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 All discrete function representations become exponential in size in the worst case. 

Binary decision diagrams have become a common method of representing discrete 

functions in computer-aided design applications. For many functions, binary decision 

diagrams do provide compact representations. This work presents a way to represent 

large decision diagrams as multiple smaller partial binary decision diagrams.  

 In the Boolean domain, each truth table entry consisting of a Boolean value only 

provides local information about a function at that point in the Boolean space. Partial 

binary decision diagrams thus result in the loss of information for a portion of the 

Boolean space. If the function were represented in the spectral domain however, each 

integer-valued coefficient would contain some global information about the function. 

This work also explores spectral representations of discrete functions, including the 

implementation of a method for transforming circuits from netlist representations directly 

into spectral decision diagrams.  
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CHAPTER I 
 

INTRODUCTION 
 
 

 All discrete function representations become exponential in size with respect to 

the number of variables in the worst case. Binary decision diagrams have become a 

common method for representing discrete functions in Computer-Aided Design (CAD) 

applications. For many discrete functions, binary decision diagrams do provide compact 

representations.  

 
Motivation for this Work 

 
 There remain functions for which a Binary Decision Diagram (BDD) 

representation will still reach exponential size. This may occur due to either a bad 

variable ordering choice made during BDD construction or it may be due to the intrinsic 

nature of the function being represented. Thus there is interest in finding ways to 

represent such large functions as multiple smaller partial binary decision diagrams.  

 In the Boolean domain, each truth table entry consisting of a Boolean value only 

provides local information about a function at that point in the Boolean space. If the 

function were represented in the spectral domain however, each integer-valued 

coefficient could possibly contain global information about the function. Thus there is 

also interest in finding ways to represent a function as a Spectral Decision Diagram 

(SDD).
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 The work presented within this thesis is a portion of a larger project investigating 

statistical equivalence checking for combinational circuits sponsored by the National 

Science Foundation. This project involves extracting pairs of Haar spectral coefficients 

from two circuit models and computing a decreasing error probability for each matching 

pair. The relationship of the work in this thesis to the larger project is that within the 

larger project the two circuit models to be compared are represented first as partial binary 

decision diagrams that are then transformed into Haar spectral decision diagrams.  

 
Contributions of this Work 

 
 The contributions of each of the primary sections of this work are described 

within this section. The work presented in each part is described in greater detail in the 

corresponding chapter. 

 
Binary Decision Diagrams 

 
 This work has resulted in the development of a set of computer programs that take 

as input a textual description of a circuit and create as outputs multiple partial binary 

decision diagrams that together represent the complete function. These computer 

programs have been implemented using the Colorado University Decision Diagram 

(CUDD) package [38]. Experimental results are presented here and also in [49].  

 
Spectral Computations 

 
 This work has extended the graph-based method for the calculation of the Walsh 

spectrum described by A. Bernasconi and B. Codenotti in [2]. These extensions include 

S-encoding and the exploration of other possible field relations. A new algebraic group 
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whose corresponding Cayley graph represents the spectrum for the inverse of a function 

using the equivalence operator is identified. Furthermore a transformation diagram was 

discovered which provides a "fast" method for producing the adjacency matrix via 

transposition. Publication of these extensions can also be found in [50]. Examination of 

this matrix also contributed in small part to the more rigorous mathematical proofs 

developed by M. A. Thornton for the calculation of the Chrestenson spectrum as 

presented in [42].  

 
Spectral Decision Diagrams 

 
 This work has resulted in the development of a computer program that 

implements the graph-based algorithm for computing the Walsh transform described by 

M. A. Thornton and R. Drechsler in [45]. It has also resulted in the development of 

computer programs to implement the graph-based algorithms for computing the 

arithmetic transform and the Reed-Muller transform described by M. A. Thornton, R. 

Drechsler, and D. M. Miller in [44]. These programs further enhance the algorithms as 

previously described by extending them to transform multi-output functions. 

Experimental results for these implementations are presented here and also in [48]. A 

second set of computer programs has also been developed that improves upon the 

previous versions by caching "skipped" nodes during decision diagram traversals and 

those results are presented in comparison with the previous work.  

 
Outline 

 
 This work is presented in the following manner. In Chapter II properties of binary 

decision diagrams are reviewed and one common method for BDD construction is 
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examined. Limitations to the use of these representations are discussed. The concept of 

partial binary decision diagrams is illustrated and a method for pBDD creation is 

described. Experimental results obtained from the creation of partial binary decision 

diagrams are presented. This chapter concludes with a few comments on binary decision 

diagrams.  

 Chapter III examines one of the basic spectral transformations used in this work, 

the Walsh transform. The chapter begins by reviewing the traditional linear algebra-based 

method for computing this spectrum. This is followed by a discussion of the two ways to 

encode a function, R-encoding and S-encoding. It then describes a newer graph-based 

approach to calculating the Walsh spectrum that utilizes the concepts of Cayley groups 

and Cayley color graphs. Next the chapter presents extensions to the graph-based 

approach beginning with an S-encoding extension and the examination of other possible 

operators. A new Cayley group based on equivalence is highlighted. The final extension 

presented is a transformation matrix created solely by transpositions of the output vector 

for a function. This chapter concludes with comments on spectral computations.  

 Chapter IV presents spectral decision diagrams. The chapter begins with a 

discussion of previous spectral applications in computer-aided design. This is followed 

by a presentation of each of the three transforms presented in this work, the Walsh 

transform, the arithmetic transform, and the Reed-Muller transform. The methodology 

used in transforming a circuit into each of these types of spectral decision diagrams is 

described next. Finally experimental results for the implementation of each of the 

transforms are presented. 



 

 

5

 

 Chapter V concludes this work by providing a summary of each of the preceding 

chapters. It highlights the contributions of this work and describes the future research 

opportunities arising from this work.  
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CHAPTER II 
 

BINARY DECISION DIAGRAMS 
 
 

Binary decision diagrams provide compact representation for discrete functions 

[29, 12, 21, 11, 7]. For this reason, these diagrams have seen extensive use in VLSI CAD. 

For some functions however, the binary decision diagram representation grows 

exponentially large with respect to the number of inputs.  

Partial binary decision diagrams have been studied in other works as a method of 

determining an efficient variable ordering for binary decision diagram construction [25, 

36, 19]. Presented in this chapter is a technique for partitioning a binary decision diagram 

into multiple binary decision diagrams each representing a subset of the information 

contained by the complete binary decision diagram for a function.  

