

University of Bath

PHD

Matrix methods in combinational logic design.

Edwards, C. R.

Award date:
1973

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/matrix-methods-in-combinational-logic-design(1ca5958d-b80e-4f5c-b98d-79d8116740dd).html

1

MATRIX METHODS

IN COMBINATIONAL

LOGIC DESIGN.
submitted by C.B. Edwards
for the degree of Ph.D.
of the University of Bath.

1973

COPYRIGHT
Attention is drawn to the fact that the copyright of this
thesis rests with its author. This copy of the thesis has
been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no infor
mation derived from it may be published without the prior
written consent of the author.

This thesis may not be consulted , photocopied or lent to
other libraries without the permission of the author or
Dr. G.L. Hurst , University of Bath , for one year from
the date of acceptance of the thesis.

ProQuest Number: U326049

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U326049

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

SUMMARY.

Tho object of this thesis is to present certain matrix
techniques which may be employed in the analysis and synthesis

of binary combinational logic circuits* These techniques are

readily implemented on the digital computer*

In developing these methods care has.been taken to avoid

heuristic algorithms so that each technique has a firm mathematical
foundation*

The first chapter of the thesis considers a Boolean matrix

approach to logic analysis and synthesis. These matrices allow

the rigorous and formalised representation of logic circuits*

An important property of these matrices is that they embody
multiple-output circuit representation and that , together with
certain matrix operations , they may be used in the synthesis of
multiple output circuits on an iterative basis.

The second chapter of the thesis describes a matrix trans
formation technique which has properties directly applicable
to logic synthesis. This technique may be employed not only in
the field of conventional logic design but also in the design of
circuits using threshold gates. Certain transform-domain operations
are used to synthesise logic circuits directly from the transformed

truth-table representation of Boolean functions. These operations
may also be used in the classification of Boolean functions. They

may also be employed in the synthesis of multiple-output circuits

and pattern recognition*
The third section of the thesis concerns itself with other

research work initiated by the topics discussed in chapters one
and two .Of special interest is the description of a universal
threshold logic gate and its role in logic synthesis.

3
CONTENTS

(i) Definitions

(ii) List of Symbols Used.

Chapter 1 . BOOLEAN MATRICES. Page,
1.1 Introduction. ^

1.2 Basic Concepts, n

.2.1 Representations. n

.2.2 iMatrix-Vector Multiplication.

.2.3 Decimal Notation.
^2.4 Matrix-Ne twork Topology. 18

.2,5 Matrix Multiplication. 18

.2.6 Basic Properties Reviewed. 22

1.3 Further Properties 24
.3.1 Singular and Non-Singular Matrices. 24
.3.2 Dimensioning. 24

.3*3 - The True Inverse, 25

.3.4 Valid Equations. 29

.3.5 Inverse of Singular Matrices, 3I

.3*6 Multi-valued Matrices. 35

.3.7 Conditionally and Unconditionally Valid Equations. 36

.3.0 Matrices Raised to Exponents. 39

.3.9 Matrix Root Extraction. 46
1.4 Boolean Matrix Operators. 48

.4.1 Post-multiplicative Operators. 48

.4.2 Pre-multiplicative Operators. 51
,4.3 Operators of the Parallel Composition Type.

1.5 Practical Applications, 58

1.5.1 Introduction. 58
1.5.2 Matrix Multiplication. 58

1.5.3 Inverse Matrices. 60
1.5.4- Matrices Raised to Exponents. 63

1.5.5 Representation of Iterative Cascades. 64-
1.5.6 Extraction of the Prime Implicants of Functions. 69

1.5.7 Logic synthesis by Iterative Methods. 77
1.6 Conclusions. 86

Chapter 2. THE APPLICATION OF THE RADEMACHER/WALSH TRANSFORM
TO LOGIC DESIGN AND BOOLEAN FUNCTION CLASSIFICATION.

2.1 ^introduction 89
2.2 The Rademacher/Ualsh Transform. 90

2.2.1 Introduction. 90

2.2.2 Definitions and Properties. 90
2.3 Observations on the Significance of the Spectral

Coefficients. 97

2.4 Some Operations in the Transform Domain. 'ÏOO

2.5 Spectral Translation. 10?
2 .5.1 The Theorem of Spectral Translation IO7

2.5.2 Interpretation and Implementation of Spectral
Translation. IO8

2 .5.3 Significance of Spectral Translation. IO8

2 .5.3 a In Logic Synthesis. IO8
2.5.3 b In Boolean Function Classification. 110

2 .5.4 Application of Spectral Translation 112
2.5.4 a Application to Synthesis by Threshold Logic.112

2.5.4 b Application to Synthesis by Vertex Logic. 120

2 .5.5 Gate Minimisation Criteria. 124

2.6 Dis'joint Spectral Translation. 132
2.6.1 Defining Operation. 132

2.6.2 The Theorem of Disjoint Spectral Translation. I33

2.6.3 Interpretation and Implementation of Disjoint Spectral
Translation. ,134

2.6.4 Significance of Disjoint Spectral Translation. I36
2.6.4 a In Logic Synthesis. I36

2.6.4 b In Boolean Function Classification. I36
2.6.5 Application to Threshold Logic Synthesis. 137
2.6.6 Application to Vertex Logic Synthesis. 143

2.7 A Statistical Synthesis Method.

2.7.1 Introduction. 143
2.^7.2 Spectral Coefficients and the Distribution of

Minterms. 146

2 .7.5 Expected Values. 1^9
2.7.4 The Procedure. ■ 152

2 .7.5 Notes on the Method. ■ 157
2.8 Further Applications. 158

2.0.1 Multiple Output Synthesis. 15o

2.8.2 Synthesis of Functions Containing *Don*t Cares ’. 15^

2.9 Conclusions.
Chanter 3 OTHER RESEARCH TORI:

3.1 The Application of a Universal Threshold Logic Gate to Digital
Circuit Synthesis.

3.1.1 Introduction. 1^5

3.1.2 The Universal Threshold (D.3.T.L) Gate. I63

3.1.3 The Optimised Universal Threshold (D.S.T.L) Gate. 165

3.1.4 Use of the Optimised Gate I66

3.2 A Cellular Arithmetic Array With Variable Dyno.raic Range 172
3.2.1 Introduction. 172
3.2.2 Design Philosophy. 173
3.2.3 Array Specification. 173
3.2.4 Brief Design Details. 175
3.2.3 Performance. 179
3.2.6 The Prototype Array. 179

Chapter 4 GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK
4.1 General Conclusions. I85

4.2 Recommendations for Further Work. I88

4.3 Acknowledgements. 191

APPENDICES
Appendix 1. Karnaugh Maps of All Fourth-Order Rademacher/Walsh

Functions in the Range 0,1.

Appendix 2. The Interpretation of Spectral Translation in Terms of

Field Theory.

Appendix 3* Canonic Spectra of Boolean Functions , n ^ 4 , Under

Translational-Equivalence.

Appendix 4, Tables of Positive Characteristic Canonic Vectors.

Appendix 5* Canonic Spectra of Boolean Functions , n ̂ 4 , Under
Disjoint-Translational-Equivalence.

Appendix 6. Some Circuits Designed using the Optimised Universal

Threshold Gate.

REFERENCES.
LIST OF PUBLICATIONS BY THE AUTHOR.

(i) DEFINITIONS.
n the letter n will be used exclusively to

denote the order of a Boolean equation,

n is the minimum number of defining variables

necessary to always unabiguously represent a

Boolean function of order n .

♦ 1 ̂ i ̂ n will be used exclusively to denote the
i defining variables of a Boolean function of

order n .

F(x ^,X2» . • ,x^) will denote any n th order Boolean function.

F.(x .̂ ,X2, . . ,x^) will denote a particular n th order Boolean

function.

K
a point in n-space defined as follows :

Let ^S> be the set of all possible unique
values of the vector x^,x^, . . ,x^J in the
range 6,1 ; then each member of ,
1 ^ i ^ 2 ^ , is an n-tuple ^ , A particular n-

tuple ^ , called the j th n-tuple,is defined

as y . , j = 2""'’x.j + a^Fxg + . . . + 2?x^ .

True minterm an n-tuple at which a given function has the

logical value 1.

False minterm • an n-tuple at which a given function has the

logical value 0.

Canonical
representation

a method of representing a Boolean function

where the n-tuples on which such functions

are defined are always written in the same
positions. The function is then said to be in

* canonical form *. This term is also applied to
the positioning of the spectral coefficients of

a Boolean function.

8

Truth table a canonical representation of a Boolean
function. Each n-tuple is tabulated together

with the corresponding value of the function.
The n-tuples are written in order as :

5^0’ ^ ’ ^ 2 ’ • • • ' ̂ 2^-1
See Fig. 1a and reference 1.

Karnaugh map a canonical representition of a Boolean
function. The map consists of an area divided

into 2^ adjacent squares. Each square repres
ents an n-tuple and contains a minterm.
Squares with common sides differ only by a
Hamming distance of one. See Fig. 1b and

reference 1.

, x^ 1 • ,x) will denote the value of an n th order Booleann
function at the n-tuple

(ii) LIST OF SYMBOLS USED.
In the approximate order in which
they appear.

[J] Integer matrix.

Integer vector.

• Logical AND operator.

+ Logical OR operator.

Logical COMPLEMENTATION operator.
&
© Logical exclusive-OR operator (Non-equivalence)

© Logical not-exclusive-OR operator.(Equivalence)

Îa 'J Unit or Identity Boolean matrix.
0 . . Element of an integer matrix C appearing in the

[]

i th row and j th column.
ix [̂ cj ap

cl j th column vector of an integer matrix [cj
expressed in decimal notation.

^ A set.
(22 Inclusion

Intersection
U Union

-1
Inverse Boolean matrix.
Tie , used to indicate related column vectors in
conditionally related matrices.

J Matrix raised to exponent TX .
2

j R R th root of a matrix.

Operator matrix.

^ Parallel composition operator.

^Tj Rademacher/Walsh transform matrix.
^ R > Set of spectral coefficients or spectrum,

[/v] Matrix in Galois Field - 2
|/\| Determinant in Galois Field 2.

ê Expected value.

10

CHAPTER 1.

Boolean Matrices.

11

1.1 Introduction.

The type of Boolean matrices described here were first

developed by J.O.Campeau in the late 1930's, see references 2,3
and 4.

Campean was particularly interested in using these matrices

in the analysis and synthesis of counting circuits and for this
/ Hreason considered matrices of dimension nX2 almost exclusively.

These matrices, whilst having properties analogous to those

of conventional matrices , both in terms of structure and algebra,
may be applied directly to the analysis and synthesis of logic
circuits. They are particularly useful in the representation of

cascaded multiple-output logic modules and have associated oper
ations which are easily implemented on the digital computer.
1.2 Basic Concents.

1.2.1 Representations.
Consider the representation of algebraic equations under

conventional matrix algebra :

Coefficient

Matrix
(1.1)Defining Required

Variables Functions

It will be recalled that the coefficients are arranged in a

particular order so that,under matrix multiplication,the correct

coefficient is associated with a particular variable , e.g. :

[3 2] X.,
X,

p] defines a single function P where

definesP = 3x^ + 2x^ . Similarly ’3 2” ^1 p’
-4 1 " Q

two equations P,Q where
and

3x^ + 2Xg
-4x.̂ + x^

= P
— Q •

Now there is no reason why Boolean equations should not be

12

FIG. I a: TRUTH TABLE

% 1̂ X2 X3 X4
0 0 0 0 0 0
1 0 0 o' 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
S 1 0 0 1 0
10 1 0 1 0 1
II 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 I 1 0 1

- 15 1 1 1 1 1

F ig . lb.: KARNAUGH AV\P

x , x ^

II 10
00 0 0 0 0

01 0 1 1 0
II 0 1 1 1
10 0 0 1 1

" ^ 4

^ ^ 3

P(Xl.X2p(3,X4)

13
represented in a similar way.

Consider . . c. c 1 x
[°1 °2 • • °i • • = U J .(1.2)

where . . ,x^ are the defining variables of a Boolean

function U = F(x^,x^, . • ,x^) and the coefficients c^ . . c ^
are the value of the function at each n-tuple ^̂ , see 'Definitions’

For example c^ is the value of the function at n-tuple or

when x.̂ = x^= . • x^= 0 ; is the value of the function at n-
tuple or when x.= x..= . . x = 0 , x = 1 etc •' I \ d n-1 n

Now it will be noted that the ordering of the coefficient
vector is precisely that of the truth table representation of a
Boolean function , -see 'Definitions’*

The example shown in Fig*1a. may therefore be written as :

=
?

X.

[0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1.X.J
0 1 2 3 4 5 6 7 8 9 101112 131415 ^2

where U is a Boolean function F(x^ ,x^,x^,Xji^).

The numbers appearing below each member of the coefficient

vector represent the n-tuples ÿ / , 0 2^-1 . Because the coefficient
vector has a canonical form the ordering of these n-tuples is

implied ; nevertheless it will be found convenient to include

this information when the manipulation of matrices by paper-

and-pencil methods is considered.

The representation of several Boolean functions is also

possible , as in the case of conventional matrix algebra.

14
Consider

— -
"̂ 2,u • ' V , u

u

* V . v =̂ 2 V

• •

• • • •

^2,z • • v . . _ • 2
- .

. . . (1.3)

n
which represents several n th order Boolean functions*

In general the coefficient matrix will have p rows and*2^

columns,where p is the number of n th order Boolean functions

to be represented.
 ̂ As an example,the representation of three second order

functions is given below.
AThe functions U = x^ © x^ = x^.x^ + x^.x^ $

V = x^.x^ ,

W = x^+x^

may be represented as 0 1 1 0 U
0 0 0 1 = V
1 1 1 0 c w .
0 1 2 3

In order that the values of a given set of functions may
evaluated simultaneously for a particular n-tuplc the column

vector of the coefficient matrix corresponding to that n-tuple is

extracted.
In the last example the values of the three functions

corresponding to the n-tuple , where x^=1 and Xp=1 , is given

by : 0 1 1 0 1 0
0 0 0 1 1 _ = 1
1 1 1 0 0

ie. the functions U,V,v/ have the values 0,1,0 respectively

when x.̂ =1 , x^=1
By re-writing the previous example with each n-tuple

15
expanded as a Boolean matrix this process may be carried out by
inspection :

0 1 1 0
0 0 0 1
1 1 1 0
0 0 11

10 1 0 matrix form of
n-tunles

If the coefficient matrix is equal to the matrix of n-tuples

the following matrix equation results :

, for n=2.0 0 1 1 x_ U
0 1 0 1 x% = V2

Clearly U
V

will take the values of x.
X,

0 0 11
0 1 0 1

X.

over all n-tuples , ie,

; for this reason the matrix
of n-tuples is called the Unit or Identity matrix and is denoted

as [a] . The Unit matrix has , by definition, n rows and 2^
columns.

In general
" xj, x^

(1.4)
^1 X
Xg X2• — .
• .
X Xn n

1.2.2 Natrix-Vector Multiplication.
It is now possible to mathematically define the operation

which enables equations of the type

{2
. . . (1.5)

n
P J

to be evaluated. This operation will be termed matrix-vector

multiplication.
Define:^ cj as a Boolean coefficient matrix having p rowS
n *and 2 ' columns,

16

Xn

as the defining variable vector having n rows,

P

as the function vector having p rows and

,n[̂a] as the matrix of n-tuples having n rows and 2̂ ̂ columns.

The evaluation of equation (1.5) is then given by

(x ,X , . . ,X) = \J 0. I d n

n
n

n
Q (a
k=1

1. . (1.6)

 ̂ ^ p
where © is the equivalence operator ,U represents union over a

field ,Orepresents intersection over a field andHrepresents
intersection.

Equation (1.6) is interpreted in the following way :

(a, . © X) has the logical value 1 iff. the vector x. is
k=1 ^

equal to the j th column of[A]. That is , the vector x^

X

X,

n
is

identified with the n-tuple corresponding to the j th column of [a];

this n-tuple is , by definition equal to ̂ ^ ^. Because no two

n-tuples intersect in n-space this correspondence is unique.

X T c . .niii (a, , © X,)f serves to extract the required
jii ^’^^(kii ^ \

member , row i column j , of [c j corresponding to the function

F (x^,x^, . . ,x^) and j th column of [a^ .

Thence

17
The general expansion of equation (1.6) for n=2 is;

Fi(x^,X2) = © x^).(a^^^ © x^) + ® ^M^'^^2,2 ® ^2^
+ c. ,.(a. X.) • (a^ _ © x_) + c .'i,3’'"1,3 " "1"'"2,3 “ "2' " ® ® ^2^

1.2.3 Decimal Notation.

Boolean matrices and vectors may also be expressed in 'decimal

notation ' . j\n example of this notation has already been used to

, j = 2^) X. + 2^ X x^ 4- . . + 2®x Xrepresent n-tuples. viz. ̂ ^ ̂ ^
In general any Boolean matrix column vector may be expressed

in decimal notation in the following way:

Let [̂ C j be a coefficient matrix having p rows and 2 ̂ columns,

n

then
k=1 . . . (1.7)

1 ^ n

where cj is the j th column vector of [c] expressed in decimal
notation. The same technique can , of course , be applied to both
vectors and matrices.

An example of the conversion of a Boolean matrix equation
to decimal notation is :

ll 0
1 J=1

0 1 1 0
0 0 0 1
1 1 1 0

[0 0 1 11
0 1 0 1J

I i

, which may be expressed as

. The unit matrix , by virtue of the fact that it is the matrix

of n-tuples, may be defined in decimal notation as

j-1 1 ^ j < 2 n . . . (1.8)
where al is the j th column vector of [a] expressed in decimal

notation.
The decimal notation is useful , not only as a shorthand

method of expressing Boolean matrices , but also as a form which
is convenient for the manipulation of such matrices by means of the

18
digital computer.
1.2.4 Matrix-lletv/ork Topology.

A practical interpretation of Boolean matrix-vector multiplic
ation is given in Fig.2. which corresponds to equation (1.5)»

One of the most important properties of Boolean matrices is

evident from this example , ie. it is possible to relate the row

structure of a Boolean matrix equation to the topology of the

logic circuit which it describes. The convention adopted here will

be to relate the first row (function) of a coefficient matrix to

the upper signal path at the output of the corresponding logic

module , the second row of the coefficient matrix to the next-

to-upper signal path at the output of the corresponding logic

module , and so on. The same convention will be adopted for the
defining variable vector and the corresponding logic module
inputs.

1.2.5 Matrix Multiplication.
It is now possible to develop an operation termed 'Boolean

matrix multiplication' which corresponds to the multiplication of

conventional matrices.

Consider the identity [^J[^]
x^

n
and let [b J[c] x ̂

x_

= [d]

n

. . . (1.9)

n

represent a pair of cascaded logic modules as

shown in Fig.'3* where the modules B and C correspond to ^Bj and[cj

respectively. The dimensions of the matrices [b]j[̂ C j and [d] follow

from the discussion of the topological relationships above,

vis. [c] will have rows and 2^ columns,

[b] will have p rows and 2^ columns

19

[c] ;
xn

= R

Fig. 2

Fj (x-|,.. jXpj)

fp(X-[, . . *jX|«j)

, 1̂

B
. 1

C

n

B
= R

Fig. 3

.2 0
and ji/ill have p rows and 2^ columns.

It should be noted that any deviation from this dimensioning

results in a system which cannot be implemented.

A method of evaluating equation (1.9) is to first compute

[0 > ,

Xn X*

. . . (1.10)

Then equation (1.9) may be expressed as

X»,w Xn
. . . (1.11)

Expressing equation (1.10) in the form given by equation (1.6) ;
^n

=U c. . n
3=1 ft] • . . . (1.12)

Using the same method,equation (1.11) may be written as :

1

Now from equation (1.13)
b = d when;

and from equation (1.12)

. = X, and a. = x

(1.13)

r,m r ,3 * '"k i,m i

X! = C ,

whence

d . = b

when: a, . = x.k ,3 k

iff. a. = 0 and a, . = x. . r ,3 r,m i,m 1,3 K,j k
The last equation is important because it enables the equation

1̂ b][c] = jto be evaluated by again employing the general form

of equation (I.6).
ie. given d . = b when a, = c. . then r ,3 r,m i,m 1,3

.n w

V i - y . v . " Q “i.

.21

/

Equation (1.14) may be interpreted using the same arguments

applied to equation (1.6) ; The j th column vector of^cjis identified

as the m th column vector of the unit matrix [a] ; the j th column

vector of [o] must then be equal to the m th column vector of [b "] .

An example of matrix multiplication is now given;

Evaluate [b J[c] x ^1 =] x^ 1 where [b] =J
and [c] = 1 0 0 1*]

0 0 1 lj .

1 0 1 0
0 0 1 1
0 0 0 1

For convenience the unit matrix , or matrix form of n-tuples,is
written below [b]: 1 0 1 0

0 0 1 1
0 0 0 1
fo 0 1 1 Î
.0 1 0 1 J

Now the first column vector of[c]corresponds to the third
column vector of ||aJ s o that the first column vector of [D]is

equal to the third column vector-of [s] . Similarly the second

column vector of [c] corresponds to the first column vector of
[a]s o that the second column vector of [bJ is equal to the first

column vector of , and so forth. The complete solution
together with the necessary operations can be shown as :

r ü
1 0 1 0
0 0 11

Lo 0 0 1 _

[§ n i }

Fi 0 0 1] x J _
Lo 0 1 l j x̂ J “

1 1 0 0
1 0 0 1
0 0 0 1

X.

The same equation expressed in decimal notation is

[4 0 6 3][2 0 1 3] X., = [6 4 0 3]
0 12 3 "̂2

The implementation of this example is shown in Fig.4.

2 2
In general it can be shown that the operation of matrix

multiplication is not commutative , ie.[B][c] / [c][b]- . To show
this consider the equations = [D] . • . (1.15)

and [cJ[b] = [d] . . . (I.16)

Let <B^ , ,<fD^ represent the sets of column vectors of [B] ,

[c] and [d] respectively.lt is required to establish under which

conditions equations (1.15) and (1.16) are simultaneously valid.

From equations (1.l4) and (1.15) a necessary condition is that

<D>C . . . (1.17)
and from equationsC1.14) and (1.16) another necessary condition

is that C<C> . . . (1.18)
Equations (1.17) and (1.18) imply <C>n =<D>vFnich , in
generql,is not true.

One notable exception is[Aj[c] = [c][A] , where[c]is any
coefficient matrix and [a] is the unit matrix.

,It can be shown that the associative law holds however ,
eS.[B|o][c]]= [[b][c][d] etc.

1.2.6 Basic Properties Reviewed.

Several properties of the Boolean matrices and associated algebra
are now noted.

1/ The algebra is similarly structured to that of conventional
matrix algebra , having operations analogous to both vector-matrix -

and matrix-matrix multiplication.
2/ The structure of the matrices has the important property

of defining-logic modules not only in terms of functional

behaviour but also in terms of input/output topology.
5/ The algebra is well suited to the description of multiple-

output logic modules and may be used to evaluate the overall

transfer function of cascades of such modules.

\

23

F|(x ^.X2)
F^(X-|,X2)

Fg(
B C "

F|(x^,X2)

F^(xi;X2)

Fig. A

F-|(x-|^.,Xp)

FpCx-j,. jXp)'

1 xi

B 1
1 c

^ Xo

T1

B

a .

r "1

A I

CO

,n

X

n — P

,n

D

Fig .5

n

2 4
4/ The matrices have a form well suited to manipulation by the

digital computer.

Reference 5 should be consulted for further examples of the

basic operations described in the previous sections

1.3 Further Properties.

1.3.1 Singular and Non-singular Matrices.

Before proceeding further it will be necessary to classify

Boolean matrices into two categories , namely singular and non-
singular.

A singular matrix is defined as a matrix having at least
two column vectors identical.

A non-singular matrix is defined as a matrix having no
column vectors identical - a special case is the unit matrix [̂ Â .

An analogy can be drawn between the properties of singular/
non-singular matrices for both Boolean and conventional matrices
as v;ill be shov/n in the discussion of inverse matrices.

1.3*2 Dimensioning.

Consider the Boolean matrix equation

= [d] X.,

^2

It is now convenient to investigate the relationships between the

dimensions of the matrices and [d].

Nov/ the system under consideration has n defining variables ;

therefore both[c]and[D]must have 2^ columns since they are defined

on 2^ n-tuplos ; see also equation (1.6). Suppose that[c]has 03

rows, ie. it describes a module with 63 outputs . Then [b } must be

defined on 63 inputs ; see also equation (1.14) . It follows that

25
[b J has 2 columns* Now if [d] has p rows,corresponding to p

outputs,then [Bjalso has p rows. These general dimensions are shown

in Fig.5,p23.
In order that equations of the type discussed above may be

solved given only the matrices[bJ and [dJ or [c] and [cjit is

necessary to introduce the concept of the inverse matrix*

1*3*3 The True Inverse.

The inverse of a matrix , say [c] , is written as [c] ~ ^ and is
defined by :

[c] [c] " i â [a] â [c] " ' ’ [c] . . . (1 . 1 9)

where [is the unit matrix.

Let [c] have W rows and2*^columns , then equation (1*19) is
dimensioned as : _

%[= [a] . . . (1*20}

and . -2^ ,
C y [c] = [a] . . . (1 . 21)

Equation (1.20} implies that [a] has W rows whilst equation
(l.2l) implies that [a] has 2^ columns. The unit matrix A however,
has n rows and 2^ columns by definition. It follows that 60 =.n .In

order that equation (1.19) shall hold therefore [cj must have n

rows and 2^ columns. Similarly [c] ~ ^ must have n rows and 2^

columns. Equation (1.19) is thus dimensioned :

A [c] - ^ [c] - ^ = A [a] = i [c] - ' ’ 5[c j

Now from the arguments used to develop equations (1.1?) and
d.lO} it follows that in equation (1.20) : <A>C<C> , and in

equation (1.21) : <A>C<C \ where <A>,<O, < C V represent the sets of
column vectors of [a],[c],[c2 ̂ respectively. Since[a],[c] , [c] ̂

have the same dimensions and [a] is non-singular then <A> = <C^ =

and both [c] and [c] " ^ are non-singular.
Two necessary properties of inverse matrices are therefore :

26
1/ They are non-singular , as are the matrices from which they

are derived.

2/ They have a row/column dimension ratio n/2^, as do the
matrices fron which they are derived.

These matrices will be termed *true inverse matrices ' to

distinguish them from other types of inverse matrices to be described
later.

Now , by substitution in equation (1.14), equation (1.21) may
be expressed as ;

1 4 r < n $. . . (1.22)
i< j c a “ .

That is a .= c when a. = c. . , which may be interpreted r,j r,m i,m i$ J
as follows :

If the j th column vector of[c] is equal to the m th column
vector of[a] then the ra th column vector of[c]~^ is equal to the j th

column vector o i [a].

Consider the following simple example :

Given [c]= [2 3 1 0] , [a]= [o 1 2 3]
construct [c] ^ .

Now the first column vector of [c] is equal to the third

column vector of [a] so that the third column vector of [c]~^ is

equal to the first column vector of [a] , and so on.

This gives the result

[c] ̂ = [3 2 0 1] , which may be verified from

equation (1.20). viz.

[c] [c] ̂ =[a] . . . ((1.20) repeated)

that is [2 3 1 o][3 2 0 1] = [0 1 2 3 J
0 12 3

27
This procedure is readily implemented on the digital computer

and may also be executed by inspection •

It is now possible to show that the equation

fBj[c] = [d] . . . (1.23)
is equivalent to [b] = [”d][c]””* . . . (1.24)

where [c]is non-singular and has n rows and 2̂ columns , whilst

[d] has rows and 2^ columns.ie.[c]"^ is a true inverse.
Proof;

Using the general expression for matrix multiplication (eqn.

equation (1.23) can be expressed as
2^

1 ^ r ^ ,
1 <2*,

and equation (1.24) can be expressed as

1 ^ W ,
1 < m ̂ 2^.

