
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

A study of switching function representations.
Suman Purwar

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Purwar, Suman, "A study of switching function representations." (1984). Theses and Dissertations. Paper 2186.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228650736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2186?utm_source=preserve.lehigh.edu%2Fetd%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A STUDY OF SWITCHING FUNCTION REPRESENTATIONS

BY

SUMAN PURWAR

A THESIS

PRESENTED TO THE GRADUATE COMMITTEE

OF LEHIGH UNIVERSITY

IN CANDIDACY FOR THE DEGREE OF

MASTER 3F SQIENCE

IN

ELECTRICAL ENGINEERING

LEHIGH UNIVERSITY

1STS4

ProQuest Number: EP76459

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76459

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A STUDY OF SWITCHING FUNCTION REPRESENTATIONS

BT

SUMAN PURHAR

A THESIS

PRESENTED TO THE GRADUATE COMMITTEE

OF LEHIGH UNIVERSITY

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

LEHIGH UNIVERSITY

1984

This thesis is accepted and approved in partial fulfillment of

the requirements for the degree of Master of Science

d/^/Sj
(date)

Professor in Charge

Chairman of Department

ii

ACKNOWLEDGMENT
/

The valuable guidance and suggestions given by Prof. A. K.

Susskind, the Major Professor, are acknowledged. His encour^ppment

and the many discussions were of Invaluable assistance to me.

Finally, I wish to thank my husband for his understanding,

encouragement and patience.

ill

— Table of Contents

■1. INTRODUCTION 2

1.1 INTRODUCTION 2
1.2 SOME PROPERTIES OF WALSH COEFFICIENTS 7
1.3 SUMMARY AND OUTLINE OF REPORT 11

2. A METHOD FOR FINDING GOOD BDD'S 13

2.1 DEFINITIONS 14
2t2^ALGORITHM 16
2.3 SUMMARY 28

3. WALSH SPECTRUM FROM BDD AND BDD FROM WALSH SPECTRUM 29

3.1 COMPUTATION OF WALSH COEFFICIENTS FROM BDD 29
3.1.1 COMPUTATION OF CQ 32
3.1.2 COMPUTATION OF OTHER SPECTRAL COEFFICIENTS 33

3.2 SYNTHESIS OF BDD DIRECTLY FROM THE WALSH SPECTRUM 40
3.3 SUMMARY 55

4. WALSH SPECTRUM FROM THE BOOLEAN EXPRESSION 56

4.1 COMPUTATION OF THE WALSH SPECTRUM DIRECTLY FROM THE BOOLEAN 57
FUNCTION

4.2 SPECTRUM OF dF(X)/dX± _ 61
4.3 SPECTRUM OF XAdF(X)7dZ±) AND XAdFiD/aX.,) 64
4.4 COMPUTATION OF THE NUMBER OF TRUE VERTICES OF Xi(dF(X)/dX1) 66

AND XjCdFUJ/dXj)
4.5 SUMMARY 67

5. CONCLUSION 68

REFERENCES 70

iv

List of Figures

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.

3
15
19
21
21
22
22
23
25
25
26
26
27
27
30
37
39
43
44
47
47
48
50
51
52
53
54

ABSTRACT

The Walsh-Rademacher spectral transform Is a transforaatlon

procedure for converting a Boolean function into a set of spectral

coefficients. It is shown how certain problems in the Boolean domain

are soluble in the spectral domain. An algorithm is presented to

compute the Walsh spectrum directly from the Boolean' expression.

Some properties of the Walsh spectrum are investigated. The Binary

Decision Diagram (BDD) is used to compute the Walsh spectrum and,

conversely, from the complete Walsh spectrum, the BDD is

constructed... An algorithm is presented to obtain the near optimal

BDD of a Boolean function via Decision Tables.

1. INTRODUCTION

1.1 INTRODUCTION

The Boolean equation, truth table and Karnaugh map are coaaonly

used to express the logical input-output relationship of a binary

function - all of which have the disadvantage of growing rapidly in

size with the increasing number of variables involved(Actually, we

will be concerned here with the special case of bivalued variables

and functions and so we will deal with a special case of Boolean

algebra often called Switching algebra). Binary Decision Diagrams

offer a concise way to specify the precise logical performance of a

Boolean function [1, 2, 20]. The diagrams are essentially means to

compute the output value of a function by examining the input values

and can be used to determine the various properties of the functions

they represent. These diagrams have been used for test generation

and for obtaining various implementations of binary

functions [1, 2, 13f 20].

To dervive these diagrams from the Boolean expression, repeated

application of the classical expansion due to Shannon is used as

follows[l3 :

p(i1,x2,,..,xn)sx1F1+r1P0. U.1)

where, F1 = F(1fX2,...,Xn) and FQ = F(0,X2,...,Xn). We begin by

setting X.=0 in F(X) to obtain the function FQ and do the same for

Figure 1-1. BDD OF F(X)

X*=1 to obtain F. as shown in Fig.1-1.

Now the process is repeated for the variable Xp, and so on. In

.its.jjiost. general form, all variables are represented as nodes on the

diagram of which only one branch is active for any particular set of

inputs. The output value is computed by entering the diagram at the

root and then traversing downward through the diagram. There exists

only one path through the diagram for any set of input values. All

paths in the diagram terminate in F=1 or F=0.

Boolean functions are binary valued, conventionally taken as 0

and 1. However instead of involving two binary values, it is

possible to transform this binary data into another mathematical

domain, in which the resultant numbers lie within a larger range of

values, not confined to (0,1). This is the "spectral domain", the

data enumerated in this domain being the spectrum of the given

binary function [14]. A close mathematical analogy is the transform

of a complex a.c. waveform-, whose magnitude varies with time, from

the time domain to the frequency domain giving the frequency

components or. spectrum of the a.c. waveform.

The most* relevant and compact digital transform is the Walsh-

Rademacher transform [3, 4, 6, 7, 8, 9, 14, 15]. This transform is

orthogonal, involving the numbers -1 and +1. The fundamental

property of this transform is that no information content is lost in

the transformation into the spectral domain. Thus a transformation

back from the spectral domain to the more familiar binary domain is

possible, by using the inverse of the forward transform.

Mathematically we have :

[C] = [T].[F] (1.2)

where [T] is the square transform matrix of dimension 2nx2n ; [F] is

the column matrix of dimension 2nx1, representing the output of the

function F(X) of n variables. [C] is the column matrix of dimension

2nx1 corresponding to the spectrum of F(X).

The converse of Eq(1.2) is :

[F] = [T]-1.[C] (1.3)

where [T]~1 is the inverse of the forward transform matrix [T].

For the purpose of the above mentioned transformation, we will

code binary values (0,1) to (-1,+1). Under this coding the jtn

element of [F] is given by

Fj = 2.P(X1',X2 Xn) - 1 (1.4)

with (XrX2 Xn) being the j
tn n-tuple(out of 2n). The transform

matrix [T] consists of 2n row vectors,R,each of dimension 2n,

computed as follows [8].

RQ = L1»1,.. •U'|X2
n

R± = [2(Xl)1-1,2(Xl)2-1,...,2(Xi)2n-1]1x2n -•

with i = 1 to n and (X,)^ being the value of the variable

X± in the J
th n-tuple.