 This chapter begins with a review of binary decision diagrams and some of their 

important properties. It then examines one method by which binary decision diagrams are 

constructed and discusses some of the constraints on their usage. Next the concept of 

partial binary decision diagrams is illustrated by an example function. This is followed by 

the presentation of experimental results for several benchmark circuits represented as 

partial binary decision diagrams. Closing thoughts on decision diagram representations 

conclude the chapter.  
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Properties of Binary Decision Diagrams 

A Binary Decision Diagram (BDD) is a directed acyclic graph, ( , )G V E= . Every 

BDD has two different types of vertices, terminal vertices and non-terminal vertices. The 

terminal vertices represent the Boolean values, 0 and 1, while the non-terminal vertices 

represent variables of the function represented by the BDD. Each non-terminal vertex has 

exactly two outgoing edges, one of which is labeled by the Boolean constant 1 (or then) 

and the other by the Boolean constant 0 (or else). The graph begins at a single non-

terminal node, known as the root, which has no incoming edges. As shown by R. E. 

Bryant in [7], two very important properties that a BDD has are to be ordered and to be 

reduced. An ordered BDD is one in which each variable is encountered no more than 

once in any path and always in the same order along each path. A reduced BDD observes 

the following two properties. First, there are no redundant nodes in which both of the two 

edges leaving the node point to the same next node present within the graph. Should such 

a node exist, it is removed and the incoming edges redirected to the following node. 

Second, isomorphic subgraphs are shared, that is, if two nodes point to identical 

subgraphs, rather than repeat both subgraphs, the two nodes point to the same subgraph. 

These two properties allow a BDD representation to be canonical for a given variable 

ordering.  A BDD that is both ordered and reduced is called a Reduced Ordered Binary 

Decision Diagram (ROBDD). In this work all references to BDDs shall imply ROBDDs. 

A BDD for the function, f xy z= +  is shown in Figure 2.1.  
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Figure 2.1  BDD for the Example Function, f xy z= +  
 
 

Construction of Binary Decision Diagrams 

 BDDs are constructed by first creating individual BDDs for each variable of the 

function and then using the APPLY operation to build the BDD from these individual 

variable BDDs. The APPLY operation requires two BDDs and a Boolean operation to be 

applied to these BDDs as inputs and produces a resulting BDD as output. One efficient 

way to implement APPLY as described by K. S. Brace, R. L. Rudell, and R. E. Bryant in 

[4] is to use the If-Then-Else (ITE) operator. The ITE operator is a recursive form of the 

Shannon expansion theorem shown below in Equation 2.1 [37]. 
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1 0 1 1f x f x f= ⊕  (2.1) 

If f Z= , x f= , 0f h= , and 1f g= , then the Shannon decomposition shown in 

Equation 2.1 can be expressed by the following ITE shown in Equation 2.2, in which, if 

( 1)f = , then ( )g , else ( )h . 

( , , )Z ite f g h=   (2.2) 

The terminal cases for this recursion are shown in Equation 2.3.  

(1, , ) (0, , ) ( ,1,0)f ite f g ite g f ite f= = =   (2.3) 

The complement of a BDD is formed by the ITE expression shown in Equation 2.4. 

( ,0,1)ite f f=   (2.4) 

All of the possible binary Boolean operators can be implemented as ITE expressions as 

illustrated in Table 2.1. Pseudo-code for the ITE algorithm is shown in Figure 2.2.  

 
 

ite ( , , )f g h  
 if (terminal)  
 return (result); 
 else 
  let x be the top variable of ( , , )f g h ; 
  T = ite ( , , )x x xf g h ; 
  E = ite ( , , )x x xf g h ; 
  if T = E, return (T); 
  R = newnode (x, T, E); 
  return (R); 
 

Figure 2.2  Pseudo-Code for the ITE Algorithm 
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Table 2.1   
 

ITE Forms 
  

Output Expression ITE  Expression 

0000 0  0  

0001 f g•  ite f g( , , )0  

0010 f g•  ite f g( , , )0  

0011 f  f  

0100 f g•  ite f g( , , )0  

0101 g  g  

0110 f g⊕  ite f g g( , , )  

0111 f g+  ite f g( , , )1  

1000 f g+  ite f g( , , )0  

1001 f g⊕  ite f g g( , , )  

1010 g  ite g( , , )01  

1011 f g+  ite f g( , , )1  

1100 f  ite f( , , )01  

1101 f g+  ite f g( , , )1  

1110 f g•  ite f g( , , )1  

1111 1 1 
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Limitations to Binary Decision Diagram Representations 

While BDDs are compact representations for many functions, they can reach 

exponential size with regard to the number of inputs for some functions. There are 

several reasons why this occurs. One of the reasons is that a bad ordering was chosen for 

the variables when the BDD was constructed. The size attained by a BDD is influenced 

greatly by the variable ordering chosen, however finding the best variable ordering 

during BDD construction is NP-hard. [3]. Therefore although heuristic techniques are 

used, exponential sizes can still occur. Another reason for their occurrence is that there 

exist circuits, such as the multiplier circuits identified by R. E. Bryant in [6], for which 

BDDs will always reach exponential sizes. A method for partitioning such BDDs has 

been examined by A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli in [33].  

 
Partial Binary Decision Diagrams 

 
 A method for constructing a partial Binary Decision Diagram (pBDD) is 

developed in this work. This method for pBDD construction employs the notion of a third 

terminal node within the BDD containing the unrepresented portion of the circuit that is 

known as the Unknown (U) terminal. It is invoked during the construction of a BDD from 

a textual description or netlist, therefore the entire BDD is never constructed. The type of 

netlist used as input for this method is the Berkeley Logic Interchange Format (BLIF). 

An example BLIF for a small circuit with four inputs and 1 output is shown in Figure 2.3.  

The example circuit for the previous BLIF file, f wxz wxy wxz= + + , is shown 

completely represented as a BDD in Figure 2.4 and also in a Karnaugh map 
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representation in Figure 2.5. Note that the multiple constant terminals shown are added 

solely to simplify the illustration. In the actual BDD only two constant nodes are present.  

In Figure 2.6, the else edge from variable w  is redirected to the U terminal to 

construct a pBDD. Figure 2.7 shows the corresponding Karnaugh map for this pBDD 

with U's replacing the Boolean constants 1 and 0 for those columns of the map in which 

0w = . In Figure 2.8, the then edge from variable w  is redirected to the U terminal to 

construct a second pBDD. Figure 2.9 shows the Karnaugh map for this pBDD with U's 

now replacing the Boolean constants 1 and 0 for those columns of the map in which 

1w = .  

