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Spectral techniques in digital logic design have been known for more than thirty

years. They have been used for Boolean function classification, disjoint decomposition,

parallel and serial linear decomposition, spectral translation synthesis (extraction of
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linear pre- and post-filters), multiplexer synthesis, prime implicant extraction by spectral

summation, threshold logic synthesis, estimation of logic complexity, testing, and state

assignment.

This dissertation resolves many important issues concerning the efficient applica

tion of spectral methods used in the computer-aided design of digital circuits. The main

obstacles in these applications were, up to now, memory requirements for computer sys

tems and lack of the possibility of calculating spectra direcdy from Boolean equations.

By using the algorithms presented here these obstacles have been overcome. Moreover,

the methods presented in this dissertation can be regarded as representatives of a whole

family of methods and the approach presented can 1Y: easily adapted to other orthogonal

transforms used in digital logic design. Algorithms are shown for Adding, Arithmetic,

and Reed-Muller transforms. However, the main focus of this dissertation is on the

efficient computer calculation of Rademacher-Walsh spectra of Boolean functions, since

this particular ordering of Walsh transforms is most frequendy used in digital logic

design.

A theory has been developed to calculate the Rademacher-Walsh transform from

a cube array specification of incompletely specified Boolean functions. The importance

of representing Boolean functions as arrays of disjoint ON- and DC- cubes has been

pointed out, and an efficient new algorithm to generate disjoint cubes from non-disjoint

ones has been designed. The transform algorithm makes use of the properties of an array

of disjoint cubes and allows the determination of the spectral coefficients in an indepen

dent way. By such an approach each spectral coefficient can be calculated separately or

all the coefficients can be calculated in parallel. These advantages are absent in the exist

ing methods. The possibility of calculating only some coefficients is very important since

there are many spectral methods in digital logic design for which the values of only a few

selected coefficients are needed.



Most of the current methods used in the spectral domain deal only with com-

pletely specified Boolean functions. On the other hand, all of the algorithms introduced

here are valid, not only for completely specified Boolean functions, but for functions

with don't cares. Don't care minterms are simply represented in the form of disjoint

cubes.

The links between spectral and classical methods used for designing digital cir

cuits are described. The real meaning of spectral coefficients from Walsh and other

orthogonal spectra in classical logic terms is shown. The relations presented here can be

used for the calculation of different transforms. The methods are based on direct manipu-

lations on Karnaugh maps. The conversion start with Karnaugh maps and generate the

spectral coefficients.

The spectral representation of multiple-valued input binary functions is proposed

here for the first time. Such a representation is composed of a vector of Walsh

transfonns, each vector is defined for one pair of the input variables of the function. The

new representation has the advantage of being real-valued, thus having an easy interpre

tation. Since two types of codings of values of binary functions are used, two different

spectra are introduced. The meaning of each spectral coefficient in classical logic terms

is discussed. The mathematical relationships between the number of true, false, and

don't care minterms and spectral coefficients are stated. These relationships can be used

to calculate the spectral coefficients directly from the graphical representations of binary

functions. Similarly to the spectral methods in classical logic design, the new spectral

representation of binary functions can find applications in many problems of analysis,

synthesis, and testing of circuits described by such functions.

A new algorithm is shown that converts the disjoint cube representation of

Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME).

Since the known fast algorithm that generates the GR..\1E, based on the factorization of
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the Reed-Muller transform matrix, always starts from the truth table (mintenns) of a

Boolean function, then the described method has advantages due to a smaller required

computer memory. MoreGver, for Boolean functions, described by only a few disjoint

cubes, the method is much more efficient than the fast algorithm.

By investigating a family of elementary second order matrices, new transforms of

real vectors are introduced. When used for Boolean function transformations, these

transforms are one-to-one mappings in a binary or ternary vector space. The concept of

different polarities of the Arithmetic and Adding transforms has been introduced. New

operations on matrices: horizontal, vertical, and vertical-horizontal joints (concatena

tions) are introduced.

All previously known transforms, and those introduced in this dissertation can be

characterized by two features: "ordering" and "polarity". When a transform exists for all

possible polarities then it is said to be "generalized". For all of the transforms discussed,

procedures are given for generalizing and defining for different orderings. The meaning

of each spectral coefficient for a given transform is also presented in terms of standard

logic gates.

There exist six commonly used orderings of Walsh transforms: Hadamard,

Rademacher, Kaczmarz, Paley, Cal-Sal, and X. By investigating the ways in which these

known orderings are generated the author noticed that the same operations can be used to

create some new orderings. The generation of two new Walsh transforms in Gray code

orderings, from the straight binary code is shown. A recursive algorithm for the Gray

code ordered Walsh transform is based on the new operator introduced in this presenta

tion under the name of the "bi-symmetrical pseudo Kronecker product". The recursive

algorithm is the basis for the flow diagram of a constant geometry fast Walsh transform

in Gray code ordering. The algorithm is fast (N 10g2 N additions/subtractions), computer

efficient, and is implemented in an iterative architecture.
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CHAPTER I

INTRODUCTION

Computer aided design tools have been used for both the design and verification

of digital systems for many years. Such tools have been applied to all the stages of the

design of such systems, from integrated circuit technology to the design of complex com

puter architectures. The growing complexity of recently introduced Very Large

Integrated Circuits (VLSI) has made the use of such sophisticated design tools indispens

able.

A complete synthesis system should generate a lllY0ut from the high-level

description of a VLSI system. The target technology, the design constraints and th~ cost

functions should clso be defined. Silicon compilers have been designed to carry out the

entire synthesis process [1]. The approach used is to break the synthesis process into

stages and to optimize the chip area and performance stage by stage [2].

The following basic components make parts of a synthesis system:

• Layout including floor planning, partitioning, placement, routing, and compac-

tion.

e Logic synthesis, including combinational and sequential logic.

• Procedural design and module generation.

Since this dissertation concentrates on only one aspect of the synthesis process, combina

tionallogic, then the developments in this area will be described in more detail.

Over the last few years a lot of attention has been paid to the logic minimization

of two-level circuits. A series of very efficient logic minimizers have been developed:
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ESPRESSO-II, ESPRESSO-IIC, and ESPRESSO-MV [3], [4] and [5]. When a logic

function is implemented using a Programmable Logic Array (PLA), logic minimization

reduces the area occupied by the PLA and improves its electrical performance. Since the

algorithmic complexity of complete logic minimization problem is very high, heuristic

logic minimizers are used when medium and, in particular, large functions have to be

minimized.

It has been found, however, that some control logic can have more efficient

implementation in the form of multi-level circuits [2]. The optimization criterion of all

multi-level logic synthesis systems is to minimize the area occupied by the logic equa

tions and at the same time satisfy the timing constraints. Other considerations, such as

testability, should also be considered in the synthesis process. The first multi-level syn

thesis system was the ffiM Logic Synthesis System [6], [7]. Other systems are: York

town Silicon Compiler [8], SOCRATES [9], and MIS [10].

Two basic techniques are used for multi-level design [2]:

• Global optimization, where the logic function is re-factored into an optimal

multi-level form.

• Peephole optimization, where local transformations are applied to globally optim-

ized logic functions.

New global optimization algorithms have appeared to be effective in partitioning com

plex logic functions [11]. In addition, rule based systems [7], [9] have been found to be

effective in the design of large systems.

Logic synthesis for recently developed field-programmable gate arrays and PLDs

creates new requirements for design automation systems because of fundamental archi

tectural differences with respect to existing technologies. A high demand exists for the

methods that produce circuit realizations with EXOR gates [12], [13]. "A four-input

XOR (in Xilinx 2000 Logic Cell Arrays) uses the same space and is as fast as a four-



inlJut AND gate." - quoted from [12]. Logic design for Xilinx devices is therefore lim

ited by fan-in - not by logic complexity as in PLDs." - quoted from [12]. "Any system

which flattens functions into 2-1evel AND-OR form, or which factors based on the "unate

paradigm" (as do MIS-II, BOLD, and Synopsys), is going to have problems with strongly

non-unate functions like parity, addition or multiplication. Since these sorts of functions

occur frequently in real designs, synthesis tools need reasonable ways of handling them."

- quoted from [13].

The DIADES design automation system [14] methodology is oriented towards

detecting the linear (EXOR) part of a Boolean function. It uses, among other methods,

spectral ones to detect the EXOR part of a Boolean function. Since the DIADES system

uses spectral methods together with the programs based on the "unate paradigm" then it

can easily handle not only functions close to strongly unate but also strongly not-unate

ones as well. The decomposition of Boolean functions with both pre- and post- linear

parts by spectral means leads to highly testable circuit realizations that can be efficiently

implemented in several technologies (LHS501 from Signetics, 2000 Logic Cell Arrays

from Xilinx, and other EPLDs with EXOR gates). Currently only spectral methods allow

for this kind of decomposition [15], [16].

This Dissertation covers the fundamental background information on orthogonal

transforms and their use in generating spectral data of logical functions. The conven

tional binary data, exemplified by Boolean expressions, or truth tables, may be

transformed into the spectral domain, yielding coefficients which may represent some

global information on the function or functions being considered. This is in contrast to

the conventional functional domain, where the information concerning the overall func

tion or functions is available from an isolated item of data.

In digital logic design, spectral techniques have been used for more than thirty

years. They have been applied to Boolean function classification [17], [21], [22], [34]
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and {35], disjoint decomposition [22], [47]-[49] and [51], parallel and serial linear

decomposition [15], [16], [21]-[23], [48] and [49], spectral translation synthesis (extrac

tion of linear pre- and post-filters) [16], [22]-[25], [27], [48], and [49], multiplexer syn

thesis [22] and [29], prime implicant extraction by spectral summation [22], [25], [27]

and [28], threshold logic synthesis [15], [17], and [21], logic complexity [15] and [52]

and state assignment [15] and [50]. Spectral methods for testing of logical networks by

verification of the coefficients in the spectlum have been developed [20], [22], [23], [25],

[30]-[33], [36], [45] and [46]. It should be stressed that an important problem of finding

the complement of a Boolean function that has high complexity in the Boolean domain

[3] and [44], can be solved very easily in the spectral domain because complementing the

Boolean function corresponds to changing the sign of every spectral coefficient [21],

[22]. Tautology of a Boolean function can be verified by calculating a certain coefficient

(de coefficient). The problem of constructing optimal data compression schemes by

spectral techniques has also been considered. The latter approach is very useful for

compressing test responses of logical networks and memories [23], [25], [45] and [46].

The renewed interest in applications of spectral methods in logic synthesis is caused by

their excellent design for testability properties and the possibility of performing the

decomposition with gates other than the ones used in classical approaches [15], [48]-[50]

and [52].

Two design automation systems have used spectral meiliods as the tool for

designing of digital circuits [14], [16], [48], [49], and [52]. Computation of the spectrum

is a complex operation that requires, in the general case, n 2n operations of

additions/subtractions when the Fast Walsh Transform [24] is used and the Boolean func

tion has n input variables. In order to store the calculated spectrum 2n memory locations

are required [22], [24]. The SPECSYS (for SPECtral SYnthesis System) developed at

Drexel University on a VAX l1n80 uses the Fast Walsh Transform [24] for the calcula

tion of the spectrum and can process Boolean functions having only 20 input variables
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[16] and [48]. The DIADES design automation system developed at Portland State

University [14] does not have any limit on the number of input variables of Boolean

functions that can be processed and uses the methods described in this Dissertation for

the generation of spectral coefficients of Boolean functions.

The following orthogonal transforms are discussed in this work: Walsh, Reed

Muller, Adding, and Arithmetic. All the above transforms can be calculated by either of

the two methods introduced in this Dissertation. The first method for the generation of

spectra explains the links between classical and spectral methods. The second method is

based on the disjoint cube representation of Boolean functions. In this dissertation, the

main emphasis is placed on the efficient computer calculation of the Rademacher-Walsh

spectrum of Boolean functions since this particular ordering of the Walsh transform is

most frequently used in digital logic design [17], [21]-[24], and [51]. However, the

methods presented are of a general nature, and therefore they can be applied easily not

only to all new orthogonal transforms introduced in this Dissertation but also to any

future orthogonal transforms of Boolean functions.

In this Dissertation two new methods for the calculation of the Rademacher

Walsh spectrum of incompletely specified Boolean functions are shown. Both methods

presented can calculate a Walsh spectrum of any ordering since the algorithms are

independent of the ordering of the spectral coefficients. The first method, that allows

calculation of the spectrum directly from a Kamaugh map, is introduced here for better

understanding of the meaning of spectral coefficients in classical logic terms. The second

method has been implemented in the DIADES automation system [14].

This Dissertation answers many important questions concerning efficient applica

tion of spectral methods in the computer-aided design of digital circuits. The main obsta

cle in these applications was, up to now, memory requirements for computer systems.

By using the algorithms presented in this Dissertation this obstacle has been overcome.
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The advantages of the approach presented were possible due to new insight and

the formulation of spectral techniques. By investigating the links between spectral tech

niques and classical logic design methods, This interesting area of research is presented

in a simple manner, by investigating the links between spectral techniques and classical

logic design methods. The real meaning of spectral coefficients in classical logic terms

(such as minterms and cubes) is shown. All the mathematical relationships between the

number of true, false and don't care minterms, and spectral coefficients as well as

between the size of disjoint cubes and spectral coefficients are stated.

One of the drawbacks of spectral techniques is that practically all the existing

algorithms for calculating the spectral coefficients start from a Boolean function,

represented either as a list of true minterms (alternatively - a list of false minterms) [15],

[16], [21], [22], [25], [48], and [49] or as an already minimized sum-of-products Boolean

expression [22] and [33]. The algorithm presented in Chapter V overcomes this weakness

by representing a completely specified Boolean function as a set of disjoint cubes that

completely covers the function. By such an approach, each spectral coefficient can be

calculated separately or all the coefficients can be calculated in parallel. These advan

tages are absent in the existing methods. The possibility of calculating only some

coefficients is very important since there are many spectral methods in digital logic

design for which the values of only few selected coefficients are needed. Some of such

cases where the entire spectrum need not to be computed are: Walsh and Reed-Muller

spectral techniques for fault detection [20], [22], [23], [25], [30]-[32], [36], [105] and

[106], spectral translation techniques for extracting core functions [21], [22], [27] and

[28], designing of multiplexer based universal-logie-modules [29], prime implicants

extraction [25] and [27], estimation of logic complexity [15], [50] and [52], and approxi

mate implementation of logic functions [33].

Most of the current methods in the spectral domain deal only with completely



7

specified Boolean functions. On the other hand, all the algorithms introduced in this

Dissertation are valid not only for completely specified Boolean functions but also for

functions with don't cares, since don't care minterms can be simply represented in the

form of disjoint cubes as well.

In order to use Boolean functions that are represented as arrays of non-disjoint

cubes, all additional fast algorithm to generate disjoint cubes is presented. Use of the dis

joint cubes representation of Boolean functions has been found advantageous in many

algorithms used in digital logic design [3], [18], [37]-[39] and [54]. A detailed descrip

tion of cube calculus operations can be found in [3], [43] and [54].

The theory of the calculation of spectral coefficients for Boolean functions is new

for both of the methods introduced. The second method also allows for the calculation

of spectra of a system of Boolean functions. When the system of incompletely specified

Boolean functions is processed there is a restriction that all the functions in the system

are assumed to be undefined at exactly the same points (minterms of a KaInaugh map).

Optimal completion of don't care minterms for such a system of Boolean functions, from

the point of view of a minimal number of spectral coefficients different from 0 (and by

that obtaining simpler implementation of such a system of functions), was presented in

[15]. However, this is a large restriction. The second method can process not only such

functions but any system of completely and incompletely specified Boolean functions.

Each function in the system of functions processed by the second method can have a

don't care minterm anywhere in function's domain.

A short description of previously known properties of the classical Rademacher

Walsh transform when such a transform is applied to Boolean functions should make this

Dissertation self-sufficient. All properties regarding incompletely specified Boolean

functions are new. The formal proofs of these new properties by mathematical induction

are trivial and therefore emitted.
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The choice of a suitable transform for a given application is an imponant task for

a designer who uses spectral techniques to design digital circuits. This Dissenation shows

that by using the two concepts of "ordering" and "polarity" and by applying some new

mathematical matrix operations, previously known transforms can be generalized and

some new transforms can be created. The generalized transforms allow decomposition

of logic functions described in terms of corresponding spectral coefficients calculated for

onhogonal transforms with any ordering and polarity.

A systematic analysis of the concepts of ordering and polarity allowed the author

to introduce the following transforms and to generalize the concept of some existing

ones: Generalized Walsh Transforms for any ordering, two Walsh Transforms in Gray

Code Ordering, Generalized Arithmetic and Adding Transforms for any ordering, and

Generalized Reed-Muller Transforms for any ordering.

Spectra of Boolean functions of all of the above transforms can be calculated by

either of the two methods introduced in this Dissenation. For all but one of the above

transforms there exists an appropriate Fast Transform, and therefore the Fast Transform

methods based on Good's concept of fast Fourier transform [64], [82] and [88] can be

used also for the calculation of spectral coefficients. While introducing the concept of

Generalized Arithmetic and Adding transforms, the author confined himself to the

mathematical consideration of only elementary radix-2 matrices composed of only ele

ments 0, 1 and -1. It is however obvious, that the elementary radix-2n matrices, where n

is an arbitrary integer number can be a basis for the generation of other Generalized

transforms. Which of the transforms generated in such a way have potential usefulness

should be a topic of further investigations. During the research on new transforms, the

author introduced some elementary operations on matrices: the vertical, horizontal and

joint vertical - horizontal transformations and the bi-symmetrical Pseudo Kronecker pro

duct that is different from the Pseudo Kronecker product in the reference [55]. The same



9

name is a coincidence because the author was not aware of the name used in the refer

ence at the time of the introduction of new operator [111]. It is interesting to note that it

is possible to apply the new operators to other families of orthogonal elementary radix-2

matrices by what the alternative orthogonal and some not-orthogonal transformations can

be created.

Here is a list of the chapters and a brief description of their contents, to establish a

perspective on the Dissertation's presentation:

Chapter II: An introductory survey of discrete Walsh transforms. Examples of Walsh

transforms with different orderings are shown.

Chapter III: Gives basic properties of Walsh transforms when they are applied to

Boolean functions. Describes the important notion of standard trivial functions. Shows

R and S coding of Boolean functions. Provides all of the relationships for Walsh spectra

in both codings. Expresses values of spectral coefficients in terms of numbers of dif

ferent types of minterms. Describes the first method of calculation of Walsh

transforms. Builds bridges between spectral and classical approaches to logic design.

Chapter IV: Introduces Walsh transforms for multiple-valued input binary functions.

Describes definitions and properties of two-dimensional maps that represent multiple

valued input binary functions. Gives all the algorithms necessary to calculate the spectral

representation that is presented for multiple-valued input binary functions.

Chapter V: Describes the algorithm that generates the disjoint cube representation of

Boolean functions. Introduces the second method of calculating Walsh spectra from the

disjoint cube representation of a Boolean function. Expresses values of spectral

coefficients in terms of disjoint cubes. Shows the calculation of Walsh spectra for sys

tems of Boolean functions without any restriction on the domain of such functions.

Chapter VI: Introduces generalized Adding and Arithmetic transforms for both R and S

codings. Describes new operations on matrices. Gives the properties of the new
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transforms and expresses the values of spectral coefficients in terms of a number of dif

ferent types of minterms.

Chapter VII: Describes the algorithm that calculates a generalized Reed-Muller

transform from a disjoint cube representation of a Boolean functions. Provides all the

basic definitions and properties of Reed-Muller spectral coefficients.

Chapter VIII: Introduces the generalized Walsh transform. Shows Adding, Arithmetic,

and Reed-Muller transforms for different orderings. Presents circuit interpretation of

spectral coefficients for different transforms.

Chapter IX: Introduces two Gray code orderings for Walsh transforms. Describes new

operators on matrices: vertical mirror transformation, horizontal mirror transformation,

vertical - horizontal mirror transformation and bi-symmetrical pseudo Kronecker pro

duct. Gives Fast Walsh transform for one of the introduced orderings. Presents constant

geometry iterative architecture for Gray code ordered transform.

Chapter X: Conclusions reached.



CHAPTER II

PROPERTIES OF DISCRETE WALSH TRANSFORMS

II.I RELAnONS BETWEEN DISCRETE FOURIER AND WALSH TRANSFORMS

The decomposition of continuous time signals into sums of sinusoids (The

Fourier Transform) has been shown to be very important for studying of linear time

invariant systems [88]. This is a significant process because the response of a linear

time-invariant system to a sinusoidal input is also a sine wave of the same frequency, but

generally, with a different amplitude and phase.

Suppose that the signals considered are discrete time periodic or non-periodic

functions. Such functions are of special interest to us because Boolean functions and their

extensions to multiple-valued logic can be regarded as non-periodic functions. It has

been shown that the Discrete Fourier Transform (DFT) is particularly suitable for

describing phenomena related to a discrete time series [88]. Since the DFT is directly

related to the Fourier Transform, many of the properties of the DFT are parallel to the

properties of the Fourier Transform. The properties of the DFT and relationships between

the DFT and the Fourier Transform are presented in [88]. The Fast Fourier Transform

(FFT), a computational algorithm that reduces the number of multiplications and addi

tions required for determining the coefficients of the DFT is also described in the same

reference.

A number of linear transformations exist that have the form of the one

dimensional discrete Fourier transform relations. Such transformations can be written in

the form [88]



N -1
F (0 =k f(k) a(k, i)

f (k) =~~1 F(i) b(k, i)
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(II.1)

(II.2)

where a (k , i) is the forward transformation kernel and b (k, i) is the inverse transforma

tion kernel. In the case of the DFl', the functions a (k, i) and b (k, i) are

exp ( - 2 1t k i j / N) and exp ( 2 1t k i j / N), respectively. In all the equations,

j2 =- 1, N is the number of samples (an even number), and f (k) is a sequence of N

samples. The interval of i from 0 to N - 1 describes a finite time window for which the

data sequence is available.

Another transformation pair of interest that is of this general type is the Walsh

transformation. In the case of Boolean functions, Le., functions on a two element field

0,1, the transformation kernel can be defined as

aw (k, i) =exp ( 2 1t k i j / 2 ) = ( - 1 )k i =± 1 (II.3)

when k =0 or k =1. The subscript w denotes a kernel that describes Walsh functions.

The above kernel can be regarded as a generic kernel (Le., a kernel that generates orthog

onal functions for a given ordering) of the Walsh transformation when it is compared to

the kernels of Walsh transformations in Hadamard or Kaczmarz orderings [88]. Each

ordering of the Walsh transform differs from the others by the order in which spectral

coefficients corresponding to a given ordering are generated. The kernels for chosen ord

erings of Walsh functions will be presented later. When multiple-valued logical func

tions are considered then the generic kernel of orthogonal Chrestenson functions is

obtained from Equations (II.2 and 11.3) [15]. Since the interest of the author is only in the

orthogonal transformations that can be used for Boolean and multiple-valued input logi

cal functions the Chrestenson functions used for multiple-valued input multiple-valued

output functions are not discussed. The interested reader can find more information on

these other functions in reference [15].
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11.2 WALSH FUNCTIONS

Walshfunctions form a complete set of orthogonal functions in the interval [0, 1].

The advantage of a Walsh function expansion over other orthogonal expansions is that

Walsh functions have only ± 1 values and multiplication by a Walsh function involves

only algebraic sign assignment. Since the functions have only two values ± 1 then they

can be easily generated by digital circuits.

Due to the binary nature of Walsh (and related) transforms, these transforms have

an advantage over the Fourier transform because of their computational simplicity. That

is, the transform matrices are made of only ± 1 values and the required computations in

any digital signal processing application are only additions and subtractions. The result

ing hardware implementation of such transforms is relatively simple [57], [65] and [80].