Rik = ^ri1xrk1)»""(ri2nxrk2n)]

with i,k = 1 to n ; i#k; and r±* »rkj being the jtn elements of RA

and Rjj respectively.

M2...n = [(r«-x...rn1),...,(r19nx...xrn5n)] 11J n1 121 n2*

It is noted that the transform matrix is an orthogonal matrix, is

independent of the Boolean function F(X), and only depends upon the

number of variables in F(X). The ordering of the rows in [T] can be

changed, as long as the ordering in the vector [C] is changed

accordingly. The ordering of [F] and rows in [T] comes froa the

ordering of the n-tuples and again, one can change the sequence of

n-tuples without affecting the end results(see [11]).

If the Walsh-Rademacher ordering (see [8]) is used and (0,1) is

coded in (-1,+1), [T] can also be derived from the following

recursive form

n

Ln-1

-T n-1

ln-1

ln-1

(1.5)

where Tn is a 2°x2
n transform matrix, n is the number of variables,

and TQ = 1.

The Walsh Coefficients are denoted by CQ,C^,C2, ^(•••^...n*

In the following chapters C.2 Q will be denoted by C^L because it

involves all the variables.The Walsh Coefficients have been used for

fault detection [18, 16] and for synthesis [12, 19, 10] of the logic

networks. In the next section we will discuss some properties of the

Walsh coefficients.

1.2 SOME PROPERTIES OF WALSH COEFFICIENTS

With the introduction to the Walsh transformation, we now turn

to some of their properties :

1. The arithmetic sum of all the (2n) Walsh coefficients is

given by

EC = 2n.Fn I (1.6)

wiere FQ represents the last entry in the column vector

[F] and corresponds to the mapped value of the function

F(X) with all its inputs at 1. Thus,

EC = +2n when Fn = 1 and

EC = -2n when Fn = -1.

PROOF

Premultiplying Eq(1.2) by a vector of all 1's of

dimension 1x2n, we have

[1 1 ... 1] [C] = [1 1 ... 1] [T] [F] •

or, DC = [0 0 ... 0 2n] [F]

or, LC = 2n Fn

where F Is the last element of the column vector [F]v

which corresponds to the mapped value of the function

F(X) with all its inputs at 1. Fn can be either +1 or -1,

so we have

TC = +2n when FR = +1 and

EC = -2n when Fn -1.

EXAMPLE 1

Consider a simple case of 2 variables. Eq(1.2) can be

written as

LC12J

+1 +1 +1 +1

-1 -1 +1 +1

-1 +1 -1 +1

+1 -1 -1 +1

1

r3

F,

(1.7)

Premultipling on both sides by [1 1 1 1], we have

[1111]

'12

= [1 1 1 1] +1 +1 +1 +1~ "F1"

-1 -1 +1 +1 F2

-1 +1 -1 +1 F3

+1 -1 -1 +1 5*
CQ+Cj+Cg+C^ = [0004]

F-

or. •EC = 22.P„

From Eq(1.6), some properties can be derived as follows :

a. All 2n coefficients with zero values do not define

a valid Boolean function.

b. If one of the coefficients is +2n, then the

remaining coefficients will all be zero.

2. The length of the vector [C] (square root of the sum of

the squares of all the coefficients) is given by

^72 = 2n (1.8)

mm.

Since [T] is an orthogonal matrix, we can write(see [5])

[T]'.[T] =X.[I] (1.9)

where [T]4 is the transpose of the matrix [T], [I] is the

9

y%

identity matrix and K is a constant. In our case K=2n.

So,we have

[T]».[T] = 2n.[I] (1.10)

Taking the transpose on both sides of Eq (1.2), we have

[C]« = [F]«.[T]» (1.11)

Multiplying Eq(1.11) on both sides by [C], we have

[C]».[C] = [F]».[T]'.[T].[F]

using Eq(1.10), we have

[C]».[C] =[F]'.2n.[I].[F]

= 2n.[F]».[F]

Since [C] and [F] are column matrices, we can write

EC2 = 2n. SF2 (1.12)

The dimension of [F] is 2nx1 and the F's can be either +1

or -1, resulting in F2 = 1. So there would be 2n 1's in

EF2. Hence Z F2 = 2n. Using this property in Eq(1.12),

we have

EC2 = 22n .

or, ^2-C2 = 2n

10

EXAMPLE 2

Consider the two variables case of EXAMPLE 1. Transposing

Eq(1.7) on both sides, we have

[CQ C1 C2 C12]=[P1 P2 F3 F4] +1 -1 -1 +1

+1 -1 +1 -1

+1 +1 -1 -1

+1 +1 +1 +1

Postmultiplying both sides by [C], and using [T]'[T] =

2 , we have

[CQ C| C2 Cj2] = 4.EF, F2 F3 F4]

'12

c§+cf+c|+c2
2 = IKF^+F|+F|+FJ)

Since F| = 1, for 1=1 to J», we finally have

VC§+cf+c|+cf2 = 2
2.

1.3 SUMMARY AND OUTLINE OF REPORT

In this chapter we discussed some properties of the Walsh

coefficients with a brief introduotion to the Walsh transformation

and the Binary Decision Diagram.

In Chapter 2, a simple approach to obtain a near-optimal BDD

using Decision Tables is explored. Simple examples that illustrate

11

the algorithm are discussed.

Chapter 3 presents algorithms to compute the Walsh coefficients

of a function from its BDD and, conversely, construct the BDD of a

function from its Walsh spectrum. Examples are given to illustrate

both algorithms.

Chapter 4 presents an algorithm to compute the Walsh

coefficients directly from the Boolean function F(X). The Walsh

spectrum of the Boolean Difference, (dFCD/dX^ of F(X), is computed

from the spectrum of F(X). The spectra of [Xi(dF(X)/dXi)] and

[X^dFCXj/dX,)] are then^computed to determine the true vertices of

these two functions, as these vertioes determine the probability of

detecting a fault at any input lead.

Chapter 5 presents a summary of the results of the thesis. A

list of references is included at the end of the thesis.

12

v

2. A METHOD FOR FINDING GOOD HDD'S

This ohapter presents an algorithm for obtaining a "good" BDD

of a Boolean function. A BDD is considered to be a good BDD when it

has a small, possibly minimum, number of nodes.

Construction of the BDD of a function

F(X.j ,...,X1,... »Xj,.••iXn) beginning with a variable X1 may lead to

a BDD with a smaller number of nodes than that with some other

initial choice X... Thus, the number of nodes in a BDD depends upon
■ i. - J

the order in which the variables are selected. The proper selection

of the variables at every step will lead to a good BDD.

In the context of data processing, a similar problem of

reducing computation time, based on a set of rules and conditions,

was treated by Pollack [17]. Pollack solved this problem by forming

a table with conditions in the rows and rules in the columns. He

called this table a DECISION TABLE. The algorithm discussed in this

chapter is based on Pollack's approach.

We begin with some definitions in Section 2.1. This is followed

by the formulation of the algorithm in Section 2.2. The algorithm is

illustrated with examples. This algorithm does not always lead to a

good BDD and art example illustrating this limitation is also

presented. Finally, a brief summary is presented in Section 2.3.

13

2.1 DEFINITIONS

The Boolean function is first' represented in the form of a

table. Each product implicant in the function is represented by a

column in the table. All the variables appear in the leftmost column

as row coordinates. In every column, the entry 1(0), represents an

uncomplemented(complemented), variable in that implicant. A dash in

a column shows that the implicant is independent of that variable.

