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ABSTRACT 

The Walsh-Rademacher spectral transform Is a transforaatlon 

procedure for converting a Boolean function into a set of spectral 

coefficients. It is shown how certain problems in the Boolean domain 

are soluble in the spectral domain. An algorithm is presented to 

compute the Walsh spectrum directly from the Boolean' expression. 

Some properties of the Walsh spectrum are investigated. The Binary 

Decision Diagram (BDD) is used to compute the Walsh spectrum and, 

conversely, from the complete Walsh spectrum, the BDD is 

constructed... An algorithm is presented to obtain the near optimal 

BDD of a Boolean function via Decision Tables. 



1. INTRODUCTION 

1.1 INTRODUCTION 

The Boolean equation, truth table and Karnaugh map are coaaonly 

used to express the logical input-output relationship of a binary 

function - all of which have the disadvantage of growing rapidly in 

size with the increasing number of variables involved(Actually, we 

will be concerned here with the special case of bivalued variables 

and functions and so we will deal with a special case of Boolean 

algebra often called Switching algebra). Binary Decision Diagrams 

offer a concise way to specify the precise logical performance of a 

Boolean function [1, 2, 20]. The diagrams are essentially means to 

compute the output value of a function by examining the input values 

and can be used to determine the various properties of the functions 

they represent. These diagrams have been used for test generation 

and for obtaining various implementations of binary 

functions [1, 2, 13f 20]. 

To dervive these diagrams from the Boolean expression, repeated 

application of the classical expansion due to Shannon is used as 

follows[l3 : 

p(i1,x2,,..,xn)sx1F1+r1P0. U.1) 

where, F1 = F(1fX2,...,Xn) and FQ = F(0,X2,...,Xn).  We begin by 

setting X.=0 in F(X) to obtain the function FQ and do the same for 



Figure  1-1.   BDD OF F(X) 



X*=1 to obtain F. as shown in Fig.1-1. 

Now the process is repeated for the variable Xp, and so on. In 

.its.jjiost. general form, all variables are represented as nodes on the 

diagram of which only one branch is active for any particular set of 

inputs. The output value is computed by entering the diagram at the 

root and then traversing downward through the diagram. There exists 

only one path through the diagram for any set of input values. All 

paths in the diagram terminate in F=1 or F=0. 

Boolean functions are binary valued, conventionally taken as 0 

and 1. However instead of involving two binary values, it is 

possible to transform this binary data into another mathematical 

domain, in which the resultant numbers lie within a larger range of 

values, not confined to (0,1). This is the "spectral domain", the 

data enumerated in this domain being the spectrum of the given 

binary function [14]. A close mathematical analogy is the transform 

of a complex a.c. waveform-, whose magnitude varies with time, from 

the time domain to the frequency domain giving the frequency 

components or. spectrum of the a.c. waveform. 

The most* relevant and compact digital transform is the Walsh- 

Rademacher transform [3, 4, 6, 7, 8, 9, 14, 15]. This transform is 

orthogonal, involving the numbers -1 and +1. The fundamental 

property of this transform is that no information content is lost in 



the transformation into the spectral domain. Thus a transformation 

back from the spectral domain to the more familiar binary domain is 

possible, by using the inverse of the forward transform. 

Mathematically we have : 

[C] = [T].[F] (1.2) 

where [T] is the square transform matrix of dimension 2nx2n ; [F] is 

the column matrix of dimension 2nx1, representing the output of the 

function F(X) of n variables. [C] is the column matrix of dimension 

2nx1 corresponding to the spectrum of F(X). 

The converse of Eq(1.2) is : 

[F] = [T]-1.[C] (1.3) 

where [T]~1 is the inverse of the forward transform matrix [T]. 

For the purpose of the above mentioned transformation, we will 

code binary values (0,1) to (-1,+1). Under this coding the jtn 

element of [F] is given by 

Fj = 2.P(X1',X2 Xn) - 1 (1.4) 

with (XrX2 Xn) being the j
tn n-tuple(out of 2n). The transform 

matrix [T] consists of 2n row vectors,R,each of dimension 2n, 

computed as follows [8]. 



RQ = L1»1,.. •U'|X2
n 

R± = [2(Xl)1-1,2(Xl)2-1,...,2(Xi)2n-1]1x2n -• 

with i = 1 to n and (X,)^ being the value of the variable 

X± in the J
th n-tuple. 

Rik = ^ri1xrk1)»""(ri2nxrk2n)] 

with i,k = 1 to n ; i#k; and r±*   »rkj being the jtn elements of RA 

and Rjj respectively. 

M2...n = [(r«-x...rn1),...,(r19nx...xrn5n)] 11J n1 121 n2* 

It is noted that the transform matrix is an orthogonal matrix, is 

independent of the Boolean function F(X), and only depends upon the 

number of variables in F(X). The ordering of the rows in [T] can be 

changed, as long as the ordering in the vector [C] is changed 

accordingly. The ordering of [F] and rows in [T] comes froa the 

ordering of the n-tuples and again, one can change the sequence of 

n-tuples without affecting the end results(see [11]). 

If the Walsh-Rademacher ordering (see [8]) is used and (0,1) is 

coded in (-1,+1), [T] can also be derived from the following 

recursive form 

n 

Ln-1 

-T n-1 

ln-1 

ln-1 

(1.5) 



where Tn is a 2°x2
n transform matrix, n is the number of variables, 

and TQ = 1. 

The Walsh Coefficients are denoted by CQ,C^,C2, ^(•••^...n* 

In the following chapters C.2 Q will be denoted by C^L because it 

involves all the variables.The Walsh Coefficients have been used for 

fault detection [18, 16] and for synthesis [12, 19, 10] of the logic 

networks. In the next section we will discuss some properties of the 

Walsh coefficients. 

1.2 SOME PROPERTIES OF WALSH COEFFICIENTS 

With the introduction to the Walsh transformation, we now turn 

to some of their properties : 

1. The arithmetic sum of all the (2n) Walsh coefficients is 

given by 

EC = 2n.Fn I (1.6) 

wiere FQ represents the last entry in the column vector 

[F] and corresponds to the mapped value of the function 

F(X) with all its inputs at 1. Thus, 

EC = +2n  when Fn = 1 and 

EC = -2n  when Fn = -1. 