An example of such a hardware realization for Walsh transforms in Gray code ordering,

newly introduced by the author, are presented in Chapter IX. These general properties of

Walsh and related orthogonal transforms have made them of interest to scientists in many

fields: image processing [56], [77], [82], [117] and [118], signal coding [24], [64], [69]

and [88], filter design [120], imaging in spectroscopy and astronomy [116] and [117]

[119], telecommunication [24] and [69], statistical analysis [76J, digital control systems

[115], associative memory systems [121], and many other areas.

The basic properties of the spectral Walsh coefficients of Boolean functions are

given in Chapter m. The Walsh functions may be presented in different orderings. The

mutual relationships between different orderings of discrete Walsh functions are shown

in Chapter IX. The Walsh functions are not sinusoidal nor do they possess the notion of

frequency in any conventional sense. However, the functions cross the zero axis, and as

an analog to frequency, the term "sequency" has been introduced by Hartmuth [69]. The

comparison of sequencies for different Walsh transform ordering is done in Chapter IX.
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It is possible to apply different approaches to the definitions of Walsh functions

[64] and [88]. For example, Walsh functions can be defined recursively or in the terms of

Rademacher functions [15], [64] and [88]. However, the Walsh functions in any order

ing comprise block waves (changing between + 1 to - 1) over the interval [0, 1].

Because Walsh functions form an orthogonal set, they are useful in creating additional

transforms in the same way that sine and cosine functions are useful in a number of

transforms.

Let us consider the Kaczmarz ordered Walsh functions shown in Figure 1. If

these functions are sampled at the designated 8 = 23 points (more generally at N = 2r

points) then the 8 x 8 matrix is obtained. This matrix is shown in Figure 2, which shows

only the signs (all of the amplitudes are equal to 1).

k
~

i

J
0 1 2 3 4 5 6 7

0 + + + + + + + +
1 + + + + -
2 + + - + +
3 + + - + + -
4 + - + + - +
5 + - + - + + -
6 + - + - + - +
7 + - + - + - + -

Figure 2. Values of the Kaczmarz ordered Walsh transfonn.

All rows (or columns) in this matrix are mathematically orthogonal to each other. The

matrix represents discrete Walsh-ordered functions. The one-dimensional kernel for this

function is as follows [15], [64], and [88]:

(11.4)
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where

q0 ( i ) =Pr - 1 (i )

q 1 (i ) =Pr -1 (i ) +Pr - 2 ( i )

q2(i )=Pr-2(i )+Pr-3(i)

qr-1 (i )=P1 (i )+PO (i)

and where the arguments of Pr (k ) and qr (i ) are written in straight binary code, with

the value of Pr (i ) equal to the r-th bit in the binary code of i . In particular, the Walsh

transformation in Kaczmarz ordering is written explicitly as:

r-l

F (i) = Nk1f (k) ( _1)~Pr (k) qr (i)

r-l

f (k) =ir ~~1 F(i) (_I)~Pr (k)qr (i)

Example II.1:

(II.S)

(II.6)

The element aw (4,3) of the matrix shown in Figure 2 can be calculated using Equation

(llA) (notice that r =3) as follows:

z
a

w
43 (r =3) =(_1)'M'r (4) qr (3) =(_1)[po(4) qo(3) +pl(4) ql(3) +pz(4) qz(3) 1=

The values ofPr (k) are as follows:

Po(4) =Po(100) =0; P1(4) =P1(100) =0; p2(4) =P2(100) =1;

Po(3) =Po(Ol1) =1; P1(3) =P1(011) =1; p2(3) =P2(01l) =0

Therefore, the value of the element considered is:

aw 43 (r =3) =(- 1)[ OxO + Ox [0 + 1] + Ix [1 + 1 ]] =(- 1)2 =+ 1 =+.

Figure 2 also shows that the value of the considered element is +.



17

1+_ +_ +_ +_

- 1

t

wah2 -J +I- -1+ +l--.or-- __t ..

wah3 _:H--\ ++ I- -p'-----_t..

wah4
_III +++ +It....-_-__-_- t ~;:!oo

t ..

Figure 3. Hadamard ordered Walsh functions.
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Consider now Walsh functions with Hadamard ordering as shown in Figure 3. In

fact, the Hadamard-ordered Walsh function transformations are precisely the same as the

Walsh function transformation described by the Equations (I1.5) and (II.6). The only

difference is the way in which the values for k and i are written. For each k and i, the

straight binary code is written first, as it is with the Walsh-ordered functions. Next the

binary forms are bit reverseG. and then the Gray code conversion of the bit reversed

number is used.

When the Hadamard-ordered Walsh functions are sampled in 8 equal samples, an

8 x 8 matrix is obtained as shown in Figure 4.

k '"i

j 0 1 2 3 4 5 6 7

0 + + + + + + + +
1 + - + - + - + -

...........
2 + + - + + -
3 + - + + - +
4 + + + + -
5 + - + - + - +
6 + + - + +
7 + - + - + + -

Figure 4. Hadamard ordered discrete Walsh transform.

Notice the presence in this matrix of an array of second order matrices (one of the sub

matrices has a simple change of the sign). The second order Hadamard matrix H2 can be

used to construct recursively any higher order matrices (of order 2xN). This is done by

taking the Kronecker product of the elementary second order H2 matrix with the same

matrix. The details of the Kronecker product operation are explained in Chapter IX.

The basic properties of other commonly used Walsh orderings are discussed in
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Chapter IX. The Walsh functions can also be defined by the sets of other related orthog

onal functions. S. Kaczmarz developed the definition of Walsh functions by using only

Haar functions [15]. R. Paley defined the Walsh functions using Rademacher functions

[64]. By investigating different orderings and definitions of Walsh functions, the author

introduced two new orderings of Walsh functions that are presented in Chapter IX.

Walsh transform calculations can be presented in forms analogous to FFT calcu

lations. All the Fast Walsh Transform algorithms use a Cooley-Tukey type data flow

graph [64]. The reader can find these fast flow graphs in [24], [56], [64] and [88]. The

fast flow graph for the transform introduced by the author is presented in Chapter IX.



CHAPTER ill

ESSENTIAL RELATIONS BETWEEN CLASSICAL AND SPECTRAL APPROACHES

TO ANALYSIS, SYNTHESIS, AND TESTING OF COMPLETELY

AND INCOMPLETELY SPECIFIED BOOLEAN FUNCTIONS

ill.l DESCRIPTION

Some necessary background information on Rademacher-Walsh transforms is

presented in this Chapter. This particular ordering of Walsh transforms is frequently used

for logic design. However, the new method presented by the author in this Chapter can

calculate the Walsh spectrum for any ordering since the method is independent of the

ordering of the spectrum. An investigation of the links between spectral techniques and

classical logic design methods yields a simple presentation of this interesting area of

research. The real meaning of the spectral coefficients from R and S Walsh spectra in

classical logic terms is shown. Moreover, two algorithms are shown for easy calculation

of spectral coefficients, for completely and incompletely specified Boolean functions, by
"

handwritten manipulations directly from Karnaugh maps. All mathematical relationships

between the number of true, false and don't:are minterms and the Walsh spectral

coefficients are stated. A number of examples are given which should help to introduce

these ideas to engineers working in the areas of test generation and logic design automa

tion. The use of complicated mathematical formulas, so typical in articles on the subject,

is minimized in this presentation. This is important, since unfortunately up to now

unfamiliarity with the mathematical side of the spectral approach seems to be too great a

hurdle to overcome for finding a fruitful place for practical applications of these ideas.
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m.2 BASIC PROPERTIES OF RADEMACHER-WALSH SPECfRUM

The Rademacher-Walsh spectra S and R of an n-variable Boolean function are

alternative canonical representations of the Boolean function. Other related canonical

descriptions of Boolean functions are: the Adding and Arithmetic forms (Chapter VI),.

and the Reed-Muller form (Chapter VII). The latter form is, however, a canonical

representation of only completely specified Boolean functions.

The Rademacher-Walsh spectrum S is formed as the product of a 2n x 2n

Rademacher-Walsh matrix T and a 2n vector representation, M of a Boolean function F.

When the Boolean function is represented as a truth table of all minterms, M will be

either the <+1, -1> vector representation of the truth table for a completely specified

Boolean function, or the <+1, 0, -1> vector representation of the truth table for an incom

pletely specified Boolean function [15], [21], [22], [24], [25] and [32]. In the coding

scheme the conventional <0, 1, -> values (false, true and don't care minterms)

correspond to <+1, -1, 0> codings, respectively ('-' stands for 'don't care'). This type of

coding of the truth vector is called the S coding, and the coded truth vector is denoted by

M. The values of the minterms in the original truth vector and the coded vector M are

ordered according to the straight binary code of variables describing the minterms. For

example, the first entry in the vector is the logical value of the minterm that is described

by all negated variables (minterm 0), the second entry in the truth vector is the logical

value of the second minterm that is described by all but x 1 negated variables, etc. The

Rademacher-Walsh matrix T represents the Walsh functions in Rademacher ordering.

The rules for recursive generation of such matrices are described in [15].

The Rademacher-Walsh spectrum R results from another coding of the truth table

of a Boolean function with the conventional <0, 1, -> values corresponding to <0, 1,0.5>

respectively. This Rademacher-Walsh spectrum is called the R spectrum and this type of

coding is called R coding. The relationships between the spectral coefficients of the S
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and R spectra are given later in this Chapter.

Besides the matrix method presented in this Chapter, recursive algorithms, data

flow-graph methods and parallel calculations, similar to the Fast Fourier Transform, have

also been used to calculate the Rademacher-Walsh and other related transforms [22],

[24], [25] and [51]. All of the methods that have been mentioned reduce the necessary

number of calculations from nXn to nxlog2 n, but they still require excessive computer

memory. They also have some undesirable properties that are overcome by using the

second spectrum calculation method which will be introduced in Chapter V.

The principal properties of the coefficients of the S spectrum for completely

specified Boolean functions are shown below. The Properties derived from the fO'J well

known Walsh type transform matrices are taken from references [15], [21], [22], [24] and

[25]. Properties rnA, m.?, m.9-ill.13, m.16 and m.1? are new.

m.l The transform matrix of each ordering of the Walsh functions is complete and

orthogonal, therefore, there is no information lost in the S and R spectra, con

cerning the minterms of the Boolean function F.

III.2 Only the Hadamard-Walsh matrix describing the Hadamard-Walsh transform has

the recursive Kronecker product structure. Other possible variants of the Walsh

transforms, described by the corresponding matrices, are known in the literature

as the Walsh-Kaczmarz, Rademacher-Walsh, and Walsh-Paley transforms.

rn.3 Only the Rademacher-Walsh matrix is not symmetric; all other variants of Walsh

matrices are symmetric, so that, disregarding a scaling factor the same matrix can

be used for both the forward and inverse transform operations.

rnA Each spectral coefficient Sf or r/ is described by its order, subindices and magni

tude. The order of the spectral coefficient is equal to the number of subindices,

and the subindices are the subscripts of all variables of a standard trivial function

corresponding to the coefficient. The magnitude of a spectral coefficient is its
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value. In tlJ.e following material i, j, k denote subindices, and the order is

denoted by 0 •

III.5 When the classical matrix multiplication method is used to generate spectral

coefficients for different Walsh transforms (different T matrices represent dif

ferent Walsh functions with different orderings), the only difference in the result

is the ordering of the spectral coefficients. The coded vect~r M is the same for

all orderings of the Walsh functions. The values of the coefficients s/ and r/ with

the same subindices are the same for every ordering of the Walsh transforms.

III.6 Each spectral coefficient (either Sf or r/) gives a correlation value between the

Boolean function F and a standard trivial function u/ corresponding to the

coefficient. The standard trivial functions for the spectral coefficients are, respec

tively: for the dc coefficients (direct current coefficients) s/ or r/ (1 =0) - the

universe of the Boolean function F denoted by Uo; for the first order coefficients

s/ or r/ (1 = i, i ::;: 0) - the variable Xi of the Boolean function F denoted by Ui;

for the second order coefficients s/ (1 = ij, i ::;: 0, j ::;: 0, i ::;: j) - the Exclusive-OR

function between variables Xi and Xj of the Boolean function F denoted by Uij;

for the third order coefficients s/ or r/ (1 =ijk, i ::;: 0, j ::;: 0, k ::;: 0, i ::;: j, i ::;: k,

j ::;: k) - the Exclusive-OR function between variables Xi, Xj, and Xk of the

Boolean function F denoted by Uijk; etc.

III.? The number of spectral coefficients ofz-th order is equal to C~ =[~J. where n is

the number of variables of a Boolean function.

III.8 For a completely specified Boolean function the maximal value of any individual

spectral coefficient s/ is + 2n and the minimal value is - 2n • This happens when

the Boolean function F is equal to either a standard trivial function U/ (sign +) for

the maximal value or to its complement (sign -) for the minimal one. In either

case, all the remaining spectral coefficients have zero values because of the
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orthogonality of the transform matrix T.

m.9 The maximal value of any spectral coefficient rl except r 0 is + 2n - 1 and will

result when the Boolean function F is equal to complement of a standard trivial

function UI. The minimal value is - 2n - 1 and will result when F is equal to a

standard trivial function Ui. In either case, all the remaining spectral coefficients

have zero values because of orthogonality of the transform matrix T.

m.1O For an incompletely specified Boolean function the maximal value of any indivi

dual spectral coefficient SI is +2n - I and the minimal value is - 2n + 1. This

happens when the Boolean function F is equal to either the standard trivial func

tion, for the maximal value of SI, or to its complement for the minimal value, in

all but one of the minterm.

m.ll The maximal value of the ro spectral coefficient is + 2n and will result when the

Boolean function F is tautology. The minimal value is - 2n and will result when

F is equal to the complement of the tautology. The tautology is the logical func

tion for which all the minterms are true.

m.12 When for more than half of spectral coefficients, of any completely specified

Boolean function F the majority of the minterms have the same logical values as

the minterms of standard trivial functions the sum of all of the coefficients of the

S spectrum has a maximal value equal to + 2n • When for more than half of spec

tral coefficients the majority of minterms of F have the complemented logical

values to the minterms of standard trivial functions the sum of all of the

coefficients of the S spectrum has a minimal value equal to - 2n .

m.13 For any incompletely spe:ified Boolean function the sum of all of the spectral

coefficients of the spectrum S has a maximal value of + 2n - I and a minimal

value of - 2n + 1. The maximal or minimal value happens when the Boolean

function has exactly one don't care minterm and all the spectral coefficients and
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minterms follow the rule from Property III.12.

Ill.14 Every standard trivial function U/, except UQ, corresponding to an n variable

Boolean function F has the same number of true and false minterms, equal to

2n. -1.

III.15 For each true minterm the coefficients from the spectrum S are: S Q=2n. - 2, and

all remaining 2n. - I spectral coefficients s/ are equal to ± 2. The way of choosing

the signs of spectral coefficients is defined in Chapter V (Properties V.6 - V.8).

IlI.16 The spectrum S of each false minterm is given by s/ =O.

ill.17 For each don't care minterm the coefficients from the spectrum S are:

s Q= 2n. -1 - 1, and all of the remaining 2n. - 1 spectral coefficients s/ are equal to

± 1. The way of choosing the signs of spectral coefficients is defined in Chapter V

(Properties V.6 - V.8).

Example III.1 :

An example of the calculation of the Rademacher-Walsh spectrum S of a four variable

completely specified Boolean function is shown in Figure 5. The matrix T describes

discrete Walsh functions in Rademacher ordering. The coded truth vector M represents

the values of minterms of a Boolean function in the S coding. For this example, the func

tion from Figure 7 is used.
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T M S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 So
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 s4
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 2 s3
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 2 s2
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 2 s1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 6 s34
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -2 s24
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 = -6 s23
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 6 s14
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -6 s13
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 2 s12
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 6 s234
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -2 s134
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -2 s124
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 2 s123
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -2 s1234

Figure 5. Calculation ofRademacher-Walsh S spectrum of completely specified function.

Example III2:

An example of the calculation of Rademacher-Walsh spectrum S of a four variable

incompletely specified Boolean function is shown in Figure 6. In this example, the func-

tion from Figure 8 is used. One can notice easily, that the first entry in the vector M has

value 0 since it corresponds to the logical value don't care of the minterm described by

all variables negated on the Karnaugh maps of Figure 8. Since the Boolean function has

only one don't care minterm, all other entries in the vector M are either + 1 or - 1.
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T M S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -9 So
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -I -I -I -1 s4

1 1 1 1 -1 -I -1 -1 1 1 1 1 -1 -1 -I -1 -I 3 s3
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -I -I -I 7 s2
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 3 sl
1 1 1 1 -I -I -1 -I 1 1 1 1 -1 -1 -1 -1 -1 -5 s34
1 1 -1 -I 1 1 -1 -I -I -1 1 1 -1 -1 1 1 -1 -1 s24
1 -1 1 -I 1 -I 1 -1 -I 1 -1 1 -1 1 -I 1 -I = 3 s23
1 1 -1 -I -I -I 1 1 1 1 -I -1 -1 -1 1 1 1 3 sI4
1 -I 1 -1 -I 1 -1 1 1 -1 1 -1 -1 1 -I 1 1 -1 s13

1 -1 -I 1 1 -1 -1 1 1 -1 -1 1 1 -1 -I 1 -I 3 sI2
1 1 -1 -1 -I -1 1 1 -I -1 1 1 1 1 -1 -1 -1 -5 s234
1 -1 1 -1 -1 1 -1 1 -I 1 -1 1 1 -1 1 -1 -1 -1 s134
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -I 3 sI24
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 s123
1 -1 -1 1 -I 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 s1234

Figure 6. Calculation of Rademacher-Walsh S spectrum of incompletely specified function.

m.3 LINKS BETWEEN SPECfRAL AND CLASSICAL LOGIC DESIGN

A method of calculating Chow parameters, that are used in the classification of

linear logical functions was shown in [23]. The method was stated only for completely

specified Boolean functions. It was based on the computation of the number of agree

ments minus the number of disagreements between the values in the truth table of a

Boolean function rewritten to S coding and the values of each successive row of the

Rademacher-Walsh matrix T. Due to the relationships between the Chow parameters

and Rademacher-Walsh spectral coefficients [22], [23] and mumal relationships between

both spectra S and R stated for completely specified Boolean functions in [22], the same
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method can be applied for finding spectral coefficients of only completely specified

Boolean functions. However, the agreement - disagreement method, that is suitable for

hand calculations, takes into the consideration all 2n combinations of values of n vari

ables of a Boolean function which number is equal to 2n •

A similar method for hand calculation was proposed in [51]. The advantage of

this approach is that only one half of all the combinations of n variables of a Boolean

function has to be considered. Thus, the speed of this proposed technique is at least

twice the speed of the agreement - disagreement method. However, this method has been

presented only for completely specified Boolean functions and only for the spectrum S

(which was erroneously denoted by the symbol R in [51]). Due to mutual relationships

between both spectra this method can be easily extended for the calculation of the R

spectrum. In this Chapter, all possible relationships between spectral coefficients from

both spectra and classical logic terms are stated. Moreover, for the first time these rela

tionships are presented not only for completely specified Boolean functions but for

incompletely specified Boolean functions as well. The latter problem has been solved by

the author for both S and R spectra. It has also been checked that the relationships that

bind both these spectra together (equations rnA and ill.5) are still valid for tile spectra

calculated for incompletely specified Boolean functions. By expressing spectral

coefficients through different formulas (what has never been done thoroughly even for

completely specified Boolean functions) one is able to calculate the spectral coefficients

from different available data what makes the methods more flexible.

Let us show more clearly the meaning of rf and Sf spectral coefficients in classi

cal logic terms. Moreover, let us expand our considerations for incompletely specified

Boolean functions as well.

The following symbols will be used in the equations. Let a/ be the number of

true mintenns of a Boolean function F, where both the function F and the standard
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trivial function Uj have the logical values 1; let bj be the number of false minterms of the

Boolean function F , where the function F has the logical value 0 and the standard trivial

function Uj has the logical value 1; let Cj be the number of true minterms of the Boolean

function F , where the function F has the logical value 1 and the standard trivial function

Uj has the logical value 0; let d[ be the number of false minterms of the Boolean function

F , where both the function F and the standard trivial function Uj have the logical values

0, let ej be the number of don't care minterms of the Boolean function F , where the stan-

dard trivial function Uj has the logical value 1, and let Ij be the number of don't care

minterms of the Boolean function F I where the standard trivial function U[ has the logi

cal value O.

Then, for completely specified Boolean functions having n variables, the follow

ing formulas hold for all but the So and '0 spectral coefficient (when I ;c 0) :

and

(ill.!)

a[ + b[ =c[ + d[ =2n - 1

For the So and , 0 spectral coefficients (when I = 0) :

as Cj and d[ are both zero.

The relationships between both spectra R and S are as follows [22]:

and

when! ;c O.

(ill.2)

(ill.3)

(illA)

(ill.5)

Accordingly, for incompletely specified Boolean functions, having n variables, the fol

lowing formulas hold for all but the So and '0 spectral coefficient (when I ;c 0) :
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and

(III.6)

a[ +b[ + e[ = C[ + d[ +!I = 2n - 1.

For the So md ro spectral coefficients (when I =0) :

as C[, dE, andfI are all zero.

(III.?)

(III.8)

Subsequently, relations (ill.!-ill.8) are used, where necessary, to derive different

alternative expressions for spectral coefficients and the final fonnulas are presented.

The s[ spectral coefficient (when I =0) for completely specified Boolean functions can

be defined in the following alternative ways:

(III.9)

or

(III.10)

or

s[ =b[ - a[. (III.!!)

The s[ spectral coefficients (when I ::j: 0) for completely specified Boolean functions can

be calculated according to any of the following fonnulas:

s[ = 2 ( a[ +d[ ) - 2n (III.!2)

or

s[ = 2n - 2 ( b[ + C[ ) (III.13)

or

s[ = 2 ( a[ - C[ ) (III.14)

or

s[ = 2 ( d[ - b[ ) (III.15)

or
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SI = ( aI + dI ) - (hI + cI ). (ill.16)

Similarly, for completely specified Boolean functions having n variables, the rI

spectral coefficient (when 1=0) can he defined in three ways from equations (ill.9

m.ll) by using the relationship of equation (IlIA). The rI spectral coefficients (when

I '* 0) for completely specified Boolean functions having n variables can be defined in

five ways from equations (ill.!2-ID.16) by using the relationship of equation (III.5).

Let us now expand our considerations for incompletely specified Boolean func

tions having n variables. Then, the SI spectral coefficient (when 1= 0) can be defined in

the following alternative ways:

(III. I?)

or

(III.!8)

or

SI = hI - aI. (III.!9)

The SI spectral coefficients (when I '* 0) for incompletely specified Boolean functions

can be calculated according to the following formulas:

(III.20)

or

(III.21)

or

(III.22)

or

(III.23)

or

(III.24)
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Similarly, for incompletely specified Boolean functions having n variables, the '/

spectral coefficient (when I =0) can be defined in three ways from equations (ill. 17

III.19) by using the relationship of equation (IlIA). The r[ spectral coefficients (when

I :;C 0) for completely specified Boolean functions having n variables can be defined in

five ways from equations (ill.20-III.24) by using the relationship of equation (ill.S).

Here, it is interesting to note the following properties of the above equations.

First, equations (illA) and (ill.S) are valid for spectra calculated for both completely and

incompletely specified Boolean functions. Secondly, formulas (ill.ll) and (ill.19) for

the calculation of direct current (s0) and corresponding formulas for the calculation of

the r 0 coefficient are exactly the same for both, completely and incompletely specified

Boolean functions. The same phenomenon occurs in formulas (ill.l6) and (III.24) and in

the corresponding formulas for the calculation of the r[ (when I:;c 0) spectral

coefficients. A number of don't care minterms e[ and f [ are eliminated from these for-

mulas.

Of course, this does not mean that the spectral coefficients for incompletely specified

Boolean functions do not depend on the number of don't care minterms. They do, but this

dependence is included in the formulas (ill.6-III.8).