For example, the table for the function FsX^+X^o+X-iXo Is shown in

Fig2-1.

Subtable

For each variable Xif there are two tables corresponding to its

0 and 1 branches. These tables are Galled subtables. The 0 branch

subtable corresponds to the part of the table where Xj has 0 and

dash entries whereas the 1 branch subtable corresponds to the part

of the table where X. has 1 and dash entries.

Implicant Count

The Implicant Count of an implicant is 2r, where r is the

number of dashes(variables missing) in that implicant. In Fig2-1,

the Implicant Count for all three implicants is 2, because every

implicant has only one dash.

14

xl 1

x2 1

X3
"V,

Figure 2-1. Table of F = X^ + X2X + X^

15

/■

Dash Count

For each variable X., the sum of the Implleant Counts taken

over those implicants that are independent of Xj, is denoted as Dash

Count. In Fig2-1, the Dash Count for X1f X2 and X, is 2.

KO) CODNT

The 1(0) Count of a variable X* is the sum of the Implicant

Count taken over those implicants where X^ is uncomplemented

(complemented). In Fig2-1, the 1 count for X., X2 and X? is 4 and

the 0 Count for all variables is 0.

J2ELTA

For any variable X*, Delta is the absolute difference of the 1

count and the 0 count. In Fig2-1, Delta for X1, X2 and X, is 4.

2.2 ALGORITHM

The algorithm to determine the next node in the BDD consists of

the following steps :

1. Express the Boolean function in the form of a table as

defined above.

2. Combine any two implicants that can be merged. This is

similar to Boolean minimization.

3. Select that variable which has a minimum dash count.

4. If two or more variables have the same minimum dash

count, select the variable with minimum delta.

16

5. If two or more variables have the same minimum delta and

the subtables corresponding to one variable is the same

as some other aubtable or part of the subtable , then

select that variable after selecting other variables

because equivalent subtables then can be combined.

6. Assign the variable so chosen to the node of the path

being considered. If this is the first variable of the

BDD being constructed, assign it to the root. This node

or root has two branches, each of which leads to a

subtable with one less variable than the original table.

7. At any stage if two subtables are equivalent, i.e., the

variables and the entries are the same, then join them.

8. To simplify the subtables, the following rutes can be

applied :

a. If a branch leads to a—subtable containing all

dashes in any implicant, terminate that branch with

F=1.

b. If a branch does not lead to a subtable, terminate

that branch with F=0.

c. If at any step a variable contains only dashes in

all rows of a subtable, eliminate that variable

from the subtable.

d. For any variable X^, the subtable containing only

one variable, having the form X, 0 will

17

replaced by the node X. having two branches. The 0

branch will be terminated with F=1 and the 1 branch

will be terminated with F=0. Similarly, Xi will

be replaced by the node X, with its 0 branch

terminated with F=0 and 1 branch ^terminated with

P=1.

9. If a branch leads to a subtable containing more than one

implicant, go back to step(2).

EMhSLR

Consider the function F=B(AC+CE)+E(AB+BD). The BDD for this

function, arbitrarily choosing the variables in lexicographical

order, is shown in Fig.2-2. We can express this function in a table

form as follows : Y

Dash count

A 0 - 0 - 8

B 1 1 1 0 0

C 1 0 - - 8

D - - - 1 12

E
\

- 0 0 0 4

[mplicai it Count 4 i» n il

According to step(3), B would be the root, since it has the

minimum dash count. Applying step(6), we have Fig.2-3.

18

F = 0
F = 0

F = 1 F = 0 .

Figure 2-2.

19

^ In the subtable of the "O" branch of B(Fig.2-3), A and C

conditions contain only dashes and D condition in the subtable of

the "1n branch contains only dashes. Thus, the corresponding rows

are eliminated and the new tables are shown in Fig.2-4.

In the right subtable of Fig.2-4, applying step(4), C would be

our next condition to be tested. In the left subtable, since both

conditions have the same delta, condition D would be tested before

E, because E appears in the right subtable with the same value. Now

we have Fig.2-5.

Since the second column is redundant in both subtables of the

variable C, it is eliminated in Fig.2-6, according to step(2).

Finally, joining equivalent subtables and applying step 8(d),

we have Fig.2-7.

The number of nodes in Fig.2-2 is 7 whereas the number of nodes

in Fig.2-7 is 5, which is minimal in this case, since each variable

appears exactly once.

CODNTER EXAMPLE

Consider the function F=B • D+AD+ABC. We can express this

function in a table form as follows:

20

A - A 0 - 0

C - C 1 0 -

D 1 D - - -

E 0 E - 0 0

Figure 2-3.

D .1

E 0

Iraplicant
Count

Dash Delta
count,

A 0 - 0 2 4

C 1 0 - 2 0

E -■ 0 0 2 4

Figure 2-4.

21

HE] A - 0

E 0 0

A__0__0

E - 0

Figure 2-5.

F = 0

Figure 2-6.

22

Figure 2-7.

V

23

•

Dash count

A • - . 0 1 4-~

BO- 0 4

C 0 8

D 0 0 - '• 2

Implicant
Count

According to step(3)» variable D would be our root, since it

has the minimum dash count. Applying step(6), we have Fig.2-8. In

the subtable of the zero branch, the last column is redundant. So

simplifying this table we have Fig2-9. Since variable B appears in

both subtables'.,with the same entry, we can choose either A or C in

the 1 branch subtable. .. Choosing C in the right subtable of Fig2-9,

we get Fig2-10.

Variable B appears in the two subtables with the same values,

so according to step(5), it would be tested after testing A

variable(Fig2-11). Finally, combining subtables, we get Fig2-12.

However, if we had chosen A variable as a root, we would have

obtained Fig2-T3-

•^ Fig2-12 has 5 nodes and Fig2-13 has 4 nodes. Thus, we can

conclude that our algorithm does not always lead to a minimum

24

A - 0 1

B 0 - 0

C - - . 0

A 1

B 0

C 0

Figure 2-8. ■

A - 0

B 0 -

A 1

B 0

C 0

Figure 2-9.

23

A - 0

B 0 -

A 1

B 0

Figure -2-10.

F =

Figure 2-11.

26

F = 1

F'= 1 F = 0

Figure 2-12.

F = 0

F = 1 F = 0

Figure 2-13. 27

structure, just good ones.

2.3 SUMMARY

In this chapter, we presented an algorithm to obtain good

BDD's. The algorithm presented can be easily computer programmed.

From experience, we found that if the function consists of a

minimal subset of implicants, then the algorithm usually gives us a

good BDD. This means that to get a good BDD, we should first

minimize the function and then apply the algorithm. This adds an

extra step.

28

3. WALSH SPECTRUM FROM BDD AND BDD FROM WALSH SPECTRUM

This chapter presents two algorithms. The first algorithm

describes the computation of the complete set of 2n Walsh

coefficients C of a function F(X) from its BDD. The second algorithm

describes the construction of. the BDD of a function F(X) from its

complete set of 2n Walsh coefficients C. This means that we can go

from one representation to the other and illustrates that the

properties of a function which can be determined from the BDD can

also be derived from the Walsh spectrum.