. . . (1.23)

. . . (1.26)

Now.from equation (1.23): d . = b when a. = c. . ,r,m i,j
and from equation (l.2o) : d . = b when a. . = cT^r,o r,m i,o i+m
In order that equations (1.23) and (1.24) are equivalent it is

therefore- necessary that a. = c. •. when a. .= cT^ . But thisiiHi 1 , J 1,0 i,m
is exactly the condition which holds if [c] ̂ is a true inverse,

as shown by equation (1.22).

Equation (1.23) is therefore equivalent to equation (1.24);

Q.E.D.

It can also be shown that equation (1.23) may be expressed as

[c] = [b]"”'[d] . . . (1 . 27)

From equations.(1.23)1(1.24) and (1.27) it can be concluded

that when a matrix equation is re-expressed in terms of the true

28
inverses of its components , pre- and post-multiplicative ordering
is preserved.

For example , in equation (1.23) the matrix [c] post-
multiplies [b] and in equation (1.24) [c] ̂ post-multiplies [d] •

This is a property which is also found in conventional matrix

algebra.

An example of the use of the true inverse matrix is now given i
»

A logic system is described by the equation

= [b]

0 1 0 1 1 0 1 0 and [D] = " 0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0
1 1 0 1 0 1 0 0

where [c] =

Find the matrix [s] (if it exists).

Solution
Convert the system equation into a form which enables

[b] to be evaluated :
[b] = rD][cj-',

ie. [c] ̂ is required.
Inspection of [c] shows it to have a rov//column ratio

of n/2^ and in addition it is non-singular.[c] ̂ may therefore be

evaluated.
Express [c] in decimal notation and evaluate [c] ̂ from

= [a] by inspection :

[c] ~ i [1 7 2 5 4 3 6 0] = [0 1 2 3 4 3 6 7]

[7 0,2 3 4 36 1] [1 7 2 5 4 3 6 0] = [0 1 2 3 4 3 6 7]
0 12 3 4 5 6 7

ie. [c]”'’ = [7 0 2 3 4 3 6 1]

Express [o] in decimal notation and evaluate [Bj from

[b] = [d][c]-^ :
[b] = [0 3 3 1 3 0 1 2] [? 0 2 5 4 3 6 = 0 3 0 3 1 1 3]

0 12 3 4 5 6 7

29
This result can be checked by substitution in the original

system equation.

The above example illustrates that the true inverse matrix

may be used in logic synthesis. For example , in the above , [d]

may represent the transfer function of a required logic system

and [c] may represent an available logic module. The example shows
that [c] may be employed in the synthesis of [d] giving a remaining

module [b] to be synthesised.
Of course it will be appreciated that in general the logic

module corresponding to [c] in the above example is not likely
to have a transfer function described by a non-singular matrix

having the correct dimensions which ensures the existance of a
true inverse. The effect of relaxing the restrictions applied

to the evaluation of inverse matrices is therefore considered

below.
1.3.4 Valid Equations.

In order that criteria may be developed which allow the

evaluation of the inverse of matrices not having the special

properties necessary for the evaluation of the true inverse ,

it is first convenient to determine what constitutes a valid

matrix equation.
Recalling the matrix equation

[b][c J = [d] aJid the interpretation of

equation (1.l4),
viz. d . = b when a. = 0 . . (over the requiredr.m i,m 1,0 limits),

the criteria which ensure the validity of the above matrix

equation can be established.
It has already been established that one necessary condition

that an equation of the above type shall be valid is that it has

3 0
allowed dimensions. This will be assumed.

Consideration of the matrix [c] in the above shows that if

two column vectors of [c] are identical then the two corresponding

vectors of [d] must be identical.

ie. if c. . = c. , = a. then d . = d , = b1.3 i,k i,m r ,3 r,k r,m
However if two column vectors of [c] are different then the two

corresponding vectors of [d] may or may not be different ,

depending upon the composition of [b] .

ie. if c. . = a. and c. , = a. _ then d . = b1.3 i,m i,k 1,1 r ,3 r,m

and d , = b .. where b may or may not be r $ K. PfX r) in

equal to b _ .r,l

^These observations give rise to ;

Criterion 1.

A necessary condition that the matrix equation [b][c] = [d]

shall be valid is that if [c] is singular then the identical

column vectors of [c] shall correspond to the identical
column vectors of [d] .

ooOoo

Consideration of the matrix [b] in the above equation shows

that the set of unique column vectors of [u] must appear in the

set of column vectors of [b J since d . = b when a. = c. .r ,3 r,m i,m 1,3
It follows that [b] must have at least as many unique column

vectors as there are unique column vectors in [d] • In addition

[b 'J may be either singular or non-singular.

These observations give rise to :

Criterion 2.

A necessary condition that the matrix equation [b][c] = [D]

shall be valid is that the set of unique column vectors, of [d J

31
shall appear in the set of column vectors of [B] .

ooOoo

Now if either Criterion 1 or Criterion 2 is satisfied together

with the dimensional restrictions, this is sufficient to guarantee the

validity of a matrix equation of the type described above.

Specifically if , in the above equation, [C] and [D]are known

and satisfy both the dimensional restrictions and Criterion 1 , then

the matrix [B] may always be constructed. The same argument may

be applied to the construction of [O] given [B] and[D] under

Criterion 2 and the dimensional restrictions.

Since the matrices constructed under the above criteria may

be singular or non-singular it follows that it should be possible

to figd the inverse of a singular matrix providing the result is

only applied to valid matrix equations.

1.3*5 Inverse of Singular Matrices.
Let the inverse of a singular matrix be defined from :

[c][c]” ̂ = [a] . . . (1.28)
The evaluation of [cj ̂ , where [̂ cj is singular is best

illustrated by a simple example.

Sup'DOse that 1 C1 = fl 0 0 0"1 , or in decimal notation
 ̂ Li 0 1 lj

[c] = [3 0 1 l]
Substitution in equation (1.28) gives

[3011] [c] ' ”' = [0123]
r n O ' 2 3 r -,Since I CJ has two rows it follows that I A I has two rows and

2^ columns, therefore ĵ c] ̂ must have 2^ columns and two- rows.

Now by inspection it is clear that the first column vector

of must give rise to the value 0 , which is the first column

vector of |^A] , when [cj ̂ is multiplied by [cj. The only column

vector of [cJ having a value 0 is that column vector corresponding

32
to n-tuple 1. Consequently the first column vector of [̂ cj ̂ must

have the value 1•

The second column vector of ĵ cj ̂ must give rise to the value

1 when [c] ̂ is multiplied by [cJ • But ^cj has two column vectors

with the value 1 , these appear at n-tuples 2 and 3 • The second

column vector of [̂ C j ̂ may therefore take the value 2 or 3*

The third column vector of ĵ Cj ̂ must give rise to the value

2 when [̂ cj ̂ is multiplied by |̂ c] • Now no column vector of value

2 appears in [c J so that the third column vector of ĵ c] ̂ is

given the unspecified value •

The fourth column vector of [cJ ̂ must give rise to the value

3 when [cj ' is multiplied by [cJ • Now ĵ cj has the value 3 only

at n-tuple 0 ,consequently [c] ̂ must have its fourth column vector

equal to 0.

This gives the result :

[5 0 1 l] [l I , o] = [o 1 2 3]
0 1 2 3

where 13 1 * J “ [^

Now this inverse matrix may be employed in the evaluation of

the following system :

Given [sj^c] x^ = [d] x ^
X,

where

or in decimal
notation

and

or in decimal
notation

evaluate [b] .

[c l = h 0 0 Ô]
L1 0 1 1J

[c J = [5 0 1 1]

[d] = ro 1 1 ii
|i 1 0 oj

[d] = [1 3 2 2]

33
Solution

Substitution in the equation ['b J[c J = [d J gives

[b] [3 0 1 1] = [1 3 2 2]

This equation satisfies Criterion 1 and is dinension-

ally correct. [bJ may therefore be evaluated from [sj =

Now [c] ̂ has been evaluated as ^ * o]. Substitution

in the above equation gives

W = [j 3 1 ^ [1 1 • 0]

= [3 2 . l j

This result may be checked by substitution in the given

equation : [3 2 * ll [3 0 1 ll x = fl 3 2 2] x .
S 1 2 3 4\ 4

 ̂ Note that the symbol **' is used to indicate that the

column vector may take any value. This must be so in the above

equation since the relevant column vector is not involved when [*C*j

is multiplied by [hj. However, in order that [b J shall represent

a real system,the value of ’** must lie v/ithin the dimensional

restrictions of [b] •

Matrices having column vectors with more than one

possible value will be termed ’multi-valued*.

The fact that the singular inverse of a matrix may

always be used to solve matrix equations which are valid under

Criteria 1 and 2 together with the dimensional restrictions

can be proved using methods similar to those applied to equations

(1.22),(1.23) and (1.26) .

In the previous example the inverted matrix had a

row/column dimension ratio of n/2^ , but this is not a necessary

condition for the evaluation of inverse matrices as is illustrated

by the following example.

34
Given = [d]

where [b] =

and w =

or in decimal notation

or in decimal notation

0 1 1 1
1 0 1 0
1 1 0 1
3 5 6 5]
1 0 0 1'
1 1 1 0
0 1 1 1

= [6 3 3 5]
find [c j •

Solution

Both [b J and [d] have 3 rows , the equation therefore

has the correct dimensions.

The set of unique column vectors of [d] are ^3,5,6^

which appear in [b J .

The equation is therefore dimensionally correct and

satisfies Criterion 2 , it is thus a valid equation.

Evaluate |^Bj~^ from “ [A j by inspection :
* * * Q *

0 1 2 3 ^
Note that [b] has 3 rows therefore [a J has three rows

and columns . Then [sj ̂ has 2? columns and 2 rows.

Find [c j from [c] = [b] ~ ^ [d] :

[c j = r , * « 0 * 1 2 {] [6 3 3 3]

0 1 2 3 4 5 6 7
= [2 0 0 1]

This result may be checked by substitution in the given

equation : I? ^ ^ ^ ̂ 3] ^l] “ ^ ^ ^1
0 1 2 3

[3 5 6 5] [* • * 0 » Î 2 •] = [0 1 2 3 4 3 6 7]

X,
"J

35
1,3*6 Multi-valued Matrices.

The study of the composition of inverse singular matrices

has resulted in the consideration of multi-valued matrices. It is

of interest to consider the more general aspects of multi-valued

matrices in order that systems specified with 'don’t care’ conditions

may be manipulated.

Consider the following equation :

, where * *’ denotes

a don’t care condition (Ô or 1). For example F.̂ (x^ ,x^ ,x^) may

take the value 0 or 1 at n-tuples 2 and 7 *

In decimal notation this equation may be written as

1 0 * 1 1 0 1 * X " = F l
0 0 1 1 1 1 1 1 Fg
* 1 * 0 0 1 * 0 Â0 1 2 3 4 5 6 7 3 3

^1 ^1 since ,for example,
^2 &
"3 ^3

2 may take any of the values 0 0 1 or 1
1 , 1 J, 1 1
0_ 1 0 ' 1

For the general equation = [̂d J it has been shown

that d . = b r,j r,m when a. = c. . (over the allowed
dimensional limits)

Nov; sunpose that | B is multivalued where b has" ̂ L J r,m
either the value ^ or B , then d . will also take the value

' J
« 0 T A when a. = c. . .1,0

Similarly if C is multi-valued where c. . = a. orL J 1,0 i,m
c- . = a. T then d . will take the values b or b _.1,0 1,1 r,o r,m r,l

It is therefore possible to apply the methods of Boolean

matrix algebra to general multi-valued matrices without recourse

to special techniques.

An important property of multi-valued matrices is that it

is possible to use them to define relationships between functions.

36
Consider the following equation :

0 = F.

which may be written as either 1 0 0 o’’ X '
= a0 1 0 1 x:0 1 0 0 d.

0 1 2 3
1 1 0 6 X.

^ 40 1 0 1 x2
0 0 0 0. d.

0 1 2 3

or

Inspection of the last.two equations shows that the function

is related to the function F^(x.^,x^) . Specifically ,

at n-tuple 1 , Fj(0,1) has the value 0 only if F^(0,1) has the

value 1 and vice-versa •

The given equation therefore defines two dependent functions
•tand in this respect differs from the type of multi-valued matrix

considered so far.

1.3.7 Conditionally and Unconditionally valid equations.

Some care must be taken when manipulating multi-valued matrices

to establish the correct interpretation of the functions they

represent.

Consider the following equation '

[b] [2 1 . 1] x A = [1 3 * 3] X.,'
X-

Now this equation may be written as

[b] [2 1 . 1] x 1 = [1 3 . 3] x]

or [2 1 . 3J X j = [1 3 . 3] X^

In either case a valid equation is formed under Criterion 1 •

Such an equation is termed'unconditionally valid'.

The matrix [b J may then be evaluated in the following way :

37
For the first form of the equation [bJ = 3 3] [2 1 * iJ

and for the second form [b J = [1 3 * 3j|[2 1 * .

Computing the required inverses from = [a J by-

inspection : firstly [2 1 * ^ ^ *J = [̂ 0 1 2 3J

and secondly [2 I * 3||[*1 0 3 j = [o i 2 3] •

ie. [2 1 * = [* 1 0 *] and [2 1 * 3J 1 0 3J

Evaluating^Bj from [b J = for both cases :

. ^ t o i

= [* 3 1 *]

[b] = [* 3 1 3]
Now for both forms of [b[| to satisfy the original equation

the fourth column vector of [b J must satisfy both values and

. Since I * I represents an unspecified vector which includes

the value ’3* the fourth column vector of [bJ must be constrained

to take the value '3’ •

The original equation can therefore be written as :

[* 3 1 3][2 1 *
0 1 2 3

i] = [1 3 * 3j x;

which may be checked by inspection.

Not all equations are unconditionally valid however. Consider

the following equation :

W [2 0 • 2 j = [1 3 *
X,

This equation may take any of the following four forms ;

[b] [2 0 * 0] = [1 3 • 1] x |

^2 ^2
[b] [2 0 * 0] x j = [1 3 * 3] x^-

X2 Xg
[b] [2 0 • 2j x .,1 = [1 3 • 1] x 1̂

x̂ l

3 8
[b] [2 0 . 2] %; = [1 3 * 3] x|

The application of Criterion 1 shows that only the second and
third forms of this equation are valid.

This equation will be written as

[b] [2 0 • |] x 3 = [1 3 * 5] X., where the tie

symbol is used to indicate that certain multi-valued column vectors
are related. The expression above indicates that 'O' in one matrix

implies '3' in the other whilst '2' in the. first matrix implies
'1' in the second*

Matrix equations of this type will be called 'conditionally
valid* .

In the above example the matrix [Bj may be evaluated (for the
valid forms of the equation) using the same method described in the

previous example. This allows the original equation to be written

= 11 3 • f] x '[3 * 1 ”] [2 0
0 1 2 3

as

Another example is as follows :

[b] [3 7 % ^7] x̂ -
where the

values'4' or '6' in the first matrix are related to the value '3'

in the second matrix . Also the value '3' in the first matrix is
related to the value '2' in the second matrix.. This gives the

result : ______

[• • • 2 5 * 5 3][3 7 '!''7] x'
0 1 2 3 4 5 6 7

X.

= [2 3 (5) 3] x^

3 9
1.3.8 Matrices Raised to Exponents.

It has been shown that the multiplication of two Boolean matrices

can be interpreted as a cascade of two logic modules. Consider the

case where the two logic modules are identical, each being represented

by the matrix [cj . The overall transfer function of the system is

then given by [cj[cj x^

Xn n
.For convenience this equation may be written in the form

2

Xn n
In practical terms it is clear that [cJ must have a row/column

ratio of n/2^ . If this were not so a situation would arise whore
the number of outputs from one module would differ from the number
of inputs to the next , which is'topologically inconsistant. This
also means that the number of functions generated by the cascade is

u .■ See also Fig.6 •
In general TT such cascaded modules may be represented by :

Xn Fn

. . . (1.29)

The expression [c] in the above will be refered to as raising

the matrix [c] to the power 7T . ie 7\ is an exponent.
Consider the effect of raisingthe following non-singular

matrix in power.

[Cj3

[3 0 1 2]
[3 0 1 2] [3 0 1 2] = [2 3 0 1]

[c]2 [c] = [2 3 0 l][3 0 1 2] =[l 2 3 0]
etc.

40

TT

n

TT

n

Fig. 6

«V,X)

yjT

Fig.7

41

For convenience this process may be expressed by means of a
■Dov/er table :

MATRIX TT
0 1 2 3 0
3 0 1 2 1
2 3 0 1 2
1 2 3 0 3
0 1 2 3 4
3 0 1 2 5
2 3 0 1 6

• •

where any matrix raised to a zero exponent is defined as the
unit matrix.

From the previous discussion of true inverse matrices it is
possible to construct the negative part of the power table for the

above example using the definition

[c] - = [c] "

-1

. . . (1 . 30)

The complete table then becomes :

MATRi:(7\

% 2*3 0 -3
0 1 2 3 -4
3 0 1 2 -3
2 3 0 1 -2
1 2 3 0 -1
0 1 2 3 0
3 0 1 2 1
2 3 0 1 2
1 2 3 0 3
0 1 2 3 4
3 0 1 2 3

• •

Mow it can be shown that the additive law of indices

holds for this algebra.

Consider the equation ^ ~
which may be expanded as :

42

[[»] w • • • w] [[=] - n ' r • • ■ w - ’ i - w
1 2 . . . P 1 2 Q

Using the relationship ̂ ~ [_̂ J this equation may be
expressed as ;

, [W W • • [cj] i]̂ [bVb r > • [c]-'] = [r]
1 2

or
. P-1 2 5

[cf-^ = [e]

Q

After applying this technique P times the following result
is obtained :

lO rnl-(Q-P) _

or

[C]C = [H]

[c f -<5 = [e J

This gives the result

[c f [c P = [c f - ^

In the previous power table for example

[c]' [c]-5 = f 5 f C ^ [5 ° 1 2]
= [1 2 3 0]

= [c]-'
Another example of a power table is as follows

. . . (1.31)

MATRIX TT

2 1 0 3 -3
0 1 2 3 -2
2 1 0 3 -1 .
0 1 2 3 0
2 .1 0 3 1
0 1 2 3 2
2 1 0 3 3

• •

In this example the value of the matrix at n-tuples ' 1 and- 3

remain the same when the matrix is raised in power to any positive

4 3
or negative exponent. Such column vectors , which in the defining

matrix have the property of being identical to the n-tuples on

which they are defined , will be called eigenvectors •

If a cascade of the type shown in Fig. 6 has a set of inputs

corresponding to an eigenvector then it follows that the outputs of

each of the cascaded modules will also have that value,

eg. in the previous example

' [2 1 0 3]^ 1] = 1]
-i7Tor [1 0 0 1] 0] = d]

[O 1 0 1J lj
for all values of TT

Now Hennie , see reference 6 , has shown that such cascades

may be considered as transformed finite-state machines. If such a

machine is started in a state corresponding to an eigenvector then

it will remain in that state.

It is of theoretical interest to note that the algebra upon

which a power table is constructed forms a group with Boolean matrix

multiplication as the group operation. A defining matrix then forms

the generator for a sub-group. Because these sub-groups have a

single generator they are cyclic. This is evident from the examples

of power tables so far considered. Such cyclic groups are abelian,

ie. for any two members of the group a,b , a*b = b*a where *

denotes the group operation.

• A power table may also be constructed with a singular matrix

as a generator but the group properties mentioned above no longer

hold.

Consider the following table :

44
MATRIX TT

1
0 * * 2 -3

3
1

0 * * 2 -2
3

0 * 1 1 -13
0 1 2 3 0
0 2 3 3 1
0 3 3 3 2
0 3 3 3 3

•

which has an eigenvector *0*. The inverses of the singular matrices •»
have been computed using the methods previously described.

These singular inverse matrices may only be employed in the

solution of valid matrix equations. For example equations of the

type

n

= [d]

n

to be evaluated for [b J ,

if they are valid , using the identity [b J = ^ .
The lav; of the addition of indices must be applied with great

care to such tables as is shown by the following example.

Suppose in the above power table only and are

knovm. It is required to evaluate [^c] .
Two identities may be established immediately , namely

[c P [c] = [c P

and [c] [c] ^ = [c] ^ .

For the first identity |̂ cj = ĵ cl ^

= [o * * 2][0 3 3 3]

0 12 3

.4 5
r i r 1 1 Inthen r c l = [0 2 2 2 ! L J L _ _

-2and for the second identity |̂ cj = [̂ cj

= [0 3 3 3] [0 * * j]
0 1 2 3 ^

= [0 • * 3] .

Because a cascade of identical modules is under consideration

it is known that these two forms of [̂ c] are compatible. For ĵ c]

to lie within these restrictions it must have the form

[c] = [0 2 2 5]

_ 2 « H ,
Now [_C 1 is known to have the value I ̂ 3 3 3j it follows
> r 1therefore that I CJcannot have eigenvectors at n-tuples 1 and 2 •

This reduces the possible form of |̂ c] to : ĵ ,̂J _ [o ^ ̂ 3l

Finally each possible form' ofj^cjis squared

[0 2 1 3] ^ = [0 1 2 3]

[0 2 3 3]^ = [0 3 3 3]

[0 3 1 3] ^ = [0 3 3 3]

[0 3 3 3]^ = [0 3 3 3J .
r 12The first result does not satisfy the known result for ĵ Cj

GO that ^cjmust have a conditional form :

[c]=[o I 3] where the t ie symbol has

the usual meaning*.

Note that the value of [̂ cj actually used to generate the power

table falls within this definition.

If the two possible forms of ^c] are now expanded :

or

.46
[c l = [o 1 0 f [0 * 1 1

[c] = fo 1 1 0
[o 1 1 q

it is evident that no denendent functions are involved.

These techniques may also be applied to circuits of the type
shown in Fig .7, see Section 1*5«5#

1.3*9 Matrix Root Extraction.

It is of interest to be able to extract the roots of a given
matrix in order that a particular system may be synthesised as a

cascade of identical logic modules or ’iterative cascade see

references 6 and 7 • ^
 ̂The R th root of a matrix [c j will be written as ["c

r 11 Rand defined by _ - -
[c p = [c] . . . (1 .3 2)

It can be shown that this.equation is , in general , non
linear and thus cannot be solved by classical methods.

A special case where root extraction is possible is when the

given matrix generates a cyclic power table. In such a table it

is always true that
[cj(l+ki?)_^Q] . . . (1.33)

where the matrix [^cj appears cyclically in the table at intervals

of power q .(k is any positive integer.)

It is then true that 1
[ç]1+kq = [c] . . . (1.34a)

r (i T m r)■ and [c] [c j - ^ . . (1.34b)

which enables certain roots to be evaluated.

Consider the following examnle :

47
MATRIX

0 4 ^
0 ^ 2
0 2 5
0 5 7

7 2 6
4 5 6

2
0 7 4 * 5

* 7
3 4
2 1

4 6 4
I 6

0 4 1
0 1 2
0 2 5
0 5 7
0 7 4
0 4 1
0 1 2
0 2 5

TT

-6

-5
-4
-3
-2
-1
0
1
2
3
4
3
6

Here '^=5 whence from equationCl, 33) [c j . For k=1
1
16 ■and from equation (1,34a) [cJ = [cJ, Squaring both sides of this

1
expression gives , that is the cube root of [cj
is equal to [cl^, or

1

[c]^ = [0 5 7 5 2 4 6 1] ,

Unfortunately the generation of a cyclic table represents

a special case*
For the general case the following points are noted :

1/ There are cases where no specific roots of a given

matrix can be found , and there are cases where more than one root

can be found, ^

2/ ■ If ĵ cj is non-singular then [c]^ is non-singular

and if [cJ is singular then [c]

3 / If [c j has no eigenvectors then [c] ^ ha's no

eigenvectors.

is singular, ̂
IR

4 8
4/ In general the logic modules corresponding to the roots

of a system are of comparable complexity to the logic module which
will synthesise the overall system,

5/ The number of functions synthesisable in terms of cellular

cascades as a proportion of the total number of possible functions

becomes small as n becomes large. See reference 7 pp. IO5-I0I .

1,4 Boolean Matrix Operators.

1.4.1 Post-multiplicative Operators.
Consider the matrix equation

[c j [0] X.,' = [d] X.,

^n

Now [qj post-multiplies [cj and will be called a post-
multiplicative operator.

From equation (1.l4)

d . = c when a. = 0. . (over the
^ a l l o w e d limits)

Clearly the matrix [üj is composed of certain column

vectors of [cJ which have been perturbed in n-space according to the

composition of the column vectors of [dJ .
Suppose that |*0j is non-singular and has n rows and 2^

columns , then G <̂ c)> where <(d)> and ^C) represent the sets of

column vectors of [d] and [cJ respectively • Because [dJ is non
singular [d] will be composed of a permutation of the column vectors

of [jcj . That is the functions represented by [dJ are those functions
represented by [c] but permuted in n-space ; no information about

the functions of [jc] is lost ; they are re-con structable from •

Some special forms of [d] will now be considered.

Suppose that is equal to the unit matrix [a "| .

49
Then

Xn

= [c]

Xn
Consider now the effect of making [jdjidentical to [a J except

that the h th row of is equal to the complement of the h th row

of [a] • Then applying equation (1.6) to x^

Xn

= F

n
gives the results :

F. (x ,Xp, . . ,x) = / when x = a . , 1 < i ^ n ,' n K K,j l < k < n .

• n x ,o

and since a. . = x. , 1 ^ j ̂ 2^ , then F.(x.,x , * . ,x) = x. •h 1 $ J 1 i i c - n 1

For i/h : F̂. (x^,x.^, • . ,x_) = â ̂ when x^ = a^ ̂ ,

For i=h : F, (x. ,x , . . ,x) = a, . when x. = a. . ,n I c n n , J i i, j
and since a. . = x. , 1 ^ j ^ 2 ^ , then F, (x. ,x , • . ,x) = x, .X | j x • ü i ^ n n

If , in the equation x^

X

= [d J X.,'
x^

n

is of this

orra then the functions represented by the matrix [c] will be the

function' represented by [d J but re-defined upon i'he variables

(x^fX^, . . ,x^, . . ,x^) instead of (x^iX^, • . ,x^, . . x^).

Consider the effect of making j identical to [a] save that

the h th row of ^0 j is made equal to the g th row of A j and vice-

versa.
Applying similar arguments to those used above it can be shown

that , in the equation [cj[0] x^

n

= [d] X.,

Xn

the functions renresentod

50
by the matrix will be exactly the functions represented by the

matrix but re-defined upon the variables (x^jX^, • . ,x^,x^, . , x^)

instead of (x^^x^» . . ,x^,x^, • • ,x^) .

In general it can be shown that if , in x^ = x^

n
consist of a

Xn
the rows of the post-multiplicative operator [̂0 j

permutation of the rows of the |̂ aJ matrix complemented or un

complemented, then the functions represented by [̂ cj will be those

functions represented by |̂ Dj but re-defined in terras of the same
permutations and complementations of the defining variables
corresponding to those rows.

1 simple example of a post-multiplicative operator matrix
constructed as the [a] matrix but with certain rows complemented is ;

w 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0

, where the first and third

rows are the complements of the first and third rows of the j^A^matrix
and the second row is identical to the second row of the |̂ Aj matrix.

Then [̂ 0j x^
X,
x̂

If [̂0] post-multiplies a single function matrix [̂ cj , where

l^c] = ^0 1 1 0 1 0 1 o j ; writing |̂0 j in decimal notation gives :

-

= 1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1 4 4
.1 0 1 0 1 0 1 0. ''3 "3.