PROOF 

Premultiplying Eq(1.2)  by a vector of all 1's of 

dimension 1x2n, we have 

[1 1 ... 1] [C] = [1 1 ... 1] [T] [F] • 

or, DC = [0 0 ... 0 2n] [F] 

or, LC = 2n Fn 

where F  Is the last element of the column vector [F]v 

which corresponds to the mapped value of the function 

F(X) with all its inputs at 1. Fn can be either +1 or -1, 

so we have 

TC = +2n   when FR = +1 and 

EC = -2n   when Fn -1. 

EXAMPLE 1 

Consider a simple case of 2 variables. Eq(1.2) can be 

written as 

LC12J 

+1 +1 +1 +1 

-1 -1 +1 +1 

-1 +1 -1 +1 

+1 -1  -1 +1 

1 

r3 

F, 

(1.7) 

Premultipling on both sides by [1 1 1 1], we have 



[1111] 

'12 

= [1   1   1   1] +1 +1 +1 +1~ "F1" 

-1 -1 +1 +1 F2 

-1 +1 -1 +1 F3 

+1 -1 -1 +1 5* 
CQ+Cj+Cg+C^ = [0004] 

F- 

or. •EC = 22.P„ 

From Eq(1.6), some properties can be derived as follows : 

a. All 2n coefficients with zero values do not define 

a valid Boolean function. 

b. If one of the coefficients is +2n, then the 

remaining coefficients will all be zero. 

2. The length of the vector [C] (square root of the sum of 

the squares of all the coefficients) is given by 

^72 = 2n (1.8) 

mm. 

Since [T] is an orthogonal matrix, we can write(see [5]) 

[T]'.[T] =X.[I] (1.9) 

where [T]4 is the transpose of the matrix [T], [I] is the 

9 
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identity matrix and K is a constant. In our case K=2n. 

So,we have 

[T]».[T] = 2n.[I]  (1.10) 

Taking the transpose on both sides of Eq (1.2), we have 

[C]« = [F]«.[T]» (1.11) 

Multiplying Eq(1.11) on both sides by [C], we have 

[C]».[C] = [F]».[T]'.[T].[F] 

using Eq(1.10), we have 

[C]».[C]  =[F]'.2n.[I].[F] 

= 2n.[F]».[F] 

Since [C] and [F] are column matrices, we can write 

EC2 = 2n.    SF2 (1.12) 

The dimension of [F] is 2nx1 and the F's can be either +1 

or -1, resulting in F2 = 1.  So there would be 2n 1's in 

EF2. Hence Z F2 = 2n.  Using this property in Eq(1.12), 

we have 

EC2 = 22n  . 

or, ^2-C2 = 2n 

10 



EXAMPLE 2 

Consider the two variables case of EXAMPLE 1. Transposing 

Eq(1.7) on both sides, we have 

[CQ C1 C2 C12]=[P1 P2 F3 F4] +1 -1 -1 +1 

+1 -1 +1 -1 

+1 +1 -1 -1 

+1 +1 +1 +1 

Postmultiplying   both   sides   by  [C], and using   [T]'[T]   = 

2  , we have 

[CQ C|  C2 Cj2] = 4.EF, F2 F3 F4] 

'12 

c§+cf+c|+c2
2 = IKF^+F|+F|+FJ) 

Since F| = 1, for 1=1 to J», we finally have 

VC§+cf+c|+cf2 = 2
2. 

1.3 SUMMARY AND OUTLINE OF REPORT 

In this chapter we discussed some properties of the Walsh 

coefficients with a brief introduotion to the Walsh transformation 

and the Binary Decision Diagram. 

In Chapter 2, a simple approach to obtain a near-optimal BDD 

using Decision Tables is explored. Simple examples that illustrate 

11 



the algorithm are discussed. 

Chapter 3 presents algorithms to compute the Walsh coefficients 

of a function from its BDD and, conversely, construct the BDD of a 

function from its Walsh spectrum. Examples are given to illustrate 

both algorithms. 

Chapter 4 presents an algorithm to compute the Walsh 

coefficients directly from the Boolean function F(X). The Walsh 

spectrum of the Boolean Difference, (dFCD/dX^ of F(X), is computed 

from the spectrum of F(X). The spectra of [Xi(dF(X)/dXi)] and 

[X^dFCXj/dX,)] are then^computed to determine the true vertices of 

these two functions, as these vertioes determine the probability of 

detecting a fault at any input lead. 

Chapter 5 presents a summary of the results of the thesis. A 

list of references is included at the end of the thesis. 

12 
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2. A METHOD FOR FINDING GOOD HDD'S 

This ohapter presents an algorithm for obtaining a "good" BDD 

of a Boolean function. A BDD is considered to be a good BDD when it 

has a small, possibly minimum, number of nodes. 

Construction of the BDD of a function 

F(X.j ,...,X1,... »Xj,.••iXn) beginning with a variable X1 may lead to 

a BDD with a smaller number of nodes than that with some other 

initial choice X...  Thus, the number of nodes in a BDD depends upon 
■ i. -        J 

the order in which the variables are selected. The proper selection 

of the variables at every step will lead to a good BDD. 

In the context of data processing, a similar problem of 

reducing computation time, based on a set of rules and conditions, 

was treated by Pollack [17]. Pollack solved this problem by forming 

a table with conditions in the rows and rules in the columns. He 

called this table a DECISION TABLE. The algorithm discussed in this 

chapter is based on Pollack's approach. 

We begin with some definitions in Section 2.1. This is followed 

by the formulation of the algorithm in Section 2.2. The algorithm is 

illustrated with examples. This algorithm does not always lead to a 

good BDD and art example illustrating this limitation is also 

presented. Finally, a brief summary is presented in Section 2.3. 

13 



2.1 DEFINITIONS 

The Boolean function is first' represented in the form of a 

table. Each product implicant in the function is represented by a 

column in the table. All the variables appear in the leftmost column 

as row coordinates. In every column, the entry 1(0), represents an 

uncomplemented(complemented), variable in that implicant. A dash in 

a column shows that the implicant is independent of that variable. 

For example, the table for the function FsX^+X^o+X-iXo Is shown in 

Fig2-1. 

Subtable 

For each variable Xif there are two tables corresponding to its 

0 and 1 branches. These tables are Galled subtables. The 0 branch 

subtable corresponds to the part of the table where Xj has 0 and 

dash entries whereas the 1 branch subtable corresponds to the part 

of the table where X. has 1 and dash entries. 

