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R
ABSTRACT

The Walsh-Rademacher spectral transform is a transformsation
procedure for converting a Boolean function int&ﬂa set of spectral
coefficients. It i1s shown hqw‘cértain problems in the Boélean domain
are soiuble in the speetfal domgin. An algorithm is presented to
" compute the Walsh spectrum directly from. the "Boolean' expression.
Sdme properties of the Walsh spectrum are'investigated. The Binary
" Decision Diagram (BDD) is used tq compufe the Walsh spectrum gnd,
conversely, from the complete Walsh spectrum, the BDD is
constructed.. An algorithm is presented to obtain.the near optimal:

BDD of a Boolean funetion‘via Decision Tables.



1. INTRODUCTION

: 1.1 INTRODUCTION

The Bool€;;~;huation,'truth tab;e and Karnaugh map are commonly
used to express the logical 1nput-outpu£ relationship of a bdinary
function - all of which have the disadvantage of growing rapidly in
size with the 'incr"easing number of variables involved(Actually, we
Qilllbe eonoérned here ﬁith the Speeial case of bivalued variables
'and‘functions and so we will deal ﬁith;a special case of'Boolean
algebra often célled Switehing algebra). Binary Decision Diagrams
offer a concise way to specify the precisé logical perforﬁahce;of a.
- Boolean function [1, 2, ;0]. The diagrams are'essentially means to
computq_the output value of a function by examining the input values
and can be used to determine the various properties of thé’functions
they represent. These diagrams have been used for test generation
and for obta{niné‘ ‘various | implementations = of binary

functions [1, 2, 13, 20].

"To dervive these diagrams from the Boolean expression, repeated
applicatidn'of the classical expansion due to Shannon 13 used as

follows[1] :-

F'(x1,xz,...,xn) = X1F1 +Y1Fo - (1‘01)

where, Fy = F(1,Xy,...,X;) and Fy = F(0,X,,...,X ). We begin by

setting X,=0 in F(X) to obtain the function Fy and do the same for

2



Figure 1-1. BDD OF F(X)



X1=1 to obtain F1 as shown in Fig.1-1.

Now the process is repeated for the variable Xz; and so on. In
wﬂit§uhnst”genaral form, all variables ére represeﬁted as nodes on the
diagfam of whicﬁ only one branch is active for any particular set of
inputs. The output value is computed by entering the diagram at the
rooh and then traversing downward fhrough the diagram; There exists
only one path through the diagram for any set of input values. All

paths in the diagram terminate in F=1 or F=0.

Boolean functions are binary valued, conventionally taken as 0
and 1. However instead of involving two binary values, it is B
possible to transform this binary data into another mathematicai
domain, innwhich the resultant numbers lie within a larger range bf
values,»not confined to (0,1). This is the "speetral’doﬁain', the
data enumerated in this' domain being the spegtrum‘ of the given
binary function [14). A close mathematical analogy is the tr#ﬁsform
of a complex a.c. wayefonm, whose magnityde varies with time, from
the time domain to the freduéhcy domain giving the frequency

components or. spectrum of the a.c. waveform.

T

The most relevant and compact digital transform is the Walsh-
Rademacher transform [3, 4, 6, 7; 8, 9, 14, 15]. This transform is
-orthogonal, involving 7the numbers -1 and +1. The fundamental

propérty of this'transform is that no information content is lost in

i .



the transformation into the spectral domain. Thus a transformation '
back from the spectral domain to the more familiar binary domain is
pbssible, by wusing the inverse of the forward transform.

Mathematically we have .:

[cl = [T]1.[F] - (1.2)

where [T] is the square transform matrix of dimension 2%x2% ; [F] is
the column matrix of dimension 2nx1,‘representing the output of the
function F(X) of n variables. [C] is the column matrix of dimension

2"x1 corresponding to the spectrum of F(X).

The converse of Eq(1.2) is :

[F1 = [T1-1.[c] - (1.3)
where [T1™! is the inverse of the forward transform matrix [T].

For the purpose of the above mentioned transformation, we will
code binary values '(0,1) to (~-1,+1). Under this coding the jth '
element of [F] is given by

FJ :»2.F(X1’x2,ooo,xn) - 1 ‘ : . . (10"‘)

with (X1,X2,...,Xn) being theldth n-tuple(qut of 2B), The transform
matfix [T] consists of 2% row vectors,R,each .of dimension 20,

computed as tollows -[8].



RO = [1,1,...1]1*2!1

= [2(Xi)1-1 ,2(Xi)2-1 geece ,2(x1)20-1]1x2n R ‘.
~ : .
with 1 = 1 to n and (xi)J being the value of the variable
X, in the J*B n-tuple. |

Rik = [(ri1xrk1 ) goece ,(Piznxrkzn)]

with 1,k = 1 to n'; i#kj and ry, ,ryy being the 3" elements of ni
and Rk respectively.

R12...n = [(l‘11x...!'n1),...,(P12nx..-xrn2n)]
It is noted that the transform matrix is an orthogonal matrix, is
independent of the Boolean function F(x), and only depends upon the

number of variables in F(X). The ordering of the rows in [T] can be

- changed, as long as the ordering in the vector [C] is changed

accordingly. The ordering of [F] and rows in [T] ‘comes from the .

ordering of the n-tuples and again, one can change the sequenoe of

"n-tuples without affecting the end results(see [11]).

- PRI

If the Wnlsh-Rademaoher ordering(see [8]) is used and (0,1) is
coded in (-1,+1), [T] can also be derived from the following

recursive form

R Ny 9
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where Tn is a 2%2? transform matrix, n is the number of variableé,

and To_= 1.

The Walsh Coefficients are demoted by Cg,Cq,Cps C3see+Cyp_ . -

In the following chapteps 012_..n will be denoted by CALL because it

involves all the variables.The Walsh Coetficients have been used for

fault detection [18, 16] and for synthesis [12, .19, 10] of the logic
networks. In the next'section we will discuss some propefties of the

Walsh coefficients.