[0 1 1 0 1 0 1 0] [5 4 7 6 1 0 3 2] x^
0 12 3 4 5 6 7

whence ĵ Dj = ^ 0 1 0 1 1 0 0 lj

To show that the function represented by [̂ cj is in fact a re

definition of the function represented by [̂ b], with x^ replaced by

x^ and x^ replaced by x^ , construct the Karnaugh map for ,[̂d J :

51
*1'^2\ 00 01 11 10
0 0 0 0 1
1 1 1 1 0

Now replace by x^ (this constitutes a reflection of the

map about the axes which separate x^ from x^) :

00 01 11 10
01 1 0 0 0
1 0 1 1 1

Finally replace X-, b;\
%1,x^

3 \ 0 0 01

:)

11 10
0 0 1 1 1
1 1 0 0 0

If this is re-expressed as a matrix : |̂ 0 1 1 0 1 0 1 oJ it is

seen to be equal to [c] • See also Fig.8.

An example of a post-multiplicative operator consisting of a•»
row permutation of the ["a J matrix (without complementation) appears

in Fig.9.

Of course may be constructed of both permutations and

complementations of the |̂ A j matrix simultaneously . An example of

this type of operator appears in Fig.10.

Not all non-singular post-multiplicative operator matrices can be

categorised under variable complementation or interchange but these

operators are the most useful, not only in terms of the representation

of circuit synthesis but also Boolean function classification, see

also Section 2.4 .

1.4.2 Pre-multinlicative operators.

Consider the matrix equation

Xn

= [d]
x_

Xn
Now 1̂ 0 j pre-multiplies j c I and will be called a pre-

multiplicative operator.

52

- K l "

0

or

Implements [c] [0] ’̂ l
X2

= [o] ^ i

where

[0] =
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0

Fig. 8

53

F(x,,X2

1̂

*3

of F (X ^ ; X 2 »

Implements
X2
^3

[d] ?

X2

Xi

where

[0 1 =

0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1

Fig.9

54

F(x^,X2 ,

0

or F(x-|,x 2) X

Implements [^] [0] = [d]

X

whore

[0] = 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

Fig.10

55
From equation (1.14)

d . = / _ when a. = c. . (over the allowed
limits)

Suppose .that ĵ 0j = then in the above equation J'd J = [cj.

Alternatively if ^ .n
r ,ra i,m » m ̂ 2 , then d = c .i »0

1 that is if the r th row of is equal to the complement
of the i th row of |̂A j then the r th row of will be equal to the

complement of the i th row of ĵ cj •
This approach can be extended to include é = F(a. ,a,) ,^r,m i,m’ k,m ’

1 ̂ m ̂ 2^ , where F is some logical function, then d . = F(c. .,c, .)•I' $ 0 110 K, j
Then if the r th row of ĵ 0j is some logical function of the i th and

k th rows of ^a J then the r th row of jwill be the same logical
function of those functions defined by the i th and k.th rows of .

These observations show that the pre-multiplicative operators

allow the manipulation of whole logical functions.
For example consider the equation :

, and suppose that three other

and

0 1 1 1 X,1 = F '

0 1 0 0 'A Fg
p 0 0 1 d

functions are required , namely F̂ ̂= F^OF^ , . F^ = F^U F^

F^ = F^ • These functions may be evaluated as follows :

Using the general equation

Xn

= [d J

n

then

from the

0 0 0 0 0 0 1 1 0 1 1 1 "1'1 0 1 0 1 1 1 1 0 1 0 0 X
0 0 0 0 1 1 1 1 0 0 0 1 c.

[1̂ matrix 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

This evaluation is derived in the. following way :
The first row of the pre»*multiplying matrix ĵ 0j is equal to

56
the intersection of the first and second rows of The second

row of is equal to the union of the complement of the third
row of [̂a J with the first row of j . The third row of |̂ 0j is

equal to the first row of ^a J • The implementation of this example
is given in Fig.'ll •

The consideration of pre- and post-multiplicative operators
together with their associated properties is ef:sential in the

interpretation of both the advantages and versatility of Boolean

matrix algebra. They will be refered to again when circuit synthesis

is considered in later sections.

1.4.3 Operations of the Parallel Composition Tyne.

Another useful class of operators are those of the parallel
composition type. These are written as

[b] ^ [c] . . . (1.35)
where / signifies the logical manipulation of the matrices j B̂ j and

l^cjon an element by element basis.

For example [•] « [']

n Xn

signifies

d , . = b. , + c. . over the dimensional limits.

[^J the same dimension;
This example may be interpreted as shown in Fig. 12 .

It is also possible to apply different operators to

different rows of the matrices which are to undergo parallel

composition , giving rise to equations such as

*1 = [d] where
^2 *2

*2,j = ^2,j * *2,j

5 7

R5

Fig. 11

— &./

V

1-7

P̂-

~ Y
j

" Fig.12

5 8
which results in the circuit of Fig* 15 •

This type of operator is used in the extraction of prime

irnplicants , see Section 1*5*6.

1*5 Practical Applications »

1*5*1 Introduction*
It has already been demonstrated that Boolean matrices

provide an excellent method of evaluating both the logical transfer

functions and topology of multi-output combinational logic circuits*
It is now possible , by means of worked examples whenever possible ,

to show the special importance of certain of the properties of

Boolean matrix algebra developed above , in the analysis and
synthesis of logic circuits.

1*5.2 Matrix Multiplication.

Worked example*
Given Two logic modules ĵ sj and j^cjhave been designed

according to the specifications ;
[b] =

w =

1 * 0 1 * 1 0 0
0 * 1 1 0 0 0 0
1 1 1 1 0 0 * 0

0 0 0 1 0 1 1 1*

1 0 0 * 1 1 1 0
1 0 0 0 0 * 0 1

A system specification is given by where

[d 1 = pi 1 1 * 0 0 0 l‘
1 * 0 0 1 0 * 0

(* signifies don’t care)

Is it possible to synthesise this system by cascading

the modules represented by |^bJ and [c j ?

Solution

= [e J X,"Try cascading |̂b J and ĵ cj as [̂B ;|cj
X.

In decimal notation this is

59

R
2

JK

Fig.13

X.

Fig.lA

60
[5 I 3 7 ^ A 2 o][3 0 0 ^ 2 I 6 5] x̂ '

7 X,

0= [7 5 5 p 2 0
4 X_

0 1 2 3 4 5 6 7
Comparing j with ^d 1 (in decimal notation) :

[d] = [7 f 5 ^ 3 5 p]

[e] = [7 5 5 p 5 p] it can be seen that [B]

falls within the specification of

It may therefore be concluded that the proposed method of

cascading the modules will indeed synthesise the system.
This example illustrates how Boolean matrices may be used to

advantage in the synthesis of partially specified systems.

1.5*3 Inverse Matrices.

Worked example 1 .

A logic system has been designed . It has been decided to
extend the capabilities of the system by producing three extra
outputs specified by , where

'1 0 1 1 1 1 1 1'* 0 1 1 0 0 0 1 4J 1 1 1 0 * 1 1 4
It has been suggested that these three outputs may be generated from

two outputs already available and specified by the matrix C , where
[0 1 0 0 1
[* 0 1 1 1

0 0 X
0 0 11 X.

xt

Is this possible ? - If so find the required module

Solution

Represent the problem as

[#] = [®]

X.

Substitute the given information (decimal notation) :

6 1

[b][2 2 1 1 3 § 0 i] x;
X,

X.

Check the validity of the equation :
1/ The equation is dimensionally correct.

2/ Criterion 1 shows that the equation is conditionally valid
v/here

The outputs may therefore be generated.

Now the matrix |̂ bJ can be evaluated by inspection by noting

that in [̂ bJ ; the value at n-tuple 0 must have thé value '5 *

1 must have the value *7 '
2 must have the value * 1 *
3 must have the value *4*

viz.

[5 7 1 4] [5 2 1 1 3 I 0 1] X-
0 1 2 3 %2

= [| 1 7 7 4

X.

Alternatively the singular inverse may be calculated for [̂ cj ,

from [^][^] ̂ = [Aj , where^cj may take any convenient allowed form.
le.

.0 2
[0 2 1 1 3 0 0 l][g 3 1 a] = [0 1 2 3]
0 12 3 4 5 6 7 5 7

Then [̂ B j may be calculated from [b J = for the
corresponding value of [̂d J .

le 0 2
[b] = [5 1 7 7 4 3 5 7][5 3 1 4] = [3 7 1 4].

0 1 2 3 4 5 6 7
By either method the required module has been evaluated as :

"1 1 0 1 X,
0 1 0 0 Xp
1 1 1 0 d

62
Worked example 3

A system specification is given by | D where
0 1 0 1 0 1 1 0
0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0

It is proposed to employ an output module
system where

[3]

[b]to synthesise this

0 1 0 1 1 0 0 0 X '
1 1 0 0 1 1 0 0
1 0 1 1 0 0 0 0

Design a logic module to be placed before ^b J which will
synthesise the system • Can each output function of this module be

synthesised separately ?
Solution.

L*et the oroblem be renresented as :
[b][c]

X,
x̂

Substitution of the given information (in decimal notation)

gives :
[3 6 1 5 6 2 0 o] [c] x [= [1 5 1 5 3 6 6 2] x^

Check the validity of the equation :

1/ The equation is dimensionally correct.
2 / Criterion 2 is satisfied •

Construct [̂ b J ̂from [̂b J[b J ̂ = [a J :

[3 6 1 5 6 2 0 o l f l 2 5 0 » 3 2 •] = [0 1 2 3 4 5 6 7]1 2 3 4 5 6. 7J[V 4 J L
Compute î cj from ĵ cj = ĵ Bj | DJ :

[c] = [| 2 5 0 • 3 Ç •] [1 5 1 5 3 6 6 2]

0 12 3 4 5 6 7
= [2 5 2 3 0 ^ ^ 5]

0 1 2 3 4 5 6 7

63
Now the value of ĵ cj at n-tuples 3 and 6 is , or in

. It follows that if the upper functionvector form or 0
0
1

has the value 'O’ at these n-tuples then the lower function must

have the value '1' and vice-versa. The functions are therefore

dependent and cannot be synthesised separately.

If ĵ cj is chosen to have the form

, [2 3 2 3 0 1 4 3] = 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 1

then [G]

3

may be synthesised by constructing the Karnaugh

maps : X. ,x. x^ ,x.
\ 00 01 11 10 00 01 11 10 \ 00 01 11 10
0 0 0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1 0 0 1 1 1 1 1

F^(x^,Xp,x^)^i(xi»Xp,X^)

%1 " %2 = %1 . - -3
The corresponding circuit implementation is shown in Fig.14.

= X.

1.3.4 Matrices Raised to Exponents.
V/o.rked example.

Tests have been carried out on a cascade of logic modules ,

each defined by the matrix [c] . The overall transfer function of

five such cascaded modules gives the result :
[5 1 2 3 4 0 6 7]x^'

and the overall transfer

function of three such modules gives the result :

[5 2 3 4 7 0 6 1]
X.
^3

Find the matrix which defines the transfer function of one such

module .

64
Solution.

Now and [cj^ are known. First compute from
[c]2 { c j [c] - 5.

Find [c j ^ from [c [c

[5 2 3 4 7 0 6 l j [5 7 1 2 3 0 6 4] = [0 1 2 3 4 5 6 7]

• =[5 7 1 2 3 0 6 4]
Then [c ^ = [c]^ [c][^ = [5 7 1 2 3 05 1 2 3 4 0 6 7

0 7 1 2 3 5 6 4
Second .compute [c] from [c] = [c] ^ [c] ' B .

Find [cJ'B from [c J [c]"^ = [&];

[0 7 1 2 3 5 6 4l[o 2 3 4 7 5 6 1] = [0 1 2 3 4 5 6 7]‘̂ 0 1 2 3 4 5 6 7 B L J
ie. [c]"B = jo 2 3 4 7 5 6 1]

Then f c] = [c F | c] " B =[5 2 3 4 7 0 6 l] [o 2 3 4 7 5 6 1]L J L J L J '-0 1 2 3 4 5 6 7-'
= [5 3 4 7 1 0 6 2] .

Which is the required result.

The known power table is then.

6 4]

MATRIX 7T

3 7 1 2 3 0 6 4
0 2 3 4 7 3 6 1

?
0 1 2 3 4 3 6 7
3 3 4 7 1 0 6 2
0 7 1 2 3 3 6 4
5 2 3 4 7 0 6 1

o

5 1 2 3 4 0 6 7

1.3.3 Representation of Iterative Cascades.

The concept of an iterative cascade of logic modules of the

type shown in Fig. 6 . has already been introduced together with

the associated matrix representation. See p 39*

6 5
The representation of cascades of the type shown in Fig.7. p 40 ,

will now be considered.

A simplified version of this cascade appears in Fig. ’.p. In order
to distinguish easily the direction of signal flows in this cascade

the horizontal flows, input/output , are labelled x /p p i?

and the vertical flows , input/output , are labelled y^iy2 »y? /
F ,F -p ■ respectively,
y g Yg yj

Such arrays have been considered by Hennie , see reference 6 ,

and can be shown to be transformable to ideal finite - state machines.

The inputs x^fX^ are termed the starting state of the cascade and the
corresponding inputs to the second logic module are called the next ,
or second , state and so on. In general the starting state of the

cascade is fixed for a particular application and the cascade is

used to compute a function of the input variables y^iyg^Y^ . It is
not the purpose here however to investigate the general properties

I
of such cascades , but to show that they may be expressed in matrix
form. Reference 7 should be consulted for a detailed treatment of

the properties of cascaded iterative arrays.
Now the type of iterative cascade which has been shown to be

easily represented by Boolean matrices heretofore is that of Fig.6.

Comparison between the cascade of Fig.6 and that of Fig. 7 shows

that they differ in that the former case has a single (horizontal)
flow path wheras the latter has two flow paths (horizontal and

vertical). At first sight it would appear that the cascade of Fig.7
is not amenable to Boolean matrix representation because each module

of the cascade is furnished with a unique input y,j ,y^,y^ etc.

To show that this problem is surmountable consider the circuit of
Fig.lo which is an alternative representation of the simple cascade

of Fig.13. The inputs/outputs ; y.,yp,y^ / F ,F ,F have been• • - P 1 2 3
re-orientated so that they are applied in a horizontal direction,

Fx

Fx

66

Fig.15

Fig. 16

67
and between each module is a simple crossover network which enables

each input to be applied to the correct module and also enables

the corresponding output to appear correctly orientated at the

termination of the cascade ; moreover each crossover network is

identical. Now it has already been shown that a crossover network

of the type shown in Fig.lo may be represented by a pre-multiplicative

matrix operator.

The cascade of Fig.l6 may therefore be represented by the

equation
[4 c X 0] [c l 0 j [c] x . = F

X,
y.

or

^1 = FX.x_ 1F
^1

% ■

The operator 0̂~\ will have the form :

6 , j " , A , j

6 , j = "3,i

5,3 1 < 3 < 2 -

This technique can be applied to any cascade of the type shown

in Fig.7* including such cascades having multiple y inputs/outputs

for each module.
The finite-state machine corresponding to the cascade of Fig.15

is shown in Fig.17* The horizontal , or x inputs , to the combinational

logic module being initially applied to give the starting state , and

each y^ , i=1,i=2,i=5 being applied to the module at times T=1 , T=2

and T=3 respectively.

Clock T:

.starting
^ State

Fig. 17

uu

c

c

nn n

Fig.18

69
This example illustrates that Boolean matrices may be used to

represent finite-state machines!

It is also possible to show that Boolean matrices may be used

to represent arrays of the type shown in Fig.l8.
This method of representing iterative cascades has the disad

vantage that it is limited by the large size of matrices necessary

to represent long ..cascades or large arrays.
Because of the difficulties described in extracting the roots

of Boolean matrices they are not readily applicable to the synthesis

of such systems.

1,5^6 Extraction of the Prime Irnplicants of Functions.
Consider a Boolean function F(x^,x^, . . ,x_, . . ,x^) ,

let th^s function be denoted by F(X)•
Take the function derived from the function above by

complementing the variable x^ ; let this function be denoted by

Fj(X).
Let r\(X) = F(X)nFj(X) . . . (1.j6)

Now F\(X) constitutes the true rainterms of F(X) which are

independent of the variable x. ; that is F\(X) may be defined upon

the variables (x^iX^# • • alone. If F(X) has no true
minterras independent of x^ then F^(x) = 0 , where 0 is a null set*

Now for any function F(X) , each F\(X) , 1 ̂ i ̂ n , F̂. (x) / 6, will

contain true minterms which lie in pairs of adjacent states. If these

minterms are plotted on a Karnaugh map they will fall into squares with

adjacent sides.This must be so since such minterms differ only in

the complementation of one defining variable.

Each F\(X) will be called a partition of F(X).
It is therefore possible to generate n such partitions, each

partition containing terms independent of a partcular variable.

 ̂ With certain restrictions

7 0
Clearly , if the function contains adjacent terras which are

indenendent of both x. and x. :1 J
Fj^Cx)Af.(x) K e , i / j , i é i , j ^ a . ,(1.37)

In itself the partition listing outlined above establishes

whether a function is ‘reducible* (it partitions in at least one

variable) and if so in which variables this is possible. If a

function fails to partition in every one of its defining variables

it is irreducible.
As will be shown shortly , the manipulation of such a set of

partitions enables the function to be reduced to a number of prime
-irnplicants.

Now the partitions F\(X) , 1 ^ i ^ n , may be generated using

the post-multiplicative Boolean matrix operators which have previously
been developed. Moreover each partition may be evaluated for several
functions simultaneously. The functions to be partitioned are
defined by ĵ C j where

X.

n

X .
2.

Xn

[X]‘, and 0 is an operator

matrix identical to the A matrix except that the row a. . ,
L J 11J

1 ^ j ̂ , is "complemented, then defines F?(X) for each of

the functions specified by

If the parallel composition ^ j is evaluated then the

result will be equal to F \ (X) = FT(X) jTlF(X) for each function

defined by FcJ.

Examole.
As an example of the extraction of the partitions F\(x) ̂

1 < i ^ n , applied to a single function , consider the function

shown in Fig. 19a.

71

CMX

o o o o
o o o
o o o
o o o o

U
cr>
Or-H
Li.

X
x T

V. CO

Ll
c
X
uZIIX

mCD
5

CMXX

o o o
o o o
o o
o o o

X

u. o o o o
o o

X
tl:

o o o o
(NX o o o o

%
. . Jr CO

>c
ë
o'
Ll. o o o

o o o

X o o o o
Ü. o o o o

■OCD

CMX

o o T— • o
o o
o T— o o
o o o

X
x T > r

7 2
F-(X) is computed from [o M «;

X.
X
X

= [d] X., y where

j^cjdefines the given function and j is identical to |̂a J

that the first row is corapleraented.j^D'jthen specifies F-(X).
save

VIZ.
[00100100000101OlJ 1111111100000000] X . = [d 1 X '

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 '4 4
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 j 4 A
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 <

or in decimal notation
[0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1]
01 23 A 56 789101112131A15

= Fd I x^1 L J 1
^2x^ x^

""4 ^4

v/nence [d] = [0001010100100100

The corresponding function F^(X) appears in Fig. 19b. It
should be noted that this operation corresponds to a reflection
of the function,as depicted by a.Karnaugh map , about the axes
which separate x^ from x^ .

Computing F;j-(X)QF(X) from [Djn[c j gives
[0000010000000100j which is equal to

F^(X) , the result is shown in Fig. 19c.

If this procedure is repeated for the evaluation of F^(X)
and F^(X) the results are as shown in Fig. 19d and Fig. 19e

respectively. F̂ (̂X) can be shown to be a null set.

From these results it is clear that F(X) has a pair of true

minterms independent of x^ , a pair independent of x^ and a pair

independent of x^ .. In addition , one minterm is irreducible as

it appears in none of the partitions.

F(X) may thus be expressed as :

F(X) = x^.x^.x^^ + x^.x^.x^ + x^.x^.x^^ + x^.x^.x^.x^.

73
Consider now the effect of re-partitioning F\(x) in terms of

another variable x. . Then if F. ,(X) defines this operation :
J 1 » 0

F (X) = F (X)n F:r(F. (X)] . . (I.38)
1 J L 1 J

If this second partition exists , all terms it contains must
lie adjacent in at least two variables, (Blocks of at least four

true minterms adjacent when plotted on a Karnaugh map)

Suppose that all the possible one-variable partitions (P) of a
n

function' defined upon n variables are taken. Then P. = U F.(X)
 ̂ i=1 ^

constitutes all true minterms of a function which are adjacent in at
least one variable.

Then F(X)nP>j constitutes all terms having no adjacencies.
(They are irreducible)

•»
Suppose now that all possible two-variable partitions (P^) of

the function are taken. Then F. . constitutes all terms
o a < d < n

of the function which are adjacent in at least two variables.
Then P^ H constitutes all terras adjacent in one variable

only. (They exist in pairs on a Karnaugh map)

This idea may be extended to • • *P^ .
It should be noted that the result of each

be decoded into specific pairs , duo-pairs etc. by means of the

partition variables leading to the result . Alternatively ,

specific decoding algorithms may be used.

The result of these operations is the extraction of the

redundent and irredundent prime irnplicants of the function, and

represents an attractive alternative method to that of Quine-

KcCluskey , see references 9,10.
In addition the function may be selectively analysed for its

dependence upon any particular variable(s).

,7 4
Fig. 20 shows the exhaustive partitioning map of a four-variable

problem. The evaluation of all the partitions shown is sufficient

to enable the evaluation of the redundent and irredundent prime

irnplicants of any fourth order function.Note that once a map is

generated in the form shown , removal of branches associated with ̂ of

the variables reduces the map to that of order (n-^) without

recourse to re-arrangement.

The number of partitions required for the solution of an n-

variable problem is n
TL = 2 " - ' 'r=1

The exhaustive partitioning is normally not required however

since if F. (X) = 0 then F. .(X) = 6 , 1 ̂ ■zq'\1 1 $ J y . . \ l .)
F. . , (X) = 0 etc. 3 ̂ 1,0,k

Similarly if F. .(X) = 0 then F , , .v , (X) = 0 etc. . . (1.40)1,0 \iiO/$^

Also if = 0 then = 0 , a;^(a+b)^n . etc, (l.4l)

and if F (X) F.(X) = 0 then. F. .(X) =0 etc. . . (1.42)1 0 i$0

The number of variables in which partition and re-partition

is possible is therefore limited from the beginning.

An example of the extraction of the prime irnplicants of a third

-order function is now given.

Consider the function shown in the table below. Let F(X) = Pq

Now if (X) ,Fg(X) ,F^(X) are derived as described above ,

inspection shows that none yield a null set, ie. they are all

re-partitionable.(See tableP76)
3

P is evaluated from P F. (X) , and then P . yields
1=1 ^

a null set .This means that all true minterms of the function are

adjacent in at least one variable , none being irreducible.

75

F (X)

F̂ .(X)

F.CX)

Fg(X) 3̂ Fg t̂X)

1 1i
1
i

F2,4(X)

1
FgfX) X4 F3,4(X)

1̂,2,3,

/2

Exhaustive Partitioning Map

for a Fourth-Order Function

Fig. 20

' 76
Similarly if F (X) , F (X) , F, ,(X) and P. are

' t ̂ ' t $ V ï-

derived it can be seen that P^ClP^ yields a true minterm at n-tuple
7 , which must be adjacent in one variable only. Inspection of F^CX)

shows that the minterm at n-tuple 7 is adjacent to minterm 5 in
variable number 2.

The only remaining partition possible is F. _ ?(X) which

must be a null set since F _(X) = 0 , see equation (1.40).1 * c

Thence P^ = 0 and ^2 ̂ “ 0,1,4,$. The minterms at these n-tuples

are adjacent in variables 1 and 3 from F. ^(X).• ' $ V
The function may thus be expressed as :

F(X) = (5,7)A0,1,4,5)

TABLE.

0 1 2 3 4 3 6 7 n-tuple
1 1 0 0 1 1 0 ’ 1 F(X)
1 1 0 0 1 1 0 0 F^(X)
0 0 0 0 0 1 0 1 Fg(X)
0 0 0 0 1 1 0 0 F^(X)
1 1 0 0 1 1 0 1 PoH = 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0

^2 1 1 . 0 0 1 1 0 0 PiOPa = 7

^3 0 0 0 0 0 0 0 0 p^nPj = 0,1,4,$

Note "1 .2,3 (X) 0

The Karnaugh map corresponding to this result is

^1*^2
% 3 \ 00 01 11 10

0 1 0 0 1
1 1 0 { T - T)

77
yOotent/all

This method has the following^advantages over the method of
Quine-MeCluskey :

1/ The intermediate results comprise vectors of known

dimension whereas the Quine-HcCluskey method generates tables of
indeterminate size* The storage of intermediate data is thus

simplified which is important when computer implementation is

considered (usmg. storo.^
2/ Because of its simple and recursive nature the Boolean

matrix method of prime-implicant extraction is to be preferred

from a programming viewpoint*

3/ The simultaneous extraction of prime-implicants of

several functions is possible which , together with the restrictions

on re-partitioning given in equations (1*39 - 1.42) , makes the
matrix method more efficient than that of Quine-McCluskey.

4/ The dependence of a function , or functions , upon
particular variables may be determined without recourse to the
evaluation of all possible partitions using the matrix method.

See also reference 11.

1.3.7 Logic Synthesis by Iterative methods.

It has been shown that a logic system specified by may
be represented as :

[b][c J x ; = [d]

In addition if is known in this equation then
[b J = niay be evaluated providing

that the original equation is valid .
Now it follows that if ĵ cj represents a logic module of

the type available to synthesise ^Dj,it is possible to determine

if in fact [̂C j may be used in the synthesis of |"d J by establishing

78
the validity of the above equation. If [̂ C j does satisfy ^D^then

may be evaluated and represents the remainder of the system

to be synthesised. may then be copied into |̂b J and the procedure

repeated until ĵ BJ is found to be equal to the unit matrix • The
system is then synthesised.

In many cases ĵ C 1 will represent particular configurations

of NAND,NOIÎ,EX-OR gates , but in general there is no restriction

on the type of module that may represent.
In its simplest form this synthesis algorithm gives rise to

an iterative procedure which does not afford optimisation except on
a comprehensive search basis. In this respect the method is
similar to that of Roth and Ashenhurst , see references 12 and Ip*

It differs from the methods of Roth and Ashenhurst however in that

multiple-output systems may be synthesised without resort to special
techniques.

In order that this algorithm may be executed with maximum
efficiency on the digital computer it is advantagous to employ

an implementation that avoids the generation of the intermediate

results arising from the application of Criterion 1 and the

evaluation of ĵ C J ^,
The' method illustrated in the following example is proposed.

Consider ^1 ” [^] ^1 where

Let

[B ln 0 0 01 X 1 = f1 * 0 1] X ‘
 ̂ -'Li 1 1 lJ x^ Li 1 1 OJ Xg

Îb J be filled initially’ with don’t care states :

r* * * *iri 0 0 01 x"
L* * * ♦JLi 1 1 iJ x ‘

= n
LI 1

form

, or in decimal

79

-umn

Now execute the following trial multiplication :

The first column of j^cj has the value 'p' , therefore the

value of j at n-tuple 3 must take the value of the first col

of [d]
* 3]\3 1 1 o l X 1 = [3 5 1 2] x-‘

^0 1 2 3 y 4

the second column of j^cj has the value *1' ; therefore the value

of l^njat n-tuple 1 must take the value of the second column of

[* A 5][3 1 0] ^ i l = [4 '' ^1’0 1 2 3 ^2 ^2

the third column of j has the value * 1 ’ therefore the value of

j^sjat n-tuple 1 must take the value of the third column of

Since the value of [̂b J has already been established as 'g ’ it is

necessary to check if the value now proposed is compatible.

ie. is = compatible with ’1 ’ ? - or is3 compatible

with 0
1

Clearly these two values are compatible only if

j^B^ and take the value oj .