Example III.3:

As a numerical example, consider a four variable completely specified Boolean function

for which all standard trivial functions and the values of all corresponding a[, d[ are

given in Figure 7. This is the same Boolean function that was used in Example m.l.
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Figure 7. Standard trivial functions for completely specified Boolean function.
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Then, according to equations (III.9) and (III.12) the spectral coefficients s[ for this func

tion are as follows:

So = 16 - 14 = 2, S 1 = 18 - 16 = 2,

S2 = 18 - 16 = 2, S3 = 18 - 16 = 2,

S 4 = 22 - 16 = 6, S 12 = 18 - 16 = 2,

S13 = 10-16=- 6, S14= 22 -16= 6,

S23 = 10-16 =- 6, S24= 14-16=- 2,

S34 = 22 - 16 = 6, S 123 = 18 - 16 = 2,

S 124 = 14 - 16 = - 2, S 134 = 14 - 16 = - 2,

S234 = 22 - 16 = 6, SI234 = 14 -16 = - 2.

As can be seen from the above example the graphical method can generate spectral

coefficients of Walsh functions in any ordering, or only some subset of them. The spec

tral coefficients obtained have exactly the same values as the ones obtained for this

Boolean function by using the classical matrix multiplication method (Figure 5).

Example IlIA:

As a numerical example, consider a four variable incompletely specified Boolean func

tion for which all standard trivial functions and the values of all corresponding a[, d[, e[,

and f [ are shown in Figure 8. This Boolean function was used previously in Example

m.2.
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Figure 8. Standard trivial functions for incompletely specified Boolean function.
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According to equations (ill.17) and (III.20) the Sf spectral coefficients for this function

are as follows:

So= 16-24-1 =-9,S1 = 18+ 1-16=3,

s2=22+ 1-16=7,S3= 18+ 1-16=3,

S4 = 14+ 1-16 =-1, S12 = 18 + 1-16 = 3,

S13 = 14+ 1-16=-1, S14= 18 + 1-16=3,

S23 = 18 + 1 -16 = 3, S24 = 14 + 1- 16 = - 1,

S34= 10+ 1-16=-5, S123 = 14+ 1-16 =-1,

S 124 = 18 + 1 - 16 = 3, S 134 = 14+ 1 - 16 = - 1,

S234= 10+ 1-16=-5,s1234= 14+ 1-16=-1.

The spectral coefficients obtained have exactly the same values as the ones obtained for

the same Boolean function by using the classical matrix multiplication method (Figure

6).

The relations that have been determined in this Chapter allow the derivation of

many properties of spectral coefficients that are important in their applications in the

analysis and synthesis of logic circuits.



CHAPTER IV

WALSH TYPE TRANSFORMS FOR COMPLETELY AND

INCOMPLETELY SPECIFIED MULTIPLE-VALUED

INPUT BINARY FUNCITONS

IV.1 DESCRIPTION

A multiple-valued input binary function is an extension of a Boolean function.

Multiple-valued input binary functions find several applications in logic design, pattern

recognition, and other areas [38], [39] and [99]-[102]. In logic design, they are primarily

used for the minimization of PLAs that have 2-bit decoders on the inputs [5], and [100].

A PLA with r-bit decoders implements directly a sum-of-products expression (SOPE) of

a 2' -valued input binary function. As shown in [5], every set of m Boolean functions,

where each of them has n binary variables, can be represented as a n + 1 multiple-valued

input binary function with n binary inputs and one m -valued input. Thus, the standard

logic minimization problem for multiple-output functions can be seen as a multiple

valued minimization problem.

The choice of an orthogonal transform for a given problem is very important

since it affects the complexity of the calculations in the spectral domain as well as the

calculation of the forward and inverse transforms. Currently, the main tools that are used

for Boolean and multiple-valued (input as well as output) functions are the following

transforms: Walsh, C".restenson, Haar, Watari, polynomial Fourier transform, number

theoretic transform and the generalized discrete Fourier transform [15], [24] and [25]. In

general, the interpretation of the spectral coefficients, except for Walsh, of the above
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transforms is cumbersome or impossible. Only the Walsh spectrum, that can be applied

for Boolean functions, has an interpretation in classical logic terms. The Walsh spectral

coefficients can be calculated either from the minterms (Chapter III) or the disjoint cube

representation (Chapter V) of the function. Special transforms for multiple-valued input

binary functions have never been proposed.

In [39] the Mixed-Radix Exclusive Sum of Products concept was introduced for

multiple-valued input binary functions. This points out the usefulness of multiple-valued

generalizations of Reed-Muller transforms. Similarly, in this Chapter, Walsh-type spectra

for multiple-valued input binary functions are proposed. There are two Walsh spectra for

Boolean functions, S and R (Chapter III). Conventionally, the first spectrum, S, is used

for analysis and synthesis of Boolean functions while the second one, R , is used in the

design for testability of digital circuits [22]. It should be noticed, however, that each of

these spectra can be used interchangeably since they are linearly related by Equations

(rnA) and (rn.S). One can expect similar applications of the transforms Sand R

transforms introduced here for multiple-valued input binary functions.

The author's main reason for the introduction of such type of new transforms was

for the author the requirement of developing the transform which has a minimal number

of coefficients and an easily understood interpretation. This Chapter introduces a new

approach to spectral methods. First, the transform for a binary function of n multiple-

valued variables is a vector of [~J partial transforms of all pairs of these variables what

minimizes the necessary spectral information to be kept about the function (partial

coefficients). Secondly, the partial coefficients describe some global properties of the

function and can be used by themselves, as well as for generating the final coefficients.

Thirdly, the interpretation of each partial transform is given in classical logic terms (min

terms). The values of partial spectral coefficients for completely and incompletely

specified multiple-valu~d input binary functions are expressed by the number of true,
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false and don't care minterms in the standard trivial functions corresponding to these

coefficients.

All of the investigations presented can be applied to any multiple-valued input

binary function. In the case that such a function has more than two multiple-valued vari

ables then either the presented below approach can be applied to them or the multidimen

sional Walsh¥ transform can be used [21]. The latter approach is similar to pattern

analysis and image processing and is not considered in this Dissertation.

IV.2 MULTIPLE-VALDED INPUT BINARY FUNCTIONS

A multiple-valued input binary function called a (binary function for short) is a

mappingf (Xl ,X2" ., ,Xn ):P 1 x P2 X, .... ,Pn ~B, where Xi is a multiple-valued

variable that takes the values from the set Pi = {O, 1, ... , Pi - I} and B ={O, 1,-} (

where - denotes a don't care value). This is then the generalization of an ordinary n

input incompletely specified Boolean function f :B n ~ B .

A literal of multiple-valued input variable Xi, denoted by Xfl, is defined as fol-

lows:

(IV.1)

A product oj literals, xfI ,X~z, ... ,xli, (k ~ n ) is referred to as a product term

(also called as term for short). A product term that includes literals for all function vari

ables X h X2, X3, ... ,Xn is called a jull term. A minterm of a multiple-valued input

binary function is a full term in which every set Si reduces to a single logical value. The

logical function has value 1 for a true minterm, value °for a false minterm and is not

specified for a don't care minterm. A sum of products is denoted as a sum-oj-products

expression (SOPE) while a product of sums is called as a product-oj-sums expression
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(POSE).

IV.3 DEFINITIONS AND BASIC PROPERTIES OF TWO-DIMENSIONAL

MAPS FOR MULTIPLE-VALUED INPUT BINARY FUNCTIONS

Two spectral representations, S and R, are introduced in the next section for

multiple-valued input binary functions. The analogous definitions exist for Boolean func

tions (see Chapter ill). In order to apply new spectral representations to binary functions,

they are first represented by the set of two-dimensional maps on which the Walsh type

transforms are performed. The auxiliary algorithm allowing any multiple-valued input

binary function to be represented by a set of two-dimensional maps will be introduced.

The approach presented in this Chapter is not the only one possible for finding

new spectral representations of the multiple-valued input binary functions. For example,

instead of presenting each multiple-valued input binary function in the form of two

dimensional maps it is possible to use high-dimensional Hadamard matrices and

transforms [56]. The approach presented however, enables the application of two

dimensional transforms to two-dimensional maps and, as a result, each spectral

coefficient has an easy interpretation in logic terms. Moreover, the spectra can be calcu

lated by known fast Walsh algorithms [22], [24], [25] and [56], and by the method

presented in Chapter V.

The following symbols will be used in the presentation. Let n denote the number

of different variables of a completely or incompletely specified multiple-valued input

binary function. Let Pm denote the number of different logical values that can be

assigned to any of the variables. It is obvious, that there exists only one such Pm that is

maximal for the entire set of input variables, and that each input variable can take a dif

ferent number of logical values.

The following properties are valid for any multiple-valued input binary function
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and can be proven by mathematical induction.

Property IV.I: Any multiple-valued input binary function can be represented by [~J

two-dimensional maps where each map has, as the coordinates, two different variables

from the set of all variables and the dimension of Pi x Pj where Pi and Pi are the maxi

mal number of logical values that can be assumed by two different variables Xi and Xj,

accordingly.

Property IV.2: A full term of a multiple-valued input binary function of n variables is

represented by [~J two-dimensional maps. The number of cells (areas on these map) that

correspond to the full term can be found according to the formula ~l[mj .:t mil where
]~ 1=]+1

mi is the number of logical values of the i - th literal. This property is valid for any term.

However, for variables that are not included in this term, one has to take the value of Pi

instead of mi in the above formula for each variable Xi .

Property IV.3: A minterm of a multiple-valued input binary function of n variables is

represented by [~J two-dimensional maps and on each of these maps the minterm is

represented by one cell. Hence the number of cells that correspond to such a minterm is

equal to the number of two-dimensional maps.

Property IVA: The two-dimensional Pm xPn maps described above can be transformed

to partial spectral coefficients by an orthogonal Walsh-type transform without loss of any

information if both numbers Pm and Pn are some powers of 2, possibly different.

Let us obseIVe, that while in classical tables for multiple-valued logic [39] and

[99] each minterm corresponds to a cell, in the proposed representation each minterm is

represented by a set of cells, one cell from each map. The last requirement (Property

IVA) for the dimension of the map representing the function is due to the known ways of

generating Hadamard matrices and to the requirements for the orthogonality of such

matrices [81]. Since such a requirement would limit the possible number of different
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logical values for input variables, the more general approach is presented below.

Proposition IV.1 : The two-dimensional Pm X Pn map is expanded to the two-dimensional

p~ x Pn* map where Pm and Pn are any integer values describing the multiplicity of logi

cal values of input variables, p~ =Pm + 4 - (Pm mod 4 ) and p,i =Pn + 4 - (Pn mod 4 )

accordingly. When the map is expanded all of the introduced cells have don't care

values.

Proposition IV2: The number of additional don't care cells that have to be added during

the expansion process of the two-dimensional Pm X Pn map is equal to

a) Pn [4-(Pm mod 4)] when(Pn mod 4)=Oand(Pm mod 4)*0

b) Pm [4 - (Pn mod 4) ] when (Pm mod 4) = 0 and (Pn mod 4) *0

c) Pn [4 - (Pm mod 4)] + Pm [4 - (Pn mod 4)]

+ [ 4 - (Pm mod 4 )] [4 - (Pn mod 4 ) ]

when both (Pm mod 4 )*0 and (Pn mod 4 ) *O.

The following algorithm describes how an arbitrary multiple-valued input binary

function can be represented by the set of two-dimensional maps. It is assumed in the fol

lowing description that the function is represented in the SOPE form. The dual algorithm

can be derived for the function represented in the POSE form. It is obvious, that the

algorithm can be applied to the binary function represented in the form of cubes as well.

Algorithm IV.I: Transformation of multiple-valued input binary function in SOPE form

to the set of two-dimensional matrices ofany dimensions.

1. Set nl (number of literals in the binary function) and nt (number of terms in

SOPE form).

2. For each pair of literals of the function create a two-dimensional Pm; x Pmj map

where Pm; and Pmj are the maximal values of the i - th and j - th literal. The

number of such maps is equal to ri] (Property IV.I).
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3. For each term from the SOPE expression enter the true values into some cells of

the two-dimensional maps. The total number of such cells in the maps having

true values can be found for each term using Property IV.2. If step 3 has been per

formed for each term (i.e. nt times) then stop.

Hence, by using Algorithm IV.I, one can represent any multiple-valued input

binary function in the form of the set of two-dimensional maps. In general. both dimen

sions of such maps are equal to any integer numbers. Due to Property IVA. the addi

tional algorithm converts a two-dimensional map to its equivalent (from the point of

view of the logic function this map is representing) that has the dimensions equal to 2i

where j is any integer number.

Set the value k - the number of two-dimensional maps br a given multiple

valued input binary function.

For each map do:

k=k-I.

2.

Algorithm IV.2: Conversion of any two-dimensional map having one or two dimensions

different from a power of2 to its logical equivalent having dimensions that are powers of

2.

1.

If either Pm or Pn or both these values are not some powers of 2 then

modify either Pm or Pn or both to either P';; or Pn* or both using Proposi

tion IV. 1.

If there was any modification of the dimensions of the map then fill the

expanded map's cells with don't cares, and the number of such cells can

be calculated using Proposition IV.2.

3. Ifk =0 then stop otherwise go to step 2.

The following proposition deals with the dimension of the transform matrix that

is necessary to calculate the spectrum of a two-dimensional map. In the case when
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Algorithm IV.2 has not expanded. the original map's dimension (dimensions) then instead

ofp~ or Pn* the original values Pm and Pn should be used. in the following formula.

Proposition IV.3: The Hadamard-Walsh matrix T of the dimension 2n x2n can transform

the two-dimensional map having the dimension P~ x Pn* iff n =log2 [p,;;, Pn* J.
The application of both algorithms will be shown in the following example.

Example IV.I:

Consider the following three-variable multiple-valued. input binary function:

f I =X{O) y{I) +X{I.2) y{O.3) Z{I.2,3) (IV.2)

Then, according to Algorithm IV.I nL =3 and nt =2. The three two-dimensional maps

for this binary function that correspond to each pair of the variables are shown in Figure

9. (the areas on the maps filled with ones and zeros only). For instance, the term

X (O) Y ( 1) corresponds on the map X Y to the cell X (O) Y (1), on the map Y Z to the

cells Y ( 1) Z (O. 1. 2. 3), and on the map X Z to the cells X (O) Z ( O. 1.2. 3). Then all these

areas are filled. with ones. Originally, according to Algorithm IV.I the dimensions of

these maps are 4 x 3, 4 x 4 and 3 x 4. After the application of Algorithm IV.2 the dimen

sion of the first and third maps have increased. to 4 x 4 and the expanded areas are filled

with don't cares. The final result is shown in Figure 9.
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X
3y 0 1 2

0 0 1 1 -

1 1 0 0 -

2 0 0 0 -

3 0 1 1 -

z
y 0 1 2 3

0 0 1 1 1

1 1 1 1 1

2 0 0 0 0

3 0 1 1 1

Z
2X 0 1 3

0 1 1 1 1

1 0 1 1 1

2 0 1 1 1

3 - - - -

f = Xl •2yO,3zl.2,3 G xOyl

Figure 9. Set of two-dimensional maps for3-variable binary function.

Hence, by using Algorithm IV.! and Algorithm IV.2 one can always represent a

multiple-valued input binary function in the form of a set of two-dimensional maps hav

ing the dimensions equal to powers of 2. In the next section the application of Walsh

type transforms to these two-dimensional maps will be shown.
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IVA BASIC PROPERTIES OF HADAMARD-WALSH SPECTRA S AND R FOR

TWO-DIMENSIONAL MAPS REPRESENTING MULTIPLE-VALUED

INPUT BINARY FUNCTIONS

In order to shorten the notation and make it similar to that of other authors, it is

assumed that the symbol n that is used in what follows conforms to the requirements of

Proposition IV.3. The properties of Walsh spectral coefficients for Boolean functions

presented in Section ill.2 will be rewritten in what follows to conform to the properties

that are valid for the spectral representation of the multiple-valued input binary functions

presented in this Chapter. Since possible alternative spectra of such binary functions can

be based on high-dimensional Hadamard matrices [56] the Hadamard order of Walsh

functions is used in this presentation. Such an approach allows the alternative spectrum

of binary functions to be derived from the presented spectra. Since both spectra are

based on the same ordering there is no need to do additional conversion operations

between orderings. Since the spectrum based on high-dimensional Hadamard matrices

has a non-minimum number of spectral coefficients only the spectrum based on the con

cept of two-dimensional maps is presented in this Chapter. The properties of

Hadamard-Walsh spectra of such maps follow.

The Hadamard-Walsh S spectrum of a two-dimensional map is an alternative

representation of the map. When the map is represented as a vector Y formed of consecu

tive rows the Hadamard-Walsh S spectrum is formed by the multiplication of the <+1, 0,

-1> vector representation Ys (corresponding to the original vector Y for an incompletely

specified map) by a 2n x 2n Hadamard-Walsh matrix (Chapter m. In the coding scheme,

the conventional <0, 1, -> values correspond to <+1, -1, 0> coding, respectively (- stands

for a don't care). In the case of a completely specified two-dimensional map the conven

tional <0, 1> values correspond to <+1, -1> coding only.
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If one keeps the original coding scheme then the alternative R spectrum can be

defined. The Hadamard-Walsh R spectrum of a two-dimensional map is an alternative

representation of the map. When the map is represented as a vector V formed of consecu

tive rows, then the Hadamard-Walsh spectrum R is formed from the multiplication of the

<0, 1, 0.5> vector representation VR (corresponding to the original vector V for an

incompletely specified map) by a 2n x 2n Hadamard-Walsh matrix T. In the coding

scheme, the conventional <0, 1, -> values correspond to <0, 1,0.5> coding, respectively.

The principal properties of the R and S spectra for two-dimensional maps are

described below. It will be assumed without loss of generality that each map has two 4

valued variables as the coordinates, denoted in this description as X, - the horizontal vari

able and Y, - the vertical variable, accordingly. Also, for simplicity, instead of using the

full set notation for the description of the multiple-valued literals, only the members of

the set will be denoted. For example, the literal X ( I, 3) will be described as X 1. 3 and the

same abbreviation in the notation for spectral coefficients will be used as well. When the

properties of the spectral coefficients of both the S and R spectra are the same, such pro

perties will be given for the coefficients of the S spectrum only and this fact will be

noted in the description of the property. When these properties differ then both spectra

will be described separately.

The new properties of the spectra for two-dimensional map representation of the

multiple-valued input binary functions given below can be derived from the properties of

the spectral coefficients describing Boolean functions that were described in Chapter III.

The names of transforms used below, refer, of course, to the multiple-valued counterparts

of the respective transforms known in the literature as Walsh-Kaczmarz, Walsh-Paley,

Rademacher-Walsh, and Hadamard-Walsh. Only these four basic orderings are com

pared. The transform matrices for each of these four basic orderings are the same for

multiple-valued input binary functions and Boolean functions. The former are described
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by the vector of spectra of each two-dimensional map (where each of such maps is

treated as a separate two-variable binary function), while the latter is described by only

one spectrum (a Boolean function can be treated as only one two-variable binary function

and be represented by only one two-dimensional map).

T VR R

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 10 rO

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -2 r';',3

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -2 rzU

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -2 rzl,2

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -4 ryl,3

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 0 r';',~ y1.3

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 0 rz1,~ y1.3

1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 = 0 rzl,~ yl,3

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 0 4 r;,3

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0 0 r.;.,~;,3

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 0 0 rZl,~;,3

1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 0 0 rzl,~;,3

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0 2 ryl,2

1 -1 1 -1 -1 1 -1 1 . 1 -1 1 1 -1 1 -1 1 -2 r';',~ yl,2-1

1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 -2 rz1,~ yl,2

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -2 rzl,~ yl,2

Figure 10. Spectrum R for completely specified map ofZ and Y variables.

Properties describing spectra of Boolean functions are mainly based on the onho-

gonality of the transform matrices (Chapter ill). When properties describing multiple-

valued input binary functions are derived then the restrictions on the dimensions of the

transform matrices have to be considered as well.

IV.5 The transform matrix is complete and onhogonal, and therefore, there is no infor-

mation lost in the Sand R spectra, concerning the cells of the map.
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IV.6 Only the Hadamard-Walsh matrix has the recursive Kronecker product structure

[22], [24], [56], [68] and [82] and for this reason is preferred over other possible

variants of the Walsh transform, known in the literature as Walsh-Kaczmarz,

Rademacher-Walsh, and Walsh-Paley transforms.

IV.? Out of the four considered orderings of Walsh functions, only the Rademacher

Walsh transform is not symmetric; all other variants of Walsh transforms are

symmetric, so that, disregarding a scaling factor, the same matrix can be used for

both the forward and inverse transform operations.

IV.8 Each spectral coefficient Sf (as well as rj) gives a correlation value between the

two-variable input binary function F corresponding to a given two-dimensional

map and a standard trivial function Uf corresponding to this coefficient. The stan

dard trivial functions for the spectral coefficients are, respectively, for the dc

coefficient (direct current coefficient) - the universe of the function (where all

cells on the map have true value) denoted by Uo; for the coefficients SXl,2, SX2,3,

Syl,2, SY2,3 etc. (first order coefficients) - the literals X I, 2, X2. 3, yl,2, y2,3 of the

binary function shown on the map and denoted by UXi,}, UX},l, UYi,}, Uy},l; for the

coefficients SXl,2$ y2,3, SX2,3 $ yl,2, SX2,3 $ y2,3, SXl,2$ yl,2, etc. (second order

coefficients) - the exclusive-or function between literals XI. 2 €a y2. 3,

X2,3 €a y I, 2, X2, 3 €a y2. 3, X I, 2 €a Y I, 2 of the binary function shown on the map

and denoted by UXi,} $ y},l or by UXi.} $ yi,}. In all the formulas, i, j, and k are

different integer numbers, i =1, j =2, k =3. In short, the dc coefficient can be

denoted by Sf (I =0), first order coefficients by Su (I =i , j, i ;c 0, j ;c 0, i ;c j ,

and L is a literal), second order coefficients by SL If ~ L 2f (I =i, j, i ;c 0, j ;c 0,

i ;c j , and L 1, L 2 are two different literals).

IV.9 The sum of all spectral coefficients of the S spectrum for any completely

specified two-dimensional map is ± 2n •
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IV.IO The sum of all spectral coefficients of the S spectrum for any incompletely

specified two-dimensional map is not ± 2n •

IV.II The maximal (minimal) value of any individual spectral coefficient of spectrum S

is ± 2n • This happens when the binary function represented in a given two

dimensional map is equal to either a standard trivial function Uj (sign +) or to its

complement (sign -). In either case, all the remaining spectral coefficients have

zero values because of the orthogonality of the transform matrix T.

IV.12 The maximal (minimal) value of any but '0 individual spectral coefficient 'j is

± 2n -1. This happens when the binary function represented on a given two

dimensional map is equal to either a standard trivial function U/ (sign -) or to its

complement (sign +). In either case, all but '0 remaining spectral coefficients

have zero values because of the orthogonality of the transform matrix T.

IV.13 The maximal value of the '0 spectral coefficient is 2n • It happens when all the

cells of the two-dimensional map have the logical value l.

IV.14 Each standard trivial function u/' except U0, corresponding to a two-dimensional

map has the same number of true and false mintenns equal to 2n - 1.

IV.l5 The S spectrum of each true cell of a two-dimensional map is given by

So =2n - 2, and all remaining 2n - 1 spectral coefficients S/ are equal to ±2.

IV.16 The S spectrum of each don't care cell of a two-dimensional map is given by

So =2n - 1, and all remaining 2n - 1 spectral coefficients Sf are equal to ± 1.

IV.l? The S spectrum of each false minterm of a two-dimensional map is given by

S/ =0.