1.2 SOME PROPERTIES OF WALSH COEFFICIENTS
' With the introduction to the Haléhvtransformation, we now turn

to some of their properties :

1. The arithmetic sum of all the (2") Walsh coefficients is
given by
IC = 2M.F, - (A.6)

Q?:here Fn represents the last entry in the column vector
"[F] and corregponds'to the mapped value of the function

F(X) with all its inputs at 1. Thus, ' :

1 and

IC = +2B when F_

zC

-28  yhen Fp = -1,

e
\



‘Premultiplying Eq(1.2) by a vector of all 1's of
dimension 1x2%, we have - - -

[11...110C]=[11...1][T] [F]

or, 2C=[00 ... 0 2"%] [F]

2B F

or, 2 C n

where F, is the last element of the column vector E‘F”],
which corresponds to the mapped value of the function
F(X) with all its inputs at 1. F can be either +1 or -1,

So we have

+2% when F, = +1 and

Jc
PN

-2% when P, -1.
EXAMPLE 1

Consider a simple case of 2 variables. Eq(1.2) can be

written as

Cq | 41 41 41 +1 ] '
C1 _ -1 =1 +1 +1 ?2
c, [ |- 1 -1 +1 Py
C12] | +1 -1 -1 w1 By

(1.7)

?remultipling on both sides by [1 1 1 1], we have -



[1 1113 oo 1=01 1111 [+1 41 41 41] &1’
c, -1 =1 41 41| |Fp|
02 -1 +1 =1 +1 »F3
i?’z ' |+ -1 -1 4] Ry
. -_ [- - aad -t
CO+C1+02+C12’- [0 00 4] F1
o L F2
\ ) F3
| Fy

or, e =-22.Fu'”

"~ From Eq(1.6), some properties can be derived as follows :

a._hll 2P coefficients with zero values do not define
a valid Boolean function. |
b. If one of the coefficients is +2%, then the
. remaining coefficients will all be zero. -
2. The length of théivecﬁor [C] (gquare'root of the sum of

the squares of all thé coefficients) is given byb

V2 - oB : | (1.8)

LY

PROOF

Since [T] is an orthogonal matrix, we can write(see [5])

[T1'.0T] = K.[I] . ‘ (1.9)
where [TJ# is the transpose of the matrix [T],‘[I] is the

9



identity matrix and K is a constant. In our case k=20,

So,we have

[T]'.[T] = 20.[1] — | ©(1.10)

Taking the transpose on both sides of Eq (1.2), we have

[cl* = [F]'.[T]" (1.11)

Multiplying Eq(1.11) on both sides by [C], we have

[cl*.(c] = [F}'.[T]'.[T].[F]

using Eq(1.10), we have

[cl.[cl

" [F]'.2R.[I].[F]

2R, [F]'.[F]

Since [C] and [F] are column matrices, we can write

£c2 = 2", IF2 | | (1.12)

The dimension of [F] is 2%x1 and the F's can be either +1
or -1, resulting in Fi = 1. So there would be 22 1's in
IF2. Hence I F2 = 20, Using this property in Eq(1.12),

we have

zcz = 22n

Mﬁ
0
n
I
N
[=]

10



EXAMPLE 2
,COnsixder the two variables case of EXAMPLE 1. Transposing
Eq(1.7) on both sides, we have
[Cy cé CipdelFy Py F3 Byl [41 -1 -1 4]

+1 =1 +1 -1

o+ =1 -1

+1 +1 +1 +1

e -t

Postmultiplying both sides by [C], and using [T]*[T] =

22 , we have

[Co €y C c1é]' Co | 4.[Fy Fp F3 Fy1[F,]

C1 Fa

c, Fq

14 | -
Cg+CT+C5+C5, = B(FF+FSeFSFD)

Since F = 1, for i=1 to 4, we f‘inally have

12

1.3 8 Y AND OUTI.INE OF REPORT

In \tts chapber we discussed some properties of the ﬁalsh- :

coefficient with a brief introduotion to the Halsh transrormation
\ .

and the Binary\Decision Diagram.

N\

AN

2

‘using Decision Tab]\s\ is explored. Simple examples ‘that 1llustrate
L . N

L
N

I

In Chapter a simple approach to obtain a near-optimal BDD



the algorithm are discuased.

Chapter 3 presents algorithms to compute the Walsh coeffiecients
of a function from its BDD and, conversely, construqt the BDD of a
function from its Walsh spectrum. Examples are given to illustrate

both algorithms.

Chapter U4 ©presents an algorithm to compute the - Walsh
coefficients directli from the Boolean function F(X). The Walsh
spectrum of the Boolean Difference,"(dF(x)/dxi) of F(X), is computed
. from the "spectrum of F(X). Thg spectra of [xi(dF(x)/dxi)] and
[ii(dF(X)/dxi)] are thenﬁQomputed to determine the true vertices Af
these two functions, as these vertioes‘determine the probability of

detecting a fault at any input lead.

Chapter 5. presents a summary of the results of the thesis.” A

list of references is 1ncludéd at the end of the thesis.

12



2. A METHOD FOR FINDING GOOD EDD'S

. This. chapter presqntsvan“algorithm for obtaining a "good® BDD
of a Boolean function. A BDD is considered to be a good BDD when it

has a small, possibly minimum, number of nodes.

Construction of the  EDD  of a function
F(Xq1e009Xg5eeesXg5000,Xy) beginning with a variable I, may lead to
a BDD with a smaller number of nodes than that with some other
.1?1§1a1 choice XJ. Thus, the number of nbdé;tin.a ﬁDD,depends upon
thé order in which the variables are selected.lThe proper selection

of the variables at every step will lead to a good BDD.

In the context of data proéessing, .a. similar problem of
reducing computati6n time, based on a set of rules and conditions,
was treated by Pollack [17]. Pollack solved this problem by forming
a table with conditions in -the rows and rules in the columns. He
‘célled this tableva'DECISION TABLE. The algorithm discussed in this

chapter 1s based on Pollack's approach.

We beg;n with some definitiénslin Seétion 2.1. This-is‘followed»
by tﬁe formulation of the algorithm in Section 2.2. The algorithm is
illustrated with examples. This algorithm does not always lqéd to a
good BDD and an“'e;ample 1llustrating 4this limitation 1s also

presented. Finally, a brief summary is presented in Section 2.3.

pol

13



2.1 DEFINITIONS
Iable~ .
The Boolean function 1is first'representéd in the form of a

column in the table. All the variables appear in the leftmost column

as row coordinates. In every column, the entry 1(0), represents an-

uncomplemented(complémented), variable in that implicant. A dash in

a column shows that the implicant is independent of that variable.

