
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-3-2002

Discrete Function Representations Utilizing Decision Diagrams Discrete Function Representations Utilizing Decision Diagrams

and Spectral Techniques and Spectral Techniques

Whitney Jeanne Townsend

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Townsend, Whitney Jeanne, "Discrete Function Representations Utilizing Decision Diagrams and Spectral
Techniques" (2002). Theses and Dissertations. 1520.
https://scholarsjunction.msstate.edu/td/1520

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1520?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

DISCRETE FUNCTION REPRESENTATIONS

UTILIZING DECISION DIAGRAMS

 AND SPECTRAL TECHNIQUES

By

Whitney Jeanne Townsend

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Masters of Science

in Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2002

Copyright by

Whitney Jeanne Townsend

2002

DISCRETE FUNCTION REPRESENTATIONS

UTILIZING DECISION DIAGRAMS

AND SPECTRAL TECHNIQUES

By

Whitney Jeanne Townsend

Approved:

_____________________________ ______________________________
Mitchell A. Thornton Robert B. Reese
Associate Professor of Electrical Associate Professor of Electrical
and Computer Engineering and Computer Engineering
(Director of Thesis) (Committee Member)

_____________________________ ______________________________
R. Rainey Little James C. Harden
Associate Professor of Computer Graduate Coordinator of Computer
Science Engineering
(Committee Member)

A. Wayne Bennett
Dean of the College of Engineering

Name: Whitney Jeanne Townsend

Date of Degree: August 3, 2002

Institution: Mississippi State University

Major Field: Computer Engineering

Major Professor: Dr. Mitchell A. Thornton

Title of Study: DISCRETE FUNCTION REPRESENTATIONS UTILIZING
 DECISION DIAGRAMS AND SPECTRAL TECHNIQUES

Pages in Study: 60

Candidate for Degree of Master of Science

 All discrete function representations become exponential in size in the worst case.

Binary decision diagrams have become a common method of representing discrete

functions in computer-aided design applications. For many functions, binary decision

diagrams do provide compact representations. This work presents a way to represent

large decision diagrams as multiple smaller partial binary decision diagrams.

 In the Boolean domain, each truth table entry consisting of a Boolean value only

provides local information about a function at that point in the Boolean space. Partial

binary decision diagrams thus result in the loss of information for a portion of the

Boolean space. If the function were represented in the spectral domain however, each

integer-valued coefficient would contain some global information about the function.

This work also explores spectral representations of discrete functions, including the

implementation of a method for transforming circuits from netlist representations directly

into spectral decision diagrams.

 ii

DEDICATION

to Judith and Jeanne

 iii

ACKNOWLEDGEMENTS

Sincere thanks are extended to Dr. Bob Reese and Dr. Rainey Little for serving on my
committee. Appreciation is also extended to Dr. Alan Mishchenko for his help with the
CUDD package.

Thanks are also extended to Dr. Jim Harden for the interest he has taken in my studies
and to Donna McMurray for all of the assistance she has provided to me.

My heartfelt gratitude and utmost regard must be expressed to my advisor, Dr. Mitchell
Thornton, whose encouragement and support has made all that I have accomplished
possible.

Finally, acknowledgement is extended to the National Science Foundation for supporting
this research under grant # CCR-0000891.

iv

TABLE OF CONTENTS

Page

DEDICATION .. ii

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES .. vi

LIST OF FIGURES... vii

CHAPTER

 I. INTRODUCTION... 1

 Motivation for this Work... 1
 Contributions of this Work.. 2
 Binary Decision Diagrams .. 2
 Spectral Computations .. 2
 Spectral Decision Diagrams .. 3
 Outline... 3

 II. BINARY DECISION DIAGRAMS ... 6

 Properties of Binary Decision Diagrams... 7
 Construction of Binary Decision Diagrams .. 8
 Limitations to Binary Decision Diagram Representations.................................. 11
 Partial Binary Decision Diagrams... 11
 Experimental Results for Partial Binary Decision Diagrams.............................. 13
 Concluding Comments on Binary Decision Diagrams 17

 III. SPECTRAL COMPUTATIONS... 19

 Walsh Spectrum Computation .. 20
 R-Encoding and S-Encoding ... 20
 Algebraic Groups .. 21
 Cayley Graphs ... 23
 S-Encoding Extension ... 24
 Other Possible Operators... 27
 Equivalence ... 28
 Computation of the Adjacency Matrix.. 30
 Concluding Comments on Spectral Computations ... 31

v

CHAPTER Page

IV. SPECTRAL DECISION DIAGRAMS... 32

 Background ... 33
 Transforms .. 33
 Walsh... 34
 Arithmetic.. 35
 Reed-Muller .. 35
 Methodology ... 36
 Walsh... 38
 Arithmetic.. 38
 Reed-Muller .. 39
 Walsh Transformation Example.. 39
 Experimental Results... 44
 Walsh... 44
 Arithmetic.. 44
 Reed-Muller .. 51
 Concluding Comments on Spectral Decision Diagrams 51

 V. CONCLUSIONS... 52

 Summary ... 52
 Binary Decision Diagrams .. 52
 Spectral Computations .. 53
 Spectral Decision Diagrams .. 53
 Future Research... 53
 Binary Decision Diagrams .. 54
 Spectral Computations .. 54
 Spectral Decision Diagrams .. 54

REFERENCES.. 56

vi

LIST OF TABLES

TABLE Page

 2.1 ITE Forms... 10

 2.2 pBDD Experimental Results... 18

 4.1 Walsh Spectral Decision Diagrams .. 45

 4.2 Walsh Runtime Comparison... 46

 4.3 Arithmetic Spectral Decision Diagrams ... 47

 4.4 Arithmetic Runtime Comparison.. 48

 4.5 Reed-Muller Spectral Decision Diagrams .. 49

 4.6 Reed-Muller Runtime Comparison... 50

vii

LIST OF FIGURES

FIGURE Page

 2.1 BDD for the Example Function, f xy z= + .. 8

 2.2 Pseudo-Code for the ITE algorithm ... 9

 2.3 BLIF Netlist for the Example Function ... 13

 2.4 The Example Function Represented as a Complete BDD 14

 2.5 The Complete Karnaugh Map for the Example Function 14

 2.6 The First pBDD for the Example Function.. 15

 2.7 Karnaugh Map for the First pBDD .. 15

 2.8 The Second pBDD for the Example Function ... 16

 2.9 Karnaugh Map for the Second pBDD.. 16

 3.1 Computation of the Walsh Transform Matrix for 3n = 21

 3.2 Calculation of the Walsh Spectrum for the Example Function........................ 22

 3.3 R-Encoding and S-Encoding of the Example Function.................................... 22

 3.4 The Output Vector for the Example Function Expressed Graphically 22

 3.5 R-Encoded Adjacency Matrix for the Example Function 25

 3.6 R-Encoded Cayley Graph for the Example Function....................................... 25

 3.7 S-Encoded Adjacency Matrix for the Example Function................................. 26

 3.8 S-Encoded Cayley Graph for the Example Function 26

 3.9 All Possible Binary Boolean Operators ... 27

 3.10 R-Encoded Adjacency Matrix for the Inverse of the Example Function 29

 3.11 R-Encoded Cayley Graph for the Inverse of the Example Function................ 29

 3.12 Transformation Diagram .. 31

 4.1 Walsh Transform Matrix.. 35

 4.2 Arithmetic Transform Matrix... 35

 4.3 Reed-Muller Transform Matrix.. 35

viii

FIGURE Page

 4.4 Pseudo-Code for Traverse.. 36

 4.5 Pseudo-Code for TransformLow .. 37

 4.6 Pseudo-Code for Walsh TransformLow Terminals.. 38

 4.7 Pseduo-Code for Walsh TransformHigh Terminals... 38

 4.8 Pseudo-Code for Arithmetic TransformLow Terminals 38

 4.9 Pseudo-Code for Arithmetic TransformHigh Terminals 38

 4.10 Pseudo-Code for Reed-Muller TransformLow Terminals 39

 4.11 Pseudo-Code for Reed-Muller TransformHigh Terminals 39

 4.12 BDD Before Transformation.. 41

 4.13 For 1f 2ddx Is Transformed to 2sdx .. 42

 4.14 For 1f 1ddx Is Transformed to 1sdx ... 42

 4.15 For 2f 2ddx Is Transformed to 2sdx .. 43

 4.16 For 2f 1ddx Is Transformed to 1sdx .. 43

 1

CHAPTER I

INTRODUCTION

 All discrete function representations become exponential in size with respect to

the number of variables in the worst case. Binary decision diagrams have become a

common method for representing discrete functions in Computer-Aided Design (CAD)

applications. For many discrete functions, binary decision diagrams do provide compact

representations.