3.1 COMPUTATION OF WALSH COEFFICIENTS FROM BDD

In this section, we describe the computation of the complete

set of 2n Walsh coefficients for a switching function F(X) bf n

variables directly from its BDD. An example of a BDD is shown in

Fig.3-1 for the function F = X.,X2 + XgXg + X.,Xg . Branches are

labeled as a,b,o,...h along with the branch value (0 or 1). For

examplei a;0 means that branch a has a value 0. An "exit branch** is

defined as a branch that terminates in a-value (0 or 1) of the

function F. Exit branches in Fig.3-1 are c,f,g,h. Both outgoing

branches of an "exit no*den are exit branches. In Fig.3-1, X3 is an

exit node. The "Root" is a node with no incoming branches. In the

example being considered, X. is a root.

The total number of inputCombinations (ICs) for a funotion of

29

= 1

Figure 3-1. BDD OF F = X^ + X^ + X^

30

n variables is 2n. For the example of Fig.3-1, it is 2^=8. The

number of ICs associated with each of the outgoing branches of the

root is 2n~ . In Fig.3-1, ICs corresponding to the branches a and b

are labeled as 4& and 4b, respectively. The outgoing branches of any

node with only one incoming branch are associated with ICs equal to

one half of the ICs of the incoming branch. In the present example,

ICs of the outgoing branches c and d of the node X2 are labeled as

2ac and 2&d, respectively. If any node has more than one incoming

branch, the number of the ICs of each of the outgoing branch is

equal to the sum of one half of the number of ICs corresponding to

each incoming branch. In the present example, this case is

illustrated by the ICs associated with the branch g labeled as

1adg+1beg» i°dicating tnat 1adg
comes from tne branch, d and 1b

comes from the brafcch e. The subscripts attached to particular ICs

are indicative of the path of these ICs from root to the particular

branch. Thus ac, for example, is indicative of the two ICs that

have X.. and X~ equal to zero, i.e., X^l^X? and X.X2Xo.

In order to facilitate the computation of Walsh coefficients

from the BDD, we define a function n tn(branch values, F) of a path

between any node and the terminal value,of the switching function,

F, which depends upon some or all branch values selected along the

path. The value of n is defined to be +1(.-D if the branch values

along the specified path and the terminal value of the function F

31

contains an even(odd) number of zeroes. For example, in Fig.3-1,

n ac(a,o,F) = -1, but nao(a,F) =1. A set of subscripts (attached to

the ICs of a particular exit branch) is "complete" if it contains

-one outgoing branch from each of the nodes associated with the m™1

order Walsh Coefficient being computed. For example, in Fig.3.1,

consider the computation of C2o. The corresponding nodes to be

considered are X2 and Xg. The outgoing branches from these nodes

are c,d,e,f,g and h. The subscripts attached to the ICs 1ad_ of the

exit branch g are "complete" because it contains the branch d

corresponding to the node X2 and the branch g corresponding to the

node X~. Likewise, the subscripts of ICs 1t,eK» ^adh and ^beh are

also "complete", whereas the ICs 2ao and 2bf are not "complete".

3.1.1 COMPUTATION OF CQ

The zeroth order Walsh Coefficients, CQ, is given by

C0 sE M± - EMj (3.1)

where, E Mi is the sum of the number of ICs associated with those exit

branches whose terminal value is F=1 and EM., is the sum of the ICs

associated with those exit branches whose terminal value is F=0.

Coefficient CQ, in fact is the difference between true vertices(F=1)

and false vertices (F=0). It gives us a measure of the number of

minterms associated with a function.

32

3.1.2 COMPUTATION OP OTHER SPECTRAL COEFFICIENTS

In order to compute the remaining 2n-1 Walsh Coefficients

corresponding to m ,< n variables, the following rules are observed :

1. We begin by considering the ICs at all the exit branches.

Remembering that the subscripts of a particular IC denote

the path of the IC from the root node, we consider only

those ICs(at the exit branches) that contain a "complete"

set of subscripts associated with the m* order Walsh

coefficients.

2. From the collection of ICs defined in step(1), delete ICs

associated with outgoing branches of exit nodes. (This

step is used because the contributions along the two exit

branches will cancel eaoh other).

3. The nr order Walsh Coefficient corresponding to m

variables is given by :

C12...m = ^ M^Ccomplete" set , F) (3.2)

where Mi is the number of ICs having a "complete" set of

subscripts at a particular exit branch and r\("complete"

set , F) includes the branch values corresponding to the

"complete" set and the terminal value of the function F.

The contributions of ICs at an exit branch that does no6

involve all the m variables will cancel each other. Any function for

33

I-

which any BDD does not contain any exit IC involving all the m

variables will be characterized by C10 „ = 0. J 12.. .m

EXAMPLE 1

With reference to Fig3-1, we wish to calculate the Walsh

Coefficient C. corresponding to variable X.. The outgoing branches

associated with node X. are a and b. Branches a and b appear In the

ICs associated with exit branches c,f,g,h. But, step(2) eliminates

ICs at exit branches g and h. Applying Eq(3.2), we have

C1 = 2nao(a,F) + 2nbf(b,F)

=2nac(0,0) + 2nbf(1,1)

= 2(+1) + 2(+1)

= 4 -

To calculate Cp, corresponding to variable X2, we need to consider

ICs at exit branches c, f, g, h because the outgoing branches

associated with X„ are c, d, e, f. But, step(2) eliminates ICs at

exit branches g and h. Thus, we can write

C2 = 2nao(c,F) + 2nbf(f,F)

=2na(J(0,0) + 2nbf(1,1)

= 2(+1) + 2(+1) -^

= 1|

Similarly C^ can be calculated below :

34

C3 = 1 Wg'F)+1nbeg(S'F)+1nadh(h'F)+1nbeh(h'F)

= inadg(0,0)+mbeg(o,o)+1r,adh(1,1)+1nbeh(1,n

=1+1+1 +1 -

= J»

The second order Walsh Coefficients C.2> C?3 and ci^ corresponding

to variables X<jX2, X^3
and X1X3 can be comPuted as follows :

The outgoing branches associated with variables X1 and X2 are

(a,b) and (c,d,e,f), respectively.. We need to consider ICs at exit

branches c, f, g, h but, step(2) eliminates ICs at g, h.

C12 = 2nac(a,c,F) + 2r^f(b,f,F)

=2nac(0,0,0) + 2nbf(1,1,1)

= 2(-1) + 2(+1)

= 0

The outgoing branches associated/with variables X2 and X, are

(c, d, e, f) and (g,h), respectively. The ICs at exit branches c and

f will not be considered because they do not form a complete set.

C23 = lT1adg(d'8'F)+1ribeg(e'h'F)

+1rWd»h'F)+1nbeh(e'n'F)

=ln
adg(1'0'0)+1nbeg(0'0'0)

+inadh(1,1,1)+inben(o,1,1)

=1-1+1-1

35

=0

To calculate C-go* the outgoing branches asoociated with X., X„

and X~ are (a,b) , (c,d,e,f) and (g,h), respectively.

C123 = 1"adg<a-'d'8»P)+1lWb'e'8'P)

+lT1
adh(a»d»n'F)+1nbeh(b'e»h'F)

=1nadg(0'1»°»0)+lT1beh(1'0'0'0^

+1rW0'1'1'1>+1IW1'°'1'1)

= -1 -1 -1 -1

= -4.