Then _

in both

[■* 1 * 3][3 1 1 0] = [3 1 1 2]

0 1 2 3 2
Finally the fourth column of [^ c j has the value ' O ’ therfore

the value of |^Bj at n-tuple 0 must take the value of the fourth

column of |^dJ :
[2 1 * 3] [3 1 1 0] x j = [3 1 1 2] x^"

0 12 3 ^2 ^2
The module ^cj can thus be used to synthesise |̂d J , the

function remaining to be synthesised being

r i 0 * 11 X
Lo 1 * 1 J X

80
This trial-and-error method of solving [b][c] x ;

Xn

= [d]
Xn

thus overcomes the problems associated with applying Criterion 1

and evaluating the inverse matrix • If the equation is not valid

j^cj will force to talce incompatible values •

will force theeg.. [b][2 2 1 3] x d = [1 2 0 3] X.,'
^2 ^2

value of j^sjat n-tuple 2 to take the simultaneous values ’1' and ’2',

or 0
1

and 1
0

which is impossible. The detection of such

incompatible cases will , in general , occur before the whole trial

multiplication is complete , this results in a fast procedure.

As an example of a system synthesis consider the following

simple example.

A system is defined by the matrix j where

[d] = [3 3 2 I 7 5' 6 5] .
Synthesise the system using the logic module of Fig. 21a

together with the comprehensive set of interconnection modules

and associated matrices shown in Fig.21b - g.

Solution

Let the system be represented by

[b][c] x ; = [b] , where [G] is composed of the

matrix corresponding to the given logic module post-multiplied

by one of the possible interconnection modules of Fig. 21 •

For interconnection 21 b, the equation [_s][cj = [l J is ;

[b] [i 1 3 2 5 5 7 e] [0 1 2 3 4 5 6 7 ! = [3 3 2 T 7 5 6 5]
 ̂ ^ 0 1 2 3 4 56 f : ̂ ̂ ^

. [c]

livaluating ^ C 1 and letting JBj have initially don't care states:

, . . , , , »J 3 2 5 5 7 6] = [3 3 2 j 7 5 6 5]

[1 1 3 2 5 5 7 6]

[0 1 2 3 4 5 6 7]

[0 2 1 3 4 6 5 7]

[0 1 4 5 2 3 6 7]

[0 2 4 6 1 3 5 7]

[0 4 1 5 2 6 3 7]

.81
Module.
■ ---- -‘”1

4 ...
x— 1_Î

.................1

"4 "

Z D d

'̂ 1
X2

^3

•̂ 1
•X2

.X3

■Xi

•X2
X 3

.Xi

•X2
X 3

21a

2 1 b

21c

21d

.Xi

"̂ 2 21 e

X 3

•X,

2̂ 21 f
^ 3

[0 4 2 6 1 5 3 7]

4 ...

4 21g
■"3

Fig. 21.

82
Carrying out the trial multiplication described above :

[• 3 g 2 * 7 *■ *] [l 1 3 2 5 5 7 6] = [3 3 2 g 7 5 6 s]
0 12 3 4 5 6 7 I 1

t______________
the multiplication fails at the point shown. The equation is not
valid.

Try interconnection 21c :

[bJ [1 1 3 2 5 5 7 6] [0 2 1 3 4 6 5 7] = [3 3 2 ^ 7 5 6 5] L o 1 2 3 4 5 6 7 -*
then ■ r* 1 I. ̂ ̂ n, - _ 2[’ 3 ■" -5 * * ’ *] [1 3 1 2 5 7 5

0 1 2 3 4 5 6 7
tfails at point shown.

Try interconnection 21d

6] = [3 3 2 I 7 5 6 5]
1

then

Fb] [1 1 3 2 5 5 7 6] [0 1 4 5 2 3 6 7] =[3 3 2 1 7 5 6 5]
10 1 2 3 4 5 6 7 J
[• 3 5 7 * 2 5 6] [1 1 5 5 3 2 7 6] = [3 3 2 (2)7 5 6 5]

rives a solution. Note that

Try interconnection 21e

it iis restricted as shown •

then

[b] [1 1 > 2 5 5 7 6] [0 2 6 1 3 5 7] = b 3 2 r 7 3 6 3]
. 0 1 2 3 4 5 6 7 J

3 * 3 " 2 * ^][l 3 3 7 1 2 3 6] = [3 3 2 ^ 7 3 6 3]
0 12 3 4 5 6 7

1fails at point
shown•

Try’interconnection 21i

[b] [1 1 3 2 3 3 7 6] [0 4 1 3 2 6 3 7]
[0 1 2 3 4 5 6 7

then * 3 * * * 3 " 5 1 3 3 7 2 6
0 1 2 3 4 5 6 7

fails at point ._______________
shown.

Try interconnection 21g

= [3 3 2 ^ 7 5 6 5]

= [3 3 2 ^ 7 5 6 5]

then

fails at point

[b] [1 1 5 2 5 5 7 6] [0 4 2 6 1 5 3 7] = [3 3 2 I 7 5 6 5J
[0 1 2 3 4 5 6 7 J

6 5]2 ' 2 * 3 ■' g] [1 5 3 7 1 5 2 6] = [3 3 2 I 7 5
0 12 3 4 5 6 7

X ____ t
shown.

All interconnection possibilities have been tried giving only

one solution , ie. b] = 3 3 7 * 2 3 6j, and sincefBj is

83
singular it cannot be a pertubation of the |̂ a] matrix. A second

stage of synthesis is therefore necessary. The implementation of

the first stage of synthesis is given by Fig. 22 a .

To evaluate the second stage of synthesis the remainder [b J

is copied into |̂d J and the process is repeated.

Then [b]|*Cj = 3 3 7 * 2 5 6]
Try interconnection 21b

then

r b1 |l 1 3 2 5 5 7 el [0 1 2 3 4 5 6 7]
A o 1 2 3 4 5 6 7; r J

* 3 5 7 * 2 6 5 ! [1 1 3 2 5 5 7 6
'-0 1 2 3 4 5 6 7/'-

= [* 5 5 7 * 2 5 6]

= ^ 3 5 7(2)2 5 6]
gives a solution . Note that |̂ D J is restricted as shown.

Since [b J is singular it cannot be a pertubation of ĵ Aj •

Try interconnection 21c

= [* 3 5 7 * 2 5 6]

= ^ 3 5 7 © 2 5 6]
[b1 1 1 3 2 5 5 7 el [0 2 1 3 4 6 5 7] A t) , 2 3 4 5 6 r r -I

* 5 7 3 * 5 6 2 ! 1 3 1 2 5 7 5 6then
0 1 2 3 A 5 .6 r

gives a solution. Note that ĵ D I is restricted as shown .

Since [̂b J is singular it cannot be a pertubation of [a J*
Try interconnection 21d

r 1
] I I I I ^ e][o 1 5 2 3 6 7| = [* 3 5 7 * 2 5 6]

then [* 3 * * * 5 '■■ *] [1 1 3 3 3 2 7 6 =[3 3 5 7 * 2 3
0 12 3 4 5 6 7fails at point shown._______ _̂_______________________ j

Try•interconnection 21e

[b] [1 1 3 2 5 5 7 e] [0 2 4 6 1 3 5 7] = [* 3 5 7 * 2 5 e]
'■ -’L/o 1 2 3 4 5 6 r '• ■'J I-]

then [* * 2 3 * 5 6 7] [1 3 5 7 1 2 5 6 1 = * 3 5 7 * 2 5 6
'01 2 3 4 5 6 7^' J I-

gives a solution . Moreover [b] is non-singular and can take the

form of the [a] matrix . The synthesis is therefore completed

using this interconnection.
The complete synthesis is shown incircuit form in Fig. 22b.

A test programme, written in Fortran IV / Machine code,has been

run successfully for the above algorithm employing gates of the KAND,

NON,FX-rON type for problems of up to fifth order.

84

/\

Fig. 22a

. >< X
-a- > X .XI-Ï

"“I
X2

Xn

0 0 0 0 1 1 1 1 Xi
1 1 1 1 1 0 1 0 X2
1 1 0 0 1 1 01 ^3

Fig. 22b

8 5
In practice it has been found advantagous to search for

disjunctive decompositions initially and , if none are found ,

proceed with the search for non-disjunctive decompositions.
See also reference

The abovementioned computer programme is able to find all

possible disjunctive and non-disjunctive decompositions for
a fifth-order system , using up to three input L-AITD/NOK gates ,

in approximately 2 seconds for each stage of synthesis. The

storage required (P.D.P.Ss) is 11901 K/words.

8 6

1.6 Conclusions.

It has been demonstrated that Boolean matrices , of the type

defined , enable cascaded , multi-output logic modules to be both

described , in terms of functional capability and topology , and

manipulated. It has been shovm that the algebra associated with these

matrices is capable of analysing and synthesising such systems even

where unspecified conditions (don't care states) are involved in the

system description. The algebra is also able to define dependent

functions ; the full implications of this are not yet known.

Two novel methods of logic circuit synthesis have been described

which follow naturally from the consideration of 'Boolean matrix

operators* and 'valid equations' . The first of these enables the

dependence of a function upon any chosen set of its defining variables

to be determined. It has been shown that the exhaustive implementation

of this technique , using Boolean matrices , enables the prime

implicants of several functions to be extracted simultaneously. This

method is an attractive alternative to that of Quine-McCluskey. The

second synthesis method arises from the consideration of 'valid

equations' and the 'inverse singular matrix* . It is an iterative

technique which , on an exhaustive search basis , enables optimum

syntheses of multi-output systems to be found. Again these systems

may be partially specified. Both of these synthesis methods ,

particularly the latter , are especially easy to implement using

the digital computer.

Several iterative synthesis procedures , of various types ,
+have been published in recent years. It is felt that the method

described herein probably, represents the most effective simple multi

output synthesis to date.

The main disadvantage of iterative techniques is that they

See-for aocampî e

,87
are relatively slow to 'converge' to an optimum solution , especially

when the number of defining variables is large. (In this respect the

method developed in this chapter is no exception.) Moreover the

expertise of the logic designer can play little or no part in their

execution. (In the author's opinion the rather unsucessful attempts

to introduce 'heuristics' into such methods is an attempt to do this.)

At this point in the research therefore, a search was instigated for

possible techniques which would a) generate an acceptable synthesis

very quickly ,and b) enable the logic designer to assimilate the

pertinent features of the system to be designed very easily and to

be able to act on this information. At present the best method of

evaluating the properties of a Boolean function quickly is with the
aid of a Karnaugh map. This method however is of limited value when

the number of defining variables is large.
The result of the search for a new method of interpreting

Boolean functions according to the above criteria appear in Chapter 2.

88

CHAPTER 2.

The Application of the

Rademacher / Walsh

Transform to Logic Design

and Boolean Function

Classification.

8 9
2.1 Introduction.

In 1922 Rademacher published a new set of orthogonal functions
taking the value ^ 1 in the interval (0,1), see reference 15 . This

set of functions however was incomplete - a finite set of such

functions does not form a sub-group.

Working independently,in 1923 , Walsh published a set of
orthogonal functions taking the value + 1 in the interval (0,1),

see reference 16, The Walsh functions , in addition to forming

a complete set , have the Rademacher functions as a generating set.

That is to say , any set of Walsh functions may be generated from

a suitable set of Rademacher functions. See also references 17 ,l8.

Because the Walsh functions have properties analogous to

trigonometric functions , considerable research has gone into

employing 'Walsh waves' for the transmission of sampled-data

digital information. Other areas of application have been in the

fields of signal filtering and pattern recognition.

In the field of logic design the Walsh functions appear to

have been employed relatively little.Chow , reference 19» showed

that certain parameters were sufficient to characterise threshold

functions, and Dertouzos, reference 20 , showed that these parameters

were in fact Walsh transform coefficients. Dertouzos also developed

operators for the manipulation of these coefficients to facilitate

threshold logic synthesis.(it is largely an extention of the work

of Dertouzos that will be considered herej In addition Ito,

reference 21 , has considered the - application of Walsh functions

to the recognition of binary-valued functions on a statistical

basis. Hurst, reference 22 , has considered the general possibilities

of the application of Walsh functions to the synthesis of binary

functions both in terms of threshold and conventional logic .

circuitry.

90
The justification for the analysis of Boolean functions

under the Rademacher/V/alsh transform lies in the fact that

certain Boolean operations may be executed more easily in the

transform domain and that many of the properties of Boolean functions

which are normally difficult to determine , eg. linear separability ,

are best characterised in this domain. In this respect an

analogy can be drawn between this transform and the Fourier .

transform.

It is the purpose of this chapter to show that particular

operations in the transform domain have certain properties which

lend themselves naturally to the synthesis of logic functions ,

and to illustrate how these operations may be extended to

facilitate the solution of more complex problems.*»
The synthesis of logic functions both in terms of threshold

gates and vertex (KAND,NOR,AND,OR) gates is considered.

In addition it is shown that these operations lead to a

very efficient method of classifying Boolean functions.

2.2 The Rademacher/V/alsh Transform.

2.2.1 Introduction.

In this section a particular form of the above

transform will be defined which has properties which are

especially relevant to the field of logic synthesis. For an

alternative definition of this form of the above transform see

reference 23»
The more general properties of the Walsh transform

may be found in references l6 and l8.

2.2.2 Definitions and Properties.

Consider the square Boolean matrix of Fig. 23»

For reasons that will become apparent later a 2^ matrix is

said to have an order n . For example in Fig.23 » n=4 .

91

g
•H
+»
•H•P
dp.
•dok0>•ouo
oud>N

p
0
p
p (0p
p P §
dP» © •HXi -pü üP a d
© fi•d _©
p •do &pM
P
Pk

-P
udp.
U0)
•g0

1üo
w

§
•H■P
•H-P
U

t
P
0)
•O

g
•d
p
•H

g

PPdp.
P©I

X i
pp
g

d
0

•P
Ü

1 ^^ CN
H ch
| ü :03

CO
iH r4rH

H r4 r4 rH rH

rH rH

iH rH

rH

iH

rH

iH rH

iH

rH rH

rH rH iH

rH

rH

o
o

o
r~

O

O

O O O O r H l O O M O •H I O r4 I—C

o j o o o O O o o o o o I o o o O O o
LJ

T-> *0 *0 ▼-> t-> -o **-5
r H N C O T 3 < i n t O l ^ O O C J î

+ > p p p p + j p p p p

•o •O •o •o •o •O •o
O p cv» (f) (Pr—< p p p P p p

IIE

92
The matrix [t] has , by definition , the follcv/ing properties

for any n ;

1/ The members of the first row of [̂ t J are equal to zero.

t. . = 0 , 1 ^ j ̂ 2^ . . . (2.1)* » J
2/ The second to (n+1) th rows have the property

t. . = 1 when f(j-1) modulo . . (2.2)
t. = 0 otherwise. 2 ^ i ^ (n + 1) , 1 ̂ j ̂ 2 ̂* J

These are the Rademacher functions , reference 15 ,

with range 0,1

5/ The remaining (n+2) to 2^ rows are equal to all possible

combinations of the exclisive-OIî ‘s of rows 2 to (n+1) of |̂ Tj

•?aken one-at-a-time two-at-a-time. . . • n at-a-tiine.

These combinations are taken in ascending order , ie, in

Fig. 25, where n=4. î t^ . =(t_ . © t^ .), t„' . =(t_ . © t. ,)^ $ J ^ $ Ü $ J ^ $ J tJ

^8,j =(*2,j ® • • • ’*11,j =(*4,j ® *5,j) ’

*12,j =(*2,j ® *3,0 ® *4,j) • • • etc.

The complete set of functions defined above are the Walsh
*

functions in the range 0,1 .

* Originally \/alsh defined these functions in the range

1,-1 . It is convenient for the applications to be considered to

replace the value 1 in the range 1,-1 by 0 and to replace the value

-1 in the range 1,-1 by 1 . This gives the Walsh functions in

the range 0,1 defined above. Although it is convenient to

develop-logic synthesis theory using the Walsh functions in the range

0,1 in practice the transformation operation dscribed on page $4 is

carried out in the range 1,-1 for reasons of computational speed. See

also reference 2-4.

93

It is a property of the Rademacher functions in the range

0 ,1 that any Boolean function may be defined upon them . For

example in Fig. 23 , where n=4 , the set of column vectors of

the Rademacher functions constitute the set of n-tuples of a
fourth order function.

In general the j th n-tuple of an n th order function may be

defined as : . ^ j = t, , . . . (2.3)
0 i=2

It is therefore possible to label each of the Rademacher
functions as defining variables in the same way as in a truth
table ; namely

the rows of [t 1 , t. . , 2 ̂ i ̂ (n+1 Hare labelled x.
L -J 1 , 3 I 1- 1

1 c jÿ 2". J

the rows t. . , (n+2)^ i ^ 2^ 1 aro labelled as1 » d IJ
^1,2 »^1,3 » • • ♦ ^(n-1),n ’ ^^1,2,5 ’ * ‘ * ’̂ (n-2) ,(n-1) ,n * "

Where x^ ^ denotes x^jôx^ etc. This labelling follows from the

definitions given in 3/ above. An example of this labelling for a

fourth order function is given in Fig. 23*
The row of [t J , t^ ̂ , 1 ^ j ̂ 2^ is labelled,by

convention , as x^

The matrix [̂t J has thus been partitioned row-wise into

several areas.

Now :
1/ The first row , having the subscript of x as a 0 ,

will be called the -zero-ordered partition*

2/ The second to (n+l) rows , having a single subscript,

will be called the first —order partition.

3/ The rema.ining rows , having in ascending order , q

94
subscripts, will be called the q th order partitions.

This particular method of row ordering has been chosen to

best illustrate the use of the transform matrix |̂ Tj in the field
of logic design.

The definition of the transform operation is as follows :

r 2^ 1
r. = 2^ - 21 51 @ F (x ,x , . . ,x)[,

‘■^=^ j-' y y . , . (2.4)

where 21 denotes arithmetic summation , and © denotes the exclusive-
OR operator.

It can be shown that r^ under this definition can be simply
stated as ;

"jrhe number of agreements between row i of and the
function F(x^,x^, . . ,x^)^ - -^the number of disagreements

between row i of [̂ tJ and the function F(x^,X2 , . . ,x^)j

In order that the value r^ may be related to the corresponding

row labelled x^ , where s represents the subscript given to the
i th row of [̂ tJ , r^ will be labelled R^. For example in Fig. 23

= ^12 ̂ ""16 = ^1234
Under this transformation the sample Boolean function shown

in Fig. 23 transforms to the vector :

0 0 4 0 0 -4 0 0
^0 ^1 "̂ 2 ^4 "̂ 12 ‘̂ 3 , %14
4 4 0 •-4 -4 0 4 12
^23

T)
"24 ^34 ^123^124^134 P

-23 4^1234

It can be shown that the Rademacher/Walsh transform may be

executed in the range -1,+1 instead of the range 0,1 as above.

Specifically if the Boolean value 1 is replaced in T above

by -1 and the Boolean value 0 is replaced by +1 , the transform

95
operation may be accomplished by simple matrix multiplication.

Equation (2.4) then becomes :

^i " • • *^nO* 1 ^ i ^ 2 . . . (2.5)

where t? ̂ refers to a member of [tJ »[t] being defined in the

range ~1,+1 . Fig. 25 shows the sample function of Fig.25 and Fig.

24 transformed in this way.

It has been pointed out that this transform is in some ways

analogous to the Fourier transform , see reference 20. In

particular it is noted that the zero-ordered coefficient

is in a sense a 'd.c* term in that it is a measure of the number

of false minterme of the function F(x^,x^, , , ,x^) . The first

-ordered transform coefficients R^^R^, . . ,R^ are a measure of

the dependence of the function on the defining variables x^jX^, . . ,x^.

The second-order transform coefficients R^^,R^^, • . ^

arc a measure of the dependence of the function upon x^Ox^ , x^Ox^ ,

For these reasons the transform coefficients will be called
'spectral coefficients' of relevant order. For example R^^is a

second order spectral coefficient , is a third order spectral

coefficient , and so on.

To gain some insight into the composition of a Boolean

function which is characterised by a particular spectral coefficient,

reference should be made to Appendix 1, where the Boolean functions

corresponding to the 2^ rows of |̂t J (in the range 0,1) are

plotted on Karnaugh maps for n=4.

It i& important to note that the distribution of true minterms

of any function in any variable , say x^ , (that is the number

of true minterms lying in x^ , and the number lying in x^) can be

96
j j-1 ^1 ^2 "3 ^4

1 0 0 0 0 0 0
2 1 0 0 0 1 1
3 2 0 0 1 0 1
4 3 0 0 1 1 0
3 4 0 1 0 0 1
6 5 0 1 0 1 0
7 6 0 1 1 0 0
8 7 0 1 1 1 1
9 8 1 0 0 0 0
10 9 1 0 0 1 0
11 10 1 0 1 0 0
12 11 1 0 1 1 1
13 12 1 1 0 0 1
14 13 1 1 0 1 1
15 14 1 1 1 0 1
16 13 1 1 1 1 0

Truth Table Representation of the Sample Function
of Fig. 25.

Fig. 24

1
1
1
1

1-1
1 1
1 1
1-1
1 1
1-1
1-1
1 1
1-1
1-1
1-1
1-1

0
0
4
0
0

-4
0
0
4
4
0

-4
-4
0
4

12

Execution of the RacCemacher/l/alsh Transform of
the Sample Function , in the Range 1,-1.

Fig. 25

9 7
determined exactly given the value of the corresponding spectral

coefficient together with the value of the zero-ordered coefficient
Rq. See also Section 2.7.2.

The Rademacher/.valsh transform matrix defined in the range -1,1

has the very important property that it is orthogonal , ie

[^] ̂ ■ . . . (2.6)

That is the inverse of the transform matrix |̂t J is equal to the

transpose of [̂t J multiplied by a constant.

Because of this property algorithms can be generated which

allow the transform to be executed at a much higher speed than is

possible using conventional matrix multiplication. This means that

it is possible to employ the techniques to be described for

systems defined upon a large number of variables without undue

sacrifice of computer execution time. See also reference 24.

2.5 Observations on the Significance of the Spectral Coefficients.

It was noted above that the’ correlation between a given

Boolean function and a particular row of the transform matrix

is given by the value of the corresponding spectral coefficient in

the transform domain.

It follows therefore that a function having a relatively

large positive spectral coefficient , say R.̂ ̂ $ has a high

correlation with x^Gx^ . On the other hand if the coefficient R^^

is large and negative , the function has a high correlation with

In general this interpretation may be extended to the overall

distribution of the spectral coefficients in the transform domain.

If, for example the function has its largest spectral coefficients

in second-order positions it will be termed a ’predominantly

second-ordered function ', whilst a function whose predominant

98
spectral coefficients are high-ordered will be termed a'high-ordered'

function.etc. Examples of high- and low-ordered functions appear

in Fig.2oa and Fig.26b. respectively. Comparisons between these

functions and the Karnaugh maps of Appendix 1 is instructive.

Note that the spectral coefficient does not enter into this

classification as it does not contribute any information about the

ordering of the function ; it is zero-ordered.

Since any Boolean function is uniquely reconstruetable from

its spectrum , see reference 20 , it follows that each of the

spectral coefficients contain some information about the function.

It has been shown that this information is not, in general , evenly

distributed among the coefficients, see also reference 25. A special

case 5̂ s that of the linearly-separable or threshold functions, in

which all the information is contained in the first (n+1)

coefficients. These are the Chow parameters as shown by Dertouzos,see

references 19 and20. It follows that threshold functions are

predominantly first-ordered.

Inspection of the high-ordered function of Fig. 26a shows it

to be ’ classically ’ C Ü mberSQ(Dc.to synthesise from a circuit designers

point of view since the true minterms of the function are scattered

on the Karnaugh map and do not fall predominantly into areas

corresponding to the intersection or union of any particular

defining variables. The opposite is true of the low-ordered function

of Fig. 26b.
These observations lead to the intuitive supposition that

high-ordered functions are most easily synthesised with the aid of

exclusive-OR gates '. This supposition will be verified later.

In the light of the above discussion it would also appear that

it is advantageous to be able to convert high-ordered functions

-d*OJT“«
tAf\J
•4}-KNr-
rvJr-rC4—

99

rAOJ

ro,k<%:—
OJ

oi

OJK
<hT—«
rAr-«
OJT-«

tA«
OJ

o

CO <r ô Ÿ

rdCD(N
?k

Zo
h-oz3
Li.
Q
ÜJcr
LLlQ
CC01Xo

<r

I I
00 < - 4" f

rAOJV-«
rAOJ _
cj-
rAT-«
OJr-K
lAOJ«
hA«
J"
rAOJ«

-pc;— ^
rAr- ̂ --p4"""25*
OJ

—K«—5>

bT

OJDÎ
«
«

IOO
I

3
CD
CVÎ
?L

0 z3
Ll.
O
LiJ
OC
ÜJÛXO1
o

g SIo oO O
—

a o o 'o
o

+
T ~

%aO f*- o
(No X o

oO fOO N
T—

CO X

5 % 2

g o o,o T— 'i—o
— J"o 2 A ■3iT—
o o o f*O o

^ 8
Vo o K)o o

X

5^°
0 6 - 9

100
into lower-ordorod functions by sorno method. Such methods will be

described later.

2.Zf Some operations in the Transform Domain•

It is of importance to investigate the relationships between

operations in the transform domain and those in the Boolean function

domain , or 'Boolean domain By doing so it is possible to show

that certain Boolean o%:erations may be enocutod more easily in the

transform domain and also that certain operations in the transform

domain may be immediately interpreted in terms of logic circuit

synthesis.

Consider the following operation :

Operation 1 •------
The interchange of variables with , 1: / 1 , k / 0.

From equation (2.4)
^n •

r , ^ 2“ - 2 { z ® • • ’" n ^] ' ^

1 i S' 2“ .
equn.(2.4)

repeated.

Substituting x, . for t. . and R, for r, ■.1,3 k 1
in the above gives

Define a now function

where = x^

x^) = F(x^ ,x.,, . . , . . ,::̂) • * (2.3;

k / 1 0 .
ind '"1 " "k

101
Then equation (2.7) can be written as

j ® • • »^k’* • >^rd} |- (2.9)1<k^n J
or . (2.10)

K K n
The equations (2.9) and (2.10) are therefore equivalent , and

^ = h "•

It can also be shown that , under this operation ,

= \ -

' % 1 “ = ®ni • 2‘ci = ^0 Gtc.

That is the resulting set of spectral coefficients arc

generated from <(2 ̂ by replacing k by 1 in the subscripts of ^

and vice-versa.

For example if is interchanged with %. , the resulting

spectrum is generated as ;

"43 “ ^23 ’ ^23 ^ ^13 "le34 ^134 ’ ^134 ^ ‘̂234
It is now possible to interpret the above operation in terms

of general logic circuitry.

Fig. 27a shows the implementation of the Boolean function

F(x^,X2* . . ,x^,x^, . . ;X^) which has the corresponding spectrum

<H>.
According to the above , variables x^ and x^ are now inter

changed and a new module corresponding to F'(x^,X2, . . ,x^,xj^, , . ,x^)

is defined , as shown in Fig. 27b.

This new module has the spectrum*^R’̂ . Note that , from

102

n

<R>
Fig.27a

F ' (x . , x ^ ,

<K‘>

<■>

Fig. 27b

103
equation (2.8) , the overall transfer function of the system has not

changed.

The above is an illustration of an operation in the transform

domain which may be directly interpreted in terms of logic circuitry.

Dertouzos , reference 20 , has considered several of these operations

and the most important of these are given , without derivation ,

below.

Operation 1 (repeated)

Interchange of variables with x^ , k / 1 / 0.