For example, the table for the function F=x1x2+x2x3+x1x3 is shown in
Fig2-1.
Subtable

For each variable Xi, there are two tables corresponding to its

0 and 1 branches. These tables are callgd subtables. The 0 branch

subtable corresponds to the part of the table where X1 has 0 and

dash entries whereas the 1 branch subtable corresponds to the part

of the table where X; has 1 and dash entries.
Implicant Count

The Implicant Count of an implicant is 27, where r is the
number of dashes(variables missing) in that implicant. In Fig2-1,

the Implicant Count for all three implicants is 2, because every

implicant has only one dash.



Figure 2-1.

1 1
- 1

Table of F =

15

X1X2 + X2X3 + X1X3



Dash Count

For each variable X,, the sum of the Implicant Counts taken
over those implicants that are independent of Xi, is denoted as Dash

Count. In Fig2-1, the Dash-Count for X,, X, and X3 is 2.
1(0) COUNT

The 1(0) Count of a variable X; is the sum of the Implicant
Count - taken over those implicants where xi is uncomplemented
(complemented). In Fig2-1, the 1 count for Xy, X, and X3 is 4§ and

-~

the 0 Count for all variables is 0.
.

For any variable xi, Delta is the absolute difference of the 1

' count and 'the @ count. In Fig2-1, Delta for x1, X, and X3 is 4,

L

2.2 ALGORITHM

The algorithm to determine the next node in the BDD consists of

the following steps :

1. Expresé the Boolean function in the form of a table as
'defined above. ' |

2. Combing any twd 1mplican£s that can be merged. This is
'similar to Boolean minimiiétion.

3. Select that variablejwhich has a minimum dash count.

y, If. two or more variables have the same minimum da$h

count, select the variable with minimum delta.

‘ 16



- 5. If two or more variables have the same minimum delta and
the subtables Qorrespond;ng to one variable is the same
as some' other subtable or pgrt of the subtable s, then
select that 'variable after seleciihs other variables
bécause equivalent subtables then can be combined.

6. Assign the variable so chosen to the node of the path
being considered. If this is the first variaple of the
BDD being constructed, assign it to the'root. This node -
or root has two branches, each of which léaésv to a
subtable with 6hé léss variable than the original table.

7. At any stage if twa subtables are equivalent, i.e., the
variables and the entries are the same, then join them.

8. fo simplify the subtables, the f‘ollowingfruys can be

. applied :

a. If a branch ieads toa—subtable oéntainins all
daéhes in any impiicaﬁt; terminate that branch with
F=1. |

b. If a branch does not lead to a'subtable,vtérminate
that branch with F=0. '

c. If at any step a variable contains only dashes in
éll rows of a subtable, eliminate that variable

I <

from the subtable.

d. For any variable Xi, the subtable containing only

one variable, having the form X;] 0 will be[

17



replaced by the node-x1 having two branches. The O

branch will be terminated with F=1 and the 1 branch

will be terminated with F=0. Similarly, Xi 1] will

be replaced by the node X, with its 0 branch
terminated with F=0 and 1 branch terminated with
F=1.

9. If a branch leads td a subtable containing more than one

implicant, go back to step(2).

, EXAMPLE

Consider the function F=B(AC+CE)+E(AB+BD). The BDD for this
function, arbitrarily choosing the variables in 1lexicographical
order, is shown in Fig.2-2. We can express this function in a table .

[

form as tollows : .

Dash count
A _ 0 - o - 8
B 1 1 0 0
) c " 1 0 - - 8
D - - - 1 12
E - 0 0 0 4

Implicant Count y 4 y Y

-
s

According to step(3), B would be the rodt, since it has the
minimum dash count. Applying step(6), we have Fig.2-3.

,,,,,,



Figure 2-2.

19
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- In the subtable of the "0" branch of B(Fig.2-3), A and C
conditions contaln only dashes and D condition in the subtable of
the "1" branch contains only dashes. Thus, the corbesponding rows

are eliminated and the new tables are shown in Fig.2-4.

In the right subtable of Fig.2-4, épplying step(4), C would be
our next condition to be tested. In the ieft‘subtablq, since both
conditions have the same delta, éondition D would be teated-befbre
E, because E abpears in the right subtable with the same value. Now

we have Fig.2-5.

Since the second column is redundant in both subtables of the

variable C, it is eliminated in Fig.2-6, according to step(2).

Finally, Jjoining equivalent subtables and applying step 8(d),

" we have Fig.2-7.

The number of nodes in Fig.2-2 is 7 whereas the number of nodes
in Fig.2-7 is 5, which is minimal in this case, since each variable
appears exactly once.

COUNTER EXAMPLE

Consider the function FP=B .D+AD+ABC. We can express this

function in a table form as follows:

20



Figure 2-3.

ImﬁliCaﬁ; Dash ~Deléa
Count count,
A 2 4
C 2 0
E 2 4

' Figure 2-4.

21




Figure 2-5.

Figure 2-6.
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Figure 2-7.

[

¥

ot



Dash count

-
A - 0 1 ) S ‘, :
B 0 - 0 | i \\\\\
c - - 0 8 |
D 0 o - - 2
Implicant

Count y y 2

According to step(3), variable D_wouid be our foot, since it
has the minimum dash count. Applying step(6), we have Fig.2-8. In
the subtable of the zero bbanch, the last column is redundant. So
simplifying this table we have Fig2-9. Since variable B appears in
both subtables with the same entry, we can choose‘either‘A or C in
the 1 branch subtable. ,Choosing Cuin the right subtable of Fig2-9,

we get Fig2-10.

Variable B appears in the two subtables ‘with the same values,"
so according to step(5), it would be tested after testing A

variable(Fig2-11). Finally, combining subtables, we get Figzétz,

However, if we had chosen A variable as a root, we would have

obtained Fig2«ﬁ3.

~ Fig2-12 has 5 nodes and Fig2-13 has.:u nodes. Thus, we can
conclude that our algorithm does not always lead to a minimum

24
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Figure 2-9.
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Figure -2-10.

Figure 2-11.

26 -



. Figure 2-13. 27
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structure, just good ones.

.--24+3 SUMMARY
In this chapter;, we presentéd an algorithm to obtain good

BDD's. The algorithm presented can be easily computer programmed.

From experience, we fourid that if the function consists of a
miniﬁial subset gf implicants, then the algorithp usually gilves us a
good EDD. This means that to get a good BDD, we - should first
minimize the function and then apply the algorithm. This édds ah

extra step.