Motivation for this Work

 There remain functions for which a Binary Decision Diagram (BDD)

representation will still reach exponential size. This may occur due to either a bad

variable ordering choice made during BDD construction or it may be due to the intrinsic

nature of the function being represented. Thus there is interest in finding ways to

represent such large functions as multiple smaller partial binary decision diagrams.

 In the Boolean domain, each truth table entry consisting of a Boolean value only

provides local information about a function at that point in the Boolean space. If the

function were represented in the spectral domain however, each integer-valued

coefficient could possibly contain global information about the function. Thus there is

also interest in finding ways to represent a function as a Spectral Decision Diagram

(SDD).

2

 The work presented within this thesis is a portion of a larger project investigating

statistical equivalence checking for combinational circuits sponsored by the National

Science Foundation. This project involves extracting pairs of Haar spectral coefficients

from two circuit models and computing a decreasing error probability for each matching

pair. The relationship of the work in this thesis to the larger project is that within the

larger project the two circuit models to be compared are represented first as partial binary

decision diagrams that are then transformed into Haar spectral decision diagrams.

Contributions of this Work

 The contributions of each of the primary sections of this work are described

within this section. The work presented in each part is described in greater detail in the

corresponding chapter.

Binary Decision Diagrams

 This work has resulted in the development of a set of computer programs that take

as input a textual description of a circuit and create as outputs multiple partial binary

decision diagrams that together represent the complete function. These computer

programs have been implemented using the Colorado University Decision Diagram

(CUDD) package [38]. Experimental results are presented here and also in [49].

Spectral Computations

 This work has extended the graph-based method for the calculation of the Walsh

spectrum described by A. Bernasconi and B. Codenotti in [2]. These extensions include

S-encoding and the exploration of other possible field relations. A new algebraic group

3

whose corresponding Cayley graph represents the spectrum for the inverse of a function

using the equivalence operator is identified. Furthermore a transformation diagram was

discovered which provides a "fast" method for producing the adjacency matrix via

transposition. Publication of these extensions can also be found in [50]. Examination of

this matrix also contributed in small part to the more rigorous mathematical proofs

developed by M. A. Thornton for the calculation of the Chrestenson spectrum as

presented in [42].

Spectral Decision Diagrams

 This work has resulted in the development of a computer program that

implements the graph-based algorithm for computing the Walsh transform described by

M. A. Thornton and R. Drechsler in [45]. It has also resulted in the development of

computer programs to implement the graph-based algorithms for computing the

arithmetic transform and the Reed-Muller transform described by M. A. Thornton, R.

Drechsler, and D. M. Miller in [44]. These programs further enhance the algorithms as

previously described by extending them to transform multi-output functions.

Experimental results for these implementations are presented here and also in [48]. A

second set of computer programs has also been developed that improves upon the

previous versions by caching "skipped" nodes during decision diagram traversals and

those results are presented in comparison with the previous work.

Outline

 This work is presented in the following manner. In Chapter II properties of binary

decision diagrams are reviewed and one common method for BDD construction is

4

examined. Limitations to the use of these representations are discussed. The concept of

partial binary decision diagrams is illustrated and a method for pBDD creation is

described. Experimental results obtained from the creation of partial binary decision

diagrams are presented. This chapter concludes with a few comments on binary decision

diagrams.

 Chapter III examines one of the basic spectral transformations used in this work,

the Walsh transform. The chapter begins by reviewing the traditional linear algebra-based

method for computing this spectrum. This is followed by a discussion of the two ways to

encode a function, R-encoding and S-encoding. It then describes a newer graph-based

approach to calculating the Walsh spectrum that utilizes the concepts of Cayley groups

and Cayley color graphs. Next the chapter presents extensions to the graph-based

approach beginning with an S-encoding extension and the examination of other possible

operators. A new Cayley group based on equivalence is highlighted. The final extension

presented is a transformation matrix created solely by transpositions of the output vector

for a function. This chapter concludes with comments on spectral computations.

 Chapter IV presents spectral decision diagrams. The chapter begins with a

discussion of previous spectral applications in computer-aided design. This is followed

by a presentation of each of the three transforms presented in this work, the Walsh

transform, the arithmetic transform, and the Reed-Muller transform. The methodology

used in transforming a circuit into each of these types of spectral decision diagrams is

described next. Finally experimental results for the implementation of each of the

transforms are presented.

5

 Chapter V concludes this work by providing a summary of each of the preceding

chapters. It highlights the contributions of this work and describes the future research

opportunities arising from this work.

6

CHAPTER II

BINARY DECISION DIAGRAMS

Binary decision diagrams provide compact representation for discrete functions

[29, 12, 21, 11, 7]. For this reason, these diagrams have seen extensive use in VLSI CAD.

For some functions however, the binary decision diagram representation grows

exponentially large with respect to the number of inputs.

Partial binary decision diagrams have been studied in other works as a method of

determining an efficient variable ordering for binary decision diagram construction [25,

36, 19]. Presented in this chapter is a technique for partitioning a binary decision diagram

into multiple binary decision diagrams each representing a subset of the information

contained by the complete binary decision diagram for a function.

 This chapter begins with a review of binary decision diagrams and some of their

important properties. It then examines one method by which binary decision diagrams are

constructed and discusses some of the constraints on their usage. Next the concept of

partial binary decision diagrams is illustrated by an example function. This is followed by

the presentation of experimental results for several benchmark circuits represented as

partial binary decision diagrams. Closing thoughts on decision diagram representations

conclude the chapter.

7

Properties of Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a directed acyclic graph, (,)G V E= . Every

BDD has two different types of vertices, terminal vertices and non-terminal vertices. The

terminal vertices represent the Boolean values, 0 and 1, while the non-terminal vertices

represent variables of the function represented by the BDD. Each non-terminal vertex has

exactly two outgoing edges, one of which is labeled by the Boolean constant 1 (or then)

and the other by the Boolean constant 0 (or else). The graph begins at a single non-

terminal node, known as the root, which has no incoming edges. As shown by R. E.

Bryant in [7], two very important properties that a BDD has are to be ordered and to be

reduced. An ordered BDD is one in which each variable is encountered no more than

once in any path and always in the same order along each path. A reduced BDD observes

the following two properties. First, there are no redundant nodes in which both of the two

edges leaving the node point to the same next node present within the graph. Should such

a node exist, it is removed and the incoming edges redirected to the following node.

Second, isomorphic subgraphs are shared, that is, if two nodes point to identical

subgraphs, rather than repeat both subgraphs, the two nodes point to the same subgraph.

These two properties allow a BDD representation to be canonical for a given variable

ordering. A BDD that is both ordered and reduced is called a Reduced Ordered Binary

Decision Diagram (ROBDD). In this work all references to BDDs shall imply ROBDDs.

A BDD for the function, f xy z= + is shown in Figure 2.1.

8

x

y

z

0 1

10

10

10

Figure 2.1 BDD for the Example Function, f xy z= +

Construction of Binary Decision Diagrams

 BDDs are constructed by first creating individual BDDs for each variable of the

function and then using the APPLY operation to build the BDD from these individual

variable BDDs. The APPLY operation requires two BDDs and a Boolean operation to be

applied to these BDDs as inputs and produces a resulting BDD as output. One efficient

way to implement APPLY as described by K. S. Brace, R. L. Rudell, and R. E. Bryant in

[4] is to use the If-Then-Else (ITE) operator. The ITE operator is a recursive form of the

Shannon expansion theorem shown below in Equation 2.1 [37].

9

1 0 1 1f x f x f= ⊕ (2.1)

If f Z= , x f= , 0f h= , and 1f g= , then the Shannon decomposition shown in

Equation 2.1 can be expressed by the following ITE shown in Equation 2.2, in which, if

(1)f = , then ()g , else ()h .

(, ,)Z ite f g h= (2.2)

The terminal cases for this recursion are shown in Equation 2.3.

(1, ,) (0, ,) (,1,0)f ite f g ite g f ite f= = = (2.3)

The complement of a BDD is formed by the ITE expression shown in Equation 2.4.

(,0,1)ite f f= (2.4)

All of the possible binary Boolean operators can be implemented as ITE expressions as

illustrated in Table 2.1. Pseudo-code for the ITE algorithm is shown in Figure 2.2.

ite (, ,)f g h
 if (terminal)
 return (result);
 else
 let x be the top variable of (, ,)f g h ;
 T = ite (, ,)x x xf g h ;
 E = ite (, ,)x x xf g h ;
 if T = E, return (T);
 R = newnode (x, T, E);
 return (R);

Figure 2.2 Pseudo-Code for the ITE Algorithm

10

Table 2.1

ITE Forms

Output Expression ITE Expression

0000 0 0

0001 f g• ite f g(, ,)0

0010 f g• ite f g(, ,)0

0011 f f

0100 f g• ite f g(, ,)0

0101 g g

0110 f g⊕ ite f g g(, ,)

0111 f g+ ite f g(, ,)1

1000 f g+ ite f g(, ,)0

1001 f g⊕ ite f g g(, ,)

1010 g ite g(, ,)01

1011 f g+ ite f g(, ,)1

1100 f ite f(, ,)01

1101 f g+ ite f g(, ,)1

1110 f g• ite f g(, ,)1

1111 1 1

11

Limitations to Binary Decision Diagram Representations

While BDDs are compact representations for many functions, they can reach

exponential size with regard to the number of inputs for some functions. There are

several reasons why this occurs. One of the reasons is that a bad ordering was chosen for

the variables when the BDD was constructed. The size attained by a BDD is influenced

greatly by the variable ordering chosen, however finding the best variable ordering

during BDD construction is NP-hard. [3]. Therefore although heuristic techniques are

used, exponential sizes can still occur. Another reason for their occurrence is that there

exist circuits, such as the multiplier circuits identified by R. E. Bryant in [6], for which

BDDs will always reach exponential sizes. A method for partitioning such BDDs has

been examined by A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli in [33].