>

EXAMPLE 2

With reference to Fig.3-2, we wish to calculate the Walsh

Coefficient Cfi. The outgoing branches associated with variable B

are (c*d,e,f).The ICs at exit branches g, J, 1 will be considered.

CB = *W°»PMWd'P)+4We'P),rtnbfl(f»p>
= 4(+1) + 4(+1) + 4(+1) + 4(-1)

= 8

Similarly, other coefficient are calculated below :

CC " 4nadj(J'F) + *nbfi^»p>

= 4(+t)-+ 4(-1)

= 0 • f.

36

F = 0

2 +2 achm behm

adim bfkm

2 +2 achn behn
+2 ,. + 2, ,.

adin bfkn
F = 1 F = 0

Figure 3-2. BDD OF F=B(AC+CE)+E(AB+BD)

37

CD = 4nacg(g'F) + Heg(«'F>

= 4+4

= 8

CABC = ^adJ(a,drj,F) + 4nbfl(b,f,l,F)

= 4(-1) + 4(-1)

= -8.

EXAMPLE 3

With reference to Fig.3-3, the exit branches are d, f, g,

h. Now, we wish to calculate Cc corresponding to variable C. The

outgoing branches associated with node C are e and f. Only the ICs

at exit branch f need to be considered.

CC = 2nbcf(f'F)

=2nbcf(0,1)

=-2

To . calculate C^, the outgoing branches associated with

variables A and D are (a,b) and (g,h), respectively. Only the ICs at

exit branches g and h need to be considered.

CAD = *Va'g'F) + 1Wb'g'F)

+ .4nah(a,h,F) + ncehCb.h.F)

= 4 _ i + 4 - 1

=6

To compute C^gQ, the ICs at exit branch f only will be

38

4 +K ag bceg ah bceh

F = 1 F = 0

Figur€ 3.-3. BDD OF F » AD + ABC + ABCD

39

considered.

CABC = 2nbcf(b,c,f,F)

=2.

3.2 SYNTHESIS OF BDD DIRECTLY FROM THE WALSH SPECTRUM

In this section, we describe an algorithm to directly obtain

the BDD of a Boolean function,F(X), of n variables from its complete

set of 2° Walsh coefficients, C.

Consider the Shannon decomposition of F(X) about a single

variable X^ i=1 to n

F(X^,...,XQ)=X^FQ + X^F^

where, FQ = F(X1,... ,0,... ,XQ) and F^ = F(X1,... ,1 ,..,^Xn),

(3.3)

From Eq(1.2) and Eq(1.5), we have

Ln-1 ln-1

C =

"Tn-1 Tn-1

Tn-1F0 + Tn-1F1

~Tn-1F0 + Tn-1F1

(3.4)

where, FQ and F1 are function vectors for FQ(X) and F|(X),

respectively. "Let

Tn-1F0 +. Tn-1F1 » V0

40

)

-ViFo"* ViFi = vi
where, VQ and V^ are the ordered vectors which jointly give C. After

simplifying, we have

ViFo = (1/2'(vo-vi)
Tn-1F1 = (1/2>(V0 + v,)

If we know the complete spectrum and hence the two half spectra

VQ and V1, we can calculate the spectrum corresponding to functions

F0(X) and F^X).

In general, the 2n~1 Walsh coefficients, C, of FQ(X) are given

by

Cj« = (1/2)(Cj - C±j) (3.5)

and the 2n_1 Walsh coefficients, C", of F.j(X) are given by

Cj" = (1/2)(Cj + C±i) (3.6)

where j=all possible coefficient subscript sets not involving i,

including j=0. Coefficient C±J, for J=0, = C±(see[l|]).

Consider the following truth table of a single variable

function , let us say X

41

X F

0 1
1 1

The value of the funotion is always 1, Independent of the variable

X. For this function, we have CQ=2 , Cx=0. So, whenever we have

coefficients (2,0), then the value of the function is always 1(F=1).

Similarly, for the set (-2,0), the value of the function is always

0(F=0).

Applying the same idea to the set of coefficients (0,-2) and

(0,2), we obtain their truth tables and their corresponding BDDs as

shown in Fig.3-4 and Fig.3-5, respectively.

*"^

Whenever a function is independent of any variable, then all

the subscripted coefficients involving that variable will be zero.

For example, consider the function F(X1,X2,Xo)2X2X3. The 2^ Walsh

coefficients are •

C0=-4 , C1=0 , C2=i» , C3=il

C12=0 , C13=0 , C23=4 , C123=0.

Here, ci>C12'C13'C123 are zero« Conversely, we can say that whenever

all the coefficients involving a given variable are zero, then the

^function is independent of that variable. If we want the spectrum

in terms of the remaining variables, then we delete the subscripted

coefficients involving that variable and divide the remaining

42

X F

0

1

1

0

F = 1 F = 0

Figure 3-4,

43

X F

0

1

0

. 1

F = 0 F = 1

Figure 3-5.

44

spectrum by 2.

With this introduction, we now turn to the main algorithm that

makes successive use of Equations(3.5) and (3*6). The algorithm is

formulated as follows :

1. Select any variable X^ and assign it to the root of the

BDD being constructed with two outgoing branches of value

0 and 1.

2. Calculate the two subsets of 2n~' Walsh coefficients, C*

and C" of the funotiohs F(X<j,... ,0,... ,Xn) and

F(X1,...,1,...,XQ)f respectively, corresponding to the

branch values Xi=0 and 1 using (3.5) and (3.6).

3. If in any subset (C1 or CB), all the coefficients

involving k of the remaining variables are zero, then,

eliminate them and divide the remaining coefficients by

the factor of 2K.

4. When any branch has a set of coefficients (-2,0) or

(+2,0), terminate that branch with F=0 or F=1,

respectively.

5. When any branch has a set of coefficients (0,2), connect

that branch to the last remaining node variable.

Terminate the 0 branch of this node with F=0 and the 1

branch with F=1.

When any branch has a set of coefficients (0,-2), connect

45

that branch to the last remaining node variable.

Terminate the 0 branch with F=1 and 1 branch with F=0.

6. Whenever two sets corresponding to two distinct branches

are the same, join the branches.

7. Select the next variable in each of the subsets C*,Cn and

repeat steps (2)-(6).

EXAMPLE 1

Consider a set of (2^) Walsh coefficients. Here n=3. Let CQSO,

C1=4, C2=4, C3=4, C12=0, C13=0, C23=0, C123=-4.

In order to determine the BDD for the function corresponding to

the given set of Walsh coefficients, we select the variable X^

according to step(1), and calculate the subsets C and Cas shown in

Fig.3-6.

Since steps (3)-(6) are not applicable, X2 is selected as the

next variable and further subsets are calculated according to

step(7) as shown in Fig.3-7. Next, applying steps (4)-(6), finally

we obtain Fig.3-8.

The Walsh coefficients given in this example correspond to the

function FsX^g+XgXg+X^Xg. Fig.3-8 corresponds to the BDD for this

function. ' .

46

II

co = 2
II

C2 = 2
ii

C3 = 2
II

C23 = -2

Figure 3-6.

1 i II i it

co = -2 v-° co = 0 co = 2

I It i ii

C3 = ° C3 = 2 C3 = 2 c3 = o

Figure 3-7.

47

i«

F = 0 F - 1

F = 0 F = 1

Figure 3-8.