-28



3. WALSH SPECTRUM FROM BDD AND BDD FROM WALSH SPECTRUM

This chapter presents two algorithms. The first algorithm
describes the computation of the complete set of 2B Walsh
coefficients C of a function F(X) from its BDD. The second algorithm

describes the construction of. the BDD of a function F(X) from its

complete set of 2P Walsh coefficients C. This means that we can go .

from one representation to the other and 1llustrates that the
properties of a function which can be determined from t_:he BPD can

also be derived from the Walsh spectrum.

3.1 COMPUTATION OF WALSH COEFFICIENTS FROM BDD

. In this seétion, we describe the computation of .the complete
Vset of 2P Walsh coefficients for a switching function F(X) of n
variables direetly from its BDD. An example of a BDD is shown in

Fig.3-1 for the function F = X,X, + XXy + X,X3 . Branches are

labeled as a,b,¢,...h along with the branch value (0 or 1). For.

example; a;0 means that branch a has a-value 0. An "exit branch" is
defined as a branch that terminates in a-value (0 or 1) of the

function F. Exit branches in Fig.3-1 are c,f,g,h._ Both outgoing

branches of an "exit n3de" are exit branches. 'In Fig.3-1, XB is an

exit node. The "Root" is a node with no incoming Bfanches. In the

example _being oonsideredA, x1 is a root.

The total number of input iombinations (ICs) for a function of .
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ladgbeg \ ladh'ben

Figure 3-1. BDD OF F = X1X2 + X2X3 + X1X3
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n variables is 2%. For thé example of Fig.3-1, it is 23-8. The
. number of ICs associated yith eaéh of the _outgoing branches of the
'root’ is on-1, ‘In Fig.3-1 » ICs cprrespondipg to the branches a and b
are labeled as ua and llb » respectively. ’I'He outgoing brancAhes'cf any
node with only o._r_xe_;l.ncoming branch are associated wit,h ICs equal to
one half of tbe. WICsrof' the incoming branch. 'In the present e;xamplé,

ICs of the outgoing branches c and d of the node "Xz are labeled as

..2ac and Zad' respectively.. va any node has more than one incoming
branch, the number of the ICs of each of the outgoing branch is
equal to the sum of one half‘Aof the number of ICs corresponding to
each incoming branch. >In the present example, this case is
illustrated by the> ICs associated with the branch g labeled as
1adé*1beg’ indicating that 1aqg cOmES from the branch d and Tbeg
comes from the brahlch e. The subscripts atﬁached to particular ICs

are indicative of the path of these ICs from root to the particular

branch. Thus ac, for exémple, is indicative of the two ICs'that_

have x1. a{nd x2 equal to zero, 1.e., i1izi3 an_d -13(2}(3. ‘ |

In order to facilitate thev_cqmputation..of Walsh coefficients
from the BDD, we define a function npath(branch values, F) of a path
between Vany' node and the terminal value. of the switching function,
F, which depends upon some or all branch values selected along the

path. The value of n 1s defined to be +1(-1) if the branch values

along the specified path and the ter-minal value of the‘fu,nc.tion F

.l"
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contains an even(odd) number of zeroes. For example, in Fig.3-1,
N ge(@:¢,F) = =1, but in,.(a,F) ="1. A set of subscripts (attached to
the ICs of a particular exit branch) is "complete® if it céﬁtains
'““———“——4—-—ona~outgoing~branéh from each of the nodes associated with the mbP
order Walsh Coefficieﬁt being computed. For example, in Fig.3.1,
consider the computation gf 023. The‘corresponding nodes to be
‘considered are x2 and x3. The outgoing brancheé from these nodes

are c,d,e,f,g and h. The subscripts attached to the ICs 1 of the

adg
exit branch g are "complete™ because it contains the branch‘ d
corresponding to the node Xz and the branch g corresponding to the
node X3. Likewise, the subscripts of IC§ 1beg’ 1adh and 1beh.are

also "complete", whereas the ICs 2ac and 2bf are not "complete'.'

3.1.1 COMPUTATION OF Co
The zeroth order Walsh Coeffiéients, Co,'is giveh bj
Co =% My - IM; - (3.1
~ where,IM; is the sum of the number of ICs associated with those exit
'branches whose terminal value‘is ?:1 and ZHJ is the sum of the iCs
‘associated with those exit branches whose terminal value is F=0.
'Coefficieqt‘co, in fact is the difference between true vertiees(f=1)

and false vertices (F=0), It gives us a measure of the number of

minterms associated with a function.
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3.1.2 COMPUTATION OF OTHER SPECTRAL COEFFICIENTS

In order to compute the remaining 2°-1 Walsh Coefficients

corresponding to m £ n variables, the following rules are observed :

1.

We bégin by considering the-ICs at all the exit branches.

Remembering that the subscripts of a particular IC denote

. the path of the IC from the root- node, we considef only

those ICs(at the exit branches) that contain a "complete®
set of subScripts associated with the mth order Walsh
coefficients.

From>the collection of ICs defined in step(1), delete ICs

~ associated with outgoing branches of exit nodes. (This

step i1s used because the contributions along the two exit
branches will cancel each other).

The mth order Walsh Cbefficient corresponding to m

_variables is given by :

Ci2..m = £ Mjn("complete” set , F) - . (3.2)

where Mi is the number of ICs having a ?completeﬁ set of

subseripts at a particular exit. branch and n(“compLete"
set , F) includes the bréﬁch values corresponding to the

tcomplete® set and the terminal value of the function F.

The contributions of ICs- at an exit branch that does nof

involve all the m variables will cancel -each other. Any function fob
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which any BDD does not contain 'a'ny exit IC involving all the m

variables will be characterized by Ci, o = O.
.

With reference to FigIB-J-, we wish to calculate the Haléh
Cbef‘fioienﬁ ('.'.l corresponding to Yariable' x1. The outgoing Branéhe$
associated with node X1 are. a and b. ‘Branches a and b appear in the '”
ICs associatedkwith _exit branches e,f,g,h. But, step(2) eliminates ’

 ICs at exit branches g and h. Applyinngq(3.2.), we have

Cy = 20,,(a,F) + 20 (b,F)

=2n,4,(0,0) + anf(1,1)

2(+1) + 2(+1)

=4 s

-

To calculate 02, c¢orresponding to variable xz, we need to consider
ICs at exit branches ¢, f, g, h because the outgoing brmjhes
associated with X, are c, d, e, f. But, step(2) eliminates ICs at

exit branches g ‘and h. Thus, we can write

02 = Znae(c,F) + 2nbf(f;?)