Partial Binary Decision Diagrams

 A method for constructing a partial Binary Decision Diagram (pBDD) is

developed in this work. This method for pBDD construction employs the notion of a third

terminal node within the BDD containing the unrepresented portion of the circuit that is

known as the Unknown (U) terminal. It is invoked during the construction of a BDD from

a textual description or netlist, therefore the entire BDD is never constructed. The type of

netlist used as input for this method is the Berkeley Logic Interchange Format (BLIF).

An example BLIF for a small circuit with four inputs and 1 output is shown in Figure 2.3.

The example circuit for the previous BLIF file, f wxz wxy wxz= + + , is shown

completely represented as a BDD in Figure 2.4 and also in a Karnaugh map

12

representation in Figure 2.5. Note that the multiple constant terminals shown are added

solely to simplify the illustration. In the actual BDD only two constant nodes are present.

In Figure 2.6, the else edge from variable w is redirected to the U terminal to

construct a pBDD. Figure 2.7 shows the corresponding Karnaugh map for this pBDD

with U's replacing the Boolean constants 1 and 0 for those columns of the map in which

0w = . In Figure 2.8, the then edge from variable w is redirected to the U terminal to

construct a second pBDD. Figure 2.9 shows the Karnaugh map for this pBDD with U's

now replacing the Boolean constants 1 and 0 for those columns of the map in which

1w = .

Generation of pBDDs is achieved by modifying the code implementing the ITE

function used during decision diagram construction. The modifications to the ITE

algorithm have been implemented using the Colorado University Decision Diagram

(CUDD) package [38]. The CUDD ITE functions are highly optimized and thus much

more complex than the pseudo-code presented earlier that represents only the

functionality of the algorithm. Within CUDD there is a recursive ITE function. It is

modification within this function to the else and then children of a node during

construction that allows a portion of the BDD to be redirected to the U terminal. This is

done by replacing either f , g , or h within the recursive call to ITE with the pointer for

U. Thus the branch becomes redirected to U as shown for the example function in Figure

2.6 and Figure 2.8. Other modifications to the CUDD code include that all functions

called by the pBDD code during construction must be modified to no longer expect only

two terminal nodes, but also to now check for the possibility of a third terminal.

13

A set of six programs was developed, each of which modifies the CUDD ITE

function in a different place thus resulting in the production of a distinct pBDD for each

program executed. Additionally the total number of nodes created during construction

was also restricted to decrease the possibility that a pBDD could become even larger than

the BDD for the complete function. Experimental results from these modifications are

presented in the following section.

 .model example
 .inputs wxyz
 .outputs f
 .names wxzy f
 01-1 1
 111- 1
 10-0 1
 .end

Figure 2.3 BLIF Netlist for the Example Function

Experimental Results for Partial Binary Decision Diagrams

The experimental results presented here have been computed on a SUN Ultra 10. In all

over one hundred benchmark circuits were tested using the set of programs containing the

modified code. Table II provides a summary of the results obtained for several

benchmark circuits using the modified ITE code. These circuits were chosen for inclusion

in Table II based upon the number of nodes in the complete BDD, selecting those circuits

with over 500 nodes. The column labeled BDD shows the number of nodes resulting if

the circuit was built completely, while each subsequent column shows the results from a

different modification to the ITE algorithm during diagram construction.

14

w

x x

y

z z

0 1 0 1

10

0 1 0 1

0 1

0 1 0 1

Figure 2.4 The Example Function Represented as a Complete BDD

0 0 0 1

0 1 0 0

0 1 0 1

0 0 1 1

00 01 11 10
00

01

11

10

wx
yz

Figure 2.5 The Complete Karnaugh Map for the Example Function

15

w

 z

U

1

x

y

0 1

1 0

0 1

0 1

0 1

1

z

Figure 2.6 The First pBDD for the Example Function

U U 0 1

U U 0 0

U 1 0 U

U U 1 1

00 01 11 10
00

01

11

10

wx
yz

Figure 2.7 Karnaugh Map for the First pBDD

16

w

x

z

0 1

U

1 0

10

0 1

Figure 2.8 The Second pBDD for the Example Function

0 0 U U

0 1 U U

0 U U 1

0 0 U U

00 01 11 10
00

01

11

10

wx
yz

Figure 2.9 Karnaugh Map for the Second pBDD

17

Concluding Comments on Binary Decision Diagrams

 This chapter began by reviewing two important BDD properties. It then described

a common BDD implementation technique. Two possible reasons why a BDD might

reach exponential size were discussed as motivation for the present work. The first, that a

poor variable ordering was chosen during decision diagram construction, and the second,

that for some circuits exponential sizes will intrinsically occur. A method was described

representing such BDDs by multiple pBDDs each of which represents a subset of the

functionality of the circuit. This is accomplished by redirecting a portion of the

functionality of the circuit to a third terminal node, U. An example function illustrated the

technique by comparing pBDDs and Karnaugh map representations. Finally a table of

experimental results showed several circuits represented as multiple pBDDs.

18

Table 2.2

pBDD Experimental Results

Circuit BDD pBDD1 pBDD2 pBDD3 pBDD4 pBDD5 pBDD6

alu4 933 83 294 81 73 271 87

apex1 1305 523 317 234 471 372 360

apex2 570 174 125 54 80 94 100

apex3 962 481 72 130 431 62 172

apex4 972 110 252 65 151 260 89

apex5 1095 115 369 224 234 442 200

apex6 744 405 89 320 410 61 301

bc0 587 44 113 58 30 101 47

cps 1096 471 519 396 349 454 438

dalu 1176 313 206 81 275 174 109

ex1010 1432 110 115 31 66 120 37

ex4 515 158 229 205 146 272 215

frg2 1396 405 211 226 462 212 260

intb 730 90 150 70 48 112 106

misex3 666 167 150 87 215 140 73

seq 1319 523 96 137 229 86 111

table3 786 72 430 168 117 404 112

table5 714 82 480 184 103 468 197

tial 929 77 205 105 101 205 101

vda 544 409 330 375 370 305 384

x1 626 288 437 352 197 452 348

x4 543 399 525 429 283 567 356

 19

CHAPTER III

SPECTRAL COMPUTATIONS

Spectral techniques have found many uses in logic design. These include

synthesis as described by M. A. Thornton and V. S. S. Nair in [47], testing as described

by D. M. Miller and J. C. Muzio in [32], function classification as described by C. R.

Edwards in [15], and verification as described by K. Radecka and Z. Zilic in [35].

Spectral methods have seen little practical application until recently however due to the

computational cost for calculating the spectrum. Graph-based methods utilizing Decision

Diagram (DD) [29, 12, 7] structures have been developed which decrease the cost for

calculating the spectrum [44, 45, 31].

A. Bernasconi and B. Codenotti presented an alternative graph-based method

using Cayley graphs to compute the spectrum for a function in [1,2]. This technique is of

theoretical interest because it demonstrates the equivalence of the spectra of Cayley

graphs and the Walsh spectra for Boolean functions.

 This chapter presents several extensions to the graph-based method in [2]. In

particular, alternative encodings and analysis of other possible field relations are

explored. A group yielding a Cayley graph representing the spectrum for the inverse of a

function is presented and a "fast" method for producing the adjacency matrix for the

Cayley graphs of both groups is described.

20

This chapter begins with a review of the calculation of the Walsh spectrum by

traditional linear algebra-based methods. This review is followed by presentation of the

graph-based method from [2]. The remainder of the chapter details each of the extensions

to the graph-based method.

Walsh Spectrum Computation

 A function can be transformed from the Boolean domain into a number of

alternative spectral domains. The traditional technique for the computation of the Walsh

spectrum for a Boolean function is presented in [24]. The Walsh transform matrix if

formed by the Kronecker product of n 1 1× matrices [20]. For the example function

illustrated within this chapter, 3n = and the appropriate Walsh transform matrix is

formed as shown in Figure 3.1. The use of this technique to compute the Walsh spectral

coefficients for the example function, 1 3 2 3 1 2 3f x x x x x x x= + + , is shown in Figure 3.2.