Generation of pBDDs is achieved by modifying the code implementing the ITE 

function used during decision diagram construction. The modifications to the ITE 

algorithm have been implemented using the Colorado University Decision Diagram 

(CUDD) package [38].  The CUDD ITE functions are highly optimized and thus much 

more complex than the pseudo-code presented earlier that represents only the 

functionality of the algorithm. Within CUDD there is a recursive ITE function. It is 

modification within this function to the else and then children of a node during 

construction that allows a portion of the BDD to be redirected to the U terminal. This is 

done by replacing either f , g , or h  within the recursive call to ITE with the pointer for 

U. Thus the branch becomes redirected to U as shown for the example function in Figure 

2.6 and Figure 2.8. Other modifications to the CUDD code include that all functions 

called by the pBDD code during construction must be modified to no longer expect only 

two terminal nodes, but also to now check for the possibility of a third terminal.     
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A set of six programs was developed, each of which modifies the CUDD ITE 

function in a different place thus resulting in the production of a distinct pBDD for each 

program executed. Additionally the total number of nodes created during construction 

was also restricted to decrease the possibility that a pBDD could become even larger than 

the BDD for the complete function. Experimental results from these modifications are 

presented in the following section.  

 
 
  .model example 
  .inputs wxyz 
  .outputs f 
  .names wxzy f 
  01-1 1 
  111- 1 
  10-0 1 
  .end 
 

Figure 2.3  BLIF Netlist for the Example Function 
 
 

Experimental Results for Partial Binary Decision Diagrams 

The experimental results presented here have been computed on a SUN Ultra 10. In all 

over one hundred benchmark circuits were tested using the set of programs containing the 

modified code. Table II provides a summary of the results obtained for several 

benchmark circuits using the modified ITE code. These circuits were chosen for inclusion 

in Table II based upon the number of nodes in the complete BDD, selecting those circuits 

with over 500 nodes. The column labeled BDD shows the number of nodes resulting if 

the circuit was built completely, while each subsequent column shows the results from a 

different modification to the ITE algorithm during diagram construction.  
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Figure 2.4  The Example Function Represented as a Complete BDD 
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Figure 2.5  The Complete Karnaugh Map for the Example Function 
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Figure 2.6  The First pBDD for the Example Function 
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Figure 2.7  Karnaugh Map for the First pBDD
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Figure 2.8  The Second pBDD for the Example Function 
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Figure 2.9  Karnaugh Map for the Second pBDD 
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Concluding Comments on Binary Decision Diagrams 
 

 This chapter began by reviewing two important BDD properties. It then described 

a common BDD implementation technique. Two possible reasons why a BDD might 

reach exponential size were discussed as motivation for the present work. The first, that a 

poor variable ordering was chosen during decision diagram construction, and the second, 

that for some circuits exponential sizes will intrinsically occur. A method was described 

representing such BDDs by multiple pBDDs each of which represents a subset of the 

functionality of the circuit. This is accomplished by redirecting a portion of the 

functionality of the circuit to a third terminal node, U. An example function illustrated the 

technique by comparing pBDDs and Karnaugh map representations. Finally a table of 

experimental results showed several circuits represented as multiple pBDDs.  
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Table 2.2 
 

pBDD Experimental Results 
 

Circuit BDD pBDD1 pBDD2 pBDD3 pBDD4 pBDD5 pBDD6 

alu4 933 83 294 81 73 271 87 

apex1 1305 523 317 234 471 372 360 

apex2 570 174 125 54 80 94 100 

apex3 962 481 72 130 431 62 172 

apex4 972 110 252 65 151 260 89 

apex5 1095 115 369 224 234 442 200 

apex6 744 405 89 320 410 61 301 

bc0 587 44 113 58 30 101 47 

cps 1096 471 519 396 349 454 438 

dalu 1176 313 206 81 275 174 109 

ex1010 1432 110 115 31 66 120 37 

ex4 515 158 229 205 146 272 215 

frg2 1396 405 211 226 462 212 260 

intb 730 90 150 70 48 112 106 

misex3 666 167 150 87 215 140 73 

seq 1319 523 96 137 229 86 111 

table3 786 72 430 168 117 404 112 

table5 714 82 480 184 103 468 197 

tial 929 77 205 105 101 205 101 

vda 544 409 330 375 370 305 384 

x1 626 288 437 352 197 452 348 

x4 543 399 525 429 283 567 356 
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CHAPTER III 
 

SPECTRAL COMPUTATIONS 
 
 

Spectral techniques have found many uses in logic design. These include 

synthesis as described by M. A. Thornton and V. S. S. Nair in [47], testing as described 

by D. M. Miller and J. C. Muzio in [32], function classification as described by C. R. 

Edwards in [15], and verification as described by K. Radecka and Z. Zilic in [35]. 

Spectral methods have seen little practical application until recently however due to the 

computational cost for calculating the spectrum. Graph-based methods utilizing Decision 

Diagram (DD) [29, 12, 7] structures have been developed which decrease the cost for 

calculating the spectrum [44, 45, 31].  

A. Bernasconi and B. Codenotti presented an alternative graph-based method 

using Cayley graphs to compute the spectrum for a function in [1,2]. This technique is of 

theoretical interest because it demonstrates the equivalence of the spectra of Cayley 

graphs and the Walsh spectra for Boolean functions.  

 This chapter presents several extensions to the graph-based method in [2]. In 

particular, alternative encodings and analysis of other possible field relations are 

explored. A group yielding a Cayley graph representing the spectrum for the inverse of a 

function is presented and a "fast" method for producing the adjacency matrix for the 

Cayley graphs of both groups is described.  
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This chapter begins with a review of the calculation of the Walsh spectrum by 

traditional linear algebra-based methods. This review is followed by presentation of the 

graph-based method from [2]. The remainder of the chapter details each of the extensions 

to the graph-based method.  

 
 

Walsh Spectrum Computation 
  

 A function can be transformed from the Boolean domain into a number of 

alternative spectral domains. The traditional technique for the computation of the Walsh 

spectrum for a Boolean function is presented in [24]. The Walsh transform matrix if 

formed by the Kronecker product of n  1 1×  matrices [20]. For the example function 

illustrated within this chapter, 3n =  and the appropriate Walsh transform matrix is 

formed as shown in Figure 3.1. The use of this technique to compute the Walsh spectral 

coefficients for the example function, 1 3 2 3 1 2 3f x x x x x x x= + + , is shown in Figure 3.2.  

 
 

R-encoding and S-encoding 
 

 R-encoding is the term describing the common representation in which logic 1 is 

encoded by an integer 1 and logic 0 is encoded by an integer 0. An alternative 

representation known as S-encoding can also be defined in which logic 1 is encoded by 

an integer -1 and logic 0 is encoded by an integer +1 [24]. The example function is shown 

in Figure 3.3 on the left in R-encoding and on the right in S-encoding. Using S-encoding, 

the output vector for the example function can be expressed graphically as in Figure 3.4 

The S-encoded spectrum for a function can be obtained directly by encoding both the 

transformation matrix and the output vector for the function utilizing S-encoding. 
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Alternatively the R-encoded coefficients can be converted to S-encoded coefficients by 

using Equation 3.1 for the zeroth coefficient and Equation 3.2 for all of the remaining 

1n −  coefficients.  