The new spectrum may be generated from the original

spectrum <^R^ under the interchange of x^ and x^ if in ̂ R ^ the

subscript k is replaced by the subscript 1 and vice-versa.

Operation 2.
•»
Complementation of the variable x^ : x^ becomes ^ .

The new spectrum ^R'^ may be generated from the original

spectrum ^under the complementation of variable x^ if in ^ R ^

the spectral coefficients having subscripts containing k are

changed in sign.

Fig. 2oa shows the implementation of this operation.

Operation 3*

The generation of the Dual of a function.

That is , given a function F(x^, . . ,x̂ ,̂ • . ,x^) having a

spectrum ̂ R)> generate a function F(x^, . . ,x^, . . ,x^) having a

spectrum .

The new spectrum ^R'^ may be generated from the original

spectrum <^R^ under the above operation if in the oven-ordered

spectral coefficients are changed in sign. Roto: R^ is even-ordered.

Fig. 23b shows the implementation of this operation.

104

— •
mm •

n

“ Y ^
<r‘>

< E >

y

Fig. 28a

T
'e''

— r -
<R>

<S---

Fig. 28b

. - X.

. X

'k

n

o > Fig. 28c

10 5
Operation 4.

The generation of the complement of a function.

That is I given the function F(x^, . . ,x^, . . ,x^) having
a spectrum generate a function F(x^, . . ,x^, . , ,x^) having
a spectrum •

The new spectrum may be generated from the original

spectrum)> under the complementation of the function if in

all spectral coefficients are changed in sign.

Fig. 23c shows the implementation of this operation.

— — oOo---
So far certain operations in the transform domain have been

have been considered which certainly facilitate operations in the
Boolean domain , but which appear to contribute little to the actual
synthesis of logic functions. However Golomb , reference 2b * has
shown that the ordering and complementing of the defining variables
of functions enables certain functions to be classified into

equivalent classes. That is , certain functions of the same order n ,
and. which differ only in the permuta.tion and/or complementation of
their defining variables are termed equivalent. Such a classification

can clearly be established by using Operations 1 and 2 .

In logic synthesis the concept of equivalent classes is

important since i,f the synthesis of one member of such a class is

known then the synthesis of any other member of the class follows

by simply permutating and/or complementing the defining variables

of the known system.
The number of equivalent classes is of course much smaller than

the total number of functions possible , for any given n .

In order that the idea of equivalent functions may be extended

it is necessary to introduce a new operation which not only facilitates

logic synthesis on an equivalence basis but also finds application

106
in the synthesis of logic functions by means of threshold gates as

will be described later. This operation will be called the
•translational operation';

Operation 3»

The replacement of the defining variable by x^ 0 x^ ,

k / 1 / 0.
Recalling equation (2.4) :

,n
= 2 ^ - 2 f Z • • ’ V l > 1

'• y. . (2.
1$:i^n . J r

4)
repeated.

Let the given function be F(x^,x^, . . ,x^, . . ,x^)

Define a new function F'(x^,x^, . . ,x^, . . ,xw)
. . (2.11)

. . ,x^, . . ,x^) where @

The fact that this definition gives rise to

a unique new function under a basis transformation is shown in
Appendix 2.

Substituting for the defining variables in equation (2.4)

in the usual v/ay gives,for the new function :

E. = 2“ - 2 (fe "k.j ® • • '=k' * •J"' >. . . (2.12)
1 < k <n

or , from equation (2.11) :
,n

R» = 2 ^ - 2
■ a

J

Now equation (2.13) is,by definition, equal to R,. . That
1 ̂ k ^ n

is E^ = .

It can also be shown that = R^ ,

^klm “ "'km * '̂km " "\lm

. . (2.13)

10 7
and ,

% = ^0 etc-
If this operation is extended to the replacement of by x^^^

the following results are obtained:

^klm ^k ' % \ l i n ’

‘ ^klnin ’ *'kn ^klran ’

and ,

% = etc.

It is important to note that this operation constitutes a

re-ordering of the minterms of F(x^, . . ,x^) and that no information

about'the function is lost.

2.3 Spectral Translation.

Consideration of Operation 5 » above , gives rise to the
following theorem :

2.3*1 The Theorem of Spectral Translation.
If in a Boolean function F(x^, ,x^) having a

spectrum <^R^, Xy is replaced by -ĵ x̂ ® x^ . . . © x^^ ® Xy where

the set of subscripts <^a,b, . . . ,h^ is denoted by <(S)>, then the

spectrum <^R'^of the new function is generated from the spectrum ^ R ^
if :

in every subscript of the spectral coefficients of <^R^

containing k , the members of ̂ S ^ are deleted if they exist,and

appended if they do not.
—— oOo — '

Notes on the theorem

1/ When a first-order spectral coefficient is replaced by

a higher-ordered coefficient under the above theorem , no other

108

first-ordered spectral coefficient is replaced. This follows from

the fact that no other first-order coefficient has the same subscript#

2/ If the operation of spectral translation is executed twice

for the same variable replacement , the original spectrum results.

2.3*2 Interpretation and Implementation of Spectral Translation

Fig. 29a shows the implementation of the Boolean function

F(x., . . ,x, , . . ,x) in terms of logic circuitry. Suppose that • X n
it is required to replace x̂ ̂ by x^ = x̂ ̂ © x^ • This is accomplished

by means of an exclusive-OR gate and produces a new logic module

. . ,x^, . . ,x^) as shown in Fig. 29b. The overall transfer

function of the system remains unchanged ,from equation (2.11).
Fig. 29c shows thé implementation of this operation for the

variable x^ replaced by x̂ ̂“{'̂ 3 ® ® ^f}® *

2.3*3 Significance of Spectral Translation.
2 .3.3a In Logic Synthesis.'

Because the theorem of spectral translation has the

fundamental property of translating high-ordered spectral coefficients

to low-ordered positions , it is clear that , in general , given

a high-ordered function then a function of lower order may be

generated from it. Now it has already been established that low-

ordered functions have the property that they may be more easily
t

synthesised in terms of threshold gates and vertex (BAND,NOR,AND,OR)

gates , than may high-ordered functions. ^

The fact that spectral trc.nslation itself is easily

implemented by exclusive-OR gates means that a novel , and sometimes

complete , synthesis procedure is possible, as will later be

demonstrated.'___
It is assumed that the exclusive-OR gate is an integral

gate having a propagation delay comparable to that of a vertex gate.

109

F(X. • • $X, ; .

- y
J

<R> Fig. 29a

F ' (x . , x _ , . . , x ' ,

<r'>
J

■ V<R> Fig. 29b
X1

Xc

X f

n n

- V - -
<H‘>

Fig. 29c

110
In Boolean Function Classification.

As has been mentioned above , Golomb, reference 26 , has

shown that certain Boolean functions of given order n may be classified

as * equivalent' under the complementation and/or permutation of

their defining variables.

In the light of the theorem of spectral translation

a new , and more embracing , classification may be proposed,:

J
A Boolean function F^Cx^, . , of order n is

classified as trans1ationa11y -equiva1ent to another

Boolean function • • ,x^) of the same order,if

F^(x^, . . ,x^) can be mapped onto F^Cx^, • . ,x^) by

the permutation and/or complementation of its defining

** variables and/or the , perhaps repeated , application

of the theorem of spectral translation.

Clearly all Boolean functions which are equivalent fall

into the sametransiationally-equivalent class. It follows that the

number of translationally-equivalent functions which exist for a

given n is smaller than the number of equivalent functions.

The practical importance of this new classification lies

in the fact that translationally-equivalent functions can be

synthesised from a representative , or canonic , function whose

synthesis is known,by the complementation and/or permutation of

the defining variables and/or the appending of suitable exclusive-OR

logic.

If tables of representative canonic functions are

generated , therefore , together with optimum syntheses , it is

possible to synthesise any given function by

Ill

1/ establishing the translationally-ecuivalent class to which it

belongs,

2/ finding the operations necessary to convert the

given function to canonical form,

3/ to implement these operations in terms of logic circuitry,

and then

4/ to append the optimum synthesis.

The choice of form of canonic function is arbitrary,but in

order that an optimum synthesis be achieved it is clearly an

advantage that the canonic . function for each class should be

predominantly first-ordered for reasons previously described.

With this in mind the following method of generating the

canonic function in each class is proposed :

1/ Generate the lowest-ordered function possible in a given

class by the operation of spectral translation.

2/ Render all first-order spectral coefficients positive

(Operation 2).

3/ Perrautate the defining variables so that the. first-order

spectral coefficients are arranged in descending order of magnitude,

followed , whore possiHe/by the second-order coefficients etc.

(Operation 1).

This method has been used to generate a table of canonic

functions for n ̂ 4 . 'Tliis table appears in Appendix 3* The power

of this form of Boolean function classification now becomes'"

apparent. The total number of Boolean functions for n ^ 4 is

63,336 and under this classification the number of canonic
functions is 18 . In practical terras this means that I8 unique
logic modules are required to synthesise all possible Boolean

functions,n ̂ 4, under the application of the operations 1,2 and 3*

Because this table does not specifically enumerate all possible

112
complements of functions it is also necessary to invoke Operation 4.

Of those 18 functions one is trivial (function N0.I) since it

specifies a function with all false minterms. It is worth noting at

this stage that all but three of these canonic functions are

threshold functions ,(the threshold functions are marked ’T ‘). The
importance of this will become clear later.

The 'optimum syntheses' of these functions have not been
shown since the definition of optimum will depend upon the criterion

of optimality used. This may be minimum number of gates or inter
connections , cost etc.

It will be shown later that a more powerful classification

method is possible but before embarking on the details of this it

is neaessary to investigate the application of spectral translation.

2 .3*4 Application of Spectral Translation.

2•5•4a.Application to Synthesis by Threshold logic.
Dertousos, reference 20 , has shown that a threshold function

is uniquely characterised by the values of the first (n+l) spectral
coefficients. These in fact are the Chow parameters , see reference

19» Moreover these coefficients may appear in any order and with

any sign. All threshold functions are linearly separable and ,

because the evaluation of linearly separable functions is a

complex procedure,tables of such functions have been prepared, see

references 20 and 27* In those tables the first (n+1) spectral

coefficients of each threshold function appear in ascending order

of magnitude and are positive. These vectors a.re sufficient to
characterise all n th order threshold iunetions and aie calloo. oooiüivo

characteristic canonic vectors- In order to establish if a given

function is a threshold function it suffices to arrange the first

* If operation 4 is invoked then this function characterises a function
with all true minterms.

113
(n+l) spectral coefficients of the function in ascending order of

magnitude, change all negative coefficients to positive and

determine if this characteristic vector appears in the tables

of of positive characteristic canonic vectors.

In order that the threshold gate corresponding to a particular

canonic vector may be designed it is necessary to evaluate the

weights associated with that vector. Again these threshold weights

normally appear in the canonic vector tables,A representative set of

such tables appears in Appendix 4,

The use of such tables is best illustra.ted by means of an

example.

Consider the fourth-order function of Fig. pO*

The first (n+l) spectral coefficients of this function are

4 12 4 -4 0 ,
Rq ^ ^2 ^3
re-arranging these coefficients into ascending order of

magnitude £ind changing all negative signs to positive the vector
12 4 4 4 0 is obtained.

Inspection of the tables of Appendix 4 , for n=4 , shows

that this characteristic vector indeed defines a threshold function

for v.'hich :

Characteristic vector C : 12 4 4 4 0

Weights. W : 2 1 1 1 0

How because there is a one-to-one correspondence between

each weight and associated member of the characteristic vector ,

both .in magnitude and sign , it is possible to re-express the

original function in terms of the weights by re-arrangement and

change of sign as appropriate.

114

In this example

4 12 4 - 4 0 are the original coefficients
Rq R^ R^ R̂ ^

1 2 1 - 1 0 are the corresponding weights.
^6 '4 "4 "4 '4

From these weights the parameters of the threshold gate
may be calculated. For a more detailed treatment see references5'
20 and 28.

The input weightings for each gate input are given by :

Weighting at input x^ is equal to vH , 1.< i < n . . . (2.14)

The output weighting of the gate is given by :

. . . (2.13)
t {* n 1

Weighting at output = -̂](SI I • I) + w* + 1
i=1 ^ °

As threshold gates with a negative weight capability will
not be considered it is important to note that if any wl are.

negative the respective input must be complemented and the

corresponding weight changed in sign. In this particular example
therefore, w^ is changed in sign and an inverter is placed before
input x^.

From equation (2.13), the weighting at the output of this

gate is -J(4 + 1 + 1) = 3* The gate is shown in Fig. 30.
Note that the input weighting of 0 is equivalent to a no

connection. That is , the original function is independent of

variable x^.. (The function is in fact third-ordered).

The description of the operation of this gate is now

straightforward. Clearly if x^ and x^ have the value 1 then the output

^ Note that some authors define this weighting with -w^ ̂ this is

because Chow parameters were not originally defined using,t^e

Rademacher/Walsh transform . This results in a difference of sign for

115

I
o o
4*

<-
I

(\JT-w
-d*rA
of*
-d-rAV-K
-d*ojT-P1
hAOJr~«
-d"

-d*OJ

tA OJ
— W —

T-«
tAr"«
OJ

•DÎ —

-d"W

hA>« —

OJ

«

Io

->

o
CO

L

ICN o

o

CMO X o

C t

IT— ’o o
y ■
T— T —

‘a? :2

-C-
O

•O
O o o

o
O "o o No

I
< r
I

X ^ o

> r

116

threshold of 3 will be equalled since is weighted 2 and is

weighted 1 . The gate will thus give an output of one. Similarly

the gate will also give an output of one if x^ = 1 and x^ = 0 since

x^ is complemented. Also if x^ = 1 x^ = 1 and x^ = 0 the sum of

the weights at the input is k which exceeds the output threshold 3 ,

the gate output will then again be 1 . In all other cases the output

threshold is not reached so that the gate output is 0 .

The gate function may therefore be concluded to be

x^ * (» where signifies logical’ AND ,

’+ ’ signifies.logical OR.

This result can be checked from the Karnaugh map of the

function shown in Fig. 30 •

•» The role of the èpectral translation operation in the synthesis

of Boolean functions by means of threshold functions is now

considered by means of a simple example.

Given : the function shown on the Karnaugh map of Fig. 31 »

The spectrum of this function is as follows

0 0 4 0 0 -4 0 0
^0 R2 %4 ^12 ^13 %14
4 4 0 -4 -4 0 4 12
^23 ^24 ^34 ^123 ^124 ‘̂134 ^234 ^1234

If the first (n+1) spectral coefficients of this function are

ordere.d by magnitude and rendered positive the result is :

4 0 0 0 0 which does not appear in the tables

of positive .characteristic vectors (Appendix 4-) » that is , it is

not a threshold function.

Now apply the operation of spectral translation to generate

a new spectrum from the above spectrum ^ , v;here •

117

T - C N 0 0X X X X
no

00

L .

Co
•4-»
3
o
1 0
■4— •
(/)
L_

Lt_

o 4»o <71o T— y-o
ijT— O T—'

5 <
T—

n̂O vAO
(No X o

0o KÏo N

X ^ o 5 = 0

> T

4— CsJ 0 0X X X X

ré
ré

CM
CO
d.
Oj
Oj

JÛ

00
O T

L

co
o
1 0

ID
O
U)

CL
O I

118

0 0 4 0 4 -4 0 .4
% ^2 %4 %12 4 3 4 4

4 0 4 -4 0 12 0 0

^23 '^24 ^34 ^123 ^124 "154 434 % i234

Applying the operation again for the generation of a new

spectrum from where R” = :
0 0 4 12 4 ..4 4 .4
^0 4 4 4 4 2 4*3 4 4

0 ' 0 0 0 0 0 -4 4

"23 4 4 4 4 si'23 ^124 4*34 %234 ^1234
Finally , applying the operation for the generation of a

new spectrum from ^R"^> where R” * = R”^ •
0 -4 4 12 4 0 0 0
R - R'“ X)1t 1 R"' 4 ' 4 A 4 4
\) 0 0 4 ..4 4 .-4 0
4 3 4 4 4 4 ''Ï23 4 k 4 k 2%234
Now if the first (n+1) spectral coefficients of this function

are ordered by magnitude and rendered positive the result is :
12 4 4 4 0 which appears in the tables of

positive characteristic vectors (Appendix 4) , that is , it is a

threshold function.

The threshold gate parameters may now be calculated using the

method described above :
The coefficients 0 - 4 4 12 4 give the

R^‘ RIJ» 2”» R"' R|J»

corresponding weights 0 - 1 1 2 1 , see Appendix 4 •
"'Ô "2 ''g ”4

From equation (2.15) > the output weight is
-J(5 + 0 + 1) = 3 ,

The resulting gate appears in Fig. pi a together with the

exclusive-OR circuitry necessary to carry out the spectral translations.

119

That is , initially is replaced by and so on .

Because w* is negative an inverter is placed on the input
line before the gate.

This example illustrates a property common to many non-threshold
Boolean functions , that is that such functions may be rendered

linerarly-separable (threshold functions) , by the application
of the operation of spectral translation. Such functions will

be said to have threshold functions ’embedded' within them.

The importance of this result of course lies in the fact that

the versatility of threshold logic is increased many-fold by the
straightforv/ard appending of equivalence (exclusive-OR) -type logic.

In fact the tables of Appendix 3 show that there are only three
classe'fe of functions out of eighteen which do not have embedded
threshold functions , n ^ 4 .

It has been argued*that the continuing non-appearance of any
satisfactory technology for making threshold gates commercially
available limits the practical usefulness of these methods. In

fact the difficulties in the fabrication of these gates have been
overcome by a novel design method devised by Dr.G.L. Hurst ,

University of Bath. The implications of the.use of this gate are

discussed in Chapter 3 .
In practice the application of spectral translation to

convert a high-ordered function into a low-ordered function,so

that embedded threshold functions may be employed in the synthesis

of given functions, may be carried out in several different ways.

Each of the alternative methods for carrying out the translations

results in a differing number of gates employed in the final

* Refereeb comment on paper on this subject submitted to

I.E.E.E. Transactions on Computers by the author.

120

synthesis. The criteria governing the optimum choice of spectral

translations for the minimisation of the number of gates used in

a given synthesis appears in Section

2•5•4b Application to Synthesis by Vortex logic.

As explained previously , functions having high-ordered

spectra are generally more difficult to synthesise using vertex

(AND,0R,iJAIID,::0?v) logic than are functions with low-ordered spectra

because their true minterms do not fall predominantly into areas

corresponding to the intersection or union of any particular defining

variables.

It has been shown however that the application of the

operation of spectral translation enables a high-ordered function

to be Ve-expressed as a function of lower order under exclusive-

OR synthesis.

The techniques of spectral translation can therefore

be used , without the necessity of employing threshold gates , to

problems employing conventional vertex gates. Moreover the synthesis

of Boolean functions by this method gives rise , in general , to

more elegant solutions than would be the case in circuits employing

no exclusive-OR gates. This follows from the observation that

exclusive-OR functions are not easily synthesised by vertex logic.

Consider the function given by the Karnaugh map of Fig. 5*2.3.

This function has the spectrum

2 2 2 2 6 2 -6 6
4 ®2 "3 4 ^12 4 3 4 4

-6 “2 6 2 -2 -2 6 '-2
4 5 ^24 . ^34 P

125 4 2 4 ^134 ^̂ 234 ^4 234
Koto : this function does not have an embedded threshold function.

Applying the operation of spectral translation to generate

a now spectrum ^R'^from the above spectrum <^R)> ,where RJ| = R^^ :

121
0 1 1 1 1 0

00 0 0 0 0

01 1 1 0 1

11 0 1 1 0

10 0 0

1
1 1

<a \ 0 0 0 1 1 1 1 0

0 0 0 0 0 0

0 1 1 0 1 1

1 1
0 1 1 0

1 0
0 0

/j
1

X1X2
:X00 0 1 1 1 1 0

0 0 0 0 0 0

0 1 0 1 1 0

1 1 1 0 1 1

1 0 0 0 1 1

x̂ X2
< 4 \ P 0 0 1 1 1 1 0

0 0
o i o 0 0

0 1
0 1 1 0

1 1
0 1 1 1

1 0
0 0 1 1

1 3 ' 4

F i g . 3 2 a . S a m p l e f u n c t i o n .

F'(XpX2.X3,X4)

h X4
F i g 3 2 b . F u n c t i o n a f t e r 1 s t . t r a n s l a t i o n

F"(XyX2,X3,x^)

- 4 - \ ■

•Xi
X 2
.X3
X,

F i g . 3 2 c . F u n c t i o n a f t e r 2 n d . t r a n s l a t i o n

]*''2*''3’ 4

F i g 3 2 d . F u n c t i o n a f t e r 3 r d . t r a n s l a t i o n

122

2
%

6
«1

2 2
%3

6 -2 -2
^4 ^12 ^13

2
4 4

-6
^23

-2
«24

6
^34

-2
%i23

2 - 6 6
^d24 ^^34 ^234 ^1234

Again , generating a new spectrum from the above spectrum

where R” = R44 :
2

,
6
«'l

2
R-

6
«3

6 —2 —6
«Ç «Ï2 «13

2
%14

6
E''3

-2
«24 % 4 ^'23

2 -2 -6 -
'̂124 ^134 ^234 ^1234

Finally , generating a new spectrum ^R"'^ from the above spectrum

< ^ R w h e r e Rtt 1 _
2 " ^23 •

2
, «o'

6
Rlj ’

6
R” '

6
R^'

6 2 - 6
^12 ^13 «Ï4

2
«23

-6
«24

2
^34 '̂123 ^124 ^134 '̂234 «1234

A point has now been reached where the spectrum is maximally

first-ordered , that is to say no further translations can increase

the magnitudes of the first (n+1) coefficients.

The functions generated by each of these translations are shown

in Figs. p2b , 32c and 32d respectively. Note that at each step

the true- minterms of the function tend to come together in larger

groups; that is , the true minterms fall more predominantly in areas

corresponding to the intersection of the defining variables.

Fig*33a shows a simple , conventional two-level synthesis

(AND,OF) of. the original function of Fig. 32a together with

necessary inverters. The same figure shows the synthesis accomplished

with the aid of the above translations , implemented by exclusive-OR

gates, Fig. 35b.

The saving in circuit complexity is considerable in this

123
0)

CO
CO

L

CO
CO
m

L

V
Q Q Q
Z Z Z< J I < J I <

Q Q
Z Z< J <

T -
•X--------O "oS S -" •

T—

—

a —O XI'O
 ̂ 5

<-o U» ft-

T —"

ki*O
^ 8

0O V — ”o NO

> r

124
example , the number of interconnections required being 20 and 12
respectively.

It is worth noting that because only positive spectral coefficients
have been translated no inverters are required in the latter synthesis.

This would not necessarily be the case , of course , if NAND,NOR
logic were employed.

In the case of threshold logic synthesis it was noted that
the appearance of a 0 in the weighting vector , 1 ^ i^ n ,

implied a no-connection , that is the function was independent of
variable • It is true of all functions that if 0 appears in every

spectral coefficient having a subscript containing i then that
function is independent of x^. It is clear by inspection that the

function considered here has no variable redundancies.

Again the spectral translations in this example have been carried
out with no obvious plan to minimise the number of gates generated.
In fact this solution does employ the minimum number of necessary
exclusive-OR gates for reasons developed in the next section.

2.5*5 Gate minimisation Criteria.
In order that the minimisation criteria pertaining to the synthesis

of digital circuits under the operation of spectral translation may

be developed it is necessary to employ Galois Field 2 theory. For

this reason reference should be made to Appendix 2 before proceeding

with this section.

A GF(2) matrix is able to represent an operation of the type :

replace x. by x! = x. @ x ..which corrosnonds to a soectral translation.

For example : replace x^ by x* = x^ © x^ would be represented as

125

1 1 0 0
0 1 0 0 ^2
0 0 1 0
0 0 0 1

© X^) 4
^2 = ^2

^3
^4 "̂ 4

, in G?(2) .

In field theory a matrix of this type , where the main diagonal

consists of allowed values other than zero and only one other allowed

value , other than zero , appears off the main diagonal , defines

an elementary operation • An elementary operation thus corresponds to

a spectral translation where a second-order spectral coefficient

replaces a first-order spectral coefficient» since if is replaced

by x! = X. © X. then R. is replaced by R! = R . . •1 1 j 1 1 ij
It also follows that if it is required to represent a spectral

translation where a spectral coefficient of above second-order
replaces a first-order coefficient then this can be achieved by the

multiplication of a number of suitable matrices in GF(2) , each of
which define an elementary operation of the type above*

For example , the replacement of x^ by xjj = © x^
be represented by

(x^@Xg©X^)
X,

x^ can

0 1 o’ 1 0 0 ‘1 1 1 0 ^ 1"
0 1 0 0 0 1 0 0

^2
0 1 0 0 ^2

0 0 1 0 0 0 1 0 0 0 1 0
^3

0 0 0 0 0 0 1 0 0 0 1
\

X
Xf

where x^ has first been replaced by x* = x^ © x^ and then x^ has been

replaced by xjj = x* © x^ = x^ © x^ © .

In general,a series of elementary operations in GF(2) can

represent any single spectral translation.
'These ideas may be extended to the representation of several

consecutive spectral translations* For instance, in the example of

the previous section the overall result of the series of spectral
translations was to replace x^ by x||'= x^ © x^ , x^ by x” '•= x^ @ x^ © x̂ ,̂

126

%3 by X3 ' = %3 @ X̂ , and by xJJ*= x^ . See also Fig. 33.

The result of this series of translations can thus be

represented as

, in GF(2) .

'1 0 0 1" '̂1 (x^Ox^^
0 1 1 1 ^2 (x.Ox_©x,) = 2 p 4- = 4
0 0 1 1 (x^Ox^) yU 1

3_0 0 0 1 ^4 xj|'

It follows that the above matrix may be re-expressed in terms of

a number of matrices , in GF(2) , each representing an elementary

operation which corresponds to the spectral translation of a second-

order spectral coefficient to a first order position.

Now it is a property of GF(2), and indeed any field , that

the matrix resulting from the multi%)lication of a series of matrices,

each matrix defining an elementary operation , has a determinant which

is non-zero. (In the case of GF(2) the matrix has a determinant of

value 1).

It is therefore possible to test the validity of a proposed

series of spectral translations in the following way :

Test 1.

If the result of a proposed series of spectral translations

is represented as a matrix ̂ A] in GF(2) , then such a series of

translations is possible only if the determinant of [A] has the

value 1 .

— oOo~“
eg. for the last example

[Al- 1 0 0 1
0 1 1 1

10 0 1 1
[0 0 0 1

The author is indebted to Mr. B.Ireland ,University of Bath ,

for his advice on the aspects of field theory discussed here.

127

Expanding the determinant o f[A]by the first column in the

usual way gives

|A| = 1. 1 1 1 1.1. 1 1
0 1 1 0 1
0 0 1

= 1 .1 . { (1 .1) + (0 .1)|
= i.i.Ci + 0)

j = 1 • 1 • 1

= 1
where and '+' denote multiplication and addition

in GF(2) respectively. See Appendix 2 .

This result shows that a series of spectral translations is

possible for this example.

One other elementary operation exists in GF(2) which can be

shown to correspond to the interchange of defining variables.

(Operation 1 , section 2.4), This is equivalent to an interchange

of the rows of ̂ Ajwhich does not invalidate Test 1 and is implemented

by a simple interchange if input lines to the final logic module

of the circuit.

The functions defined by

and spectral translation is equivalent to a Basis Transformation.

Note that Test 1 is sufficient to define a basis but does not

give any information about the spectral translations , and thus

number of gates , necessary to generate that basis. Test 1 then

does not assist in the gate minimisation problem.

It has been shown that spectral translation is best used , from

a synthesis point of view , in mapping a high-ordered function onto

a lower-ordered function. The most significant spectral coefficients

are then translated to first-ordered positions. It follows that the

choice of basis is made from the set of spectral coefficients whose

A. 1 where | A| = 1 , are called a Basiz

128
magnitudes are the greatest.