R-encoding and S-encoding

 R-encoding is the term describing the common representation in which logic 1 is

encoded by an integer 1 and logic 0 is encoded by an integer 0. An alternative

representation known as S-encoding can also be defined in which logic 1 is encoded by

an integer -1 and logic 0 is encoded by an integer +1 [24]. The example function is shown

in Figure 3.3 on the left in R-encoding and on the right in S-encoding. Using S-encoding,

the output vector for the example function can be expressed graphically as in Figure 3.4

The S-encoded spectrum for a function can be obtained directly by encoding both the

transformation matrix and the output vector for the function utilizing S-encoding.

21

Alternatively the R-encoded coefficients can be converted to S-encoded coefficients by

using Equation 3.1 for the zeroth coefficient and Equation 3.2 for all of the remaining

1n − coefficients.

0 02 2ns r= − (3.1)

2 {1, 2,..., }i is r i n= − ∀ ⊂ (3.2)

Algebraic Groups

 An alternative approach for the computation of the Walsh spectrum for a Boolean

function based on algebraic groups and graph theory is described in [1, 2]. This technique

3 1 1 1 1 1 1
1 1 1 1 1 1

W
+ + + + + +

= ⊗ ⊗ + − + − + −

3

1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1

W

+ + + +
 + + + − + − = ⊗ + − + + − −
 + − − +

3

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

W

+ + + + + + + +
 + − + − + − + −
 + + − − + + − −
 + − − + + − − + = + + + + − − − −

+ − + − − + − +
 + + − − − − + +

+ − − + − + + −

Figure 3.1 Computation of the Walsh Transform Matrix for 3n =

22

1 1 1 1 1 1 1 1 1 4
1 1 1 1 1 1 1 1 0 2
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 2
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 2

+ + + + + + + +
 + − + − + − + −
 + + − − + + − −
 + − − + + − − + − = + + + + − − − −

+ − + − − + − +
 + + − − − − + +

+ − − + − + + −

Figure 3.2 Calculation of the Walsh Spectrum for the Example Function

1 2 3

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

x x x f

1 2 3

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

x x x f
−
+
−
+
+
−
−
+

Figure 3.3 R-Encoding and S-Encoding of the Example Function

Figure 3.4 The Output Vector for the Example Function Expressed Graphically

23

for the computation of the Walsh spectrum for a function, f , relies upon representing the

Boolean function based upon a specific definition of a group.

 Recall that a group, (),M ∗ , consists of a set, M , and a binary operator on, M ,

∗ , such that closure, associativity, and identity hold and that inverses exist. That is, for

all i jm m M∗ ∈ , the element is a uniquely defined element of M (closure). That

() ()i j k i j km m m m m m∗ ∗ = ∗ ∗ holds for all , ,i j km m m M∈ (associativity). That there

exists an identity element, e M∈ , such that, i ie m m∗ = and i im e m∗ = for all im M∈

(identity). Finally that there exists an inverse element 1
im M− ∈ such that 1

i im m e−∗ = and

1
i im m e− ∗ = for each im M∈ (inverses exist).

 The algebraic group, (,)M ⊕ , used in the technique described in [2] characterizes

the Boolean function, : nf B B→ . (,)M ⊕ , is an algebraic group in which M consists of

all possible minterms in nB , that is, all points in the space defined by nB and ⊕ is the

binary operator for the group. This group has an identity element corresponding to an n-

length bit string of all zeros and additionally for each element im M∈ , 1
i im m− = .

Cayley Graphs

The Cayley graph is a structure that is used to relate an algebraic group to graph

theory [9, 52]. The Cayley graph corresponding to a group representing the Boolean

functions, f , has a vertex set, V , in which each iv V∈ , uniquely corresponds to an

element of the set im M∈ . The edge set, E , is given in Equation 3.3.

{() | () 1}n n
i j i jE m m B B f m m= ∈ × ⊕ = (3.3)

24

 The adjacency matrix, A , for this Cayley graph is a matrix of size 2 2n n× with

1ija = if () 1i jf m m⊕ = and with 0ija = otherwise. A is a symmetric matrix because

i j j im m m m⊕ = ⊕ . The adjacency matrix for the example function is shown in Figure 3.5

and the corresponding Cayley graph described by A is shown in Figure 3.6.

 The spectrum of a graph is defined as the set of eigenvalues for the adjacency

matrix representing it in [9]. The theorems and proofs given in [2] demonstrate that the

spectrum of the Cayley graph representing the group as defined in [2], which in turn

represents some Boolean function, f , is identical to the Walsh spectrum utilizing R-

encoding for the Boolean function.

 All graphs have an adjacency matrix in which an edge is denoted by a logic 1 and

the absence of an edge is denoted by a logic 0. The characteristic equation for the

adjacency matrix yields the eigenvalues for the graph. The characteristic polynomial

()C λ for the adjacency matrix given in Figure 3.5 is shown in Equation 3.4.

8 7 6 5 4 3() 8 16 16 80 64C λ λ λ λ λ λ λ= − + + − + (3.4)

Solving () 0C λ = yields the eigenvalues, {1, 2,...,8} {4,2,0, 2,0, 2,0,2}i iλ ∀ = = − . These

eigenvalues are the Walsh spectral coefficients for f as verified in Figure 3.2.

S-Encoding Extension

 The first extension to the technique presented in [2] was to verify that in a manner

analogous to that used for the matrix-based calculation of the Walsh spectrum as

discussed in [24], S-encoding of each element, im M∈ , results in a graph whose

eigenvalues directly yields the S-encoded coefficients for the Boolean function, f . The

25

1 0 1 0 0 1 1 0
0 1 0 1 1 0 0 1
1 0 1 0 1 0 0 1
0 1 0 1 0 1 1 0
0 1 1 0 1 0 1 0
1 0 0 1 0 1 0 1
1 0 0 1 1 0 1 0
0 1 1 0 0 1 0 1

A

 =

Figure 3.5 R-Encoded Adjacency Matrix for the Example Function

Figure 3.6 R-Encoded Cayley Graph for the Example Function

26

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

B

− + − + + − − +
 + − + − − + + −
 − + − + − + + −
 + − + − + − − + = + − − + − + − +

− + + − + − + −
 − + + − − + − +

+ − − + + − + −

Figure 3.7 S-Encoded Adjacency Matrix for the Example Function

Figure 3.8 S-Encoded Cayley Graph for the Example Function

27

adjacency matrix, B , which results for the example function when utilizing S-encoding is

shown in Figure 3.5 and the corresponding Cayley graph described by B , is shown in

Figure 3.7. The characteristic polynomial for the adjacency matrix, B , is shown in

Equation 3.5.

 8 7 5 4() 8 128 256C λ λ λ λ λ= + − − (3.5)

Solving the characteristic polynomial for this graph yields the S-encoded Walsh

coefficients, {1, 2,...,8} {0, 4,0, 4,0, 4,0, 4}i iλ ∀ = = − − − . Note that the topology of the

graph in Figure 3.8 is unchanged from that of Figure 3.6, only the encoding of the

vertices is different.

Other Possible Operators

All the remaining fifteen Boolean functions of two variables were considered as

possible alternative operators to ⊕ in the formation of other algebraic groups. Only the

two non-unate functions XOR ()⊕ and equivalence (XNOR, ≡) were found to satisfy

the definition of a group using the mapping operation from [2]. The sixteen possible

Boolean operators are shown in Figure 3.9.

x y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 3.9 All Possible Binary Boolean Operators

28

Equivalence

 The algebraic group defined using equivalence as the Boolean operator, (,)M ≡ ,

proves to have properties similar to the correspondence between the two operators, ⊕

and ≡ . This group has an identity element corresponding to an n-length bit string of all

ones and for each element im M∈ , 1
i im m− = . The adjacency matrix, C , for the example

function using this definition for an algebraic group is shown in Figure 3.10 and the

corresponding Cayley graph is shown in Figure 3.11.

 As is shown in Figure 3.11, the topology of this Cayley graph, for the same

example function used previously, is quite different from the Cayley graph produced by

the algebraic group, (,)M ⊕ , as shown in Figure 3.6. Of particular interest is the

presence of self-loops in Figure 3.6 and their absence in Figure 3.11. This is determined

by the value of 0 0m m⊕ . For the example function, f , and the Cayley graph

corresponding to the algebraic group, (,)M ⊕ , the first computation is determined as

shown in Equation 3.7 and the result is a minterm.for the example function.

0 0() (000 000) 000m m⊕ = ⊕ = (3.7)

For the Cayley graph corresponding to the algebraic group, (,)M ≡ , the first computation

is determined as shown in Equation 3.8 and the result is not a minterm for the example

function.