Example IV.2:

An example of the calculation of the R spectrum of a completely specified two

dimensional map is shown in Figure 10. The calculation of the S spectrum for the same
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T vS S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -4 So
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 4 s.;;.,3
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 4 szl,3
1 -1 -1 1 1 -1 -I 1 1 -1 -1 1 1 -1 -1 1 -1 4 szl,2
1 1 1 1 -1 -1 -I -1 1 1 1 1 -1 -1 -1 -1 -1 8 Syl,3
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 0 s';;',lJ y1,31

1 1 -1 -1 -1 -1 1 1 1 1 -1 -I -1 -1 1 1 -1 0 SZl,lJ y1,3
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 = 0 szl,~ yl,3
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 -8 s;,3
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 0 s';;',lJ ;,3
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 0 szl,lJ ;,3
1 -1 -1 1 1 -1 -1 1 -1 1 1 -I -1 1 1 -1 1 0 Szl,~;,3

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -4 syl,2
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 4 s';;',lJ y1,2
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 4 szl,lJ y1,2
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 4 szl,~ y1,2

Figure 11. Spectrum S for completely specified map of Z and Y variables.

The next example of the calculation of the R spectrum of an incompletely specified two-

dimensional map is shown in Figure 12. The calculation of the S spectrum for the same

incompletely specified map is shown in Figure 13. All of the examples are done for two

maps of the multiple-valued input binary function considered previously (Figure 9). The

spectrum for the third map of this function can be calculated in a similar manner.
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T VR R

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 7 rO
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 r';,3

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 rzl,3

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 US -1 rzl,2

1 ~ 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 ry1.3

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 0 -1 r';,3) y1,3

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 0 -1 rzl,3) y1,3

1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 US = -1 rzl,231 yl,3

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 r';',3

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0 1 r';,3) ';',3

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 0 1 rzl,3) ';',3

1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 US 1 rzl,231 ';',3

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0 3 ryl,2

1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 r';,3) yl,2

1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 rzl,3) yl,2

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 US -5 rzl,231 yl,2

Figure 12. Spectrum R for incompletely specified map of X and Y variables.

Recursive algorithms, data flow-graph methods and parallel calculations similar

to the Fast Fourier Transform [22], [24], [25], [56], [82] and [88] can be used to calculate

the transforms introduced above. The advantages of calculating Walsh spectra based on

the cube representation of logic functions are discussed in Chapter V. The corresponding

algorithms for Boolean functions are presented in Chapter V as well. The Walsh spec-

trum of multiple-valued input binary functions described in this Chapter can also be cal-

culated in the most efficient way also by using the disjoint cube representation of these

functions. The extension of the method presented in Chapter V for the spectral represen-

tation of multiple-valued input binary functions is described in [92] and [103].
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T vS S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 So

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 2 s';',3

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 2 sx1,3

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 0 2 sx1,2

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 2 Syl,3

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 2 s';',~ yl,3

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 2 sxl,~ yl,3

1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0 = 2 sx1,2) y1,3

1 1 1 1 1 1 1 1 -1 -I -1 -I -1 -1 -1 -I 1 -2 sf,3
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -2 s';',~ )'2,3

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -2 sxl,3} f,3
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 0 -2 sx1,2) f.3
1 1 1 1 -1 -1 -I -1 -1 -1 -1 -1 1 1 1 1 1 -6 Syl,2

1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 2 s';',~ yl,2

1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 2 sx1,3} yl,2

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 0 10 sx1,2) y1,2

Figure 13. Spectrum S for incompletely specified map of X and Yvariables.

IV.S LINKS BETWEEN SPECfRAL AND CLASSICAL LOGIC DESIGN

The material presented in this section is valid, not only for two-dimensional maps

representing multiple-valued input binary functions, but for Boolean functions and their

Karnaugh map representations as well. If the latter is the case then in all of the following

formulas n corresponds to the number of variables of the Boolean function and the two

dimensional map corresponds to a Karnaugh map rewritten from Gray-code to straight

binary code (in the case of a 4 x 4 dimensioned map, the second and third rows have to

be mutually interchanged - the same applies to the second and third columns). For

multiple-valued input binary functions n fulfills the requirements of Proposition IV.3 and
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when both P~ and Pn* from this proposition are equal then n represents the number of

different logical values that can be assumed by each of the literals of the binary function.

The meaning of all other symbols that are going to be introduced below is the same for

both Boolean functions and two-dimensional maps.

Hence, let us show more clearly, in classical logic terms, what the real meaning

of the spectral coefficients is for each map. The following symbols will be used. Let a[

be the number of true cells in the two-dimensional map, where both the map and the

standard trivial function u[ have the logic values of 1; let b[ be the number of false cells

in the two-dimensional map, where the map has thP. logic value 0 and the standard trivial

function u[ has the logic value 1; let c[ be the number of true cells in the two

dimensional map, where the map has the logic value 1 and the standard trivial function

u[ has the logical value 0; let d[ be the number of false cells in the two-dimensional map,

where both the map and the standard trivial function u/ have the logic values 0, let e[ be

the number of don't care cells in the two-dimensional map, where the standard trivial

function u[ has the logic value 1, and let!/ be the number of don't care minterms of a

two-dimensional map, where the standard trivial function u[ has the logic value O. Then,

for a completely specified n x n two-dimensional map, these formulas hold:

(IV.3)

and

a[ +b/ =c[ +d[ =2 n - 1 . (IVA)

Accordingly, for an incompletely specified n x n two-dimensional map, these fonnulas

hold:

(IV.5)

and

a/+b[+e/=c/+d[+![ =2n - 1. (IV.6)

The Sf spectral coefficients for a completely specified two-dimensional map can be
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defined as follows:

(IV.7)

when! =0,

(IV.8)

when! 1::0.

The spectral coefficients for an incompletely specified two-dimensional map can be

defined as follows:

(lV.9)

when! =0

and

(IV.lO)

when! 1::0.

As one can see, for the case when both e/ =0, and 1/ =0, i.e., for the completely

specified two-dimensional maps, equations (IV.9) and (IV. 10) reduce to equations (lV.7)

and (IV.8). And again, by easy mathematical transformations, one can define all spectral

coefficients, except So, as follows:

(IV.11)

when! 1::0.

The So spectral coefficient can. be rewritten as follows:

s/ = b/ - a/ • (lV.l2)

Thus, in the final formulas, describing all s/ spectral coefficients, the number of don't

care minterms e/ +1/ can be eliminated. Moreover, the final formulas are exactly the

same as the ones for the completely specified two-dimensional map. This is due to the

fact that equation (IV.6) for the numbers a/, b/, c[, dI , e/, and II links all these values

together.
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Let us show now the meanings of the 'I spectral coefficients. The meanings of all

the symbols aI, bI, CI, dI, eI, and flare exactly the same as described previously.

The 'I spectral coefficients for a completely specified two-dimensional map can be

defined as follows:

(IV.13)

when! =0,

(IV.14)

when! ;cO.

The spectral coefficients for an incompletely specified two-dimensional map can be

defined as follows:

(IV.IS)

when! =0

and

when! ;cO.

!I -er
'r = cr - ar + 2, (IV. 16)

As one can see, for the case when er =0 and !I =0, Le., for the completely specified

two-dimensional map, equations (IV.lS) and (IV.16) reduce to equations (IV.13) and

(IV. 14) presented previously for'I spectral coefficients.
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Note: P 1= { 0, 1, 2, 3 }

Figure 14. Standard trivial functions for completely specified two-dimensional map.
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The application of the above formulas will be shown in the following examples

(all examples are for the spectra in Hadamard-Walsh order).

Example IV.3:

Consider the completely specified two-dimensional map describing the relationship

between four-valued variables Y and Z for the binary function from Figure 9. All stan

dard trivial functions and the corresponding values of a[, C[, and d[ for this map are

shown in Figure 14.

The R spectrum for this map can be calculated using equations (IV.!3) and (IV.14):

ro= 10,rz2,3=4-6=-2,

rzl.3 = 4 - 6 = - 2, rzl.1 = 4 - 6 = - 2,

ryl.3 = 3 -7 = - 4, rz1.3 EB yl.3 =5 - 5 =0,

r zl.3 EB yl.3 = 5 - 5 =0, rzl.1EB yl.3 = 5 - 5 = 0,

ry2,3 = 7 - 3 = 4, rz2,3 EB y2,3 = 5 - 5 = 0,

rzl.3 E9 y2,3 = 5 - 5 = 0, rzl.1EB y2,3 = 5 - 5 = 0,

ryl.1= 6 -4 = 2, rz2,3EB yl.1=4 - 6 = - 2,

rzl.3ED yl.1 = 4 - 6 = - 2, rzl.1EB yl.1 = 4 - 6 = - 2.

The S spectrum for this map can be calculated using equations (IV.7) and (IV.8):

so= 16-20=-4,sz2,3=20-16=4,

SZI.3 =20 -16 =4, SZI.1= 20-16 = 4,

Syl.3 = 24 - 16 = 8, Sz2,3 EB yl.3 = 16 - 16 = 0,

SZI.3 EB yl.3 = 16 - 16 = 0, SZI.1EB yl.3 = 16 - 16 = 0,

Sy2,3 = 8 - 16 = - 8, SZ2,3 EB y2,3 =16 - 16 = 0,

SZI.3 ED y2,3 = 16 - 16 = 0, SZI.1EB y2,3 = 16 - 16 = 0,

Syl.1 = 12 - 16 = - 4, SZ2,3 EB yl.1 = 20 -16 = 4,

SZI.3 ED yl.1 =20 - 16 =4, SZI.1EB yl.1 = 20 - 16 = 4.
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Figure 15. Standard trivial functions for incompletely specified two-dimensional map.
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As one can find, the obtained R and S spectra are exactly the same as the ones calculated

by the classical method shown in Figure 10 and Figure 11.

Example IVA:

Consider the incompletely specified two-dimensional map describing the relationship

between four-valued variables Y and X for the binary function from Figure 9. All stan

dard trivial functions and the corresponding values of aI, CI, d[, e1, and f I for this map

are shown in Figure 15.

The R spectrum for this map can be calculated using equations (IV.l5) and (IV.l6):

0-4
'0 = 5 + 2 = 7, 'X2,3 = 3 - 2+--z = 1- 2 = -1,

'XI,3 = 1- 2 = - 1, rx l,2 = - 3 + 2 = - 1,

'yl,3 = - 1, 'X2,3 EB yl,3 = - 1,

'y2,3 =1, 'X2,3 EB y2,3 =1,

'yl,2 = 3, 'X2,3 EB yl,2 = - 1,

The S spectrum for this map can be calculated using equations (IV.9) and (IV.lO):

So= 16-10-4=2,sx2,3= 14+4-16=2,

Sxl,3 = 14 + 4 - 16 = 2, SXl,2 = 14 + 4 - 16 = 2,

Syl,3 = 14 + 4 - 16 = 2, Sx2,3 EB yl,3 = 14 + 4 - 16 = 2,

Sxl,3EB yl,3 = 14 + 4 -16 = 2, Sxl,2EB yl,3 =14 + 4 -16 = 2,

Sy2,3 =1O+4-16=-2,sx2,3EBy2,3= 10+4-16=-2,

Sxl,3EBy2,3 = 10 + 4 -16= - 2, Sxl,2EBy2,3 =10 + 4-16 = - 2,

Syl,2=6+4-16=-6,sX2,3EByl,2= 14+4-16=2,

Sxl,3EByl,2= 14+4-16=2,sxl,2EByl.2=22+4-16= 10.
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As one can find, the R and S spectra obtained are exactly the same as the ones calculated

by the classical method shown in Figure 12 and Figure 13.

As the final example the S and R spectra for the third two-dimensional map representing

the binary function f will be shown. This time, the calculations are not shown but can be

performed by any of the methods already presented.

Example IV.5:

Consider the incompletely specified two-dimensional map describing the relationship

between four-valued variables X andZ for the binary function from Figure 9.

The R spectrum for this map is as follows:

ro =12, r z2,3 =- 2,

r z l.3 = - 2, r z l.2 = - 2,

r x l.3 =2, r z2,3 t:Bx1.3 =0,

r z l.3 t:B XI •3 = 0, rzl.Z t:B XI•3 = 0,

r x 2,3=2, r z2, 3 t:Bx2,3=0,

r z l.3 t:B X2,3 =0, rzl.Z t:B x2,3 = 0,

r x l.2=0, r zZ, 3 t:Bxl •2 =2,

r z l.3 EB x l •2 =2, rzl.Z t:Bxl.Z = 2.

The S spectrum for this map is as follows:

So =- 8, SZ2,3 =4,

SZI,3 = 4, SZI.2 =4,

SXI.3 = - 4, SzZ,3 t:Bxl,3 =0,

SZI.3 t:B XI •3 =0, SZI.Z t:B xl.3 = 0,

SXZ,3 = - 4, SZZ,3 t:B XZ,3 =0,

SZI,3 t:BxZ,3 =0, SZI.2t:BxZ,3 =0,

Sx l ,2 = 0, SzZ, 3 t:B xl,Z =- 4,
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Then the multiple-valued input binary function from the Figure 9 is represented

by a vector which is composed of three sets of spectral coefficients. The values of all

three spectra are given in Example IV.3, Example IVA, and Example IV.5.



CHAPTER V

EFFECITVE COMPUTER METHODS FOR THE CALCULAnON OF

THE RADEMACHER-WALSH SPECTRUM FOR COMPLETELY AND

INCOMPLETELY SPECIFIED BOOLEAN FUNCTIONS

V.I DESCRIPTION

In this Chapter a new computer method for the calculation of the Rademacher

Walsh spectrum of incompletely specified Boolean functions is introduced. The method

can calculate a Walsh spectrum of any ordering since the algorithm is independent of the

ordering of the spectrum. Since a direct linear relationship exists between the R and S

spectra described by equations (rnA) and (ill.5) then this Chapter uses mainly the S

spectrum. The computer method has been implemented in the DIADES automation sys

tem [14], [89], [90] and [92].

The method presented in this Chapter can be regarded as representative of a

whole family of two kinds of methods and approach that is presented here can be easily

adapted to other transforms used in digital logic design. For example, the adaptation of

the method for Adding and Arithmetic Transforms was described in [104], while the

adaptation of the same method for the Reed-Muller Transform is presented in Chapter

VIT. The method is also universal for multiple-valued binary functions and its extension

to Walsh spectra of such functions was presented in [103]. The method was also applied

to the Reed-Muller transform of multiple-valued binary functions in [92].

The algorithm presented can be applied to both completely and incompletely

specified Boolean functions. It operates on the disjoint cube representation of a Boolean



64

function. By this approach, each spectral coefficient can be calculated separately or all

of the coefficients can be calculated in parallel. These advantages are absent in existing

methods.

In order to use Boolean functions that are represented as arrays of nondisjoint

cubes, an additional fast algorithm to generate disjoint cubes is presented. Use of the dis

joint cubes representation of Boolean functions has been found advantageous in many

algorithms used in digital logic design [3], [18], [37]-[39], [54] and [108].

The theory introduced for calculating the spectral coefficients is new. The

method presented also allows for the calculation of the spectra of a system of Boolean

functions. When the system of incompletely specified Boolean functions is processed

there is a restriction that all the functions in the system are assumed to be undefined at

exactly the same points (minterms of a Karnaugh map). Optimal completion of don't

care minterms for such a system of Boolean functions from the point of view of a

minimal number of spectral coefficients different from 0 (in order to obtain a simpler

implementation of such a system of functions) was presented in [15]. However, this is a

large restriction. The method presented here can not only process such functions but can

also deal with any system of completely or incompletely specified Boolean functions.

Each function in the system of functions processed by the method can have a don't care

minterm anywhere in the function's domain.

V.2 ALGORl1HM TO GENERATE DISJOINT CUBES

A new algorithm is shown that generates a representation of completely or incom

pletely specified Boolean functions in the form of arrays of disjoint ON- and DC- (if any)

cubes or an array of disjoint OFF-cubes. A peculiar feature of the algorithm, which

speeds up its execution, is the fact that in comparison to known algorithms it minimizes

the number of cube calculus operations. The algorithm introduced here generates a dis-
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joint cubes representation of a Boolean function. In such a representation each Boolean

function is shown in the form of a set of arrays of disjoint cubes that completely covers

the function.

The new algorithm can be applied to completely as well as to incompletely

specified Boolean functions. As the input data, the Boolean functions are represented in

the form of arrays of nondisjoint ON- cubes (in the case of a completely specified

Boolean function) and ON- and DC- cubes or ON- and OFF- cubes (in the case of incom

pletely specified Boolean functions). An ON- array of the Boolean function F

corresponds directly to a sum-of-products expression (SOPE) of F (the cubes are com

posed of true minterms). A DC- array (an array of don't care cubes) has cubes that

include minterms where function F evaluates to either 0 or 1 (don't care minterms). An

OFF- array includes cubes of all minterms, where the function F evaluates to 0 (false

minterms). The computer algorithms that operate on incompletely specified Boolean

functions represent them either as arrays of ON- and DC- cubes or as arrays of ON- and

OFF- cubes [3], [54], [29] and [30].

The algorithm introduced here converts an array of nondisjoint cubes to an array

of disjoint cubes. The main motivation for this part of the research was to create a very

fast preprocessing m~thod to generate input data for the new algorithm calculating the

Rademacher-Walsh spectrum of Boolean functions directly from disjoint ON- and DC

cubes rather than minterms (Section V.3). Hence, the new algorithm for the generation

of the disjoint cubes representation of Boolean functions is important for both classical

[3], [43] and [54] and spectral [15], [21], [22], and [25] techniques of designing digital

logic. Similar preprocessing algorithms were described and used previously in the PAL

MINI [37], UMINI [38], EXORCISM [18], and EXORCISM-MY [39] programs, but the

new algorithm is more efficient since it does not use sorting and minimizes the number of

cube calculus operations used.
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Reference [38] discusses applications of minimally split product implicants in

logic synthesis. Table 1 in [38] presents the ratio of the number of minimally split pro

duct implicants to the number of minterms for each function from the MCNC bench

mark. This ratio varies from 0.008 for function t3 to 1 for function pla4. However, for

large functions this ratio is significantly smaller than 1. This results from the method of

generation of the minimally split product implicants [38] that their number is usually

much larger than the number of disjoint cubes, which is close to the number of prime

implicants in a minimal cover. Therefore, for most Boolean functions, the number of

disjoint cubes is much smaller than the number of minterms in the classical algorithms

used to generate spectra.

The same new algorithm for creating disjoint cubes can be applied separately to

an array of ON- cubes, an array of DC- cubes, and an array of OFF- cubes when the last

array is used in the description of Boolean functions. The only drawback of the new algo

rithm is the fact that the generated arrays of cubes do not always have the largest avail

able disjoint cubes as the solutions. However, this feature is not important in the case of

the programs mentioned above which can use this algorithm as a preprocessor for their

data representation of Boolean functions.

It is assumed, that the data for the algorithm is a logical function represented in

the array of cubes form. It is enough to have any two of the three possible arrays of

cubes. It will now be demonstrated how, from the nondisjoint set of cubes, one is able to

generate a disjoint set of cubes, by applying a sequence of well-known operations on

arrays of cubes [3], [43] and [54]. Cube operations of disjoint sharp, absorption, and

intersection are used in the algorithm.

The following notation will be used in the description of the new algorithm. Dur

ing the execution of the main loop, every time two cubes Ca and cb are compared. The

cubes describing a given Boolean function are stored in an array A. The pointer a indi-
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cates the position of the cube Ca in the array A which is the first in the pair of cubes

being compared, the pointer b indicates the position of the second cube in the pair. Note,

that the pointer a changes its values from 1 to cu - 1 (where cu is the current number of

cubes in the array) and the pointer b changes its values from cu to 2 accordingly. At any

given moment, the value of the pointer b is always greater by at least 1 than the value of

the pointer a. During the execution of the algorithm the content of the array A changes

dynamically and the final number of cubes in this array can be different from the original

number of cubes. That is due to the fact that two cube operations used in the algorithm

have the following properties: 1) the disjoint sharp operator (denoted by #j) can generate

more than one cube as its result, 2) absorption can remove some cubes and decrease by

that the total number of cubes.

Algorithm V.I: Generation ofdisjoint cubes.

Symbols:

a ,b : pointers to two different cubes,

cubea , cubeb : determine the cubes pointed to by a, and b in the cube list,

d : number of solution cubes generated by the disjoint sharp operation,

m : number of cubes in the cube list before entering a new loop,

cu : number of cubes during execution of the loop.

so : final number of disjoint cubes.

Algorithm:

step 1. set a and b to the following positions in the cube list:

a := l,b :=nc,m :=cu

where cu is the initial number of cubes in the cube list

step 2. Main loop :



For each pair of cubes cubea and cubeb from an array A do:

if an intersection of cubes cubea and cubeb is not an empty set

then

{ if cubea absorbs cubeb

then {substitute cubeb by the last cube of the array A ;

cu := cu -1;

ifb =a then go to step 3

else go to step 2}

else {calculate the d solution cubes from the disjoint sharp

operation cubeb #j cubea ;

replace cubeb by one solution cube and add

the other ones to the end of the array A ;

cu :=cu +d -1;

ifb ::;; a then go to step 3

else go to step 2} }

else { b := b - 1;

ifb ::;; a then go to step 3

else go to step 2}

step 3.

b :=cu;

a :=a + 1;

ifa = m then so =b; stop

else m := cu;

68
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go to step 2.

Example V.I:

An example of an application of this algorithm is shown below. The array cube[cu]

describes the array A , the array sol[so ] is the result of one disjoint sharp operation. The

order of the cubes is chosen in such a way that all different branches of the algorithm are

passed through. Figure 16 shows the states of the algorithm when the content of the

array of cubes has been changed. The figures in Figure 16 are referred to in the descrip

tion below. The symbol "." denotes the beginning of a new loop in the algorithm, the

indentation shows the inner and outer loop.

step I : Initialization

number ofcubes cu =5;

Figure 16 a

step 2 : Loop

• cu =b =5 ; a = 1 ;

intersection cube[l] f1 cubel4] = 1100;

absorption cubel4];to 1100;

disjoint sharp: cubel4] #j cubell] :

solll] = 01XX

soll2] = 111X

soll3] = 1101

substitute cubel4] with soIl1];

place the rest ofsolution cubes at the end of the array

Figure 16 b



cu =cu + d - 1 =7

• cu = 7 ; a = 1 ,. b = 3 ;
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intersection : cube[l] (J cube[3] =0

• cu = 7 ; a = 1 ,. b = 2 ..

intersection: cubeO] (J cube[2] =0

• cu = 7 ; a = 2 ; b = 7 ..

intersection : cube[2] (J cube[7] =0

• cu =7 ; a =2 ; b =6 ;

intersection:

absorption :

cube[2] (J cube[6] = ll1X;

cube[6] = l11X;

substitute cube[6] with cube[n] and remove cube[n]

Figure 16 c

• cu=6;a=2;b=5;

cube[5] is DC-cube

• cu=6;a=2;b=4,.

intersection: cube[2] (J cube[4] =0

• cu = 6 ; a = 2 ; b = 3 ;

intersection: cube[2] (J cube[3] =lXll,.

absorption : cube[3] '¢ lXll ..

disjoint sharp: cube[3] #j cube[2] :

solO] =OXll ..

substitute cube[3] with sol[l]

Figure 16 d



• cu=6;a=3 ;b=6;

intersection: cube[3J (") cube[6J = 0

• cu = 6 ; a = 3 ; b =5 ;

cube[5J is DC-cube

• cu = 6 ; a = 3 ; b =4 ;

intersection: cube[3J (") cube[4J = 0111;

absorption : cube[4J *' 0111

disjoint sharp : cube[4J #j cube[3J:

sol[lJ = OIOX

sol[2J = 0110;

substitute cube[4J with sol[lJ;

place sol[2J at the end ofthe array

Figure 16 d

• cu =7 ,. a =4 ; b =7 ;

intersection: cube[4J (") cube[7J =0

• cu=7;a=4;b=6;

intersection: cube[4J (") cube[6J =0

• cu =7 ; a =4 ; b =5 ;

cube[5J is DC-cube

• cu =7 ; a = 5 ; b = 7 ;

cube[7J is DC-cube

• cu =7 ; a =6 ; b =7 ;

intersection: cube[6J (") cube[7J = 0

71
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solution a"ay :

Figure 16 e

In order to generate disjoint DC-cubes the same algorithm has to be performed on

the DC-cubes. In the above example, it is obvious, that the single DC-cube is a disjoint

one and the algorithm does not have to be called.