48

EXAMPLE 2

Next, consider the set of 2^ Walsh coefficients CQ=-8, CA=-8,

CB=8» Cc=0, CJJ=8,CE=-16,
CAB="^' CAC=~8' cADs0-*—CAEs°»^Ca0> pBD=~8'

CBE=0» CCD=0» CCE=8» ^E2*"8, CABC=~8' CABD=0» CABE=0» CACD=0»

CACE=0' CADE=0» CBCD=0» CBCE=8' CBDE=8* A11 remaining coefficients

are zero.

In order to determine the BDD for the function corresponding to

the given set of Walsh coefficients, we select the variable A

according to stepO) and calculate the subsets C and C" as shown in

Fig.3-9. Next, we select variable B as a node on both of the

outgoing branches of the variable A, as shown in Fig.3-10. Now,

applying step(3), we obtain Fig.3-11. Next, the use of steps

(5)-(7) results in Fig.3-12. Finally, applying steps (4)-(5), we

obtain Fig.3-13.

The Walsh coefficients used in this example correspond to the

function F=BDE+BCE+ABC. Fig.3-13 corresponds to the BDD for this

function.

49

1

co = 0

1

CB=8

i

Cc-A

1

CD - 4
t

CE--8

»

*BC-4

t

CBD * '"
1

CBE = °
i >.

CCD"°
1

CCE"4

1

CDE = "*
i

CBCD = °
t

CBCE=4

SDE
= 4

■
CCDE=°

i

CBCDE = °

C0 = -8
ii

cfi = o
II

Cc--4
II

CD=4
II

CE--8
II

CBC " ""
It

CBD " -"
II

CBE = 0
II

CCD = 0

II

CCE =
4

II

CDE = -4

II

CBCD : = 0
II

CBCE "
= 4

II

CBDE
= 4

II

CCDE
= 0

n
CBCDE

= 0

s

Figure 3-9.

50

t it i —II

C0 - -4 co"4 G0 - -4 C0--4

1 II ,., i 11

cc-o cc-4 'cc = ° Cc--4

1 II II II

S-4 cD-o cD-« CD=°
f|

c;.-4 CE - "4 c;.-4 CE = -4
1 II i n

■

CCD = °
ii >

CCD=°
. II

CCE = ° CCE. ' * CCE = ° CCE-"
i 11 t II

CDE " ~4 CDE = ° CDE = "A CDE = °
? II i II

CCDE " ° CCDE " ° CCDE = ° CCDE " °

Figure 3-10.

51

1 it i it

co = -2 co = 2 co = "2 co -"2

1 ii 1 ti

CD-2 cc = 2 C
D = 2 cc = "2

1 II. t II

CE=-2 cE- = -2 CE = "2 CE = -2.
i II t II

CDE = "2 CCE = 2 C^ = -2 DE CCE " 2

Figure 3-11.

52

1 II i II 1 II

co = -2 co -.° co = 0 co = 2 V=0 co-"2

1 II i II 1 II

CE-° CE = "2 CE-"2 cE = o CE-"2 CE = °

Figure 3-12.

53

>

F = 0
F = 0

F = 1 F = 0

Figure 3-13.

54

/
/

3.3 SUMMARY

The Walsh ooeffioients are usually computed from the truth

table. As the number of variables increases, the size of the truth

table grows rapidly. It becomes tedious to compute the Walsh

spectrum of a function of more than five variables. Since the BOD is

a concise way to specify a Boolean function, the algorithm to

compute the Walsh spectrum directly from the BDD is very useful. The

second algorithm (constructing the BDD directly from the Walsh

spectrum) illustrates the conversion from the spectral domain to the

binary domain.

55

4. WALSH SPECTRUM FROM THE BOOLEAN EXPRESSION

This chapter contains an algorithm for computing the Walsh

spectrum directly from the Boolean expression of the function F(X).

Then, we show how to find the spectrum of the Boolean Difference

dF(X)/dX^ from the spectrum of F(X). Next, we show how to compute

the number of true vertices of XjL(dF(X)/dXjL) and Xi(dF(X)/dX1).

The simple Boolean Difference of a function F(X) with respect

to one of its defining variables, Xi is defined as (see [7]) -

dF(X)/dX± = Fa(X) ©Fb(X) (4.1)

where Fa = F(X1,... ,Xlt... ,Xn) , Fb = F(X1,... ,Xlt... ,Xn) and 0 is

the exclusive OR operator.

Solutions to (dF(X)/dXi)=1 are independent of X^^ and define the

input for which a change in state of X, causes a change of output

state. The set of tests for a fault on X^ is given by

Xi(dF(X)/dX1) = 1 , for X± stuck at 0 (4.2)

X±(dF(X)/dXi) = 1 , for X± stuck at 1 (i».3)

56

4.1 COMPUTATION OF THE WALSH SPECTRUM DIRECTLY FROM THE BOOLEAN

FUNCTION

In this section, we describe an algorithm to compute the

complete Walsh spectrum directly from a non-canonical forn of a

given Boolean function F(X) of n variables. Our method is based on

the observation that when the function is reduced to its disjoint

form(sum of products form where products are mutually exclusive,

i.e., no two product terms cover the same minterm), a variable

appearing in an uncomplemented (complemented) form in a product term

which has K missing variables contributes +2K(-2K) to the

appropriate partial product of the Walsh coefficients.

The algorithm can be expressed as follows :
.1

1. Convert the given Boolean function to a disjoint form, if

it is not in that form already(see [4]). There may be

many disjoint forms. Choose any one .

2. In each product term with K missing variables, index each

literal with i=+2K(-2K) , if uncomplemented

(complemented).

3. The nr (m$n) order Walsh coefficient can be written in

the following form

C12...m= 2Z prod terms °<i> <^

where, the sum is carried out over only those product

57

terms that contain all 12...m variables and a(i) for each

such product term is given by

+IiI, if the number of negative variables in
12..m is even in that product ;

-HI , otherwise.

If there is no product which involves all 12...m

variables, then C<to..*m w*^- be characterized by zero.

The coefficient CQ is given by

c0 = 2^all prod terms2* " ^ ».5)'

vr
where each product term contributes 2 and summation is

carried over all the product terms.

JEfiflfiE

The contribution to the Walsh coefficients of a product term

which does not involve all the m variables will be zero, because

half of the input combinations in the product term will contribute

(+1) and other half will contribute (-1)* Only the product terms

which involve all the m variables will be considered. The product

term, which has K missing variables, corresponds to 2 input

combinations associated with F=1.

There will be 2n_1 input combinations that have an even number

of zeroes in the m variables and the remaining 2n~1 will have an odd

number. Each input combinations having even number of zeroes

58

associated with F=1 will contribute +1 and input combinations baring .

an odd number of zeroes associated with F=1 will contribute -1.

Conversely, the input combinations having an even number of zeroes

associated with F=0 will contribute -1 and input combinations having

an odd number of zeroes associated with F=0 will contribute +1.

If NE is the number of input combinations having an even number

of zeroes associated with F=1, then the number of input combinations

having an even number of zeroes associated with F=0 will be

(2n~ -NE). Conversely, if NQ is the number of input combinations

having an odd number of zeroes associated with F=1, then the number

of input combinations having odd number of zeroes associated with

F=0 will be (2n~1-N0).