0 02 2ns r= −   (3.1)  

2 {1, 2,..., }i is r i n= − ∀ ⊂   (3.2) 

 
 

Algebraic Groups 
 

 An alternative approach for the computation of the Walsh spectrum for a Boolean 

function based on algebraic groups and graph theory is described in [1, 2]. This technique  
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Figure 3.1 Computation of the Walsh Transform Matrix for 3n =  
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Figure 3.2  Calculation of the Walsh Spectrum for the Example Function 
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Figure 3.3 R-Encoding and S-Encoding of the Example Function 
 
 
 
 

 

 
Figure 3.4  The Output Vector for the Example Function Expressed Graphically 
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for the computation of the Walsh spectrum for a function, f , relies upon representing the 

Boolean function based upon a specific definition of a group.  

 Recall that a group, ( ),M ∗ , consists of a set, M , and a binary operator on, M , 

∗ , such that closure, associativity, and identity hold and that inverses exist. That is, for 

all i jm m M∗ ∈ , the element is a uniquely defined element of M (closure). That 

( ) ( )i j k i j km m m m m m∗ ∗ = ∗ ∗  holds for all , ,i j km m m M∈  (associativity). That there 

exists an identity element, e M∈ , such that, i ie m m∗ =  and i im e m∗ =  for all im M∈  

(identity). Finally that there exists an inverse element 1
im M− ∈ such that 1

i im m e−∗ =  and 

1
i im m e− ∗ =  for each im M∈  (inverses exist). 

 The algebraic group, ( , )M ⊕ , used in the technique described in [2] characterizes 

the Boolean function, : nf B B→ . ( , )M ⊕ , is an algebraic group in which M consists of 

all possible minterms in nB , that is, all points in the space defined by nB  and ⊕  is the 

binary operator for the group. This group has an identity element corresponding to an n-

length bit string of all zeros and additionally for each element im M∈ , 1
i im m− = .  

 
Cayley Graphs 

 
The Cayley graph is a structure that is used to relate an algebraic group to graph 

theory [9, 52]. The Cayley graph corresponding to a group representing the Boolean 

functions, f , has a vertex set, V , in which each iv V∈ , uniquely corresponds to an 

element of the set im M∈ . The edge set, E , is given in Equation 3.3.  

{( ) | ( ) 1}n n
i j i jE m m B B f m m= ∈ × ⊕ =   (3.3) 
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 The adjacency matrix, A , for this Cayley graph is a matrix of size 2 2n n×  with 

1ija =  if ( ) 1i jf m m⊕ =  and with 0ija =  otherwise. A  is a symmetric matrix because 

i j j im m m m⊕ = ⊕ . The adjacency matrix for the example function is shown in Figure 3.5 

and the corresponding Cayley graph described by A  is shown in Figure 3.6. 

 The spectrum of a graph is defined as the set of eigenvalues for the adjacency 

matrix representing it in [9]. The theorems and proofs given in [2] demonstrate that the 

spectrum of the Cayley graph representing the group as defined in [2], which in turn 

represents some Boolean function, f , is identical to the Walsh spectrum utilizing R-

encoding for the Boolean function.  

 All graphs have an adjacency matrix in which an edge is denoted by a logic 1 and 

the absence of an edge is denoted by a logic 0. The characteristic equation for the 

adjacency matrix yields the eigenvalues for the graph. The characteristic polynomial 

( )C λ  for the adjacency matrix given in Figure 3.5 is shown in Equation 3.4. 

8 7 6 5 4 3( ) 8 16 16 80 64C λ λ λ λ λ λ λ= − + + − +    (3.4) 

Solving ( ) 0C λ =  yields the eigenvalues, {1, 2,...,8} {4,2,0, 2,0, 2,0,2}i iλ ∀ = = − . These 

eigenvalues are the Walsh spectral coefficients for f as verified in Figure 3.2. 

 
S-Encoding Extension 

 
 The first extension to the technique presented in [2] was to verify that in a manner 

analogous to that used for the matrix-based calculation of the Walsh spectrum as 

discussed in [24], S-encoding of each element, im M∈ , results in a graph whose 

eigenvalues directly yields the S-encoded coefficients for the Boolean function, f .  The
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Figure 3.5  R-Encoded Adjacency Matrix for the Example Function 

  

 

Figure 3.6  R-Encoded Cayley Graph for the Example Function 
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Figure 3.7  S-Encoded Adjacency Matrix for the Example Function 

 

 

 

 

Figure 3.8  S-Encoded Cayley Graph for the Example Function 
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adjacency matrix, B , which results for the example function when utilizing S-encoding is 

shown in Figure 3.5 and the corresponding Cayley graph described by B , is shown in 

Figure 3.7. The characteristic polynomial for the adjacency matrix, B , is shown in 

Equation 3.5.  

  8 7 5 4( ) 8 128 256C λ λ λ λ λ= + − −   (3.5) 

Solving the characteristic polynomial for this graph yields the S-encoded Walsh 

coefficients, {1, 2,...,8} {0, 4,0, 4,0, 4,0, 4}i iλ ∀ = = − − − . Note that the topology of the 

graph in Figure 3.8 is unchanged from that of Figure 3.6, only the encoding of the 

vertices is different.  

 
Other Possible Operators 

 
All the remaining fifteen Boolean functions of two variables were considered as 

possible alternative operators to ⊕  in the formation of other algebraic groups. Only the 

two non-unate functions XOR ( )⊕  and equivalence (XNOR, ≡ ) were found to satisfy 

the definition of a group using the mapping operation from [2]. The sixteen possible 

Boolean operators are shown in Figure 3.9.  

 

 

x y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

 
 

Figure 3.9 All Possible Binary Boolean Operators 
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Equivalence 

 The algebraic group defined using equivalence as the Boolean operator, ( , )M ≡ , 

proves to have properties similar to the correspondence between the two operators, ⊕  

and ≡ . This group has an identity element corresponding to an n-length bit string of all 

ones and for each element im M∈ , 1
i im m− = . The adjacency matrix, C , for the example 

function using this definition for an algebraic group is shown in Figure 3.10 and the 

corresponding Cayley graph is shown in Figure 3.11.  

 As is shown in Figure 3.11, the topology of this Cayley graph, for the same 

example function used previously, is quite different from the Cayley graph produced by 

the algebraic group, ( , )M ⊕ , as shown in Figure 3.6.  Of particular interest is the 

presence of self-loops in Figure 3.6 and their absence in Figure 3.11. This is determined 

by the value of 0 0m m⊕ . For the example function, f , and the Cayley graph 

corresponding to the algebraic group, ( , )M ⊕ , the first computation is determined as 

shown in Equation 3.7 and the result is a minterm.for the example function. 