Implicant Count 

The Implicant Count of an implicant is 2r, where r is the 

number of dashes(variables missing) in that implicant. In Fig2-1, 

the Implicant Count for all three implicants is 2, because every 

implicant has only one dash. 

14 



xl    1 

x2 1 

X3 
"V, 

Figure 2-1.     Table of F = X^    + X2X    + X^ 
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Dash Count 

For each variable X., the sum of the Implleant Counts taken 

over those implicants that are independent of Xj, is denoted as Dash 

Count. In Fig2-1, the Dash Count for X1f X2 and X, is 2. 

KO) CODNT 

The 1(0) Count of a variable X* is the sum of the Implicant 

Count taken over those implicants where X^ is uncomplemented 

(complemented). In Fig2-1, the 1 count for X., X2 and X? is 4 and 

the 0 Count for all variables is 0. 

J2ELTA 

For any variable X*, Delta is the absolute difference of the 1 

count and the 0 count. In Fig2-1, Delta for X1, X2 and X, is 4. 

2.2 ALGORITHM 

The algorithm to determine the next node in the BDD consists of 

the following steps : 

1. Express the Boolean function in the form of a table as 

defined above. 

2. Combine any two implicants that can be merged. This is 

similar to Boolean minimization. 

3. Select that variable which has a minimum dash count. 

4. If two or more variables have the same minimum dash 

count, select the variable with minimum delta. 

16 



5. If two or more variables have the same minimum delta and 

the subtables corresponding to one variable is the same 

as some other aubtable or part of the subtable , then 

select that variable after selecting other variables 

because equivalent subtables then can be combined. 

6. Assign the variable so chosen to the node of the path 

being considered. If this is the first variable of the 

BDD being constructed, assign it to the root. This node 

or root has two branches, each of which leads to a 

subtable with one less variable than the original table. 

7. At any stage if two subtables are equivalent, i.e., the 

variables and the entries are the same, then join them. 

8. To simplify the subtables, the following rutes can be 

applied : 

a. If a branch leads to a—subtable containing all 

dashes in any implicant, terminate that branch with 

F=1. 

b. If a branch does not lead to a subtable, terminate 

that branch with F=0. 

c. If at any step a variable contains only dashes in 

all rows of a subtable, eliminate that variable 

from the subtable. 

d. For any variable X^, the subtable containing only 

one variable, having the form  X, 0  will 

17 



replaced by the node X. having two branches. The 0 

branch will be terminated with F=1 and the 1 branch 

will be terminated with F=0. Similarly, Xi will 

be replaced by the node X, with its 0 branch 

terminated with F=0 and 1 branch ^terminated with 

P=1. 

9. If a branch leads to a subtable containing more than one 

implicant, go back to step(2). 

EMhSLR 

Consider the function F=B(AC+CE)+E(AB+BD). The BDD for this 

function, arbitrarily choosing the variables in lexicographical 

order, is shown in Fig.2-2. We can express this function in a table 

form as follows : Y 

Dash count 

A 0 - 0 - 8 

B 1 1 1 0 0 

C 1 0 - - 8 

D - - - 1 12 

E 
\ 

- 0 0 0 4 

[mplicai it Count 4 i» n il 

According to step(3), B would be the root, since it has the 

minimum dash count. Applying step(6), we have Fig.2-3. 

18 



F = 0 
F = 0 

F =  1 F = 0    . 

Figure 2-2. 
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^ In the subtable of the "O" branch of B(Fig.2-3), A and C 

conditions contain only dashes and D condition in the subtable of 

the "1n branch contains only dashes. Thus, the corresponding rows 

are eliminated and the new tables are shown in Fig.2-4. 

In the right subtable of Fig.2-4, applying step(4), C would be 

our next condition to be tested. In the left subtable, since both 

conditions have the same delta, condition D would be tested before 

E, because E appears in the right subtable with the same value. Now 

we have Fig.2-5. 

Since the second column is redundant in both subtables of the 

variable C, it is eliminated in Fig.2-6, according to step(2). 

Finally, joining equivalent subtables and applying step 8(d), 

we have Fig.2-7. 

The number of nodes in Fig.2-2 is 7 whereas the number of nodes 

in Fig.2-7 is 5, which is minimal in this case, since each variable 

appears exactly once. 

CODNTER EXAMPLE 

Consider the function F=B • D+AD+ABC. We can express this 

function in a table form as follows: 

20 



A - A 0 - 0 

C - C 1 0 - 

D 1 D - - - 

E 0 E - 0 0 

Figure 2-3. 

D   .1 

E   0 

Iraplicant 
Count 

Dash  Delta 
count, 

A 0 - 0 2 4 

C 1 0 - 2 0 

E -■ 0 0 2 4 

Figure 2-4. 

21 



HE] A    -     0 

E    0    0 

A__0__0 

E    -    0 

Figure 2-5. 

F = 0 

Figure  2-6. 

22 



Figure 2-7. 

V 
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Dash count 

A   • - .    0      1  4-~ 

BO-      0 4 

C 0 8 

D    0      0      -     '• 2 

Implicant 
Count 

According to step(3)» variable D would be our root, since it 

has the minimum dash count. Applying step(6), we have Fig.2-8. In 

the subtable of the zero branch, the last column is redundant. So 

simplifying this table we have Fig2-9. Since variable B appears in 

both subtables'.,with the same entry, we can choose either A or C in 

the 1 branch subtable. .. Choosing C in the right subtable of Fig2-9, 

we get Fig2-10. 

Variable B appears in the two subtables with the same values, 

so according to step(5), it would be tested after testing A 

variable(Fig2-11). Finally, combining subtables, we get Fig2-12. 

However, if we had chosen A variable as a root, we would have 

obtained Fig2-T3- 

•^   Fig2-12 has 5 nodes and Fig2-13 has 4 nodes. Thus, we can 

conclude that our algorithm does not always lead to a minimum 

24 



A - 0 1 

B 0 - 0 

C - - . 0 

A 1 

B 0 

C 0 

Figure 2-8. ■ 

A - 0 

B 0 - 

A 1 

B 0 

C 0 

Figure  2-9. 
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A - 0 

B 0 - 

A 1 

B 0 

Figure -2-10. 

F = 

Figure  2-11. 
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F =  1 

F'=  1 F = 0 

Figure  2-12. 

F = 0 

F =  1 F  =  0 

Figure 2-13. 27 



structure, just good ones. 