The m* order Walsh coefficients can be written as follows

C12...m = NE " N0 - <2n-1-NE) + (2
n"1-N0)

= 2(NE-N0)

In the terminology used in Eq(4.1), +|i| corresponds to N£ and -|i|

corresponds to NQ.

The coefficient CQ is the difference of the number of input

combinations associated with F=1 and the number of input

combinations associated with F=0. The total number of input

combinations associated .with F=1 is the sum of all product terms and

XT ' '
each product term contributes 2 ■.

59

K
Number of Input Combinations with F=1 = E r
Number of Input Combinations with F=0 = 2n-E2K

CQ = £2
K-(2n-£2K)

=2(E2K-2n_1)

EXAMPLE t

Consider the function F=X1X2+X2X2+X1X3. A disjoint form of F

is given by F3X.X2-t-X.X2X0-t-X.X2X0. Each variable is indexed

according to rule(2)as follows

Y+2Y+2. Y-IY+IY+IJ. Y+1V-1V+1

Rule(3) can now be used to compute the Walsh spectrum.

C0 = 2[2+1+1-4] = 0 ,

C1 = 2[2-1+1] =4 ,

C£. = 2[2+1-1] =4 ,

C3 = 2[1+1] = 4 ,

C12 = 2C2-1-1] = 0 ,

C13 = 2[-1+1] = 0 ,

C23 = 2[1-1] = 0 ,

C123 = 2[-1-1] = -4.

EXAMPLE 2

Consider the expression F=BDE+BCE+ABC which is already in a

disjoint form. Each variable is indexed according to rule(2) as

follows

60

B-VE-* + B VV + rW

Rule(3) can now be used to compute the Walsh spectrum.

C0 = 2[4+4+4-16] = -8 ,

CA = 2[-4] = -8 ,

CB = 2[-4+4+4] = 8 ,

CD = 2[+4] = 8 ,

CE =2[-4-4] = -8 ,

CAB = 2C-43 = -8 ,

CBC = 2[-4+4] = 0 ,

CCD = 2[0] = 0 ,

CBE = 2[+4-4] = 0 ,

CABCDE = 2[0] =0. r '

4.2 SPECTRUM OF dF(X)/dX±

Let the spectrum of F '(X) in Eq(4.1) be C_. As shown in [4],

then the spectrum Cb of Fb(X) i3 equal to C&, except that the sign

of all i-subscripted coefficients is reversed. It was shown in [4] V

that if in Eq(4.1), Fa(X) and Fb(X) are disjoint functions, then the

spectrum of (dF(X)/dX1) can be easily calculated. To compute the

dF(X)/dXi from the complete spectrum of F(X), we can not apply this

technique, because Fa(X) and Fb(X) may or may not be completely

disjoint..

As was shown in [15], if Fa(X) and Ffa(X) are two functions of n

61

variables, in which (0,1) is coded in (-1,1) with corresponding

spectra C& and Cfa, then the spectrum Cp y^\p of Fa(+)Fb is given as

follows(for proof see [15]):

CFa©
Fb = "N,(Ca*Cb) (4"6)

where N'=1/N and N=2n. C& * Cb is the convolution sum defined by

<Ca * Cb>i = S Ca -Cb ^-7) a D 1 j ai©j Dj

where i and j denote all 2n-1 combinations of the numbers

1,2,3,...,n and 0. i(+)j denotes the concatenation of the digits in

i and j with the exclusion of any common digits. For example,

12584=1234 , 1233345=1245 and C@K=K for any K. Computation of C *

Cb can be understood from the following example:

Consider the case of 3 variable function and let us determine

the spectrum C of dF(X)/dX1. If C& is given by

Ca=tC0'C1'C2'C12'C3'C13'C23'C123]

Then Cb is given by

^b=^ 0'~"^1' 2' 12' 3'~ 13'^23'"^'123^

In order to compute dF(X)/dX.j, using Eq(4.6) and Eq(4.7), we have

C0=-(1/8) [co®0*C0+C0@1'""C1+COSe*C2+C0©12'~C12+C0@3,C3

+C0313 * ^ 13+C0@23 * C23+C0©123 * "C1233

62

=-(i/8)Cc|-cf+c|-cf2+c|-.cf3+c|3-cf23J

C,=-(1/8) [C10o»Co+C1gjp-C1+C1gB. C2+C1@12*~C12+
C1©13,"C13+C1@23*C23+C1@123,"C123]

Similarly, the remaining coefficients are computed as below:

C2=-(1/8) [20002-20^^+203023-20^0^3]

C12=°

C3B-<1/8)C2C0C3-2C1C1^2C2C23-2C12C123]

c;3=o

C23=-(1/8)C2C0C23-2C1C123+2C2C3-2C12C13]

1 c123=o.

In general, CQ of dFCXj/dX^^ can be written as follows:

CJ=(1/H.)[SC? - Zcg] . (*•&)
iCj i£k

where, the first summation is carried out on the squares of those

coefficients which contain i in the subscript list and the second

summation is carried out on the squares of those coefficients which

do not contain i in the subscript list. As shown in EXAMPLE1, 61 of

dF(X)/dX1 is •■ ■

63

CQ=(1/8)[C2+C22+Cf3+Cf23-C§-c|-C§-c|3]

4.3 SPECTRUM OF X^dFUJ/dX^ AND X^dFUJ/dX^

As was shown in [15], if F and G are functions of n variables

with corresponding spectra Cp and CQ, then the spectrum Cp„ of FAG

is given by(for proof see [15]):

CFQ = (1/2)[N'(CF»CG) + (CF+CG) - J] (4.9)

To compute the spectra Cn of X1(dF(X)/6X± and Xi(dF(X)/dXi) ,

we have F = 1^ or X^ and G = dF(X)/dXi . Since F and G are supposed

to be functions of n variables, we first convert Cp and CQ to n

variable spectra having 2n coefficients and then apply Eq(4.9) to

compute the spectra of X±(dF(X)/dXi) or Xi(dF{X)/dXi),

EXAMPLE 2

Consider the three variable case of EXAMPLE 1. In order to

compute the spectrum C" of X1(dF(X)/dX1), we have F=X1 , G=dF(X)/dX1

and their corresponding spectra Cp and CQ are as follows :

Cp=[0 8 0 0 0 0 0 0]T

CG=[CQ 0 c2 0 C3 0 Cg3 0]
T

Using Eq(4.9), we finally have

64

'«;■'

c]

°l
"12

=!

$1

u23

.123.

= (1/2)

CQ - 8

i

2
i

2
t

3
i

3
t

23
i

23

To compute the spectrum of X^(dF(X)/dX^), we have

Cp = [0 -8 0 0 0 0 0 0]T

cG s[cJocJocJo C23 0]T

Using Eq(4.9)T?we finally have

it

0
it

1
n
2 '
n
12
n

3
n

13
ti

23
n

123

c' - 8

-C' - 8

•
C2

(1/2) -c'
t

C3

-a'

°23
1

""C23

65

4.4 COMPUTATION OF THE NUMBER OF TRUE VERTICES OF Z±{&il)/a±). AMP

X^dFW/dXj.)