0 0( ) (000 000) 000m m⊕ = ⊕ =  (3.7) 

For the Cayley graph corresponding to the algebraic group, ( , )M ≡ , the first computation 

is determined as shown in Equation 3.8 and the result is not a minterm for the example 

function. 

 0 0( ) (000 000) 111m m≡ = ≡ =   (3.8) 

It is the value of this first calculation that determines the presence of absence of self-

loops in the corresponding Cayley graph for the function. If the result is a minterm of the 

function, self-loops will appear at all vertices in the graph; if the result is not a minterm 
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Figure 3.10  R-Encoded Adjacency Matrix for the Inverse of the Example Function 

 

 

Figure 3.11  R-Encoded Cayley Graph for the Inverse of the Example Function 
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of the function, self-loops will not appear in the corresponding Cayley graph. The 

characteristic polynomial for adjacency matrix, C , is shown in Equation 3.9. 

 2 6 5 4 3( ) 16 16 48 64C λ λ λ λ λ λ= − − + −   (3.9) 

Solving the characteristic polynomial for the new Cayley group, ( , )M ≡ , produces the 

Walsh spectrum for the inverse of the example function directly, 

{1, 2,...,8} {4, 2,0,2,0, 2,0, 2}i iλ ∀ = = − − − . 

 As in the previous section on S-encoding, if the example function, f , is S-

encoded using the algebraic group, ( , )M ≡ , the S-encoded Walsh coefficients for the 

inverse of the example function can also be obtained directly from the resulting Cayley 

graph. 

Computation of the Adjacency Matrix 
 

 During the computations required to obtain the adjacency matrix for a function 

using the definition of an algebraic group, a method was discovered which greatly 

minimizes the computational cost of producing the adjacency matrix for a function under 

consideration. In a method similar to the "fast transform butterfly diagrams" described by 

M. A. Thornton and R. Drechsler in [47] it becomes possible to obtain all the other 

1,..., nn n  rows of the adjacency matrix from the 0n  row by a series of transpositions as 

shown in Figure 3.12. 

Additionally, because the first row of the adjacency matrix for the Cayley graph 

corresponding to the algebraic group, ( , )M ⊕ , consists of the equation, 

{1, 2,..., }i ie m m i n∗ = ∀ ⊂ , the first row of the adjacency matrix can be obtained directly 

from a transposition of the output vector for the function. Conversely in the Cayley graph  
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Figure 3.12  Transformation Diagram  

 

corresponding to the algebraic group, ( , )M ≡ , the equation, {1, 2,..., }i ie m m i n∗ = ∀ ⊂ , 

occurs in the nn  row of the adjacency matrix and thus the transformation can proceed in a 

similar manner from right to left.  

 
Concluding Comments on Spectral Computations 

 In this chapter two ways of calculating the spectrum for a function have been 

reviewed. The first was a linear algebra-based method and the second was a more recent 

approach based on algebraic groups and graph theory. In this work a new algebraic group 

whose corresponding Cayley graph represents the spectrum for the inverse of a function 

is presented. Additionally it is shown that both the group, ( , )M ⊕ , and the group, 

( , )M ≡ , can be used to directly calculate S-encoded coefficients by the S-encoding of 

each element, im M∈ .  Finally a "fast" method for calculating the adjacency matrix by 

transposition is presented. 
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CHAPTER IV 
 

SPECTRAL DECISION DIAGRAMS 
 
 

 Spectral methods and decision diagrams have been applied to many areas of 

digital systems design. These include synthesis [22, 47, 30, 8, 34, 24, 14, 26], function 

classification [24, 15], partitioning techniques [51], testing [10, 32, 23, 41], and 

verification [35, 46, 28].  Spectral techniques can offer a view of a problem that 

illuminates different properties than are readily evident in the functional domain. 

Traditionally, the high computational cost of computing spectral coefficients has many of 

the practical application of many of these techniques using the linear algebra-based 

methods of computation or the graph-based techniques described in the previous chapter. 

The emergence of graph-based algorithms utilizing Decision Diagram (DD) [29, 12, 7] 

representations now permit the spectrum to be calculated more efficiently. Decision 

diagrams are the state-of-the-art representation for Boolean functions in Computer-Aided 

Design (CAD) applications. It is thus very attractive to consider decision diagrams when 

considering alternatives such as spectral techniques.  

This chapter considers the transformation of binary decision diagrams into 

spectral decision diagrams, a fundamental step in the application of spectral techniques to 

any area. This chapter begins with a brief review of several different varieties of decision 

diagrams. It then discusses the three transformations implemented in this work, the Walsh 

transform, the arithmetic transform, and the Reed-Muller transform. Next a section on 
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methodology examines representative pseudo-code for each of the transformation 

algorithms, followed by a presentation of experimental results.    

 
Background 

 
The use of decision diagrams as a compact representation of discrete functions 

provides for a variety of ways that spectra may be computed or represented [44, 45, 16, 

17, 18, 40, 31, 39]. In this method, a multi-output circuit represented as a Binary 

Decision Diagram (BDD) is transformed into a Spectral Decision Diagram (SDD). The 

resulting SDD is represented as a Multi-Terminal Binary Decision Diagram (MTBDD) 

[8] in which each non-terminal node has two outgoing edges, one edge representing the 

Boolean value 0 and the other edge representing the Boolean value 1. No edge 

complementation is used within the MTBDD. It is possible to further reduce the size of 

the SDD using edge negations as described in [31]. The terminal nodes of an MTBDD 

can take on any integer value allowing for the representation of spectral coefficient 

values.  

 
Transforms 

 
 One property that distinguishes the different varieties of DDs is the 

decomposition type represented at each internal node. For BDDs, this decomposition type 

is a Shannon expansion, therefore each child of the node represents a cofactor about the 

variable represented by the node. Traversing a decision diagram and transforming each 

Shannon node encountered with the 2 2×  matrix for the desired transform accomplishes 

the transformation from the Boolean domain to the spectral domain. When all nodes have 
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been transformed in this manner, the result is the SDD for the circuit with the spectral 

coefficients present at the terminal nodes. 

 A recursive Kronecker product definition [20] used within these algorithms is 

shown in Equation 4.1. G  in Equation 4.1 is replaced by the appropriate 1 1×  matrix, 

depending upon the transformation desired.  

