& x_{n}
\end{array}\right]=[C] \begin{array}{l}
x_{1} \\
\\
\\
\\
x_{2} \\
\\
\\
\\
\\
x_{n}
\end{array}\right]
$$

Consider now the effect of making $[\varnothing]$ identical to $[A]$ except that the h th row of $[\varnothing]$ is equal to the complement of the h th row of $[A]$. Then applying equation (1.6) to

gives the results :
$F_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\phi_{i, j}$ when $x_{k}=a_{k, j} \quad, \begin{aligned} & 1 \leqslant i \leqslant n, \\ & 1 \leqslant k \leqslant n\end{aligned}$,
For $i \neq h: F_{i}\left(x_{1}, x_{2}, \cdot, x_{n}\right)=a_{i, j}$ when $x_{k}=a_{k, j}$,
and $\operatorname{since} a_{i, j} \stackrel{\Delta}{\triangleq} x_{i}, 1 \leqslant j \leqslant 2^{n}$, then $F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$.
For $i=h: F_{h}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\bar{a}_{h, j}$ when $x_{i}=a_{i, j}$,
and since $a_{i, j} \triangleq x_{i}, 1 \leqslant j \leqslant 2^{n}$, then $F_{h}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bar{x}_{h}$.
If, in the equation $\left.\left.[C][\varnothing] \begin{array}{c}x_{1} \\ x_{2} \\ \bullet \\ \bullet \\ x_{n}\end{array}\right]=[D] \begin{array}{c}x_{1} \\ x_{2} \\ \bullet \\ \bullet_{n} \\ x_{n}\end{array}\right],[\varnothing]$ is of this
form then the functions represented by the matrix $[C]$ will be the function represented by $[D]$ but redefined upon the variables $\left(x_{1}, x_{2}, \cdot, \bar{x}_{h}, \cdot, x_{n}\right)$ instead of $\left(x_{1}, x_{2}, \cdot, x_{h}, \cdot x_{n}\right)$. Consider the effect of making $[\varnothing]$ identical to $[A]$ save that the h th row of $[\varnothing]$ is made equal to the g th row of $[A]$ and viceversa.

Applying similar arguments to those used above it can be shown

by the natrix [C] will be exactly the functions represented by the matrix $[D]$ but re-defined upon the variables $\left(x_{1}, x_{2}, \ldots, x_{h}, x_{g}, \ldots x_{n}\right)$ instead of $\left(x_{1}, x_{2}, \ldots, x_{g}, x_{h}, \ldots, x_{n}\right)$.

In general it can be shown that if , in $\left.\left.[C][\varnothing] \begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \bullet \\ \dot{x}_{n}\end{array}\right]=[D] \begin{array}{c}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \bullet \\ \dot{x}_{n} \\ \mathbf{x}_{n}\end{array}\right]$, the rows of the post-multiplicative operator $[\varnothing]$ consist of a permutation of the rows of the [A] matrix complemented or uncomplemented, then the functions represented by [C] will be those functions represented by $[D]$ but re-defined in terms of the same permutations and complementations of the defining variables correspondincs to those rows.

A simple example of a post-multiplicative operator matrix constructed as the $[A]$ matrix but with certain rows complemented is :

$$
[\varnothing]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \text {, where the first and third }
$$

rows are the complements of the first and third rows of the $[A]$ matrix and the second row is identical to the second row of the [A] matrix.

Then $\left.\left.\left.\quad[\phi] \begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{lllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right] x_{1} x_{2} x_{3}\right]=\begin{array}{l}\bar{x}_{1} \\ x_{2} \\ \bar{x}_{3}\end{array}\right]$
If $[\varnothing]$ post-multiplies a single function matrix $[C]$, where $[C]=\left[\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$; writing $[\varnothing]$ in decimal notation gives :
whence $[D]=\left[\begin{array}{llllllll}0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$
To show that the function represented by $[C]$ is in fact a redefinition of the function represented by $[D]$, vith x_{1} reylaced by \bar{x}_{1} and x_{3} replaced by \bar{x}_{3}, construct the Karnaugh map for $[D]$:

51

$\mathrm{x}_{1}, \mathrm{x}_{2}$
$\mathrm{x}_{3} \quad$ 0 00 01 11 0 0 0 0 1 1 1 0

Now replace x_{1} by $\overline{\mathrm{x}}_{1}$ (this constitutes a reflection of the map about the axes which separate x_{1} from \bar{x}_{1}):

x_{1}, x_{2}
$\left.x_{3}$ 0 00 01 11 0 10 0 1 0 0 1 0 1 1 \right\rvert\,

Finally replace x_{3} by $\overline{\mathrm{x}}_{3}$:

$\mathrm{x}_{1}, \mathrm{x}_{2}$				
x_{3}	00	01	11	10
0	0	1	1	1
1	1	0	0	0

If this is re-expressed as a matrix $:\left[\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$ it is seen to be equal to $[\mathrm{c}]$. See also Fig.8.

An example of a post-multiplicative operator consisting of a row permutation of the [A] matrix (vithout complementation) appears in Fig.9.

Of course [\varnothing] may be constructed of both permutations and complementations of the $[A]$ matrix simultaneously . An example of this type of operator appears in Fig.10.

Not all non-singular post-multiplicative operator matrices can be categorised under variable complementation or interchange but these operators are the most useful, not only in terms of the representation of circuit synthesis but also Boolean function classification, see also Section 2.4 :
1.4.2 pre-multiolicative operators.

Consider the matrix equation

$\left[\begin{array}{cc} {[\phi][\mathrm{C}]} & x_{1} \\ & x_{2} \\ & \dot{x}_{n} \\ & x_{n} \end{array}\right.$	$=\left[\begin{array}{cc} {[D]} & x_{1} \\ x_{2} \\ & \dot{x}_{2} \\ & \dot{x}_{n} \end{array}\right]$

now $[\varnothing]$ pre-multiplies $[C]$ and will be called a pre-
multiplicative operator.

or

Implements
where

$$
[\phi]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Fig. 8

Implements $\left[\begin{array}{c}c\end{array}\right]\left[\begin{array}{ll} & \left.\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ll}0\end{array}\right] \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
where

$$
[\phi]=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Fig. 9

54

or

Implements

$$
\left[\begin{array}{ll}
{[}
\end{array}\right]\left[\begin{array}{ll}
\phi & \left.\begin{array}{ll}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ll}
0 & x_{1} \\
x_{3}
\end{array}\right] \\
x_{1} \\
x_{3}^{2}
\end{array}\right]
$$

where

$$
[\phi]=\left[\begin{array}{lllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Fig. 10

55

From equation (1.14)

$$
d_{r, j}=\phi_{r, m} \text { when } a_{i, m}=c_{i, j} \text { (over the allowed } \begin{gathered}
\text { limits })
\end{gathered}
$$

Suppose that $[\phi]=[A]$ then in the above equation $[D]=[C]$. Alternatively if $\phi_{r, m}=\bar{a}_{i, m}, 1 \leqslant m \leqslant 2^{n}$, then $a_{r, j}=\vec{c}_{i, j}$, $1 \leqslant j \leqslant 2^{n}$, that is if the r th row of $[\phi]$ is equal to the complement of the i th row of $[A]$ then the r th row of $[J]$ will be equal to the complement of the i th row of $[C]$.

This approach can be extended to include $\sigma_{r, m}=F\left(a_{i, m}, a_{k, m}\right)$, $1 \leqslant m \leqslant 2^{n}$, where F is some logical function, then $d_{r, j}=F\left(c_{i, j}, c_{k, j}\right)$. Then if the r th row of $[\varnothing]$ is some logical function of the i th and k th rows of $[A]$ then the r th row of $[D]$ will be the same logical function of those functions defined by the i th and k.th rows of $[C]$.

These observations show that the pre-multiplicative operators allow the manipulation of whole logical functions.

For example consider the equation :

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad x_{1}\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right] \quad \text {, and suppose that three other. }
$$

functions are required, namely $F_{4}=F_{1} \cap F_{2}, F_{5}=\bar{F}_{3} U F_{1}$ and $F_{6}=F_{1}$. These functions may be evaluated as follows :

Using the general equation $\left.[\phi]\left[\begin{array}{ll}C] & x_{1} \\ x_{2} \\ \bullet \\ \dot{x}_{n}\end{array}\right]=[D] \begin{array}{l}x_{1} \\ x_{2} \\ \bullet \\ \dot{x}_{n}\end{array}\right]$;
then

$$
\left.\left.\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad x_{1}\right]=\begin{array}{l}
\mathrm{F}_{2} \\
\mathrm{~F}_{5} \\
\mathrm{~F}_{6}
\end{array}\right]
$$

from the $[A]$ matrix

$$
\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

This evaluation is derived in the following way :
The first row of the premultiplyine matrix $[\varnothing]$ is equal to

56

the intersection of the first and second rows of $[A]$. The second row of $[\varnothing]$ is equal to the union of the complement of the third row of $[A]$ with the first row of $[A]$. The third row of $[\varnothing]$ is equal to the first row of $[A]$. The implementation of this example is given in Fig. 11 •

The consideration of pre- and post-multiplicative operators together with their associated properties is ersential in the interpretation of both the advantages and versatility of Boolean matrix algebra. They will be refered to again when circuit synthesis is considered in later sections.

1.4.3 Operations of the Parallel Comrosition Type.

Another useful class of operators are those of the parallel

composition type. These are written as

$$
[B] \$[C] \quad \bullet \cdot(1.35)
$$

where $\$$ signifies the logical manipulation of the matrices $[B]$ and [C]on an element by element basis.

$$
\begin{aligned}
& \text { For example }\left[\begin{array}{r}
\left.\left.[B] U[C]] \begin{array}{c}
x_{1} \\
x_{2} \\
x_{2} \\
\bullet \\
\dot{x}_{n}
\end{array}\right]=[D] \begin{array}{c}
x_{1} \\
x_{2} \\
\bullet \\
\bullet \\
\dot{x}_{n}
\end{array}\right] \quad \text { signifies }
\end{array}\right. \\
& \alpha_{i, j}=b_{i, j}+c_{i, j} \text { over the dimensional limits. } \\
& {[B][C] \text { and }[D] \text { have the same dimensions. }}
\end{aligned}
$$

This sxample may be interpreted as shown in Fig. 12 •
It is also possible to apply different operators to different rows of the matrices which are to undergo parallel composition, giving rise to equations such as

$$
\left.[[B] \cup \dot{\cap}[C]]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=[D] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { where }
$$

$$
d_{1, j}=b_{1, j}+c_{1, j} \quad \text { and } \quad d_{2, j}=b_{2, j} \cdot c_{2, j}
$$

Fig. 11

Fig. 12
which results in the circuit of Fig. 13 .
This type of operator is used in the extraction of prime implicants , see Section 1.5.6.

1.5 Practical Applications.

1.5.1 Introduction.

It has already been demonstrated t'ast Boolean matrices provide an excellent method of evaluating both the logical transfer functions and topology of multi-output combinational logic circuits. It is now possible , by means of worked examples whenever possible , to show the special importance oí certain of the properties of Boolean matrix algebra developed above , in the analysis and synthesis of logic circuits.

1.5.2 Matrix Multiplication.

Worked example.
Given Two logic modules $[B]$ and $[C]$ have been designed according to the specifications :

$$
\begin{aligned}
{[B] } & =\left[\begin{array}{llllllll}
1 & * & 0 & 1 & * & 1 & 0 & 0 \\
0 & * & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & * & 0
\end{array}\right] \\
{[\mathrm{C}] } & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & * & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & * & 0 & 1
\end{array}\right]
\end{aligned}
$$

A system specification is given by $[D]$ where

$$
[D]=\left[\begin{array}{llllllll}
1 & 1 & 1 & * & 0 & 0 & 0 & 1 \\
1 & * & 0 & 0 & 1 & 0 & * & 0 \\
1 & 1 & 1 & * & 1 & * & * & 0
\end{array}\right] \quad \quad\left({ }^{*} \text { signifies don't care }\right)
$$

Is it possible to synthesise this system by cascading the modules represented by $[B]$ and $[C]$?

Solution
Try cascading $[B]$ and $[C]$ as $\left.\left.[B] C] \begin{array}{r}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=[E] \begin{array}{r}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$
In decinal notation this is

Fig. 13

Fig. 14

60

Comparing $[E]$ with $[D]$ (in decimal notation) :

$$
\begin{aligned}
& {[\mathrm{D}]=\left[\begin{array}{llllllll}
7 & \frac{5}{7} & 5 & \frac{0}{1} & \frac{0}{4} & 3 & 0 & \frac{0}{1} \\
\frac{1}{2} & 4
\end{array}\right]} \\
& {[E]=\left[\begin{array}{lllllll}
7 & 5 & 5 & \frac{0}{1} & 3 & 0 & 0 \\
1 & 4 & 4
\end{array}\right] \quad \text { it can be seen that }[E]}
\end{aligned}
$$

falls within the specification of [D].
It may therefore be concluded that the proposed method of cascading the modules will indeed synthesise the system.

This example illustrates how Boolean matrices may be used to advantage in the synthesis of partially specified systems. 1.5.3 Inverse Matrices.

Worked example 1.
A logic system has been designed. It has been decided to extend the capabilities of the system by producing three extra outputs specified by $[D]$, where

$$
\left.\left.[D] \begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
* & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & * & 1 & 1
\end{array}\right] x_{1} x_{2} x_{3}\right]
$$

It has been suggested that these three outputs may be generated from two outputs already available and specified by the matrix C, where

$$
\left[\begin{array}{c}
c \\
\\
\\
\\
\\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & * & 0 & 0 \\
* & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \begin{aligned}
& x_{1} \\
& x_{2} \\
& \\
& \\
&
\end{aligned}
$$

Is this possible ? - If so find the required module.
Solution
Represent the problem as

$$
[B]\left[\begin{array}{l}
{\left[\begin{array}{l}
{\left[\begin{array}{l}
x_{1} \\
\\
x_{2} \\
x_{3}
\end{array}\right]=[D]} \\
\\
\\
\\
\\
x_{1} \\
x_{2} \\
\\
x_{3}
\end{array}\right]}
\end{array}\right.
$$

Substitute the given information (decimal notation) :

$$
\begin{aligned}
& 61
\end{aligned}
$$

Check the validity of the equation :
$1 /$ The equation is dimensionally correct.
2/ Criterion 1 shows that the equation is conditionally valid where

$$
\left.\left.[B]\left[\begin{array}{lllllll}
0 & 2 & 1 & 1 & 3 & \frac{0}{2} & 0
\end{array} 1\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llllllll}
5 & 1 & 7 & 7 & 4 & \frac{5}{1} & 5 & 7
\end{array}\right] \begin{array}{llll}
x_{1} \\
7 & & & \\
& & & \\
x_{2} \\
x_{3}
\end{array}\right]
$$

The outputs may therefore be generated.
Now the matrix $[B]$ can be evaluated by inspection by noting that in $[B]$: the value at n-tuple 0 must have the value ' 5^{\prime}

1 must have the value '7'
2 must have the value '1'
3 must have the value 141
viz.

$$
\left.\left.\left[\begin{array}{llll}
5 & 7 & 1 & 4 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llllllll}
0 & 2 & 1 & 1 & 3 & \frac{0}{2} & 0 & 1
\end{array}\right] \begin{array}{llllll}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{llllllll}
\frac{5}{7} & 1 & 7 & 7 & 4 & \frac{5}{1} & 5 & 7
\end{array}\right] \begin{array}{llll}
x_{1} \\
x_{2}
\end{array}\right]
$$

Alternatively the singular inverse may be calculated for $[\mathrm{C}]$, from $[C][C]^{-1}=[A]$, where $[C]$ may take any convenient allowed form. ie.

$$
\left[\begin{array}{llllllll}
0 & 2 & 1 & 1 & 3 & 0 & 0 & 1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llll}
0 & \frac{2}{5} & \frac{2}{5} & \frac{3}{7} \\
6 & 1 & 4
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 & 3
\end{array}\right]
$$

Then $[B]$ may be calculated from $[B]=[D][C]^{-1}$ for the corresponding value of $[D]$.
ie.

$$
[B]=\left[\begin{array}{llllllll}
5 & 1 & 7 & 7 & 4 & 5 & 5 & 7 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & \\
5 & \frac{3}{7} & 1 & 4 \\
7 & &
\end{array}\right]=\left[\begin{array}{llll}
5 & 7 & 1 & 4
\end{array}\right] .
$$

By either method the required module has been evaluated as :

$$
\left.\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \quad x_{1} \begin{array}{l}
x_{2}
\end{array}\right]
$$

62

Worked example 2.
A system specification is given by $[D]$ where

$$
\left.\left.\left[\begin{array}{r}
D
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

It is proposed to employ an output module $[B]$ to synthesise this system where

$$
\left.\left.[B] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lllllllll}
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & x_{1} \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{c}
x_{2} \\
x_{3}
\end{array}\right]
$$

Desién a logic module to be placed before $[B]$ which will synthesise the system . Can each output function of this module be synthesised separately ?

Solution.
Let the problem be represented as :

$$
\left.\left.[B][C] \begin{array}{rl}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=[D] \begin{array}{ll}
x_{1} \\
x_{2} \\
& x_{3}
\end{array}\right] .
$$

Substitution of the given information (in decimal notation)
gives :

$$
\left.\left.\left[\begin{array}{llllllll}
3 & 6 & 1 & 5 & 6 & 2 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
C \\
C
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lllllll}
1 & 5 & 1 & 5 & 3 & 6 & 6
\end{array}\right] \quad \begin{array}{lll}
& x_{1} \\
x_{2} \\
& & \\
& & \\
& & \\
x_{3}
\end{array}\right]
$$

Check the validity of the equation :
1/ The equation is dimensionally correct.
2/ Criterion 2 is satisfied .
Construct $[B]^{-1}$ from $[B][B]^{-1}=[A]$:

$$
\begin{array}{rl}
{[c]} & =\left[\begin{array}{llllllll}
\frac{6}{7} & 2 & 5 & 0 & * & 3 & \frac{1}{4} & *
\end{array}\right]\left[\begin{array}{llllllll}
1 & 5 & 1 & 5 & 3 & 6 & 6 & 2
\end{array}\right] \\
0 & 1 \\
2 & 3
\end{array} 4
$$

63

Now the value of $[C]$ at n-tuples 5 and 6 is ${ }^{\prime} \frac{1 '}{4}$, or in vector form : $\left.\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ or $\left.\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. It follows that if the upper function has the value ' O^{\prime} ' at these n-tuples then the lower function must have the value '1' and vice-versa. The functions are therefore dependent and cannot be synthesised separately. If $[C]$ is chosen to have the form

$$
\left[\begin{array}{llllllll}
2 & 3 & 2 & 3 & 0 & 1 & 4 & 5
\end{array}\right] \equiv\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

then $\left.\left.[C] \begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right]$ may be synthesised by constructing the Karnaugh

The corresponding circuit implementation is shown in Fig. 14.
1.5.4 Matrices Raised to Exponents.

Horked example.
Tests have been carried out on a cascade of logic modules, each defined by the matrix $[C]$. The overall transfer function of five such cascaded modules gives the result :

$$
\left.\left[\begin{array}{llllllll}
5 & 1 & 2 & 3 & 4 & 0 & 6 & 7
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and the overall transfer }
$$

function of three such modules gives the result :

$$
\left[\begin{array}{llllllll}
5 & 2 & 3 & 4 & 7 & 0 & 6 & 1
\end{array}\right] \begin{aligned}
& x_{1} \\
& \\
&
\end{aligned}
$$

Find the matrix which defines the transfer function of one such module .

Solution.
Now $[C]^{5}$ and $[C]^{3}$ are known. First compute $[C]^{2}$ from $[C]^{2}=[c]^{5}[c]^{-3}$.

$$
\begin{aligned}
& \text { Find }[C]^{-3} \text { from }[C]^{3}[C]^{-3}=[A] \text { : } \\
& {\left[\begin{array}{llllllll}
5 & 2 & 3 & 4 & 7 & 0 & 6 & 1
\end{array}\right]\left[\begin{array}{llllllll}
5 & 7 & 1 & 2 & 3 & 0 & 6 & 4
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]} \\
& \text { ie. }[C]^{-3}=\left[\begin{array}{llllllll}
5 & 7 & 1 & 2 & 3 & 0 & 6 & 4
\end{array}\right] \\
& \operatorname{Then}[C]^{2}=[C]^{5}[C]^{-3}=\left[\begin{array}{llllllll}
5 & 1 & 2 & 3 & 4 & 0 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
5 & 7 & 1 & 2 & 3 & 0 & 6 & 4
\end{array}\right] \\
& =\left[\begin{array}{llllllll}
0 & 7 & 1 & 2 & 3 & 5 & 6 & 4
\end{array}\right] \\
& \text { Second compute }[C] \text { prom }[C]=[C]^{3}[C]^{-2} \text {. } \\
& \text { Find }[C]^{-2} \text { from }[C]^{2}[C]^{-2}=[A] \text { : } \\
& {\left[\begin{array}{llllllll}
0 & 7 & 1 & 2 & 3 & 5 & 6 & 4 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
0 & 2 & 3 & 4 & 7 & 5 & 6 & 1
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]} \\
& \text { ie. }[C]^{-2}=\left[\begin{array}{llllllll}
0 & 2 & 3 & 4 & 7 & 5 & 6 & 1
\end{array}\right] \\
& \text { Then }[C]=[C]^{3}[C]^{-2}=\left[\begin{array}{llllllll}
5 & 2 & 3 & 4 & 7 & 0 & 6 & 1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
0 & 2 & 3 & 4 & 7 & 5 & 6 & 1
\end{array}\right] \\
& =\left[\begin{array}{llllllll}
5 & 3 & 4 & 7 & 1 & 0 & 6 & 2
\end{array}\right] \text {. }
\end{aligned}
$$

Which is the required result.
The known power table is then.

1.5.5 Representation of Iterative Cascades.

The concept of an iterative cascade oi logic modules of the type shown in Fig. 6 . has already been introduced together with the associated matrix representation. See 39.

The representation of cascades of the type shown in Fig.7. p 40 , will now be considered.

A simplified version of this cascade appers in $\mathrm{Fi} \ell(3$. In order to distinguish easily the direction of signal flows in this cascade the horizontal flows, input/output, are labelled $x_{1}, x_{2} / F_{x_{1}}, F_{x_{2}}, F_{x_{3}}$ and the vertical flows, input/output, are labelled $y_{1}, y_{2}, y_{3} /$ $F_{y_{1}}, F_{y_{2}}, F_{y_{3}} \quad$ respectively.

Such arrays have been considered by Hennie , see reference 6 , and can be shown to be transformable to ideal finite - state machines. The inputs x_{1}, x_{2} are termed the starting state of the cascade and the corresponding inputs to the second logic module are called the next , or second, state and so on. In general the starting state of the cascade is fixed for a particular application and the cascade is used to compute a function of the input variables y_{1}, y_{2}, y_{3}. It is not the purpose here however to investigate the general properties of such cascades, but to show that they may be expressed in matrix form. Reference 7 should be consulted for a detailed treatment of the properties of cascaded iterative arrays.