2.3 SUMMARY 

In this chapter, we presented an algorithm to obtain good 

BDD's. The algorithm presented can be easily computer programmed. 

From experience, we found that if the function consists of a 

minimal subset of implicants, then the algorithm usually gives us a 

good BDD. This means that to get a good BDD, we should first 

minimize the function and then apply the algorithm. This adds an 

extra step. 

28 



3. WALSH SPECTRUM FROM BDD AND BDD FROM WALSH SPECTRUM 

This chapter presents two algorithms. The first algorithm 

describes the computation of the complete set of 2n Walsh 

coefficients C of a function F(X) from its BDD. The second algorithm 

describes the construction of. the BDD of a function F(X) from its 

complete set of 2n Walsh coefficients C. This means that we can go 

from one representation to the other and illustrates that the 

properties of a function which can be determined from the BDD can 

also be derived from the Walsh spectrum. 

3.1 COMPUTATION OF WALSH COEFFICIENTS FROM BDD 

In this section, we describe the computation of the complete 

set of 2n Walsh coefficients for a switching function F(X) bf n 

variables directly from its BDD. An example of a BDD is shown in 

Fig.3-1 for the function F = X.,X2 + XgXg + X.,Xg . Branches are 

labeled as a,b,o,...h along with the branch value (0 or 1). For 

examplei a;0 means that branch a has a value 0. An "exit branch** is 

defined as a branch that terminates in a-value (0 or 1) of the 

function F. Exit branches in Fig.3-1 are c,f,g,h. Both outgoing 

branches of an "exit no*den are exit branches. In Fig.3-1, X3 is an 

exit node. The "Root" is a node with no incoming branches. In the 

example being considered, X. is a root. 

The total number of inputCombinations (ICs) for a funotion of 

29 



= 1 

Figure 3-1.       BDD OF F = X^ + X^ + X^ 
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n variables is 2n. For the example of Fig.3-1, it is 2^=8. The 

number of ICs associated with each of the outgoing branches of the 

root is 2n~ . In Fig.3-1, ICs corresponding to the branches a and b 

are labeled as 4& and 4b, respectively. The outgoing branches of any 

node with only one incoming branch are associated with ICs equal to 

one half of the ICs of the incoming branch. In the present example, 

ICs of the outgoing branches c and d of the node X2 are labeled as 

2ac and 2&d, respectively. If any node has more than one incoming 

branch, the number of the ICs of each of the outgoing branch is 

equal to the sum of one half of the number of ICs corresponding to 

each incoming branch. In the present example, this case is 

illustrated by the ICs associated with the branch g labeled as 

1adg+1beg» i°dicating tnat 1adg 
comes from tne branch, d and 1b 

comes from the brafcch e. The subscripts attached to particular ICs 

are indicative of the path of these ICs from root to the particular 

branch.  Thus ac, for example, is indicative of the two ICs that 

have X.. and X~ equal to zero, i.e., X^l^X?  and X.X2Xo. 

In order to facilitate the computation of Walsh coefficients 

from the BDD, we define a function n tn(branch values, F) of a path 

between any node and the terminal value,of the switching function, 

F, which depends upon some or all branch values selected along the 

path. The value of n is defined to be +1(.-D if the branch values 

along the specified path and the terminal value of the function F 
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contains an even(odd) number of zeroes. For example, in Fig.3-1, 

n ac(a,o,F) = -1, but nao(a,F) =1. A set of subscripts (attached to 

the ICs of a particular exit branch) is "complete" if it contains 

-one outgoing branch from each of the nodes associated with the m™1 

order Walsh Coefficient being computed. For example, in Fig.3.1, 

consider the computation of C2o. The corresponding nodes to be 

considered are X2 and Xg. The outgoing branches from these nodes 

are c,d,e,f,g and h. The subscripts attached to the ICs 1ad_ of the 

exit branch g are "complete" because it contains the branch d 

corresponding to the node X2 and the branch g corresponding to the 

node X~. Likewise, the subscripts of ICs 1t,eK» ^adh and ^beh are 

also "complete", whereas the ICs 2ao and 2bf are not "complete". 

3.1.1 COMPUTATION OF CQ 

The zeroth order Walsh Coefficients, CQ, is given by 

C0 sE M± - EMj (3.1) 

where, E Mi is the sum of the number of ICs associated with those exit 

branches whose terminal value is F=1 and EM., is the sum of the ICs 

associated with those exit branches whose terminal value is F=0. 

Coefficient CQ, in fact is the difference between true vertices(F=1) 

and false vertices (F=0). It gives us a measure of the number of 

minterms associated with a function. 
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3.1.2 COMPUTATION OP OTHER SPECTRAL COEFFICIENTS 

In order to compute the remaining 2n-1 Walsh Coefficients 

corresponding to m ,< n variables, the following rules are observed : 

1. We begin by considering the ICs at all the exit branches. 

Remembering that the subscripts of a particular IC denote 

the path of the IC from the root node, we consider only 

those ICs(at the exit branches) that contain a "complete" 

set of subscripts associated with the m* order Walsh 

coefficients. 

2. From the collection of ICs defined in step(1), delete ICs 

associated with outgoing branches of exit nodes. (This 

step is used because the contributions along the two exit 

branches will cancel eaoh other). 

3. The nr order Walsh Coefficient corresponding to m 

variables is given by : 

C12...m = ^ M^Ccomplete" set , F) (3.2) 

where Mi is the number of ICs having a "complete" set of 

subscripts at a particular exit branch and r\("complete" 

set , F) includes the branch values corresponding to the 

"complete" set and the terminal value of the function F. 