1

1

n
n

i
G G

=
= ⊗   (4.1) 

 The transformation occurs in a depth-first fashion, and no node can be 

transformed until all nodes below it have been transformed. Special consideration must 

be given to those portions of the BDD in which a variable is present in both polarities and 

thus is not present on the path, a so-called "skipped" node. The nodes below this 

"skipped" node must be transformed as if the "skipped" node was present. It is often the 

case that "skipped" nodes occur in BDDs since this results from the application of the 

reduction rules. Were a BDD not constrained by these reduction rules, it would become 

an exponential Shannon tree, which is a binary tree representation of a function 

containing 2 1n −  non-terminal nodes and 2n  terminal nodes. The fewer the number of 

skipped nodes in a BDD, the more closely the BDD approaches an exponentially sized 

Shannon expansion tree.  

 
Walsh 

 
 The 1 1×  Walsh transformation matrix is shown in Figure 4.1. The Walsh 

transform is applied over the integer field.  
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1 1 1
1 1

W
+ + 

=  + − 
 

Figure 4.1  Walsh Transform Matrix 

 
 

Arithmetic 

 The 1 1×  arithmetic transformation matrix is shown in Figure 4.2. The arithmetic 

transform is also applied over the integer field.  

1 1 0
1 1

A
+ 

=  − + 
 

Figure 4.2  Arithmetic Transform Matrix 

 

It is worth noting that SDDs describing the arithmetic transform of a function are 

in fact Binary Moment Diagrams (BMD) [5]. The inverse transform can also be easily 

implemented allowing for techniques to transform directly from BDDs to BMDs and vice 

versa. It is easy to see that BMDs result from the application of the arithmetic transform 

since examination of the 2 2×  matrix in Figure 4.2 results in a pseudo-Boolean 

decomposition of the original function.  

 
Reed-Muller 

 
 The Reed-Muller 1 1×  transformation matrix is shown in Figure 4.3. The Reed-

Muller transform is applied over (2)GF . 

1 1 0
1 1

M  
=  
 

 

Figure 4.3  Reed-Muller Transform Matrix 
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 A Reed-Muller SDD is in fact a Functional Decision Diagram (FDD) [13, 27] 

without the presence of complemented edges. The inverse transform can also be easily 

implemented which provides for a technique to transform directly from BDDs to FDDs 

and vice versa. The Reed-Muller transformation matrix in Figure 4.3 is actually a matrix 

representation of a positive-Davio decomposition [26].  

 
Methodology 

 
 The pseudo-code in this section illustrates the implementation of the graph-based 

transformation algorithm for multi-output functions. This is the framework for the 

technique used for all three algorithms by including the appropriate terminal 

manipulations after the check for terminal nodes in the else and then branches of the 

pseudo-code. For each output the pointer to the top node for that output is passed to a 

traversal function that controls the transformation. The pseudo-code for this traversal is 

shown in Figure 4.4. 

Traverse (f)  
 if (f is a terminal node) return 
 Low = Traverse (Low(f)) 
 High = Traverse (High(f)) 
 LowTemp = TransformLow (Low, High) 
 HighTemp= TransformHigh (Low, High) 
 return (NewNonterminal (Index(f), HighTemp, LowTemp))

 

Figure 4.4  Pseudo-Code for Traverse 
 
 

 The TransformLow and TransformHigh transformation functions are identical 

except for the action taken once the terminal nodes are reached. For illustration the code 

for TransformLow that transforms the else-child is shown in Figure 4.5. The 
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TransformLow function has four possible courses of action: 1) if both nodes are terminal 

nodes it performs the required manipulation and returns the new terminal node; 2) if both 

nodes are non-terminal nodes at the same level, a new node is formed with children found 

by transforming the corresponding children of the two original nodes; 3) if the level of 

the else-child is greater than the level of the then-child, a "skipped" node is present in the 

else branch and must be considered; and 4) if the level of the then-child is greater than 

the level of the else-child, a "skipped" node is present in the then branch and must be 

considered. Detail of the handling of skipped nodes is also given in the pseudo-code of 

Figure 4.5. 

TransformLow (g, h) 
 if (g and h are terminals) 
  return (appropriate new terminal manipulation) 
 else if (Level(g) = Level(h)) 
   return (NewNonterminal (Index(g), TransformLow (Low(g), Low(h)), 
    TransformLow (High(g), High(h)))) 
 else if(Level(g) > Level(h)) 
   return (NewNonterminal (Index(h), TransformLow (Twice(g), Low(h)), 
    High(h))) 
 else (Level(g) < Level(h)) 
   return (NewNonterminal (Index(g), TransformLow (Low(g), Twice(h)), 
     High(g))) 
  

Figure 4.5  Pseudo-Code for TransformLow 

 
 
 "Skipped" nodes within the diagram must be considered, and their children 

transformed as if they were present. As this allowance must be made when transforming 

both the else-child and the then-child, an improvement was made to the original 

algorithm providing for caching of the result of a "skipped" node when it is first 

encountered so that the result is available on the subsequent encounter. Caching the result 
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of this computation resulted in significant decreases in the computation time required for 

transformation.  

 
Walsh 

 
 For the Walsh transform the appropriate manipulation in the TransformLow 

function of the pseudo-code is given in Figure 4.6. The corresponding manipulation in 

the TransformHigh function is given in Figure 4.7.  

 

return (NewTerminal (Value(g) + Value(h))) 

Figure 4.6  Pseudo-Code for Walsh TransformLow Terminals 

 

return (NewTerminal (Value(g) - Value(h))) 

Figure 4.7  Pseudo-Code for Walsh TransformHigh Terminals 

 

Arithmetic 

 The arithmetic TransformLow terminal manipulation is described in pseudo-code 

in Figure 4.8. The corresponding manipulation for TransformHigh is given in Figure 4.9.  

 

return (NewTerminal (Value(g) + 0)) 

Figure 4.8  Pseudo-Code for Arithmetic TransformLow Terminals 

 

return (NewTerminal (Value(h) - Value(g))) 

Figure 4.9  Pseudo-Code for Arithmetic TransformHigh Terminals 
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Reed-Muller 

 The TransformLow manipulation for the Reed-Muller transform is described in 

pseudo-code in Figure 4.10. The corresponding TransformHigh manipulation is given in 

Figure 4.10. Although similar to the TransformLow terminal manipulation of the 

arithmetic transform and the TransformHigh terminal manipulation of the Walsh 

transform the Reed-Muller TransformLow and TransformHigh terminal manipulations 

are applied over GF(2). 

 

return (NewTerminal (Value(g) + 0)) 

Figure 4.10  Pseudo-Code for Reed-Muller TransformLow Terminals 

 

return (NewTerminal (Value(g) + Value(h))) 

Figure 4.11  Pseudo-Code for Reed-Muller TransformHigh Terminals 

 

Walsh Transformation Example 

 For illustration of the algorithm, a small multi-output circuit with two outputs 

represented an AND gate and an OR gate is shown as a BDD in Figure 4.12. The two 

functions are represented using S-encoding. In Figure 4.13 the multi-output circuit begins 

its transformation.  