Now the type of iterative cascade which has been shown to be easily represented by Boolean matrices heretofore is that of Fig. 6 . Comparison between the cascade of Fig. 6 and that of Fig. 7 shows that they differ in that the former case has a single (horizontal) flow path wheras the latter has two flow paths (horizontal and vertical). At first sight it would appear that the cascade of Fig. 7 is not amenable to Boolean matrix representation because each module of the cascade is furnished with a unique input y_{1}, y_{2}, y_{3} etc. To show that this problem is surmountable consider the circuit of Fig. 16 which is an alternative representation of the simple cascade of Fig. 15. The inputs/outputs : $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3} / \mathrm{F}_{\mathrm{y}_{1}}, \mathrm{~F}_{\mathrm{y}_{2}}, \mathrm{~F}_{\mathrm{y}_{3}}$ have been re-orientated so that they are applied in a horizontal direction,

Fig. 15

Fig. 16

67

and between each module is a simple crossover network which enables each input to be applied to the correct module and also enables the corresponding outout to appear correctly orientated at the termination of the cascade ; moreover each crossover network is identical. Now it has already been shown that a crossover network of the type shown in Fig. 16 may be represented by a premultiplicative matrix operator.

The cascade of Fig. 16 may therefore be represented by the equation :

$$
\begin{aligned}
& \left.\left.\left.[\phi][C][\phi][C][\phi][C] x_{1}\right]=\begin{array}{l}
\mathrm{F}_{x_{1}} \\
x_{2} \\
y_{1} \\
\mathrm{y}_{2} \\
\mathrm{y}_{3}
\end{array}\right] \begin{array}{l}
\mathrm{F}_{2} \\
\mathrm{y}_{1} \\
\\
\\
\\
\mathrm{~F}_{2} \\
\mathrm{y}_{3}
\end{array}\right]
\end{aligned}
$$

The operator $[\varnothing]$ will have the form :

$$
\begin{aligned}
& \varnothing_{1, j}=a_{1, j}, \varnothing_{2, j}=a_{2, j}, \\
& \varnothing_{3, j}=a_{4, j}, \varnothing_{4, j}=a_{5, j}, \quad 1 \leqslant j \leqslant 2^{5} \\
& \varnothing_{5, j}=a_{3, j}
\end{aligned}
$$

This technique can be applied to any cascade of the type shown in Fig. 7 . including such cascades having multiple y inputs/outputs for each module.

The finite-state machine corresponding to the cascade of Fig. 15 is shown in Fig.17. The horizontal, or x inputs, to the combinational logic module being initially applied to give the starting state , and each $y_{i}, i=1, i=2, i=3$ being applied to the module at times $T=1, T=2$ and $T=3$ respectively.

Fig. 17

Fig. 18

This example illustrates that Boolean matrices may be used to represent finite-state machines. ${ }^{\dagger}$

It is also possible to show that Boolean matrices may be used to represent arrays of the type shown in Fig. 18 .

This method of representing iterative cascades has the disadvantage that it is limited by the large size of matrices necessary to represent long..cascades or large arrays.

Because of the difficulties described in extracting the roots of Boolean matrices they are not readily applicable to the synthesis of such systems.

1.5.6 Extraction of the Prime Implicants of Functions.

Consider a Boolean function $F\left(x_{1}, x_{2}, ~ ., x_{i}, ~ ., x_{n}\right)$, let this function be denoted by $F(X)$.

Take the function derived from the function above by complementing the variable x_{i}; let this function be denoted by $F_{i}(X)$.

Let $F_{i}(X) \triangleq F(X) \Omega F_{\bar{i}}(X) \quad . \quad .(1.36)$
Now $F_{i}(X)$ constitutes the true minterms of $F(X)$ which are independent of the variable X_{i}; that is $F_{i}(X)$ may be defined upon the variables $\left(x_{1}, x_{2}, \cdots,-, \cdot, x_{n}\right)$ alone. If $F(X)$ has no true minterms independent of x_{i} then $F_{i}(x)=\theta$, where θ is a null set.

Now for any function $F(X)$, each $F_{i}(X), 1 \leqslant i \leqslant n, F_{i}(x) \neq \theta$, will contain true minterms which lie in pairs of adjacent states. If these minterms are plotted on a Karnaugh map they will fall into squares with adjacent sides. This must be so since such minterms difier only in the complementation of one defining variable.

Each $F_{i}(X)$ will be called a partition of $F(X)$.
It is therefore possible to generate n such partitions, each partition containing terms independent of a partcular variable.

Clearly, if the function contains adjacent terms which are independent of both x_{i} and $x_{j}:$

$$
F_{i}(X) \Omega F_{j}(X) \neq \theta, i \neq j, 1 \leqslant i, j \leqslant n \cdot \cdot(1.37)
$$

In itself the partition listing outlined above establishes whether a function is 'reducible' (it partitions in at least one variable (and if so in which variables this is possible. If a function fails to partition in every one of its defining variables it is irreducible.

As will be shown shortly, the manipulation of such a set of partitions enables the function to be reduced to a number of prime -implicants.

Now the partitions $F_{i}(X), 1 \leqslant i \leqslant n$, may be generated using the post-multiplicative Boolean matrix operators which have previously : been developed. Horeover each partition may be evaluated for several functions simultancously. Whe functions to be partitioned are defined by $[\dot{C}]$ where

$$
\left.\left.[C][\varnothing] \begin{array}{c}
x_{1} \\
\bullet \\
\cdot \\
\dot{x}_{i} \\
\bullet \\
\bullet_{n} \\
\dot{x}_{n}
\end{array}\right]=[D] \dot{x}_{1}\right] \text {, and }[\varnothing] \text { is an operator }
$$

matrix identical to the $[A]$ matrix except that the row $a_{i, j}$, $1 \leqslant j \leqslant 2^{n}$, is complemented. $[D]$ then defines $F_{i}(X)$ for each of the functions specified by $[C]$.

If the parallel composition $[C] \Omega[D]$ is evaluated then the result will be equal to $F_{i}(X)=F_{\bar{i}}(X) \Omega F(X)$ for each function defined by $[C]$.

Examole.
i_{s} an example of the extraction of the partitions $F_{i}(X)$,
$1 \leqslant i \leqslant n$, applied to a single function, consider the function shown in Fig. 19a.

FIG19c $F_{1}(X)=F(X) \cap F_{T}(X)$

$F_{1}(X)$ is computed from $\left.\left.\quad[C][\varnothing] \begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=[D] \begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, where
efines the given function and $[\varnothing]$ is identical to $[A]$ save that the first row is complemented. $[D]$ then specifies $F_{\overline{1}}(X)$. viz.

$$
\left.[0010010000010101]\left[\begin{array}{ll}
1111111100000000 \\
0000111100001111 & x_{1} \\
0011001100110011 & x_{2} \\
0101010101010101 & x_{3} \\
x_{4}
\end{array}\right]=[D] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}^{3}
\end{array}\right]
$$

or in decimal notation
$\left.\left[\begin{array}{r}0010010000010101][891011213141501234567] \\ 0123456789101112131415 \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=[D] \begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$
whence $[D]=[0001010100100100]$.
The corresponding function $F_{1}(X)$ appears in Fig. 19b. It should be noted that this operation corresponds to a reflection of the function, as depicted by a.Karnaugh map, about the axes which separate x_{1} from \bar{x}_{1}.

Computing $F_{1}(X) \cap F(X)$ Iron $[D] \cap[C]$ Cives [0000010000000100] which is equal to $F_{1}(X)$, the result is shown in Fiof. 19c.

If this procedure is repeated for the evaluation of $F_{2}(X)$ and $F_{3}(X)$ the results are as shown in Fig. 19d and Fis. $19 e$ respectively. $F_{4}(X)$ can be shown to be a null set.

From these results j.t is clear that $F(X)$ has a pair of true minterms independent of x_{1}, a pair independent of x_{2} and a pair independent oi x_{3}. In addition, one minterm is irreducible as it appears in none of the partitions.

$$
F(X) \text { may thus be expressed as : }
$$

$$
\bar{\rho}(x)=x_{2} \cdot \bar{x}_{3} \cdot x_{4}+x_{1} \cdot x_{3} \cdot x_{4}+x_{1} \cdot x_{2} \cdot x_{l_{4}}+\bar{x}_{1} \cdot \bar{x}_{2} \cdot x_{3} \cdot \bar{x}_{4}
$$

Consider now the effect of re-partitioning $F_{i}(x)$ in terms of another variable x_{j}. Then if $F_{i, j}(X)$ defines this operation :

$$
F_{i, j}(X)=F_{i}(X) \cap F_{j}\left\{F_{i}(X)\right\} \quad \cdots(1.38)
$$

If this second partition exists, all terms it contains must lie adjacent in at least two variables. (Blocks of at least four true minterms adjacent when plotted on a Karnaugh map)

Suppose that all the possible one-variable partitions $\left(p_{1}\right)$ of a function' defined upon n variables are taken. Then $p_{1} \triangleq \bigcup_{i=1}^{n} F_{i}(X)$
constitutes all true minterms of a function which are adjacent in at least one variable.

Then $F(X) \cap \bar{P}_{1}$ constitutes all terms having no adjacencies. (They are irreducible)
-
Suppose now that all possible two-variable partitions (P_{2}) of the function are taken. Then $P_{2}=\bigcup_{0 \leqslant i<j \leqslant n} F_{i, j}$ constitutes all terms of the function which are adjacent in at least two variables.

Then $P_{1} \cap \bar{p}_{2}$ constitutes all terms adjacent in one variable only. (They exist in pairs on a Karnaugh map)

This idea may be extended to $P_{3}, P_{4}, \ldots, P_{n}$.
It should be noted that the result of each $p_{i} \cap \bar{P}_{(i+1)}$ may be decoded into specific pairs, duo-pairs etc. by means of the partition variables leading to the result . Alternatively , specific decoding algorithms may be used.

The result of these operations is the extraction of the redundent and irredundent prime implicants of the function, and represents an attractive alternative method to that of quineMcCluskey , see references 9,10.

In acidition the function may be selectively analysed for its dependence upon any particular variable(s).

Fig. 20 shows the exhaustive partitioning map of a four-variable problem. The evaluation of all the partitions shown is sufficient to enable tho evaluation of the redundent and irredundent prime inplicants of any fourth order function. Note that once a map is generated in the form shown, removal of branches associated with γ of the variablos reduces the map to that of order $(n-\gamma)$ without recourse to re-arrangement.

The number of partitions required for the solution of an n variable problem is

$$
\sum_{r=1}^{n}{ }_{C}^{n}=2^{n}-1
$$

The exhaustive partitioning is normally not required however since if $F_{i}(X)=\theta$ then $\left.\begin{array}{l}F_{i, j}(X)=\theta, \\ \\ F_{i, j, k}(X)=\theta \quad \text { etc. }\end{array}\right\} \cdot(1.39)$ Similarly if $\quad F_{i, j}(X)=\theta$ then $F_{(i, j), k}(X)=\theta$ etc. $\ldots(1.40)$ Also if $P_{a}=\theta$ then $P_{(a+b)}=\theta \quad, a \leqslant(a+b) \leqslant n$. etc, (1.41) and if $F_{i}(X) \quad F_{j}(X)=\theta$ then. $F_{i, j}(X)=\theta$ etc. . . (1.42)

The number of variables in which partition and re-partition is possible is therefore limited from the beginning.

An example of the extraction of the prime implicants of a third -order function is now given.

Considur the function shown in the table below. Let $F(X) \triangleq P_{0}$
Now ir $\mathrm{F}_{1}(\mathrm{X}), \mathrm{F}_{2}(\mathrm{X}), \mathrm{F}_{3}(\mathrm{X})$ are derived as described above, inspection shows that none yield a null set, ie. they are all re-partitionable. (See tableP76)
P_{1} is ovaluated from $P_{1}=\bigcup_{i=1}^{3} F_{i}(X)$, and then $P_{0} \cap \bar{P}_{1}$ yields a null set. ©This means that all true minterms of the function are adjacent in at least one variable, none being irreducible.

75

Exhaustive Partitioning Map
for a Fourth-Order Function
Fig. 20

Similarly if $\mathrm{F}_{1,2}(\mathrm{X}), \mathrm{F}_{1,3}(\mathrm{X}), \mathrm{F}_{2,3}(\mathrm{X})$ and P_{2} are derived it can be seen that $P_{1} \cap \bar{P}_{2}$ yields a true minterm at n-tuple 7 , which must be adjacent in one variable only. Inspection of $F_{2}(X)$ shows that the minterm at n-tuple 7 is adjacent to minterm 5 in variable number 2.

The only remaining partition possible is $F_{1,2,3}(X)$ which must be a null set since $F_{1,2}(X)=\theta$, see equation (1.40).

Thence $P_{3}=\theta$ and $P_{2} \cap \bar{P}_{3}=0,1,4,5$. The minterms at these n-tuples are adjacent in variables, 1 and 3 from $F_{1,3}(X)$ 。

The function may thus be expressed as :

$$
F(X)=(5,7) /(0,1,4,5)
$$

?
TABLE.

0	1	2	3	4	5	6	7	n-tuple	
P_{0}	1	1	0	0	1	1	0	1	$F(X)$
1	1	0	0	1	1	0	0	$F_{1}(X)$	
0	0	0	0	0	1	0	1	$F_{2}(X)$	
	0	0	0	0	1	1	0	0	$F_{3}(X)$
P_{1}	1	1	0	0	1	1	0	1	$P_{0} \Omega \bar{P}_{1}=0$
.	0	0	0	0	0	0	0	0	$F_{1,2}(X)$
	1	1	0	0	1	1	0	0	$F_{1,3}(X)$
	0	0	0	0	0	0	0	0	$F_{2,3}(X)$
P_{2}	1	1	0	0	1	1	0	0	$P_{1} \Omega \bar{P}_{2}=7$
P_{3}	0	0	0	0	0	0	0	0	$P_{2} \Omega \bar{P}_{3}=0,1,4,5$

$$
\text { Note } F_{1,2,3}(X)=\theta
$$

The Karnaugh map corresponding to this result is :

${ }^{x_{1}}, x_{2}$				
x_{3}	00	01	11	10
0	1	0	0	1
1	1	0	1	1

77

This method has the following $\lambda^{\text {potential }}$ antages over the method of Quine-McCluskey :

1/ The intermediate results comprise vectors of known dimension whereas the Quine-McCluskey method generates tables of indeterminate size. The storage of intermediate data is thus simplified which is important when computer implementation is considered (using non-dynamic storage programmes).

E/ Because of its simple and recursive nature the Boolean matrix method of prime-implicant extraction is to be preferred from a programming viewpoint.

3/ The simultaneous extraction of prime-implicants of several functions is possible which, together with the restrictions on re-partitioning given in equations (1.39-1.42), makes the matrix method more efficient than that of quine-icClusisey.

4/ The dependence of a function, or functions, upon particular variables may be determined without recourse to the evaluation of all possible partitions using the matrix method.

See also reference 11.

1.5.7 Iosic Synthesis by Iterative methods.

It has been shown that a logic system specified by $[D]$ may be represented as :

$$
\left.[B]\left[\begin{array}{c}
C] \\
x_{1} \\
\\
\\
\vdots \\
\dot{x}_{n}
\end{array}\right]=[D] \begin{array}{c}
x_{1} \\
\\
\\
\\
\\
\dot{x}_{n}
\end{array}\right]
$$

In addition if $[C]$ is known in this equation then

$$
[B]=[D][C]^{-1} \quad \text { may be evaluated providing }
$$

that the original equation is valid.
Now it follows that if $[C]$ represents a logic module of the type available to synthesise $[D]$, it is possible to determine if in fact $[C]$ may be used in the synthesis of $[D]$ by establishing
the validity of the above equation. If $[C]$ does satisfy $[D]$ then $[B]$ may be evaluated and represents the remainder of the system to be synthesised. $[D]$ may then be copied into $[B]$ and the procedure repeated until $[B]$ is found to be equal to the unit matrix. The systemi is then synthesised.

In many cases [C] will represent particular configurations of NAND, NOR, GX-OR Eates, but in general there is no restriction on the type of module that $[C]$ may represent.

In its simplest form this synthesis algorithm gives rise to an iterative procedure which does not afford optimisation except on a comprehensive search basis. In this respect the method is similar to that of Roth and Ashenhurst, see references 12 and 13. It differs from the methods of Roth and Ashenhurst however in that multiple-output systems may be synthesised without resort to special techniques.

In order that this algorithm may be executed with maximum efficiency on the digital computer it is advantagous to employ an implementation that avoids the generation of the intermediate results arising from the application of Criterion 1 and the evaluation of $[C]^{-1}$.

The method illustrated in the following example is proposed.
$\begin{aligned} \text { Consider } & {\left.[B]\left[\begin{array}{ll}C & x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}D\end{array}\right] \begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \quad \text { where } } \\ & {\left.\left.[B]\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right] \begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{llll}1 & * & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right] \begin{array}{l}x_{1} \\ x_{2}\end{array}\right] . }\end{aligned}$
Let $[B]$ be filled initially with don't care states :
form

$$
\left.\left.\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] x_{2} x_{2}\right]=\left[\begin{array}{llll}
1 & * & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] x_{1} x_{2}\right] \text {, or in decimal }
$$

$$
\left[\begin{array}{llll}
* & * & * & *
\end{array}\right]\left[\begin{array}{llll}
3 & 1 & 1 & 1
\end{array}\right] \begin{aligned}
& x_{1} \\
&
\end{aligned}
$$

Now execute the followins trial multiplication :
The first column of $[C]$ has the value ' 3 ', therefore the value of $[B]$ at n-tuple 3 must take the value of the first column of $[D]$:

$$
\left.\left.\left[\begin{array}{llll}
* & * & * & 3 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 1 & 1 & 0
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
3 & \frac{1}{3} & 1 & 2
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] ;
$$

the second colum of $[C]$ has the value '1' ; therefore the value of $[B]$ at n-tuple 1 rast take the value of the second column of $[D]$:

$$
\left.\left.\left[\begin{array}{llll}
* & 1 & * & 3 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 1 & 1 & 0
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lll}
3 & \frac{1}{3} & 1
\end{array} 2\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

the third column of $[C]$ has the value ' 1 ' therefore the value of $[B]$ at n-tuple 1 must take the value of the third column of $[D]$. Since the value of $[B]$ has already been established as ${ }^{\prime} \frac{1}{3}$, it is necesaary to check if the value now proposed is compatible.

$$
\text { ie. is } \left.{ }^{\prime} \frac{1}{3} \text { compatible vith '1' ? - or is } \begin{array}{c}
* \\
1
\end{array}\right] \text { compatible }
$$

$\left.\begin{array}{ll}\text { with } & 0 \\ & 1\end{array}\right] ?$
Clearly these two values are compatible only if $* 1$ in both $[B]$ and $[D]$ take the value 0

Then

$$
\left.\left.\left[\begin{array}{llll}
* & 1 & * & 3 \\
0 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{llll}
3 & 1 & 1 & 0
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
3 & 1 & 1 & 2
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Finally the fourth column of $[C]$ has the value ${ }^{\prime} O$ ' therfore the value of $[B]$ at n-tuple 0 must take the value of the fourth column of $[D]$:

The module $[C]$ can thus be used to synthesise $[D]$, the function remaining to be synthesised being

$$
\left.\left[\begin{array}{cccc|c}
1 & 0 & * & 1 \\
0 & 1 & * & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This trial-and-error method of solving $\left.\left.[B][C] x_{1}\right]=[D] x_{1}\right]$
thus overcomes the problems associated with applying Criterion 1 and evaluating the inverse matrix. If the equation is not valid $[C]$ will force $[B]$ to take incompatible values.

$$
\text { eg. } \left.\left.\quad[B]\left[\begin{array}{llll}
2 & 2 & 1 & 3
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 0 & 3
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { will force the }
$$

value of $[B] a t$-tuple 2 to take the simultaneous values '1' and '2', or $\left.\begin{array}{ll}0 \\ 1\end{array}\right]$ and $\left.\begin{array}{l}1 \\ 0\end{array}\right]$ which is impossible. The detection of such incompatible cases will, in general, occur before the whole trial multiplication is complete, this results in a fast procedure.

As an example of a system synthesis consider the following simple example.

A system is defined by the matrix $[D]$ where

$$
[D]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 6 & 7 & 5 & 6
\end{array} 5\right]
$$

Synthesise the system using the logic module of Fir. $21 a$ together with the comprehensive set of interconnection modules and associated matrices shown in Fig.21b -

Solution

Let the system be represented by

$$
\left.[B]\left[\begin{array}{l}
C] \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=[D] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text {, where }[C] \text { is composed of the }
$$

matrix corresponding to the given logic module post-multiplied by one of the possible interconnection modules of Fig. 21 •

For interconnection 21 b , the equation $[B][C]=[D]$ is :

$$
[B]\left[\begin{array}{llllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 7 & 5 & 6 & 5
\end{array}\right]
$$

Evaluating $[C]$ and letting $[B]$ have initially don't care states: $\left[\begin{array}{lllllll}* & * & * & * & * & * & *\end{array}\right]\left[\begin{array}{llllllll}1 & 1 & 3 & 2 & 5 & 5 & 7 & 6\end{array}\right]=\left[\begin{array}{llllllll}3 & 3 & 2 & 2 & 7 & 5 & 6 & 5\end{array}\right]$

Fig. 21.

Carrying out the trial multiplication described above :
$\left[\begin{array}{lllllll}* & 3 & \frac{6}{6} & 2 & * & 7 & *\end{array} *^{\prime}\right]\left[\begin{array}{llllllll}1 & 1 & 3 & 2 & 5 & 5 & 7 & 6\end{array}\right]=\left[\begin{array}{llllllll}3 & 3 & 2 & \frac{2}{6} & 7 & 5 & 6 & 5\end{array}\right]$
01234567
the multiplication fails at the point shown. The equation is not valid.