The contributions of ICs at an exit branch that does no6 

involve all the m variables will cancel each other. Any function for 
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I- 

which any BDD does not contain any exit IC involving all the m 

variables will be characterized by C10  „ = 0. J  12.. .m 

EXAMPLE 1 

With reference to Fig3-1, we wish to calculate the Walsh 

Coefficient C. corresponding to variable X.. The outgoing branches 

associated with node X. are a and b. Branches a and b appear In the 

ICs associated with exit branches c,f,g,h. But, step(2) eliminates 

ICs at exit branches g and h. Applying Eq(3.2), we have 

C1 = 2nao(a,F) + 2nbf(b,F) 

=2nac(0,0) + 2nbf(1,1) 

= 2(+1) + 2(+1) 

= 4 - 

To calculate Cp, corresponding to variable X2, we need to consider 

ICs at exit branches c, f, g, h because the outgoing branches 

associated with X„ are c, d, e, f. But, step(2) eliminates ICs at 

exit branches g and h. Thus, we can write 

C2 = 2nao(c,F) + 2nbf(f,F) 

=2na(J(0,0) + 2nbf(1,1) 

= 2(+1) + 2(+1) -^ 

= 1| 

Similarly C^ can be calculated below : 
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C3 = 1 Wg'F)+1nbeg(S'F)+1nadh(h'F)+1nbeh(h'F) 

= inadg(0,0)+mbeg(o,o)+1r,adh(1,1)+1nbeh(1,n 

=1+1+1 +1 - 

= J» 

The second order Walsh Coefficients C.2> C?3 and ci^ corresponding 

to variables X<jX2, X^3 
and X1X3 can be comPuted as follows : 

The outgoing branches associated with variables X1 and X2 are 

(a,b) and (c,d,e,f), respectively.. We need to consider ICs at exit 

branches c, f, g, h but, step(2) eliminates ICs at g, h. 

C12 = 2nac(a,c,F) + 2r^f(b,f,F) 

=2nac(0,0,0) + 2nbf(1,1,1) 

= 2(-1) + 2(+1) 

= 0 

The outgoing branches associated/with variables X2 and X, are 

(c, d, e, f) and (g,h), respectively. The ICs at exit branches c and 

f will not be considered because they do not form a complete set. 

C23 = lT1adg(d'8'F)+1ribeg(e'h'F) 

+1rWd»h'F)+1nbeh(e'n'F) 

=ln
adg(1'0'0)+1nbeg(0'0'0) 

+inadh(1,1,1)+inben(o,1,1) 

=1-1+1-1 
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=0 

To calculate C-go* the outgoing branches asoociated with X., X„ 

and X~ are (a,b) , (c,d,e,f) and (g,h), respectively. 

C123 = 1"adg<a-'d'8»P)+1lWb'e'8'P) 

+lT1
adh(a»d»n'F)+1nbeh(b'e»h'F) 

=1nadg(0'1»°»0)+lT1beh(1'0'0'0^ 

+1rW0'1'1'1>+1IW1'°'1'1) 

= -1 -1 -1 -1 

= -4. 

> 

EXAMPLE 2 

With reference to Fig.3-2, we wish to calculate the Walsh 

Coefficient Cfi. The outgoing branches associated with variable B 

are (c*d,e,f).The ICs at exit branches g, J, 1 will be considered. 

CB = *W°»PMWd'P)+4We'P),rtnbfl(f»p> 
= 4(+1) + 4(+1) + 4(+1) + 4(-1) 

= 8 

Similarly, other coefficient are calculated below : 

CC " 4nadj(J'F) + *nbfi^»p> 

= 4(+t)-+ 4(-1) 

= 0   • f. 
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Figure 3-2. BDD OF F=B(AC+CE)+E(AB+BD) 
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CD = 4nacg(g'F) + Heg(«'F> 

= 4+4 

= 8 

CABC = ^adJ(a,drj,F) + 4nbfl(b,f,l,F) 

= 4(-1) + 4(-1) 

= -8. 

EXAMPLE 3 

With reference to Fig.3-3, the exit branches are d, f, g, 

h. Now, we wish to calculate Cc corresponding to variable C. The 

outgoing branches associated with node C are e and f. Only the ICs 

at exit branch f need to be considered. 

CC = 2nbcf(f'F) 

=2nbcf(0,1) 

=-2 

To . calculate C^, the outgoing branches associated with 

variables A and D are (a,b) and (g,h), respectively. Only the ICs at 

exit branches g and h need to be considered. 

CAD = *Va'g'F) + 1Wb'g'F) 

+ .4nah(a,h,F) + ncehCb.h.F) 

= 4 _ i + 4 - 1 

=6 

To compute C^gQ, the ICs at exit branch f only will be 
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Figur€ 3.-3. BDD OF F » AD + ABC + ABCD 
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considered. 

CABC = 2nbcf(b,c,f,F) 

=2. 

3.2 SYNTHESIS OF BDD DIRECTLY FROM THE WALSH SPECTRUM 

In this section, we describe an algorithm to directly obtain 

the BDD of a Boolean function,F(X), of n variables from its complete 

set of 2° Walsh coefficients, C. 

Consider the Shannon decomposition of F(X) about a single 

variable X^ i=1 to n 

F(X^,...,XQ)=X^FQ + X^F^ 

where, FQ = F(X1,... ,0,... ,XQ) and F^ = F(X1,... ,1 ,..,^Xn), 

(3.3) 

From Eq(1.2) and Eq(1.5), we have 

Ln-1 ln-1 

C = 

"Tn-1    Tn-1 

Tn-1F0 + Tn-1F1 

~Tn-1F0 + Tn-1F1 

(3.4) 

where, FQ and F1 are function vectors for FQ(X) and F|(X), 

respectively. "Let 

Tn-1F0 +. Tn-1F1    »  V0 
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) 

-ViFo"* ViFi      =    vi 
where, VQ and V^ are the ordered vectors which jointly give C. After 

simplifying, we have 

ViFo = (1/2'(vo-vi) 
Tn-1F1 = (1/2>(V0 + v,) 

If we know the complete spectrum and hence the two half spectra 

VQ and V1, we can calculate the spectrum corresponding to functions 

F0(X) and F^X). 

In general, the 2n~1 Walsh coefficients, C, of FQ(X) are given 

by 

Cj« = (1/2)(Cj - C±j) (3.5) 

and the 2n_1 Walsh coefficients, C", of F.j(X) are given by 

Cj" = (1/2)(Cj + C±i) (3.6) 

where j=all possible coefficient subscript sets not involving i, 

including j=0. Coefficient C±J, for J=0, = C±(see[l|]). 

Consider the following truth table of a single variable 

function , let us say X 
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X       F 

0 1 
1 1 

The value of the funotion is always 1, Independent of the variable 

X. For this function, we have CQ=2 , Cx=0. So, whenever we have 

coefficients (2,0), then the value of the function is always 1(F=1). 

Similarly, for the set (-2,0), the value of the function is always 

0(F=0). 

Applying the same idea to the set of coefficients (0,-2) and 

(0,2), we obtain their truth tables and their corresponding BDDs as 

shown in Fig.3-4 and Fig.3-5, respectively. 

*"^ 

Whenever a function is independent of any variable, then all 

the subscripted coefficients involving that variable will be zero. 