The next two sections describe the properties used to develop the computer

method to generate the Rademacher-Walsh spectra for completely and incompletely

specified Boolean functions (Section V.3) and for systems of completely and incom

pletely specified Boolean functions (Section VA).

V.3 APPLICAnON OF AN ARRAY METHOD FOR THE CALCULAnON

OF SPECTRAL COEFFICIENTS OF COMPLETELY AND

INCOMPLETELY SPECIFIED BOOLEAN FUNCTIONS

An algorithm already exists for calculating spectral coefficients for completely

specified Boolean functions directly from a sum-of-products Boolean expression [22] and

[33]. In case the implicants are not mutually disjoint this algorithm requires additional

correction to calculate the exact values of spectral coefficients for minterms of Boolean

function F that are included more than once in some implicants. By using a representa

tion of Boolean functions in the fonn of an array of disjoint cubes one can apply the

existing algorithm without having to perform any additional correction operations,

because, for an array of disjoint cubes as input data the exact values of spectral

coefficients can be calculated immediately. Here the extension of the algorithm to

incompletely specified Boolean functions is proposed.



X1,X2,X3,X4

1XOOON

1X1XON

XXII ON

X1XXON

0000 DC

1XOOON
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0000 DC

l11XON

1101 ON
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a. input array b. cube[4] #j cube[l]

1XOOON

1X1XON

XXII ON

01XXON

ooDCסס

1101 ON

1XOOON

1XIXON

OXll ON

01XXON

0000 DC

1101 ON

c. absorption of cube[6] d. cube[3] #j cube[2]

- 0 1\ 0

Ci L .. \1/ 1

I' 1 [1 l'
1 0 f\l 1/

1XOOON

lX1XON

OX11 ON

010XON

ooDCסס

1101 ON

0110 ON

e. cube[4] #j cube[3]

Figure 16. Algorithm generating disjoint cube representation in stages.
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In what follows the properties of the existing algorithm are rewritten in notation

corresponding to our representation of Boolean functions with n variables in the form of

arrays of disjoint cubes. This is the first time all the properties describing incompletely

specified Boolean functions have been presei1ted.

Definition V.l: The cube of degree m is a cube that has m literals that can be either in

affirmation or negation (Le., m is equal to the sum of the number of zeros and ones in the

description of a cube).

Let symbol p denote the number of X's in the cube. Then, n =m +p.

Example V.l:

Consider the cube IX 00. It is a cube of degree 3 since three of the literals describing this

cube are either in affirmation (x 1) or negation (x3 and x 4)' The cube does not depend on

literalx2·

Definition V2: The panial spectral coefficient ofan ON-or DC-cube with degree m ofa

Boolean function F is equal to the value of the spectral coefficient that corresponds to the

contribution of this cube to the full n -space spectrum of the Boolean function F .

The number of partial spectral coefficients npsc describing the Boolean function F is

equal to the number of ON- and DC- cubes describing the function. When the Boolean

function is described by its truth table (a set of true, false, and don't care minterms) then

the number of partial spectral coefficients of the Boolean function in this representation

is equal to the sum of the number of ON- and DC- minterms. Let symbol fm denote the

number of false minterms. Then, npsc =2n - f m.

ExampleV2:

Consider Table I representing the array method of calculating spectral coefficients. Each

row in this Table shows the partial spectral coefficients of either ON- or DC- cubes of a

Boolean function. The function in the example has seven partial spectra. The number of

partial spectra is equal to the number of disjoint ON- and DC- cubes describing the
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function (npsc =7).

Suppose arrays of disjoint ON- and DC- cubes that fully define Boolean function

F are given. Then each cube of degree m can be treated as a minterm within its particu

lar reduced m -space of function F. Let us recall that the spectrum of each true minterm

is given by So =2n - 2, and all remaining 2n - 1 coefficients are equal to ± 2 (Property

ill. IS). Similarly the spectrum of each don't care minterm is given by SDC 0 =2n - 1,

and all the remaining 2n -1 -1 coefficients are equal to ± 1 (Property m.17). The sym

bols SDC f denote spectral coefficients corresponding to DC- cubes (when I =0, the sym

bol SDC 0 denotes a direct current spectral coefficient corresponding to a DC- cube).

Cubes of degree m have the following properties.

V.l The contribution of an ON- cube of degree m to the full n-space spectrum of

function F (where n is the number of variables in the function F) is:

and

where I 'I: 0.

So in full n-space =2n - 2 x 2P

Sf in full n-space = Sf in m-space x 2P

(V.l)

(V.2)

V.2 The contribution of a DC- cube of degree m to the full n -space spectrum of func

tion F is:

SDC 0 in full n-space = 2n -1 - 2P

and

SDC f in full n-space = SDC fin m-space x 2P

where I 'I: 0.

(V.3)

(VA)

Notice that when the above formulae are applied to minterms (Le., for m =n , and p =0)

they reduce to Properties ill.15 and m.17. The contribution of a DC- cube of degree m is

equal to one half of the contribution of an ON- cube that has the same degree m. More-



76

over, the contribution of ON- or DC- cubes of degree m to the full n -space spectrum of

function F can be expressed for So as the absolute value of the sum of all negative spec

tral coefficients corresponding to these cubes.

Equations (V.2) and (VA) determine the absolute values of those partial spectral

coefficient s/ that are not equal to zero for a given cube. Properties V.3 - V.5 determine

the signs of the partial spectral coefficients, and if some of them are equal to zero.

Example V3:

Consider again Table I. The value of partial spectral coefficient so, corresponding to the

ON- cube lXOO (n =4, p =1), is equal to 24 - 2 X 21 = 12 according to (V.l). The abso

lute values of those partial spec!J'al coefficients s/ that are not equal to zero are calculated

according to (V.2) and are equal to 2 x 21=4.

The value of partial spectral coefficient So corresponding to the DC- cube 0000 (n =4,

P =0) is equal to 23 - 2° =7 according to Equation (V.3). The absolute values of those

partial spectral coefficients s/ that are not equal to zero are calculated according to equa

tion (VA) and are equal to 1 x 2° = 1.

The following properties determine which partial spectral coefficients have values

zero for an ON- or DC- cube of the degree m .

V.3 If in a given cube the Xi variable of a Boolean function is denoted by the symbol

"X", then all of the partial spectral coefficients s/ whose indexes I contain the

subindex i are equal to O.

VA If in a given cube each of the variables of a Boolean function Xi, Xj, Xk, etc. from

the complete set of all variables of the function is denoted by the symbol "X",

then every partial spectral coefficient s/ whose index I contains the subindices i,

j, k, etc. is equal to O.

V.5 For an ON- or DC- cube of degree m the number of nonzero partial spectral
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coefficients is equal to 2n - p •

Example V.4:

Consider again Table 1. The variable x 2 is denoted by symbol X in the cube IX 00. Then,

by Property V.3 the values of all partial spectral coefficients with a subindex of 2 are

equal to zero. Therefore, S 2 =S 12 =S23 =S 24 =S 123 =S 124 =S 234 =S 1234 =O. For this

cube, by Property V.5, the number of partial spectral coefficients different from zero is

equal to 24 - 1 =8.

The cube IX IX has two variables denoted by the X symbols: x 2, and x4. Therefore, by

Property V.4, only the partial spectral coefficients So, S 1> S3, and S13 are different from

zero (by Property V.5 the number of these coefficients is equal to 24 - 2 =4).

The following properties describe the signs of each partial spectral coefficient Sf,

where I "# 0, and are valid for ON- and DC- cubes of any degree:

V.6 If in a given cube the Xi variable of a Boolean function is in affirmation, then the

sign of the corresponding :first order coefficient is positive; otherwise for a vari

able that is in negation, the sign of the corresponding first order coefficient is

negative. If in a given cube the xi variable of a Boolean function is in

affirmation, then the sign of the corresponding :first order coefficient is positive;

otherwise for a variable that is in negation, the sign of the corresponding :first

order coefficient is negative.

V.7 The signs of all even order coefficients are given by multiplying the signs of the

related first order coefficients by - 1.

V.8 The signs of all odd order coefficients are given by multiplying the signs of the

related first order coefficients.
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Example V5:

Consider again Table 1. In the ON- cube 1X 00 the variable x 1 is in affinnation, while the

variables X3 and X4 are in negation. Therefore, by Property VA the sign of the partial

spectral coefficient s 1 is positive and the signs of partial spectral coefficients s3 and s4

are negative.

The signs of second order coefficients are determined by Property V.7. The sign of the

even order partial spectral coefficient s 13 of cube 1X00 is positive, since this sign is

determined by the product of the related first order coefficients, s 1 and s3, times - 1, i.e.,

(-1) x 1 x (- 1) =1.

The signs of the third order coefficients are determined by Property V.8. The signs of the

partial spectral coefficient s 134 of the same cube is positive since it is detennined accord

ing to Property V.8 as the product of the related first order coefficients, s 1> S3, and S4 and

the result is 1 x (- 1) x (- 1) = 1.

The algorithm is as follows:

Algorithm V.l: Calculation of spectral coefficients for completely and incompletely

specified Boolean functions.

1. For each ON- and DC- cube of degree m , calculate the value and the sign of the

contribution of the cube to the full n -space spectrum according to the properties

described previously.

2. The values of all of the spectral coefficients s/, except So are equal to the sum of

all of the contributions to the spectral coefficients from all ON- and DC- disjoint

cubes from an array of cubes.

3. For a completely specified Boolean function the value of the dc spectral

coefficient So is equal to the sum of all of the partial spectral coefficients

corresponding to all of the disjoint ON- cubes describing the function, times the
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correction factor - (k - 1) x 2n , where k is the number of disjoint cubes in the

array of ON- cubes.

4. For an incompletely specified Boolean function the value of the dc spectral

coefficient So is equal to the sum of all of the partial spectral coefficients

corresponding to all of the disjoint DC- cubes describing the function, times the

correction factor - (w - 1) x 2n , where w is the number of disjoint cubes in the

array of DC- cubes.

5. For an incompletely specified Boolean function the value of the dc spectral

coefficient So is equal to the sum of all of the partial spectral coefficients

corresponding to all of the disjoint ON- and DC- disjoint cubes describing the

function, multiplied by the correction factor - (k - 1) x 2n - w x 2n -1 , where k

is the number of disjoint ON- cubes, and w is the number of disjoint DC- cubes.

The correction factor - (k -1) x 2n is due to the fact that the cubes over the complete

n -space have been added k times during the calculation of the k partial spectral

coefficients. A similar explanation applies to DC- cubes ac; well.

Of course, the algorithm can calculate each coefficient separately or in parallel. If some

of the 2n spectral coefficients are not needed for a particular application, then a reduced

number of operations can be performed.

Example V.6:

An example of the calculation of the S spectrum for a four variable incompletely

specified Boolean function is shown in Table I. The function in this example is the same

as the one used in Example rn.2, rnA and V.l. Figure 16 showed the stages of the execu

tion of the algorithm generating the disjoint cube representation for the same function.

The input data for the algorithm for this section was presented in Figure 16.e. The array

of disjoint cubes representing the function is repeated from Figure 16.e as the first

column in Table I. The values and signs of all of the partial spectral coefficients for this
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function are determined by Properties V.1 - V.8. The results of the application of these

properties are shown for two cubes.

The spectral coefficients of the first ON- cube in Table I (cube 1XOO of degree m =3) are

as follows:

1. within its own m -space, treated as a single minterm:

So =6, S 1 =2, S 2 =0, S 3 =- 2, S 4 =- 2, S 12 =0, S 13 =2, S 14 =2,

S23 = 0, S24 =0, S34 =- 2, SI23 =0, S124 =0, S 134 =2, S234 =0, SI234 =0.

2. within the full n-space of Boolean function F (partial spectral coefficients):

So =12, S 1 =4, S 3 =- 4, S 4 =- 4, S 13 =4, S 14 =4, S 34 =- 4, S 134 =4.

On the other hand, the spectral coefficients of the DC- cube in Table I (cube 0000 of

degree m =4 Le., single minterm) are as follows:

1. within its own m -space, treated as a single minterm:

so=?, sl=-l, s2=-1, s3=-1, s4=-1, SI2=-1, SI3=-1,

S14 = -1,

s23=-l, s24=-1, s34=-1, Sl23=-l, SI24=-l, SI34=-1,

S234=-1,SI234=-1.

2. within the full n -space of Boolean function F (partial spectral coefficients) - the

same as within its own m -space since it is a single minterm.

In order to obtain the values of all of the spectral coefficients of the whole function,

except So, the columns of partial spectral coefficients corresponding to all cubes describ

ing the function are added (step 2 of the algorithm). The value of So is obtained by the

addition of all partial spectral coefficients with the correction factor (step 5 of the algo

rithm).

The resulting spectrum is shown at the bottom row of Table T, and, as it can be easily

checked, is exactly the same as the one obtained by matrix multiplication in Example
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ID.2 and by using the standard trivial functions in Example IDA.

TABLE!

COMPLETE RADEMACHER-WALSH SPECTRUM S

XIX2 X3 X4 So Sl S2 S3 S4 S12 S13 S14 S23 S24 S34
lXOOOiN 17 4 -I. -4 4 4 -4
1X1XC N 8 8 ~ U -~ U C
Xll 0 N 17 -I. I. 4 4 4 -,
11XON 12 -I. - U -4 U l

JC JODe 7 -1 -1 - -1 -1 -1 -1 -1 -1 -1
11 ION 14 2 2 -2 2 - 2 - 2 -2 2
U110 UN 14 -2 2 2 -2 " 2 - -1- 1- 2

-9 3 7 3 -1 - -1 - 3 -1 -5

XIX2 X3 X4 S12~ S 24 S 34 S234 S1 '34
1XOO N ( , t
lXIX ( l t
OX11 - - t
01 t.1 U ( U
00 DC -1 -1 - -1 -1
11 ON -2 2 - -2 2
Ul ION -2 2 -2 -2

-1 3 -1 -~ -1

VA CALCULATION OF SPECTRAL COEFFICIENTS FOR SYSTEMS OF

COMPLETELY AND INCOMPLETELY SPECIFIED BOOLEAN FUNCTIONS

The algorithm from the previous Section can be modified easily to calculate

Walsh spectra of systems of Boolean functions. The calculation of a Walsh spectrum for

a system of completely specified Boolean functions was presented in [15] for the R cod

ing. There, the calculation of the R spectrum of a system of incompletely specified

Boolean functions, with the following restriction is considered.

Restriction V.1: When a system of incompletely specified Boolean functions is con

sidered then all of the functions of the system have the same don't care minterms (i.e.,

the same cells of Karnaugh maps are not specified in every function of the system).
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The method presented in [15] has, however, all the drawbacks of the classical approach

of spectral methods since it uses matrix calculation methods.

In this section the representation of systems of Boolean functions with the above

restriction on a system of incompletely specified Boolean functions is presented for the

first time for S coding. Moreover, the representation of systems of incompletely

specified Boolean functions that can have any don't care minterms is introduced. When

applied to a system of Boolean functions, the method still has all of the advantages

described in the previous section.

Let us assume that the functions in the system are in the order: F [1], F [2],

F [3], ... F [u], where u is the number of the functions in the system and the function

F [u] is on the rightmost position in the system. Then, for the system of completely

specified Boolean functions and for the system of incompletely specified Boolean func

tions, with Restriction V.1, the following properties hold:

V.9 The contribution of the spectrum of the function F [i], i =1,2, .. ,u to the total

spectrum of a system of Boolean functions STOT is equal to the spectrum S[i] of

the function F [i] calculated by Algorithm V.1, which in turn has to be modified

by Equation (V.5).

V.lO The total spectrum of a system of Boolean functions STOT is equal to the sum of

all the modified spectra of all the Boolean functions in the system.

The contribution of the spectrum of the "i-th" function F [i] to the total spectrum of a

system of u Boolean functions is denoted in Equation (V.5) by Si[i] and the spectrum of

the "i-th" function calculated by Algorithm V.1 is denoted by S[[i]'

si[i] = 2" - i X S[[i]

Recall that S denotes the spectrum and S a spectral coefficient.

When the more general case of a system of incompletely specified Boolean func-

tions having arbitrary don't care mintelIDs is considered, the system has to be represented
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by two spectra - one corresponding to the don't care minterms of the system and the

second corresponding to the true minterms. The requirement of having two separate

spectra for a system of arbitrary incompletely specified Boolean functions is caused by

the properties of the Rademacher-Walsh matrix T. If Properties V.9 and V.IO were

applied to don't care and true minterms of an arbitrary system of incompletely specified

Boolean functions, then the original system of functions would not be retrieved when the

inverse transfonn is applied. For example, the contribution of the don't care minterm for

the function F [u - 1] to the total spectrum of the system of Boolean functions would be,

in a case of using both Properties V.9 and V.lO, the same as the contribution of the true

mintenn of the function F [u]. Therefore, Properties V.9 and V.lO can be applied to an

arbitrary system of incompletely specified Boolean functions only after representing each

of the functions in this system by two arrays of cubes: one of only don't cares minterms

and the other of only true minterms. The total spectrum has to be calculated for each of

these arrays separately. Then, the system of incompletely specified Boolean functions

should be processed by the following algorithm.

Algorithm V3: Spectral coefficients calculation for a system of arbitrary incompletely

specified Boolean functions.

1. Represent each function in the system of Boolean functions by arrays of disjoint

ON- and DC- cubes according to Algorithm V.l.

2. Calculate the spectrum of an array of ON- cubes for each separate function F [i]

according to Algorithm V.2.

3. Calculate the total spectrum STOT ON of the system by using Properties V.9 and

V.lO.

4. Calculate the spectrum of an array of DC- cubes of each separate function F [i]

according to Algorithm V.2.
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5. Calculate the total spectrum STOT DC of the system by using Properties V.9 and

V.10.

Example V.7:

An example of ui.e calculation of spectra STOT ON and STOT DC of a system of two incom

pletely specified Boolean functions (u = 2), having four variables, is shown in Table IT

and Table m. The function F [2] in this example is the same as the one used in Example

m.2, rnA, V.1, V.6. The function F [1] is taken from [12]. Both functions have no res-

triction in the choice of don't care minterms, therefore Algorithm V.3 has to be per

formed. The original functions are presented in Figure 17a - function F [1] , and Figure

17d - function F [2]. The sets of ON- minterms that describe ON- cubes is presented in

Figure 17b, and Figure 17e. The sets of DC- minterms are shown in Figure 17c and Fig

ure 17f. The corresponding arrays of ON- and DC- cubes are generated by Algorithm V.1

(step 1).

c.

3'~d 01 11 10
2
00 0 0 0 0

01 0 0 - 0

0 0 - 011

10 0 0 0 0

b.

3'M 01 11 10
2
00 0 1 0 0

01 0 1 0 0

11 0 0 0 1

10 0 1 1 0

Xl,XXl,X2
0 1 0 000

01 0 1 - 0

11 0 0 - 1

10 0 1 1 0

a.

X3'~d 01 11 10
2
00 - 0 0 0

01 0 0 0 0

11 0 0 0 0

10 0 0 0 0

Xl.X
X3·M 01 11 10

2
00 0 0 1 0

01 1 1 1 1

11 1 1 1 1

10 1 0 1 1

Xl,X
X3'~d 01 11 10

2
00 - 0 1 0

01 1 1 1 1

11 1 1 1 1

10 1 0 1 1

Xl,X

d. e. f.

Figure 17. Incompletely specified Boolean functions F [1] and F [2].
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The execution of the second step of Algorithm. V.3 for ON- cubes is shown in the first

two rows of Table II. The modified value of the spectrum of function F [1] is shown in

the third row of Table II (step 3). Since for the function F [2] the modified value of the

spectrum is equal to the original one this value is not repeated in the table. The total

spectrum STOT ON of this system of functions is the sum of rows one and three. The result

of this addition is shown in the row 4 of Table II.

TABLE II

SPECfRUM S TOT-ON OF A SYSTEM OF BOOLEAN FUNCTIONS

So Sl S2 S3 S4 S12 S13 S14 S23 S24 S34

5r21 -10 2 6 2 -2 2 -2 2 2 -2 -6
5m 6 2 -2 -2 2 2 -6 6 -2 2 10
,srll 12 4 -4 -4 4 4 -12 12 -4 4 20

STOTON 2 6 2 -2 2 6 -14 Iq. -2 2 14

The execution of the fourth step of Algorithm V.3 is shown in the first two rows of Table

m. The modified value of the spectrum of function F [1] is shown in the third row of

Table ill (step 5). Since for the function F [2] the modified value of the spectrum is

equal to the original one, this value is not repeated in the table. The total spectrum

STOT DC of thi!'. system of functions is the sum of rows one and three and is shown in row

4.

The system of Boolean functions considered is represented by two spectra, STOT ON and

STOT DC, shown in Table II and Table m.
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TABLE ill

SPECTRUM S TOT-DC OF A SYSTEM OF BOOLEAN FUNCTIONS

So I SI S2 S3 S4 S 12 S13 S14 I S23 S24 S34-
I r21 7 -1 -1 -1 -1 -1 -1 -1 I -1 -1 -1
rIl 6 U 2 2 2 U U u I -2 -2 -2

.'fll 12 U 4 4 4 U U u I -4 -4 -4
STOTDC 19 -1 3 3 3 -1 -1 -1 I -5 -5 -5

SI23 S124 s134 S234 S1234
Sr21 -1 -1 -1 I -1 I -1
SrIl U a u 2 U
Srll U U U 4 I U

STOTDC -1 -1 -1 3 -1

A system of completely specified Boolean functions or incompletely specified Boolean

functions with Restriction V.I can be represented by one spectrum. For this Algorithm

V.3 can be simplified to VA.

Algorithm VA: Spectral coefficients calculation for a system of an incompletely specified

Boolean functions (with Restriction V.I) or a system of completely specified Boolean

functions.

1. Represent each function in the system of Boolean functions by arrays of disjoint

ON- and DC- cubes according to Algorithm V.l.

2. Calculate the spectrum of each separate function F [i] according to Algorithm

V.2.

3. Calculate the total spectrum STOT of the system by using Properties V.9 and V.10.



CHAPTER VI

A FAMILY OF ALL ESSENTIAL RADIX-2 ADDmON AND SUBTRACTION

MULTI-POLARITY TRANSFORMS WITH ALGORITHMS AND

INTERPRETATIONS IN THE BOOLEAN DOMAIN

yr.l DESCRIPTION

Encouraged by a multiplicity of applications of Fourier, Walsh and Reed-Muller

transforms the author is investigating new orthogonal transforms that can find applica

tions in Boolean minimization, testing, image coding, cryptography and communication.

With respect to the simplicity of the implementation the author assumes that the opera

tions used in the transformations are ordinary addition and subtraction. One of these

transforms is the well-known Hadamard-Walsh transform (Chapter mthat is applied

here to binary and ternary vectors. One of the other transforms considered, when applied

to binary vectors, is called the Arithmetic transform [96]. However, this transform has

never been applied to ternary vectors. The third transform, which is completely new, is

called the Adding transform, and is applied to binary and ternary vectors.

The transfonns mentioned above are obtained by introducing some operations on

matrices and considering a family of first order matrices. Two new operations on

matrices: the row-wise and column-wise joins (concatenations) of two matrices are used

to create transfonns of radix-2. The elementary second order matrices are expanded by

using the standard tensor product ofmatrices known also as the direct or Kronecker pro

duct [15], [22], [24], [56], [64], [68] and [82].