Try interconnection 21c :

$$
\left.[B]\left[\begin{array}{llllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6
\end{array}\right]\left[\begin{array}{llllllll}
0 & 2 & 1 & 3 & 4 & 6 & 5 & 7
\end{array}\right]\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 7 & 5 & 6 & 5
\end{array}\right]
$$

then :

$$
\left[\begin{array}{llllllll}
* & 3 & * & 3 & * & * & * & * \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
1 & 3 & 1 & 2 & 5 & 7 & 5 & 6
\end{array}\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 7 & 5 & 6 & 5
\end{array}\right]
$$

fails at point shown.
Try interconnection 21d

$$
\left.[B]\left[\begin{array}{llllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6
\end{array}\right]\left[\begin{array}{llllllll}
0 & 1 & 4 & 5 & 2 & 3 & 6 & 7
\end{array}\right]\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & \frac{2}{6} & 7 & 5 & 6 & 5
\end{array}\right]
$$

then :

$$
\left[\begin{array}{llllllll}
* & 3 & 5 & 7 & * & 2 & 5 & 6
\end{array}\right]\left[\begin{array}{llllllll}
1 & 1 & 5 & 5 & 3 & 2 & 7 & 6
\end{array}\right]=\left[\begin{array}{lllllll}
3 & 3 & 2 & (2) & 7 & 5 & 6
\end{array}\right]
$$

gives a solution. Note that $[D]$ is restricted as shown.
Try interconnection 21e .

$$
[B]\left[\left[\begin{array}{llllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
0 & 2 & 4 & 6 & 1 & 3 & 5 & 7
\end{array}\right]\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 6 & 7 & 5 & 6
\end{array}\right]
$$

then

$$
\left[\begin{array}{llllll}
* & 3 & * & 3 & 2 & * \\
5
\end{array}\right]\left[\begin{array}{llllllll}
1 & 3 & 5 & 7 & 1 & 2 & 5 & 6
\end{array}\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & \frac{2}{6} & 7 & 5 & 6 & 5
\end{array}\right]
$$

fails at point 0123456
shown.
Try interconnection 21í
then

$$
[B]\left[\left[\begin{array}{llllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
0 & 4 & 1 & 5 & 2 & 6 & 3 & 7
\end{array}\right]\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 6 & 5 & 6 & 5
\end{array}\right]
$$

fails at point

shown.
Try interconnection $21 g$
fails at point

$$
\left.[B]\left[\begin{array}{llllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
0 & 4 & 2 & 6 & 1 & 5 & 3 & 7
\end{array}\right]\right]=\left[\begin{array}{lllllll}
3 & 3 & 2 & 2 & 7 & 5 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{llllllll}
* & 3 & * & 2 & * & 3 & * & 6 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]\left[\begin{array}{llllllll}
1 & 5 & 3 & 7 & 1 & 5 & 2 & 6
\end{array}\right]=\left[\begin{array}{llllllll}
3 & 3 & 2 & 2 & 7 & 5 & 6 & 5
\end{array}\right]
$$ shown.

All interconnection possibilities have been tried giving only
one solution, ie. $[B]=\left[\begin{array}{lllll}* & 3 & 5 & 7 & 2 \\ \hline\end{array}\right]$, and since $[B]$ is

83

singular it cannot be a pertubation of the $[A]$ matrix. A second stage of synthesis is therefore necessary. The implementation of the first stage of synthesis is given by Fie. 22 a .

To evaluate the second stage of synthesis the remainder $[B]$ is copied into $[D]$ and the process is repeated.

Then

$$
[B][C]=\left[\begin{array}{llllllll}
* & 3 & 5 & 7 & * & 2 & 5 & 6
\end{array}\right]
$$

Try interconnection 21b
then

$$
\left.\begin{array}{l}
{[B]\left[\begin{array}{llllllll}
{\left[\begin{array}{lllllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 & 6
\end{array}\right]\left[\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0
\end{array}\right]} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]=\left[\begin{array}{llllllll}
* & 3 & 5 & 7 & * & 2 & 5 & 6
\end{array}\right]} \\
{\left[\begin{array}{lllllll}
* & 3 & 5 & 7 & * & 2 & 6 \\
5
\end{array}\right]\left[\begin{array}{lllllll}
1 & 1 & 3 & 2 & 5 & 5 & 7 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
7
\end{array}\right]=\left[\begin{array}{lllllll}
3 & 3 & 5 & 7 & (2) & 2 & 5
\end{array}\right.} \\
\text { ion }
\end{array}\right]
$$

gives a solution - Note that $[D]$ is restricted as shown. Since $[B]$ is singular it cannot be a pertubation of $[A]$.

Try interconnection 21c
then
 gives a solution. Note that $[D]$ is restricted as shown. Since $[B]$ is singular it cannot be a pertubation of [A].

Try interconnection 21d
then

Try. interconnection 21e
then

$[B]\left[\begin{array}{llllllll}1 & 1 & 3 & 2 & 5 & 5 & 7 & 6 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]\left[\begin{array}{llllllll}0 & 2 & 4 & 6 & 1 & 3 & 5 & 7\end{array}\right]$	$=\left[\begin{array}{llllllll}* & 3 & 5 & 7 & * & 2 & 5 & 6\end{array}\right]$
$\left[\begin{array}{llllllll}* & * & 2 & 3 & * & 5 & 6 & 7 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]\left[\begin{array}{lllllllll}1 & 3 & 5 & 7 & 1 & 2 & 5 & 6\end{array}\right]$	$=\left[\begin{array}{lllllll}* & 3 & 5 & 7 & * & 2 & 5\end{array}\right]$

gives a solution . Moreover [B] is non-sinçular and can take the form of the .[A] matrix. The synthesis is therefore completed using this interconnection.

The complete synthesis is shown incircuit form in Fig. 22b.
A test programme, written in Fortran IV / Machine code, has been run successfully for the above algorithm employing gates of the RAD, NOR, $3 X-O R$ type for problems of $u p$ to fifth order.

Fig. 22a

$$
\left.\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & x_{1} \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & F_{1} \\
1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{c}
F_{2} \\
F_{3}
\end{array}\right]
$$

Fig. 22b

In practice it has been found advantagous to search for disjunctive decompositions initially and , if none are found , proceed with the search for non-disjunctive decompositions.

See also reference 14 .

The abovementioned computer programe is able to find all possible disjunctive and non-disjunctive decompositions for a fifth-order system, using up to three invut MAFD/NOR gates , in approximately 2 seconds for each stage of synthesis. Whe storage required (P.D.P.8E) is $11901 \mathrm{~K} /$ words.

86

1.6

Conclusions.
It has been demonstrated that Boolean matrices, of the type defined , enable cascaded , multi-outpui logic modules to be both described , in terms of functional capability and topology, and manipulated. It has been shown that the algebra associated with these matrices is capable of analysing and synthesising such systems even where unspecified conditions (don't care states) are involved in the system description. The algebra is also able to define dependent functions ; the full implications of this are not yet known.

Two novel methods of logic circuit synthesis have been described which follow naturally from the consideration of 'Boolean matrix operators' and 'valid equations' . The first of these enables the dependence of a function upon any chosen set of its defining variables to be determined. It has been shown that the exhaustive implementation of this technique , using Boolean matrices , enables the prime implicants of several functions to be extracted simultaneously. This method is an attractive alternative to that of Quine-McCluskey. The second synthesis method arises from the consideration of 'valid equations' and the 'inverse singular matrix' . It is an iterative technique which, on an exhaustive search basis, enables optimum syntheses of multi-output systems to be found. Again these systems may be partially specified. Both of these synthesis methods , particularly the latter, are especially easy to implement using the digital computer.

Several iterative synthesis procedures , of various types , have been published in recent years. It is felt that the method described herein probably represents the most effective simple multioutput synthesis to date.

The main disadvantage of iterative techniques is that they

87

are relatively slow to 'converge' to an optimum solution, especially when the number of defining variables is large. (In this respect the method developed in this chapter is no exception.) Moreover the expertise of the logic designer can play little or no part in their execution. (In the author's opinion the rather unsucessful attempts to introduce 'heuristics' into such methods is an attempt to do this.) At this point in the research therefore, a search was instigated for possible techniques which would a) generate an acceptable synthesis very quickly , and b) enable the logic designer to assimilate the pertinent features of the system to be designed very easily and to be able to act on this information. At present the best method of evaluating the properties of a Boolean function quickly is with the aid of a Karnaugh map. This method however is of limited value when the number of defining variables is large.

The result of the search for a new method of interpreting Boolean functions according to the above criteria appear in Chapter 2.

CHAPTER 2.

The Application of the
Rademacher/Walsh
Transform to Logic Design
and Boolean Function
Classification.

89

2.1 Introduction.

In 1922 Rademacher published a new set of orthogonal functions taking the value ± 1 in the interval $(0,1)$, see reference 15 . This set of functions however was incomplete - a finite set of such functions does not form a sub-group.

Working independently,in 1923 , Walsh published a set of orthogonal functions taking the value ± 1 in the interval (0,1), see reference 16. The Valsh functions, in addition to forming a complete set, have the Rademacher functions as a generating set. That is to say, any set of Walsh functions may be generated from a suitable set of Rademacher functions. See also references $17,18$.

Because the Walsh functions have properties analogous to trigonometric functions, considerable research has gone into employinç 'Halsh waves' for the transmission of ssmpled-data digital information. Other areas of application have been in the fields of signal filtering and pattern recognition.

In the field of logic design the Valsh functions appear to have been employed relatively little. Chow , reference 19, showed that certain parameters were sufficient to characterise threshold runctions. and Dertouzos, reference 20 , showed that these parameters were in fact Valsh transform coefficients. Dertouzos also developed operators for the manipulation of these coefficients to facilitate threshold logic synthesis.(It is largely an extention of the work of Dertouzos that will be considered here) In addition Ito, reference 21 , has considered the application of Valsh functions to the recognition of binary-valued functions on a statistical basis. Hurst, reference 22 , has considered the general possibilities of the application of Walsh functions to the synthesis of binary functions both in terms of threshold and conventional logic circuitry.

The justification for the analysis of Boolean functions under the Rademacher/Walsh transiorm lies in the fact that certain Boolean operations may be executed more easily in the transform domain and that many of the properties of Boolean functions which are normally difficult to determine, eg. Iinear separability, are best characterised in this domain. In this respect an analogy can be drawn between this transform and the Fourier transform.

It is the purpose of this chapter to show that particular operations in the transform domain have certain properties which lend themselves naturally to the synthesis of logic functions, and to illustrate how these operations may be extended to facilitate the solution of more complex problens.

The synthesis of logic functions both in terms of threshold gates and vertex (NAMD, NOR, AND, OR) Eates is considered.

In addition it is shown that these operations lead to a very efficient method of classifying Boolean functions.
2.2 The Rademacher/Valsh Transform.
2.2.1 Introduction.

In this section a particular form of the above transform will be defined which has oroperties which are especially relevant to the field of logic synthesis. For an alternative definition of this form of the above transform see reference 23.

The more general properties of the Walsh transform may be found in references 16 and 18.
2.2.2 Definitions and Eroperties.

Consider the square Boolean matrix $[T]$ of Fis. 23.
For reasons that will become apparert later a $2^{n} \times 2^{n}$ matrix is said to have an order n. For example in Fig. 23 , $n=4$.

$\stackrel{\text { E }}{E}$

92

The matrix $[T]$ has, by derinition, the following properties for any $n:$

1/ The members of the first row of $[T]$ are equal to zero. $t_{1, j} \triangleq 0,1 \leqslant j \leqslant 2^{n} \quad$ •. (2.1)

2/ The second to $(n+1)$ th rows have the property
$\left.\begin{array}{l}t_{i, j} \triangleq 1 \text { when }\left\{(j-1) \text { modulo }\left(2^{n-i+2}\right)\right\} \geqslant 2^{n-i+1} \\ t_{i, j} \triangleq 0 \text { otherwise. } \quad 2 \leqslant i \leqslant(n+1), 1 \leqslant j \leqslant 2^{n}\end{array}\right\} \cdot$ (2.2)
These are the Rademacher functions, reference 15 ,
with range 0,1 .
3/ The remaining $(n+2)$ to 2^{n} rows are equal to all possible conbinations of the exclusive-OR's of rows 2 to $(n+1)$ of $[T]$ taken one-at-a-time two-at-a-time. . . . n at-a-time. These combinations are taken in ascending order, ie. in rig. 23, where $n=4,: \quad t_{6, j}=\left(t_{2, j} \oplus t_{3, j}\right), t_{7, j}=\left(t_{2, j} \oplus t_{4, j}\right)$ $t_{\beta, j}=\left(t_{2, j} \oplus t_{5, j}\right), \cdots \quad t_{11, j}=\left(t_{4, j} \oplus t_{5, j}\right)$, $t_{12, j}=\left(t_{2, j} \oplus t_{3, j} \oplus t_{4, j}\right) \cdots$ etc.

The complete set of functions defined above are the Walsh functions in the range 0,1 .

* Originally Valsh defined these functions in the range

1,-1. It is convenient for the applications to be considered to replace the value 1 in the range $1,-1$ by 0 and to replace the value -1 in the range 1,-1 by 1 . This gives the Walsh functions in the range 0,1 deifined above. ilthough it is convenient to develop logic synthesis theory using the Walsh functions in the range 0,1 in practice the trensformation operation dscribed on pege of is carried out in the range 1,-1 for reasone of computational speed. See also reference 24.

93

It is a property of the Rademacher functions in the range 0,1 that any Boolean function may be defined upon them. For example in Fis. 23 , where $n=4$, the set of column vectors of the Rademacher functions constitute the set of n-tuples of a fourth order function.

In general the j th n-tuple of an nth order iunction may be defined as : $\psi_{j} ; j=\sum_{i=2}^{n+1} 2(n+2-i)_{x} t_{i, j} \quad$. . (2.3)

It is therefore possible to label each of the Rademacher functions as defining variables in the same way as in a truth table ; namely
the rows of $\left.[T], t_{i, j}, 2 \leqslant i \leqslant(n+1)\right\}$ are labelled x_{i-1}
? the rows $\left.\quad \begin{array}{rl}t_{i, j}, & (n+2) \leqslant i \leqslant 2^{n} \\ & 1 \leqslant j \leqslant 2^{n}\end{array}\right\}$ are labelled as
$x_{1,2}, x_{1,3} \cdots, x_{(n-1), n}, x_{1,2,3}, \cdots, x_{(n-2),(n-1), n} \cdot$ etc. Where $x_{1,2}$ denotes $x_{1} \oplus x_{2}$ etc. This labelling follows from the definitions given in 3/ above. An example of this labelling for a fourth order function is given in Fig. 23.

The row of $[T], t_{1, j}, 1 \leqslant j \leqslant 2^{n}$ is labeHled, by
convention, as x_{0}.
The matrix $[T]$ has thus been partitioned row-wise into several areas.

Now :
1/ The first row, having the subscript of x as a 0 ,
will be called the zero-ordered partition.
2/ The second to $(n+1)$ rows, having a single subscript, will be called the first -order partition.

3/ The remaining rows, havin\% in ascending order, q

94

subscripts, will be called the q th order partitions.
This particular method of row ordering has been chosen to best illustrate the use of the transform matrix $[T]$ in the field of logic design.

The definition of the transform operation is as follows :
where \sum denotes arithmetic sumation, and \oplus denotes the exclusiveOR operator.

It can be shown that r_{i} under this derinition can be simply stated as :
\{The number of agreements between row i of $[T]$ and the function $\left.F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}-\{$ the number of disagreements between row i of $[T]$ and the function $\left.F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}$

In order that the value r_{i} may be related to the corresponding row labelled x_{s}, where s represents the subscript given to the i th row of $[T], r_{i}$ will be labelled R_{s}. For example in Fiç. 23

$$
r_{6} \equiv R_{12}, r_{16} \equiv R_{1234} \text { etc. }
$$

Under this transformation the sample Boolean function shown in Fig. 23 transforms to the vector :

$$
\begin{array}{llllllll}
0 & 0 & 4 & 0 & 0 & -4 & 0 & 0 \\
R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14} \\
4 & 4 & 0 & -4 & -4 & 0 & 4 & 12 \\
R_{23} & R_{24} & R_{34} & n_{123} n_{124} R_{134} & R_{234}{ }^{R_{1}} 1234
\end{array}
$$

It can be shown that the Rademacher/Nalsh transform may be executed in the range $-1,+1$ instead of the range 0,1 as above. Specifically if the Soolean value 1 is replaced in T above by -1 and the Boolean value 0 is replaced by +1 , the transform

95

operation may be accomplished by simple matrix multiplication. Equation (2.4) then becones :

$$
r_{i}^{*} \triangleq \sum_{j=1}^{n}\left\{t_{i, j}^{*} \times F_{\psi_{j-1}^{*}}^{*}\left(x_{1}, x_{2}, \cdot, \quad x_{n}\right)\right\}, \quad 1 \leqslant i \leqslant 2^{n} \cdot \quad \cdot \quad \text { (2.5) }
$$

Where $t_{i, j}^{*}$ refers to a member of $[T],[T]$ being defined in the range $-1,+1$. Fig. 25 shows the sample function of Fig. 23 and Fig. 24 transformed in this way.

It has been pointed out that this transform is in some ways analogous to the Fourier transform, see reference 20. In particular it is noted that the zero-ordered coefficient R_{0} is in a sense a 'd.c' term in that it is a measure of the mumber of false minterms of the function $F\left(x_{1}, x_{2}, \cdot, x_{n}\right)$. The first -ordered transform coefficients $R_{1}, R_{2}, \ldots, R_{n}$ are a measure of the dependence of the function on the defining variables $x_{1}, x_{2}, \ldots, x_{n}$. The second-order transform coefficients $R_{12}, R_{13}, \cdots, R_{(n-1), n}$ are a measure of the dependence of the function upon $x_{1}{ }^{0} x_{2}, x_{1}{ }^{0} x_{3}$, - . ${ }^{x}(n-1)^{\oplus x_{n}} \quad$ etc.

For these reasons the transform coefficients will be called 'spectral coefficients' of relevant order. For example R_{12} is a second order spectral coeficient, Ω_{234} is a third order spectral coefficient, and so on.

To gain some insicht into the composition of a Boolean function which is characterised by a particular spectral coefficient, reference should be made to Appendix 1, where the Boolean functions corresponding to the 2^{n} rows of $[T]$ (in the ranse 0,1) are plotted on Karnaugh maps for $n=4$.

It is important to note that the distribution of true minterms of any function in any variable, say x_{1}, (that is the number of true minterms lyine in x_{1}, and the number lying in \bar{x}_{1}) can be

96

j	$j-1$	x_{1}	x_{2}	x_{3}	x_{4}	$F_{K_{-1}}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
1	0	0	0	0	0	0
2	1	0	0	0	1	1
3	2	0	0	1	0	1
4	3	0	0	1	1	0
5	4	0	1	0	0	1
6	5	0	1	0	1	0
7	6	0	1	1	0	0
8	7	0	1	1	1	1
9	8	1	0	0	0	0
10	9	1	0	0	1	0
11	10	1	0	1	0	0
12	11	1	0	1	1	1
13	12	1	1	0	0	1
14	13	1	1	0	1	1
15	14	1	1	1	0	1
16	15	1	1	1	1	0

Truth Table Representation of the Sample Function of Fig. 23.

Fig. 24

Execution of the Rademacher/Walsh Transform of
the Sample Function, in the Range 1,-1.
Fig. 25
determined exactly given the value of the corrosponding spectral coefficient together with the value of the zero-ordered coefficient R_{0}. See also Section 2.7.2.

The Rademacher/walsh transform matrix defined in the range $-1,1$ has the very important property that it is orthogonal , ie

$$
[T]^{-1}=\frac{1}{2^{n}}[T]^{t} \quad \cdot \quad \cdot \bullet \cdot(2.6)
$$

That is the inverse of the transform ratrix $[\mathrm{T}]$ is equal to the transpose of $[T]$ multiplied by a constant.

Because of this property algorithns can be generated which allow the transform to be executed atamuch nigher speed than is possible using conventional matrix multiplication. This means that it is possible to employ the techniques to be described for systems defined upon a large number of variables without undue sacrifice of computer execution time. See also reference 24.

2.3 Observations on the Significance of the Spectral Coeficicients.

It was noted above that the correlation between a given Boolean function and a particular rov of the transform matrix $[T]$ is given by the value of the correspondine spectral coefficient in the transform domain.

It follows therefore that a function having a relatively lare positive spectral coefficient, say R_{12}, has a hich correlation with $x_{1} \oplus x_{2}$. On the other hand if the coefficient R_{12} is large and negative, the function has a high corrclation with $\overline{x_{1} \oplus x_{2}}$.

In general this interpretation may be extended to the overall distribution of the spectral coefficients in the transform domain. If, for example the function hes its laxgest spectral cocfficients in second-order positions it will be tormed a 'prodominan'tly second-oidered function ', whilst a function whose predoninant
spectral coefficients are high-ordered will be termed a'high-ordered' function.ctc. Examples of hich - and low-ordered functions appear in Fig. 26a and Fig. 26 b. respectively. Comparisons between these functions and the Karnaugh maps of Appendix 1 is instructive. Wote that the spectral coefficient R_{0} does not enter into this classification as it does not contribute any information about the ordering of the function ; it is zero-ordered.

Since any Boolcan function is uniquely reconstructable from its spectrum, see reference 20 , it follows that each of the spectral coefficients contain some information about the function. It has been shown that this information is not, in seneral evenly distributed amons the coefficients, see elso reference 25. A special case is that of the linearly-separable or threshold functions, in which all the information is contained in the first ($n+1$) coefficients. These are the Chow paraneters as shown by Dertouzos, see references 19 and20. It follows that threshold functions are predominantly first-ordered.

Inspection of the hioh-ozdered function of Fig. 26a shows it to be'classically' Cumbersomeio synthesise from a circuit desicners Boint of view since the true minterms of the function are scattered on the Karnauçh map and do not fall padoninantly into areas corresponding to the intersection or union of any particular defining variables. The opposite is true of the low-ordered function of rig. 26b.

These observations lead to the intuitive supposition that high-ordered functions are most easily synthesised with the aid of exclusive-OR Gates - This supposition rill be verifiod later.

In the light of the above discussion j.t would also appear thet it is advantaceous to be able to convert hich-ordered functions

$\underset{+}{\infty} \underset{t}{1} \underset{i}{1} 0 \underset{1}{1} \underset{1}{1}$

into lower-ordered functions by some mothod. Such methods will be described later.
2.4 Some onerations in the Transtorm Domain.

It is of innortance to investigate the relationships between operations in the tranoform domain and those in the Boolean function domain , or 'Goolean dorain ' W doing so it is possible to show that certain Boolen openctions may we executed more easily in the transform domain and also that certain operations in the transform domoin may be inmediately interpreted in terms of logic circuit synthesis.

Consider the following operation :
, Operation 1.
The interchange of variables x_{k} with $x_{1}, k \neq 1, k \neq 0$. From equation (2.4)

Substituting $x_{k, j}$ for $t_{i, j}$ and R_{k} for \bar{r}_{i} :
in the above gives

$$
R_{k}=2^{n}-2\left\{\begin{array}{l}
\left.\sum_{j=1}^{2^{n}} x_{1, j} \oplus F_{j-1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\} \\
0 \leqslant k \leqslant n
\end{array}\right\} \cdot(2 \cdot 7)
$$

Define a nev function
$F^{\prime}\left(x_{1}, x_{2}, \cdot, x_{1}^{1}, x_{1}^{\prime}, \cdot, x_{n}\right)=F\left(x_{1}, x_{2}, \cdot, x_{1-}, x_{1}, \cdot, x_{n}\right) \cdot \cdot(2.0)$
whore $x_{k}^{\prime}=x_{1}$
$k \neq 1 \neq 0$.
and $\quad x_{1}=x_{k}$

101

Then equation (2.7) can be vritton as

$$
R_{k}^{\prime}=2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{k, j}^{\prime} \oplus F_{\psi_{j-1}}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{k}^{\prime}, \cdot ., x_{n}\right)\right\}
$$

or $R_{I}=2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{1, j} \oplus \mathbb{F}_{\psi_{j-1}}\left(x_{1}, x_{2}, \ldots, x_{1}, \ldots, x_{n}\right) \quad 1 \leqslant 1 \leqslant n\right\}$.
The equations (2.9) and (2.10) are therefore equivalent, and $R_{k}^{\prime}=R_{1}$.