In general, if X^ is an independent input then CQ of

X±(.dF(X)/6X±) and X±(dF(X)/dX1), is given by

cj = (1/2)[CQ - 2n] (4.10)

.11
CQ, in fact is the difference between the number of true vertices

and false vertices of X±(.dF (X)/dX±) or X±(dF(X)/dX±). True vertices

of Xi(dF(X)/dX±) or X±(dF(X)/dX±) will give us the number of test

patterns for which a stuck fault on X^ can be tested. In random

testing, a large number of true vertices is desirable, because this

fault will have high probability of being detected. We give a method

of calculating the true vertices of these functions in terms of the

spectrum of F(X).

c5 = h - N0

where N. is the number of true vertices where XjiCdFtXj/dXj.) = 1 and

NQ is the number of false vertices where XAdF(X)/dX^) = 0.

But N1 + NQ = 2n, so we have

cj = 2N1 - 2
n (4.11)

Using Eq(4.10) and Eq(4.11), we have

66

N, = Cl/H)C'Q + 2
n~2

Using Eq(4.8), we have

N1 = (1/4N)[IC2 -EC2.] + 2n~2

iCj ijtk

EXAMPLE ^

To oalculate the true vetices of X^ (dF(X)/dX-), we have for a

three variable function

i

N-,=-(1/32)[Cg-C2+C|+C2-C22-C
2
3+C|3-C

2
23] +2

Finally, given the spectrum of F(X), we can directly compute

the true vertices N1 of X^dFttJ/dX^ and Xi(dF(X)/dXi) for any

single input lead fault. To extend this concept to multiple faults,

the spectrum of XiXJ(dF(X)/dXiXJ) and X1Xj(dF(X)/dX1XJ) can be

similarly calculated.

M.5 SUMMARY

The algorithm to obtain Walsh spectra directly from the Boolean

expression is very simple and fast. A lot of computation involved in

computing Walsh spectra from matrix multiplication, is saved. We

also showed that Walsh spectra can determine some parameters useful

in random testing.

67

5. CONCLUSION

This chapter is a summary of the analytical results and the

conclusions arrived at in preceding chapters. The principal aim of

this thesis is to study bivalued functions in the spectral domain.

In particular, the Walsh Rademacher transformation of Boolean

functions is examined. Chapter 1 provides a brief introduction to

the Walsh-Rademacher transformation. Any arbitrary set of 2n

numbers may not correspond to a valid Boolean function and two

properties were derived that must be satisfied.

Next, an introduction to the representation of Boplean

functions by Binary Decision Diagrams (BDD) is presented. The

arbitrary choice of the starting variable does not always JLead to

the minimum number of nodes in a BDD. In chapter 2,an algorithm is

presented to obtain a good BDD of a function. The algorithm

presented can be easily computer programmed.

In chapter 3i the BDD of a function is used to compute the

Walsh spectrum of the function. Conversely, from the Walsh spectrum

of a function, the BDD of the function is constructed.

The computation of Walsh Coefficients usually requires a matrix

multiplication. The size of the matrices increases rapidly (~2n)

with the order, n, of the Boolean function. In chapter 4, a simple

and direct algorithm to compute the Walsh spectrum from the Boolean

68

expression is presented. All 2n minterms are not required to

compute the spectrum, only a disjoint form of the Boolean expression

is needed. The Walsh Coefficients can be applied to the fault

diagnosis and testing. It is shown that the number of test

patterns, for a particular input lead being stuck, can be computed

directly from the Walsh spectrum of the function.

69

REFERENCES

[1] S. B. Akers.
Binary Decision Diagram.
IEEE Trans, on Computers C-27(6^;50Q-5l6r June, 1978.

[2] S. B. Akers.
Functional Testing with Binary Decision Diagram.
IEEE £££&. JBL^. International oonferenoe QR Fault Tolerant

computing :75-82, June, 1979.

[3] K. G. Beauchamp.
jiaiati functions M ikfiin applications.
Academic Press, 1975.

[4] R. G. Benetts and S. L. Hurst.
The Rademacher-Walsh spectral transform : a new tool for

problems in digital network fault diagnosis.
1£££OJO&UJL. Digital Technique. 1 :38-4*1, 1978.

[5] P. J. Davis.
Jh& MathgatlOS £f_ matrices.
Xerox College Publishing, 1973.

[6] C. R. Edwards.
The application of the Rademacher-Walsh Transform to Boolean

Function classification and Threshold Logic synthesis.
IEEE transaction on Computers C-2iiM). January, 1975.

[7J C. R. Edwards.
The design of easily tested circuits using mapping and

spectral techniques.
Basils, .and. Electron £ng&. 47(7):321-31»2, July, 1977.

[8] S. L. Hurst.
The application of chow parameters and Rademacher-Walsh

matrices in the synthesis of binary functions.
&aaEiifc£T jlojiriial 16(2): 165-173, 1973-

[9] M. G. Karpovsky.
finite, orthogonal sslss. in. ihs. Assign oL digital devices.
New York : Willey, 1976.

[10] A, M. Lloyd.
Spectral addition techniques for the synthesis of

multivariable logic networks.
Computers and Digital Techniques 1(M): 152-16H, 1978.

 %

70

[11] A. M. Lloyd.
A consideration of orthogonal matrices, other than the

Rademacher-Walsh types, for the synthesis of digital
D.© tw or* les

Int. JL. Electronics 47(3):205-212, 1979.

[12] A. M. Lloyd. \
Design of multiple universal Logic-module networks using

spectral techniues.
IEE Proceeding. £act.£. 127(1), January, 1980.

[13] Jose S. Matos and John V. oldfield.
Binary Decision Diagram : From abstract representations to

physical implementations.
?ntn dftalgn automation conference :567-570, 1983.

[14] J. C. Muzio and S. L. Hurst.
The Computation of Complete and reduced sets of orthogonal

spectral coefficients for Logic Decision and pattern
recognition purposes.

ScmEiit. .Elect. £ngg.. 5:231-249, 1978.

[15] J. C. Muzio.
Composite spectra and the analysis of switching circuits.
IEEE leans., an. .Computer c-29(8), August, 1980.

[16] J. C. Muzio and D. M. Miller.
Spectral techniques for fault detection.
EJ&2.-1Z , 1982.

[17] S. L. Pollack.
Conversion of Limited Entry Decision Tables to computer"

programs,
xsojam. of the ACM 8: 677-682, November, 1965.

[18] A. K. Susskind.
Testing by verifying Walsh coefficients .
IEEE Trans, on Computers , 1983.

'to

[19] y. H. Tokmen.
The evaluation of the spectrum of Multilevel logic networks.
£fim£u&. aniElfifil. Enzs.. 6:233-237, 1979.

[20] Arthur Willing.
Test generation using Binary Decision Diagram.
IEEE Autotestcon ; T36-346. 1981.

71

VITA

. Suman Purwar was born in Allahabad in July, 1957. She received

the B.E.(Hons) degree in Electrical Engineering from the M.N.R.

Engg. College, Allahabad, India in 1978. She received the

M.E.(Hons) degree in Control Engineering from the same Institute in

1980. After completing her M.E. programme, she joined Uttar Pradesh

State Electrioity Board in Sept 1980 and worked there till Dec 1981.

In Jan 1982, she joined the Lehigh University to pursue her M.S.

program in Computer Science and Electrical Engineering. She was a

Teaching assistant from Jan 1982 to June 1984.

72

	Lehigh University
	Lehigh Preserve
	1-1-1984

	A study of switching function representations.
	Suman Purwar
	Recommended Citation

	tmp.1451580486.pdf.WoPlR