In this Chapter it will be shown that when elementary second order matrices are
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composed of only 0, 1 and - 1 there are only four essential types of radix-2 transforms

(one of them is the identity matrix). All other permutations of elements 0, 1, and - 1

create second order matrices that can be obtained from the essential types by multiplica

tion with some permutation matrices. Since the identity matrix is a trivial case from the

point of view of transformation there are only three essential matrices of second order

considered. After expansion of the basic types by using the Kronecker product the

derived higher radix transforms are used to create spectra of binary and ternary vectors.

For each of the three transforms, the interpretation of each particular spectral

coefficient on a Kamaugh map is presented. All mathematical relationships between the

number of true, false, and don't care minterms in the Kamaugh map regions which

correspond to standard trivia/functions (where a standard trivial function is the region of

a Kamaugh map corresponding to the given spectral coefficient) are stated for both cod

ings and all three types of transforms.

In this presentation only ordinary subtraction and addition operations are used.

Since the generalized Reed-Muller transforms [19], [55], [93], [94] and [95] (with all

possible 2n :fixed polarities for n variable Boolean functions) have been found useful in

Boolean minimization, design for testability, and image processing, the author proposes

here to apply the same idea of fixed polarities for all the three transforms. The detailed

description of the calculation of the generalized Reed-Muller transform using a disjoint

cube description of Boolean functions is presented in Chapter VIT. The concept of dif

ferent polarities of the new transforms is important from the point of view of the analysis

and synthesis of digital networks. It is already well known, for example, that the fixed

polarity Reed-Muller form can be better implemented for many Boolean functions than

the standard sum-of-products expression [94]. The same savings, from the point of view

of the computer memory used for storing the spectra, are valid for the new transforms as

well.
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A very important property of the new transforms should also be noted. With

Reed-Muller transforms there is more than one expression for an incompletely specified

Boolean function [95]. In the case of the new transforms this property is no longer valid

on the contrary, each incompletely specified Boolean function has only one spectrum.

Hence, there is an exact relationship between incompletely specified Boolean functions

and their spectra So, it is always possible to use the new transforms to calculate inverse

transforms for incompletely specified Boolean functions. In the case of completely

specified Boolean functions none of the new transforms, nor the Reed-Muller transform

lose any information and it is always possible to calculate the inverse transforms.

VI.2 DEFINITIONS OF ESSENTIAL RADIX-2 MATRICES

Some families of matrices will be defined. The building blocks for the definitions

are three fundamental elements (matrices of orders 1 x 1) : 0, - 1, and + 1. The following

operations on these matrices are introduced here.

Definition VI.l: A row-wise join or concatenation of a matrix A of order n x m and a

matrix B of order n x m is the partitioned matrix C of order n x2 m such that its first m

rows are exactly the same as the rows of matrix A and the rows from m + 1 to 2m are

exactly the .same as the rows of matrix B . This operator is denoted by the symbol "RWJ".

Definition VI.2: A column-wise join or concatenation of a matrix A of order n x m and a

matrix. B of order n x m is the partitioned matrix C of order 2 n x m such that its first n

columns are exactly the same as the columns of matrix A and the columns from n + 1 to

2n are exactly the same as the columns of matrix B. This operator is denoted by the

symbol "CWJ".

Let us apply the CWJ operator to three elementary matrices, of orders 1 x 1, for

all possible combinations of these matrices. The nine different matrices of order 2 x 1

that result from the application of CJW to all these permutations are shown in Figure 18.
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Figure 18. Nine different matrices of order 2 x 1.

Let us now apply the RWJ operator to all possible combinations of the nine

matrices shown in Figure 18. The result will be 81 different matrices of order 2 x 2.

Some of them are not-orthogonal and are of no interest to us. All orthogonal matrices can

be classified into four basic types. The first 45 matrices of the 81 matrices are shown in

Figure 19, with the 4 basic types marked. The symbol "NO" on this Figure denotes a non

orthogonal matrix. The way that the remaining 36 matrices are generated can be deduced

from this figure. In each row of matrices shown in Figure 19, a different one of the nine

matrices from Figure 18 is joined with all nine of the 2 x 1 matrices, one at a time, using

RJW operation to form all nine of the 2 x 2 matrices in the row. The same 81 matrices

could be generated by applying the RWJ operator to the three basic elements to obtain 9

matrices of order 1 x 2, then joining them by using the CWJ operator to the elementary

row matrices obtained in the previous step.

All basic types have been found by- observing the following properties of these

matrices: any matrix (of order 2 x 2) from a basic type can be obtained from another

matrix of the same type by applying some of the following operations on matrices: tran

sposition of rows, transposition of columns, change of all signs in a whole row or change

of all signs in a whole column. So there are only four elementary types of matrices of

order 2 x 2 composed from the elements 0, + 1, and - 1. One of these types, type I, is the

identity matrix, and therefore is not interesting from the point of view of the transforma

tions. There are three types of orthogonal, radix-2 matrices remaining and their applica

tion to the transformation of binary and ternary vectors is presented later. From each of
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the three types one particular representative has to be chosen. In our case, in order to get

some transforms which are already known, the matrices denoted by * in Figure 19 have

been chosen. These three elementary matrices of 2 x 2 order will be denoted by the sym-

boIs H2 ( the Hadamard transform [24], [56], [64], [96] and [82], Chapter IT ), AR 2 (the

Arithmetic transform [96] ), and AD 2 (the Adding transform ).

[11] [11] [1-1] [1-1] [10] [11] [10] [1-1] [10]11 1-1 11 1-1 11 10 1-1 10 10
NO IV'" IV NO II'" II ill III NO

[11] [11] [1-1] [1-1] [10] [10] [10] [1-1] [10]-1 1 -1-1 -1 1 -1-1 -1 1 -1 0 -1 -1 -1 0 -1 0
IV NO NO IV m* II II III NO

[-1 1] [-1 1] [-1-1] [-1-1] [-10] [-1 1] [-10] [-1-1] [-10]11 1-1 11 1-1 11 10 1-1 10 10
IV NO NO IV II ill III II NO

[-1 1] [-1 1] [-1-1] [-1-1] [-10] [-1 1] [-10] [-1-1] [-10]-1 1 -1-1 -1 1 -1-1 -1 1 -1 0 -1 -1 -1 0 -1 0
NO IV IV NO m ill II II NO

[11] [11] [1-1] [1-1] [10] [11] [10] [1-1] [10]
o 1 0-1 01 0-1 01 00 0-1 00 00
II II ill III NO I NO NO

Figure 19. First 4S possible matrices with the four basic types marked.

The Walsh functions in Hadamard order are generated when the standard
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Kronecker product of the elementary Hadam3Id matrix H2 is performed with itself.

Similarly, the Arithmetic transform of higher orders is obtained by successive application

of the Kronecker product to the core matrix AR 2. The same is true for the Adding

transform as well where the core matrix is AD 2. When all these three elementary

matrices are denoted by the same symbol TR 2, then

TRN=( TR 2) en], (VI.1)

where [n ] in the exponent means the application of the Kronecker product n times, N is

the order of the transform matrix, and n = log2 N .

Later it will be shown, how the derived transforms are used to create the spectra of ter-

nary and binary vectors. Since the detailed description of the properties of the

Hadamard-Walsh spectrum of Boolean functions has been presented in Chapter ill, only

the application and properties of Arithmetic and Adding transforms will be considered

here.

VI.3 GENERALIZED ARITHMETIC AND ADDING TRANSFORMS

The Arithmetic transform ARN has been used for the generation of a canonic

arithmetic expansion of Boolean functions [55], [96] and [98]. In the literature, this

expansion has only been used for completely specified Boolean functions. The author

proposes three extensions of the currently used Arithmetic transform. First, it is proposed

to use this transform not only for completely specified Boolean functions but for incom

pletely specified ones as well. Hence, the Arithmetic transform can be applied not only

to binary but also to ternary vectors. Secondly, two types of codings of Boolean func

tions are used. In the first type, in the case of the completely specified Boolean function,

the true minterms of the function are represented by 1 and false minterms by O. When the

second coding is used, the true minterms are represented by - 1 and the false minterms

by 1. In the case of the incompletely specified Boolean functions, in the first coding
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scheme the don't care minterms are represented by 0.5, and in the second coding scheme

by O. The coding of the true and false minterms for the functions with don't cares is the

same as the one for the completely specified Boolean functions. The same types of cod

ing schemes have been used for Hadamard-Walsh spectrum of Boolean functions

(Chapter ill) and the corresponding Walsh spectra are known as the R spectrum (for the

first type of coding later called the R coding) and the S spectrum (for the second type of

coding later called the S coding). Thirdly, the notion of the polarity of the Arithmetic

transform is introduced. Since for the Boolean function having n variables there exist 2n

possible substitutions of a given i-th variable by its complement it is possible to have an

equal number (2n ) of possible expansions in which each variable is in either comple

mented or not-complemented form. All of these possible expansions are called the gen

eralized Arithmetic transforms and are classified by their polarities. The latter notion is

similar to the one used for Reed-Muller transforms [19], [95] and will be rewritten for

our needs.

Definition VI.3: A polarity number is calculated by taking the decimal equivalent of the

n -bit straight binary code formed by writing a 0 or a 1 for each variable dependently

whether this variable is in a positive or complemented form respectively.

Let us illustrate the notions introduced by the following examples.

Example VI.I:

An example of the calculation of the Arithmetic transform of a fourth-order completely

specified Boolean function in R coding is shown in Figure 20. The transform is in zero

polarity, and all the variables describing the coefficients of the arithmetic canonical

expansion are positive.
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AR XR C

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO
-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1
-1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cz
1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c12

-1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 <::3
1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 1 1 c13
1 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 Cz3

-1 1 1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0 1 = 0 c123
-1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 c4
1 -1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 1 0 c14
1 a -1 0 0 0 a 0 -1 0 1 a 0 0 0 a 1 a Cz4

-1 1 1 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 a -1 c124
1 a 0 o -1 0 0 0 -1 0 0 0 1 0 0 0 0 -1 <::34

-1 1 0 0 1 -1 0 0 1 -1 0 0 -1 1 0 0 a -1 c134
-1 0 1 0 1 o -1 0 1 0 -1 0 -1 0 1 0 1 1 Cz34
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 c1234

Figure 20. Calculation of Arithmetic transform for a completely specified function.

The canonical arithmetic expansion for this function is as follows:

f (X) =X3 X l +X4 -X4 X 2 X l -X4X3 -X4X3 Xl +X4X3 X2 +X4X3X2Xl (VI.Z)

The addition symbol in the canonic arithmetic expansion "+" is an arithmetic addition

and not Boolean "or". The value of a given minterm can be obtained from the arithmetic

expansion of any polarity. When the binary equivalent of a minterm is substituted into

the expansion, the value of each term in the expansion is calculated logically and the

ones that correspond to the terms that are true after the first substitution are arithmetically

added or subtracted. This rule is valid for both codings of completely and incompletely

specified Boolean functions.
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As can be easily checked, the values of all the minterms of this function can be generated

from its canonical arithmetic expansion by replacing the literals X4, X3, X2, and Xl with

the binary code of a given minterm. For instance, the minterm 0000 has the value 0, and

the minterm 1111 has the value 1+ 1 - 1 - 1 - 1+ 1+ 1 = 1.
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Figure 21. Calculation of Arithmetic and Adding transfonns.

The other arithmetic canonical expansion can be obtained for this function from the

second S coding. The coefficients for the second expansion are shown in Figure 21 (the

vector on the right side of this figure with the arrow AR pointing to it). Since the polarity

number is zero again the variables of the Boolean function occurring in the terms of this

arithmetic canonical expansion are exactly the same as in the previous case. And again, it
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can be easily checked that the values of the mintenns of the function in the S coding can

be obtained from the second canonical form by substituting the literal X4. X3, X2. and Xl

with the binary code of a given mintenn.

The Arithmetic transform can be applied to both completely and incompletely

specified Boolean functions in both S and R codings. Similarly to the Arithmetic

transform, the Adding transform can be applied to both completely and incompletely

specified Boolean functions. Two types of codings can be used for this transform as well.

Moreover, the Adding transform can have the same polarities as the Arithmetic

transform. Before showing the examples of other polarities, and applications of the

transforms to incompletely specified Boolean functions let us state the fundamental rela

tionship between these two transforms. For the zero polarity, both matrices ARN and

ADN are inverses ofeach other, i.e.,

(VI.3)

and

(ADN ) - 1 = ARn (VIA)

The transform matrix for the Adding transform looks similar to the transform matrix for

the Arithmetic transform shown in Figure 20 - the only difference being the fact that all

the entries in the matrix are +1 i.e., all - 1 in the matrix for the Arithmetic transform

should be replaced by + 1 for the Adding transform and all + 1 remain not changed. The

next two examples are only for zero polarity only.

Example VI.2:

An example of both Arithmetic and Adding spectra for the same fourth order completely

specified Boolean function XR (in R coding) and Xs (in S coding) is shown in Figure 21.

This is the same function that was used in Example VI.!. The arrows in this figure show

the applications of the Arithmetic AR and Adding AD transforms. It is also shown that

the transforms' matrices are inverses of each other.
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Figure 22. Calculation of Arithmetic and Adding transforms for an incompletely specified function.

Example VI.3:

Transformations of the same fourth order incompletely specified Boolean functions in

two codings by means of the Arithmetic and Adding transforms are shown in Figure 22.

Also for incompletely specified Boolean functions both transforms' matrices are inverses

of each other.

It is very important to notice that both Arithmetic lind Adding spectra are canoni

cal representations of completely and incompletely specified Boolean functions for any

polarity. This property of both transforms makes them especially distinct from other

related transforms. For example, the Reed-Muller transform that has the same
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transformation matrix as the Adding transform (for any given polarity this correspon

dence exists) and only the operations of addition are executed "modulo-2" instead of nor

mal arithmetic addition as in the case of the Adding transform, does not have a canonical

form for the transformation of incompletely specified Boolean function [95].

An important relationship exists between the Arithmetic spectral coefficients cal

culated according to Rand S codings for both completely and incompletely specified

Boolean functions and for all polarities. When arr/ (where the I are different natural

numbers) denotes the coefficients calculated for R coding, and ars/ denotes the

coefficients calculated for S coding then for all ar/ except aro the following formula

holds:

(VI.5)

For arro and arso equation (VI.5) is not valid. Instead, the following formula holds:

1arr0 ="2 ( 1- ars 0 ). (VI.6)

Let us note, that the same relationship as equation (VI.5) is valid for Hadamard-Walsh

spectral coefficients (equation ill.5). However, equation (VI.5) does not hold for the

coefficients from the Adding spectrum as can be easily checked in Figure 21 and Figure

22.

Let us now show examples of the generalized Arithmetic transform for the same

completely specified Boolean function. Only one example of the generalized Arithmetic

transform for the polarity 0011 is shown and only for the completely specified Boolean

function. The examples for an incompletely specified Boolean function and for other

coding can be derived by an interested reader in a manner similar to the one presented.

The Adding transform can be calculated for this polarity by replacing all-l by + 1, and

rewriting all + 1 from the matrix describing the Arithmetic transform. Only one R coding

is shown. The methods used to calculate the generalized Arithmetic and Adding
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transforms for any coding and any Boolean function should be obvious from the previous

examples.

Example VIA:

The calculation of the Arithmetic transform with 0011 polarity for a fourth-order com

pletely specified Boolean function is shown in Figure 23.

The standard trivial functions corresponding to the coefficients of the canonical

arithmetic expansion for this polarity have positive and complemented forms. The sym

bols c/ have exactly the same meaning here as s/ in the case of Walsh transforms. See

Property ill.6 for more details.

AR XR C

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO
0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cl
0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~
1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c12
0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 ~
0 o -1 1 0 0 1 -1 0 0 0 0 0 0 0 0 1 -1 c13
o -1 0 1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 ~3

-1 1 1 -1 1 -1 -1 1 0 0 0 0 0 0 0 0 1 = 0 c123
0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 c4
0 o -1 1 0 0 0 0 O· 0 1 -1 0 0 0 0 1 1 c14
o -1 0 1 0 0 0 0 0 1 o -1 0 0 0 0 1 1 ~4

-1 1 1 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 -1 c124
0 0 0 1 0 0 0 -1 0 0 o -1 0 0 0 1 0 0 ~4
0 0 1 -1 0 0 -1 1 0 0 -1 1 0 0 1 -1 0 0 c134
0 1 0 -1 0 -1 0 1 o -1 0 1 0 1 0 -1 1 -2 ~34
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 c1234

Figure 23. Calculation of Arithmetic transform for a function for polarity 0011.
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Example VI5:

The calculation of the inverse Arithmetic transform with 0011 polarity for the function

from the previous example is shown in Figure 24.

-1
AR C XR

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 -1 1

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 = 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 -2 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

Figure 24. Calculation of an inverse Arithmetic transform for a function for polarity 0011.

VIA LINKS OF ARITHMETIC AND ADDING TRANSFORMS

WITH CLASSICAL LOGIC DESIGN

Let us show the real meaning of the Arithmetic and Adding spectral coefficients

in classical logic terms. Let the symbol a/ denote the spectral coefficient from either an

Arithmetic or an Adding transform in any coding. The definition of standard trivial

functions and their relationships to the spectral coefficients (from both Arithmetic and
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Adding spectra) follows.

DefinItion VIA: Each spectral coefficient a/ gives a correlation value between the

Boolean function F and a standard trivIal function u/ corresponding to the coefficient.

The standard trivial functions for the spectral coefficients are, respectively, for the

coefficients a/ (where I = 0) - the mintenn of the Boolean function corresponding to a

given polarity denoted by uo, for the first order coefficients a/ (where I = I , I :;C 0) - the

mintenn of the Boolean function u°and one of its neighbors, in turn, denoted by Ui, for

the second order coefficients a/ (where I =Ij, I :;C 0, j :;C 0) - the minterm of the Boolean

function u°and three of its neighbors, in turn, denoted by Uij, for the third order

coefficients a/ and (I =ijk, i :;C 0, j :;C 0, k :;C 0) - the minterm of the Boolean function Uo

and seven of its neighbors, in turn, denoted by Uijk, etc.

Since the fonnulas for the calculation of spectral coefficients are derived for both

spectra the necessary symbols are introduced together. Moreover, let us expand our con

siderations for incompletely specified Boolean functions as well. The following symbols

will be used. Let a/ be the number of true mintenns of the Boolean function F, where

both the function F and the standard trivial function U/ have the logic values of 1; let b/

be the number of true mintenns of Boolean function F, where the function F has the logic

value 1 and the standard trivial function U/ has the logic value 0; let c/ be the number of

don't care minterms of the Boolean function F, where the standard trivial function U/ has

the logic value 1; let d/ be the number of don't care minterms of Boolean function F,

where the standard trivial function u/ has the logic value O.

The arr/ Arithmetic spectral coefficients for completely specified Boolean functions with

R coding having n variables, can be defined in the following way:

and

arro=ao, 0fI.7)

0fI.8)
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when! ,*0.

The arr/ Arithmetic spectral coefficients for incompletely specified Boolean functions

with R coding having n variables, 0an be defined in the following way :

and

whenl,*O.

Iarro =ao +"'2 co. (VI.9)

(VI.10)

The formulas for the calculation of the Arithmetic spectral coefficients with S coding can

be found from equations (VIA, VI.5, VI.7-VI.9).

When the Adding spectrum with R coding is to be calculated the formulas for its

coefficients are the same as equations (VI.7-VI.9) - the only difference being the replace-

ment in all these formulas of the sign - with +.

Example VI.6:

The standard trivial functions for the completely specified Boolean function of Example

VI.I for the 0000 polarity are shown in Figure 25. The circles denote the areas where the

standard trivial functions have the logic values 1 while triangles denote the areas where

the standard trivial functions have the logic values O.
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1 0 UZ3
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o 1 u124
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Figure 25. Standard trivial functions for polarity 0000.

Then, according to equations (VI.7) and (VI.8) the arithmetic spectral coefficients for this

function are as follows:
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Co = 0, C 1 = °-°= 0,

C2 =0 - °=0, C3 =0 -0 =0,

C4 = 1- °= 1, C 12 =°-°= 0,

C 13 = 1-°= 1, C 14 = 1- 1= 0,

C23 =°-°= 0, C24 = 1- 1= 0,

C34 =°-1= - 1, C 123 = 1- 1= 0,

C 124 = 1- 2 = - 1, C134 = 1- 2= - 1,

C234 = 2 - 1= 1, C 1234 = 4 - 3= 1.

One can easily check that by calculating spectral coefficients according to the above for

mulas one obtains exactly the same results as previously when the classical matrix multi

plication method was used (Figure 20).

Example VI.7:

The standard trivial functions for the function from the previous example for 0011 polar

ity are shown in Figure 26.

Then, according to equations (VI,7) and (VI.g) the arithmetic spectral coefficients for this

function are as follows:

Co = 0, C 1 =°-°=0,

C2=0-0=0, C3= 1-0= 1,

C4 =°-0 = 0, C12 =°-0 = 0,

Cl3 =0-1 =-1, C14 = 1-0= 1,

C23 = 1- 1= 0, C24 = 1- () = 1,

C34 = 1- 1= 0, C123 = 1- 1= 0,

C124 = 1 - 2 = - 1, C134 = 2 - 2= 0,

C234 = 1 - 3 = - 2, C1234 = 4 - 3 = 1.

One can easily check that by calculating spectral coefficients according to the above for

mulas one obtains exactly the same results as before when the classical matrix
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Figure 26. Standard trivial functions for polarity 0011.



CHAPTER VII

THE CALCULAnON OF GENERALIZED REED-MULLER CANONICAL EXPANSIONS

FROM DISJOINT CUBE REPRESENTAnONS OF BOOLEAN FUNCTIONS

VII.l DESCRIPTION

The classical approach to analysis, synthesis and testing of digital circuits is

based on the description by the operators of Boolean algebra. However, for many years,

an alternate description based on the operations of modulo-2 arithmetic has been

developed [19], [55], [99] and [100]. The algebra corresponding to this second approach,

is an example of a finite field and supports such familiar digital signal processing opera

tions as matrices, and fast transforms. Modulo-2 algebra is the simplest case of an alge

bra known in references [19] and [55] as a finite field or Galois field algebra and it is why

it is frequently denoted by the symbol GF (2).

Any Boolean function can be represented in modulo-2 algebra. The modulo-2

sum-of-products expression is known in the literature [19], [55] and [100] as the

complementlree ring-sum or Reed-Muller expansion. In such an expression there are 2n

possible product terms selected from the n variables of a Boolean function. Each term is

made up of un-complemented variables of a Boolean function only. By allowing the

complementation of the input variables one can derive the Generalized Reed-Muller

expansions (GRMEs) where each input variable Xi can appear either true throughout the

expansion or complemented throughout it. It is apparent that there are 2n GRMEs for a

Boolean function with n variables, each with a different polarity, including the positive

polarity form (Le., Reed-Muller expansion). Since the input polarity of a GRME is con-
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stant in these expansions they are tenned fixed-polarity fonns. It should be noted that for

a giv~n Boolean function each GRME is unique and is a canonical form.

The application of exclusive OR gates has some advantages over the gates com

monly used in logic design. One of the reasons is that many useful functions have a high

content of the so called linear part (the EXOR part) of the function. Some examples of

such functions are: adders and parity checkers. What is more, circuits built with EXOR

gates are easily testable. Reddy showed that when a circuit is designed using a Reed

Muller expansion and if only pennanent stuck-at faults occur in either a single AND or

only a single EXOR gate is faulty, then only (n + 4) tests are required for fault-free pri

mary inputs for an arbitrary n input Boolean function [41].

VII.2 BASIC DEFINITIONS AND PROPERTIES

The properties of the disjoint cube representation of a Boolean function, used in

the description of the algorithm for calculating the GRME will be stated later. An algo

rithm that generates such a representation has been shown in Chapter V and its imple-

mentation has been described in [114]. In what follows, the definitions of the RME [19]

and GRME are also presented.