It can also be shown that, under this operation,

$$
\begin{gathered}
R_{1}^{\prime}=R_{k}, \\
R_{k: a}^{\prime}=R_{l m}, R_{l m}^{\prime}=R_{l m} \quad \text { and } \\
R_{k=1}^{\prime}=R_{l-1}, R_{m}^{\prime}=R_{m}, R_{0}^{\prime}=R_{0} \quad \text { etc. }
\end{gathered}
$$

That is the resulting set of spectral coefficients $\left\langle R^{\prime}\right\rangle$ are Generated from $\langle\mathrm{A}\rangle$ by replacing k by l in the subscripts of $\langle R\rangle$, and vice-versa.

For example if x_{1} is interchanged with x_{2}, the resulting spectrum $\left\langle R^{\prime}\right\rangle$ is generated as ;
$R_{13}^{\prime}=R_{23}, R_{23}^{\prime}=R_{13}$ ana $R_{234}^{\prime}=R_{134}, R_{134}^{\prime}=R_{234}$ etc.
It is now possible to interpret the above operation in terms of general lozic circuitry.

Fig. 27a shows the implementation of the Boolean function $r\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}, \cdots, x_{n}\right)$ which has the correspondine spectrum $\langle R\rangle$.

According to the above, variables x_{k} and x_{1} are now interchonged and a new module corresponding to $\mathrm{rl}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{k}^{\prime}, x_{1}, \ldots, x_{n}\right)$ is defined, as show in Fig. 27b.

This new aodule has the spectrum $\langle\boldsymbol{N}\rangle$. llote that , from

Fig. $27 a$

Fig. 27b
equation (2.3), the overall transfer function of the system has not changed.

The above is an illustration of an operation in the transform domain which may be directly interpreted in terms of logic circuitry. Dertonzos, reference 20, has considered several of these operations and the nost important of these are given, without derivation , below.

Operation 1 (repeated)

Interchange of variables x_{k} with $x_{1}, k \neq I \neq 0$.
The new spectrun $\langle R\rangle$ may be generated from the original spectrum $\langle R\rangle$ under the interchange of x_{k} and x_{1} if in $\langle R\rangle$ the subscript k is replaced by the subscript 1 and vice-versa.

Operation 2.
Complementation of the variable $x_{k}: x_{k}^{\prime}$ becomes \bar{x}_{k}.
The new spectrum $\left\langle R^{\prime}\right\rangle$ may be generated fron the original spectrun $\langle R\rangle$ under the complementation of variable x_{k} if in $\langle R\rangle$ the spectral coefficients having subscripts containing k are changed in sign.

Fiff. 28a shows the implementation of this operation.
Operation 3.
The generation of the Dual of a function.
That is , gizen a function $F\left(x_{1}, \cdots, x_{k}, \cdots, x_{n}\right)$ havinc a spectrum $\langle R\rangle$ generate a function $\bar{T}\left(\bar{x}_{1}, \cdot\right.$, $\left.\bar{x}_{k}, ~ \cdot, ~ \bar{x}_{n}\right)$ having a spectrun $\langle\supseteq\rangle$.

The new spectrum $\left\langle\nabla^{\prime}\right\rangle$ may be generated from the orisinal spectrun $\langle R\rangle$ under the above operation if in $\langle R\rangle$ the even-ordered spectral coefficients are changed in sign. iote: $?_{0}$ is even-ordered. Fig. 23b shows the implementation of this operation.
104

Operation 4.

The generation of the complement of a function.
That is , given the function $F\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$ having a spectrum $\langle\mathbb{R}\rangle$ generate a function $\overline{\vec{F}\left(x_{1}, \cdots, x_{k}, \cdots, x_{n}\right)}$ havin \mathscr{G} a spectrum $\langle\boldsymbol{i}\rangle$.

The new spectrum 〈R〉 may be cenerated from the original spectrum $\langle R\rangle$ under the complementation of the function if in $\langle R\rangle$ all spectral coefficients are chonced in sign.

Fig. 23 c shows the implementation of this operation.
--000-
So far certain operations in the transform domain have been have been considered which certainly facilitate operations in the Boolean donain , but which appear to contribute little to the actual ? synthesis of losic functions. Hovever Golomb, reference 26 , has shown that the ordering and complementing of the defining variables of functions enables certain functions to be classified into equivalent classes. That is , certain functions of the same order n, and which dificr only in the permutaition and/or complementation of their defining variables are terned cquivalent. Such a classification can clearly be established by using Operations 1 and 2 .

In logic synthesis the concept of equivalent classes is important since i.f the synthesis of one member of such a class is known then the synthesis of any other member of the class follows by simply permutating andor complementing the defining variables of the known system.

The number of equivalent classes is of course much smaller than the total number of functions possible, for any given n.

In order that the idea of equivalent functions may be extended it is necensary to introduce a new operation which not only facilitates loric synthesis on an equivalence basis but also finds application

106

in the synthesis of logic functions by means of threshold gates as will be described later. This operation will be called the
'translational operation':

Operation 5.

The replacement of tho defining variable x_{k} by $x_{k} \oplus x_{1}$,
$k \neq 1 \neq 0$.

> Recalling equation (2.4) :

$$
\left.r_{i} \triangleq 2^{n}-2\left\{\sum_{j=1}^{2^{n}} t_{i, j} \oplus F_{\psi_{j-1}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\},\right\} \cdot\left(\begin{array}{c}
\text { (2.4) } \\
1 \leqslant i \leqslant n
\end{array}\right.
$$

Let the given function be $F\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n}\right)$
Define a new function $F^{\prime}\left(x_{1}, x_{2}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$
$\triangleq \underset{F}{ }\left(x_{q}, \ldots, x_{k}, \ldots, x_{n}\right)$ where $x_{k}^{\prime}=x_{k} \oplus x_{l}$
The fact that this definition gives rise to
a unique new function under a basis transformation is shown in Appendix 2.

Substituting for the defining variables in equation (2.4)
in the usual way gives, for the new function :

$$
\begin{equation*}
\left.R_{k}^{\prime}=2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{k, j}^{\prime} \oplus F_{\psi_{j-1}}^{\prime}\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)\right\}\right\} \tag{2.12}
\end{equation*}
$$

or , from equation (2.11) :

$$
\left.R_{k}^{\prime}=2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{k, j} \oplus x_{l, j} \oplus F_{j-1}\left(x_{1}, \ldots, x_{k}, \cdots, x_{n}\right)\right\}\right\} \text { (2.13) }
$$

Now equation (2.13) is, by definition, equal to $R_{k I}$. That
is $R_{k}^{\prime}=R_{k I}$.

$$
\text { It can also be shown that } \begin{aligned}
R_{k 1}^{\prime} & =R_{k}, \\
R_{k 1 m}^{\prime} & =R_{k m}, R_{k m}^{\prime}=R_{k l m}
\end{aligned}
$$

$$
\begin{aligned}
& 107 \\
& \text { and } \quad R_{1}^{\prime}=R_{I}, \\
& I_{l m}^{\prime}=R_{l m}, \\
& R_{0}^{\prime}=R_{0} \quad \text { etc. }
\end{aligned}
$$

If this operation is extended to the replacement of x_{k} by $x_{k l m}$ the following results are obtained：

$$
\begin{aligned}
& R_{k l m}^{\prime}=R_{k}, P_{k}^{\prime}=R_{k l m}, \\
& R_{k l m n}^{\prime}=R_{k n}, R_{k n}^{\prime}=P_{k l m n},
\end{aligned}
$$

and

$$
\begin{array}{ll}
R_{1 m}^{\prime}=R_{l m} \\
R_{0}^{\prime}=R_{0} & \text { etc. }
\end{array}
$$

It is important to note that this operation constitutes a re－ordering of the minterms of $T\left(x_{1}, \ldots, x_{n}\right)$ and that no information about the function is lost．

2．5 Snectral Translation．

Consiccration of Operation 5，above，gives rise to the following theorem ：

2．5．1 The Theorem of Snectral Translation．

If in a Boolean function $F\left(x_{1}, \cdots, x_{k}, \ldots, x_{n}\right)$ having a spectrum $\langle R\rangle, x_{k}$ is replaced by $\left\{x_{a} \oplus x_{b} \cdot \cdots \oplus x_{h}\right\}$ © x_{k} where the set of subscripts $\langle a, b, \ldots, h\rangle$ is denoted by $\langle S\rangle$ ，then the spectrum 〈a〉 of the new function is generated from the spectrum〈R〉 if ：
in every subscript of the spectral coeitucients of $\langle R\rangle$ containing k ，the nembers of $\langle S\rangle$ are deleted if they exist，and appended if they do not．
－ $000-$
Notes on the theorem
1／When a first－order spectral coefficient is replaced by a hicher－ordered coefficient under the above theorem，no other
first-ordered spectral cocfficient is replaced. This follows from the fact that no other first-order coefficient has the same subscript.

2/ If the operation of spectral translation is executed tivice for the same variable replacement, the original spectrum results.
2.5.2 Interoretation and Implementation of Spectral Pranslation

Fig. $29 a$ shows the implementation of the Boolean function $F\left(x_{1}, \cdot, x_{k}, \cdots, x_{n}\right)$ in terms of losic circuitry. Suppose that it is required to replace x_{k} by $x_{k}^{\prime}=x_{k} \oplus x_{1}$. This is accomplished by means of an exclusive-OR sate and produces a new logic module $F^{\prime}\left(x_{1}, \cdot\right.$, $\left.x_{k}^{\prime}, ~ \cdot, x_{n}\right)$ as shown in Fig. 29b. The overall transier function of the system romains unchanged , from equation (2.11).

Fig. 29c shows the implementation of this operation for the variable x_{k} replaced by $x_{k}^{\prime}=\left\{x_{1} \oplus x_{c} \oplus x_{f}\right\} \oplus x_{k}$.
2.5.3 Gignificance of Sbectral Pranslation.
2.5.3a In Losic Synthosis.

Because the theorem of spectral translation has the fundanental poperty of translating hifh-ordered spectral coefficients to low-ondered positions, it is clear that, in general, Given a high-oidered function then a function of lower order may be conerated from it. Cow it has already been established that lowordered functions have the property that they may be more easily synthesised in terms of threshold gates end vertex (IMN, MOZ, AND, OX) gates, than may high-ordered functions.

The fact that spectral translation itself is easily.
implomented by exclusive-OR gates neans that a novel, and sonetimes complete, synthosis procedure is possible, as will later be denonstrated.

It is assumed that the exclusive-OR gate is an integral gate having a propagation delay comparable to that of a vertex gate.

109

$\left\langle\mathrm{R}^{\circ}\right\rangle$
Fig. 29c

110

2.5.3b In Boolean Funcition Classification.

As has been montioned above, Goloml, reference 26 , has show that certain Boolean functions of given order n may be classified as 'equivalent' uncer the complementation and/or permutation of their defining variables.

In the lisht of the theorem of spectral translation a now, and nore ambracing, classification mat be proposed,:

A Boolean function $F_{1}\left(x_{1}, \ldots, x_{n}\right)$ of order n is classified as translationslly-equivalent to another Boolean function $F_{2}\left(x_{1}\right.$, . . $\left.x_{n}\right)$ of the same order, if $F_{1}\left(x_{1}, \ldots, x_{n}\right)$ can be mapped onto $F_{2}\left(x_{1}, \ldots, x_{n}\right)$ by the permutation and/or complementation of its defining
\because variables and/or the , perhaps repeated, application of the theorem of spectral translation.

Clearly all Boolean functions which are equivalent fall into the sanetranslationally-equivalent class. It follows that the number of translationally-equivalent functions which exist for a Given n is smaller than the number of equivalent functions.

The practical inportance of this new classification lies
in the fact that translationally-equivalent functions can be synthesised from a representative, or canonic , function whose synthesis is known by the complementation anc/or permatation of the defining variables and/or the appending of suitable exclusive-OR logic.

If tables of representative canonic functions are generated, therefore, together with optinum syntheses , it is possible to synthesise any given function by

111

1/ establishing the translationally-equivalert class to which it belongs,

2/finding the operations necossary to convert the Given function to cononical form,

3/ to implement these operations in terms of logic circuitry, and then

4/ to append the optimum synthesis.
The choice of form of canonic function is arbitrary, but in order that an optimum synthesis be achieved it is clearly an advantage that the canonic. function for each class should be predominently first-ordered for reasons previously described.

With this in mind the following mothod of generating the canonic function in each class is proposed :

1/ Generate the lowest-ordered function possible in a given class by the operation of spectral translation.

2/ Render all first-order spectral coefficients positive (Operation 2).

3/ Permutate the defining variables so that the first-order spectral coefficients are arranged in desconding order of magnitude, followed, whore possille,by the second-order coefficients etc. (Operation 1).

This method has been used to generate a table of canonic functions for $n \leqslant 4$. This table appears in Appendix 3. The power of this form of Boolean function classification now becomes apparent. The total number of Doolean functions for $n \leqslant 4$ is 65,536 and under this classification the number of canonic functions is 18 . In practical terms this means that 18 unique losic modules are required to synthesise all possible Boolean functions, $n \leqslant 4$, under the application of the operations 1,2 and 5 . Because this table does not specirically enumerato all possible

112

complenents of functions it is also necessary to invoke Operation 4. Of these 18 functions one is trivial (function No.1) since it specifies a function with all false* minterns. It is worthnoting at this stage that all but three of these canonic functions are threshold functions, (the threshold functions are marled 'T'). The importance of this will becone clear later.

The 'optimua syntheses' of these functions have not been shown since the definition of optimum will depend upon the criterion of optimality used. This may be minimum number of gates or interconnections, cost etc.

It will be shown later that a nore powerful classification method is possible but bofore embaring on the details of this it is neqessary to investigate the application of spectral translation.

2.5.4 Application of Spectral Translation.
 2.5.4a. Anvication to Synthesis by rinechold Iogic.

Dertouzos, reference 20 , has shown that a threshold function is uniquely characterised by the values of the first ($n+1$) spectral coefficients. These in fact are the Chow paraneters, see reference 19. Boreover these coefficionts maj appear in any order and with any sien. All threshold functions are linearly separable and , because the evaluation of linearly separable functions is a complex procedure, tables of such functions have been prepared, see referencos 20 and 27. In these tables the first $(n+1)$ spectral conficients of each threshola function anpear in ascending order of magnituds and are positive. These vectors are sufficient to characterise all nth order throshold functions and are called positive charactsristic cononic vectors. In order to establish if agiven function is a throchold function it suffices to arrenge the first

* If operation 4 is invo'scd then this fanction characterises a function with all true minterms.

113

$(n+1)$ spectral coefficients of the function in ascending order of magnitude, change all negative coefficients to positive and determine if this characteristic vector appears in the tables Oí of positive characteristic cenonic vectors.

In order that the threshold gate corresponding to a particular cononic vector may be desicned it is necessary to evaluate the weichts associated vith that vector. Again these threshold weichts nomally apnear in the canonic vector tables. A representative set of such tables appears in sppendix 4.

The use of such tables is best illustrated by means of an example.

Consider the fourth-order function of $\overrightarrow{i g} \cdot 30$.
The first ($n+1$) spectral coefincionts of this function are
$\begin{array}{cccccc}4 & 12 & 4 & -4 & 0 & , \\ R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & \end{array}$
re-arranging these coefricients into ascending order of magnitude and chenring all neŗative sicins to positive the vector

124440 is obtained.
Inspection of the tebles of Appendix 4 , for $n=4$, shows that this characteristic vector indsed defines a threshold function for which :

Characteristic vector C	$:$	12	4	4	4	0
Weights.	W	$:$	2	1	1	1

No: because there is a one-to-one correspondence between cach weioht and associated meaber of the chasacteristic vector, both in maçitude and sien , it is possible to re-express the original function in terms of the woights by re-arrangement and change of sign as appropriate.

114

In this examiple

$$
\begin{array}{lrlrll}
4 & 12 & 4 & -4 & 0 & \text { are the original coefficients }
\end{array}
$$

and

1	2	1	-1	0
w_{0}^{\prime}	w_{1}^{\prime}	w_{2}^{\prime}	w^{\prime}	w_{4}^{\prime}

are the corresponding weights.

From these weights the parameters of the threshold gate may be calculated. For a more detailod treatment see references 20 and 28.

The input veightings for each gate input are given by :
Veichting at input x_{i} is equal to $w_{i}^{!}, 1 \leqslant i \leqslant n \quad . \quad$. (2.14)
The output weighting of the gate is given by :
. Heighting at output $=\frac{1}{2}\left\{\left(\sum_{i=1}^{n} \mid w_{i} 1\right)+w_{0}^{\prime}+1\right\} \quad$. . (2.15)

As threshold fates with a negative weight capability will not be considered it is important to note that if any wi are negative the respective input must be complemented and the corresponding weight changed in sign. In this particular example therefore, w_{3}^{\prime} is changed in sign and an inverter is placed before input x_{3}.

From equation (2.15), the veighting at the output oi this
gate is $\frac{1}{2}(4+1+1)=3$. The gate is shown in Hi . 30 .
Note that the input weighting of 0 is equivalent to a noconnection. That is, the orifinal function is independent of variable x_{4}. (The function is in fact thira-ordered).

The description of the operation of this gate is now straichtforward. Clearly if x_{1} and x_{2} have the value 1 then the output

[^1] because Cho: parameters were not originally defined using.the Rademacher/Valsh transform . This results in a difference of sign for Ro"
*12- i .
+8-
$0-\frac{2-1}{8}$
$-4-$

116

threshold of 3 will be equalled since x_{1} is weighted 2 and x_{2} is weighted 1 . The gate will thus give an output of one. Similarly the gatc will also five an output of one if $x_{1}=1$ and $x_{3}=0$ since x_{3} is complemented. Also if $x_{1}=1, x_{2}=1$ and $x_{3}=0$ the sum of tho weichts at the input is 4 which exceeds the output threshold 3 , the gate output will then asain be 1 . In all other cases the output threshold is not reached so that the gate output is 0 .

The gate function may therefore be concluded to be

$$
\begin{array}{r}
x_{1} \cdot\left(x_{2}+\bar{x}_{3}\right) \text {, where } ' \cdot \text { signifies logical AND , } \\
\text { '+' sicnifies.logical Oa. }
\end{array}
$$

This rosult can be checked from the Karnauch map of the function shown in Fig. 30 .

- The role of the spectral translation operation in the synthesis of Boolean functions by means of threshold functions is now considered by means of a simple example.

Given : the function show on the Karnaugh map of Fig. 31. The spectrum of this function is as follows
$\begin{array}{llllllll}0 & 0 & 4 & 0 & 0 & -4 & 0 & 0 \\ R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14}\end{array}$
$\begin{array}{llllllll}4 & 4 & 0 & -4 & -4 & 0 & 4 & 12 \\ R_{23} & R_{24} & R_{34} & R_{123} & R_{124} & R_{134} & R_{234} & R_{1234}\end{array}$
If the first ($n+1$) spectral coefficients of this function are ordered by magnitude and rendered positive the result is :

$$
40000 \text { which does not appear in the tables }
$$ of positive.characteristic vectors (Appendix 4), that is, it is not a threshold function.

Now apply the operation of spectral translation to generate a nev spectrum $\langle R\rangle$ from the above spectrum $\langle R\rangle$, where $R_{4}=R_{24}$:

118

$\begin{array}{llllllll}4 & 0 & 4 & -4 & 0 & 12 & 0 & 0 \\ R_{23}^{\prime} & R_{24}^{\prime} & R_{34}^{\prime} & R_{123}^{\prime} & R_{124}^{\prime} & R_{134}^{\prime} & R_{234}^{\prime} & R_{1234}^{\prime}\end{array}$
Applying the operation asain for the generation of a nev spectrum $\left\langle R^{\prime \prime}\right\rangle$ from $\left\langle R^{\prime}\right\rangle$, where $R_{3}^{\prime \prime}=R_{134}^{\prime}$:

0	0	4	12	4	-4	4	-4
$R_{0}^{\prime \prime}$	$R_{1}^{\prime \prime}$	$R_{2}^{\prime \prime}$	$R_{3}^{\prime \prime}$	$R_{4}^{\prime \prime}$	$R_{12}^{\prime \prime}$	$R_{13}^{\prime \prime}$	$R_{14}^{\prime \prime}$
0	0	0	0	0	0	-4	4
$R_{23}^{\prime \prime}$	$R_{24}^{\prime \prime}$	$R_{34}^{\prime \prime}$	$R_{123}^{\prime \prime}$	$R_{124}^{\prime \prime}$	$R_{134}^{\prime \prime}$	$R_{234}^{\prime \prime}$	$R_{1234}^{\prime \prime}$

Finally, applying the operation for the generation of a new spectrum $\left\langle R^{\prime \prime \prime}\right\rangle$ from $\left\langle R^{\prime \prime}\right\rangle$, where $R_{1}^{\prime \prime}=R_{12}^{\prime \prime}$:
$\begin{array}{llllllll}0 & -4 & 4 & 12 & 4 & 0 & 0 & 0 \\ R_{0}^{\prime \prime \prime} & R_{1}^{\prime \prime \prime} & R_{2}^{\prime \prime \prime} & R_{3}^{\prime \prime \prime} & R_{4}^{\prime \prime} & R_{12}^{\prime \prime \prime} & R_{13}^{\prime \prime \prime} & R_{14}^{\prime \prime 4}\end{array}$
$\begin{array}{llllllll}3 & 0 & 0 & 4 & -4 & 4 & -4 & 0\end{array}$

Now if the first $(n+1)$ spectral coefficients of this function are ordered by magnitude and rendered positive the result is :

124440 which appears in the tables of positive characteristic vectors (Appendix 4), that is, it is a threshold function.

The threshold gate paraneters may now be calculated using the nethod described above :

The coefficients $0 \quad-4, \quad 4 \quad 12, \quad 4$ Give the corresponding weichts $\begin{array}{cccccc}0 & -1 & 1 & 2 & 1 \\ & w_{0}^{\prime} & w_{1}^{\prime} & w_{2}^{\prime} & w_{3}^{\prime} & w_{4}^{\prime}\end{array}$, see Appendix 4 .

Fron equation (2.15) , the output weight is

$$
\frac{1}{2}(5+0+1)=3
$$

The resulting gate appears in Fic. 31a together with the exclusive-OR circuitry necessary to carry out the spectral translations.

That is ; initially x_{4} is replaced by $x_{2}-x_{4}$ and so on.
Because w_{1}^{\prime} is negative an inverter is placed on the input Iine x_{1} before the gate.

This example illustrates a property comon to many non-threshold Boolean functions, that is that such functions may be rendered linerarly-separable (threshold functions), by the application of the operation of spectral translation. Such functions will be said to have threshold functions 'embedded' within them.

The importance of this result of course lies in the fact that the versatility of threshold losic is incroased many-fold by the straightforvard appending of equivalence (exclusive-on) -type locic.

In fact the tables of Appendix 3 show that there are only three classe's of functions out of eighteen which do not have erabedded threshold functions, $n \leqslant 4$.