For the example of Fig. 33 the spectrum is
2 2 2 2 6 2 -6 6
% "1 ^2 ^3 %4 "12 ^13 %14

-6 -2 6 2 •2 -2 6 .-2
"23 ^24 ^34 ^123 ^124 ^134 ^234 ^1234

The most significant spectral coefficients are 31 /̂]2̂ 1̂ 23*

R3^ and ^23^̂ * each of which have a magnitude of 6. The basis is
therefore chosen from the functions x^, x^@x^ , x^Gx^^ , ,

x^©x^^ and x^Qx^Sx^ • Of course if no set of these functions form

a basis it would be necessary to include other functions whose

corresponding spectral coefficients have a magnitude of 2 •
Once a basis has been chosen , that is a set of n of such

functions satisfying Test 1 , it is required to find the minimum
number of exclusive-OR gates which will generate that basis. A
method which enables such a basis to be generated using the

minimum number of exclusive-OR gates is'given,by means of an example,
below.

Suppose , for the function of Fig.'33 the following set of
is chosen :

Function No. Function
1
2
3
4

Xi ©
x„ © x^ ®2 3

^4

The corresponding [A matrix is 1 0 0 1
0 1 1 1
0 0 1 1
0 0 0 1

It has already been established , see above , that this matrix has

a determinant of value 1 , and therefore passes Test 1 • These

functions therefore form a basis.

129

Nov; inspection of these functions shows that function 4 can

be generated without employing any exclusive-OR gates , function 3

can be generated using one exclusive-OR gate, function 2 requires

two exclusive-OR gates and function 1 requires one exclusive-OR

gate. In addition , function 3 can be generated from function

4 using one exclusive-OR gate since x^ © = x^ ®{^4} * function
2 can be generated from function 3 using one exclusive-OR gate since
x^ © © x̂ ̂ = x^ 0^X3 © x̂ l̂ and function 1 can be generated from

function 2 using three exclusive-OR gates since x^ © x^ =

x^ © Xg © x^ ®{^2 ® etc. These results can be obtained
directly from the[A matrix by noting that

1/ The number of exclusive-OR gates required to
syntho»sise any basis function is given by;-^he number of 1’s appearing

in the corresponding row of [A] | - 1 •
2/ The number of exclusive-OR gates required to

generate the i th basis function from the j th basis function is
given by the number of differences between the i th and j th rows

of[A].

This information is best presented as a difference table , denoted

as l\ • For the above basis the /\ table is

Function No.

Fn.
No.

1 2 3 4
1 1 3 2 1
2 3 2 1 2
3 2 1 1 1
4 1 .2 1 0

, where the entries S . . , 1 ^ i ^ n , are the1 ,1 ^ ^

number of exclusive-OR gates required to synthesis the i th basis

function and the entries cT. . , 1 ^ i ,j ̂ n , are the number of1 » 0
exclusive-OR gates required to generate the i th basis function from

the 3 th basis function. From the result © x^ = x^ © x^ it

130
follows that o i, j =
of this table need be ge]

1 2 3
1 1
2 3 2
3 2 1 1
4 1 2 1 0

Suppose that it is

of the basis . This is an
<̂ 2̂ ^ is then ringed and
show that they are avail;

v/
1 2 3 4
1

2__ 3 2
3 2 1 1

uy 4 1 2 1

-n

contains all the required information.

functions.

• Now several equally attractive alternat

ives are possible. Functions 1 or 3 may be generated from function
V using only one gate. On the other hand functions 1 or' 3 may be
generated directly using only one gate. Suppose that in this case
it is decided to generate functions 1 and 3 directly , the table

then becomes

• Now only function 2 remains to be

synthesised. The minimum number of gates necessary to do this is .one

if function 2 is generated from function 3 » which is available. This

gives the final A table as

\/ 2 . All the basis functions have,now been

131

synthesised and the total number of gates used, which is the sum of
the ringed numbers,is threet In practice,when an equal choice is

presented between elements on the diagonal of A and elements not
on the diagonal ,the diagonal elements are chosen • This

reduces the propagation time of the final circuit.
In general , if a basis is chosen where a spectral trajislation

from say, third order to first order is implied then it is clear that
at least two exclusive-OR gates will be required , irrespective of

the actual method of synthesis. This observation gives rise to
Lemma 1.

The absolute minimum number of exclusive-OR gates required
to synthesise a basis is equal to the highest number of exclusive-OR

gates .Required to generate any function of that basis.

— oOo—
In the example above the basis function requiring the

highest number of exclusive-OR gates for its direct generation is

function 2 which requires two gates . The absolute minimum number
of gates required to synthesise the basis is thus two,which is

one gate less than that found necessary in practice.

The minimisation of the number of exclusive-OR gates

required to convert a function to its maximally first-ordered form

is given by :
1/ Arrange the spectral coefficients in order of magnitude

(Excepting R^)
2/ Find the bases which correspond to the highest and

equal-highest magnitude sets of spectral coefficients,

3/ Apply the gate minimisation procedure to each of these

candidate bases in turn.
4/ Select the solution giving the minimum number of gates.

In practice the number of candidate bases , n^-?, turns
* Fig. 33^bows the implementation of this solution. (See p.123)

132

out to be small. This procedure is therefore quickly executed by

means of the digital computer.

In the case of threshold logic,where a negative weight capability

does not exist, it has been shown that for every negative valued

spectral coefficient translated to first-order a complementing

gate must be introduced in the final circuit. If therefore it is

required to minimise the number of gates under these circumstances

a modified minimisation procedure must be employed.

As an illustration of these methods consider the function shown

in Fig. 31 »P 117. The circuit of Fig. 31a was synthesised without regard

to gate minimisation by the repeated application of spectral

translation. See Section 2.3.4a. If gate minimisation is employed

however the circuit of Fig. 31b results,which shows both a saving

of one exclusive-OR gate eind one inverter gate together with a

reduction in circuit complexity._

2.6 Disjoint Spectral Translation.

2.6.1 Defining operation.
*An operation will now be considered which differs in

implementation from those considered above in that a feed-forward

signal path is created.

Operation 6

The interchange of spectral coefficients and R̂ ,̂

1 ^ k ̂ n .

Let the given function be F(x^,x^, . . ,x^, . . ,x^).

De fine a new function by F(x^,x^, . . ,x^, . . ,x^)

A . .
“ 0 • • *'“n * * * (2.16)

* Dertousos has considered an operation similar to this 'under the

heading of *equidualisation*^ Ref.20.

133
where the given function has the spectrum ^ R ^ a n d the new function

has the spectrum *

Substitution of equation (2.7) in equation (2.16) gives

■

C 2“ •'I

^ ® *k,j ® % . * • ’̂ n r *J-• ^ 3 - I
17)

1 {C n

A Ù.But X, @ X. . = 0 = x_ . ,see section 2.2.2, and the right handn,j ic,j u,3
side of equation (2.17) reduces to

M ft2

which is by definition equal to R^ • See section 2.2.2 .

Similarly

■ n
Rl = 2“ - 2 { Ê ® F '• • ,%k, • • ,%%)}

J - ' ' .1-1

2*
= 2 - 2 { f 3l,j ® %k,j ® 'Z. ' ' '%k' ' ' >Vl* ^2.19)J ~ I

It can also be shown that

% % ’

, " \ i ’
= \ l m ^tc.

These results give rise to the following theorem :

2.6.2 The Theorem of Disjoint Spectral Translation.

If , given a Boolean, function F(x^, . , . . ,x^)

having a spectrum <^R^ it is required to generate a new function

13.4
F ’(x , • • ,x, , . . ,x) having a spectrum R* , whereI K n

• • 1 ® F*(x^, « • ,x̂ ,̂ • • $x^) then ^ R ^
may be generated from / R ^ if :

in every subscript of the spectral coefficients o f ^ R ^

k is deleted if it exists and is appended if it does not.

■*— oOo —
Ilotes on the theorem .

The theorem is termed'disjoint' because it enables one of the

defining variables of the original function to be separated from its

fellows and gives rise to a feed-forward signal path , as described
below. Unlike the operations that have so far been considered ,

disjoint spectral translation has the property that it can , where

applicVole , convert one function to another even though the functions
have different ratios of true/false minterms.

2/ For the special spectral coefficients R^,R̂ ̂ the theorem is
applied as follows :

= %6k = 3^ -,

\ = % •
3/ The theorem defines an operation which allows the zero-

ordered spectral coefficiont of any Boolean function to be inter

changed with any first-ordered spectral coefficiont. If the operation

is repeated it follows that the zero-ordered coefficient may be

interchanged with any spectral coefficient.
2.6.3 Interpretation and Implementation of Disjoint

Siiectral Translation.

Fig. 34a shows the implementation of the Boolean

function F(x^, . . ,x̂ ,̂ . . ,x^) having a spectrum <^R^ . According

to the above this function is replaced by x̂ ̂0 F'(x.^, • .

where F'(x^, . . ,x^, . . ,x^) is a new function with spectrum
This implementation is shown in Fig. 34b. The overall transfer

135

~~Y~
<R>

Fig.3Aa

F*(x

J

n

<R'>
— r -
<E>

J

Fig.3Ab

13 6

function of the cystcm renainc unchanged.

This operation has resulted in the creation of a feed-forward

signal path. If the operation is repeated for two different defining

variables then two forward signal paths will be created , and so on.

2.6.4 Significance of Disjoint Snectral Translation.

2.6.4a In Logic Synthesis.

The operation of disjoint spectral translation permits

certain ■'functions , which are not translationally equivalent, to

be converted one into another. The practical importa^nce of this lies

in that it extends the versatility of threshold logic and permits

more elegant syntheses in terms of vertex logic.

The implementation of this operation is very straight

forward as was shown in the previous section.

2.6.̂ !-u In Boolean Function Classification.

Disjoint secctral translation gives rise to a

classification of Boolean functions which is more compact than

that of translational equivalence (Section 2.1.la) as is shown below

The following classification of Boolean functions is

proposed

A Boolean function F^(x^, . . ,x̂)̂ is classified

d i s j o i n t]. y -1Ï- an s 1 a t i on a 11 y -equivalent to another

Boolean function F^Cx^, . . ,x^) , of the same order,

if F^(x^, . . ,x^) can be mapped onto F^(x^, . .

by the permutation and/or complementation of the

defining variables and/or the , perhaps repeated,

application of the theorems of spectral translation

and/or disjoint spectral translation

— oOo —

13 7
Again the tables of canonic function spectra can be drawn up

together with optimum syntheses , as in section 2.3.3b . In this

case however is designated the highest magnitude then the first-
order coefficients , and so on.

This procedure has been carried out for all Boolean functions,
n ^ 4 j and the associated table- appeals in Appendix 3- The complement:

of these functions do not appear and are given by Operation 4.

This table shows that the 63,336 functions are classifiable
into 8 categories. In practical terms this means that eight logic

modules together with the necessary exclusive-Oh gates and inverter
gates are able to synthesise any Boolean function , n ̂ In fact
only seven logic modules are required in practice since function Bo.
1 in "Wie table corresponds either to a simple connection or a no-
connection.

Perhaps more suprising is the fact that only one of the
classes of functions is not a threshold function.(Threshold
functions are marked 'T’).This shows that single threshold gates
may be used to synthesise the majority of Boolean functions , n^^4,
using the above techniques. Some comment will bo made on the
synthesis of the non-threshold function , function No. 8 , later.

The fact that this classification is more compact than that

of translational equivalence is shown by noting that the latter
gives'eighteen classes of functions wheras this method gives eight.

Bee also Appendix 3«

2,6.3 Application to Threshold logic Synthesis,

Boolean functions which may be converted to threshold
functions by the operation of disjoint spectral translation will
be said to have threshold functions ' dis jointly-embedded' \;itiiin

them.

138

As an example of a function which contains a disjointly-
onboddcd threshold function consider the function given by the

ICnrnau.pi map of Fig. 33 jP 123 » which has the spectrum
2 2 2 2 6 2 - 6 6
Pq ^2 ^3 ^4 ^12 ^13 ^14

-6 -2 6 2 —2 —2 6 —2
^23 ^24 "34 ^123 ^124 ^^34 ^234 ‘̂1234 .
Now it is clear from the tables of positive characteristic

vectors , Appendix 4 , that the only threshold function that can
be embedded in the above function is that which has a characteristic
vector 6 6 6 6 6 . However the above function
cannot be converted to this form by spectral translation ,(Operation
5),since would retain its value '2'. If disjoint spectral
translation,(Operation 6), is employed however this problem is
overcome as shown below.

1/ Translating = R^ under disjoint spectral translation
gives 6

%
6
4

-2

"̂ 2

6
23

2

^4
-2 -2

4 2 4 3
2

4 4

6
"23

2

"24
2

"34
-2

%i23

2 -6 -6 1 n t ■D1
"124 "134 234 ^1254

2/ Transla ting R^ = R^^ under spectral translation

(Operation 3) gives

6
"0

6 6
‘̂ 2

6
"‘3

2
24

-2 -2
4'2 4-3

2
-Ï4

-2
"23

—6
^24

p
"34

-2ptt123 '̂124
-6 2
4 '3 4 %234 4 '2 3 4

3/ Translating R|' ' = R^^ under specikrai translation

(Operation 3) gives

6
n -

6
R'̂' ’

6 6 —6
R^ ' R)| *

-2 -2
4 2 4 3 4 4

-2pir 123
2
^24 ^124 4 3 4 434 '

-s
K Ï234

139

3 T
o — X

Fig.35

140

The first (n+1) spectral coefficients of this function have a

magnitude of 6 which characterises it as a threshold function.
Computing the gate parameters in the usual way , see Section
2.5.4a , and implementing the above translations in terms of

exclusive-02 gates gives the circuit of Fig. 35*
It has been shown , see the previous section , that the

majority of fourth-order Boolean functions may be synthesised

by using both spectral translation and disjoint spectral translation,

A possible method for the synthesis of functions which do

not have threshold functions embedded or disjointly embedded
within them is to divide the function into two parts ,

. ,X^) andx^,AF(x^, . , . ,x^),
and to apply the above synthesis procedures to each of these

functions in turn. Since these functions do not intersect in n-
space the resultant syntheses may be 02-ed together. In the case
where this procedure produces another function which does not have
an embedded threshold function the division is repeated in terms
of another defining variable.

Consider the function of Fig. 36a which does not contain a

threshold function.(It falls into canonic class 8 Appendix 3)•
Suppose that this function is divided as A F (x ̂,x^ and

x^ n F(x^ ,Xg). See Fig. 36b and Fig. 36c respectively,If ..the
syntheses of those two functions are carried cut in the usual way
the circuit of Fig. 36d results.

It can be shown that any Boolean function can be synthesised
in this way. This follows from the fact that if this division ̂

procedure is repeated exhaustively each true minterm will

ultimate]^" be extracted separately, how a function having only one

true r.iinterrn is always linearly-separable. (A threshold function).

<2-

<r

<r

< -

< -

I

OJr-ro: —
K\
COK
-d-rA

-M'
<\\

r K ‘

OJ
«

ff\«
OJ ,Ctt —
rO\
OJ

J"
V"

Oi

tr\
-K«
ru
K

.4'K

lA«

OJ«

«

O«•

Io

- >

■2>

- >

■5^

141

OJ
CO
00
C T

L

I
< r

I

IC M
?

< -

Ioo
+ 4*

.d"rAOJr-
«

roy
(M

«

Sd-
bP-

pP
.d"r“

«

roy
T“

«

rvjV-
«

pp

OJ

-«•

«

I
O

I

g o •> o 6 ■ g E5O «»o 'o To
— ao 3o ST” ' * —

3O O ao ■to
o

fo K o o CO r*- o
CMo X O o o K)o INo CMo X o o o fOo No

Ô — o 5 — o
> r >r>

< 2-

<3

<5-
I

CO

-d*
C\1T—r«—
K\OJCd
•d"K\

hoi*
-d’c\jT-m
OJr-«

-d"rov01
-d-

rAOJhoi*
-d-T-«

OJV-01

pT

C\J«

OS

pp
I

O

142

u
CD
CO
O)

^ L
u
CD
0 0
C T

Li.

I

o o «» 'o 'i

. — o L)o a

O
4-O lOo o *#o

,Tg O *o t nO o
- ^ 8
>r

5 o

14 3
2.6.6 Application to Vortox jp.iic Syn t \ i on is.

It has boon found in practice that the application of
disjoint spectral translation often gives a more elegant synthesis than
the operation of spectral translation. This hoi,'over is not always

the case. At present the criteria which determine if the use of disjoint
spectral translation will give an optimum solution are not Icnown.

As an interesting example of a case where disjoint
spectral translation may be used to advantage consider a 2 out

-of 5 circuit. A synthesis , which is believed to employ the
minimum number of vertex gates has been published by Karp et al ,

see reference pO . This is shown in Fig. p?. An attempt to synthesise
this function using spectral translation did not show any advantage
over t]ie synthesis of Karp, although admittedly only a simple two-
level synthesis of the final logic module was attempted . Under
disjoint spectral translation however the circuit if Fig. $8 was

*ijroducod. This circuit shows a saving of throe gates and two
interconnections over the circuit of Fig. 37» It should be noted
that the circuit produced by the author may still not be minimal
since again only a simple two level synthesis of the function
produced by translation methods has been attempted. The maximum

propagation delay for both circuits is identical.

2.7 A statistical Synthesis method.

2.7.1 Introduction .

It has been shown by dearie, see reference 23 , and others

that the distribution of information in the spectrum of a function
is not linear. Indeed in many cases only a small number of the
spectral coefficients of a function are necessary to completely

define the function, the remainiig coefficients being redundant.

* With the aid of the statistical method described in Section 2.7

144

Û .

ce
C J

LO

145

ce

LO

fO

O

a
(S i

co
V)
b

(b
T JcZD
■ D
0en
m
0

c
> ,
(/)

I—
3
U
q:
u

LO
C N

!>.
CN
C
O

u0
l/)

Oen•uo
J C
0
T 3c
fd
co
tnc
fd

00
c o

bL

146
An example of a function having this property is a thresiiolcl function

where only (n+1) of its coefficients are required.

how each spectral coefficient is a measure of the correlation

between the defining function and each of the hademacher/Ualsh

functions. It follows that coefficients of relatively large magnitude

indicate that the associated function closely resembles the Bademacher

/Walsh functions on which these coefficients are defined.

It seems intuitively correct to suppose that if some of the

largest spectral coefficients of a function are known it should bo

possible to predict the distribution of the minterms of that function

on a statistical basis. If this is possible it follows that functions

may be synthesised on a s ttistic al b a sis from only the most

significant spectral coefficients, with a consequent saving of both

data, storage and computer program:.ic execution time.

2.7.2 S'oectra.l Coefficients and the Distribution of minterms

The transform operation, see 3ection 2.2.2, may be

defined as
R . . •- n “ n , . . . (2.20)ij..m a d

where n^ is the number of agreements between the defining

function and the function x^ Q 0 . . © x̂.̂ , and n^ is the

number of disagreements between the defining function and

X @ X1 J .

how n + n •- 2̂"̂ . . . (2.21)a d
since the defining function must either agree or disagree with

X. © X. © • • G X at all n-tuulos.1 0 rn
Substituting for n^ in equation (2.20) gives

R . . = n - (2" - n)1J.. m a a
= 2n - 2̂ ̂ . . . (2.22)a

whence p ^n
n = . . . (2.25)a 2

14 7
2’* - R. .

Similarly , (2.24)

For tho special case R^

2“" - ïîg
n , = — ------ --- M . . . (2.25)

2
where II is the number of true minterme of the function.

For all spectral coefficients with the exception of R^

n = T + F . . . (2.26)
Cl

where T is the number of true minterms of the defining function

in the space x.Gx.G . . ©x = 1 and. F is the number of false 1 0 m
minterms of the defining function in the space x.Gx.G . . ©x = 01 0 m

Since the space covered by x .© x .© . . ©x = 0 is 2 /2 n-tuplei1 0
it follows that the number of true minterms in this space is

~ - F , and thus the total number of true minterms of the defining

function ,i', is given by ^n
M = T + (~ - F) . . . (2.27)

Substituting for F in equation (2.27) from equation (2.26)

gives • pYi
ÎÎ = T + ~ -1- T - n2 a

pn
= 2T + 4 - n . . . (2.23)2 a

Substituting for n^ in equation (2.2o) from equation (2.2p)

Gives - 2 ^

M = 2Ï + 1 ^ - I
R. .

= 2T . . (2.29)

.Equating (2.29) and (2.29) gives

f " 4

then T = 4 (2^ + R .. - R„) . . . (2.39)-L J • ♦ ill V

14 8
Now T is the number of true minterms in the space where

X. © X . © . . © X = 1 . The number of true minterms of the function
1. J Hi

is given by equation (2.29) .

The importance of this result lies in the fact that the

distribution of true and false minterms of a function with respect
to any Rademacher/l/alsh function can be determined exactly given
the corresponding spectral coefficient and

For example suppose that a fourth-order Boolean function has
the spectrum 10 6 6 2 2 -6 -2 -2

Rq R^ ^2 ^3 ^12 ^13 ^14

-2 -2 2 2 2 -2 -2 2
"̂ 23 ^24 ^34 ^123 ^124 ^134 ^234 ^1234

The number of true minterms , from equation (2.29), is

G i v o n V 2” - Rq .,g _ 10
M = --- 2--- = 1- = ^ •

The number of true minterms in the space where x^ = 1 ,
from equation (2.30), is given by

T = {: (2'̂ + - ^0^
= i (16 + 6 - 10)

= 3
Similarly the number of true minterms in the space where

x^ G x^ = 1 is given by

T = -1 (2” +
= -g: (16 + 2 - 10)
= 2 and so on.

Appendix 1 shows all the fourth order Rademacher/V/alsh

functions plotted on Karnaugh maps.
Mow it is of interest to bo able to calculate the number

of true minterms occuring in spaces corresponding to the inter
sections of different Rademacher/Walsh functions in order-that the

149
complete distribution if true and false minterms may bo established.

For example if , for a fourth order Boolean function, it is known

that the space H (:x:p © x_) = 1 contains four true minterms then,

since this space contains only four n-tuples, it follows that

G x_) is a factor of the defining function. See Fig. 39.
It is possible to statistically/ predict the distribution of

true and false minterms at the n-tuplos corresponding to the
intersection of two or more Rademacher/dalsh functions by using the

statistical theory of expected values.

2.7.3 fxpected Values.
Suppose that a random set of objects are classified

under two independent catagories and that the number of objects

lalliiYs into each catagory is noted. The number of objects , on
average ,falling into both catagories is then given byrp - qi. 1 2 . . . (2.31)

where is the number of objects falling into the
first catagory , is the number of objects falling into the
second catagory and M is the total number of objects.(It is assumed
that all objects fall into one or other of the catagories). e is
called an estimated value , set: reference 31 •

If the objects are classified . under three independent

catagories then the number of objects falling into all three

catagories is then , on average,
T X 'f X T _

o = m — ^— 2 . . . (2.32)
■li"

and so on.
The same theory may be applied , with restrictions,

to the estimation of the number of true minterms of a randomly
selected Boolean function which lie in a space defined by two or more

f
linearly inde rendent functions.

.j.
r̂sofial commonicatJOn Opiv. /?72

150

01

00
01

II

10

— — -p
v H i X v l K

T g

" 1 ^

X1X9
X o X A o ^ 01 II 10

00
0 4'^ ■

01
1 " 3 ^ ■

I I
3 7

10
""' i 6

X'j A (X 2 @ ~ 1

Fig 39

Xi = 1

00 01 II 10

00
01

I I
10

o' o' 11 ro' o' 1 " i‘o' o' 1 '1"o' o' 1" 1 "
%2=1.

T< = 8 , M = 8 . T9 must take value 4
Fig

151

oupooGG that in a Boolean function it is known that the total

number of true r.rinterms , H , is ? ; the number of true minterras ,

1 in the space = 1 is 7 , and the number of true m i n t e r m s ,

the space @ x^ = 1 is 4. This data may be derived from the

spectrum of the function as previously described. Since the functions

x^ and Xp © x_ are linearly independent , see Appendix 2 , the

estimated number of true mintcrms in the space x^ H(x.^ © x^) is

given from equation (2 ,pl) by

^ 4 .
If this function is fourth order the space corresponding to

the intersection of those two functions occupies only h n-tuples,

thus cm average H(xp © x^) can be expected to be a factor of

the defining function.

Unfortunately this estimated value is only approximate*because

although the functions x^ and x^ © x_ are linearly independent the

results T^ and T^ are not mutually exclusive . This arises from the

fact that a finite n-space is being considered. The fact that two

such tests,T^ and T^ , are in fact related can be shown by the

extreme example of Fig. 40 . The total number of true mintcrms is

8 and the number of true minterrns in the space x^ = 1 is also 3,

It follo'./G that the number of true minterme in the space x_ = 1

must be 4 . That is , the last result may be predicted from the

two previous results ; the measurements are therefore not mutually

exclusive. This is in effect a re-statement of the fact that the

information about a function is not evenly distributed about the

snectral coefficients of that function.

* A method of evaluating e exactly is known but is very

complex and is not suitable for implementation on the digital computer

152
AIn practice the statistic e has been found sufficiently accurate

for it to he employed in the synthesis method described in the next

section, nevertheless further research is warranted to investigate

the general relationships between the exact and approximate forms of
Ao .

2.7.4 The Procedure.

The method of Boolean function syn:hesis using the
* Aapproximate statistic e is now given by means of an example.

Consider the fourth-ordor Boolean function of Fig. 4la.

Tŷ e spectrum of this function is

6 6 2 -2 2 2 -2
^0 '̂2 ^3 ^4 "12 ^13 ^14

2 -2 2 2 .-2 2 -10 6 ̂ p u n p p T? p"23 24 '̂ 34 "M23 124 "134 234 "1234
step 1

Choose a sub-set of four of the most significant of the

spectral coefficients whose defining P.ademacher/'Jalsh functions

form a Basis , see Section 2.3.3 and Appendix 2 .

A suitable sub-set is *

-10 6 2 - 2p n p p
"234 "1 2 3

Step 2

Compute the number of true minterrns of the function

from equation (2.23)
1 6 - 6

I ' l - 2 2
= 3

* libte that the apparently more significant sub-set

-10 5 6 2
"'234 ^'1234^1 ''2 I I .

I A | 1 1 00e Section 2.3-3 •

does not define a basis since

153

Step 3

Compute the number of true minterrns in the spaces
corresponding to the functions on which the basis has been defined
using equation (2.30).

Drav; up a table showing the result together with the
basis functions.

Spectral
Coeff.

I
! Value

Basis
Function T

-10 (x- © X_ © X,,) 2 p V 3

h 6 ^1 4

h . 2 3

-2 ^3 3
•»

Note that in the case whore a spectral coefficient is
negative the basis function is complemented and T is evaluated for

the corresponding value of R made positive. In the case of li.:34
above the result is interpreted as there being 3 true minterrns
lying in the space defined by (x^ © © x̂,)=1 . Similarly 3 true
minterrns lie in the space x., = 1 .

S t e p 4
ni

Find any factors of the*function which occupy - , (8),

n-tuples .
Since this function contains only 3 true minterrns no

such factors exist.

Step 3
^n

Find any factors of the function which occupy ^ , ('0,

n-tuples.
A factor space of 4 n-tuples corresponds to the space

defined by the intersection of any tv'o of the functions

154

X 1X 2
x ^ x X o o 01 11 10

0 0 0 “ o ' O l 1 '
01 o ‘ r o '
I I 0 * o ' o ' - r G I V E N F U N C T I O N

10 o ' o ' 1 ' 0 " F i g . A l a

X i ^ 2
^ N D Y i0 0 01 II 10 /T\̂ / T \ , V ̂

0 0 0 ‘ o ' o '
^ - ' ' 2

01 o ' o ' r 0 ‘ \
’ I I o ' o ' o ' r F I R S T

10 o ' o ' 1 ” 0 “ m v " (a Y ^ F A C T O R
- A ^ - . V ' 3 " " ' A ' F i g . A l b

X 1X 0
01 I I 10

- H a n d
- - - - - - - - - - - - - - - V .