Definition VII.l: The n -variable Reed-Muller expression takes the fonn:

2" -1
F(Xn .X n -1o ••. ,Xl)= >. cix:i·"Xeni·~11, .. ,xii.l (VII.1)

f;i

In the above definition ~ means summation over GF (2), and the ei.j are either 0 or 1 so

that literal XkO =1 and Xk1=Xk.

Property VIl.l: The n -variable Reed-Muller expression has 2n possible product terms

(piterms represented by symbol1t) selected from the n variables.

Property VIl2: The subscript i in the piterm 1ti represents the decimal equivalent of the

straight binary code (SBC) fonned from the join of symbols ei, n , ei. n -1 , .. , ei. 10



(VII.3)
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where the most significant bit of the SBC is ei. n and the least significant bit of the SBC

Definition VII2: The n -variable Reed-Muller expression can be represented in short by:

2~ -1
F (Xn.Xn -1,'" ,Xl) = i~. Ci 1ti. (VII.2)

where the meaning of the summation is exactly the same as in Definition VII.!.

The next property is the consequence of Definition VII.1 and Definition VII.2.

Property VII.3: The n-variable Reed-Muller expression is fully described by the set of all

Ci Reed-Muller spectral coefficients.

Definition VII.3: The n -variable Generalized Reed-Muller expression takes the form:

2~ -1 (jl (jl (jl

F ( ) f:i C X ej/& xej ~ -1 x ej.1Xn • Xn - h ... , X 1 = inn:" 1 , .. , l'
1=

In the above definition L means summation over GF (2), and the e/~j are either 0, 1, or

- 1 so that literal XkO =1, xi =Xko and Xk- 1 =Xk. The symbol CO denotes the polarity of

theGRME.

Property VII.4: The n -variable Generalized Reed-Muller expression has 2n possible pro

duct terms (generalized piterms represented by symbol 1t())) selected from the n variables.

Definition VIlA: The polarity number of the GRME expression denoted by co is a binary

string computed by taking the n bit straight binary code (SBC) formed by writing a 0 or a

1 for each variable according to whether it is used in affinnative or negative form respec-

tively.

Property VII5: For a given polarity co each variable in all generalized piterms can be

either in affirmative or negative form, or be absent from the piterm.

Definition VII.5: The n -variable Generalized Reed-Muller expression can be represented

in short by:

(VII.4)
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where the meaning of the summation is exactly the same as in Definition vn.3.

The next property is the consequence of Definition vn.3 and Definition vn.5.

Property VII.6: The n-variable Generalized Reed-Muller expression is fully described by

the set of all Ci Reed-Muller spectral coefficients.

Definition VII.6: The cube of degree m is a cube that has m defined literals that can be

either affinnative or negative (i.e., m is equal to the sum of the number of zeros and ones

in the description of the cube).

Let symbol p denote the number of X's in the cube (for explanation of the symbol X see

Definition VII.9) and n denote the number of variables of a given Boolean function F.

Then, n = m +p .

Definition VII.7: The cube and the pitenn are of the same degree (order) when the

number of defined literals is the same for both of them.

Property VII.7: The number ofpitenns of z-th order is equal to CJ = [~], where n is the

number of variables of the Boolean function.

Definition VII.8: The partial Reed-Muller spectral coefficients of an ON- cube CUi of

degree m from the disjoint cube representation of a Boolean function F are those parts of

the final Reed-Muller spectral coefficients Ci that correspond to the contribution of the

cube CUi of degree m to the full n - space Reed-Muller spectrum of the Boolean function

F described by the array of all the disjoint cubes.

Property VII.8: Each final Reed-Muller spectral coefficient is obtained by adding modulo

2 all partial coefficients of all the disjoint cubes describing the function.

Property VII.9: The number of partial Reed-Muller spectral coefficients npsc describing

the Boolean function F is equal to the number of ON- cubes describing the function

times 2n •
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Property VII.10: When the Boolean function is described by its truth table (a set of true

and false minterms) the number of partial spectral coefficients of the Boolean function in

this representation is equal to the sum of the number of ON- minterms times 2n • Let

symbol f denote the number of false minterms. Then, npsc = 2n (2n - f ).

In Table VI and Table VII each row of symbols "0" and "1" next to the cube gives the

values of the partial spectral coefficients of the given cube. The order of each of these

coefficients is the same as the order of the piterm placed in the top of the column above

the particular partial spectral coefficient.

Definition Vll.9: A cube is represented by a positional notation where "0" corresponds to

a negated literal, "1" to an affirmative literal, and "X" to the literal that is absent in a

given cube.

For example, the cube x 1i3x4 is represented by IX 01.

Definition VII.lO: A piterm xF is represented by a positional notation that is the same as

in Definition VII.9 for cubes.

For example, the piterm 1tPlRl =Xl X3 X4 is represented by IX 10.

Definition VII.11: A cube adjusted to a polarity co is a cube built of the literals of the ori

ginal cube that are different from the bits of the polarity co in the SBC. These literals are

marked by the symbol "-".

TABLE IV

ADJUSTMENT OPERATOR BElWEEN CUBE AND POLARITY

PolaritY
Cube 0 1

0 - 0
1 1 -
X X X



111

The adjustment operator is defined in Table IV. When the cube CUi =1X 0 1 is adjusted

to the polarity CO =0000 then it is equal to CUiQOOO =IX -1, and when the same cube is

adjusted to the polarity co =0101 then it is equal to CUiOlOl = IX--.

Definition VII.12: A cube and a pitenn of the same degree match exactly when both of

them have the same literals in the same polarity co or the cube has some literals that have

been created by the adjustment operation and are marked by "_".

TABLE V

EXACT MATCHING OPERATOR BETWEEN CUBE AND PlTERM

Pitenn
Cube 0 1 X

0 1 0 0
1 u 1 0
X 0 0 1
- 1 1 1

The exact matching operator is defined for bits of a pitenn and a cube in positional nota

tion in Table V. When a cube is adjusted to some polarity the value of the exact matching

operator for the bits of the adjusted cube marked "_It is always 1 regardless of the value of

the piterm. This is shown in the fourth row of Table V. From this point on it will be

understood that the exact matching operation is defined by Table V.

Definition VII.13: A cube and a pitenn of the same degrees match in all but one literal

when there exists one literal in the piterm that is negated in the cube and the rest of the

literals in both the cube and pitenn match exactly.

The above definition can be extended to a more general case.

Definition VII.14: A cube and a piterm of the same degrees match in all but k literals

when there exist k literals in the piterm that are negated in the cube and the rest of the

literals in both cube and piterm match exactly.



112

Definition VII.15: A cube and a piterm of the same degree match opposing when all the

literals in the piterm are in negation to the literals of the cube, Le., literals in the cube are

in the polarity co (co means bit by bit negation ).

Definition VII.16: A set of expanded piterms, for a given cube and a piterm that matches

it in all but k literals, is composed of the highest order pitenn that exactly matches plus

all the higher order pitenns that are formed from the expansion of the literals of the

exactly matching pitenn by the remaining literals of the cube in such a way that the

resulting piterms match the given cube in either all but one, all but two, ... , all but k

literals.

Property VII.ll: A set of expanded piterms from Definition 16 has 2k members.

Property VII.12: All members of the set of expanded piterms match exactly the adjusted

cube for which they are generated.

Property VII.13: The order of the highest order member of the set of expanded piterm of

a given cube is not higher than the order of the adjusted cube itself.

The next property is a consequence of Property VII.13.

Property VIl.14: The number of the piterms that has to be checked for exact matching in

order to generate the whole set of expanded piterms for an adjusted cube of order z is

equal to Cnl + Cn2 + c;f +, ,,+ C~, where n is the number of variables of a Boolean

function. It can be seen that n > z .

VII.3 ALGORITHM TO GENERATE GRME FROM DISJOINT CUBES

This algorithm refers to properties and definitions from the previous section. It is

assumed that a Boolean function is described by an array of disjoint ON- cubes that can

be generated by the algorithm presented in Chapter V. During execution of the algorithm

the values of the partial spectral coefficients corresponding to adjusted cubes are stored

in a temporary array. The dimension of the array is m x 2n , where m is a number of
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disjoint cubes that represent an n variable Boolean function.

Algorithm VII.]: Generation ofGRME from disjoint cubes.

step 1.

Set a number of disjoint cubes and adjust all pitenns to a given polarity roo

step 2.

Adjust all disjoint cubes to a given polarity roo

step 3.

For each adjusted cube generate a set of all piterms that match exactly.

The operation of exact matching starts with the piterms that have the same

order as the cube and continues for pitenns of all smaller orders.

If all cubes are matched go to step 4 else repeat step 3.

step 4.

Add, modulo 2, each column of the temporary array. The result

describes Reed-Muller spectral coefficients of the Boolean function.

A detailed example of the execution of this algorithm is shown next.

Example VII.J :

An example of the calculation of a Reed-Muller canonical expansion for a bur variable

completely specified Boolean function described by a set of disjoint cubes in positional

notation is shown in Table IX and Table X. In order to obtain the values of all Reed

Muller spectral coefficients the columns of the partial spectral coefficients from the tem

porary array corresponding to all cubes describing a given Boolean function are added

modulo 2.

Let us show the execution of all of the steps of the algorithm simultaneously for both

tables. First, the number of cubes is determined to be 6. The piterms for Table IX are in
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the polarity co =0000, and for Table X they have polarity co =0101. The pitenns from

both tables have the same symbols. It should be noticed, however, that pitenn 11:1234 from

Table IX corresponds to group Xl X2 X3 X4 while piterm 11:1234 from Tabh:. X corresponds

Secondly, all the cubes are adjusted to the given polarities. The results of this operation

for both tables are shown in Table VI.

TABLE VI

CUBE ADJUSTMENT TO POLARITIES 0000 AND 0101

TABLE VII

GENERAnON OF EXPANDED SET OF PITERMS FOR POLARITY 0000

Cube Pltenn
lX-- 111;)C lXlX lXXl lXll

lXlX 1" 1,
-X11 2a 1)( 11
-l-X XV< 11X\. XlIX l11X
11-1 11)(1 111
-11- X11X 111 XIII 1111

In the third step, the exact matching operation generates the expanded set of piterms.

The result of this operation for the adjusted cubes from Table IX is shown in Table VII

and from Table X in Table VITI.
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TABLE VIII

GENERATION OF EXPANDED SET OF PITERMS FOR POLARITY 0101

Piterm

For the sake of explanation Table vn is rewritten to Table IX, and Table VIII to Table

X.

TABLE IX

REED-MULLER SPECTRAL COEFFICIENTS FOR POLARITY 0000

XIX2 X3 X4 1t() 1t1 1t2 1t3 1t4 1t12 1t13 1t14 1t23 1t24 1t34
lXOOON 1 ) 1 1 0 0
lXIXUN ) 1 U 0
U~ ~ U 1
0 1 U
1 ( 0 U
011( 1 0

1 0 1

XIX2 X3 X4 1t123 1t124 1t134 1t234 1t1234
lXOU( iN 1
lXIX N 0
OXIl ( N 1
olUX ( ~ 1 ( )

1101 C ~ 0 1 ( 1
0110C ~ 1 0 1 1

0 1 1 0

Note that both pairs of tables contain the same information but with a different notation.

First, the columns cube in Table IX and Table X correspond to the cubes before adjust

ment (see Table VI). Secondly, the members of the set of expanded piterms from Table

VII and Table vm are marked in Table IX and Table X by 1-es accordingly. In both
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tables all the partial coefficients are given for each cube - not only those that have I

values (that mark the piterms from the set of expanded piterms) but also the partial spec

tral coefficients that have 0 values.

The last step of the algorithm is the operation of addition modulo 2 of all the partial spec

tral coefficients. The result of this operation is shown in the bottom rows of Table IX

and TableX.

TABLE X

REED-MULLER SPECfRAL COEFFICIENTS FOR POLARITY 0101

lXUUON
lXlXON
OX11 IN
010X IN
1101 ( N
0110 (IN

1 1 1
U 1
U 0
1 0

1t12 1t13
a
I
1

1 1
1
o
a

1

1
1 a
o a
o 1

(

(

1
) U

1 COO (
I IX
U; I
U!lX
IH I (
UUOON

1
1 I
o 0
U 1

1t134 1t234 1t1234
1 0
o
1
o
1 1
1 1 1
U 1 0

The resulting 4-variable Reed-Muller expression for Table IX takes the form (the symbol

"ffi" stands for the sum modulo 2):

F (x l,X2.X3. X4) =XI Ee X2 Ee Xl X2 $ Xl X4 Ee X3X4 Ee Xl X2X4 Ee X2 x3 X4.

The resulting 4-variable Generalized Reed-Muller expression for Table X is as follows

(the symbol "Ea" has the same meaning as above):
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Note that the original set of disjoint cubes can be taken directly as one possible

mixed polarity Generalized Reed-Muller form [18], [39] and [40] of the considered

Boolean function.



CHAPTER VIII

GENERALIZATIONS, ORDERINGS AND CIRCUIT

INTERPRETATIONS OF SPECTRAL TRANSFORMS

VIII.l DESCRIPTION

This Chapter presents a unified approach to different transfonns used in logic

design. It shows that all of the transforms that are discussed can be generalized. Each of

the transforms can be defined for an arbitrary ordering. All the transforms can be applied

to completely and incompletely specified logic functions that are coded in both R and S

codings. Finally, each spectral coefficient has a meaning in terms of standard logic gates

and this is shown for different transforms.

The extensions of previously known transforms presented here and those intro

duced by the author transforms are important from the point of view of the application of

these transform extensions in logic design. It is, for example, well known that for some

Boolean functions the best circuit realization (from the point of view of the number of

gates and the number of inputs) is based not on the Reed-Muller canonical expression of

zero polarity but on the expression for some other polarity [19]. The same applies to gen

eralizations of other transforms: Adding, Arithmetic, and Walsh. Only a generalized

Walsh transform is introduced here because generalized Arithmetic and Adding

transforms were already presented in Chapter VI. The definition of generalized Walsh

transforms also applies to two-dimensional map representations of multiple-valued input

binary functions (Chapter IV).

The importance of different orderings of Walsh transforms when such transforms
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are used in signal processing is discussed in Section IX.2. Either Rademacher or

Hadamard orderings are used when Walsh transforms are applied to logic design. The

choice of the ordering depends on the particular application. For example, the

Rademacher ordering is used for the classification of logic functions [21] and [22], the

Hadamard ordering is preferred for testing of circuits [22]. The Gray Code Ordered

Walsh transform introduced by the author is presented in the next Chapter. It is advanta

geous from the point of view of the number of connections needed for its hardware

implementation.

VIII.2 GENERALIZED WALSH TRANSFORM

When Walsh transforms are applied to logic functions the concept of standard

trivial functions can be introduced (Property ill.6). Note that for this Property all of the

logic variables are in affirmation. Therefore, the Walsh transform discussed in Chapter II,

Chapter ill, Chapter IV, and Chapter V can be regarded as the zero polarity transform.

Polarity numbers for Adding and Arithmetic transforms were given by Definition VI.3

and the same definition is valid for the case of the generalized Walsh transform.

Definition VIII.J: A Generalized Walsh transform of a logic function F for a given polar

ity is a Walsh transform that has standard trivial functions described by variables of the

logic function that are either in affirmation or negation depending on the chosen polarity.

Example VlII.J:

An example of the calculation of a Generalized Walsh transform in the polarity 0011 for

the four variable Boolean function of Example m.l is shown in Figure 27.
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T M S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 So
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 s4
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 2 s3

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -2 s2
-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -2 s1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 6 s34

-1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 2 s24
-1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 = 6 s23
-1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 -6 s14
-1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 6 s13
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 2 s12

-1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1 -6 s234
-1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 2 s134
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -2 s124
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 2 s123
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 -2 s1234

Figure 27. Calculation of generalized Rademacher-Walsh spectrum.

It is obvious that a generalized Walsh transform can be defined not only for the

Rademacher-Walsh ordering shown in Example Vrn.l but for an arbitrary ordering as

well. When the resulting spectrum for the same Boolean function with 0000 polarity

(Figure 5) and 0011 polarity are compared it is easy to see that the magnitudes of all the

spectral coefficients are the same. The only differences are the signs of the following

spectral coefficients: s 10 S2, S24, s23, s14, S13, S234 and s 134.

In order to modify Algorithm V.l to calculate Generalized Walsh transforms,

only one property that this algorithm is based on has to be changed. Property V.6 should

be replaced by the following property. The aJgorithm itself remains the same.
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Property VIII.]: If in a given cube the Xi variable of a Boolean function is in affirmation,

and the bit of polarity number corresponding to this variable is 0, then the sign of the

corresponding first order coefficient is positive; otherwise for the same polarity of this

variable, when a variable in the cube is in negation, the sign of the corresponding first

order coefficient is negative. If in a given cube the Xi variable of a Boolean function is in

affirmation, and the bit of polarity number corresponding to this variable is 1, then the

sign of the corresponding first order coefficient is negative; otherwise for the same polar

ity of this variable, when a variable in the cube is in negation, the sign of the correspond

ing first order coefficient is positive.

VIII.3 DIFFERENT ORDERINGS OF ARITHMETIC, ADDING

AND REED-MULLER TRANSFORMS

The Arithmetic and Adding transforms introduced in Chapter VI and the Reed

Muller transform discussed in Chapter vn were presented only for one ordering, which,

like the Walsh transforms, will be called the Hadamard ordering for Arithmetic, Adding,

or Reed-Muller transforms. The Arithmetic transform in Hadamard ordering was

presented in Figure 20. When all of the -1 symbols are replaced by 1 and all of the other

symbols remain unchanged the transform matrix from Figure 20 represents either the

Adding transform matrix or the Reed-Muller transform matrix in Hadamard ordering. It

should be noted that both Reed-Muller and Adding transform matrices are the same - the

only difference between both transforms is the way in which the multiplication ~f the

transform matrix with a data vector is performed. The operations used for Adding

transforms are standard multiplication and addition while for Reed-Muller transforms

they are multiplication modulo 2 and addition modulo 2.



122

Since the relations discussed above between Arithmetic, Adding, and Reed

Muller transforms are valid in any ordering, only some chosen orderings of Arithmetic

transforms are shown. From the explanation above the reader can easily derive transform

matrices for Adding and Reed-Muller transforms from the Arithmetic transfonn.

AR XR C

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CO
-1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 c4
-1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 C:3
-1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~

-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c1
1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 1 -1 C:34
1 0 -1 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 ~4

1 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 0 1 = 0 ~3

1 -1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 1 0 c14
1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 1 1 c13
1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 c12

-1 0 1 0 1 0 -1 0 1 0 -1 0 -1 0 1 0 0 1 ~34

-1 1 0 0 1 -1 0 0 1 -1 0 0 -1 1 0 0 0 -1 c134
-1 1 1 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 -1 c124
-1 1 1 -1 1 1 -1 -1 1 0 0 0 0 0 0 0 1 0 c123
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 1 c1234

..
Figure 28. Calculation of Arithmetic spectrum in Rademacher ordering.

Arithmetic transfonns can be created with all of the known orderings of Walsh

transforms. Since the notion of generalized Arithmetic, Adding and Reed-Muller

transforms for Hadamard ordering have already been discussed in Chapter VI and

Chapter vn the following example is only for 0 polarity. The following example shows

the calculation of an Arithmetic transform for a Boolean function.
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Example VlII.2:

An example of the calculation of an Arithmetic transform in Rademacher ordering for

0000 polarity for the four variable Boolean function of Example VI. 1 is shown in Figure

28.

The values of all the spectral coefficients for Arithmetic transforms in Hadamard and

Rademacher orderings are the same as can be seen by comparing Figure 20 with Figure

28. The only difference is the order in which the coefficients are generated.

From the above example one can see how to change an Arithmetic transform

matrix in order to obtain other possible orderings that are important for Walsh

transforms: Paley, Kaczmarz, Cal-Sal, and X.

VIDA CIRCUIT INTERPRETAnONS OF

DIFFERENT SPECTRAL COEFFICIENTS

Each spectral coefficient can be expressed in terms of a standard trivial function.

For example, recall Property m.6 for Walsh spectral coefficients. The notion of a stan

dard trivial function can be used for any transform and standard trivial functions for

Arithmetic, Adding (and therefore also for Reed-Muller transforms) were shown in

Chapter VI. Examples of standard trivial functions for generalized Arithmetic and

Adding transforms were shown also in Chapter VI.

Based on the links between the spectral and classical approaches to logic design

(Sections IV.5 and VI.4) the circuit interpretation of each spectral coefficient for any

transform can be found. The circuit interpretation of a given coefficient, like the stan

dard trivial function corresponding to such a coefficient, depends only on the polarity and

is independent of the ordering of a given transform. Since the circuit interpretation of

Reed-Muller transforms is known from [19], only generalized Walsh, Arithmetic and

Adding transforms will be discussed here. The following property is valid for all
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transforms in both R and S codings.

Property VIII.2: Each spectral coefficient of a generalized transform represents the logic

circuit corresponding to a standard trivial function of the coefficient The affirmation or

negation of the variables describing a given standard trivial function agrees with the

polarity of a given generalized transform.

All the following examples concern different spectral coefficients of a four vari

able Boolean function F (X4' x3 ,X2 ,x 1 ).

Example VIII.3:

Spectral coefficient s 123 of a Walsh transform with 0000 polarity describes the function

xl $X2 $X3·

The same spectral coefficient for Walsh transform with 0001 polarity describes the func

tion i";'$ X2 $ X3.

As can be seen from the above example with 0001 polarity the variable x 1 is negated

because the least significant bit (LSB) of the polarity corresponding to it is equal to 1.

Example VIllA:

Spectral coefficient add 14 from Adding transform in polarity 0000 describes the function

When the polarity 1001 is used for the same spectral coefficient of Adding transform

then this coefficient describes the logical function i";'x4.

Example VIII.5:

Spectral coefficient arr 14 from Arithmetic transform in polarity 0000 describes the func

tion (Xl $X4 )x2X3.

When the polarity 1001 is used for the same spectral coefficient of Adding transform

then this coefficient represents the logical function (X7eX4 ) x2 x3.



CHAPTER IX

ALGORITHM: AND ARCIDTECTURE FOR GRAY CODE

ORDERED FAST WALSH TRANSFORM

IX.1DESCRIPTION

Usually Walsh functions are derived from the product of one or more

Rademacher functions [51], [60], [63], [64], [73] and [74]. This principle has been used.

to build hardware Walsh function generators which, unfortunately, have orthogonality

errors [63]. The latest designs by Besslich have overcome this problem by using synchro

nous clocking [57], [65] and [83]. Global Walsh function generators have been built that

produce three different ordered. outputs, that is, Natural (known also as Hadamard),

Strict Sequency (known also as Walsh or Walsh - Kaczmarz) and Dyadic (known also as

Paley). These three Walsh transforms are symmetric, i.e., the inverse transform for each

of them is the same as the forward transform except for a constant coefficient. Micropro

cessor based generators of basic three ordered. sequences have also been built [78].

Besides these three symmetric Walsh transforms there is a non-symmetric one, known in

the literature as the Rademacher-Walsh transform, in which the Rademacher functions

are used directly as the entries for the first n + 1 rows in the transform matrix of order

N =2n •

Walsh function generators are built for applicaf.vns in communication, signal

analysis and synthesis, sequency filtering, multiplexing and, encoding and decoding [51],

[64], [69], [78] and [120].

One other ordering of Walsh transforms, known as the Cal-Sal ordering, has the
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advantage of providing discrimination between signals having even or odd symmetry

[51] and [85]. In this ordering the first half of the entries are arranged in the order of the

increasing number of even zero crossings (corresponding to Cal functions) while the

second half of the entries are arranged in the order of the decreasing number of odd zero

Crossings (corresponding to Sal functions).