It has been arcued*that the continuine non-appearance of any satisfactory technolowy for maline threshold gates comercially available limits the practical uacfulness of these methors. In fact the difficulties in the fabrication of these gates have been overcome by a novel design method devised by Dr. i. I. Hurst, University of Bath. The implications of tho use of this gate are discussed in Chapter 3 •

In practice the application of spectral translation to convort a high-ordered function into a low-ordered function, so that embeded threshold functions may be employed in the synthesis of given functions, may be carried out in several different ways. Each of the alternative methods for carryine out the translations results in differing number of gates empoyed in the final

* lienereos coment on paper on this subjoct submitted to
I. A. .a. Transactions on Computers by the author.

120

synthesis. The criteria governing the optimun choice of spectral translations for the minimisation of the number of gates used in a ©iven synthesis appears in Section 2.5.5.

2.5.4b Dulication to Synthesis by Vortex logic.

As explained previously , functions having hich-ordered apectra are gencrally more difficult to synthesise using vertex (AND, OR, NATD, MOR) logic than are functions with low-ordered spectra bocause their true minterms do not fall predominantly into areas corresponding to the intersection or union of any particular definine variables.

It has been shown hovever that the application of the operation of spectral translation enables a hi太̂h-ordered function to be re-exprossed as a function of lower order under exclusiveOR synthesis.

The techniquos of spectral translation can therefore be used, without the necessity of employing threshold gates, to problems employing conventional vertex gates. Aoreover the synthesis of Boolean functions by this method sives rise, in general, to more elegant solutions than would be the case in circuits enployine no exclusive-OR gates. This follows from the observation that exclusive-OR functions are not easily synthesised by vertex logic. Consider the function given by the Rarnaugh mav of Fi . 32 a. This function has the spectrum

$$
\begin{array}{llllllll}
2 & 2 & 2 & 2 & 6 & 2 & -6 & 6 \\
R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14} \\
-6 & -2 & 6 & 2 & -2 & -2 & 6 & -2 \\
-R_{23} & R_{24} & R_{34} & R_{123} & R_{124} & R_{134} & R_{234} & R_{1234}
\end{array}
$$

Sote : this function does not have an embedued threshold function. Applying the operation of spectral tranclation to gencrate a now spectrun 〈? ${ }^{2}$) Erom the above spectrum $\langle R\rangle$, where $R_{1}^{\prime}=R_{14}$:

Fig.32a. Sample function.

Fig 32b. Function aiter 1st. translation.

Fig. 32c. Function after 2nd. translation.

Fig. 32d. Function atter 3rd.translation.

$$
\begin{array}{cccccccl}
2 & 6 & 2 & 2 & 6 & -2 & -2 & 2 \\
R_{0}^{\prime} & R_{1}^{\prime} & R_{2}^{\prime} & R_{3}^{\prime} & R_{4}^{\prime} & R_{12}^{\prime} & R_{13}^{\prime} & R_{14}^{\prime} \\
-6 & -2 & 6 & -2 & 2 & -6 & 6 & 2 \\
R_{23}^{\prime} & R_{24}^{\prime} & R_{34}^{\prime} & R_{123}^{\prime} & R_{124}^{\prime} & R_{134}^{\prime} & R_{234}^{\prime} & R_{1234}^{\prime}
\end{array}
$$

Again , cenerating a new spectrum " $\left\langle\mathrm{R}^{\prime \prime}\right\rangle$ from the above spectrum $\langle R\rangle$ where $R_{3}^{\prime \prime}=R_{34}^{1}$:
$\begin{array}{llllllll}2 & 6 & 2 & 6 & 6 & -2 & -6 & 2 \\ R_{0}^{\prime \prime} & R_{1}^{\prime \prime} & R_{2}^{\prime \prime} & R_{3}^{\prime \prime} & R_{4}^{\prime \prime} & R_{12}^{\prime \prime} & R_{13}^{\prime \prime} & R_{14}^{\prime \prime}\end{array}$

$$
\begin{array}{llllllll}
6 & -2 & 2 & 2 & 2 & -2 & -6 & -2 \\
R_{23}^{\prime \prime} & R_{24}^{\prime \prime} & R_{34}^{\prime \prime} & R_{123}^{\prime \prime} & R_{124}^{\prime \prime} & R_{134}^{\prime \prime} & R_{234}^{\prime \prime} & R_{1234}^{\prime \prime}
\end{array}
$$

Finally, generating a new spectrum $\left\langle\mathrm{R}^{\prime \prime}\right\rangle$ from the above spectrum $\left\langle P{ }^{\prime \prime \prime}\right\rangle$, where $R_{2}^{\prime \prime \prime}=\mathrm{F}_{23}^{\prime \prime}$:
$\begin{array}{lllllllll}2 & 6 & 6 & 6 & 6 & 2 & -6 & 2 \\ R_{0}^{\prime \prime \prime} & R_{1}^{\prime \prime \prime} & R_{2}^{\prime \prime \prime} & R_{3}^{\prime \prime \prime} & R_{4}^{\prime \prime \prime} & R_{12}^{\prime \prime \prime} & R_{13}^{\prime \prime \prime} & R_{14}^{\prime \prime \prime}\end{array}$

A point has now been reached where the spectrum is maximally first-ordered, that is to say no further translations can increase the magnitudes of the first ($n+1$) coefficients.

The functions generated by each of these translations are shown in Figs. $32 b, 32 c$ and $32 d$ respectively. Note that at each sten the true minterms of the function tend to come together in larger Groups; that is, the true minterms fall more predominantly in areas correspondins to the intersection of the defining variables.

Fig. 33 a shows a simple , conventional two-level synthesis (AND, OR) of the original function of Fig. 32a together with necessary inverters. The same ifigure shows the synthesis accomplished with the aid of the above translations , implemented by exclusive-OR gates, Fig. 33b.

The saving in circuit comple:ity is considerable in this

Fig.33a
$\stackrel{n}{m}$
$\stackrel{0}{i}$
in

example, the number of interconnections required being 20 and 12 respectively.

It is worth noting that because only positive spectral coefficients have been translated no inverters are required in the latter synthesis. This would not necessarily be the case, of course, if NAMD,NOR logic vere emaloyed.

In the case of threshold logic synthesis it was noted that the appearance of a 0 in the weightine vector $w_{i}, 1 \leqslant i \leqslant n$, implied a no-connection, that is the function was independent of variable x_{i}. It is true of all functions that if 0 appears in every spectral coefficient havine a subscript containing i then that function is incependent of x_{i}. It is clear by inspection that the function considered here has no variable redundancies.

Again the spectral translations in this example have been carried out with no obvious plan to minimise the number of gates generated. In fact this solution does employ the ninimum number of necessary exclusive-OR gates for reasons developed in the next section.

2.5.5 Gate iUnimisation Criteria.

In order that the mininisation critoria pertaining to the synthesis of digital circuits under the operation or spectral translation may be developed it is necessary to employ Galois Field 2 theory. For this rason reference should be made to ipendix 2 before proceoding with this section.

A GF(2) matrix is able to represent an operation of the type : replace x_{i} by $x_{i}=x_{i} \oplus x_{j}$ which corresponds to a spectrol translation. For example : replace x_{1} by $x_{1}^{\prime}=x_{1} \oplus x_{2}$:ould be represented as

$$
\left.\left.\left.\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\begin{array}{cc}
\left(x_{1}\right. & \left.\oplus x_{2}\right) \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\begin{array}{l}
x_{1}^{\prime} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { in } G \operatorname{l}^{\prime}(2)
$$

In field theory a matrix of this type, where the main diagonal consists of allowed values other than zero and only one other allowed value, other than zero, appears off the main diaconal, defines an elementary operation . An elementary operation thus corresponds to a spectral translation ithere a second-order spectral coefficient replaces a first-order spectral cocfficient, since if x_{i} is replaced by $x_{i}^{\prime}=x_{i} \oplus x_{j}$ then R_{i} is replaced by $R_{i}^{\prime}=R_{i j} \cdot$

It also follows that in it is required to represent a spectral translation where a spectral coefficient of above second-order replaces a first-order coefficient then this can be achieved by the multiplication of a number of suitable matrices in $G F(2)$, each of Which define an elementary operation of the type above.

For example, the replacement of x_{1} by $x_{1}^{\prime}=x_{1} \oplus x_{2} \oplus x_{3}$ can be represented by

$$
\left.\left.\left.\left.\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\begin{array}{c}
\left(x_{1} \oplus x_{2} \oplus x_{3}\right) \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\begin{array}{l}
x_{1}^{\prime} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Where x_{1} has first been replaced by $x^{*}=x_{1} \oplus x_{2}$ and then x_{1} has been replaced by $x_{1}^{1}=x_{1}^{*} \oplus x_{3}=x_{1} \oplus x_{2} \oplus x_{3}$.

In general, a series of elementary operations in GF(2) can represent anj single spectral translation.

These ideas may be extended to the representation of several consecutive spectral translations. For instance, in the example of the previous section the overall result of the series of spectral translations was to renlace x_{1} by $x_{1}^{\prime \prime \prime}=x_{1} \oplus x_{4}, x_{2}$ by $x_{2}^{\prime \prime \prime}=x_{2} \oplus x_{3} \oplus x_{4}$,

126

x_{3} by $x_{3}^{\prime \prime}=x_{3} \oplus x_{4}$ and x_{4} by $x_{4}^{\prime \prime \prime}=x_{4}$. See also Fig. 33.
The result of this series of translations can thus be
represented as

It follows that the above matrix may be re-expressed in terms of a number of matrices , in $G T(2)$, each representinc an elementary operation which corresponds to the spectral translation of a secondorder spectral coefficient to a first order position.

Now it is a property of $G F(2)$, and indeed any field*, that the matrix resultine from the multiplication of a series of matrices, each natrix defining an elementary operation , has a determinant which is non-zero. (In the case of $\operatorname{Gr}(2)$ the matrix has a deterainant of value 1).

It is therefore possible to test the validity of a proposed series of spectral translations in the following way :

Test 1.
If the result of a proposed series of spoctral translations is represented as a matrix $[\Lambda]$ in $G F(2)$, then such a series of translations is possible only if the deterainant of $[\Lambda]$ has the value 1 .

$$
-\infty 00-
$$

erg. for the last example

$$
[\Lambda]=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The author is indebted to Nr . B.Ireland, University of Bath, for his advice on the aspectis of field theory discussed here.

127

Expanding the determinant of $[\Lambda]$ by the first column in the usual way gives

$$
\begin{aligned}
|\Lambda|=1 \cdot\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right| & =1.1 \cdot\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right| \\
& =1.1 \cdot\{(1.1)+(0.1)\} \\
& =1.1 .(1+0) \\
& =1.1 .1 \\
& =1
\end{aligned}
$$

where '.' and '+' denote multiplication and addition in $G(2)$ respectively. See Appendix 2 .

This result shows that a series of spectral translations is possible for this example.
?
One other clementary operation exists in $\mathrm{GF}(2)$ wich can be shown to correspond to the interchange of defining variables. (Operation 1 , section 2.4). This is equivalent to an interchange of the rows of $[\Lambda]$.nich does not invalidate Test 1 and is implenentod by a simple interchange if input lines to the final logic module of the circuit.

The functions defined by $[\Lambda]$, where $|\Lambda|=1$, are called a Basis and spectral translation is equivalent to a Basis fransiformation.

Note thet Test 1 is sufficient to define a basis but does not give any infornation about the spectral translations, and thus number of gates, necessary to generate that basis. Test 1 then does not assist in the gate minimisation problen.

It has been shown that spectral translation is best used, from a synthesis point of view, in nappine a high-ordered function onto a lower-orderea function. The most signifficant spectral coefficients aro then translated to first-ordered positions. It follows thet the choice of basis is made from the set of spectral coefficients uhose
magnitudes are the greatest.
For the example of Fig. 33 the spectrun is

$$
\begin{array}{llllllll}
2 & 2 & 2 & 2 & 6 & 2 & -6 & 6 \\
R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14} \\
-6 & -2 & 6 & 2 & -2 & -2 & 6 & -2 \\
R_{23} & R_{24} & R_{34} & R_{123} & R_{124} & R_{134} & R_{234} & R_{1234}
\end{array}
$$

The most significant spectral coefficients are $R_{4}, R_{13}, R_{14}, R_{23}$, R_{34} and R_{234}, each of which have a magnitude of 6 . The basis is therefore chosen from the functions $x_{4}, x_{1} \oplus x_{3}, x_{1} \oplus x_{4}, x_{2} \oplus x_{3}$, $x_{3} \oplus x_{4}$ and $x_{2} \oplus \mathrm{x}_{3}{ }^{\oplus x_{4}}$. Of course if no set of these functions form a basis it would be necessary to include other functions whose corresponding spectral coefficients have a magnitude of 2 .

Cnce a basis has been chosen, that is a set of n of such functions satisfying pest 1 , it is required to find the minimum number of exclusive-OR gates which will generate that basis. A method which enables such a basis to be generated using the minimum number of exclusive-CR gates is given, by means of an example, below.

Suppose, for the function of Fig. 33 the following set of functions is chosen :

Function No.	Function
1	$x_{1} \oplus x_{4}$
2	$x_{2} \oplus x_{3} \oplus x_{4}$
3	$x_{3} \oplus x_{4}$
4	x_{4}

The corresponding $[\Lambda]$ matrix is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It has already been established, see above, that this matrix has a determinant of value 1 , and therefore passes Test 1 . These functions therefore form a bosis.

129

Now inspection of these functions shows that function 4 can be senerated without enploying any exclusive-OR gates, function 3 can be generated usinc one exclusive-OR gate, function 2 requires two exclusivo-OR gates and function 1 requires one exclusive-OR gate. In addition, function 3 can be generated from function 4 using one exclusive-0R gate since $x_{3} \oplus x_{4}=x_{3} \oplus\left\{x_{4}\right\}$, function 2 can be genorated from function 3 using one exclusive-OR gate since $x_{2} \oplus x_{j} \oplus x_{4}=x_{2} \oplus\left\{x_{3} \oplus x_{4}\right\}$ and function 1 cen be generated from function 2 using three exclusive-OR gates since $x_{i} \otimes x_{4}=$ $x_{1} \oplus x_{2} \oplus x_{3} \oplus\left\{x_{2} \oplus x_{3} \oplus x_{4}\right\}$ etc. These results can be obtained directly from the $[\Lambda]$ matrix by noting that

1/ The number of exclusive-OR gates required to synthosise any basis function is given by:\{the number of 1^{\prime} 's appearing in the corresponding row or $[\Lambda]\}-1$.

2/ The number of exclusive-OR gates required to

senerate the i th basis function from the j th basis function is given by the number of differences between the i th and j th rows oin! $\Lambda]$.

This information is best presented as a difference table, denoted as Δ. For the above basis the \triangle table is

Punction				
	1	2	3	4
1	1	3	2	1
2	3	2	1	2
3	2	1	1	1
4	1	2	1	0

, where the entries $\delta_{i, i}, 1 \leqslant i \leqslant n$, are the
number of exclusive-OR gates required to synthesis the i th basis function and the entries $\delta_{i, j}, 1 \leqslant i, j \leqslant n$, are the number of exclusive-CR gates required to generate the i th basis function fron the j th basis function. Fiom the result $x_{i} \oplus x_{j}=x_{j} \oplus x_{i}$ it

130

follows that $\delta_{i, j}=\delta_{j, i}$. Because of this symmetry only a part of this table need be cenerated. In this example

	1	2	3	4
1	1			
2	3	2		
3	2	1	1	
4	1	2	1	0

contains all the required information.

Suppose that it is first decided to generate the fourth function of the basis. This is an obvious choice because no gates are required. $\delta_{4,4}$ is then ringed and the fourth row and column of Δ are ticked to show that they are available for the generation of the remaining

	1	2	3	4
1	1			
2	3	2		
3	2	1	1	
4	1	2	1	0

functions.

- Now several equally attractive alternat-
ives are possible. Functions 1 or. 3 may be generated from function 4 using only one gate. On the other hand functions 1 or 3 may be generated directly using only one gate. Supoose that in this case it is decided to fenerate functions 1 and 3 directly, the \triangle table then becomes

\checkmark	1	2	3	4
1	1			
2	3	2		
3	2	1	1	
4	1	2	1	0

- Now only function 2 remains to be
synthesised. The minimum number of gates necessary to do this is one iff function 2 is fenerated from function 3 , which is available. This gives the final Δ table as

	1	2	3	4
1	1			
2	3	2		
$\checkmark 3$	2	1	1	
$\checkmark 4$	1	2	1	0

- KIl the basis functions have now been

131

synthesised and the total number of gates used, which is the sum of the rinced numbers, is three*. In practice, when an cqual choice is presented between elements on the diaconal of \triangle and elements not on the diagonal , the diagonal elements are chosen . This reduces the progation time oi the final circuit.

In general , if a basis is chosen where a spectral trenslation from say, third order to first order is impliel then it is clear that at least two exclusive-or gates will be required, irrespective of the actual method of synthesis. This observation gives rise to

Lemma 1.

The absolute minimum number of exclusive-oR gates required to synthesise a basis is equal to the hichest number of exclusive-oR gates required to generate any function of that basis.

$$
-\infty 00-
$$

In the example above the basis function requiring the highest number of exclusive-OR gates for its direct generation is function 2 which requires two gates. The absolute minimum number of gates required to synthesise the basis is thus two, which is one gate less than that found necessary in practice.

The minimisation of the number of exclusive-OR gates required to convert a function to its meximally first-ordered form is Given by :

1/ Arrance the spectral coefficients in order of magnitude. (Excepting R_{0})
2/ Find the bases which correspond to the highest and equal-hichest mafonitude sets of spectral coefficients.

3/ Apply the gate minimisation procedure to each of these candidate bases in turn.

4/ Select the solution giving the minimurn number of gates.
In practice the number of candidate bases, $n \leqslant 7$, turns

* Fig. 33 shows the inplementation of this solution. (Sse p.123)
out to be small. This procedure is therefore quickly executed by means of the digital computer.

In the case of threshold logic, where a negative veight capability does not exist, it has been shown that for every negative valued spectral coefficient translated to first-order a complementing gate muot be introduced in the final circuit. If therefore it is required to minimise the number of gates under these circumstances a modified minimisation procedure must be employed.

As an illustration of these methods consider the function shown in Fig. $31, p$ 117. The circuit of Fig. 31a was synthesised without recard to gate minimisation by the repeated application of spectral translation. See Section 2.5.4a. If gate minimisation is employed however the circuit of Fig. 31b results, which shows both a saving of one exclusive-OR gate and one inverter gate tofether with a reduction in circuit complexity.

2.6 Disjoint Spectral Translation.

2.6.1 Defining oneration.

An operation will now be considered which differs in implementation from those considered above in that a feed-forward signal path is croated.

Oneration 6
The interchange of spectral coerficients R_{O} and R_{k},
$1 \leqslant k \leqslant n$.
Let the given function be $\mathbb{F}\left(x_{1} ; x_{2}\right.$, . , x_{k}, . . $\left.x_{n}\right)$. Derine a new function by $F\left(x_{1}, x_{2}\right.$, . , $\left.x_{k}, \ldots, x_{n}\right)$
$\triangleq x_{k} \oplus F^{\prime}\left(x_{1}, x_{2}, \ldots, x_{k}, \vdots ., x_{n}\right)$

- . (2.16)
* Dertouzos has considered an operation similar to this under the heading of 'equidualisation', Ref. 20 .

Where the Given function has the spectrum $\langle R\rangle$ and the new function $F^{\prime}\left(x_{1}, x_{2}, \cdot, x_{k}, \ldots, x_{n}\right)$ has the spectrum $\left\langle i^{\prime}\right\rangle$.

Substitution of equation (2.7) in equation (2.16) fives

$$
\begin{aligned}
R_{k} & =2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{k, j} \oplus F_{\psi_{j-1}}\left(x_{1}, x_{2}, \ldots, x_{k}, \cdots, x_{n}\right)\right\} \\
& =2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{k, j} \otimes x_{k, j} \oplus F_{\psi_{j-1}}^{\prime}\left(x_{1}, x_{2}, \cdots, x_{k}, \cdots, x_{n}\right)\right\} \cdot(2 \cdot 17) \\
& 1 \leqslant k \leqslant n \quad \cdots
\end{aligned}
$$

But $x_{k, j} \oplus x_{k, j} \triangleq 0 \triangleq x_{0, j}$, see section 2.2.2, and the right hand side of equation (2.17) reduces to

$$
2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{0, j} \oplus F_{\psi_{j-1}^{\prime}}^{\prime}\left(x_{1}, x_{2}, \cdot,, x_{k}, \cdot, x_{n}\right)\right\} \cdot \cdot \cdot(2.18)
$$

which" is by definition equal to R_{0}^{\prime}. See section 2.2.2. Similarly

$$
\begin{aligned}
R_{I} & =2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{l, j} \oplus F_{j-1}\left(x_{1}, x_{2}, \cdots, x_{k}, \cdots, x_{n}\right)\right\} \\
& =2^{n}-2\left\{\sum_{j=1}^{2^{n}} x_{l, j} \oplus x_{k, j} \oplus F_{j-1}^{\prime}\left(x_{1}, x_{2}, \ldots, x_{k}, \cdots, x_{n}\right)\right\} \cdot(2.19) \\
& \triangleq R_{k l}^{\prime} \\
& \text { It can also be shown that }
\end{aligned}
$$

$$
\begin{aligned}
& R_{k}^{\prime}=R_{0}^{\prime}, \\
& R_{1}^{\prime}=R_{l i}, \\
& R_{l c l m}^{\prime}=R_{l m}, R_{l m}^{\prime}=R_{k l m} \quad \text { etc. }
\end{aligned}
$$

These results give rise to the following theorem :
2.6.2 The Theorem of Disjoint Spectral Translation.

$$
\text { If , given a Boolean function } F\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)
$$

having a spectrum 〈? it is required to generate a new function

134

$F^{\prime}\left(x_{1}, \ldots, x_{k}, \cdots, x_{n}\right)$ having a spectrum R^{\prime}, where $F\left(x_{1}, \ldots, x_{k}, \cdots, x_{n}\right) \triangleq x_{k} \oplus F^{\prime}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$ then $\langle R\rangle$ may be generated from〈n〉if:
in every subscript of the spectral coeficients of $\langle R\rangle$
k is deleted if it exists and is appended if it does not.

$$
-\infty 00-
$$

Hotes on the theoren -
1/The theorem is termed'disjoint' because it enables one of the defining variables of the oriçinal function to be separated from its fellows and gives rise to a feed-forward signal path, as described belov. Unlike the operations that have so far been considered, disjoint spectral translation has the property that it can, where applic?ble, convert one function to another even though the functions have difierent ratios of true/false minterms.
a/ For the special spectral coofeicients R_{0}, R_{k} the theorem is applied as follows :

$$
\begin{aligned}
& R_{0} \triangleq R_{\mathrm{Ok}}^{\prime} \triangleq \mathrm{R}_{\mathrm{k}}^{\prime} \\
& \mathrm{R}_{\mathrm{k}} \triangleq \mathrm{R}_{\mathrm{K}}^{\prime} \triangleq \mathrm{R}_{\mathrm{O}}^{\prime}
\end{aligned}
$$

3/ The theorem defines an operation which allows the zeroordered spectral coefficiont of any Boolean function to be interchanged with any first-ordered spectral coefficiont. If the operation is repeated it follows that the zero-ordered coefficient may be interchenged with any spectral coefficient.