0 0 o ' o ' o ' o ' *“ < }
L
H

01 o ' r T' 0 “ " " A
I I o ' o ' o ' o '

x 2 n x o n x 2 ^ S E C O N D
F A C T O R
F i q . A l e10 o ' o ' 0 " 0 "

AND

FINAL
.CIRCUIT

AND

F i g . A i d

155

of th j clior.on br.cis. The iDr.ir of f-unctionG which corroswond to

til: liifiiioGÜ v'uiGG of T o.ro firtt chosen since those ^ivc the

(str;tistic;:lly; hijhe.st probability of finding 4 true rn in terms
at their intorsoction.

dhoosin.r the space = 1 ojid calculating
ïstim'i.tod average

equation (2.p1) gives
the estimated average number of true minterrns in this space , from

It is therefore expected that 4 true minterrns exist in thiz
space . In fact this is so , see Fig. 4lb.

(Xp @ x^ © x^)n x^ is therefore a factor of the given function.
If this procedure is repeated for the next two most significant

basis functions , (Xp © x_ © x,) O x , e is found to be = 3*P T" id ^
This is interpreted as a small chance of finding 4 true minterrns at
the intersection space.

In practice , for fourth-order functions ,having embedded or
disjointly-embedded threshold functions , see Sections 2.3.3b and
2.6.4b ,if the ratio e/(Uo. of n-tuples in intersection space)^ .9
then the function defining the space is always a factor. This
result is empirical and the equivalent result for functions of
higher thcoi fourth-order is not known.

In the case of the function under consideration no further
?n

factors occupying ÿ n-tuples can be found.

Stop 3
2^ ,Find any factors which occupy ? ,(2), n-tuples.

A factor space of 2 n-tuples corresponds to the space
defined by the intersection of any three of the basis functions.
■‘.gain the functions related to the highest values of T are chosen.

156
It is important to note that in this case there is no noint

in considering the space (;a, © 0 Xp = 1 as this i;

included in the factor space (Xp © x_ © x̂,) H x^ = 1 which has
alroady been found.

The space next most likely to be a factor space is given by

(x,j © x_ © ::ĵJ f] x^fl = 1 ,see- previous table.

Computing e for this space , from equation (2.32) gives

S - _ 5j<3jo

Cr 1.8

That is , the average number of true minterrns in this 2 n-
tuplo space is , on average , approximately 1.8 .

The ratio / (no. of n-tuples in intersection space)| =

= .9
This space is a factor . See Fig. 4lc.
In fact all factors necessary to synthesise the function

have been found.
Stop 6

Design the circuit.
The expression for the second factor must first be

simplified.
The following relationships are noted

(x © X,) = X © X, = X G x. . . . (2.33)a b a b a b

X il (x © X,) = X n X, . . . (2.34)

Using these relationships the second factor may be simplified as

(x_ © x_ G X,) il x-il x_ = (x„ © x_ G X,) n x.,rix_2 p 4 2 p 2 p 4 a p

= (x_. © n.,) f)x^ 0 X..p 4 a p

= (x-, © X,) fix^ n X-,p 4 2 p

1 5 7

ri:y

Now the first factor : x^Q(::^ G x_ © may be written

as x^ n (xg ^ © x̂,)
The implementation of each of these functions appears in Figs.

4lb and 4lc and the final synthesis is shown in Fig. 4ld .

——o0o“—

The method described above auTiears o. little tedious but in
fact fast interactive designs can be achieved by employing these
techniques on the digital computer. The simplification of the
factor equations is also readily computable.

2.7.3 Notes on the Method
More research is necessary into gate minimisation criteria

Afor this method and also the significance of the statistic e for
functions of order n ^ 3 • The following points are noted.

1/ A more elegant synthesis is often obtained if the true
minterrns of a given factor arc removed from the function and the
metiiod repeated for the remaining true minterrns. This is because
the method evaluates the highest common factors irrespective of the

number of gates required.
?y -Che choice of basis set has a large influence on the

number of gates employed in the final circuit.

3/ The method has been employed successfully for the synthesis
of functions of up to ninth-order. Because the nature of the statistic

e is not well known for orders of greater than four each factor is

checked , in tlicse cases , by executing the (inverse) fast Walsh
transform, for the, required spectral coefficients. The factors czin

then bo compared with the defining function in the Boolean domain.
4/ The method is difficult to apply to functions which do not

• t
have embedded or disjunctively-ombedded threshold functions, see

 ̂ For such functions are rare.

158

Sections 2.3*3b and 2.6.%b . For those functions the statistic o
is very approximate . This follows from the fact that more than

(n+1) spectral coefficients are required to define these functions.
Some of the required information to compute e therefore lies outside
of the basis functions on which e is computed. It is felt that

another statistic may be found which will enable the synthesis of these
functions.

2 . 8 Further Apnlications.

2 .0.1 Multiple-oatput Bynthesis.

When many functions must be simultaneously realised

it is clearly advantageous to malic the best use of any common factors
the functions may have.

If , therefore , spectral translation is to be employed
in the synthesis of such a set of equations , it is possible to set
aside a logic module which is capable of executing all of tlie required
translations for the sot of equations. Now if some of these translation:
are identical then this module will bo simplified. This amounts to
the extraction of the common factors of the functions.

It follows that the judicious choice of coefficients

to be translated enables the general method of spectral translation

to simplify multiple-output synthesis.
Further research is necessary to find tlie best methods

of determining such common factors.

2.U.2 Synthesis of Functions Containing ' l'on ' t Caros* .
So far only functions which are completely specified

have been considered. Functions with don't care conditions give rise
to spectral coefficients which may t"ko a range of values , but

not independently. ..t present the optimum method of synthesising

159
such functionG is not known.

One approach to this problem is to give the don't care minterm
the value -y , that is a value half way between the Boolean values
0 and 1. The spectrum of the function may then be evaluated and
analysed statistically as shown in Section 2,7 • The don't care
minterrns may then be set to 0 or 1 in turn , the final selection of
values being determined by those values which produce the highest

common factors of the function.
Further research is necessary in this area.

16 0
2.9 Conclusions.

A matrix transformation technique has been described which
enables the Rademacher/Nalsh spectrum of any Boolean function to

be evaluated. It has been shown that certain pertinent properties

of the Boolean function,from which the spectrum is genorated^may

be established by inspection of the spectrum alone. In particular
it is possible to establish if the Boolean function is most easily

synthesised with or v/ithout the aid of exclusive-OR gates.

Certain known operations in the 'spectral domain' have been

described and it has been shown that these operations enable
'equivalent' Boolean functions to be classified and synthesised.
In the search for a more powerful method of Boolean function
classification two novel operations have been developed which
generate elegant syntheses of Boolean functions both in terms of
vertex and threshold logic. Moreover these operations have been
shown to give rise to a very powerful method of Boolean function
classification. A method of minimising the number of gates necessary
to implement these operations has been demonstrated.

It has been shown that many Boolean functions are characterised
by only à few of their spectral coefficients . In the future this
means that it may be possible to specify such functions , especially
those having a large number of defining variables , using only a

small percentage of the data space required at present.
One of the most important results arising from this investigation

is that threshold functions , and therefore threshold logic , play
an important role in the composition of Boolean functions. This
is especially important in view of the optimised universal threshold

gate developed in Chapter

161
A statistical approach to logic synthesis , using the spectral

coefficients of Boolean functions , has been formulated. Although

this method is as yet based upon an approximate-estimated-value
technique , practical results have been very encouraging. The great

advantage of this method is the ease with which certain 'factors’
of a given Boolean function may be extracted. Further research is

required in this area.
The execution of the Badcmachsr/\7alsh transform may be carried

out, without resorting to matrix multiplication , by means of the
fast Walsh transform. This enables the spectrum of functions
defined upon large numbers of defining variables to be computed at

a much higher speed than would otherwise be possible. In future
this *»jhould enable functions to be synthesised , using the above
techniques, which heretofore have been considered too unwieldy.

Clear indications have been given that the above techniques
are applicable to partially specified and multi-output systems.
There are also indications that the above methods may be applied
to general pattern recognition. Unfortunately time has not allowed

a full investigation into these topics.

162

CHAPTER 3.

Other Research Work

163
3.1 Tlie App1.icr.tion of a Univrrnal '"hroahold Logic Gate to

Dig i t a 1 0 i r c i ’ i t a n v. h o r i a .

3.1.1 Introduction.
♦A univoroal threshold logic gate developed by Dr. 3.L.

Hurst , University of Bath , is described. This gate has the

advantage that the problems associated with thresholding tolerances,

encountered in conventional analogue threshold gate design , have been

overcome,

It is shown that , by employing the theory developed

in Section 2 ,a simplified version of this gate is sufficient to

enable the synthesis of any Boolean function of fourth-order or loss.

The use of this gate in logic design is expected to

provide a considerable cost saving over designs produced by

conventional methods,

3.1.2 The Universal Threshold (D.ScT.L) Gate.

S.Ii. Hurst , University of Bath , has proposed a

Digito.l-3ummation-“Threshold-Logic (D.3.T.L) gate of the type shown

in Fig. 42 .

In this design each of the eight inputs , labelled A~II,

are applied to a logic cell. This row of cells contains conventional

digital circuitry and is so connected that if one or more of the

inputs A-H have the logical value 1 then a 1 appears at the output

In addition, supposing that M of the inputs A-H have the value

1 , this first row of cells transmits (N-1) values of 1 to the inputs

of the next , identical , row of cells. Consequently the second row

of cells produces an output of 1 on if two or more of the inputs

At the time of writing this design is under consideration for

a patent application. The design details should therefore bo considered

as privileged inform.a tion.

BINARY
GATE, INPUTS

A ©-

D ©-

E »

F*

G ©-

H ©-

164
El(0 0 zz

h

y

-o

o
%

o

-O

Or

0

2 4 Z 5 . 2G E 7© ® ® ©
,i ,1 'I

^ 9 % 934 93-6 9^6

_y
19

v ^ _ y \
14

\ _ y ^ N _ / v - y

v_y

8 IS

\ - V v - y x _ y \
3 16

/ A _ y ^ w ^
10

\ _ / \
6

7
y - \

Cdll DdÏQils,ûll cdlls id W ico l

r = T p + p q 1 S = P & ,
- [p+ q] ,

P-'5X

R \

P

It
Q R

ORIGINAL DESIGN
D.S.T.L GATE (Hurst)

Fig.42

165
A-H he:VO the value 1 . CChic process is continued so that the output

is set to 1 if three or nore of the inputs A-H have the value 1 ,

and so on . In practice the number of cells required at each stage

reduces by one < see Fig. 42 .

Nov; this configuration implements a threshold gate where all

inputs A-II are weighted 1 and the required output threshold weight

may be selected by a suitable connection to one of the outputs

If an input threshold of weight other than 1 is required , this may

be achieved by connecting a suitable number of the inputs A-II together.

In fact » by making suitable input and output connections ,

any threshold function of order n ̂ 4 may be synthesised using this

gate. Because of this property it is termed a Universal threshold

gate. ^

Note that , because digital circuitry is used throughout , no

analogue thresholding problems arise.

.■5.1.5 The Optimised Univorsa 1 Thresho 1 d (.D .3 .1.7■) lo.'ic Gate.

How , using the theory developed in Section 2 , it is

possible to show that a reduced version of the gate of Fig. 42 is

sufficient to synthesise any threshold"^ function of order nr^'r .

The positive canonic threshold weighting vectors for

4

from Appen dix 4 , are

No. t, 1 '1 '■'2 wl2 w
1 1 0 0 0 0
2 5 1 1 1 1
3 2 1 1 1 0
4 5 2 2 1 1
5 1 1 1 0 0
6 2 2 1 1 1
7 1 1 1 1 1

Cons ider ve ctor No. 4

The corresponding threshold gate input weights are

2,2,1,1 , see equation (2.14) dection 2.5/;a. 1 total input weighting

of 2+2+1-f1 = 6 is therefore required for this gate.

*Under disjoint saoctral translation and Oneration 4.

16G
The output weighting is given by equation (2 . 1 5) Section 2.5.4a ,

as n
"2 11 -I- V/' 4-1) . . (2.15) repeated.

j=i •'
y(6 + 3 + 1)

= 5 .
Using Operation 4 Section 2.4 however , it is always possible

to render w^ negative . The minimum output weighting in this case

is then ‘ -g(6 - 5 + 1)
= 2.

Now if the same analysis is applied to each of the positive
cc-.nonic weighting vectors of order n 4 it is found that a universal
form of the above gate is sufficient to synthesise them all. That is,
a universal logic gate having a total input weighting of 6 and a total
output weighting of 2 suffices to synthesise all threshold functions
of order n^4.

This gate is shown schematically in Fig. 4p.
The corresponding implementation in terms of D.G.T.L circuitry

is given in Fig. 4̂ ta. This can be seen to represent a considerable
saving in complexity over the circuit of Fig. 42 .

This optimised D.S.T.L. gate has 14 logic gates and a maximum

propagation delay of 6 gates.

5.1, A- Use of the Optimised Gate ._
Now it has been s'novm , see Faction 2 , that any Boolean

function of order n<2 4 may be synthesised using threshold logic gates
together with the necessary exclusive-ON and inverting gates necessary

to carry out the operations described in Lection 2 .

It follows therefore that the optimised universal threshold

gate described in the previous section can be used in the synthesis
of any Boolean function of order n 4 . Note that functions falling

* 11 logic gates if the 5-input ON gate version is used.

167

U.T

OPTIMISED UNIVERSAL
THRESHOLD GATE (Schematic)

Fig. A3

1 6 8
OUTPUTS

(WEIGHTED AS SHOWN)

IN PUTS
(WEIGHTED 1)

AO-------

B o -

C O -

DO-

EO-

Fo-

1
o

2
Q

\

1

6

8

CELL DETAILS

R

P ' 'Q P' 'Q
Cells 1-5 Cells 6-9

'> /
 \r
R=P+Q
S=P.Q

OPTIMISED D.S.T.L GATE

Note ; Cells 6-9 may be replaced
by one 5-input OR gate.

Fig. 4 4 a

169

into the disjoint translationally equivalent class 8 , Appendix 5 ,

require two such gates , see also Section 2.6.5 . If the synthesis of
functions of higher than fourth-order is required this can be
accomplished by re-expressing the given function in terms of several

fourth-order functions and synthesising each of these in turn. Some

further research is necessary to determine the most suitable way of
doing this.

If the optimised universal threshold gate in its D.S.T.L

form 5 Fig, 44a, is inspected it will be noted that the propagation

delay from input A to the outputs is shorter than from input B to
the outputs . Similarly the propagation delay from input B to the

outputs is shorter than that of input C to the outputs,and so on.
If , say, only four inputs are to be utilised for a particular
synthesis it is clear that to minimise the'propagation delay only
the top four inputs should be employed. The increase of propagation
delay with choice of input is shown schematically in Fig. 43 by an

arrow.
The method of synthesising functions using this gate follows

closely the general methods of synthesis using threshold logic
described in Section 2 . The only differences being the use of
Operation 4 and the frequent use of disjoint spectral translation
to ensure that the input and output thresholds fall within the bounds

of the optimised gate.

In practice it is convenient to employ an optimised

universal threshold gate with inverted input capabilities. This
ensures that no external inverting gates are necessary at the

input to the gate to implement negative thresholds,see Section 2.5.4a.
Fig.44b shows the optimised gate with this capability . It would
also be convenient to have inverted outputs available but this
would result in an 13 pin pachage which is non-standard.

17 0
OUTPUTS

(WEIGHTED AS SHOWN)
1 2

, INPUTS
WEIGHTED

A O
Â O

BO

C o

D o
d o -
E o
ÊO
F o
F o

Cells 1-5as for Fig.AAa

OPTIMISED UNIVERSAL THRESHOLD GATE
WITH c o m p l e m e n t e d INPUT(I)

CAPABILITY (Schematic)
Fig 44 b

171
Some examples of tlie use of the gate of Fig. 44b are given in

Appendix 6.

In practice it has been found that , in general , the total

number of gates and/or interconnections required in a logic synthesis
using this gate are considerably smaller than in a synthesis produced
by more conventional methods. The cost of implementing such designs

is thus smaller than in conventional methods. (This makes the

assumption that the D.S.T.L gate can be produced at a reasonable

cost. Consultations with integrated circuit manufacturers indicate

that this gate can be produced at a cost comparable with that of

conventional T.T.L.)

It is envisaged that a cost saving will also result if this
gate is used in Large-Scale-Intégrâtion circuits.

Because of the advantages outlined above and also because the
methods of designing circuits with this gate are straightforward

it is hoped that this gate will , in future , become a standard

building block for digital circuit fabrication.

172
3.2 A Cellular Aritlimotic Array with Variable Dynamic Range.

3 .2.1 Introduction.
The research work described below was carried out^during

a general investigation of the properties of iterative arrays and

the ways in which such arrays could be represented by Boolean matrices,

see doction 1.5*5 •
A particular class of these arrays , often termed

cellular arithmetic arrays ,has been investigated by several authors,
see references 6,32,33 » and present attractive alternatives to more
conventional arithmetic units when extremely fast operation is
required. Because these arrays are of an iterative nature they are
readily fabricated using Large-Gcale-Integration (L.G.I) techniques ,
and have the additional advantage that they may be readily extended

on a modular basis .
A disadvantage of conventional arithmetic arrays is

that they produce more significant'bits] in their results than in
each of the numbers offered to them. The design described below
overcomes this disadvantage and embodies a principle which allows
for the multiplication of full floating point numbers.

Following the publication of this design , see reference

34 ,Brecon and Clair sho\/ed that arrays of this type may be used
in a digital computer design which employs far fewer separate
arithmetic instructions than conventional computers . See also

reference 35«
A provisional patent for this design was granted in

1970 and a full patent (51122/71), which includes certain additional
circuits to extend the versatility of the array , was filed in January

1573.

At the b e g in n in g of the research per io d .

173
3.2.2 D o G i gn Phi1o s o phy.

Arithmetic units employing iterative arrays have recently

been investigated because of their speed and their ease of fabrication
by L.o.I techniques. To take full advantage of the L.3.I methods
they consist of tv/o--dir,iensicnal arrays of identical logic 'cells' ,

the interconnections between cells being identical and having
(ideally) no ' crossovers. All array progrcUiniing is ' edge-fed' to
av o i d oV e r 1 ays.

The arrays function asynchroncusly and achieve a very
high computing speed determined solely by the cell and inter-cell
propagation delays.

Recent research has centered on integral arithmetic units

of thir̂ type, see refercncespR,33. The multipliers and dividers
developed produce many more significant 'bits' in their results than in
the numbers offered to them. In practice this means that truncation
and conversion to floating point format must follow , with a
corroG%)onding overall speed penalty.

3.2.3 Array Specification.
The multiplier described hero overcomes the drawbacks of

other systems outlined above and also has other unique features.
Two numbers , each liaving a binary floating point format,

may be multiplied 'together. The result is expressed as a binary

floating point number having the same number of significant 'bits'
as the multiplier or multiplicand.

'alternatively , by external programming , the
multiplication of two binary integers may be computed to an accuracy

determined by the size of the array.
Finally, the number of cells allocated to the calculation

of the exponent and the number of cells allocated to the significance
part of the result may be varied , within the bounds of the array size.

174

cr in

H-
CJ no

CLo oo

o o
ooo

oo
o oo

oo
o oo oo

o o
o

o
Ô * ""I,o %—

H a i i d i n n i A i

175
For example , an initial calculation may require an answer of two

significant 'bits’ and an exponent range of 10 'bits' (2 ,

wdiereas a second calculation may require 9 significant 'bits'
n

and an exponent range of 3 'bits' (2). Both of these calculations

may be executed consecutively using the same (12 bit) array of the

type described below. The allocation of the cells employed for

significance and exponent calculation being determined by external

programming. This feature is termed 'variable dynamic range'.

3.2,4 Brief Design Botails.

The operation of an integral multiplier is very straight

forward and is illustrated by Fig. 43 . The multiplicand is

shifted at each stage and then added to a running subtotal if end

only if the relevant multiplier 'bit' is 1 . The now subtotal and

the shifted multiplicand are then passed on to the next rank of

cells. This operation results in tlie number of significant 'bits’

appearing in the subtotal being increased by one at each stage.

Inspection shows that this operation is that of

conventional multiplication :

1011 Multiplicand
101 Multiplier

0000 1st. Subtotal
1011 ?Iultiplicr bit ' 1 ' , add :
1011 2nd. Subtotal

0000 Shift Multiplicand times
01011 3rd. Subtotal
1011 Shift Multiplicand times
110111 4th. Subtotal . (Answer)

Generally the maximum number of 'bits' appearing in the

result is the sum of the number of 'bits' appearing in the multiplier

and multiplicand,

To reduce the number of significant 'bits' produced, the

non; design employs cells having a 'return shift' facility, see Fig. 46,

Thenever an overflow of the most significant multiplicand 'bit' and/or

subtotal carry 'bit' occurs the resultant multiplicand and subtotal

176

C2 Multiplier.

B2 CarryFull
Adder

op Shift
Code

Command

Sub-Total. InhibitMultiplicand

CELL INPUTS/OUTPUTS

Fig. AS

17 7
v;ordG arc shifted one 'hit' by the next rank of colls, the least

significant 'bits' boinr; lost. (' OJruncation '). This results in a

square array. I.lach tine a return shift is carried out the exponent

of the result must be increased by one, This is accomplished by

moans of an identical array of cells ,set aside for this purpose,

to the left of the main array . This 'exponent portion ' of the

system is set aside by moans of external programming.

The logic to accomplish the return shift is contained in the

'lower part' of each cell and was designed using finite-state machine

theory, see reference 6 , .Specifically , if theinput , Fig. 46 ,
is at a 1 then inputs and y,̂ become the new subtotal and

multiplicand 'bits' respectively • Outputs and y^ carry the

origin"*.! subtotal and multiplicand 'bits' to the next adjacent cell.

The 'upper part' of each cell contains the circuitry of the

previously described integral multiplier.

In order that a certain portion of the array may be set aside

to calculate the exponent , an inhibit lino ,E,is connected to each

cell. This lino a) inhibits both the shifting of information (by

return shift) into the cell and also the shifting of the output

multiplicand 'bit',and b) ensures that full addition (in the upper

part of the coll) always occurs. A rank of such inhibited cells

will act as an adder for a subtotal input , external carry input

and'multiplicand input . The first rank of such cells is

employed to add the two exponents of the numbers to be multiplied

and succeeding ranks add to this result any overflows occuring from

the 'significance portion'of the array. This is achieved by a suitable

coupling of the output x.̂ lines to the external carry inputs. Gee Fig.

43.

j'Ug. 4? shows some logic design details of the required colls.

178

-^1
00 01 11 10 -

,E ,

00 01 11 10
00 0 0 1 1 00 00 00 00 00
01 0 0 1 0 01 01 .♦1 *1 11
11 1 0 1 1 11 01 *1 *11 11
10 ♦ * * +

To * * * * * *

Output 'P
Dl'Bl

%1'%1 \ 00 01 11 10
00 0 0 1 1
01 0 0 1 0
11 1 0 1 1
10 * * * *

Output 'Q’

Outputs Yp,Xp

< ’ 1
00 01 11 10

00 00 00 00 00
01 01 *1 *1 11
11 01 *1 *1 11
101 * * * * * * * V

Outputs
When E=0 and X=1

Otherwise
D.

('*' =0/1)

El,C l
\ 00 01 11 10

0 00(00 00 00
1 10111 01 01 5,R

When E=0
When E=1

Half/Full addition controlled by multiplier bit
Full addition always occurs,multiplicand bit
always 'O'.

Note E=0 represents NO INHIBIT , E=1 represents INHIBIT.
X=0 represents NO SHIFT , X=1 represents SHIFT

CELL LOGIC DETAILS
Fig.A?

179
In use care must bo taken to ensure that no overflow from the

exponent portion of the array into the significance portion of the

array can occur.

Fig. 43 shows an example of the array in use. The inhibit linos

have been set to give a significance range of 4 'bits' (2^-1) and an
15exponent range of 4 'bits' (2), The numbers appearing within each

cell represent the inputs to the upper part of the cell , P,Q , and

are the multiplicand and subtotal (left-right) respectively.

3.2.5 Performance .

Since all return shifts depend upon the carry from the

previous rank they represent the greatest propagation delay within

the array. Since however, the return shifts operate in 'parallel' ,

that iç the return shift from one cell to its neighbour is

independent of any other return shifts taking place, the delay per.

rank introduced over that of an integral multiplier is that of only

two or three gates. In addition a small propagation delay is

introduced by the shifting circuitry of the lower part of each cell.

Overall the array can bo said to compare favourably with

that of a comparable integral multiplier.

3.2,6 The Prototype Array .

A prototype array*has been designed and built which

comprises 96 cells arranged,for test purposes, in an array of

dimensions o by 12 . T.T.L 7400 series D.X.L logic was employed

throughout. The logic design for each cell appears in Fig. 49.

The array has been found to function as nredicted.

* The logic design was carried out by the author. The design was

verified using a logic ojnalysis programme (’B.CA.P-see 1973 In ternal report

University of lath.)The cells were manufactured by Jasmin Electronics

Ltd. The assembly and testing were carried out by T.Bond , University

of Bath as a final year project. Finances were provided by The Dept.

Electrical 'engineering, University of Bath.

180

t

i

CM

m '|

H I
14

0660

m T x #

s i i

-<3—Oo
t

I

Zo
pcroCL
UJ
U

—O ' "4̂

o

><|) ■— ^

111-
11

|011 11

ffiSXmxïffiXIH

I I
)- i i

i ° i z

- U - H

loP

|0

’i x f f l r x f f l lT x f f l

ffl 9V

00

-^-6-
ccoCL

t ! S

H - i

Ô60

i l l

-O'-

i .

Î

00sr
?
ll.

181

sum

Full
Adder carry

CELL d e t a il s

All inpuls/outputs orientated as shown

HAND I y
INVERT

Fig.49

182
In its ilor-.tin^ point configuration the array will function

fastest if the binary nunbers offered to it are most-significant- 'bit*

orientated, that is a 1 appears on the input of the array which

corresponds to the most significant ’bit' of tlie number. This ensures

that the shift command , input , in each row of the array is set

up with the least possible delay. Under these circumstances the maximum

time for the array to multiply two numbers is g:von by

T = + (S-1) . . . (2̂ .1)

where is the maximum propagation delay through a

cell from multiplier’bit’or subtotal ’bit'

input to sum 'bit' or carry 'bit' output,

is the maximum propagation delay as for

 ̂ but with shift command instigated.

S is the maximum number of significant 'bits'

being processed.

In the prototype array the predicted values for the above were

Pq = 60 nS
= So nS and, in the configuration used,

S = 8

The expected maximum delay time was therefore T = 60 + 7 80 = 620 nS

The measured maximum time was $40 nS. The discrepency is probably

accounted for by differences between the manufacturer's estimate of

gate propagation delay times (possibly pessimistic) and the delay

times of the gates in practice.

The average power consumed by each cell,in the quiescent state , was

0.44 watts, ho figures are yet available for power consumption

during computation.

If these figures are extrapolated for an array capable of handling
99nunibors of the order : 7 significant digits (decimal), range 10 j

183
then the estimated time for mult i Til i cat ion is 1.9)u5 and quiescent

power consumption is approximately watts. The time for multiplic

ation represents a considerable saving over modern conventional

multipliers.