In Figure 4.14 Traverse has traversed the else branch of 1ddx , encountered the 

constant node +1 and returned to traverse the then branch of 1ddx . In this branch it 

encounters the then-child, 2ddx . As 2ddx  has two children that are terminals, the recursive 
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traversal will stop and the transformation of the node proceeds. First TransformLow is 

called and returns a value of 0. Next TransformHigh is called and returns a value of 1. At 

this point 2ddx  is now transformed into 2sdx . 

In Figure 4.15 Traverse has now returned to 1ddx . The recursive traversal is now 

complete for this node and its transformation proceeds. First TransformLow is called, 

however within this call one terminal node and one non-terminal node are present. Due to 

the manner in which the BDD package is implemented, terminal nodes have a greater 

level than non-terminal nodes, therefore the > code within the algorithm is chosen. The 

"skipped" node 2ddx  must now be considered. If this node had been present, both of its 

children would have been terminal nodes with a value of +1. Therefore the transformed 

"skipped" node would have an else-child with a value of +2 (1+1) and a then-child with a 

value of 0 (1-1). The values of these children are then used to calculate the coefficients 

for 1ddx  to complete the transformation. For the transformed "skipped" node the children 

returned from TransformLow again have the same value of +2 (2+0) and (0+2). For the 

then-child node, 2sdx , TransformHigh returns an else-child with a value of +2 (2-0) and a 

then-child with a value of -2 (0-+2). 1ddx  has now been transformed into 1sdx  and the 

transformation of the AND gate is complete. 

Figure 4.15 shows the completed transformation of 2sdx  for the OR output. 

Traversal has recursively descended to 2ddx  and found both of its terminal children. 

TransformLow has returned a value of 0 (+1 + -1) for the else-child and TransformHigh 

has returned a value of +2 (+1- -1) for the then-child respectively. 
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In Figure 4.16 the transformation of the OR output is complete. Traversal has 

traversed the then branch of 1ddx , and discovered the terminal node. This time the < 

portion of the algorithm for TransformLow has been called. When the "skipped" then-

child node is considered, TransformLow returns an else-child value of -2 (-1 + -1) and a 

then-child value of 0 (-1 - -1). Using these values, for the else-child node, 2sdx  

TransformLow returns an else-child value of -2 (0+-2) and a then-child value of +2 

(+2+0). Transformation of the then-child completes the transformation and the children 

of the "skipped" node both are computed to be +2 ((0 - -2) and (+2 - 0)).  
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Figure 4.12  BDD Before Transformation 
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Figure 4.13  For 1f 2ddx Is Transformed to 2sdx  
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Figure 4.14  For 1f 1ddx  Is Transformed to 1sdx  
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Figure 4.15  For 2f 2ddx  Is Transformed to 2sdx  
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Figure 4.16  For 2f 1ddx  Is Transformed to 1sdx  
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Experimental Results 

 In this section experimental results are presented that have been carried out on a 

SUN Ultra 10. This code was implemented in conjunction with the Colorado University 

Decision Diagram (CUDD) package [38]. All runtimes are given in CPU seconds with a 

runtime limit set at 1 hour of CPU time.  

 Each transform was performed on over one hundred benchmark circuits. The 

circuits represented here were selected based upon the size of the Walsh SDD, restricting 

the set to diagrams that had over 5000 nodes as large enough to be of interest. 

 
Walsh 

 
 Table 4.1 contains the number of nodes and the number of coefficients for each 

benchmark circuit undergoing the Walsh transformation. In Table 4.2 the runtimes are 

shown for the original multi-output algorithm and for the improved algorithm utilizing 

"skipped" node caching as well as the percentage of improvement achieved. Because 

CPU time was limited to one hour, the transformation of some circuits failed to complete. 

Approximately 10% of the total benchmark circuits attempted could not be completed 

within this time limitation.  

 
Arithmetic 

 
 Table 4.3 contains the number of nodes and the number of coefficients for each 

benchmark circuit undergoing the arithmetic transform. In Table 4.4 runtimes are shown 

for the original multi-output algorithm and for the improved algorithm utilizing "skipped" 

node caching as well as the percentage of improvement achieved.  
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Table 4.1 

Walsh Spectral Decision Diagrams 

Number of Number of Walsh 
Circuit 

Inputs Outputs (SDD) Nodes Coefficients 

alu4 14 8 6554 171 

apex5 117 88 7341 226 

bc0 26 11 21026 2529 

chkn 29 7 9772 863 

cps 24 109 13388 790 

duke2 22 29 6601 506 

ex1010 10 10 6844 116 

ex4 128 28 15112 384 

frg2 143 139 6007 398 

in2 19 10 6087 256 

misex3 14 14 24527 386 

tial 14 8 7685 171 

vda 17 39 11302 935 

x1 51 35 10809 1406 
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Table 4.2 

Walsh Runtime Comparison 

Walsh 
Circuit Original 

(sec) 
Improved 

(sec) % Change 

alu4 0.94 0.83 11.7% 

apex5 - 1900.35 - 

bc0 32.52 15.61 52.0% 

chkn 687.25 404.19 41.2% 

cps 487.90 264.72 45.7% 

duke2 15.18 9.42 37.9% 

ex1010 0.20 0.19 5.0% 

ex4 3.46 2.72 21.4% 

frg2 1270.07 552.20 56.5% 

in2 18.47 10.88 41.1% 

misex3 2.85 2.27 20.4% 

tial 1.07 0.92 14.0% 

vda 9.21 4.57 15.4% 

x1 465.79 274.27 41.1% 
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Table 4.3 

Arithmetic Spectral Decision Diagrams 

Number of Number of Arithmetic 
Circuit 

Inputs Outputs (BMD) Nodes Coefficients 

alu4 14 8 4652 39 

apex5 117 88 5757 11 

bc0 26 11 5019 11 

chkn 29 7 2482 14 

cps 24 109 3642 15 

duke2 22 29 3057 11 

ex1010 10 10 4604 50 

ex4 128 28 3217 10 

frg2 143 139 5209 13 

in2 19 10 2822 22 

misex3 14 14 3176 29 

tial 14 8 3739 39 

vda 17 39 4333 15 

x1 51 35 2332 5 
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Table 4.4 

Arithmetic Runtime Comparison 

Arithmetic 
Circuit Original 

(sec) 
Improved 

(sec) % Change 

alu4 0.80 0.68 15.0% 

apex5 - 1690.51 - 

bc0 28.98 13.54 53.3% 

chkn 620.68 366.41 41.0% 

cps 441.88 236.28 46.5% 

duke2 13.35 8.78 34.2% 

ex1010 0.17 0.17 0.0% 

ex4 2.93 2.30 21.5% 

frg2 1154.11 498.62 56.8% 

in2 16.76 10.40 37.9% 

misex3 2.60 1.94 25.4% 

tial 0.96 0.82 14.6% 

vda 8.34 4.30 48.4% 

x1 434.46 256.90 40.9% 
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Table 4.5 