2.6.3 Intororetation anc Irmpomentation of Disjoint

Fig. 3 ta shows the implencntation of the Soolean
function $F\left(x_{1}\right.$, . . $\left.x_{1}, \ldots, x_{n}\right)$ havine a spectrun $\langle p\rangle$. iccording to the above this function is replaced by $x_{k} \oplus F^{\prime}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$ where $\exists^{\prime}\left(x_{1}, \ldots, x_{k}, ~ ., x_{n}\right)$ is a nev function aith spectrum

Fig.34a

Fig.34b

136

function of the system remains unchanged.
This operation has resulted in the creation of a feed-forward signal path. If the operation is repeated for two different derining variables then two Porward signal paths will be created, and so on.
2.6.4 Significance of Disjojnt Svectral Tranclation.
2.6.4a In Ioric Synthesis.

The operation of disjoint spectral translation permits certain functions, which are not translationally equivalent, to be converted one into another. The practical importance of this lies in that it extends the versatility of threshold logic and permits more elegant syntheses in terms of vertex logic.

The implementation of this operation is very straightforvard as was shown in the previous section.
2.6.4b In Boolean Function Classification.

Disjoint spectral translation gives rise to a
classification of Boolean functions which is more compact than that of translational equivalence (Section 2.5.3a) as is shown below. The folloving classification of Boolean functions is
proposed :
A Boolean function $F_{1}\left(x_{1}, \cdots, x_{n}\right)$ is classified
disjointly-trenslationally -equivalent to another Boolean function $F_{2}\left(x_{1}\right.$, .,$\left.x_{n}\right)$, of the same order, if $F_{1}\left(x_{1}, \ldots, x_{n}\right)$ can be mapped onto $F_{2}\left(x_{1}, \ldots, x_{n}\right)$ by the permutation and/or complementation of the defining variables and/or the , perhaps repeated, application of the theorems of spoctral translation and/or disjoint spectral translation

Again the tables of canonic function spectra can be drawn up together with optimum syntheses, as in section 2.5.3b. In this case however R_{0} is designated the highest magnitude then the firstorder coefficients, and so on.

This procedure has been carried out for all Boolean functions, $n \leqslant 4$, and the associated table appeans in Appendix 5. The complements of these functions do not appear and are given by Operation 4.

This table shows that the 65,536 functions are classifiable into 8 categories. In practical terms this means that eight logic modules together with the necessery exclusive-OR gates and inverter gates are able to synthesise any Boolean function, $n \leqslant 4$. In fact only seven logic modules are required in practice since function 110 . 1 in the table corresponds either to a simple connection or a noconnection.

Perhaps more suprising is the fact that only one of the classes of functions is not a threshold function. (Threshold functions are marked 'Tl'). This shows that single threshold gates may be used to synthesise the majority of Boolean functions, $n \leqslant 4$, using the above technicues. Some comment will be made on the synthesis of the non-threshold function, function No. 8 , Iater.

The fact that this classification is more compact than that of translational equivalence is shown by noting that the latter gives eighteen classes of functions wheras this method gives eight. See also Appendix 3.
2.6.5 Aoplication to Threshold Logic Synthesis.

Boolean functions which may be converted to threshold functions by the operation or disjoint spectral translation will be said to have threshold functions 'disjointly-embedded' within then.

As an example of a function which contains a disjointlyombedded threshold function consider the function given by the Karnaug map of Fige $33, p 123$, which has the spectrum

$$
\begin{array}{llllllll}
2 & 2 & 2 & 2 & 6 & 2 & -6 & 6 \\
R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14} \\
-6 & -2 & 6 & 2 & -2 & -2 & 6 & -2 \\
R_{23} & R_{24} & R_{34} & R_{123} & R_{124} & R_{134} & R_{234} & R_{1234}
\end{array}
$$

Now it is clear from the tables of positive characteristic vectors , Appendix 4 , that the only threshold function that can be embedded in the above function is that which has a characteristic vector $6 \quad 6 \quad 6 \quad 6 \quad 6$. However the above function cannot be converted to this form by spectral translation, (Operation 5), since R_{0} would retain its value '2'. If disjoint spectral translation, (Operation 6), is employed however this problem is overcome as shown below.

1/ Translating $R_{0}^{\prime}=R_{4}$ under disjoint spectral translation Sives

$$
\begin{array}{llllllll}
6 & 6 & -2 & 6 & 2 & -2 & -2 & 2 \\
R_{0}^{\prime} & R_{1}^{\prime} & R_{2}^{\prime} & R_{3}^{\prime} & R_{4}^{\prime} & R_{12}^{\prime} & R_{13}^{\prime} & R_{14}^{\prime} \\
6 & 2 & 2 & -2 & 2 & -6 & -6 & 2 \\
R_{23}^{\prime} & R_{24}^{\prime} & R_{34}^{\prime} & R_{123}^{\prime} & R_{124}^{\prime} & R_{134}^{\prime} & R_{234}^{\prime} & R_{1234}^{\prime}
\end{array}
$$

2/ Translating $R_{2}^{n}=R_{23}^{\prime}$ under spectral translation
(Operation 5) gives

$$
\begin{array}{llllllll}
6 & 6 & 6 & 6 & 2 & -2 & -2 & 2 \\
R_{0}^{\prime \prime} & R_{1}^{\prime \prime} & R_{2}^{\prime \prime} & R_{3}^{\prime \prime} & R_{4}^{\prime \prime} & R_{12}^{\prime \prime} & R_{13}^{\prime \prime} & R_{14}^{\prime \prime} \\
-2 & -6 & 2 & -2 & 2 & -6 & 2 & 2 \\
R_{23}^{\prime \prime} & R_{24}^{\prime \prime} & R_{34}^{\prime \prime} & R_{123}^{\prime \prime} & R_{124}^{\prime \prime} & R_{134}^{\prime \prime} & R_{234}^{\prime \prime} & R_{1234}^{\prime \prime}
\end{array}
$$

3/ Translating $\mathrm{P}_{4}^{\prime \prime \prime}=\mathrm{R}_{24}^{\prime \prime}$ under spectral translation
(Operation 5) Sives

$$
\begin{array}{llllllll}
6 & 6 & 6 & 6 & -6 & -2 & -2 & 2 \\
R_{0}^{\prime \prime \prime} & R_{1}^{\prime \prime \prime} & R_{2}^{\prime \prime \prime} & R_{3}^{\prime \prime \prime} & R_{4}^{\prime \prime} & R_{12}^{\prime \prime \prime} & R_{13}^{\prime \prime} & R_{14}^{\prime \prime \prime} \\
-2 & 2 & 2 & -2 & 2 & 2 & 2 & -6 \\
R_{23}^{\prime \prime \prime} & R_{24}^{\prime \prime \prime} & R_{34}^{\prime \prime \prime} & R_{123}^{\prime \prime \prime} & R_{124}^{\prime \prime \prime} & R_{134}^{\prime \prime \prime} & R_{234}^{\prime \prime \prime} & R_{1234}^{\prime \prime \prime}
\end{array}
$$

Fig. 35

The first $(n+1)$ spectral coefficients of this function have a marnitude of 6 which characterises it as a threshold function. Computing the gate parameters in the usual way, see Section 2.5.4a, and implementing the above translations in terms of exclusive-or gates gives the circuit of Fig. 35 .

It has been shown , see the previous section, that the majority of fourth-order Boolean functions may be synthesised by using both spectral translation and disjoint spectral translation.

A possible method for the synthesis of functions which do not have threshold functions embedded or disjointly embedded within then is to divide the function into two parts, $x_{k} \cap F\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$ and $\bar{x}_{k} \cap \mathbb{F}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$, and to apply the above synthesis procedures to each of these functions in turn. Since these functions do not intersect in n space the resultant syntheses may be OR-ed together. In the case where this procedure produces another function which does not have an embeded threshold function the division is repeated in terms of another defining variable.

Consider the function of Fig. 36a which does not contain a threshold function. (It falls into canonic class 8 Appendix 5). Supose that this function is divided as $x_{1} \cap F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\bar{x}_{1} \cap F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. See Fig. 36b and Fig. $36 c$ respectively. If the syntheses of these two functions are carried out in the usual way the circuit of Fi . 36 d results.

It can be shown that any Boolean function can be synthesised in this way. This follows from the fact that if this division procedure is repeated exhaustively each true minterm will ultimately be extracted separately. Now a function having only one true ninterm is always linearly-separable. (A threshold Aunction).

2.6.6 ADplication to Vertor Josic Synthesis.

It has been found in practice that the application of disjoint spectral translation ofton gives a more elegant synthesis than the operation of spectral translation. This however is not alvays the case. At present the criteria which determine if the use of disjoint spectral translation will give an optimum solution are not know.

As an intoresting example of a case where disjoint spectral translation may be used to advantage consider a 2 out -of 5 circuit. A synthesis, which is believed to employ the minimum number of vertex gates has been published by Karp et al, see reference 30 . This is shown in Fig. 37. An attempt to synthesise this function using spectral translation did not show any advantage over the synthesis of Karp, although admittedly only a simple twolevel synthesis of the final logic module was attempted. Under disjoint spectral translation however the circuit if Fis. 38 was produced. This circuit shows a saving of three gates and two interconnections over the circuit of 3 ig. 37. It should be noted that the circuit produced by the author may still not be minimal since again only a simple two level synthesis of the function produced by translation methods has been attempted. The maximum propagation delay for both circuits is identical.

2.7 A Statistical Synthesis method.

2.7.1 Introuction.

It has been shown by Searle, see reference 25 , and others
that the distribution of information in the spectrum of a function is not Iinear. Indeed in many cases only a small number of the spectral coefficients of a function are necessany to completely define the function, the remaining coefficients being redundant.

* With the aid of the statistical method described in Section 2.?
144

An example of a function having this property is a threshold function Where only ($n+1$) of its coefficients are required.

Now each spectral coerficiont is a neasure of the correlation between the defining function and each of the Rademacher/Walsh functions. It follows that coofficients of relatively large magnitude indicate that the associated function closely resembles the Rademacher /Walsh functions on which these coefficients are defined.

It beens intuitively correct to suppose that if some of the lergest spectral coefficients of a function are known it should be possible to predict the distribution of the minterms of that function on a statistical basis. If this is possible it follows that functions may be synthesised on a statistical basis from only the most significant spectral coeflicients, with a consequent saving of both data storage and computer programe execution time.

2.7.2 Spectral Coefficients and the Distribution of Minterms The transform operation, see section 2.2.2, may be

defined as

$$
R_{i j \ldots m}=n_{a}-n_{d} \quad \cdots(2.20)
$$

Where n_{a} is the number of agreements between the defining function and the function $x_{i} \oplus x_{j} \oplus \cdot \oplus \oplus x_{m}$, and n_{d} is the number of disagreenents between the defining function and $x_{i} \oplus x_{j} \oplus \cdot \bullet \oplus x_{m}$ •

$$
\text { How } \quad n_{a}+n_{d}=2^{n}
$$

since the defining function must either agree or disagree with
$x_{i} \oplus x_{j} \oplus$ • • $\oplus x_{n}$ at all n-tuples.
Substituting for n_{d} in equation (2.20) gives

$$
\begin{align*}
R_{i j \ldots n} & =n_{a}-\left(2^{n}-n_{a}\right) \\
& =2 n_{a}-2^{n} \tag{2.22}
\end{align*}
$$

Whence

$$
\begin{equation*}
n_{a}=\frac{R_{i j \ldots \cdot n}+2^{n}}{2} \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
n_{d}=\frac{2^{n}-R_{i, j \ldots m}}{2} \tag{2.24}
\end{equation*}
$$

For the special case R_{0}

$$
\begin{equation*}
n_{d}=\frac{2^{n}-n_{0}}{2}=N \tag{2.25}
\end{equation*}
$$

where n is the number of true minterms of the function.
For all spectral coefficients with the exception of R_{0}

$$
n_{a}=T+F
$$

$$
\ldots(2.26)
$$

Where T is the number of true minterms of the defining function in the space $x_{i} \oplus x_{j} \oplus \cdot \omega \theta x_{m}=1$ and F is the number of false minterms of the defining function in the space $x_{i} \oplus x_{j} \oplus .0 \oplus x_{m}=0$ Since the space covered by $x_{i} \oplus x_{j} \oplus .0 \oplus x_{m}=0$ is $2^{n} / 2 n$-tuples it follows that the number of true minterns in this space is $\frac{2^{n}}{2}-F^{2}$, and thus the total number of true minterms of the defining function, il, is given by

$$
\begin{equation*}
M=T+\left(\frac{2^{n}}{2}-P\right) \tag{2.27}
\end{equation*}
$$

Substituting for F in equation (2.27) from equation (2.26)
gives

$$
\begin{align*}
M & =T+\frac{2^{n}}{2}+T-n_{a} \\
& =2 T+\frac{2^{n}}{2}-n_{a} \tag{2.28}
\end{align*}
$$

Substituting for n_{a} in equation (2.28) from equation (2.23) gives

$$
\begin{align*}
M & =2 T+\frac{2^{n}}{2}-\frac{R_{i j \cdot \cdot m}}{2}-\frac{2}{n}^{n} \\
& =2 T-\frac{R_{i, j \cdot 0}}{2} \tag{2.29}
\end{align*}
$$

Equating (2.29) and (2.25) gives

$$
\frac{2^{n}}{2}-\frac{R_{0}}{2}=2 T-\frac{R_{i, j \cdot \cdot n}}{2}
$$

then

$$
T=\frac{1}{4}\left(2^{n}+R_{i j \ldots m}-R_{0}\right) \quad \cdots(2.30)
$$

Now T is the number of true minterms in the space where $x_{i} \oplus x_{j} \oplus . \oplus x_{m}=1$. The number of true minterms of the function is given by equation (2.25).

The importance of this result lies in the fact that the distribution of true and false minterms of a function with respect to any Rademacher/Walsh function can be determined exactly given the corresponding spectral coefficient and R_{0}.

For example suppose that a fourth-order Boolean function has the spectrum

$$
\begin{array}{clllllll}
10 & 6 & 6 & 2 & 2 & -6 & -2 & -2 \\
R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14} \\
& & & & & 12 & \\
-2 & -2 & 2 & 2 & 2 & -2 & -2 & 2 \\
R_{23} & R_{24} & R_{34} & R_{123} & R_{124} & R_{134} & R_{234} & R_{1234}
\end{array}
$$

The number of true minterms, from equation (2.25), is given ${ }^{2}$ by

$$
M=\frac{2^{n}-R_{0}}{2}=\frac{16-10}{2}=3
$$

The number of true minterms in the space where $x_{1}=1$, from equation (2.30), is given by

$$
\begin{aligned}
T & =\frac{1}{4}\left(2^{n}+R_{1}-R_{0}\right) \\
& =\frac{1}{4}(16+6-10) \\
& =3
\end{aligned}
$$

Similarly the number of true minterms in the space where $x_{3} \oplus x_{4}=1$ is given by

$$
\begin{aligned}
T & =\frac{1}{4}\left(2^{n}+R_{34}-R_{0}\right) \\
& =\frac{1}{4}(16+2-10) \\
& =2 \quad \text { and so on } .
\end{aligned}
$$

Appendix 1 shows all the fourth order Rademacher/Walsh functions plotted on Karnaugh maps.

Now it is of interest to be able to calculate the number of true minterms occuring in spaces corresponding to the intersections of different Rademacher/Valsh functions in order that the
complete distribution if true and false minters may be established. Tor example if, for a fourth order Boolean function, it is known that the space $x_{1} \cap\left(x_{2} \oplus x_{3}\right)=1$ contains four true minterms then, since this space contains only four n-tuples, it follows that $x_{1} \cap\left(x_{2} \oplus x_{3}\right)$ is a factor of the defining function. See Fig. 39 .

It is possible to statistically predict the distribution of true and false minterms at the n-tuples cores ending to the intersection of two or more Radenacher/Walsh functions by using the statistical theory of expected values.

2.7.3 Expected Values.

Suppose that a random set of objects are classified under two independent categories and that the number of objects falling into each catagony is noted. The number of objects, on average, falling into both categories is then given by

$$
\hat{e}=\frac{T_{1} \times T}{11} \quad \bullet \cdot(2.31)
$$

where T_{1} is the number of objects falling into the first category, T_{2} is the number of objects falling into the second catasory and M is the total number of objects. (It is assumed that all objects fall into one or other of tho categories) \hat{e} is called an estimated value, see reference 31.

If the objects are classified under three independent categories then the number of objects falling into all three categories is then, on average,

$$
\hat{e}=\frac{\tilde{T}_{1} \times T_{2} \times 3}{11^{2}} \quad \cdot \cdot(2 \cdot 32)
$$

and so on.
The same theory may be applied, with restrictions, to the estimation of the number of true minterms of a randomly selected Boolean function which lie in a space defined by two ow more linearly independent Functions.

Fig 39

$T_{1}=8, M=8 . \quad T_{2}$ must take value 4
Fig. 40

151

Supose that in a Boolean Iunction it is known that the total. number of true minterms, $1 f$, is 7 ; the number or true minterms, T_{1}, in the space $x_{1}=1$ is $?$, and the number of true minterms, T_{2}, the space $x_{2} \oplus x_{3}=1$ is 4 . This data may be derived from the spectrum of the function as previously described. Since the functions x_{1} and $x_{2} \oplus x_{3}$ are Iinearly independent, see Appendix 2 , the estimated number of true minterms in the space $x_{1} \cap\left(x_{2} \oplus x_{3}\right)$ is given from equation (2.31) by

$$
\begin{aligned}
\hat{e} & \simeq \frac{7 x 4}{7} \\
& \simeq 4
\end{aligned}
$$

If this Iunction is fourth order the space corresponding to the intersection of these two functions occupies only 4 n -tuples, thus on average $x_{1} \cap\left(x_{2} \oplus x_{3}\right)$ con be expected to be a factor of the defining function.

Unfortumately this estimated value is only aporoximate*because although the functions x_{1} and $x_{2} \oplus x_{3}$ are linearly independent the results T_{1} and T_{2} are not mutually exclusive . This axises from the fact that a finite n-space is being considered. The fact that two such tests, M_{1} and T_{2}, are in fact related can be shown by the extreme example of $\operatorname{si} 3.40$. The total number of true minterms is 8 and the number of true ninterms in the space $x_{1}=1$ is also 8. It follow that the number of true minterms in the space $x_{2}=1$ must be 4 - That is, the last result may be predicted from the two previous results ; the measuromonts are therefore not mutually exclusive. This is in effect a re-statement of the fact that the information about a Iunction is not evenIy distributed about the spectral coofficionts of that function.

* A mothod of evaluating \hat{e} ezactiy is known but is very complex and is not suitable for implementation on the digital computer.

152

In practice the statistic \hat{e} has been found sufficiently accurate for it to be employed in the synthesis method described in the next section. Nevertheless further research is warranted to investigate the general relationships between the exact and approximate forms of \hat{e}.
2.7 .4 The Procedure.

The method of Boolean function syn thesis using the
approximate statistic \hat{e} is now given by means of an example.
Consider the fourth-order Boolean function of Pig. $41 a$.
The spectrum of this function is
$\begin{array}{llllllll}6 & 6 & 2 & -2 & 2 & 2 & -2 & 2 \\ R_{0} & R_{1} & R_{2} & R_{3} & R_{4} & R_{12} & R_{13} & R_{14}\end{array}$
$\begin{array}{llllllll}2 & -2 & 2 & 2 & -2 & 2 & -10 & 6 \\ R_{23} & R_{24} & R_{34} & R_{123} R_{124} R_{134} R_{234} & R_{1234}\end{array}$
Step 1
Choose a sub-set of four of the most significant of the spectral coefficients whose defining Pademacher/Walsh functions form a Basis, see Section 2.5 .5 and Appendix 2 .

A suitable sub-set is *

$$
\begin{array}{cccc}
-10 & 6 & 2 & -2 \\
R_{234} & R_{1} & R_{2} & R_{3}
\end{array}
$$

Step ?

> Compute the number of true minterms of the function
from equation (2.25)

$$
\begin{aligned}
n & =\frac{2^{n}-R_{0}}{2}=\frac{16-6}{2} \\
& =5
\end{aligned}
$$

* Note that the apparently more significant sub-set

$$
\begin{array}{cccc}
-10 & 6 & 6 & 2 \\
R_{234} & R_{1234^{R}} & R_{2} & \text { does not define a basis since } \\
& & |\Lambda| \neq 1 \text {, see section } 2.5 .5 .
\end{array}
$$

153

Sten 3
Compute the number of true minterms in the spaces corresponding to the functions on which the basis has been defined using equation (2.30).

Draw up a table showing the result together with the basis functions.

$\begin{aligned} & \text { Spectral } \\ & \text { Coeff. } \end{aligned}$	Value	Basis Function	T
R_{234}	-10	$\left(\overline{x_{2} \oplus x_{3} \oplus x_{4}}\right)$	5
r_{1}	6	x_{1}	4
R_{2}	2	x_{2}	3
R_{3}	-2	\bar{x}_{3}	3

?
Note that in the case where a spectral coefficient is negative the basis function is complenented and T is evaluated for the corresponding value of R made positive. In the case of R_{234} above the result is interpreted as there being 5 true minterms lying in the space defined by $\left(\overline{x_{2} \theta x_{3} \oplus x_{4}}\right)=1$. Similarly 3 true minterms lie in the space $\bar{z}_{3}=1$.

Sten 4
Find any factors of the function which occupy $\frac{2^{n}}{2},(8)$, n-tuples \cdot

Since this function contains only 5 true minterns no
such ractors exist.
Sten 5
Find ony factors of the function which occupy $\frac{2^{n}}{4}$, (4), n-tuples.

A Pactor space of 4 n-tuples corresponds to the space defined by the intersection of any two of the functions

GIVEN FUNCTION

Fig. 41 a

$x_{1} \cap\left(\overline{x_{2} \otimes x_{3} 0 x_{4}}\right) \quad \begin{aligned} & \text { FIRST TOR } \\ & \text { FAC Tor }\end{aligned}$
$=x_{1} \cap\left(x_{2} \oplus \bar{x}_{3} \oplus x_{4}\right) \quad$ Fig.41b

$x_{2} \cap \bar{x}_{3} \cap x_{4}$
SECOND
FACTOR
Fig. 41 c

FINAL
CIRCUIT
Fig. 41d

155

of the chosen busis. Tho pair of functions which correspond to the highest vanes of T are first chosen since these give the (statistically) highost probability of finding 4 true minterms at their intorsoction.

Choosing the space $\left(\overline{x_{2} \otimes x_{3} \oplus x_{4}}\right) \cap x_{1}=1$ and calculating the estimated average number of true minterms in this space from equation (2.31) gives

$$
\begin{aligned}
\hat{e} & \simeq \frac{T_{1} \times T_{2}}{M}=\frac{5 \times 4}{5} \\
& \simeq 4
\end{aligned}
$$

It is therefore expected that 4 true minterms exist in this space. In fact this is so, see Fic. 41 b .
$\left(\overline{x_{2} \oplus x_{3} \oplus x_{4}}\right) \Omega x_{1}$ is therefore a factor of the given function.
If this procedure is repeated for the next two nost significant basis functions, $\left(\overline{x_{2} \ominus x_{3} \otimes x_{4}}\right) \cap x_{2}$, \hat{e} is found to be $\frac{5 \times 3}{5}=3$. This is intorpreted as a small chance of finding 4 true minterms at the intersection space.