In practice an array of the size just mentioned would

be more economically produced in integrated circuit form , several

cells being implemented by one of such circuits. It is unlikely

that t h e 'whole array would be produced as one integrated circuit
because of the difficulties in dissipating the heat produced.

An array of the same size as the one just discussed but

employing devices of low power consumption , eg. C.O.S.X.O.S.F.E.T's*,

could be produced as one integrated circuit 'chip' and would be an

attractive circuit for incorporation in modern'pocket calculators'.

Although the array described in this section does not

strictly come under the heading of a 'matrix method' , the

investigation of the properties of this , and like, arrays was

prompted by the need to fully understand the behaviour of general

iterative arrays in the light of Boolean matrix theory. It has

therefore been included as a piece of research closely related to

matrix methods.

In the final analysis , liowever, it has been found th.at

the representation of such arrays by Boolean matrices does not facilitate

their synthesis for reasons described in Section 1.1.9 ,p 46.

* Complementary-Symmctry Metal Oxide Semiconductor Ficld-dffect

Transistor.

184

CHAPTER A

General Conclusions and
Recommendations for
Further Work

185

4.1 General Conclusions.

This thesis has presented some new approaches to logic synthesis

by matrix methods.

In Chapter 1 an investigation into the properties of Boolean
matrices,of a particular type, was described. It was shown that

the properties of the algebra associated, with these matrices give

rise to a method of analysing a function in terms of its dependence
upon ojiy chosen set of its defining variables. The exhaustive

application of this technique , using Boolean matrices, was shown
to permit the extraction of the prime implicants of several functions
simultaneously and to have certain advantages in this respect over the
method of Cuine-McCluskey. An iterative method for the synthesis of

Boolean functions, which generates optimum solutions on an exhaustive

search basis , was also developed. This technique enables partially

specified systems having multiple outputs to be synthesised using
any chosen logic modules as 'building blocks'. Other concepts of

general interest wore those of pro- a_nd %iost-multiplicative operators
and the possibility of defining 'dependent' functions.

Chapter 2 was concerned with a matrix transformation technique

which enables the Badomacher/V/alsh transform of any Boolean function

to be determined. The choice of this transformation as a tool for
logic, synthesis arose from a search for techniques of synthesis
which do not have an iterative structure and which allow the logic

designer both to readily grasp the properties of the system to be

designed and also influence the resulting synthesis. It was shown

that certain pertinent properties of a Boolean function could be
gleaned from a study of the Badcmacher/’/alsh transform of that

function. Certain novel siiectral operations were developed which

186

allow elegant syntheses of Boolean functions both in terms of
threshold and vertex logic. A straight forward method of gate
minimisation was derived. It was also shown that these operations

enable Boolean functions to be classified in a very concise way.
This classification showed that threshold functions play an

important part in the composition of Boolean functions. A novel

synthesis method based upon an approximate statistic was proposed.
The results of this method are , at present , very encouraging.

Further research into this topic is necessary.
Chapter 3 was concerned witli the rosea: ch work arising from

the wor]: of Chapters 1 and 2 . Of special interest was the development
of an optimised universal threshold gate which , under the operations

described in Chapter 2 , is able to synthesise any fourth-order
Boolean function having• an embedded or disjointly embedded threshold
function. Fourth-order functions not falling into this category

may be synthesised by using two of such gates. It also follows that

functions of order n > 4 may be synthesised by several of such gates.
It is felt that this gate may , in future , become a standard modulo

for the design of logic circuits since , in practice , it has been
found that the use of this gate allows circuits to be designed at

a lower cost than is possible at present. The design procedures

for the synthesis of Boolean functions using this gate are
straight!orv/ard , following closely the methods of Chapter 2 .

The Boolean matrix methods of Chapter 1 allow for the

representation and synthesis of cascaded logic modules . This

property does not seem to be shared by the techniques of Chapter 2
however. It is felt that an investigation into the relationships
between those two disciplines may result in an approach to synthesis
which embodies the special advantages of both of them.

187

The fact that , at least in the fourth-order case , inor.y Boolean

functions are characterised by only a small number of their spectral

coefficients nay indicate that,for higher-order functions,it may

be possible to completely specify the majority of functions using

only a small amount of the data space required at present. Tor this

reason , and also because of the existance of the ' Fast V/a.lsh

Transform ' it may be possible to synthesise functions , using the

techniques developed in this thesis , of a highor-order than has

been attempted using conventional methods.

18 8
4.2 Pecomm0ndationo for Further '.'ork.

1/ The trcuisformation toc}\niqucs of Chapter 2 , unlike the

Boolean matrix methods of Chapter 1 , do not seem to facilitate the

representation , and thus synthesis , of cascaded logic modules. A

cursory examination of this problem indicates that some form of

ôonvolution in the Hademacher/V/alsh spectral domain is necessary

to represent such cascaded modules. Further investigation is

required to establish the relationships between the methods of

Chapters 1 and 2 in order that optimal synthesis methods for

cascaded logic modules , and indeed finite state machines , may be

established.

2/ The ability of Boolean matrix algebra to define 'dependent'
•»

functions warrants further research , see Section 1.3*7 • The

property of one function influencing another appears to have

applications in adaptive logic systems.

3/ More research is required into the specification of ’don't

care ' m in terms under the Bademacher/V'alsh transform. To date this

problem has only been given a small amount of consideration.See

Section 2.8.2.

4/ It is felt that gate minimisation methods for multi-output

logic synthesis under the Rademacher/V/alsh tra.nsform can be

developed with little effort. A theoretical approach to this

problem has beeii given in Section 2.8.1.

3/ The fact that the great majority of fourth-order Boolean

functions are characterised by only a small proportion of their

spectral coefficients is felt to bo very important. It indicates

that functions having a large number of defining variables may

be specified using a far smaller data space than is required at

 ̂With certain restrictions

189

present. Specifically , it may be possible to specify most functions

by means of the (basis) positions of their most significant spectral

coefficients. In addition , under disjoint-translational-equivalenee,

certain pertinent properties of a Boolean function may be evaluated
immediately from the properties of the 'class' in which the function

lies. To this end it is important that the disjoint-translational-

equivalent classes of functions of order n ̂ 3 should be evaluated.The

results given in Chapter 2 for all fourth-order functions (and loss)

wore generated by classifying all the fourth order functions in turn.

This process took approximately 1? hours. This method becomes
impractical for functions of order n,). 3» (The estimated time

required for the classification of functions of order n=3 on this

basis is approximately 100 years I) This problem may be solved by

finding the number of functions which may be generated from the

(known) canonic characteristic threshold vectors,under disjoint-

translational-equivalenco, and then instigating a search (on a

random basis) for the remaining , non-threshold disjointly-

translationally-equivalent ,functions.

6/ For reasons explained in Section 2.7 further research
is necessary into the significance of the approximate estimator
e for functions of order n^ 3 , and also for functions not having

disjointly-embedded threshold functions.

7/ It is known that functions not having disjointly -
embedded threshold functions may be synthesised if the function

is 'divided' ,soo Section 2.6.3* Optimal methods of carrying out
this division , and the role that such functions play in the
composition of functions of order n 3 * remain to be investigated.

190

8/ The optimal universal threshold gate was developed towards
the end of the research period and only a small amount of time has
been devoted to the investigation of its properties. In view of its

importance in the low-cost synthesis of logic systems and the ease
with which such syntheses may be established , compared to more

conventiaiâl methods , further research into the automated design
01 circuits using this gate appears to be of great importance.

191
4.3 AcknowledgementG.

The author is especially indebted to Dr. S.L. Hurst,
University of Bath , for his continued assistance and advice

throughout the period of research.
The support of the School of Electrical Engineering ,

University of Bath is gratefully actnouledged.

Many profitable discussions with the following members

of staff and post-graduates of the University of Bath also contributed
to the research work :

Mr, B. Ireland. School of Mathematics.
Mr J.Dc Martin. School of Electrical

Engineering.
Mr. J. Metcalfe. Post-graduate. School of

 ̂ Electrical Engineering.
Mr. P.A. Chambers. Post-graduate. School of

Electrical Engineering.
The research was supported by Science Pesearch Council

(U.K) Grant B/70/1293*
Finally , my most humble th.anks are due to my parents

who , by their encouragement and support , have made this research

possible.

Univ. Bath. 10 Sept. 7 3

192
APPENDIX 1

Karnaugh maps of
all fourth-order
Rademacher/Walsh
functions in the
range 0,1 .

00 01 II 10

00 ' 12 i;

01 1 6 — a 1

II
ii i (i II

10 I w M

Shaded : TRUE

Blank :FALSE

KEY

00 01 II lO
0 0

o 4 ----- 3 - g

0 1

1 c R t

II
3 7 II

1 0

i 6 10

0
\ 00 01 II lO

00
01 1

II
X ^ "

10 j

0 0 01 II 10

0 0 01 II 10 0 0 OI II 10

00
----- 8 i -----3

00
-----r ■ -fr-.-y 1

01 1 1 t i 01

II II

10 10 t 4

%

A1.1

193

0 0 01 II lO

00
01
il
10

1591
5 J
z

0 0 OI II 10

s

GO

00

X

00 OI

00

X

OO 01 II lO

0 0 01 II 10

00 01 II 10

00
01
II

10

c 15̂IX x|m

124

00 01
00

A1.2

194
\ 0 0 01

1234

A1.3

195

APPBüM;: 2

Tho Intürni'otation of focctrr-.l Translation iii torrns of Field The or v.

Tho spectral translation operation concerns itself with the

g nieration of a new function ? ’(x^, . •) from a given

function F(x., . . , ,x) , where x ' has the formI iC n Jc
x,̂ @ f X Ü X, 8 . . . Ü X,] and F(x., . . $x, , . . ,x) =iv. 1% Ü nj I iZ n
F'(x^, . . ,x,’̂, . o ,x̂)̂ . It is required to establish that a unique

function F ’(x^, . . , , . . x^) is always generated under these

constraints. If this is so the validity of the spectral translation

operation is guaranteed for any Boolean function.

In order that a unique mapping between the two functions exist:

it is necessary that the functions defined by the set of defining

variables (x^, *x^) are linearly independent. If this

were not so the expression F(x^ , ,x^) =

F'(x^, . . ,x̂ ’̂, • . ,x^) would imply that the variables

(x^, . . ,x,̂ , . . ,x^) wore not linearly independent , whereas in

fact they are. (They represent the minimum number of defining

variables necessary to define all points in n-spacc). A unique

mapping of F(x., . . ,x, , . . ,x^) onto F ’(x^, . . ,xl, . « ,x_) i n n I iv n
is therefore guaranteed provided that tho functions given by the

defining variables (x^ , . . ,Xj’̂, . . ,x^) are linearly independent.

Using Galois Field 2 , (GF(2)), theory it is possible to

represent the set of defining variables (x^, . . ,xl, • . ,x^) in

matrix form and establish the linear independence of each member of

the set.
GF(2) f cory applies to integers in the range (0,1) together

with the operation addition modulo 2. (0). Because a field is

being considered conventional matrix algebra may be employed

and the normal criteria of singularity and non-singularity applies

196

to the linear independence of functions.

Under G?(2) the follovring relationships hold :
1/ Multiplication

0.0 = 1.0 - 0.1 = 0

1.1 = 1

2/ Addition 'r'

0+0 = 1+ 1 = 0

0+1 = 1+0 = 1

3/ Subtraction is equivalent to addition.

In order that the linear independence, of a set of functions
may be tested it is necessary to establish that the matrix , in
GF(2), describing those functions is non-singular.

"«dxample

iriables is given by (x^ ,x^ ,x._. ,X;̂) , whereset OI o.eiining v;

xJJ = x^ © Xp . Are the functions corresponding to these defining
variables linearly independent ?

Expressing the problem in matrix form G?(2) gives

1 1 0 o’ "10 1 0 0
0 0 1 0 Xy
0 0 0

F
X

= x!

In order that the functions corresponding to the defining

variables are linearly independent it is necessary that the above
matrix is non-singular. ie. it has a determinant of value 1 .

Let this matrix be denoted by [a].
Expanding the determinant of [Ajby the first column in the

usual way gives
1. 1 0 0

0 1 0
0 0 1

ho-expansion of this doteruinantby the

first column gives

19 7

1 . 4 1 . 1 0
0 1

= 1 .1 . f (1 .1) + (0 .0)]V J
r= 1.1. { 1 4- oj

= 1.1.1

= 1

That is Det.[A]= 1 , thereioi’e the defining variables are

linearly independent.

For the more general case idiere the variable is replaced
by æ [. 0 [A] I

/j * * * » ̂ ^
0 1 0 0 0 . .
0 0 1 0 0 . .
0 0 0 1 0 . .

0 0 0 0 0 0 0

oecocioG

. *. 0 0. 0 0 . 0 0

. 0 1

whore * denotes a value of 0 or 1 .
Expanding the determinant of[A]about the first column gives

1 . 1 0 0 0 . .
0 1 0 0 . .
0 0 1 0 . .

. 0 0. 0 0

. 0 0

0 0 0 0 0 0 . . 0 1 .
which again give a value of the determinant of [A jSS 1.

'I'b- aame result is obtained for tlie general case where x,_
is replaced by x,’ = x,̂ © j x © x, © . . . © x, | where the determinant X X I a D i\j

of[a]is evaluated by expansion about the k th column.

It can be concluded therefore that the operation of spectral
translation maps a given function uniquely onto a new function. That
is , the linterms of the original function are perturbed in n-spaco
and no information about the original function is lost - it is
reconstructable.

198
The set of defining variables of a function are also termed

a _Basiu3 and operations of the type considered arc often called Basil

Transformations. See also reference 29 •

1 9 9
APPENDIX 3

Eh c 1Eh eh EH E-t Eh [H EH Eh EH EH E“ i Eh r-,

CiH
O
C
O

tH
d

-m'0
!3 O -:!• rA ro\,H‘- rA OO o

o
P id r.O

<]'
O G.. a : o : GO G G OJ CC CC G: G ■C C3 VÛ o i <0 00

1 1 1 cc

té G OJ co <]- GJ G CC cc OJ o G <T g : G cc Cvl C
1 1 1 1 1 G

OJ

o G OO Cvj G GO cc co O) G G G G G.' CC CC n ' N
1 1 1 1 1 1 r ;

(i:: G OJ Oj C G Gj CC' cc O) G G G C' <T cc cc <r VJ
1 1 1 1 1 1 1 1 1 cc

1
C; G oc OJ n ' <J' <]' cc cc vD CO G O n ' cc cc 00

1 1 1 1 1 1 1 1 1 1 1 Oi
, «-<

C3 GJ G OJ Oj G G G O; cc O] G G G <r GJ cc VÛ <j' c
1 1 1 1 1 1 1 GJ

H-I
G:' C a ' OJ- G G G CC co OJ G; G O CD cc cc>*

M 1 1 1 1 cc

M G) G Oj cc G <J' <j' cc cc cc G G G G O' cc CC G,
1 1 1 1 1 1 1 o:

i~I

GO G.' Oji Oj O G G 0^ OO OJ G G <T GJ <J' OJ co •n <rd 1 1 1 1 1 1 1n
EH'-C
h-i G O OJ CC O <r cc OJ cc G O <J' G <r cc OJ OJ
CO 1 1 1 1 1 1 1 1 1 —
dni G G OJ CO G <1 <f VD vc> cc G CO <r <!' G OJ VÛ <r OJ
E-i 1 1 1 1 1 1 1 1 1 1 1 1

r-1
'n G' G: cc CC G G CC cc OJ G G <r <r vD VÛ <3' <j‘

C Q ce cc C <r cc cc vO CC G <r VÛ vD n

G G OJ cc <r <]' <r vO vD VÛ CCI CO <!' co ■co VÛ VÛ <î' cc

GO O OJ u' OJ 'T OJ vD G G CO COCO co co VÛ VÛ <!'
r - - l

vD C: <!' OJ GO CC <r C vû CC Gj CO C30 <T G vO CC C G'—<

, ,
0 o TT- rvj r-m-d- i r x vo O-cO O V- ce rA LA CD 0-COat >% T- v~ T - V- v~ r- T - T—

-+
V/
«

C Io

•-■Xro
Üf-i

Eh(.3
CO

o

200

APPENDIX 4

CANONIC CHARACTERISTIC W EIGUT-THRESHOLD VECTORS,
o r CHOW PARAMETERS, FOR THRESHOLD FUNCTIONS
OF UP TO n = 5 .

n (max) No, c] w]

3
1 8 0 0 0 1 0 0 0

•» o 6 2 2 2 2 1 1 1
3 4 4 4 0 1 1 1 0

4
1 16 0 0 0 0 1 0 0 0 0
2 14 2 2 2 2 3 1 1 1 1
3 12 4 4 4 0 2 .1 1 1 0
4 10 6 6 2 2 3 2 2 1 1
5 8 8 8 0 0 1 1 1 0 0
6 8 8 4 4 4 2 2 1 1 1
7 6 6 6 6 6 1 1 1 1 1

5
1 32 0 0 0 0 0 1 0 0 0 0 0
2 30 2 2 2 2 2 4 1 1 1 1 1
3 28 4 4 4 4 0 3 1 1 1 1 0
4 26 6 6 6 2 2 5 2 2 2 1 1
5 24 8 8 ' 4 4 4 4 2 2 1 1
6 24 8 8 8 0 0 2 1 1 1 0
7 22 10 10 6 2 2 5 3 3 2 1 1
8 22 10 6 6 6 6 3 2 1 1 1 1
9 20 12 12 4 4 0 3 2 2 1 1

10 20 12 8 8 4 4 4 3 2 2 1 1
11 20 8 8 8 8 8 2 1 1 , 1 I 1
12 18 14 14 2 2 2 4 3 3 1 1 1
13 18 14 10 6 6 2 5 4 3 2 2 1
14 18 10 10 10 6 6 3 2 2 2 1 1
15 16 16 16 0 0 0 1 1 1 0 0
16 16 16 12 4 4 4 3 3 2 1 1 1
17 16 16 8 8 8 0 2 2 1 1 1
18 16 12 12 8 8 4 4 3 3 2 2 1
19 14 14 14 6 6 6 2 2 2 1 1 1
20 14 14 10 10 10 2 3 3 2 2 2 1
21 12 12 12 12 12 0 1 1 1 1 1 0

2 0 i
APPENDIX 5

Oom
o
«
EHO
M

CO
K EH
IEh

J
II
3 5
o

EH E» E-i EH EH EH EH

Ü O f-H

O (X C CO
I

(S CO C ' OJ
I

G Co e CO
I

vC' <!'
I

CO c
I

G C CO <0
I

G OJ G CO Cv G

e CO <r CO E.

G CO: G CO
I

G CO G CO
I I

G CO <] OJ
I I I

G CO G CO
I I

GJ CO -V CO
I I I

G CO <rI I I

G G

G, G

CO <r
I I

CO O'
I I

CO <]'
I I

CO c
I

G. G:

G C
I

G si'
I

CO O'
I I

CO <r
I I

CO <r
I

cc
I I

CO: si'
I

E CO G OJ G si' vC- <r

G: CO <T OJ G <T vD <!'

G CO si' CC -q vO sj'

g: o i sT vd CO cc vo <r

<r CO G cc K' \0 sT

OJ lA-4- LCNOD Of-O

OO
o
Hd
u

Oo
P iCO

<!'rc
Cc

CO
CO

s3‘
CO

CJ

CO
Cv

<1
CJ

CO
CO

r.i

OJ

C'J

OJ

202

• APPENDIX 6

Some Circuits Designed Using the
Optimised Universal Threshold Gate.

lO
0 4
 ̂ 0 0 0^' o' T‘ 1*

01 o' o' 1” 1‘
II o' o' 1“0 “

10 o' o' 1" o'
Compare with the solution of Fig.30

X^X\oo 01 I) 1000 0̂ r Là1 o'01 1 o' T1 o'
I I o' r O' 1"10 r o' 1" 0"

Note disjunctive
translation.

Compare with Fig.31b.

.L
(O.U.T.G) w ith complemented input capability,

see Fig.A4b.
A6.1

203

2 /5 Circui t (Saving of 3 gates & 5
interconnections on Fig.38)

SUM

CARRY

Full Adder

XI
X2
X -

A6.2

2.0 4

If C=0 z= A
If C=1 z = B

Electronic Switch

XiXr2
0 0 0 “ 1 O l 0 ^
01 1 ' O' o ' o '
II O' o ' o ' 0 "
10 O' o ' o ' o '

-* 0<}

Output threshold 1 .used

A 6.3

205

1/ Lcv;in 5 D.

2/ Car.ipocMi, J.O

3/ C.'iinpeau, J.O

4/ Flesc, H.G.

5/ Edwards, C.2,

6/ Honnie, F.O.

7/ Minnick, 2.C,

8/ Onwards, C.2 ,

9/ McCluskey, 0,

10/ 'aiine, V.’.V.

11/ Odwards, C.H,

12/ Roth, J.2.
et al.

13/ ! ahenhu.rat,

REFERENCES.
'Logical Desipn of switching Circuits'. Colson.

1968.
’The Synthesis ^nd Analysis of Counters in Digital

Systems by Coolean Matrices'. Masters Thesis .

University of California. 1953.

'The Synthesis and Analysis of Digital Systems'.

I.C.E. Trans. .electronic Computers.

Vol. MC6. pp 231-241. 1957.

'Boolean Algebra and its Applications'. Blackie.
1964.

'The Logic of Boolean Matrices'. Computer J.

Vol. 13 Ho.3 . PP 247-233 1972.
•Finite State Models for Logical Machines'. L'iley.

19681

'Cellular Arrays for Logic and Storage'. Stanford

Research Inst. California. 1966.
'Some Boolean Matrix Operators'. LI. Lett. Vol.3.

- No.3 .pp 113-113. 1972.
'Minimisation of Boolean Functions'. Bell Syst.

Tech. J. Vol.33 PP 1417-1444. 1936.

'The Problem of Simplifying Truth Functions'.

Am.Math.Mon. Vol. 39 . PP 321-323.

'Partitioning of Boolean Functions by Variable

Complementation' . "I, Lott. Vol.8 Mo.!) PP 138-140,

'A Computer Program for the Synthesis of

Combinational Switching Circuits'. ?roc. 2nd Ann.

vSymp. on Switching Circuit Theory
an a Be sign. Pub . .%. I. f. B. 1961,

'The Decomposition of Switching Circuits'. Harvard

Computation Lab. Bell L:.b. Deport

No. BL-ldl). 193^.

206

14/ Edwards, C.R. 'An Algorithm Applicable to Logic Circuit Synthesis*

ZL. Lett. Vol.8 ::0.17. pp 442-444.
1972.

15/ Radonacher, II. ’Einige Sat::e ubor Eeihcn von allgorneinen

Crthogon;>halfunktionen’ . Math. Ann. V0I.S7 .

pp 112-138 . 1922.
16/ Walsh, J.L. 'A Closed Set of Normal Orthogonal Functions'.

Amer. J, Math . Vol.45. pp 5-24.

1923.
17/ Davies, A.C. 'Some Basic Ideas about Binary Discrete Signals'.

Symp. Theory and Application of

Walsh Functions. Hatfield Poly.(UK)

1971.
18/ Paley, R.E.A.C. 'A Remarkable Series of Orthogonal Eunctions(l)'.

Proc. Lond. Math. Soc, Vol. 54.

pp 2^11-279. 1951.
19/ Chow, C.K. 'On the Characterisation of Threshold Functions'.

I.E.E.E. Proc.Symp. Switching Theory
and Logic Design, pp 54-38 . 19o1

20/ Dertousos, M.L. 'Threshold Logic : A Synthesis Approach'. Research

Monograph Ho. 32. M.I.T. Press.

Mass. 1965.
21/ Ito, T. ' ATjplications of the Walsh Functions to Pattern

Eocognition and Switching Theory'. Proc. Symp.

Applications of Walsh Functions.

Naval Research Lab. U.S.A. 1970.

22/ Hurst, S.L. 'The Application of Chow Parameters and Rademacher-
Walsh Matrices in the Synthesis of Binary Functions'

Computer J. Vol. 16 No. 2. 1973«

207

25/ 2dv;ar d s , C . R ,

24/ Shanks, J.L

23/ 8carle, R.H

26/ Gdlonb, o ,\! ■

7/ Winder, R.O

28/ Lewis, P.M.

29/ Birkhoff, G,
Mac Lane, S

50/ Karp, R.M.
et al

31/ Wine, R.L.

•The Application of the Radomacher/V/alsh Transform
to Digital Circuit Synthesis' Symp. Theory and

Application of Walsh and Other Mon-
sinusoidal Functions. Hatfield, Poly,

(UK). 1973.
'Computation of the Fast Walsh-Fourier Transform'

I.E.E.E Trans. Electron. Gomput.
(Short Note). Vol. EC-18. pp 457-

439. 1969.
'Walsh Functions and Information Theory'. Symp.

'Theory and Application of Walsh

Functions. Hatfield Poly.(UK).1971.
'On the Classification of Boolean Functions', I.R.E,

Trans. Circuit Theory, Vol CT-6.
pp 176-186. 1939.

'Threshold Functions Through n=7'. Scientific
• Report No.7 . B.C.A. Labs.Princeton

N.J. 1964.
'Practical Guide to Threshold Logic'. -Electron.

Design. Vol. 22 pp 66-88 .Oct.1967.
'A Survey of Modern Algebra'. Third Ed. Macmillan.

1963.
'A Computer Program for the Synthesis of
Combinational Swithching Circuits'. 2nd Annual

Symp. Switching Oct. Theory and
Logic Design. Pub. A.I.E.E . I96I.

'Statistics for Scientists and Engineers'.
Prentice Hall 1964.

208

32/ Guild, H.H.

33/ Doan, i:.J.

\k/ Edwards, O.R

33/ Frocon, L.
Clair, L.

'Como Cellular Logic Arrays for ITon-Eostoring

Binary Division'. Radio and Electron, fng.

%̂ ol 39 . PP 343-348 . 1970
'Design for K Full Multiplier'. Proc.ï.E.E.

Vol. 113 Mo.11 pp 1392-1394. i960,

'.floating point Cellular-Logic Multiplier with

Variable Dynamic Range'. El. Lett. Vol 7 Mo.23

pp 747-749 . 1971
'Operateurs Virgule-Flottante Dynamique-Variable

Procision-MultiTjle '. El. Lett. Vol.3 Mo.8. pp 191
193 . 1972

209
}? IJ BLIC A T1 OH 3 . C.R, Edwards . Universitv of Bath

1/ 'Floating- point cellular-logic multiplier with variable
dynamic range ' . Electronic Letters . 16 Dec. 1971

Vol.7 Mo. 23 . p 747 fol..
2/ 'Partitioning of Boolean function by variable complementation'

Electronic Letters . 9 Mar. 1972

Vol,8 No. 3 . P 138 fol.
3/ 'Some Boolean matrix operators ' . Electronic Letters .

9 Mar. 1972 . Vol 8 No.3- p 133 fol.
4/ 'An algorithm applicable to logic-circuit synthesis'

Electronic Letters . 24 Aug. 1972.

Vol. 8 No.17. p 442 fol.
3/ 'The logic of Boolean matrices ' . The computer journal (U.N.)

Vol. 13 No. 3 pp247-233.
6/ 'The application of the Rademacher/Walsh transform to

digital circuit synthesis '
The Hatfield Symposium on Walsh and other
non-sinusoidal functions . Hatfield
Polytechnic .Hatfield, England. June 28-29

1973.
7/ ' The synthesis of logic functions by threshold or vertex

gates under the Hade nacher/V/alsh transform '
Under revision for publication. lEEETC.
Copy available as internal report Univ.Lath,

PATENTS.

1/ 'Cellular Logic Arrays ' . U.K. Patent 31122/71. Filed pO Jan.

1973.
2/ ' Single line communication '. British patent 8o47/70-

(Joint _'atont)