 0 0() (000 000) 111m m≡ = ≡ = (3.8)

It is the value of this first calculation that determines the presence of absence of self-

loops in the corresponding Cayley graph for the function. If the result is a minterm of the

function, self-loops will appear at all vertices in the graph; if the result is not a minterm

29

0 1 1 0 0 1 0 1
1 0 0 1 1 0 1 0
1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0
0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 1
0 1 0 1 1 0 0 1
1 0 1 0 0 1 1 0

C

 =

Figure 3.10 R-Encoded Adjacency Matrix for the Inverse of the Example Function

Figure 3.11 R-Encoded Cayley Graph for the Inverse of the Example Function

30

of the function, self-loops will not appear in the corresponding Cayley graph. The

characteristic polynomial for adjacency matrix, C , is shown in Equation 3.9.

 2 6 5 4 3() 16 16 48 64C λ λ λ λ λ λ= − − + − (3.9)

Solving the characteristic polynomial for the new Cayley group, (,)M ≡ , produces the

Walsh spectrum for the inverse of the example function directly,

{1, 2,...,8} {4, 2,0,2,0, 2,0, 2}i iλ ∀ = = − − − .

 As in the previous section on S-encoding, if the example function, f , is S-

encoded using the algebraic group, (,)M ≡ , the S-encoded Walsh coefficients for the

inverse of the example function can also be obtained directly from the resulting Cayley

graph.

Computation of the Adjacency Matrix

 During the computations required to obtain the adjacency matrix for a function

using the definition of an algebraic group, a method was discovered which greatly

minimizes the computational cost of producing the adjacency matrix for a function under

consideration. In a method similar to the "fast transform butterfly diagrams" described by

M. A. Thornton and R. Drechsler in [47] it becomes possible to obtain all the other

1,..., nn n rows of the adjacency matrix from the 0n row by a series of transpositions as

shown in Figure 3.12.

Additionally, because the first row of the adjacency matrix for the Cayley graph

corresponding to the algebraic group, (,)M ⊕ , consists of the equation,

{1, 2,..., }i ie m m i n∗ = ∀ ⊂ , the first row of the adjacency matrix can be obtained directly

from a transposition of the output vector for the function. Conversely in the Cayley graph

31

Figure 3.12 Transformation Diagram

corresponding to the algebraic group, (,)M ≡ , the equation, {1, 2,..., }i ie m m i n∗ = ∀ ⊂ ,

occurs in the nn row of the adjacency matrix and thus the transformation can proceed in a

similar manner from right to left.

Concluding Comments on Spectral Computations

 In this chapter two ways of calculating the spectrum for a function have been

reviewed. The first was a linear algebra-based method and the second was a more recent

approach based on algebraic groups and graph theory. In this work a new algebraic group

whose corresponding Cayley graph represents the spectrum for the inverse of a function

is presented. Additionally it is shown that both the group, (,)M ⊕ , and the group,

(,)M ≡ , can be used to directly calculate S-encoded coefficients by the S-encoding of

each element, im M∈ . Finally a "fast" method for calculating the adjacency matrix by

transposition is presented.

 32

CHAPTER IV

SPECTRAL DECISION DIAGRAMS

 Spectral methods and decision diagrams have been applied to many areas of

digital systems design. These include synthesis [22, 47, 30, 8, 34, 24, 14, 26], function

classification [24, 15], partitioning techniques [51], testing [10, 32, 23, 41], and

verification [35, 46, 28]. Spectral techniques can offer a view of a problem that

illuminates different properties than are readily evident in the functional domain.

Traditionally, the high computational cost of computing spectral coefficients has many of

the practical application of many of these techniques using the linear algebra-based

methods of computation or the graph-based techniques described in the previous chapter.

The emergence of graph-based algorithms utilizing Decision Diagram (DD) [29, 12, 7]

representations now permit the spectrum to be calculated more efficiently. Decision

diagrams are the state-of-the-art representation for Boolean functions in Computer-Aided

Design (CAD) applications. It is thus very attractive to consider decision diagrams when

considering alternatives such as spectral techniques.

This chapter considers the transformation of binary decision diagrams into

spectral decision diagrams, a fundamental step in the application of spectral techniques to

any area. This chapter begins with a brief review of several different varieties of decision

diagrams. It then discusses the three transformations implemented in this work, the Walsh

transform, the arithmetic transform, and the Reed-Muller transform. Next a section on

33

methodology examines representative pseudo-code for each of the transformation

algorithms, followed by a presentation of experimental results.

Background

The use of decision diagrams as a compact representation of discrete functions

provides for a variety of ways that spectra may be computed or represented [44, 45, 16,

17, 18, 40, 31, 39]. In this method, a multi-output circuit represented as a Binary

Decision Diagram (BDD) is transformed into a Spectral Decision Diagram (SDD). The

resulting SDD is represented as a Multi-Terminal Binary Decision Diagram (MTBDD)

[8] in which each non-terminal node has two outgoing edges, one edge representing the

Boolean value 0 and the other edge representing the Boolean value 1. No edge

complementation is used within the MTBDD. It is possible to further reduce the size of

the SDD using edge negations as described in [31]. The terminal nodes of an MTBDD

can take on any integer value allowing for the representation of spectral coefficient

values.

Transforms

 One property that distinguishes the different varieties of DDs is the

decomposition type represented at each internal node. For BDDs, this decomposition type

is a Shannon expansion, therefore each child of the node represents a cofactor about the

variable represented by the node. Traversing a decision diagram and transforming each

Shannon node encountered with the 2 2× matrix for the desired transform accomplishes

the transformation from the Boolean domain to the spectral domain. When all nodes have

34

been transformed in this manner, the result is the SDD for the circuit with the spectral

coefficients present at the terminal nodes.

 A recursive Kronecker product definition [20] used within these algorithms is

shown in Equation 4.1. G in Equation 4.1 is replaced by the appropriate 1 1× matrix,

depending upon the transformation desired.

1

1

n
n

i
G G

=
= ⊗ (4.1)

 The transformation occurs in a depth-first fashion, and no node can be

transformed until all nodes below it have been transformed. Special consideration must

be given to those portions of the BDD in which a variable is present in both polarities and

thus is not present on the path, a so-called "skipped" node. The nodes below this

"skipped" node must be transformed as if the "skipped" node was present. It is often the

case that "skipped" nodes occur in BDDs since this results from the application of the

reduction rules. Were a BDD not constrained by these reduction rules, it would become

an exponential Shannon tree, which is a binary tree representation of a function

containing 2 1n − non-terminal nodes and 2n terminal nodes. The fewer the number of

skipped nodes in a BDD, the more closely the BDD approaches an exponentially sized

Shannon expansion tree.

Walsh

 The 1 1× Walsh transformation matrix is shown in Figure 4.1. The Walsh

transform is applied over the integer field.

35

1 1 1
1 1

W
+ +

= + −

Figure 4.1 Walsh Transform Matrix

Arithmetic

 The 1 1× arithmetic transformation matrix is shown in Figure 4.2. The arithmetic

transform is also applied over the integer field.

1 1 0
1 1

A
+

= − +

Figure 4.2 Arithmetic Transform Matrix

It is worth noting that SDDs describing the arithmetic transform of a function are

in fact Binary Moment Diagrams (BMD) [5]. The inverse transform can also be easily

implemented allowing for techniques to transform directly from BDDs to BMDs and vice

versa. It is easy to see that BMDs result from the application of the arithmetic transform

since examination of the 2 2× matrix in Figure 4.2 results in a pseudo-Boolean

decomposition of the original function.

Reed-Muller

 The Reed-Muller 1 1× transformation matrix is shown in Figure 4.3. The Reed-

Muller transform is applied over (2)GF .

1 1 0
1 1

M
=

Figure 4.3 Reed-Muller Transform Matrix

36

 A Reed-Muller SDD is in fact a Functional Decision Diagram (FDD) [13, 27]

without the presence of complemented edges. The inverse transform can also be easily

implemented which provides for a technique to transform directly from BDDs to FDDs

and vice versa. The Reed-Muller transformation matrix in Figure 4.3 is actually a matrix

representation of a positive-Davio decomposition [26].

Methodology

 The pseudo-code in this section illustrates the implementation of the graph-based

transformation algorithm for multi-output functions. This is the framework for the

technique used for all three algorithms by including the appropriate terminal

manipulations after the check for terminal nodes in the else and then branches of the

pseudo-code. For each output the pointer to the top node for that output is passed to a

traversal function that controls the transformation. The pseudo-code for this traversal is

shown in Figure 4.4.