For example, consider the function F(X1,X2,Xo)2X2X3. The 2^ Walsh 

coefficients are • 

C0=-4 , C1=0 , C2=i» , C3=il 

C12=0 , C13=0 , C23=4 , C123=0. 

Here, ci>C12'C13'C123 are zero« Conversely, we can say that whenever 

all the coefficients involving a given variable are zero, then the 

^function is independent of that variable. If we want the spectrum 

in terms of the remaining variables, then we delete the subscripted 

coefficients involving that variable and divide the remaining 
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Figure 3-4, 
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X F 
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F =  0 F =  1 

Figure  3-5. 

44 



spectrum by 2. 

With this introduction, we now turn to the main algorithm that 

makes successive use of Equations(3.5) and (3*6). The algorithm is 

formulated as follows : 

1. Select any variable X^ and assign it to the root of the 

BDD being constructed with two outgoing branches of value 

0 and 1. 

2. Calculate the two subsets of 2n~' Walsh coefficients, C* 

and C" of the funotiohs F(X<j,... ,0,... ,Xn) and 

F(X1,...,1,...,XQ)f respectively, corresponding to the 

branch values Xi=0 and 1 using (3.5) and (3.6). 

3. If in any subset (C1 or CB), all the coefficients 

involving k of the remaining variables are zero, then, 

eliminate them and divide the remaining coefficients by 

the factor of 2K. 

4. When any branch has a set of coefficients (-2,0) or 

(+2,0), terminate that branch with F=0 or F=1, 

respectively. 

5. When any branch has a set of coefficients (0,2), connect 

that branch to the last remaining node variable. 

Terminate the 0 branch of this node with F=0 and the 1 

branch with F=1. 

When any branch has a set of coefficients (0,-2), connect 
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that  branch  to  the last remaining  node variable. 

Terminate the 0 branch with F=1 and 1 branch with F=0. 

6. Whenever two sets corresponding to two distinct branches 

are the same, join the branches. 

7. Select the next variable in each of the subsets C*,Cn and 

repeat steps (2)-(6). 

EXAMPLE 1 

Consider a set of (2^) Walsh coefficients. Here n=3. Let CQSO, 

C1=4, C2=4, C3=4, C12=0, C13=0, C23=0, C123=-4. 

In order to determine the BDD for the function corresponding to 

the given set of Walsh coefficients, we select the variable X^ 

according to step(1), and calculate the subsets C and Cas shown in 

Fig.3-6. 

Since steps (3)-(6) are not applicable, X2 is selected as the 

next variable and further subsets are calculated according to 

step(7) as shown in Fig.3-7. Next, applying steps (4)-(6), finally 

we obtain Fig.3-8. 

The Walsh coefficients given in this example correspond to the 

function FsX^g+XgXg+X^Xg. Fig.3-8 corresponds to the BDD for this 

function.     '      . 
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Figure  3-6. 
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Figure  3-7. 
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F = 0 F -  1 

F = 0 F =  1 

Figure  3-8. 
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EXAMPLE 2 

Next, consider the set of 2^ Walsh coefficients CQ=-8, CA=-8, 

CB=8» Cc=0, CJJ=8,CE=-16, 
CAB="^' CAC=~8' cADs0-*—CAEs°»^Ca0> pBD=~8' 

CBE=0» CCD=0» CCE=8» ^E2*"8, CABC=~8' CABD=0» CABE=0» CACD=0» 

CACE=0' CADE=0» CBCD=0» CBCE=8' CBDE=8* A11 remaining coefficients 

are zero. 

In order to determine the BDD for the function corresponding to 

the given set of Walsh coefficients, we select the variable A 

according to stepO) and calculate the subsets C and C" as shown in 

Fig.3-9. Next, we select variable B as a node on both of the 

outgoing branches of the variable A, as shown in Fig.3-10. Now, 

applying step(3), we obtain Fig.3-11. Next, the use of steps 

(5)-(7) results in Fig.3-12. Finally, applying steps (4)-(5), we 

obtain Fig.3-13. 

The Walsh coefficients used in this example correspond to the 

function F=BDE+BCE+ABC. Fig.3-13 corresponds to the BDD for this 

function. 
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Figure 3-9. 
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3.3 SUMMARY 

The Walsh ooeffioients are usually computed from the truth 

table. As the number of variables increases, the size of the truth 

table grows rapidly. It becomes tedious to compute the Walsh 

spectrum of a function of more than five variables. Since the BOD is 

a concise way to specify a Boolean function, the algorithm to 

compute the Walsh spectrum directly from the BDD is very useful. The 

second algorithm (constructing the BDD directly from the Walsh 

spectrum) illustrates the conversion from the spectral domain to the 

binary domain. 
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4. WALSH SPECTRUM FROM THE BOOLEAN EXPRESSION 

This chapter contains an algorithm for computing the Walsh 

spectrum directly from the Boolean expression of the function F(X). 

Then, we show how to find the spectrum of the Boolean Difference 

dF(X)/dX^ from the spectrum of F(X). Next, we show how to compute 

the number of true vertices of XjL(dF(X)/dXjL) and Xi(dF(X)/dX1). 

The simple Boolean Difference of a function F(X) with respect 

to one of its defining variables, Xi is defined as (see [7]) - 

dF(X)/dX± = Fa(X) ©Fb(X) (4.1) 

where Fa = F(X1,... ,Xlt... ,Xn) , Fb = F(X1,... ,Xlt... ,Xn) and 0 is 

the exclusive OR operator. 

Solutions to (dF(X)/dXi)=1 are independent of X^^ and define the 

input for which a change in state of X, causes a change of output 

state. The set of tests for a fault on X^ is given by 

Xi(dF(X)/dX1) = 1 , for X± stuck at 0 (4.2) 

X±(dF(X)/dXi) = 1 , for X± stuck at 1 (i».3) 
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4.1 COMPUTATION OF THE WALSH SPECTRUM DIRECTLY FROM THE BOOLEAN 

FUNCTION 

In this section, we describe an algorithm to compute the 

complete Walsh spectrum directly from a non-canonical forn of a 

given Boolean function F(X) of n variables. Our method is based on 

the observation that when the function is reduced to its disjoint 

form(sum of products form where products are mutually exclusive, 

i.e., no two product terms cover the same minterm), a variable 

appearing in an uncomplemented (complemented) form in a product term 

which has K missing variables contributes +2K(-2K) to the 

appropriate partial product of the Walsh coefficients. 