=2n_,(0,0) + 2n-(1,1)

2(+1) + 2(+i) o ‘ -

y

Similarly C3 can be calculated below :
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-‘1nadg(s,F)+1nbeg(é,F)+1nadh(h,F)+1nbeh(h,F)

w
¥

Naag(0s0)+1M 0 (0,0) 410, 4p (1,1) 410y 0 (1,17

1+ 1 41 +1 - o o . !

=}

The second order Walsh Coefficients 012, 023 and C13 corresponding

to variables X1X2, x2x3 and x1x3 can be computed as follows :

The outgoing branches a;sogiated with variables X1 and 12 are
(a,b) and (e,d,e,f), respectively. We need to consider ICs at exit:

branches ¢, f, g, h but, step(2) eliminates ICs at g, h.

Cyp = 2néc(a,c,F)‘+ 2nbf(§,f,F)

=2nac(0,0,0) + 2nbf(1’1’1)

2(=1) + 2(+1)

o ~

The outgoing branches associated/éith variables X2 and X3 are
(c, d, e, f) and (g,h), respectively. The ICs at exit branches ¢ and

f will not be considered because they do not form a complete»sét.
- ,

Co3 = Maqg(ds8iF) N, (0,1 F) B
+1nadhéd,h,F)+1ﬂbeh(e,h,F)

=1“adg§1’0’6)*1“beg(°’°’°)

1M gn (151,141 (0,1,1)

=1=14+1=1
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ATo «ealculate C1é3, the outgoing branches ascociated with x,, x2
and x3 are (é,b) , (e,d,e,f) énd (g,h), respectively.

: t
0123 = madg(a.'d’g’F)”"beg(»b’eA’g’F)

-1 =1 -1 -1 - b

-uo
EXAMPLE 2 - -
'With referente to Fig.3-2, we wish to calculate the Walsh

Coefficient CB' The outgoing branches associated with variable B

are (c,d,e,f).The ICs at exit branches g, j, 1 will be considered.

= Anaeg(c,F)+unadj(d,F)+unbeg(e,F)+4nbf1(f.F) ‘

o<
]

B(+1) + B(+1) + B(+1) + 4(=1)

8

Similarly, other coefficient aré calculated below»:

Cc

unadJ(J,F) + Unpey(1,F)

CB(+1)7+ B(=1)
.=0

v

36



n3l-

2achn + 2behn

*2.din T Zbfkn

Figure 3-2. BDD OF F=B(AC+CE)+E (AB+BD)
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Cp = Ungog(8,F) + Uny. (g,F)
=4 +
=8 .
Capc™= ¥Mag3(@:ds3:F) + Hnpey (b, 1,1,F)
B(-1) + 4(=1) |

-8.
~ EXAMPLE 3

| With reference  to Fig.3-3, the exit branches are d, f, g, -
h. Now, we wish to calculate Cc corresponding to variable C. The
outgoing branches assSociated with node C are e and f. Only the ICs -

at exit branch f need to be considered.

CC = znbcr(f,F)

==2

To . calculate CAD’ thg outgoing branches associated with
variables A and D are (a,b) and (g,h), respectively. Onlj the ICs at

exit branches g and h need to be considered.

Cap = 4 (a,8,F) + 1%¢eg(b,s,§’)
....l;nah(a,h,F) + 1%ceh(b’h'_F)

L -1 4+ 4 =1

=6

To compute Cppa, the ICs at exit branch f only - will be
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4ah+lbceh

Figurd 3-3. BDD OF F = AD + ABC + ABCD
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considered.-:

Cape = 2pep(bscyf,F)

) =2.

' 3.2 SYNTHESIS OF BDD DIRECTLY FROM THE WALSH SPECTRUM
In this section, we describe an algorithm to directly obtain
the EDD of a Booléan function,F(X), of n variables from its complete

set of 2% Walsh coefficients, C.

Consider the Shannon decomposition of F(X) about a single

variable Xi, i=1 to n

CF(Xqy.0. X)X Fg + X4F, - (3.3)

Whe!'e, Fo = F(x1’coo,°,o..,xn) and F1 = F(X1’¢¢.,1,-tq'«’xn)o

From_Eq(1.2) and Eq(1.5), we have

Tp-1 Tp-1] [ Fo
c = (3.4)
[Tn-1 ' Tn-L LF1_
e - Tn-1Fo + TpoqFq
~Th-1F0 + Th-1F4

where, Fo' and F, are function vectors for Fy(X) and Fy(X),
- respectively. " Let .

T

n-1fo * Tn1F1 = Vo
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“Tn-1Fo *+ TauqFy = Y

where,vo and V1 are the ordered vectors which jointly give C. After .

simplifying, we have

Tp1Fo = (1/2) (Vg = V)

If we know the complete spectrum and hence the two half spectra

Vo and V1, we can calculate the spectrum corresponding to functions

In general, ﬁhé 27~1 waish coefficients, C', of FO(X) are given
by '
' - . - ' N
CJ = (1/2)(CJ Cij? (3.5)

and the 281 Walsh coeffictents, C", of F,(X) are given by

Cym = (1/2)(Cy + Cyy) - ﬁ (3.6)

where Jj=all possible coefficient subscript sets not involvimg 1,

including j=0. Coefficient cij, for 3=0, = C,(see[41).

’

Cohsider the following truth table of a single variable

function y let us say X

LA
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-

The value of the function is always 1, independent of_thé“Variablé
X, For this function, we have Co=2 , Cx=b. So, whenever we have
coefficients (2,0), then the value of the function is always 1(P=1).

Similarly, for the set (-2,0), the value of the function is always

0(F=0).

Applying the same idea to the set of coefficients (0,-2) and
(0,2), we obtain their truth tables and their corresponding BDDs as

shown in Fig.3~4 and Fig.3-5, respectively.

Whenever a function is 1ndébendent of any‘variabié, then all
thé‘subscripﬁed coefficients involving that variable will be zero.
For example, consider the function F(Xq,Xp,X3)=XX3. The 23 Walsh
coefficients are - | - |

CO="'u , C1=0 ’ Cz=l|, C3=u

: C12=0 'Y C13=0 ’ Cz3=u ’ 0123-:0.