In practice, for fourth-order functions, having embedded or disjointly-embedded threshold functions, see Sections 2.5.3b and 2.6.4b, if the ratio $\hat{e} /$ (No. of n-tuples in intersection space) $\geqslant .9$ then the function defining the space is always a factor. This rosult is empirical and the equivalent result for functions of higher than fourth-order is not known.

In the case of the function under consideration no further factors occupying $\frac{2^{n}}{4}$ n-tuples can be found.

Sten 5
Find any factors which occupy $\frac{2^{n}}{8},(2)$, n-tuples. A factor space of 2 n-tuples corresponds to the space defined by the intersection of any three of the basis functions. Again the functions related to the highest values of T are chosen.

156

It is important to note that in this case there is no point in considering the space $\left(\overline{x_{2}} \odot x_{3} \oplus x_{4}\right) \Omega x_{1} \Omega x_{2}=1$ as this is included in the factor space $\left(\overline{x_{2}} 9 x_{3} \oplus x_{4}\right) \cap x_{1}=1$ which has already been found.

The space next most likely to be a factor space is given by $\left(\overline{x_{2} \oplus x_{3} \oplus x_{4}}\right) \cap x_{2} \cap \bar{x}_{3}=1$, see previous table.

Computing \hat{e} for this space, from equation (2.32) gives

$$
\hat{e} \simeq \frac{T_{1} \times 2^{T} 3}{M^{2}} \simeq \frac{5 \times 3 \times 3}{5 \times 5}
$$

$$
\simeq 1.8
$$

That is, the average number of true minterms in this 2 n tuple space is, on average, approximately 1.8 .

The ratio $\{\hat{e} /$ (1io. of n-tuples in intersection space) $\}=\frac{1.8}{2}$

This space is a factor . Soe Fig. 41c.
In fact all factors necessary to synthesise the function have been found.

Step 6

Design the circuit.
The expression for the second factor must first be simplified.

The following relationships are noted

$$
\begin{aligned}
\left(\bar{x}_{a} \oplus x_{b}\right) & =\bar{x}_{a} \oplus x_{b}=x_{a} \oplus \bar{x}_{b} \\
x_{a} \Omega\left(x_{a} \oplus x_{b}\right) & =x_{a} \Omega \bar{x}_{b}
\end{aligned}
$$

Using these relationships the second factor may be simplified as

$$
\left.\begin{array}{rl}
\left(\overline{x_{2}} \oplus x_{3} \ominus x_{4}\right.
\end{array} \cap x_{2} \cap \bar{x}_{3}=\left(x_{2} \oplus x_{3} \oplus \bar{x}_{4}\right) \cap x_{2} \cap \bar{x}_{3}\right) ~\left(\overline{x_{3} \oplus \bar{x}_{4}}\right) \cap x_{2} \cap \bar{x}_{3} \quad\left(\bar{x}_{3} \oplus \bar{x}_{4}\right) \cap x_{2} \cap \bar{x}_{3}
$$

$$
=x_{4} \cap x_{2} \cap \bar{x}_{3}
$$

Now the inst iactor : $x_{1} \cap\left(\overline{x_{2} \subseteq x_{3}} \overline{x_{4}}\right)$ may be written as $x_{1} \cap\left(x_{2}\right.$ \& $\left.\bar{x}_{3} \oplus x_{4}\right)$.

The implementation of each of these functions appears in Pigs. 41 b and 41 c and the Iinal. synthesis is shown in Fig .41 d .

$$
-000-
$$

The method described above appears a little todious but in Pact fast interactive designs cen be achieved by employing these techniques on the digital computer. The simplification of the factor equations is also readily computable.
2.7.5 Notes on the llothod

More research is necessary into gate minimisation criteria for this method and also the significance of the statistic \hat{e} for functions of order $n \geqslant 5$. The following points are noted.

1/ A more elegant synthesis is often obtained if the true minterms of a given factor are removed from the function and the nethod repeated for the remaining true minterms. This is because the method evaluates the highest common iactors irrespective of the number of gates required.

2/ The choice of basis set has a large influence on the number of gates employed in the final circuit.

3/ The method has been employed successiully for the symthesis of functions of up to ninth-order. Because the nature of the statistic \hat{e} is not well lnown for orders of greater than four each factor is checked, in these cases, by executing the (inverse) fast Walsh trensform for the requirod spectral coeficients. The factors can then be compared with the defining function in the Boolean domain.

4/ The method is difficult to apply to functions which do not have embedded or disjunctively-embedded threshold functions, see

Sections 2.5.3b and 2.6.4b . For these functions tho statistic \hat{e} is very approximate . This follows from the fact that more then $(n+1)$ spectral coefficients are required to define these functions, Some of the required information to compute \hat{e} therefore lies outside of the basis functions on which \hat{e} is computed. It is felt that another statistic may be found wich will enable the synthesis of these functions.
2. 8 Further Avolications.
2.8.1 Kultiple-output Syathosis.

When mony functions must be simultanoously realized
it is clearly advantageous to make the best use of any common factors the functions may have.

If, therefore, spectral translation is to be employed in the synthesis of such a set of equations, it is possible to set aside a logic module which is capable of executing all of the required translations for the set of equations. Now if some of these translations are identical then this module will be simplified. This anounts to the extraction of the common factors of the functions.

It follows that the judicious choice of coefficients to be translated enables the general method of spectral translation to simplify multiple-output synthesis.

Purther research is necessary to find the best methods of detormining such comon ractors.

2.8.2 Synthesis of Tunctions Containins 'Don't Cares'.

So far only functions which are completoly specified
have been considered. Functions with don't care conditions give rise to spectral coefficients which may take a range of values, but not independently. At present the optinum method of synthesising

```
such functions is not lnown.
    One appaoach to this problem is to give the don't care minterms
the value \frac{1}{2}, that is a value half way between the Boolean values
O and 1. The spectrum of the function may then be evaluated and
analysed statistically as shown in Soction 2.7 . The don't care
mintomms may thon be set to 0 or 1 in tumn, the final selection of
values being determined by those values which produce the highest
common factors of the function.
    Eurther research is necessary in this area.
```


2.9 Conclusions.

A matrix transformation technique has been described which enables the Rademacher/Walsh spectrum of any Boolean function to be evaluated. It has been shown that certain pertinent properties of the Boolean function, from which the spectrum is gencrated, may be established by inspection of the spectrum alone. In particular it is possible to establish if the Boolean function is most easily synthesised with or without the aid of exclusive-OR gates.

Certain known operations in the 'spectral domain' have been described and it has been shown that these operations enable 'equivalent' Boolean functions to be classified and synthesised. In the search for a more powerful method of Boolean function classification two novel operations have been developed which generate elegant syntheses of Boolean functions both in terms of vertex and threshold logic. Moreover these operations have been shown to give rise to a very poworful method of Boolean function classification. A method of minimising the number of gates necessary to implement these operations has been demonstrated.

It has been shown that many Boolean functions are characterised by only a few of their spectral coefficients. In the future this means that it may be possible to specify such functions, especially those having a large number of defining variables, using only a small percentage of the data space required at present.

One of the most important results arising from this investigation is that threshold functions, and therefore threshold lozic , play an important role in the composition of Boolean functions. This is especially important in view of the optimised universal threshold gate developed in Chapter 3.

A statistical approach to logic synthesis, using the spectral coefficients of Boolean functions, has been formulated. Although this method is as yet based upon an approximate-estimated-value technique, practical results have been very encouraging. The great advantage of this method is the ease with which certain 'factors' ô̂ a given Boolean function may be extracted. Further research is required in this area.

The execution of the Rademacher/Walsh transform may be carried out, without resorting to matrix multiplication, by means of the fast Walsh transform. This enables the spectrum of functions defined upon large numbers of defining variables to be computed at a. much higher speed than would otherwise be possible. In future this should enable functions to be synthesised, using the above techniques, which heretoiore have been considered too unvieldy.

Clear indications have been given thet the above techniques are applicable to partially specified and multi-output systems. There are also indications that the above methods may be applied to gencral pattern recognition. Unfortunately time has not allowed a. full investigation into these topics.

CHAPTER 3.
Other ResearchWork

3.1.1 Introduction.

A universal threshold lofic gate developed by Dr. S.I. Hurst, University of Bath , is described. Mhis gate has the advantage that the problens associated with thresholding tolerances, encountered in conventional analogue threshold gate design , have been overcome.

It is shown that , by employing the theory developed in Section 2 , a simplified version of this gate is sufficient to enable the synthesis of any Boolean function of fourth-order or less.

The use of this gate in logic design is expected to provide a considerable cost saving over designs produced by ? conventionel methods.
3.1.2 The Universal Mreshold (D.S.D.L) Gete.
S.I. Hurst , University of Bath , has proposed a Digital-Sumation--Threshold-Iogic (D.S.T.I) gate of the type shom in Fig. 42 .

In this design each of the ej.ght inputs , lebelled A-H, are applied to a logic cell. This rov of cells contains conventional digital circuitry and is so connected that if one or more of the inputs A-H have the losical value 1 then a 1 appears at the output z_{1}. In addition, supposing that N of the inputs A-H have the value 1 , this first row of cells trancmits ($11-1$) values of 1 to the inputs of the next, identical, row of cells. Consequently the second row of cells produces an output of 1 on z_{2} if two or more of the inputs

* At the tine of writing this desien is under consideration for a patent application. The design details should therefore be considered as privileged information.
Cell Details, all cells identical:-

$$
\begin{aligned}
R & =[P+P Q],
\end{aligned} \quad S=P Q,
$$

Fig. 42

A-H have the value 1 . This process is continued so that the output z_{3} is set to 1 if three or more of the inputs A-H have the value 1 , and so on . In practice the number of cells required at each stage reduces by one , see Fig. 42 .

Now this conifguration implements a threshold gate where all inputs A-H are veighted 1 and the required output threshold weight may be selected by a suitable connection to one of the outputs $z_{1}-z_{8}$. If an input threshold of weight other than 1 is required, this may be achieved by connecting a suitable number of the inputs A-H together.

In fact, by making suitable input and output connections, any threshold function of order $n \leqslant 4$ may be synthesised using this gate. Because of this property it is temed a Universal threshold gate. ?

Note that, because digital circuitry is used throughout, no analogue thresholding problems arise.
3.1.3 The Optimised Universal Threshold (D.S.E. I) Lo ic Gate. Now, using the theory developed in Section 2, it is possible to show that a reducod version of the gate of Fig. 42 is sufficient to synthesise any threshold* function of order $n \leqslant 4$.

The positive canonic threshold weighting vectors for
$n \leqslant 4$, from Appendix 4 , are

No.	w_{0}^{\prime}	w_{1}^{\prime}	$w_{\dot{2}}^{\prime}$	w_{3}^{\prime}	w_{4}^{\prime}
1	1	0	0	0	0
2	3	1	1	1	1
3	2	1	1	1	0
4	3	2	2	1	1
5	1	1	1	0	0
6	2	2	1	1	1
7	1	1	1	1	1

Consider vector Ho. 4 .
The corresponding throshold gate input weights are
$2,2,1,1$, seo equation (2.14) section 2.5.42. A total input weighting
of $2+2+1+1=6$ is therefore required for this gate.
*Under disjoint spectral translation and Operation 4.

The output weighting is given by equation (2.15), Section 2.5.4a, as

$$
\begin{aligned}
& \frac{1}{2}\left(\left\{\sum_{j=1}^{n}\left|w_{i}\right|\right\}+w_{0}^{\prime}+1\right) \quad \\
=\quad & \frac{1}{2}(6+3+1) \\
=\quad & 5 .
\end{aligned}
$$

Using Operation 4 Section 2.4 hovever, it is alvays possible to render w: negative . The minimum output weigating in this case is then $\frac{1}{2}(6-3+1)$

$$
=\quad 2
$$

Now if the same analysis is applied to euch of the positive canonic veighting voctors of order $n \leqslant 4$ it is found that a universal form of the above gate is sufficiont to synthesise them all. That is; a universal logic gate having a total input weighting of 6 and a total output weighting of 2 suffices to synthesise all threshold functions of order $n \leqslant 4$.

This gate is shown schematically in Fig. 43.
The corresponding inplementation in tems of D.S.T.L circuitry is given in Fice. 44a. This can be seen to represent a considerable saving in complexity over the circuit of Fig. 4? •

This optimised D.S.T.I. Gate has 14 logic gates* and a maximum propagation delay of 6 gates.
3.1.4 Use of the Ontimised Gate.

Now it has been shown, see Section 2 , that any Boolean function of order $n \leqslant 4$ may bo synthesised using threshold logic gates together with the necessary exclusive-or and inverting gates necessary to carry out the operations described in Section 2 .

It follows therefore that the optimised universal threshold
gate described in the previous section can be used in the synthesis
of any Boolean function of order $n \leqslant 4$. Note that functions falline

* 11 logic gates if the 5 -input or gate version is used.

OPTIMISED UNIVERSAL
 THRESHOLD GATE (Schematic)

Fig. 43

OUTPUTS
(WEIGHTED AS SHOWN)

CELL DETAILS

Cells 1-5

Cells 6-9
$R=P+Q$
$S=P \cdot Q$
OPTIMISED D.S.T.L GATE
Note: Cells 6-9 may be replaced
Fig. 44 a . by one 5 -input $O R$ gate.

169

into the disjoint translationally equivalent class 8 , Appendix 5 , require two such gates, see also Section 2.6 .5 . If the synthesis of functions of higher than fourth-order is required this can be accomplished by re-expressing the given function in terns of several fourth-order functions and synthesisins each of these in turn. Some further research is necessary to detemmine the most suitable way of doing this.

If the optimised universal threshold gate in its D.S.T.I. form, Fig. $44 a$, is inspected it will be noted that the propagation delay from input A to the outputs is shorter than from input B to the outputs . Similarly the propaçation delay from input B to the outputs is shortex than that of input C to the outputs, and so on. If, say, only four inputs are to be utilised for a particular synthesis it is clear that to minimise the propagation delay only the top four inputs should be employed. The increase of propagation delay with choice of input is shown schematically in Fig. 43 by an arrow.

The method of synthesising functions using this gate follows closely the general methods of synthesis using threshold logic described in Section 2 . The only differences being the use of Operation 4 and the frequent use of disjoint spectral translation to ensure that the input and output thresholds fall within the bounds of the optimised gate.

In practice it is convenient to employ an optimised universal threshold gate with inverted input capabilities. This ensures that no external invertins gates are necessary at the input to the gate to implement negative thresholds, see Section 2.5.4a. Fig. 44 b shows the optimised gate with this capability . It would also be convenient to have inverted outputs available but this would result in an 18 pin package which is non-standard.

OPTIMISED UNIVERSAL THRESHOLD GATE

Some examples of the use of the gate of Fig. 44 b are given in Appendix 6.

In practice it has been found that, in general , the total number of gates and/or interconnections required in a logic synthesis using this gate are considerably smaller than in a synthesis produced by more conventional methods. The cost of implementing such designs is thus smaller then in conventional methods. (This makes the assumption that the D.S.T.I gate can be produced at a reasonable cost. Consultations with integrated circuit manufacturers indicate that this gate can be produced at a cost comparable with that of conventional T.T.I.)

It is envisaged that a cost saving will also result if this gate is used in Large-Scale-Integration circuits.

Because of the advantages outlined above and also because the methods of designing circuits with this gate are straightforward it is hoped that this gate will, in future, become a standard building block for digital circuit fabrication.
3.2 A Cellular Arithmetic Arvay vith Variable Dynamic Pange. 3.2.1 Introduction.

The research work doscribed below was carried out ${ }^{\dagger}$ during a gencral investigation of the properties of iterative arrays and the ways in which such arrays could be represented by Boolean matrices, see Section 1.5 .5 .

A particular class of these arrays, often termed. cellular arithmetic arrays , has been investigated by several authors, see references $6,32,33$, and present attractive alternatives to more conventional arithmetic units when extremely fast operation is required. Because these arrays are of an iterative nature they are readily fabricated using Iarge-Scale-Integration (I.S.I) techniques, and have the additional advantage that they may be readily extended on a modular basis.

A disadvantage of conventional arithmetic arrays is that they produce more significant'bits! in their results thon in each of the numbers offered to thon. The design described below overcomes this disadvantage and embodies a principle which allows for the multiplication of full floating point numbers.

Following the publication of this design, see reference 34 , Precon and Clair showed that arrays of this type may be used in a digital computer design which employs far fewer separate arithmetic instructions thon conventional computers. See also reforence 35.

A provisional petent for this design was granted in 1970 and a full patent (51122/71), which includes certain additional circuits to extend the versatility of the array, was ililed in Jonuary 1973.

${ }^{\dagger}$ At the beginning of the research period.

3.2.2 Design Philosophy.

Arithmetic units employing itcorative arrays have recently been investigated because of their speed and their ease of fabrication by I.S.I techniques. To take full advantage of the I.S.I methods they consist of two-dimensimal arrays of identical logic 'cells' , the interconnections between cells being identical and having (ideally) no 'crossovers. All array programing is 'edge-fed' to avoid overlays.

The arrays function asynchronously and achieve a very hish computing speed determined solely by the cell and inter-cell propagation delays.

Recent research has contered on integral arithmetic units of this type, see references32,33. The multipliers and dividers developed produce many more significant 'bits' in their results thon in the numbers offered to them. In practice this means that truncation and conversion to floating point format must follow, with a corresponding overall speed penalty.

3.2.3 Array Specification.

The multiplier described here overcomes the drambacks of other systems outlined above and also has other unique features.

Two numbers, each having a binary floating point format, may be multiplied together. The result is expressed as a binary floating noint number having the same number of significant 'bits' as the multiplier or multiplicand.

AIternatively, by external programing , the multiplication of two binary integers may be computed to an accuracy determined by the size of the array.

Finally, the number of cells allocated to the calculation of the exponent and the number of cells allocated to tho significance part of the result may be varied, within the bounds of the array size.

For example, an initial calculation may require an answer of two significant 'bits' and an exponent range of 10 'bits' (2 $\left.2^{1023}\right)$, Whereas a second calculation may require 9 significant 'bits' and an exponent range of 3^{\prime} 'bits' $\left(2^{7}\right)$. Both of these calculations may be executed consecutively using the same (12 bit) array of the type described below. The allocation of the cells employed for significance and exponent calculation being determined by external programing. Whis feature is termed 'variable dynamic range'. 3.2.4 Bricf Desicn Details.

The operation of an integral nuliplier is very straightforward and is illustrated by Fig. 45 . The multiplicand is shifted at each stage and then added to a running subtotal if and only if the relevent nultiplier 'bit' is 1 . The new subtotal and the shifted multiplicand are then passed on to the next rank of cells. This operation results in the number of significant 'bits' appearing in the subtotal being increased by one at each stace.

Inspection shows that this operation is that of conventional multiplication :

$$
\begin{aligned}
& 1011 \text { MuItiplicand } \\
& 101 \text { Multiplier } \\
& 0000 \text { 1st. Subtotal } \\
& 1011 \text { Nultiplior bit '1', add multiplicand } \\
& 1011 \text { 2nd. Subtotal } \\
& 0000 \text { Shift Nultiplicand times '0' } \\
& \overline{01011} 3 \text { 3rd. Subtotal } \\
& 1011 \text { Shift NuItiplicand times i1' } \\
& 1 \overline{110111} \text { 4th. Subtotal. (Answer) }
\end{aligned}
$$

Generally the maximun number of 'bits' appearing in the result is the sum of the number of 'bits' appearing in the multiplier and multiplicand.

To reduce the number of significant 'bits' produced, the new design employs cells having a 'return shift' facility, see Pis. 46 . Whenever an overflow of the most significant multiplicand 'bit' and/or subtotal carry 'bit' occurs the resultent multipificand and subtotal

CELL INPUTS/OUTPUTS
Fig. 46

177

words are shifted one 'bit' by the next rank of cells, the least significant 'bits' being lost. ('Truncation'). This results in a square array. aach time a return shift is carried out the exponent of the result must be increased by one. This is accomplished by means of an identical array of cells , set aside for this purpose, to the left of the main array. This 'exponent portion ' of the system is set aside by means of externol programing.

The logic to accomplish the return shift is contained in the 'lower part' of each cell and was designed using finite-state machine theory, see reforence 6. Specifically, if theinput x_{1}, Fig. 46 , is at a 1 then inputs z_{1} and y_{1} become the new subtotal and multiplicand 'bits' respectively - Outputs z_{2} and y_{2} carry the original subtotal and multiplicand 'bits' to the next adjacont cell.

The 'upper part' of each cell contains the circuitry of the previously described integral multiplier.

In order that a certain portion of the array may be set aside to calculate the exponent, an inhibit line, is connected to each cell. This line a) inhibits both the shifting of information (by return shift) into the cell and also the shifting of the output nultiplicand 'bit', and b) onsures that full addition (in the upper part of the cell) always occurs. A rakk of such inhibited cells will act as an adder for a subtotal input D_{1}, external carry input B_{1} and multiplicand input A_{1}. The first rank of such cells is employed to add the two exponents of the numbers to be multiplied and succeeding ranks add to this result any overflows occuring from the 'significance portion'of the array. This is achioved by a suitable coupling of the output x_{2} lines to the external carry inputs. See pig. 43.

Fig. 47 shous some logic design details of the required colls.

$$
\mathrm{P} \quad \begin{array}{c|c|c|c|c|}
& \mathrm{E}_{1}, \mathrm{C}_{1} \\
0 & 00 & 01 & 11 & 10 \\
\hline 1 & 00 & 00 & 00 & 00 \\
\hline 10 & 11 & 01 & 01 \\
\hline
\end{array} \mathrm{S,R}
$$

When $\mathrm{E}=0$: Half/Full addition controlled by multiplier bit C_{1} When $E=1$: Full addition always occurs,multiplicand bit A_{2} always 'O'.

Note $\mathrm{E}=0$ represents NO INHIBIT , $\mathrm{E}=9$ represents IHHIBIT. $X=0$ represents NO SHIFT , $X=1$ represents SHIFT

Fig. 47

In use care must be taken to ensure that no overilow from the exponent portion of the array into the significance portion of the array can occur.

Fig. 48 shows an example of the array in use. The inhibit Ines have been set to give a significance range of 4 'bits' $^{\prime}\left(2^{4}-1\right)$ and an exponent range of $4^{\prime} b i t s '\left(2^{15}\right)$. The numbers appearing within each cell ropresent the inputs to the upper part of the cell, P, Q, and are the multiplicand and subtotal (Ieft-wisht) respectively.
3.2.5 Performance.

Since all return shifts depend upon the carry from the previous rank they represent the greatest propagation delay within the array. Since however, the return shifts operate in 'parallel', that i_{\S} the return shift from one cell to its neighbour is independent of any other return shifts takines place, the delay per. rank introduced over that of an integral multiplier is that of only two or three gates. In addition a small propagation delay is introduced by the shifting circuitry of the lover part of each cell. Overall the array can bo said to compare favourably with that of a comparable integral multiplier.
3.2.6 The Prototype Array.