The algorithm can be expressed as follows : 
.1 

1. Convert the given Boolean function to a disjoint form, if 

it is not in that form already(see [4]). There may be 

many disjoint forms. Choose any one . 

2. In each product term with K missing variables, index each 

literal with i=+2K(-2K) , if uncomplemented 

(complemented). 

3. The nr (m$n) order Walsh coefficient can be written in 

the following form 

C12...m= 2Z prod terms °<i> <^ 

where, the sum is carried out over only those product 
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terms that contain all 12...m variables and a(i) for each 

such product term is given by 

+IiI, if the number of negative variables in 
12..m is even in that product ; 

-HI , otherwise. 

If there is no product which involves all 12...m 

variables, then C<to..*m  w*^- be   characterized by zero. 

The coefficient CQ is given by 

c0 = 2^all prod terms2* " ^ ».5)' 

vr 
where each product term contributes 2 and summation is 

carried over all the product terms. 

JEfiflfiE 

The contribution to the Walsh coefficients of a product term 

which does not involve all the m variables will be zero, because 

half of the input combinations in the product term will contribute 

(+1) and other half will contribute (-1)* Only the product terms 

which involve all the m variables will be considered. The product 

term, which has K missing variables, corresponds to 2 input 

combinations associated with F=1. 

There will be 2n_1 input combinations that have an even number 

of zeroes in the m variables and the remaining 2n~1 will have an odd 

number.   Each input combinations having even number of zeroes 
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associated with F=1 will contribute +1 and input combinations baring . 

an odd number of zeroes associated with F=1 will contribute -1. 

Conversely, the input combinations having an even number of zeroes 

associated with F=0 will contribute -1 and input combinations having 

an odd number of zeroes associated with F=0 will contribute +1. 

If NE is the number of input combinations having an even number 

of zeroes associated with F=1, then the number of input combinations 

having an even number of zeroes associated with F=0 will be 

(2n~ -NE). Conversely, if NQ is the number of input combinations 

having an odd number of zeroes associated with F=1, then the number 

of input combinations having odd number of zeroes associated with 

F=0 will be (2n~1-N0). 

The m* order Walsh coefficients can be written as follows 

C12...m = NE " N0 - <2n-1-NE) + (2
n"1-N0) 

= 2(NE-N0) 

In the terminology used in Eq(4.1), +|i| corresponds to N£ and -|i| 

corresponds to NQ. 

The coefficient CQ is the difference of the number of input 

combinations associated with F=1 and the number of input 

combinations associated with F=0. The total number of input 

combinations associated .with F=1 is the sum of all product terms and 

XT ' ' 
each product term contributes 2 ■. 
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K 
Number of Input Combinations with F=1 = E r 
Number of Input Combinations with F=0 = 2n-E2K 

CQ = £2
K-(2n-£2K) 

=2(E2K-2n_1) 

EXAMPLE t 

Consider the function F=X1X2+X2X2+X1X3. A disjoint form of F 

is given by F3X.X2-t-X.X2X0-t-X.X2X0. Each variable is indexed 

according to rule(2)as follows 

Y+2Y+2. Y-IY+IY+IJ. Y+1V-1V+1 

Rule(3) can now be used to compute the Walsh spectrum. 

C0 = 2[2+1+1-4] = 0 , 

C1 = 2[2-1+1] =4 , 

C£. = 2[ 2+1-1] =4 , 

C3 = 2[1+1] = 4 , 

C12 = 2C2-1-1] = 0 , 

C13 = 2[-1+1] = 0 , 

C23 = 2[1-1] = 0 , 

C123 = 2[-1-1] = -4. 

EXAMPLE 2 

Consider the expression F=BDE+BCE+ABC which is already in a 

disjoint form. Each variable is indexed according to rule(2) as 

follows 
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B-VE-* + B VV + rW 

Rule(3) can now be used to compute the Walsh spectrum. 

C0 = 2[4+4+4-16] = -8 , 

CA = 2[-4] = -8 , 

CB = 2[-4+4+4] = 8 , 

CD = 2[+4] = 8 , 

CE =2[-4-4] = -8 , 

CAB = 2C-43 = -8 , 

CBC = 2[-4+4] = 0 , 

CCD = 2[0] = 0 , 

CBE = 2[+4-4] = 0 , 

CABCDE = 2[0] =0. r   ' 

4.2 SPECTRUM OF dF(X)/dX± 

Let the spectrum of F '(X) in Eq(4.1) be C_. As shown in [4], 

then the spectrum Cb of Fb(X) i3 equal to C&, except that the sign 

of all i-subscripted coefficients is reversed. It was shown in [4] V 

that if in Eq(4.1), Fa(X) and Fb(X) are disjoint functions, then the 

spectrum of (dF(X)/dX1) can be easily calculated. To compute the 

dF(X)/dXi from the complete spectrum of F(X), we can not apply this 

technique, because Fa(X) and Fb(X) may or may not be completely 

disjoint.. 

As was shown in [15], if Fa(X) and Ffa(X) are two functions of n 
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variables, in which (0,1) is coded in (-1,1) with corresponding 

spectra C& and Cfa, then the spectrum Cp y^\p of Fa(+)Fb is given as 

follows(for proof see [15]): 

CFa©
Fb = "N,(Ca*Cb) (4"6) 

where N'=1/N and N=2n. C&  * Cb is the convolution sum defined by 

<Ca * Cb>i = S Ca  -Cb ^-7) a   D 1      j ai©j Dj 

where i and j denote all 2n-1 combinations of the numbers 

1,2,3,...,n and 0.  i(+)j denotes the concatenation of the digits in 

i and j with the exclusion of any common digits.  For example, 

12584=1234 , 1233345=1245 and C@K=K for any K. Computation of C * 

Cb can be understood from the following example: 

Consider the case of 3 variable function and let us determine 

the spectrum C of dF(X)/dX1. If C& is given by 

Ca=tC0'C1'C2'C12'C3'C13'C23'C123] 

Then Cb is given by 

^b=^  0'~"^1' 2'  12' 3'~ 13'^23'"^'123^ 

In order to compute dF(X)/dX.j, using Eq(4.6) and Eq(4.7), we have 

C0=-( 1/8) [co®0*C0+C0@1'""C1+COSe*C2+C0©12'~C12+C0@3,C3 

+C0313 * ^ 13+C0@23 * C23+C0©123 * "C1233 
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=-( i/8)Cc|-cf+c|-cf2+c|-.cf3+c|3-cf23J 

C,=-( 1/8) [C10o»Co+C1gjp-C1+C1gB. C2+C1@12*~C12+ 
C1©13,"C13+C1@23*C23+C1@123,"C123] 

Similarly, the remaining coefficients are computed as below: 

C2=-( 1/8) [20002-20^^+203023-20^0^3] 

C12=° 

C3B-<1/8)C2C0C3-2C1C1^2C2C23-2C12C123] 

c;3=o 

C23=-(1/8)C2C0C23-2C1C123+2C2C3-2C12C13] 

1 c123=o. 