Here, C1,C12,C13,C123 are- zero. Conversely, wé can say that whenever

all the coefficients 1nvdlv;ng a given variable are zero, then the

- function is iﬁdependent of that variable. If we want the Spéctrum

in tergs of the remaining variables, then we delete the subscripted

;coefficiehts involving that variable and divide the remaining
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Figure 3-4.

43 o



Figure 3-5.
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spectrum by 2.

 With this introduction, we now turn to the main algorithm that
makes successive use of Equatibns(3.5) and (3.6).4 The algorithm is

formulated as follows :

1. Select any variable xi and assign it to the root of the
BDD being constructed ﬁith two outgoing branches of value
0 and 1. | |

2. Calculate the two subsets of 2n'1'Walsh coefficients, C°
an& C" of  the functions VF(X1,...,0,;..,Xn) and
F(X1,...,1,...,Xn), respectively, correspénding. to the
bran;h values X,;=0 and 1 using (3.5) and (3.6).

3. If iﬁ any subset (C':-or C"), all ‘phe coerficienté
involving k of tpe remaining vériables are zéro, ﬁhen,
eliminate them and divide the remaining coefficients by
the factor of 2K. |

4. When any branch has a Set of coefficients (-2,0) or
(+2,0), terminate that branch ’ with F=0 or F=t,
respectively.

5. When any branch has a set of coefficients (0,2), connect

'vthat branch to the last femaining node variable.

Terminate-the 0 braﬁch of this néde with F=0 Qnd the 1
bfanch with F=1.Im

When any branch has a set of coefficients (0,-2), connect
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~that branch to the lﬁst~ remaining node variable.
Téfminate the 0 branch with F=1 and 1 branch with F=0.

6. Whenevef two sets corresponding to two distinct Lr;hehes
are the same, join fhe branches. -

7. Select the next variable in each of the subsets C!',C" and

repeat steps (2)~(6).
. . . n
Consider a set of (23) Walsh coefficients. Here_n=3. Let cozo,

C1=ll, 'C2=1l, C3=l}, C12=O, C13=0, C23=0, C123;-u.

In order to determine the BDD for the function corresponding to
the glven set of Walsh coefficients, we select the variable X1
according to step(1), and calculate the subsets C' and C"as shown in

Fig . 3-6 .

Since steps (3)-(6) are hoﬁ applicable, X, is selected as the
next variable and further subsets are calculated -according to
step(7) as shown in Fig.3-7. Next, applying steps (4)-(6), finally

we obtaln Fig.3-8.

The Waish coefficients given in this example correspond to the
function F=x1x2+x2x3+x1x3.. Fig.3-8 corresponds to the BDD for this

function.
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Figure 3-6.

Figure 3-7.
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*  Figure 3-8.
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EXAMPLE 2

Next, consider the set of 25 Walsh coefficients Co=-8, CA=-8,

CB=8 ’ Cc=0 ’ CD=8 s CE=-1 6, CABW_%:O*WCAE=O ’ C'BC=0 ’ ,CBD=-8 ’
Cpg=0s Ccp=0» Ccg=8, Cpg=-8, Cppc=-8, Cppp=0, Cppg=0s Cycp=0,
Cace=0» Capg=0» Cpcp=0» Cpcg=8 CBDE"‘8 . All remaining coefficients

are zero. - -

In order to determine the BDD for. the function corresbond:!_.ng to
the given set of Walsh coefficienté," we select the variable_YA
'accordihg to step(1). and calculate the subsets C? and. C" as shown in
Fig.3-9. Next, we select variable B as a node on both of the
outgoing branches of‘ the variable A, as shown in Fig.3-10. Now,
applying step(3), we obtain Fig.3-11. Next, the ;.ase of steps‘
(5)=(7) results in Fig.3-12. Finally, applying steps (4)-(5), we

obtain Fig.3=-13.

The Walsh coefficients used in this exafnple correspond to the
function F=BDE+BCE+ABC. Fig.3-13 corresponds to the BDD for this

function;
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Figure 3-9.
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Figure 3-11.
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Figure 3-12.
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Figure 3-13.

54



3.3 SUMMARY

Thé Walsh coeffid;ents are usually computed from the truth
table. As“the number of variables increases, the size of the truth
table érows' rapidly. It becomes tediocus to compﬁte the Walsh
spectbum of a functioﬁ of more than five v#riables;.Since the BDD is
a concise way to sbecify a Boolean function, the élgorithm to
compute the Walsh spectrum directly from the BDD is very'paeful. The
second algonithm (constructing the BDD directly from the Walsh
spectfum) 1l;ustratés the conversion from the spectral domain to-the

binary domain.
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4. WALSH SPECTRUM FROM THE BOOLEAN EXPRESSION

This 'chapter contains an algorithm for. computing the ‘Walsh
spectrum directly from the Boolean expression of_the function F(X).
Then, we show how to find the spectrum of th; Boolean Difference
dF(x)/dxi from the spectrum of F(X). Next,'we show how to compute

the number of true vertices of Xi(dF(x)/dXi) and ii(dF(X)/dxi).

The simple Boolean Difference of a function F(X) with respect

to one of its defining variables, X, is defined as (see [7]) -
. i

dF (X)/dX, = F,(X) @Fy(X) (4.1)

Where Fa = F(X1’¢oc’xi,.‘¢,xn) ’ Fb = F(X1'-o-’ii,coo,xn) a!ﬂ@is

the exclusive OR operator.

Solutions to (dF(X)/dXi)=1 are independent of Xy aﬁd defipe the

input for ﬁhich a change in state of Xi causes a change .of output

state; The set of tests for a fault on Xi is given by

Xy (4F (X)/dX,y)

| ii(dF(X)/dXi) 1, for X, stuck at 1 | | (4.3)
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4.1 COMPUTATION OF THE WALSH SPECTRUM DiRECTLY FROM THE BOOLEAN

FUONCTION

complete Walsh spectrum directly fpom a non-canonical form of a
given Boolean function F(X) of n variables. Our method is based on
the observation that when the function 1s reduced to its disjoint

4form(sum of products form where products are mutually exclusive,

1-3.,

appearing in an uncomplemented (complemented) form in a product term

which has K nmissing variables contributes +2K(-2X)  to the

In this section, we describe an algorithm to compute the

no two product terms cover the same minterm), a variable

appropriaté partial product of the Walsh coefficients.

1.

The algorithm can be expressed as follows :

Convert the gi#en Boolean function to a disjoint form, if
it is not in that form already(sée [4]). There may be
many'aisjoiﬁt forms. Choose any one .