Traverse (f)
 if (f is a terminal node) return
 Low = Traverse (Low(f))
 High = Traverse (High(f))
 LowTemp = TransformLow (Low, High)
 HighTemp= TransformHigh (Low, High)
 return (NewNonterminal (Index(f), HighTemp, LowTemp))

Figure 4.4 Pseudo-Code for Traverse

 The TransformLow and TransformHigh transformation functions are identical

except for the action taken once the terminal nodes are reached. For illustration the code

for TransformLow that transforms the else-child is shown in Figure 4.5. The

37

TransformLow function has four possible courses of action: 1) if both nodes are terminal

nodes it performs the required manipulation and returns the new terminal node; 2) if both

nodes are non-terminal nodes at the same level, a new node is formed with children found

by transforming the corresponding children of the two original nodes; 3) if the level of

the else-child is greater than the level of the then-child, a "skipped" node is present in the

else branch and must be considered; and 4) if the level of the then-child is greater than

the level of the else-child, a "skipped" node is present in the then branch and must be

considered. Detail of the handling of skipped nodes is also given in the pseudo-code of

Figure 4.5.

TransformLow (g, h)
 if (g and h are terminals)
 return (appropriate new terminal manipulation)
 else if (Level(g) = Level(h))
 return (NewNonterminal (Index(g), TransformLow (Low(g), Low(h)),
 TransformLow (High(g), High(h))))
 else if(Level(g) > Level(h))
 return (NewNonterminal (Index(h), TransformLow (Twice(g), Low(h)),
 High(h)))
 else (Level(g) < Level(h))
 return (NewNonterminal (Index(g), TransformLow (Low(g), Twice(h)),
 High(g)))

Figure 4.5 Pseudo-Code for TransformLow

 "Skipped" nodes within the diagram must be considered, and their children

transformed as if they were present. As this allowance must be made when transforming

both the else-child and the then-child, an improvement was made to the original

algorithm providing for caching of the result of a "skipped" node when it is first

encountered so that the result is available on the subsequent encounter. Caching the result

38

of this computation resulted in significant decreases in the computation time required for

transformation.

Walsh

 For the Walsh transform the appropriate manipulation in the TransformLow

function of the pseudo-code is given in Figure 4.6. The corresponding manipulation in

the TransformHigh function is given in Figure 4.7.

return (NewTerminal (Value(g) + Value(h)))

Figure 4.6 Pseudo-Code for Walsh TransformLow Terminals

return (NewTerminal (Value(g) - Value(h)))

Figure 4.7 Pseudo-Code for Walsh TransformHigh Terminals

Arithmetic

 The arithmetic TransformLow terminal manipulation is described in pseudo-code

in Figure 4.8. The corresponding manipulation for TransformHigh is given in Figure 4.9.

return (NewTerminal (Value(g) + 0))

Figure 4.8 Pseudo-Code for Arithmetic TransformLow Terminals

return (NewTerminal (Value(h) - Value(g)))

Figure 4.9 Pseudo-Code for Arithmetic TransformHigh Terminals

39

Reed-Muller

 The TransformLow manipulation for the Reed-Muller transform is described in

pseudo-code in Figure 4.10. The corresponding TransformHigh manipulation is given in

Figure 4.10. Although similar to the TransformLow terminal manipulation of the

arithmetic transform and the TransformHigh terminal manipulation of the Walsh

transform the Reed-Muller TransformLow and TransformHigh terminal manipulations

are applied over GF(2).

return (NewTerminal (Value(g) + 0))

Figure 4.10 Pseudo-Code for Reed-Muller TransformLow Terminals

return (NewTerminal (Value(g) + Value(h)))

Figure 4.11 Pseudo-Code for Reed-Muller TransformHigh Terminals

Walsh Transformation Example

 For illustration of the algorithm, a small multi-output circuit with two outputs

represented an AND gate and an OR gate is shown as a BDD in Figure 4.12. The two

functions are represented using S-encoding. In Figure 4.13 the multi-output circuit begins

its transformation.

In Figure 4.14 Traverse has traversed the else branch of 1ddx , encountered the

constant node +1 and returned to traverse the then branch of 1ddx . In this branch it

encounters the then-child, 2ddx . As 2ddx has two children that are terminals, the recursive

40

traversal will stop and the transformation of the node proceeds. First TransformLow is

called and returns a value of 0. Next TransformHigh is called and returns a value of 1. At

this point 2ddx is now transformed into 2sdx .

In Figure 4.15 Traverse has now returned to 1ddx . The recursive traversal is now

complete for this node and its transformation proceeds. First TransformLow is called,

however within this call one terminal node and one non-terminal node are present. Due to

the manner in which the BDD package is implemented, terminal nodes have a greater

level than non-terminal nodes, therefore the > code within the algorithm is chosen. The

"skipped" node 2ddx must now be considered. If this node had been present, both of its

children would have been terminal nodes with a value of +1. Therefore the transformed

"skipped" node would have an else-child with a value of +2 (1+1) and a then-child with a

value of 0 (1-1). The values of these children are then used to calculate the coefficients

for 1ddx to complete the transformation. For the transformed "skipped" node the children

returned from TransformLow again have the same value of +2 (2+0) and (0+2). For the

then-child node, 2sdx , TransformHigh returns an else-child with a value of +2 (2-0) and a

then-child with a value of -2 (0-+2). 1ddx has now been transformed into 1sdx and the

transformation of the AND gate is complete.

Figure 4.15 shows the completed transformation of 2sdx for the OR output.

Traversal has recursively descended to 2ddx and found both of its terminal children.

TransformLow has returned a value of 0 (+1 + -1) for the else-child and TransformHigh

has returned a value of +2 (+1- -1) for the then-child respectively.

41

In Figure 4.16 the transformation of the OR output is complete. Traversal has

traversed the then branch of 1ddx , and discovered the terminal node. This time the <

portion of the algorithm for TransformLow has been called. When the "skipped" then-

child node is considered, TransformLow returns an else-child value of -2 (-1 + -1) and a

then-child value of 0 (-1 - -1). Using these values, for the else-child node, 2sdx

TransformLow returns an else-child value of -2 (0+-2) and a then-child value of +2

(+2+0). Transformation of the then-child completes the transformation and the children

of the "skipped" node both are computed to be +2 ((0 - -2) and (+2 - 0)).

x1dd

x1dd

x2dd

+1 -1

0 1 0 1

0 1

f1 f2

Figure 4.12 BDD Before Transformation

42

x1dd

x2sd

0 +2

0 1

0 1

f1

+1

x1dd

x2dd

-1

0 1

0 1

f2

+1

Figure 4.13 For 1f 2ddx Is Transformed to 2sdx

x1sd

x2sd

-2

0 1

0 1

f1

+2

x1dd

x2dd

-1

0 1

0 1

f2

+1

Figure 4.14 For 1f 1ddx Is Transformed to 1sdx

43

x1sd

x2sd

-2

0 1

0 1

f1

+2

x1dd

x2sd

+2 -1

0 1

0 1

f2

0

Figure 4.15 For 2f 2ddx Is Transformed to 2sdx

x1sd

x2sd

-2

0 1

0 1

f1

+2

x1sd

x2sd

+2 -1

0 1

0 1

f2

Figure 4.16 For 2f 1ddx Is Transformed to 1sdx

44

Experimental Results

 In this section experimental results are presented that have been carried out on a

SUN Ultra 10. This code was implemented in conjunction with the Colorado University

Decision Diagram (CUDD) package [38]. All runtimes are given in CPU seconds with a

runtime limit set at 1 hour of CPU time.

 Each transform was performed on over one hundred benchmark circuits. The

circuits represented here were selected based upon the size of the Walsh SDD, restricting

the set to diagrams that had over 5000 nodes as large enough to be of interest.

Walsh

 Table 4.1 contains the number of nodes and the number of coefficients for each

benchmark circuit undergoing the Walsh transformation. In Table 4.2 the runtimes are

shown for the original multi-output algorithm and for the improved algorithm utilizing

"skipped" node caching as well as the percentage of improvement achieved. Because

CPU time was limited to one hour, the transformation of some circuits failed to complete.

Approximately 10% of the total benchmark circuits attempted could not be completed

within this time limitation.

Arithmetic

 Table 4.3 contains the number of nodes and the number of coefficients for each

benchmark circuit undergoing the arithmetic transform. In Table 4.4 runtimes are shown

for the original multi-output algorithm and for the improved algorithm utilizing "skipped"

node caching as well as the percentage of improvement achieved.