In general, CQ of dFCXj/dX^^ can be written as follows: 

CJ=(1/H.)[SC? - Zcg] . (*•&) 
iCj   i£k 

where, the first summation is carried out on the squares of those 

coefficients which contain i in the subscript list and the second 

summation is carried out on the squares of those coefficients which 

do not contain i in the subscript list. As shown in EXAMPLE1, 61 of 

dF(X)/dX1 is •■      ■ 
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CQ=(1/8)[C2+C22+Cf3+Cf23-C§-c|-C§-c|3] 

4.3 SPECTRUM OF X^dFUJ/dX^  AND X^dFUJ/dX^ 

As was shown in [15], if F and G are functions of n variables 

with corresponding spectra Cp and CQ, then the spectrum Cp„ of FAG 

is given by(for proof see [15]): 

CFQ =  (1/2)[N'(CF»CG) + (CF+CG) - J] (4.9) 

To compute the spectra Cn of X1(dF(X)/6X± and Xi(dF(X)/dXi) , 

we have F = 1^ or X^ and G = dF(X)/dXi . Since F and G are supposed 

to be functions of n variables, we first convert Cp and CQ to n 

variable spectra having 2n coefficients and then apply Eq(4.9) to 

compute the spectra of X±(dF(X)/dXi) or Xi(dF{X)/dXi), 

EXAMPLE 2 

Consider the three variable case of EXAMPLE 1. In order to 

compute the spectrum C" of X1(dF(X)/dX1), we have F=X1 , G=dF(X)/dX1 

and their corresponding spectra Cp and CQ are as follows : 

Cp=[0 8 0 0 0 0 0 0]T 

CG=[CQ 0 c2 0 C3 0 Cg3 0]
T 

Using Eq(4.9), we finally have 
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To compute the spectrum of X^(dF(X)/dX^), we have 

Cp = [0 -8 0 0 0 0 0 0]T 
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4.4 COMPUTATION OF THE NUMBER OF TRUE VERTICES OF Z±{&il)/a±). AMP 

X^dFW/dXj.) 

In general,  if X^    is an independent input then CQ of 

X±(.dF(X)/6X±)  and X±(dF(X)/dX1), is given by 

cj = (1/2)[CQ - 2n] (4.10) 

.11 
CQ, in fact is the difference between the number of true vertices 

and false vertices of X±(.dF (X)/dX±) or X±(dF(X)/dX±). True vertices 

of Xi(dF(X)/dX±) or X±(dF(X)/dX±) will give us the number of test 

patterns for which a stuck fault on X^ can be tested. In random 

testing, a large number of true vertices is desirable, because this 

fault will have high probability of being detected. We give a method 

of calculating the true vertices of these functions in terms of the 

spectrum of F(X). 

c5 = h - N0 

where N. is the number of true vertices where XjiCdFtXj/dXj.) = 1 and 

NQ is the number of false vertices where XAdF(X)/dX^)  = 0. 

But N1 + NQ = 2n, so we have 

cj = 2N1 - 2
n (4.11) 

Using Eq(4.10) and Eq(4.11), we have 
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N, = Cl/H)C'Q  + 2
n~2 

Using Eq(4.8), we have 

N1 = (1/4N )[IC2 -EC2.] + 2n~2 

iCj  ijtk 

EXAMPLE ^ 

To oalculate the true vetices of X^ (dF(X)/dX-), we have for a 

three variable function 

i 

N-,=-(1/32)[Cg-C2+C|+C2-C22-C
2
3+C|3-C

2
23] +2 

Finally, given the spectrum of F(X), we can directly compute 

the true vertices N1 of X^dFttJ/dX^ and Xi(dF(X)/dXi) for any 

single input lead fault. To extend this concept to multiple faults, 

the spectrum of XiXJ(dF(X)/dXiXJ) and X1Xj(dF(X)/dX1XJ) can be 

similarly calculated. 

M.5 SUMMARY 

The algorithm to obtain Walsh spectra directly from the Boolean 

expression is very simple and fast. A lot of computation involved in 

computing Walsh spectra from matrix multiplication, is saved. We 

also showed that Walsh spectra can determine some parameters useful 

in random testing. 

67 



5. CONCLUSION 

This chapter is a summary of the analytical results and the 

conclusions arrived at in preceding chapters. The principal aim of 

this thesis is to study bivalued functions in the spectral domain. 

In particular, the Walsh Rademacher transformation of Boolean 

functions is examined. Chapter 1 provides a brief introduction to 

the Walsh-Rademacher transformation. Any arbitrary set of 2n 

numbers may not correspond to a valid Boolean function and two 

properties were derived that must be satisfied. 

Next, an introduction to the representation of Boplean 

functions by Binary Decision Diagrams (BDD) is presented. The 

arbitrary choice of the starting variable does not always JLead to 

the minimum number of nodes in a BDD. In chapter 2,an algorithm is 

presented to obtain a good BDD of a function. The algorithm 

presented can be easily computer programmed. 

In chapter 3i the BDD of a function is used to compute the 

Walsh spectrum of the function. Conversely, from the Walsh spectrum 

of a function, the BDD of the function is constructed. 

The computation of Walsh Coefficients usually requires a matrix 

multiplication. The size of the matrices increases rapidly (~2n) 

with the order, n, of the Boolean function. In chapter 4, a simple 

and direct algorithm to compute the Walsh spectrum from the Boolean 
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expression is presented. All 2n minterms are not required to 

compute the spectrum, only a disjoint form of the Boolean expression 

is needed. The Walsh Coefficients can be applied to the fault 

diagnosis and testing. It is shown that the number of test 

patterns, for a particular input lead being stuck, can be computed 

directly from the Walsh spectrum of the function. 
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