In each prdduct term with K missing variables, index each
literal with  1=425(-2K) ,  if  uncomplemented

(complemented).

" The mth (mg<n) order Walsh coeffieient can be written in

the following form

C12...m = 2% prod terms a (1)

where, the sum is carried out over oniy thosé product
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terms that contain all 12...m variables and a(1) for each -
such product term is given by
+|il,i£_the,number of negative variables in
12..m is even in that product ;
a(1)= . |
-lil » otherwise.
If there 1s no product which involves all 12...m

variables, then 012._.m ﬁill be charaeterized by =zero.

The coeff;cient C0 is given by
. K n-1 o -
o "2B:a11 prod terms® -~ 2 ] (4.5)

where each product term contributes 2K and summation is

carried over all the product terms.

PROOF

N

The contribution t6 the Walsh coefficients of a product term
which dbes not involve all the m variables will be zero, because
half of the input combinations in the product term will contribute
(+1)vand'other half will contribute (-1). Oniy the product terms
which involve all thé m variables will be considered. The product
term, which has K missing variables, corresponds to ZK input

combinations associated with F=1.

There will be 2n—1 input combinations that have an even number
of zeroes in the m variables and the rema:Ln:Lng.Z""'1 will have an odd

number. Each input combinations haéing even number of zeroes

58



éssociated with F=1 will contribute +1 and input combinations having .
an odd number of zeroes associated with F=1 will contribute -1 .-
Conversely, the input combinations having an even number of zeroes
associated with F=0 will contribute -1 and input combinations having

an odd number of zeroes associated with F=0 will contribute +1.

If NE is the number of input combinations having an even numbe:;
of zeroes associated with F=1, then the number of input combinations
.having an _pven number of zeroes a;soeiated with F,:O' will be
‘(2n"1'—NE). Conversely, if Ny is the number of inmput combinations
having an odd number of zeroes associated with F=1, then the number
of input combinations having odd number of zeroes associated with

F=0 will be (2°~1-Nj).

h

The mt order Walsh goefficients can be written as follows

n-1 , n-1
C12...m = Ng = Ng = (2777-Ng) + (207'-Np)

2(Ng=Ng)
In the terminology used in Eq(4.4), +[1i| corresponds to NE and -{1i|

_corresponds to No.

The co'efjficient Co 1is the difference of the number of input
combinatio_ns' assoclated ‘with‘ F=1 and the number of input
_combinations associated with F=0. The total number -6f ‘:anut.
‘eombinationé assooiaﬁ;ad ,with F=1 is the sum of all product t':erms and

each product term contribu_tes 2K«.
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g 2K

2n_ 50K

‘Number of Input Combinations with F=1
"Number of Input Combinations with F=0

Co = r2k-(2n-z2K)
=2(z2K_pn-1)
EXAMPLE 1

Consider @he fuhction F=x1x2+x2x3+x1x3. A disjoint form of F

is given by F=x1x2;i1x2x3+x1i2x3.‘ Each variable is  indexed

according to rule(2)as follows
+2y+2 , y=lytig+] +1y=1y+1
X1 X5+ X1 X5 X3i+ Xq'X5 X3‘

Rule(3) can'now be used to compute the Walsh spectrum.

- Ca3
0123 = 2[~1=1] = ~4.

Co = 2[2+1+1-4] = 0 ,
C, = 2[2-141] =4
C;I= 2[2+1-1] =4 ,
C3 =2[1+1]1 = 4 ,
Cyp = 2[2-1-11 = 0 ,
Cy3 = 2[-1411 = 0 ,

= 2[1-1]1 = 0

EXAMPLE 2
Consider the expression F=BDE+BCE+ABC which is already in a”

disjoint form. Each variable is indexed according to rule(2) as

follows

60



p~ipYe-b 4 Bhc-YEY 4 a-Ypct

Rule(3) can now be used to eompute the Walsh spectrum.

© Cp = 2[l+H+l-16] = -8 ,
CA = 2["“] = -8 3

Cp = 2[-U+h+l] =

Cp = 2[+4]1 = 8,

Cg = 2[-b-4] = -

Cpp = 2[-41 = -
Cpe = 2[-b+4] =

Cop = 2[0] =

Cpg = 2[+4-4] = 0 ,

Cascpe = 2001 = 0. .

4,2 SPECTRUM OF dF(X)/dXi

Let ﬁhe spectrum of F_(X) in eqk.1) be C,. As shown in [4],
then the spectrum Cb of Fb(x) is equal to Ca,.except thet the sign
of all i-subscripted eoefficieuts is reversed. It was shown in [}]
that if ln Eq(4.1), Fa(x) and Fb(x) are disjoint-funetions, then the
spectrum of (dF(X)/dXi) cen be easily calculated. To combute the
dF(X)/dX1 from the complete spectrum of F(X), we can not apply this
technique, because F (X) and Fb(x) may or may not be completely

disjoint..

As was shown in [15], if F_(X) and F (X) are two functions of n
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variables, in which (0,1) 1is coded in (-1,1) with corresponding
" spectra Ca and Cb' then the spectrum CFW®Fb of Fa®Fb is given as
_ a _ _
follows(for proof see [15]):
c = =N'(C_ #* C,) ' ~ (4.6)
Fa®Fb a b
where N'=1/N and N=28, 'Ca ® C, is the convolution sum defined by
(C_®C), =:C .C | (4.7)
where 1 and j denote all 2"-1 combinations of the numbers’
1,2,3,...,n and 0. 1()J denotes the concatenation of the digits in
1 and J with the exclusion of any common digits. For example,

12684=1234 , 1233345=1245 and Q3K=K for any K. Computationiof Ca &

Cb can be understood from the following example:
EXAMPLE1

Consider the case of 3 variable function and let us determine

the spectrum C' of dF(X)/dXq. If C, is given by

e = T
Ca=[C9sC€1,C21C12:C31C13,C23:C123]

Then Cb is given by

: T
Cp=[Cgs=C11C21=C121C3:-C131C23:-C123]
In order to compute dF(X)/dX1, using Eq(4.6) and Eq(4.7), we have.
1 - '

*+Cop13°7C13*Co@e3C23*Copi 23 ~C123]
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- 2 2, A2 A2 2_n2 2 A2 1

' o C1o13- '°13*°u323°°23+ 1@123°" 123]