Reed-Muller Spectral Decision Diagrams 

Number of Number of Reed-Muller Circuit 
Inputs Outputs (FDD) Nodes 

alu4 14 8 1266 

apex5 117 88 2777 

bc0 26 11 3000 

chkn 29 7 761 

cps 24 109 1708 

duke2 22 29 1236 

ex1010 10 10 1520 

ex4 128 28 1137 

frg2 143 139 2272 

in2 19 10 958 

misex3 14 14 1140 

tial 14 8 953 

vda 17 39 2117 

x1 51 35 1040 
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Table 4.6 

Reed-Muller Runtime Comparison 

Reed-Muller 
Circuit Original 

(sec) 
Improved 

(sec) % Change 

alu4 0.71 0.59 16.9% 

apex5 - 1561.31 - 

bc0 27.26 12.42 54.4% 

chkn 578.86 349.07 39.7% 

cps 409.60 220.42 46.2% 

duke2 12.57 8.04 36.0% 

ex1010 0.15 0.14 6.7% 

ex4 2.69 2.16 19.7% 

frg2 1111.28 445.46 59.9% 

in2 15.31 9.47 38.1% 

misex3 2.36 1.73 26.7% 

tial 0.86 0.73 15.1% 

vda 7.92 3.90 50.8% 

x1 408.72 246.08 39.8% 
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Reed-Muller 

 Table 4.5 contains the number of nodes for each benchmark circuit undergoing 

the Reed-Muller transformation. In Table 4.6 runtimes are shown for the original multi- 

output algorithm and for the improved algorithm utilizing "skipped" node caching as well 

as the percentage of improvement achieved.  

 
Concluding Comments 

 
 An algorithm for computing the spectral coefficients for the Walsh, the 

arithmetic, and the Reed-Muller transforms of a multi-output circuit represented as a 

BDD has been presented. The results from the implementation of transformation 

algorithms with regard to the number of nodes and the number of coefficients in the 

resulting SDD has also been presented. An improvement to the algorithm that decreases 

the runtime by caching the results obtained when considering "skipped" nodes has been 

implemented and the comparison between the runtimes of these two methods has been 

shown.  

 The approach described here makes it practical to computer the spectra of large 

multi-output problems and extends the possibility of applying spectral techniques. The 

approach could be readily extended to the Haar spectral domain and also to 

transformation among the various spectral domains as described by M. A. Thornton, R. 

Drechsler, and D. M. Miller in [43].  



 

 

 

52

CHAPTER V 
 

CONCLUSIONS 
 
 

This work has examined the representation of discrete functions in both the 

Boolean and the spectral domains. It has described some of the limitations of BDD 

representations as motivation for developing alternative representations in both the 

Boolean domain and the spectral domain. In this chapter the results of this work are 

summarized and opportunities for future research are discussed. 

 
Summary 

 
 This section provides a summary of each of the primary sections of this work: 

binary decision diagrams, spectral computations, and spectral decision diagrams.  

 
Binary Decision Diagrams 

 
 Chapter II began with a review of BDD properties and the construction of BDDs.  

Two possible reasons why a BDD might reach exponential size were discussed as 

motivation for representing a BDD as multiple pBDDs. A technique for partitioning a 

BDD into multiple pBDDs each representing a subset of the information in the complete 

BDD was described. This method redirects a portion of the functionality of the circuit to 

a third terminal node, U. Finally experimental results were shown for several circuits 

represented as multiple pBDDs.  
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Spectral Computations 

  Chapter III began by considering the traditional linear algebra-based method for 

computing the spectrum of a function. It then reviewed a more recent graph-based 

method based upon the concepts of algebraic groups and Cayley graphs. Several 

extensions to the graph-based method were then presented, including a method to directly 

calculate S-encoded coefficients and the consideration of other possible binary operators. 

A new Cayley group whose graph represents the spectrum for the inverse of a function 

was identified which uses equivalence as its binary operator. Finally a "fast" 

transformation matrix for calculating the adjacency matrix via transposition of the output 

vector for a function was presented.  

 
Spectral Decision Diagrams 

 
 Chapter IV began by reviewing the three transforms to be implemented in this 

section: the Walsh transform, the arithmetic transform, and the Reed-Muller transform. 

Next the methodology used in the implementation of graph-based algorithms to compute 

the transformation for multi-output circuits was described. Experimental results for each 

of the transforms were presented.  In addition an improved method of caching "skipped" 

nodes encountered during transformation was implemented for each transform and those 

results were compared with the results from the previous implementations.   

 
Future Research 

 
 This section describes possible future research in each of the primary sections of 

this work: binary decision diagrams, spectral computations, and spectral decision 

diagrams. As the work presented within this thesis is a part of a larger project 
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investigating statistical equivalence checking, one primary direction of the future 

research will be to continue to integrate this work into the larger project.   

 
Binary Decision Diagrams 

 
 Future research effort could be directed towards improving the modifications to 

the ITE algorithm to decrease the overlap present among the pBDDs. The optimal 

solution would be to have a set of small disjoint pBDDs that together completely 

represent the functionality of the circuit. An additional area of research would be to 

prevent those occasions in which the altered ITE algorithm code actually generates a 

pBDD that is larger than the original complete BDD.   

 
Spectral Computations 

 
 There has already been more research effort expended in the area of graph-based 

spectrum computations. M. A. Thornton has extended this work into multiple-valued 

Chrestenson spectrum computation [42]. One area of future effort would be to implement 

the use of decision diagrams to represent the adjacency matrix of a Cayley graph.  

 
Spectral Decision Diagrams 

 
 There are many future research efforts possible in the area of spectral decision 

diagrams. It is likely that further improvements in the implementation of the algorithms 

presented here is possible due to the complexity of the CUDD program. Therefore a 

highly optimized version of this implementation is one future research area. Another area 

of interest is in the implementation of the multi-resolution Haar transform using the 

algorithm as described in [44] and then extending that algorithm and implementation to 
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multi-output circuits. This transform is used in the larger project of which this thesis is a 

part due to its multi-resolution nature. Successful implementation of the Walsh transform 

was a first step towards the implementation of the Haar, which uses the same 

transformation matrix applied in a more complex manner. Yet another broad area of 

interest is in the transformation directly from one transform to another without returning 

to the Boolean domain as described by M. A. Thornton, R. Drechsler, and D. M. Miller in 

[43]. In addition to the implementations for the calculation of the spectra, there is a 

wealth of possibilities in exploring their applications to synthesis, testing, and verification 

through the use of spectral decision diagrams.  
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