Besides generating Walsh transforms by using Rademacher functions, alternative

constructions of Walsh functions have been derived by using the concepts of symmetric

copying and shift copying. Originally, developed by Swick [80], this method was applied

by Zhihua and Qisham [87] to the three known symmetric orderings mentioned previ

ously, and also to derive a new Walsh function ordering which they called the X

ordering. The X-ordered Walsh transform has the following features: Lower order X

ordered entries correspond to even functions. Even order X-ordered entries are associ

ated with lower sequencies, while odd ones correspond to higher sequencies [87].

The relationships between the three Walsh function ordering methods (Natural,

Strict Sequency and Dyadic) are well known and have been described in references [51],

[64], [75] and [84]. The author has observed that by using the previously discovered

operations of: bit-reversal for the position of each component in a binary number, Gray

code conversion, dyadic addition, and the combination of some of them, one is able to

generate not only all the known Walsh orderings from the straight binary code but some

new orderings as well. A procedure for carrying out some of these conversions for the

known orderings was described by Yuen [84]. When the sequence of these operations is

changed then it is possible to generate two new Walsh transforms in Gray Code Ordering

1 and Gray Code Ordering 2. Hence, both new orderings can be generated by the same

operations that are used for the known ordering. What is more, no more operations are

needed than f'Jr the known orderings. Since matrix operations that will be defined later

can be potentially useful in investigations of still other transforms and orderings there
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follows a detailed description of such operations and of the orderings being introduced.

The advantages of the new transfonns for digital logic design have been discussed in the

previous Chapter. The application of new transforms to image coding suggests itself and

should perhaps be the topic of a future investigations.

One of the new transfonns in Gray Code Ordering can be defined in a recursive

fonn by using a new operator which in this dissertation is called bi-symmetrica[ pseudo

Kronecker product. This new operator differs from the standard Kronecker product of

matrices by having, when expanded, vertical and horizontal symmetries. through the

center of the expanded matrix. Of course, this property is valid for the bi-symmetrical

pseudo Kronecker product operator for matrices of different orders with the restriction

that the orders are even numbers and the order of one of the matrices is (2 x 2). The

result of applying the bi-symmetrical pseudo Kronecker product operation to two

matrices will be called the bi-symmetrical matrix. Since Walsh type transform~ are

always described by square matrices of even orders this will be the only case considered.

For an N x N square matrix the number N will be subject to the same restriction when

considering the bi-symmetrical pseudo Kronecker product operator as it is with the

Hadamard-Walsh transfonn generated using the standard Kronecker product. The

number N has to be equal to 2n , where n is an integer number greater than 2 [56], [68],

[70], [77], [81] and [86]. Although this restriction on the order N is sufficient in the case

presented here, an open question still remains whether there are bi-symmetrical matrices

for which the order N is divisible by 4. The latter problem is due to the relationships that

exist between the Hadamard matrix and the bi-symmetrical one (for orders higher than 2)

when the Hadamard matrix of the second order H 2 is used in the expansion of the bi

symmetrical pseudo Kronecker product. It is still not known whether there are

Hadamard matrices of order N for all N divisible by 4 [56]. Wallis noted that the highest

order for which the existence of a Hadamard matrix is known is 268 [81].
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The recursive definition of the Walsh transform in Gray code ordering is also

derived like Good's formula for the standard Kronecker product [51], [58], [61], [64],

[66], [67], [79] and [84]. This definition is the basis for the flow diagram architecture of

a constant geometry Fast Walsh Transform in Gray code ordering.

IX.2 GRAY CODE ORDERED WALSH TRANSFORMS:

RELATIONSHIPS AND METHODS OF GENERATION

The relationships between the three methods of ordering the Walsh functions:

Natural, Dyadic, and Sequency, have been investigated by many authors [51], [62], [64],

[70], [82], [84], [86] and [87]. The known operations for Gray code conversion, dyadic

addition, bit reversal of the binary number, and combination of some of these operations

are being used [51], [64] and [84]. The relationships between the X-ordering [87] and

two new orderings in Gray code that use some of these operations but in a different order

are shown in Figure 5.

Since there is no natural ordering of Walsh functions then investigations leading

to the development of new, useful orderings, particul~:(ly those that can be described by

sets of recursive equations, are of great importance [86]. The method by which Walsh

functions are ordered is determined mainly by c.onvenience. It is usually desirable to

relate the order of the entries to the convergence of the signal representation so that the

higher order spectral coefficients of this representation make a lower contribution to the

transformed signal [82]. Sometimes another property, the srr.oothness of the spectrum

defined as the function of the number of spectral component, is important [82]. It has

been found that when this parameter is important, the smoothest spectrum is obtained by

using the Strict Sequency ordering. On the other hand, the Natural ordering gives a spec

trum of chaotic and unpredictable character [82].
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Figure 29. Relationships among 3 orderings of Walsh functions.

(IX. I)

In order to characterize Walsh functions, Hannuth [69] coined the term sequency

which can be expressed in terms of sign changes per unit interval (Le., the interval for

one complete cycle of the lowest sequency) as follows:

1
*(nzc ) for even nzc

seq = .4i (nzc + 1) for odd nzc

where nzc stands for a number of zero crossings.
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The sequencies for all previously known as well as the new orderings introduced here for

Walsh transforms denoted by the names of Gray Code Orderings 1 and 2 are shown in

Figure 30.

Natural Sequency Rademacher Dyadic

order sequency order sequency order sequency order~ sequency

0 0 0 0 0 0 0 0

7 4 1 1 1 1 1 1

3 2 2 1 3 2 3 2

4 2 3 2 7 4 2 1

1 1 4 2 2 1 7 4

6 3 5 3 6 3 6 3

2 1 6 3 4 2 4 2

5 3 7 4 5 3 5 3

X Cal-Sal Gray Code 1 Gray Code 2

order sequency order sequency order ~ sequency order sequency

0 0 0 0 0 0 0 0

4 2 2 1 1 1 4 2

2 1 4 2 3 2 6 3

6 3 6 3 2 1 2 1

1 1 7 4 6 3 3 2

5 3 5 3 7 4 7 4

3 2 3 2 5 3 5 3

7 4 1 1 4 2 1 1

Figure 30. Comparison of order and sequency for all Walsh orderings.
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lX.3 FAST WALSH TRANSFORM FOR

GRAY CODE ORDERED TRANSFORlvl

Two Walsh transforms with Gray Code Orderings are shown in Figure 31. The

symbol + denotes +1 and - denotes -1, respectively. These two Gray Code Ordered

transforms will be called Transform 1 and Transform 2 as labeled in the figure.

k .. k ;,.

i i

1
0 1 2 3 4 5 6 7 j 0 1 2 3 4 5 6 7

0 + + + + + + + + 0 + + + + + + + +
1 + + + + - 1 + - + + - +
2 + + - + + - 2 + - + - + - +
3 + + - + + 3 + + - + +
4 + - + - + - + 4 + + - + + -
5 + - + - + - + - 5 + - + - + - + -
6 + - + - + + - 6 + - + - + + -
7 + - + + - + 7 + + + + -

TransfOlm 1 Transform 2

+=+1 - =-1

Figure 31. Matrices for two Walsh Gray ordered transforms.

Transform 2 can be defined in a recursive way by using a new operator called the

bi-symmetrical pseudo Kronecker product. Before defining this operator, three addi

tional operations on matrices will be developed. In what follows the orders of the

matrices will be denoted by capital letters, and for square matrices of order N the follow

ing relationship exists: n = log2 N .

Definition IX.]: A vertical mirror transformation of a matrix A where A = [ aij ] of order

M x N is the matrix AVI' of order M x N such that the first column in the matrix AVI' is

the same as the last Nth column in the matrix A, the second column in the matrix A VI' is
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the same as the (N - 1 )th column in the matrix A , and so on.

Definition IX.2: A horizontal mirror transformation of a matrix A =[aij] of order

M x N is the matrix AHT of order M x N such that the first row in the matrix AHT is the

same as the last Mth row in the matrix A, the second row in the matrix A HT is the same

as the (M - 1yh row in the matrix A , and so on.

Definition IX.3: A vertical - horizontal double mirror transformation of a matrix

A =[aij] of order M x N is the matrix A VHT of order M x N such that

AVHT = [AHT ] IT.

It is obvious that the last operator can be defined in an alternative way:

A VHT =[A lIT ] HT since both vertical and horizontal transformations are mutually com

mutative.

Example IX.I: Figure 32 shows the results of the application of operators }[f, VT, and

VHT to the matrix A of order 2 x 4.

all al2 al3 al4 VT al4 al3 al2 all
~

~l 3.;z2 3.;z3 3.;z4 3.;z4 3.;z3 3.;zz 3.;z1

IHf IHf

3.;z1 3.;z2 3.;z3 3.;z4 VT 3.;z4 3.;z3 3.;zz 3.;z1
~

all al2 al3 al4 al4 a13 al2 all

Figure 32. Transfonnations of the matrix A.
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As was stated in the introduction to this Chapter, the new Kronecker-type operator is res

tricted to pairs of matrices such that at least one of them is a square matrix of order 2.

The second matrix can be of any order. However, for the generation of new Walsh

transforms only square matrices of orders equal to powers of 2 are needed.

Definition IX.4: A bi-symmetrical pseudo Kronecker product of a square, second order

matrix A and a matrix B of order (M x N) is a partitioned matrix of order

( 2 M x 2 N ) composed of four submatrices, where each of them is the product of one

element of the first matrix and the entire second matrix or its transformation. In particu

lar, the element a 11 is multiplied by B , the element a 12 by B VI' , the element a21 by B liT ,

and finally, the element a22 by B VHT.

Example IX2: A comparison of the standard Kronecker product and the bi-symmetrical

pseudo Kronecker product of two second order matrices A and B is shown in Figure 33.

The Walsh functions in Hadamard order are generated when the standard Kronecker pro

duct of the elementary Hadamard matrix H 2 is performed with itself. Similarly, the Gray

Code Ordered Transform 2 is obtained by successive application of the bi-symmetrical

pseudo Kronecker product to the core matrix H 2. Then,

GKN =(H 2) [n I , (lX.2)

where [n] in the exponent means the application of the bi-symmetrical pseudo

Kronecker product n times.

In [59] Burin showed a permutational matrix which describes the relationship

between Natural (Hadamard) and Sequency (Walsh) ordered matrices for N =4. The per

mutational matrix P4 that describes the relationship between the Natural ( H4 ) and Gray

Code Ordering 2 ( GK4 ) is shown in Figure 34 for N = 4 as well.
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al2'll

aI2'21

az2'll

az2'21

aI2'12

al2'22

az2'12

az2'22

alIbI 1 all~2 al2'12 aI2'll

PK all~I a11~2 al2'22 al2'21
A~B =

azl~I azl~2 az2'22 az2'21

azlbll azlb12 az2'12 az2'll

Figure 33. Kronecker and pseudo Kronecker product of two matrices.

1 1 1 1 1 0 0 0 1 1 1 1

1 -1 1 -1 = 0 0 1 0 1 -1 -1 1

1 1 -1 -1 0 0 0 1 1 -1 1 -1

1 -1 -1 1 0 1 0 0 1 1 -1 -1

H4 P4 GI<4

Figure 34. Relationships between Natural and Gray code orders.
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Figure 35. a) Principle of generation of matrix F, b) Factorization for N=S.

It is well known [51], [56], [58], [64], [71] and [82], that the matrix HN describ-

ing Hadamard ordering can be factorized and represented by the n-th degree of the Good

matrix GN such that

HN =(GN )n . (IX.3)

Similarly, the matrix GKN describing Gray code ordered transform 2 is also factorizable

and can be represented by the followbg formula:

(IX.4)
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where the principle of construction for the FN matrix is shown in Figure 35 a. An exam

ple of factorization using equation (IXA) for N =8 is shown in Figure 35 b. The dotted

lines on the Transform 2 matrix show the bi-symmetrical axes for the transform.

A flow diagram corresponding to equation (IXA) is given in Figure 36 for N = 8.

f(O) Lk------:~t-----~_....t_---__::~

f(l)

f(3)

f(4)

f(5)

f(6)

f(7)

add subtract .

Figure 36. Flow diagram for the recursive Gray code transform.

F(D)

F(l)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

The recursive nature of the algorithm derived from this flow diagram can be seen in the

figure. The reduced computer storage requirements, achieved by the consecutive recur

sion steps (the total number of these steps is n), can also be seen. This algorithm is well

suited for the constant-geometry hardware system presented in the next paragraph.
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IX.4 CONSTANT GEOMETRY ITERATIVE ARCffiTECIURE

FOR A GRAY CODE ORDERED TRANSFORM

The new Walsh transform in Gray code ordering is factored to the product of n

identical matrices (equation IXA) so this transform is well suited for constant-geometry

iterative hardware systems. Since the interconnection pattern is the same for all computa

tion stages of the new transform (Figure 36), the hardware can be reduced to only one

stage and the output fed back to the input n times.

f(O) f(l) f(2) f(3) f(4) f(5) f(6) f(7)

MULTIPLEXER

REGISTER

F(O) F(!) F(2) F(3) F(4) F(5) F(6) F(7)

NEW
D TA

ODE 1

ONTROL

UNIT

DATA
TAKEN

Figure 37. An iterative block of the fast Walsh transform in Gray code ordering.

The basic bloc of an iterative implementation of the Fast Walsh transform in Gray

code ordering (for n =3) is shown in Figure 37.
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The basic iterative bloc is composed of a multiplexer, a storage register, a simple control

unit and arithmetic elements that are able to perform ordinary addition and subtraction

and that have a fixed arrangement of connections. The content of the storage register is

fed back to the input of the multiplexer. The multiplexer is switched between two basic

modes by the control unit. In the first mode new data are supplied to the arithmetic ele

ments. In the second mode data from the storage register are applied to the arithmetic

elements.

For the case of the iterative block shown in Figure 13, i.e., where N =8, new data

will enter through the multiplexer every third operating cycle. For the next two ~ycles

the transformed data from the storage element will be fed back twice through the multi

plexer. At the end of the conversion process, the control unit will send a data ready sig

nal to report that the transformation has been performed and the spectrum is available in

the storage register. When the spectrum data are taken from the storage register, a data

taken signal is sent to the control unit which will then accept the new data and send it to

the multiplexer for the next calculation sequence.



CHAPTER X

CONCLUSION

A new, efficient algorithm for the generation of Walsh function spectral

coefficients of Boolean functions has been described. A computer method for perform

ing this algorithm for· calculating spectral coefficients has been implemented in the

DIADES automation system developed at Portland State University [38], [89] and [90].

The SPECSYS (for SPECtral SYnthesis System) developed at Drexel University on a

VAX 11n80 uses the Fast Walsh Transform for the calculation of the spectrum but can

only process Boolean functions having up to 20 input variables [48] and [51]. The

DIADES program has no limit on the number of input variables of Boolean functions and

it applies the methods described in this dissertation for the generation of spectral

coefficients of Boolean functions.

The authors of the SPECSYS program [16] have encountered the disadvantages

which are listed below while using Fast algorithms for calculating Walsh spectra. By

implementing the approach described in this dissertation, the DIADES system success

fully overcomes most of these disadvantages.

The first disadvantage of SPECSYS, one which causes the use of excessive com

puter memory, is that the computation of the Walsh spectrum requires the representation

of the Boolean function in the form of a truth table composed of minterms. While, in the

DIADES system the spectrum is generated directly from the reduced representation of

Boolean functions (arrays of disjoint cubes) [3], [43] and [54]. Since the number of such

cubes can be considerably smaller than the number of minterms, the memory require

ments can be reduced significantly. The advantages of this kind of representation, and



140

especially the fact that for practical functions, the number of disjoint cubes is much

smaller than the number of minterms, result from [38].

The second disadvantage of SPECSYS is that all spectral coefficients must be cal

culated at once. In our approach, the entire spectrum - if required - can be computed

incrementally for groups of coefficients - this feature does not exis~ in SPECSYS. There

fore our computer method is very efficient for the calculation of only the few selected

spectral coefficients that is needed in many synthesis methods [20]-[25], [27]-[33], [36],

[45], [46], [50] and [52].

The third disadvantage of SPECSYS is that it can only use completely specified

Boolean functions. DIADES operates on systems of both completely and incompletely

specified Boolean functions. The other advantages of the algorithms implemented in

DIADES have been described in this dissertation. The only drawback of the DIADES's

approach is the exponential growth of hard disk storage requirements with the increase of

the number of coefficients. This is inherent to the nature of the problem. In SPECSYS

the storage requirements are even worse since internal memory is all that is used. The

implementation of the algorithm described in [89] and [90] allows the calculation of the

spectrum for completely and incompletely specified Boolean functions having up to 32

variables. A detailed comparison of execution times for the DIADES and SPECSYS sys

tems is done in [89] and [90]. Since our system can calculate coefficients either by

groups (whole orders - see Property illA) or separately, in the worst case we require only

enough memory to hold the first order spectral coefficients. The n S; 32 constraint refers

to the generation of either the complete order or the whole spectrum. It should, however,

be noticed that even for the cases when n is limited, it can be increased when a list struc

ture that describes the indices (see Property ill.5) is created. With such a list, the spec

trum of a Boolean function having an arbitrary number of variables can be calculated 

the only limitation being the available memory on the hard disk. When the coefficients
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are calculated separately then even with the current implementation there is no limit on n

since the coefficients can be stored in groups on the hard disk. This increase in problem

size is, however, traded off for the increased processing time. When the whole spectrum

is not required, the algorithm can calculate chosen spectral coefficients for Boolean func

tions of an arbitrary number of variables.

Computer algorithms similar to the one presented in this dissenation have already

been developed for the newly introduced Generalized Arithmetic and Adding transforms

[104], Walsh type transforms of completely and incompletely specified multiple-valued

input binary functions [103] and for Reed-Muller transforms (Chapter VII). The decom

position and linearization methods for the spectra of systems of incompletely specified

Boolean functions with Restriction V.1 are presented in [15]. A suggested goal for future

research is the development of new decomposition and linearization methods for systems

of arbitrary Boolean functions. One possible approach to this problem is to apply the

known methods of [15] to STOT ON and STOT DC in turn. More investigations are needed

in this area.

The essential relationships between classical and spectral methods used in the

design of digital circuits have been stated. Resulting from these relations new algorithms

for the generation of spectral coefficients for both Sand R spectra for completely as well

as incompletely specified Boolean functions have been shown. The graphical method for

the calculation of spectral coefficients directly from a Kamaugh map is a powerful and

efficient tool for functions with the number of variables less than or equal to six. All pos

sible alternative formulas for the calculation of Sf and rf spectral coefficients are also

presented.

The fundamental formulas presented in Chapter ill are very helpful when used for

the investigation 'of new transforms, relations among various transforms and the relation

ships between classical logic analysis and synthesis methods and spectral methods, espe-
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cially when one attempts to explain the meaning of new concepts using well-established

notions. Understanding these principles gives us the working tool to translate in both

directions the notions of classical and spectral theories, design of new hardware realiza

tions for various transforms (including also those that are different from Walsh type),

testing procedures, and synthesis methods.

The interpretations and algorithms, analogous to those presented in Chapter III,

for only Sf and rf spectral coefficients can be derived in a similar way for the weighted

sum of the spectral coefficients as well as for the autocorrelation function of the Boolean

function [32], [45] and [46]. Both these parameters of Boolean functions have been

found very useful in testing. For example, the testing of programmable logic arrays by

the weighted sum of the spectral coefficients provides 100% coverage of all stuck-at

faults and very high coverage of multiple-faults [45].

A new concept of a spectral transform for a multiple-valued input binary function

has been introduced. Such a transform is composed of a vector of transforms of all pairs

of the function input variables.

The class of these new transforms corresponds to the well-known transforms for

Boolean logic and can find analogous applications in classification, analysis, synthesis,

design for testability and test generation of multiple-valued input binary functions. Such

functions have been implemented as PLA's with input-variable decoders [100], PLA's

with programmable encoders [102], Mixed-Radix Exclusive Sums of Products [39], or

multiple-level functions [l01] and have found applications in state assignment and syn

thesis of any type of multiple-output Boolean functions. Since the spectral methods for

Boolean functions have been used successfully to realize the PLA's, multi-level circuits,

and circuits with EXOR gates and due to the fact that the multiple-valued input binary

functions are generalizations of the Boolean functions, it seems natural that the spectral

transforms for the multiple-valued input binary functions will find applications in



143

analysis, synthesis and testing of all the circuits mentioned above.

Classical Walsh transforms have applications to the design with multiplexers

[29], decomposition and design with EXOR pre-processing and post-processing circuits

[15] and [21]-[24]. One can expect that similar applications can be found for the

multiple-valued technologies described above. The interpretation of spectral coefficients

from Chapter IV is not only useful for hand calculations of coefficients but, what is even

more important, it helps to formulate new theorems and algorithms in the spectral

domain by analogy to the ones in the classical domain. Some of the new developments

deal with the decomposition and testing of circuits described by multiple-valued input

binary functions.

It would also be interesting to investigate the relations of the new transforms with

the multidimensional transforms used in image coding and the application of the new

transforms to image processing. There are also possibly other formulations of transforms

for multiple-valued input binary functions that do not use complex numbers as the

coefficients. The work in these areas as well as formulations of the mutual relationships

between different kinds of transforms are the topics of the current research of the author.

By using two types of coding, each of the three basic types of transforms con

sidered has two types of spectra for a given Boolean function. The considerations are

confined to the transforms that are created by Kronecker products of three elementary

order-2 matrices. Such a limitation has been applied in order to satisfy the requirements

of hardware and software realizations of transforms in recursive data-flow or systolic

architectures [24], [64] and [82]. This approach enables creation of the corresponding

fast transforms for each of the considered transforms, using Good's formula [24], [64].

Since the Walsh spectral coefficients have recently received a considerable atten

tion for network analysis, synthesis and test purposes it is interesting to consider applica

tions of the new transforms in these areas as well. For instance, the author sees the possi-
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bility of using these transforms for spectral-based testing, layered Boolean network

decomposition and adaptive image coding.

Besides the applications in designing and testing digital circuits the new

transforms can have applications in multidimensional digital signal processing (including

image processing) [82]. It is well known that the simplest representation form for images

is a binary or ternary vector representation. By applying new transforms the structure of

the binary or ternary images can be represented in compact form.

In Chapter VII, a new algorithm that generates fixed-polarity GRM expressions

from the disjoint cube representation of Boolean functions is shown. The Boolean func

tions are represented in the form of arrays of disjoint cubes (Chapter V). For each cube

the appropriate partial GRME is obtained. Its fixed polarity GRME is found by adding,

modulo-2, all the entries corresponding to the full set of disjoint cubes describing the

given Boolean function. This algorithm can be executed in parallel.

A new Walsh transform in Gray code ordering is described in Chapter IX.

Hardware implementation of this transform is based on a matrix factorization that is suit

able for a constant geometry iterative design. Since there is no natural ordering for Walsh

functions the investigations leading to the development of new, useful orderings, particu

larly those that can be described by sets of recursive equations, are of great imponance

[86]. The method by which Walsh functions are ordered is primarily determined by con

venience. It is well known, that Sequency ordering is favored by communication

engineers [24], [64], [69] and [86]. On the other hand, Dyadic ordering is used in most

mathematical derivations involving Walsh functions [84]-[86]. Natural and Rademacher

orderings are used in the applications of Walsh functions in digital logic design [24].

Funher research on the applications of two new transforms in Gray Code orderings is

necessary - one can suspect that they will find many useful applications in different areas

like existing transforms have. The ordering that best suits a given situation is determined
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by the application.

The research, the results of which are presented here, and that which is currently

continuing, will have an impact on the application of Boolean and multiple-valued input

logic, not only in the synthesis, analysis, and testing of digital circuits but in areas of pat

tern recognition, and signal processing as well. The goal of future research is to develop

new decomposition methods for systems of incompletely specified Boolean functions

based on the representation of the Rademacher - Walsh spectrum presented. A major

advantage of the presented approach to Walsh spectrum calculation is its convenience for

computer implementation and its ability to yield solutions to problems with very high

numbers of dimensions.
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