45

Table 4.1

Walsh Spectral Decision Diagrams

Number of Number of Walsh
Circuit

Inputs Outputs (SDD) Nodes Coefficients

alu4 14 8 6554 171

apex5 117 88 7341 226

bc0 26 11 21026 2529

chkn 29 7 9772 863

cps 24 109 13388 790

duke2 22 29 6601 506

ex1010 10 10 6844 116

ex4 128 28 15112 384

frg2 143 139 6007 398

in2 19 10 6087 256

misex3 14 14 24527 386

tial 14 8 7685 171

vda 17 39 11302 935

x1 51 35 10809 1406

46

Table 4.2

Walsh Runtime Comparison

Walsh
Circuit Original

(sec)
Improved

(sec) % Change

alu4 0.94 0.83 11.7%

apex5 - 1900.35 -

bc0 32.52 15.61 52.0%

chkn 687.25 404.19 41.2%

cps 487.90 264.72 45.7%

duke2 15.18 9.42 37.9%

ex1010 0.20 0.19 5.0%

ex4 3.46 2.72 21.4%

frg2 1270.07 552.20 56.5%

in2 18.47 10.88 41.1%

misex3 2.85 2.27 20.4%

tial 1.07 0.92 14.0%

vda 9.21 4.57 15.4%

x1 465.79 274.27 41.1%

47

Table 4.3

Arithmetic Spectral Decision Diagrams

Number of Number of Arithmetic
Circuit

Inputs Outputs (BMD) Nodes Coefficients

alu4 14 8 4652 39

apex5 117 88 5757 11

bc0 26 11 5019 11

chkn 29 7 2482 14

cps 24 109 3642 15

duke2 22 29 3057 11

ex1010 10 10 4604 50

ex4 128 28 3217 10

frg2 143 139 5209 13

in2 19 10 2822 22

misex3 14 14 3176 29

tial 14 8 3739 39

vda 17 39 4333 15

x1 51 35 2332 5

48

Table 4.4

Arithmetic Runtime Comparison

Arithmetic
Circuit Original

(sec)
Improved

(sec) % Change

alu4 0.80 0.68 15.0%

apex5 - 1690.51 -

bc0 28.98 13.54 53.3%

chkn 620.68 366.41 41.0%

cps 441.88 236.28 46.5%

duke2 13.35 8.78 34.2%

ex1010 0.17 0.17 0.0%

ex4 2.93 2.30 21.5%

frg2 1154.11 498.62 56.8%

in2 16.76 10.40 37.9%

misex3 2.60 1.94 25.4%

tial 0.96 0.82 14.6%

vda 8.34 4.30 48.4%

x1 434.46 256.90 40.9%

49

Table 4.5

Reed-Muller Spectral Decision Diagrams

Number of Number of Reed-Muller Circuit
Inputs Outputs (FDD) Nodes

alu4 14 8 1266

apex5 117 88 2777

bc0 26 11 3000

chkn 29 7 761

cps 24 109 1708

duke2 22 29 1236

ex1010 10 10 1520

ex4 128 28 1137

frg2 143 139 2272

in2 19 10 958

misex3 14 14 1140

tial 14 8 953

vda 17 39 2117

x1 51 35 1040

50

Table 4.6

Reed-Muller Runtime Comparison

Reed-Muller
Circuit Original

(sec)
Improved

(sec) % Change

alu4 0.71 0.59 16.9%

apex5 - 1561.31 -

bc0 27.26 12.42 54.4%

chkn 578.86 349.07 39.7%

cps 409.60 220.42 46.2%

duke2 12.57 8.04 36.0%

ex1010 0.15 0.14 6.7%

ex4 2.69 2.16 19.7%

frg2 1111.28 445.46 59.9%

in2 15.31 9.47 38.1%

misex3 2.36 1.73 26.7%

tial 0.86 0.73 15.1%

vda 7.92 3.90 50.8%

x1 408.72 246.08 39.8%

51

Reed-Muller

 Table 4.5 contains the number of nodes for each benchmark circuit undergoing

the Reed-Muller transformation. In Table 4.6 runtimes are shown for the original multi-

output algorithm and for the improved algorithm utilizing "skipped" node caching as well

as the percentage of improvement achieved.

Concluding Comments

 An algorithm for computing the spectral coefficients for the Walsh, the

arithmetic, and the Reed-Muller transforms of a multi-output circuit represented as a

BDD has been presented. The results from the implementation of transformation

algorithms with regard to the number of nodes and the number of coefficients in the

resulting SDD has also been presented. An improvement to the algorithm that decreases

the runtime by caching the results obtained when considering "skipped" nodes has been

implemented and the comparison between the runtimes of these two methods has been

shown.

 The approach described here makes it practical to computer the spectra of large

multi-output problems and extends the possibility of applying spectral techniques. The

approach could be readily extended to the Haar spectral domain and also to

transformation among the various spectral domains as described by M. A. Thornton, R.

Drechsler, and D. M. Miller in [43].

52

CHAPTER V

CONCLUSIONS

This work has examined the representation of discrete functions in both the

Boolean and the spectral domains. It has described some of the limitations of BDD

representations as motivation for developing alternative representations in both the

Boolean domain and the spectral domain. In this chapter the results of this work are

summarized and opportunities for future research are discussed.

Summary

 This section provides a summary of each of the primary sections of this work:

binary decision diagrams, spectral computations, and spectral decision diagrams.

Binary Decision Diagrams

 Chapter II began with a review of BDD properties and the construction of BDDs.

Two possible reasons why a BDD might reach exponential size were discussed as

motivation for representing a BDD as multiple pBDDs. A technique for partitioning a

BDD into multiple pBDDs each representing a subset of the information in the complete

BDD was described. This method redirects a portion of the functionality of the circuit to

a third terminal node, U. Finally experimental results were shown for several circuits

represented as multiple pBDDs.

53

Spectral Computations

 Chapter III began by considering the traditional linear algebra-based method for

computing the spectrum of a function. It then reviewed a more recent graph-based

method based upon the concepts of algebraic groups and Cayley graphs. Several

extensions to the graph-based method were then presented, including a method to directly

calculate S-encoded coefficients and the consideration of other possible binary operators.

A new Cayley group whose graph represents the spectrum for the inverse of a function

was identified which uses equivalence as its binary operator. Finally a "fast"

transformation matrix for calculating the adjacency matrix via transposition of the output

vector for a function was presented.

Spectral Decision Diagrams

 Chapter IV began by reviewing the three transforms to be implemented in this

section: the Walsh transform, the arithmetic transform, and the Reed-Muller transform.

Next the methodology used in the implementation of graph-based algorithms to compute

the transformation for multi-output circuits was described. Experimental results for each

of the transforms were presented. In addition an improved method of caching "skipped"

nodes encountered during transformation was implemented for each transform and those

results were compared with the results from the previous implementations.

Future Research

 This section describes possible future research in each of the primary sections of

this work: binary decision diagrams, spectral computations, and spectral decision

diagrams. As the work presented within this thesis is a part of a larger project

54

investigating statistical equivalence checking, one primary direction of the future

research will be to continue to integrate this work into the larger project.

Binary Decision Diagrams

 Future research effort could be directed towards improving the modifications to

the ITE algorithm to decrease the overlap present among the pBDDs. The optimal

solution would be to have a set of small disjoint pBDDs that together completely

represent the functionality of the circuit. An additional area of research would be to

prevent those occasions in which the altered ITE algorithm code actually generates a

pBDD that is larger than the original complete BDD.

Spectral Computations

 There has already been more research effort expended in the area of graph-based

spectrum computations. M. A. Thornton has extended this work into multiple-valued

Chrestenson spectrum computation [42]. One area of future effort would be to implement

the use of decision diagrams to represent the adjacency matrix of a Cayley graph.

Spectral Decision Diagrams

 There are many future research efforts possible in the area of spectral decision

diagrams. It is likely that further improvements in the implementation of the algorithms

presented here is possible due to the complexity of the CUDD program. Therefore a

highly optimized version of this implementation is one future research area. Another area

of interest is in the implementation of the multi-resolution Haar transform using the

algorithm as described in [44] and then extending that algorithm and implementation to

55

multi-output circuits. This transform is used in the larger project of which this thesis is a

part due to its multi-resolution nature. Successful implementation of the Walsh transform

was a first step towards the implementation of the Haar, which uses the same

transformation matrix applied in a more complex manner. Yet another broad area of

interest is in the transformation directly from one transform to another without returning

to the Boolean domain as described by M. A. Thornton, R. Drechsler, and D. M. Miller in

[43]. In addition to the implementations for the calculation of the spectra, there is a

wealth of possibilities in exploring their applications to synthesis, testing, and verification

through the use of spectral decision diagrams.

56

REFERENCES

[1] A. Bernasconi, B. Codenotti, and J. M. Vanderkam, "A characterization of bent
functions in terms of strongly regular graphs", IEEE Transactions on Computers, vol.
50, pp. 984-985, September 2001.

[2] A. Bernasconi and B. Codenotti, "Spectral analysis of Boolean functions as a graph

eigenvalue problem", IEEE Transactions on Computers, vol. 48, pp. 345-351, March
1999.

[3] B. Bollig and I. Wegener, "Improving the variable ordering of OBDDs is NP-

complete", IEEE Transactions on Computers, vol. 45, pp. 993-1002, September 1996.

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant, "Efficient implementation of a BDD
package", in Design Automation Conference, Orlando FL, pp. 40-45, June 1990.

.
[5] R. E. Bryant and Y.-A. Chen, "Verification of arithmetic circuits with binary moment

diagrams", in Design Automation Conference, San Francisco CA, pp. 535-541, June
1995.