Similarly, the remaining coefficients are éomputed as be}ow:
t
' -
C12-0
v : ' '
Cq o=
1370

]
C1 23=0“o
In general, Ca of dF(X)/dXi can be written as follows:

Co=(1/8 )Lz ¢§ - 2 Cfl | . (4.8)
. iy T ik
where, the first summation is carried out on the squares of those

—

coefficients which contain i in the subscript list and the second
summation is carried ‘'out on the squares of those coefficients which

do not contain i in thevsubscript 1list. As shown in EXAMPLE1, C0 of
dF(X)/dX, 1s .
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' 2,02 402402 2 2 22
Co=(1/8)[CT+C2+CT3+C123-C0-C2~C3-Ca3]

4.3 SPECTRUM OF xi(dF(x)/dxi) AND ii(dF(x)/dxi)
As'was_shown in [15], if F and G are functions of n variables
with corresponding spectra CF and CG’ then the spectrum CFG of FAG

is given by(for broor'see [15]):
Cpg = (1/2)[N'(Cg?Cq) + (CpeCg) = J] | (4.9)

To compute the spectra C" of xi(dF(x)/dxi and ii(dF(X)/dXi) ’
we have F =-Xi or ii and G = dF(X)/dxi . Since ¥ and G are supposed -
to_be'functions of n varlables, we first convert CF and C; to n
variable spectra having 21 coefficients and then apply Eq(4.9) to

compute the spectra of X,(dF(X)/dX;) or X,(dF(X)/dX,).
- EXAMPLE 2
Consider the three variable case of EXAMPLE 1. In Aorder to

compute the spectrum C" of X1(dF(X)/dX1), we have F=X, , G:dF(X)/dX1

and their corresponding spectra CF and CG are as follows :
Cp=[0 800000 017

_‘1 1 '|‘ ' T
Cg=[Cy 0 C; 0 C3 0 Cp3 017

Using Eq(4.9), we fihally have
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1

[e<)

Q
-b
Q
+
[e <]

Q
N
W= ND= Nw O~ O ~

012 F (1/2) Cc
3
c3 c }
" ]
Cq3 C3
n [ 4
n 1
123 C23

To compute the spectrum of 21(dF(x)/dX1), we have

[0-800000 0]F

Cr

Cgq

[Cy 0 Cy0C30Cyy 017

Using Eq(4.9)s%e finally have

— - — —

L Tt
” ’ 1 .
C1 "CO - 8
n .
o C2

]

n |
C3 %
‘" 1
B RSN Il
n . t
C23 €23
" - 1
123 - a3

:
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4.4 COMPUTATION OF THE NUMBER OF TRUE VERTICES OF xi(dF(X)/dXi)<llD

X, (dF(X)/dX,)

In general, if Xi is an “independent dinput then 08 of

X;(dF(X)/dX,) and X, (dF(X)/dX,), is given by

n t. ‘ ' '
Co = (1/2)[Cy = 27] | | (4.10)

Cg, in fact is the difference bétween the number of true vertices
and false vertices 6f X, (dF(X)/dX4) or ii(dF(X)/dXi). True‘vertices
of X;(dF(X)/dXy) or‘ii(d?(x)/&ki) will give us the number of test
patterns for which a stuck fault on Xy can be tgsted.-In,randOm
testing, 'a large number of tfue vertices is desirable, because this.
fault will have high‘irobability of being dgtected. We give a method
ofvcalculating the true vertices of thesé functions in terms of the

spectrum of F(X).

n
where N1.is the number of true vertices where xi(dF(x)/dxi) = 1‘and

No is the number of false vertices where Xi(dF(X)/dXi) = 0.
But Ny + Ny = 2%, so we have

" n .
Co = 2Ng = 2 » (4.11)

Using Eq(4.10) and Eq(4.11), we have
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Ny = (1/8)Cq + 2772

Using Eq(u.é), we have-

N, = (1/4N )[£€2 -5C2] + 2P-2
1 J k
ici® ok
EXAMPLE 3
To calculate the true vetices of X1(dF(X)/dX1), we have for a

three variable function
- 2_02,02,02.02 _02 .02 _o2

Finally, given the spectrum of F(X), we can directly compute
the true vertices N, of Xi(dF(X)/dXi) and }i(dF(x)/dxi) for any
single input lead fault. To extend this concept to multiple faults,
the spectrum of xiXJ(dF(X)/dxixJ)‘ and iiij(dF(X)/dXiXJ) can be

similarly calculated.

4.5 SUMMARY

The algorithm to obtain ﬁalsh spectra directly from the Boolean
expression is very simple and fast. A lot of compuﬁation involv;d in
computing Walsh spectra from matrix multiplication, 1s saved. We
also showed that Walsh spectra can detenmiﬂe some parameters useful

in random testing.
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5. CONCLUSION

This chapter is acuinmary ‘of the analytical results and 'the
conclusions arrived at in preceding chapters. The principal aim of
this thesis is to study bivalued functions in the spectral domainl
In particular, the Walsh Rademacher transformation of Boolean
‘functions is examined. Chapter 1 provides a brief infroduction to
the Walsh-Rademacher transformation. | Any arbitrary set of 20
numbers may not corbespond to a :malld Boolean function and two

properties were derived that must be satisfied.

Nekt, .an  introduction to the representation of Boglean
functions by Binary Decision Diagrams (BDD) is presented. The
arbitmary choice of the starting variable does not always lead to
the minimum number of nodes in a BDD. In chapter 2,an algorithm is
presented to obtain a good BDD of a function. ' The algorithm

presented can be easily computer'programmed.

In chapter 3, the BDD of rrrrr a function is used to compute the
Walsh spectrum of the function. Conversely, from the Walsh spectrum

of a function, the BDD of the function is constructed.

The computation of Walsh Coefficients usually requires a matrix .
multiplication. The size -of the matrices increases rapidly (~2™)
with the order, n, of the Boolean ‘function. In chapter 4, a simple

and direct algorithm to compute the Walsh spectrum from the Boolean
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expression is present_ed’. A11 2" minterms arel not required to
comptvate‘ the spectrum, only a diéjoint‘ form of the Boblean expréssion
is needed. Tﬁe Walsh Coefficients can be applied tc,> the fault
diagnosis and testing. It is sﬁéwn ti:at the number of test
patterns, for a particular input‘ léad being stuck, can be computed

directly from the Walsh spectrum of the function.
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