A prototype array*has been designed and built which
comprises 96 cells arrangod, for test purposes, in an array of dimensions 8 by 12 . N.T.I 7400 series D.I.I logic vas employed throughout. The logic design for each cell appears in Fig. 49 .

Whe array has been found to function as predicted.

* The Iosic dosign was carried out by the author. The design was verified using a logic analysis programme ("B.C.A.P"see 1973 Internal report University of Bath.) The cells wore manufactured by Jasmin Electronics Itd. The assembly and testing vere carried out by I. Bond, University of Bath as a final year project. Pinances were provided by The Dept. alectrical moineering, University of Bath。

Fig. 49

182

In its floating point configuration the array will function fastest if the binary numbers offered to it are most-significant-- 'bit' orientated, that is a 1 appears on the input of the array which corresponds to the most significant 'bit' of the number. This ensures that the shift command, input x_{1}, in each row of the array is set up with the least possible delay. Under these circumstances the maximum time for the array to multiply two numbers is given by

$$
\begin{equation*}
T=p_{0}+(S-1) p_{1} \tag{3.1}
\end{equation*}
$$

Where P_{0} is the maximum propagation delay through a cell from multiplier'bit'or subtotal 'bit' input to sum 'bit' or carry 'bit' output. P_{1} is the maximun propasation delay as for P_{0} but with shift command instigated.
S is the maximum nuber of significant 'bits' being processed.

In the prototype array the predicted values for the above were

$$
\begin{aligned}
& P_{0}=60 \mathrm{nS} \\
& P_{1}=80 \mathrm{~ns} \quad \text { and, in the conficuration used, } \\
& S=8
\end{aligned}
$$

The expected maximum delay tine was therefore $T=60+780=620 \mathrm{nS}$. The measured maximun time was 540 nS . The discrepency is probably accounted for by differences between the manufacturer's estimate of Gate propacation dolay times (possibly pessimistic) and the delay times of the gates in practice.

The average pover consumed by each cell,in the quiescent state , was 0.44 watts. No fiçures are yet available for power consumption durins computation.

If these figures are extranolated for an array capable of handling numbers of the order : 7 significant digits (decinal), range 10^{99},
then the estimated time for multiplication is $1.9 \mu \mathrm{~S}$ and quiescent pover consumption is approximately 350 watts. The time for multiplication represents a considerable saving over modern conventional multipliers.

In practice an array of the size just mentioned would be more economically produced in integrated circuit form , several cells being implemonted by one of such circuits. It is unlikely that the whole array would be produced as one integrated circuit because of the difficulties in dissipating the heat produced.

An array of the same size as the one just discussed but employing devices of low power consumption, eg. C.O.S.N.O.S.T.E.T's", could be produced as one integrated circuit 'chip' and would be an attractive circuit for incorporation in modern'pocket calculators'. Althoush the array described in this section does not strictly come under the heading of a 'matrix method', the investication of the properties of this, and Iike, arrays was prompted by the noed to fully understand the behaviour of genexal iterative arrays in the light of Boolean matrix theory. It has therefore been included as a piece of research closely related to matrix methods.

In the final analysis, however, it has been found that the representation of such arrays by Boolean matrices does not facilitate their synthesis Zor rasons described in Section $1.3 .9, p 46$.

* Complementary-Symmetry Wetal Oxide Semiconductor Field-Effect Iransistor.

CHAPTER 4

General Conclusions and Recommendations for
Further Work.

This thesis has presented some new approaches to logic synthesis by matrix methods.

In Chapter 1 on investigation into the properties of Boolean matrices, of a particulor type, was described. It was shown that the properties of the algebra associated with these matrices give rise to a method of analysing a function in texms of its dependence upon any chosen set of its defining variables. The exhaustive application of this technique, using Boolean matrices, was show to permit the extraction of the prime implicants of several functions simultaneously and to have certain advantages in this respect over the mothod of quine-Mccluskey. An itorative method for the synthesis of Boolean functions, which generates optimum solutions on an exhaustive search basis , was also developed. This technique onables partially specified systems having multiple outputs to be synthesised using any chosen logic modules as 'building blocks'. Other concepts of general interest were those of pre- and post-multiplicative operators and the possibility of defining 'dependent' functions.

Chapter 2 was concerned with a matrix transformation technique Which onables the Rademacher/Walsh transform of any Boolean function to be dotermined. The choice of this transformation as a tool for logic. synthesis arose from a search for techniques of synthesis which do not have an iterative structure and which allow the logic designer both to readily grasp the properties of the system to be designed and also influence the resulting synthesis. It was shown that certain pertinent properties of a Boolean function could be Eleaned from a study of the Rademacher/Malsh transform of that function. Certain novel spectral operations were developed which

186

allow elegant syntheses of Boolean functions both in terms of threshold and vertex logic. A straightforward method of gate minimisation was derived. It was also shown that these operations onable Boolean functions to be classified in a very concise way. This classification showed that threshold functions play an important part in the composition of Boolean functions. A novel synthesis nethod based upon an approximate statistic was proposed. The results of this method are, at present, very encouraging. Further research into this topic is necessary.

Chapter 3 was concerned with the research work arising from the work of Chapters 1 and 2 . Of special interest was the development of an optimised universal threshold gate which, under the oporations described in Chapter 2 , is able to synthesise any fourth-order Boolean function having an embedded or disjointly embedded threshold function. Fourth-order functions not felling into this category may be synthesised by using two of such gates. It also follows that functions of order $n>4$ may be synthesised by several of such gates. It is felt that this gate may, in future, become a standard module for the design of logic circuits since, in practice, it has been Sound that the use of this gate allows circuits to be designed at a Iower cost than is possible at present. The desien procedures for the synthosis of Boolean functions using this gate are straightorward, following closely the methods of Chapter 2 .

The Boolean matrix methods of Chapter 1 allov for the representation and synthesis of cascaded logic modules . This property does not seem to be shared by the techniques of Chapter 2 however. It is felt that an investigation into the relationships between these two disciplines may result in an approach to synthesis which embodios the special advantages of both of then.

187

The fact that, at least in the Sourth-order case, many Booloan functions are choracterised by only a small number of their spectral coefficients may indicate that, for higher-order functions,it may be possible to completely specify the majority of functions using only a small amount of the data space required at present. Por this reason , and also because of the existance of the 1 Fast Walsh Transform ' it may be possible to synthesise functions, using the techniques developed in this thesis, of a highor-order than has been attompted using conventional methods.

1/ The transformation techniques of Chapter 2 , unlike the Boolean matrix methods of Chapter 1 , do not seem to facilitate the representation , and thus synthesis, of cascaded logic modules. A cursory examination of this problem indicates that some form of donvolution in the Rademacher/Walsh spectral domain is necessary to represent such cascaded modules. Further investigation is required to establish the relationships between the methods of Chapters 1 and 2 in order that optimal synthesis methods for cascaded logic modules, and indeed finite state machines ${ }^{\dagger}$, may be established.

2/ The ability of Boolean matrix algebra to define 'dependent' ?
functions warrents further research , see Section 1.3.7. The property of one function influencing another appears to have applications in adaptive logic systems. .

3/ More research is required into the specification of 'don't care' minterms under the Radenacher/Walsh transform. To date this problem has only been given a small anount of consideration. See Section 2.8.2.

4/ It is felt that gate minimisation methods for multi-output losic synthesis under the Rademacher/Walsh transforn can be doveloped with little effort. A theoretical approach to this problem has been given in Section 2.8.1.

5/ The fact that the great majority of fourth-order Boolean functions are characterised by only a small proportion of their spectral coefficients is felt to be very important. It indicates that functions having a lerge number of defining variables may be specified using a far smaller data space than is required at

189

present. Specifically, it may be possible to specily most functions by means of the (basis) positions of their most sigmificant spectral coefficients. In addition, under disjoint-translational-equivalence, certain pertinent properties of a Boolean function may be evaluated immediately from the properties of the 'class' in which the function lies. To this end it is important that the disjoint-translationalequivalent classes of functions of order $n \geqslant 5$ should be evaluated. The results given in Chapter 2 for all fourth-order functions (and less) were generated by classifying all the fourth order functions in turn. This process took approximately 17 hours. This method becomes impractical for functions of order $n \geqslant 5$. (The estimated time required for the classification of functions of order $n=5$ on this basis is approximately 100 years !) This problem may be solved by finding the number of functions which may be generated from the (known) canonic cheracteristic threshold vectors, under disjoint-translational-equivalence, and then instigating a search (on a random basis) for the remaining, non-threshold disjointly-translationally-equivalent, functions.

6/ Por reasons explained in section 2.7 further research is necessary into the sicnificance of the approximate estimator \hat{e} for functions of oxder $n \geqslant 5$, and also for functions not having disjointly-embedded threshold functions.
$7 /$ It is know that functions not havins disjointly embedded threshold Iunctions may be synthesised if the function is 'divided', see Section 2.6.5. Optimal methods of carrying out this division, and the role that such functions play in the composition of functions of order $n \geqslant 5$, remain to be investigated.

8/ The optimal universal threshold gate was developed towards the end of the research period and only a small amount of time has been devoted to the investigation of its properties. In viov of its importance in the low-cost symthesis of logic systems and the ease With which such syntheses may be established, compared to more conventiazal methods, further research into the automated design of circuits using this gate appears to be of great importance.

191

4.3 Acknoviedgements.

The author is especially indebted to Dr. S.I. Hurst, University of Bath , for his continued assistance and advice throughout the period of research.

The support of the School of Electrical Engineerins, University of Bath is gratefully acknowledsed.

Many profitable discussions with the following nembers of staff and post-graduates of the University of Bath also contributed to the research work :

1fr. B. Ireland. School of Wathematics.
Mr J.D. Nartin.

```
School of Electrical Engineering.
```

Mr. J. Metcalfe.
?
Mr. P.A. Chambers. Post-Graduate. School of Blectrical Engineering.

Post-graduate. School of Electrical Engineering.

The research was supported by Science Research Council (U.K) Grant B/70/1295.

Finally, my most humble thanks are due to my parents Who, by their encouragement and support, have made this research possible.

APPENDIX 1

Karnaugh maps of all fourth-order Rademacher/Walsh functions in the range 0,1 .

KEY

O20

194

A1.3

APPEIDIX 2

The Interpetation of Spoctral Translation in terms of Field Theory.
The spectral translation operation concerns itself with the generation of a new function $F^{\prime}\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$ from a given function $E\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$, where x_{k}^{\prime} has the form $x_{k} \oplus\left\{x_{a} \oplus x_{b} \oplus \ldots\left(x_{h}\right\}\right.$ and $\mathbb{E}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \triangleq$ $F^{\prime}\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$. It is required to establish that a unique function $\mathrm{F}^{\prime}\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots x_{n}\right)$ is always generated under these constraints. If this is so the validity of the spectral translation operation is guaranteed for any Boolean function.

In order that a unique mapoing between the two functions exists it is necessary that the functions defined by the set of defining variahles $\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$ are linearly independent. If this were not so the expression $F\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \triangleq$ $\mathbb{F}^{\prime}\left(x_{1}, \ldots, x_{l}^{\prime}, \ldots, x_{n}\right)$ would imply that the variables $\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$ were not lineerly independent, whereas in fact they are. (They represent the minimum number of defining variables necessary to define all points in n-space). A unique mapping of $F\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)$ onto $F^{\prime}\left(x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$ is therefore guaranteed provided that the functions given by the defining variables ($x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}$) are linearly independent. Using Galois Fiela 2 ($\operatorname{GF}(2)$), theory it is possible to represent the set of defining variables ($x_{1}, \ldots, x_{k}^{\prime}, \ldots, x_{n}$) in matrix form and establish the linear independence of each membor of the set.

GF(2) theory applies to integers in the range $(0,1)$ together with the operation addition modulo 2. (\oplus) . Because a field is being considered conventional matrix algebra may be employed and the normal criteria of singularity and non-singularity applies
to the linear independence of functions.
Under GF(2) the following relationships hold :
1/ Multiplication '.'

$$
\begin{array}{r}
0.0=1.0=0.1=0 \\
1.1=1
\end{array}
$$

2/ Addition ' +1

$$
\begin{aligned}
& 0+0=1+1=0 \\
& 0+1=1+0=1
\end{aligned}
$$

$3 /$ Subtraction is equivalent to addition.

In order that the linear independence of a set of functions may be tested it is necessary to establish that the matrix, in $G F(2)$, describing those functions is non-singular.

- Wamole

A set of defining variables is given by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, where $x_{1}^{\prime}=x_{1} \oplus x_{2}$. Are the functions corresponding to these defining variables linearly independent ?

Expressing the problem in matrix form GF(2) Sives

$$
\left.\left.\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\begin{array}{lll}
x_{1} \otimes x_{2} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\begin{array}{l}
x_{1}^{\prime} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

In order that the functions corresponding to the defining variables are linearly independent it is necessary that the above matriz is non-singular. ie. it has a determinant of value 1 .
Let this matrix be denoted by $[\Lambda]$.
Expanding the determinant of $[\Lambda]$ by the first column in the usual way gives

1. $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$

- Re-expansion of this determinentby the first column gives

$$
\begin{aligned}
\text { 1. } \begin{aligned}
\left\{1 .\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\right\} & =1.1 \cdot\{(1.1)+(0.0)\} \\
& =1.1 \cdot\{1+0\} \\
& =1.1 .1 \\
& =1
\end{aligned} \\
\text { That is Pet. }[\Lambda]=1 \text {, therefore the defining variables are }
\end{aligned}
$$ linearly independent.

```
-000--
```

For the more general case where the variable x_{1} is replaced by $x_{1} \oplus\left\{x_{a} \oplus x_{b} \oplus \cdots \cdot x_{h}\right\},[\Lambda]$ becomes
where * denotes a value of 0 or 1 .
Expanding the determinant of $[\Lambda]$ about the first column gives

$$
\text { 1. }\left|\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & 0 \\
0 & 1 & 0 & 0 & \cdot & \cdot & \cdot & 0 & 0 \\
0 & 0 & 1 & 0 & \cdot & \cdot & \cdot & \cdot & 0 \\
0 & \cdot \\
0 & \cdot & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \cdot & \cdot & 1
\end{array}\right|
$$

Which again give a value of the determinant of $[\Lambda]$ as 1 .
The same result is obtained for the general case where x_{k} is replaced by $x_{k}^{\prime}=x_{k} \oplus\left\{x_{a} \oplus x_{b} \oplus \ldots \oplus x_{h}\right\}$ where the determinant of $[\Lambda]$ is evaluated by expansion about the k th column.

It can be concluded therefore that the operation of spectral translation maps a given function uniquely onto a nev function. That is , the interns of the original function are perturbed in n-space and no information about the original function is lost - it is reconstructable.

Whe set of defining variables of a function are also termed a. Basis and operations of the type considered are often called Basis Sransformations. See also reterence 29 •

APPENDIK 3

APPENDIX 4.

CANONIC CHARACTERISTIC WEIGHT-THRESHOLD VECTORS, or CHOW PARAMETERS, FOR THRESHOLD FUNCTIONS OF UP TO $\mathrm{n}=5$.

201
APPENDIX 5

APPENDIX 6

Some Circuits Designed Using the Optimised Universal Threshold Gate.

Compare with Fig. 31 b .
${ }^{\dagger}$ (O.U.T.G) with complemented input capability, see Fig. 44b.

203

2/5 Circuit (Saving of 3 gates \& 5 interconnections on Fig. 38)

Full Adder

$$
\begin{array}{ll}
\text { If } C=0 & z=A \\
\text { If } C=1 & z=B
\end{array}
$$

Electronic Switch

Output threshold 1 used

REFERENCES.

$1 /$	Lewin, D.	
21	Campeau, J.O.	The Synthesis and Analysis of Counters in Digital
		Systoms by Boolean Matrices'. Masters Thesis
		University of California. 1955.
31	Crmpeau, J.O.	'The Synthesis and Analysis of Digital Systems'.
	\%	I.R.E. Trans. Wectronic Computers.
		VoI. EC6. pp 231-241. 1957.
$4 /$	Flegs, H.G.	$\begin{array}{r} \text { 'Boolean Algebra and its Applications'. Blackie. } \\ 1964 . \end{array}$
51	Edwards, C.R.	'The Logic of Boolean Matrices'. Computer J.
		Vol. 15 No.3 - pp 247-253 1972.
61	Hennie, F .0.	'Pinite State llodels for Logical Nachines'. Wiley.
71	Minnick, R.C.	'Cellular Arrays for Logic and Storage'. Stanford
		- Research Inst. California. 1966.
8/	Edwards, C.R.	'Some Boolean Matrix Operators'. El. Lett. Vol. ${ }^{\text {e }}$
		- 1N0. 5 .pp 113-115.1972.
$9 /$	Nocluskey, E 。	'Minimisation of Boolean Functions'. Bell Syst.
		Tech. J. Vol. 35 рp 1417-1444. 1956.
10/ uine, W.V.		'The Problem of Simplifying Truth Bunctions'.
		Am. Wath.lion. Vol. 59. pp 521-525.
11/Edwards, C.R.		Partitioning of Boolean Functions by Variable
		Complementation'. 31. Lett. Vol. 8 No. 5 pp 138-140.
$12 /$	$\begin{gathered} \text { Roth, J. } 2 . \\ \text { et al. } \end{gathered}$	'A Computer Program for the Synthesis of
		Combinational Switching Circuits'. Proc. 2nd Ann.
		Symp. on Switching Circuit Theory
		and Design. Pub. A.I.J.3. 1961.
131	Ashenhurst, 2.	'he Jecomposition of Suitching Circuits'. Harvard
		Computation Lab. Sell Sab Report
		110. BJ.-1(II). 1952 .

14/ EdWards, C.R. 'An AJgorithm Applicable to Iogic Circuit Synthesis' EL. Jett. Vol. 8 IIO.17. pp 442-444. 1972.

15/ Rademacher, He 'Einjge Sät:e über Reihen von allgemeinen Orthogonoشalfunktionen'. Nath. Ann. Vol. 87 pp 112-138. 1922.

16/Walsh, J.L. 'A Closed Set of Normal Orthogonal Bunctions'. Amer. J. Nath . Vol.45. pp 5-24. 1923.

17/ Davies, A.C. 'Some Basic Ideas about Binary Discrete Signals'. Symp. Theory and Application of Valsh Functions. Hatficld Poly.(UK)

ท 1971.

18/Paley, R.E.A.C. 'A Remarkable Series of Orthogonal Functions(I)'. Proc. Lond. Nath. Soc. Vol. 34. pp 241-279. 1931.

19/Chow, C.K. 'On the Characterisation of Threshold Aunctions'. I.E.E.E. Proc.Symp. Svitching Theory and Logic Desiegn pp 34-38. 1961

20/ Dertouzos, M.L. 'Threshold Logic : A Synthesis Approach'. Research Monograph No. 32. M.I.T. Press. Mass. 1965.

21/ Ito, I. Applications of the Walsh Punctions to Pattern Recognition and Switching Theory'. Proc. Symp. Applications of Walsh Eunctions. Haval Research Lab. U.S.A. 1970.

22/ Hurst, S.L. The Application of Chow Parameters and RademacherWalsh Matricos in the Synthesis of Binary Functions: Computer J. Vol. 16 No. 2. 1973.
*
23/ Edwards, C.R. The Application of the Rademacher/Walsh Transform to Disital Circuit Synthesis' Symp. Theory and Application of Walsh and Other Nonsinusoidal Functions. Hatfield. Doly. (UK). 1973.

24/ Shanks, J.L. 'Computation of the Fast Walsh-Fourier Transform'
I.E.E.E Trans. Electron. Comput.
(Short Note). Vol. BC-18. pp 457-
459. 1969.
$25 /$ Searle, Wh. 'Valsh Functions and Information Theory'. Symp. Theory and Application of Walsh Functions. Hatifeld Poly.(UK). 1971.

26/GZlomb, S.W. 'On the Classification of Boolean Eunctions'. I. R.B.
Trans. Circuit Theory. Vol CT-6.
pp 176-186. 1959.
27/ Winder, R.O. 'Threshold Functions Through $\mathrm{n}=7$ '. Scientific
Report No. 7 . R.C.A. Labs.Princeton
N.J. 1964.
$28 /$ Levis, P.I. 'Practical Guide to Threshold Logic'. Zlectron. Design. Vol. 22 pp 66-88 .Oct.1967.

29/ Birkhoff, G. 'A Survey of Nodern Algebra'. Third Ed. Nacmillan. Mac Iane, S. 1965.

30/ Karp, R.N. 'A Computer Program for the Synthesis of eṫ al

> Combinational Swithching Circuits'. 2nd Annual
> Symp. Switching Cct. Theory and
> Logic Design. Pub. A.I.E.E . 1261.

31/ Wine, R.I. 'Statistics for Scientists and Bngineers'.

32/ Guild, H. 'Some Cellular Iogic Arrays for llon-acstoring Binary Division' Radio and Dlectron. Ing.

Vol $39 \cdot \operatorname{pp} 345-348 \cdot 1970$
$33 /$ Dean, K.J. 'Design for A Pull Multiplier'. Proc.I.E.E. Vol. 115 No. 11 pp 1592-1594. 1968.

34/ Edwards, C.R. GIoating point Cellular-Iogic Multinlier with Variable Dynamic Ranģe'. 21. Lett. Vol 7 ITo. 25
$p p 747-749 \cdot 1971$
35/ Frecon, I.
'Operateurs Virgule-Flottonte Dynamique-Variable Clair, L. Precision-multiple'. E1. Lett. Vol. 8 No.3. pp 191$193 \cdot 1972$

1/ 'Floating- point cellular-logic multiplier with variable
dynamic range ' . Electronic Letters . 16 Dec. 1971
Vol. 7 INo. 25 - p 747 fol.
2/ 'Partitioning of Boolean function by variable complementation' Electronic Letters • 9 Mar. 1972 Vol. 8 No. 5 - p 138 fol.

3/ 'Some Boolean matrix operators ' . Blectronic Letters . 9 Mar. 1972 . Vol 8 No. 5. p 133 fol.

4/ 'An algorithn applicable to logic-circuit synthesis'
Blectronic Letters . 24 Aug. 1972.
Vol. 8 Ino.17. p 442 fol.
5/ 'The logic of Boolean matrices ' . The computer journal (U.N.)
Vol. 15 Ho. 3 pp247-253.
6/ The application of the Rademacher/Walsh transform to digital circuit synthesis '

The Hatfield Symposium on Walsh and other
non-sinusoidal functions . Hatfield
Polytechnic .Hatifield. England. June 28-29
1973.

7/ ' The synthesis of logic functions by threshold or vertex gates under the Rade nacher/Walsh transform '

Under revision for publication. IEESTC.
Copy available as internal report Univ. Bath.

PATEVTS.

1/ 'Cellular Logic Arrays ' . U.K. Patent 51122/71. Filed 30 Jan. 1973.

2/ ' Single line comunication '. British patent 8047/70.

```
(Joint Patent)
```


[^0]: By re-writine the previous example with each n-tuple

[^1]: t Hote that some authors define this weighting vith -w', this is