[6] R. E. Bryant, "On the complexity of VLSI implementations and graph representations

of Boolean functions with application to integer multiplication", IEEE Transactions
on Computers, vol. 40, pp. 205-213, February 1991.

[7] R. E. Bryant, "Graph-based algorithms for Boolean function manipulation", IEEE

Transactions on Computers, vol. 35, pp. 677-691, August 1986.

[8] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, "Spectral transforms
for large Boolean functions with applications to technology mapping", in Design
Automation Conference, Dallas TX, pp. 54-60, June 1993.

[9] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs. Academic Press, 1979.

[10] T. Damarla, "Generalized transforms for multiple valued circuits and their fault

detection", IEEE Transactions on Computers, vol. 41, pp. 1101-1109, September
1992.

[11] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York, NY:

McGraw-Hill, 1994.

57

[12] R. Drechsler and B. Becker, Binary Decision Diagrams - Theory and Implementation.
Kluwer Academic Publishers, 1998.

[13] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski, "Efficient

representation and manipulation of switching functions based on ordered Kronecker
functional decision diagrams", in Design Automation Conference, San Diego CA, pp.
415-419, June 1994.

[14] C. R. Edwards, "The design of easily tested circuits using mapping and spectral

techniques", Radio and Electronic Engineer, vol. 47, pp. 321-342, July 1977.

[15] C. R. Edwards, "The application of the Rademacher-Walsh transform to Boolean

function classification and threshold logic synthesis", IEEE Transactions on
Computers, vol. 24, pp. 48-62, January 1975.

[16] B. J. Falkowski, "Relationship between arithmetic and Haar wavelet transforms in the

form of layered Kronecker matrices", Electronics Letters, vol. 35, pp. 799-800, May
13, 1999.

[17] B. J. Falkowski, "Forward and inverse transformations between Haar wavelet and

arithmetic functions", Electronics Letters, vol. 34, pp. 1084-1085, May 28, 1998.

[18] B. J. Falkowski and C.-H. Chang, "Forward and inverse transformations between
Haar spectra and ordered binary decision diagrams of Boolean functions", IEEE
Transactions on Computers, vol. 46, pp. 1272-1279, November 1997.

[19] S. J. Friedman and K. J. Supowit, "Finding the optimal variable ordering for binary

decision diagrams", in Design Automation Conference, Miami Beach FL, pp. 348-
356, June 1987.

[20] A. Graham, Kronecker Products and Matrix Calculus: with Applications. Ellis

Horwood Limited and John Wiley & Sons, 1981.

[21] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms. Norwell,
MA: Kluwer Academic Publishers, 1996.

[22] J. P. Hansen and M. Sekine, "Synthesis by spectral translation using Boolean decision

diagrams", in Design Automation Conference, Las Vegas NV, pp 248-253, June
1996.

[23] T. C. Hsiao and S. C. Seth, "An analysis of the use of Rademacher-Walsh spectrum in

compact testing", IEEE Transactions on Computers, vol. 33, pp. 931-937, October
1984.

58

[24] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in Digital Logic.
Orlando, FL: Academic Press, 1985.

[25] J. Jain, D. Moundanos, J. Bitner, J. A. Abraham, D. S. Fussell, and D. E. Ross,

"Efficient variable ordering and partial representation algorithm", in Proceedings of
the 8th International Conference on VLSI Design, New Delhi India, pp. 81-86,
January 1995.

[26] M. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices. Wiley and

JUP, 1976.

[27] U. Kebschull, E. Schubert, and W. Rosenstiel, "Multilevel logic synthesis based on
functional decision diagrams", in Proceedings of the European Conference on Design
Automation, Brussels Belgium, pp. 43-47, March 1992.

[28] W. Kunz and D. K. Pradhan, "Recursive learning: a new implication technique for

efficient solutions to CAD problems-test, verification, and optimization", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
pp. 1143-1158, September 1994.

[29] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design. Berlin,

Germany: Springer, 1998.

[30] D. M. Miller, "A spectral method for Boolean function matching", in European
Design and Test Conference, Paris France, pg. 602, March 1996.

[31] D. M. Miller, "Graph algorithms for the manipulation of Boolean functions and their

spectra", in Congressus Numerantium, pp. 177-199, 1987.

[32] D. M. Miller and J. C. Muzio, "Spectral fault signatures for single stuck-at faults in
combinational networks", IEEE Transactions on Computers, vol. 33, pp. 765-768,
August 1984.

[33] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli, "Partitioned

ROBDDs-a compact, canonical and efficiently manipulable representation for
Boolean functions", in International Conference on Computer-Aided Design, San
Jose CA, pp. 547-554, November 1996.

[34] M. A. Perkowski, M. Driscoll, J. Liu, D. Smith, J. Brown, L. Yang, A. Shamsapour,

M. Helliwell, B. Falkowski, P. Wu, M. Ciesielski, and A. Sarabi, "Integration of
logic synthesis and high-level synthesis into the DIADES design automation system",
in International Symposium on Circuits and Systems, Portland OR, vol. 2, pp. 748-
751, May 1989.

59

[35] K. Radecka and Z. Zilic, "Relating arithmetic and Walsh spectra for verification by
implicit error modeling", in International Workshop on Applications of the Reed-
Muller Expansion in Circuit Design, Mississippi State MS, pp. 205-214, August
2001.

[36] D. E. Ross, K. M. Butler, R. Kapur, and M. R. Mercer, "Fast functional evaluation of

candidate OBDD variable orderings", in Proceedings of the European Confernce on
Design Automation, Amsterdam Netherlands, pp 4-10, February 1991.

[37] T. Sasao, Switching Theory for Logic Synthesis. Norwell, MA: Kluwer Academic

Publishers, 1999.

[38] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.3.0. University of
Colorado at Boulder, 1998.

[39] R. S. Stanković, "A note of the relation between Reed-Muller expansions and Walsh

transforms", IEEE Transactions on Electromagnetic Compatability, vol. 24, pp. 68-
70, February 1982.

[40] R. S. Stanković, T. Sasao, and C. Moraga, "Spectral transforms decision diagrams",

in T. Sasao and M. Fujita (eds.), Representation of Discrete Functions. Kluwer
Academic Publishers, pp. 55-92, 1996.

[41] A. K. Susskind, "Testing by verifying Walsh coefficients", IEEE Transactions on

Computers, vol. 32, pp. 198-201, February 1983.

[42] M. A. Thornton, D. M. Miller, and W. J. Townsend, "Chrestenson spectrum
computation using Cayley color graphs", submitted for publication in International
Symposium on Multiple-Valued Logic, Boston MA, May 2002.

[43] M. A. Thornton, R. Drechsler, and D. M. Miller, "Transformations amongst the

Walsh, Haar, arithmetic, and Reed-Muller spectral domains", in International
Workshop on Applications of the Reed-Muller Expansion in Circuit Design,
Mississippi State MS, pp. 215-225, August 2001.

[44] M. A. Thornton, R. Drechsler, and D. M. Miller, Spectral Techniques in VLSI CAD.

Norwell, MA: Kluwer Academic Publishers, 2001.

[45] M. A. Thornton and R. Drechsler, "Spectral decision diagrams using graph
transformations", in Design, Automation and Test in Europe, Munich Germany, pp.
713-717, March 2001.

[46] M. A. Thornton, R. Drechsler, and W. Günther, "A method for approximate

equivalence checking", in Proceedings of the 30th IEEE International Symposium on
Multiple-Valued Logic, Portland OR, pp 447-452, May 2000.

60

[47] M. A. Thornton and V. S. S. Nair, "Efficient calculation of spectral coefficients and

their applications", IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, pp. 1328-1341, November 1995.

[48] W. J. Townsend, M. A. Thornton, R. Drechsler, and D. M. Miller, "Computing

Walsh, arithmetic, and Reed-Muller spectral decision diagrams using graph
transformations", submitted for publication in Great Lakes Symposium on VLSI, New
York NY, April 2002.

[49] W. J. Townsend and M. A. Thornton, "Partial binary decision diagrams", in IEEE

Southeastern Symposium on System Theory, Huntsville AL, pp. 422-425, March
2002.

[50] W. J. Townsend and M. A. Thornton, "Walsh spectrum computations using Cayley

graphs", in IEEE Midwest Symposium on Circuits and Systems, Dayton OH, pp. 110-
113, August 2001.

[51] D. Varma and E. A. Trachtenberg, "Design automation tools for efficient

implementation of logic functions by decomposition", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 8, pp. 901-916,
August 1989.

[52] A. T. White, Graphs, Groups and Surfaces. North-Holland Publishing Company,

1973.

	Discrete Function Representations Utilizing Decision Diagrams and Spectral Techniques
	Recommended Citation

	tmp.1625165283.pdf.crskG

