VICVW THTwuaudla, vitaluull aliu siifhial papio at Lulc.au. un

prougntio you ny 4o LUn-

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Reducing the Multiplicative Complexity in Logic Networks for
Cryptography and Security Applications

Eleonora Testa
EPFL, Lausanne, Switzerland
eleonora.testa@epfl.ch

Luca Amaru
Synopsys Inc., Sunnyvale, CA, USA
luca.amaru@synopsys.com

ABSTRACT

Reducing the number of AND gates plays a central role in many
cryptography and security applications. We propose a logic synthe-
sis algorithm and tool to minimize the number of AND gates in a
logic network composed of AND, XOR, and inverter gates. Our ap-
proach is fully automatic and exploits cut enumeration algorithms
to explore optimization potentials in local subcircuits. The experi-
mental results show that our approach can reduce the number of
AND gates by 34% on average compared to generic size optimiza-
tion algorithms. Further, we are able to reduce the number of AND
gates up to 76% in best-known benchmarks from the cryptography
community.

ACM Reference Format:

E. Testa, M. Soeken, L. Amaru, and G. De Micheli. 2019. Reducing the
Multiplicative Complexity in Logic Networks for Cryptography and Security
Applications. In The 56th Annual Design Automation Conference 2019 (DAC
’19), June 26, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3316781.3317893

1 INTRODUCTION

Logic synthesis is considered one of the fundamental steps in the
realization of competitive and leading-edge integrated circuits. In
the last decades, both heuristics and exact methods have been pro-
posed, together with new data structures, for the abstraction and
manipulation of Boolean circuits. Classical data structures in logic
synthesis work over the gate basis {AND, OR, NOT} [1], as they
traditionally target CMOS-based applications. In recent years, new
data structures based on majority function have also been consid-
ered for optimization of emerging nanotechnologies [2]. Despite
using different data structures and algorithms, the optimization
goals of logic synthesis are mainly area, delay, and power con-
sumption of digital circuits. In this paper, we specifically extend
logic synthesis to consider an alternative optimization objective for
cryptography and security applications.

978-1-7281-2425-4/19/$31.00 ©2019 IEEE

Mathias Soeken
EPFL, Lausanne, Switzerland
mathias.soeken@epfl.ch

Giovanni De Micheli
EPFL, Lausanne, Switzerland
giovanni.demicheli@epfl.ch

One logic basis widely used to represent circuits in cryptogra-
phy is given by the gates {AND, XOR, NOT}. This is because the
XOR and AND operations in this basis are equivalent to addition
and multiplication in GF(2), respectively [3]. Logic synthesis for
cryptographic applications addresses the minimization of the num-
ber of AND gates in a logic network composed of AND, XOR, and
inverter gates. Indeed, the number of AND gates is an indicator of
the degree of vulnerability of the circuit [4]. The minimum number
of AND gates sufficient to implement a Boolean function over the
basis {AND, XOR, NOT} is called multiplicative complexity of the
function [4, 5]. Lower multiplicative complexity of a function corre-
sponds to higher vulnerability to algebraic attacks [4, 6]. Moreover,
the number of AND gates in a function representation, called here
multiplicative complexity of the circuit [7], may not correspond to
the multiplicative complexity of the function itself, but only pro-
vides an upper bound thereof. Therefore, the minimization of the
number of AND gates in a circuit is important in order to assess the
real multiplicative complexity of the function, and consequently its
resistance against cryptanalysis attacks.

The minimization of the number of AND gates also plays a crucial
role in high-level cryptography protocols such as zero-knowledge
protocols, fully homomorphic encryption (FHE) and secure multi-
party computation (MPC) [8, 9]. In this scenario, AND gates are
considered the “bottleneck” of the computation [8]. In particular,
it has been demonstrated that in post-quantum zero-knowledge
signatures based on “MPC-in-the-head” [10], the size of the sig-
nature is proportional to the number of AND gates used by the
underlying blockcipher [9]. For MPC protocols based on Yao’s gar-
bled circuits [11, 12] with the free XOR technique [13], the total
number of computations depends on the multiplicative complex-
ity. Further, for FHE, the XOR gates is considered much cheaper
than the AND gates, and do not increase the noise during the com-
putation. Further motivations for AND minimization also come
from side-channel attacks. Indeed, in techniques to protect against
side-channel attacks, the cost of general-purpose protections grows
with the number of AND gates [6].

In view of all this, we porpose logic synthesis for cryptographic
applications, aiming at minimizing the number of AND gates in a
circuit. We describe a cut rewriting algorithm to reduce the multi-
plicative complexity in Xor-And Graph (XAG). An XAG is a logic
network consisting of AND gates, XOR gates, and inverters. While
state-of-the-art methods rely heavily on manual decomposition and
optimization strategies [14], our approach is fully automatic. Com-
pared to generic size optimization algorithms [15], the proposed

https://core.ac.uk/display/211998507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cout sum Cout sum

b ‘a Cin
(a) XAG implementa- (b) One cut of the full
tion of the full adder adder highlighted in
gray

Figure 1: XAG representation of the full adder. The signal
Cout in the output carry. Dashed lines represent comple-
mented edges.

method achieves lower numbers of AND gates for the EPFL combi-
national benchmark suite [16]. On average, our proposed method
reduces the number of AND gates by 34%. Moreover, we demon-
strate a significantly smaller number of AND gates in best-known
reported benchmarks in the context of MPC and FHE.

2 PRELIMINARIES

2.1 Xor-And Graphs and Multiplicative
Complexity

In many cryptographic applications, Boolean functions are usually
represented over the basis {AND, XOR, NOT} [3]. In analogy with
the data structures usually involved in logic synthesis, e.g., AND-
inverter graphs (AIGs, [1]), or majority-inverter graphs (MIGs, [17]),
in this work we represent logic networks from cryptographic appli-
cations in terms of XOR-AND graphs (XAGs). We define an XAG as
a logic network in which each gate corresponds to either an AND
or an XOR operator. Both regular and complemented edges can be
used to connect the gates, where a complemented edge indicates
the inversion of the signal. Fig. 1(a) shows an XAG representation of
the full adder, which uses two XOR gates, denoted by @, and three
AND gates, denoted by A. Inversions are represented as dashed
lines. Previous works in logic synthesis have considered XOR-AND
logic networks, called XOR-AND Inverter Graphs (XAIGs, [18]).
Even if our work and the one in [18] use the same data structure,
XAIGs have been exploited to perform a different task. Indeed, the
work in [18] focuses on LUT mapping, and considers XOR and AND
gates to have the same cost.

A cut ¢ of a node n in the logic network is a set of nodes, called
leaves, such that

e every path from node n to a primary input visits at least one
leaf, and
o cach leaf is contained in at least one path.

Node n is called the root of the cut and each cut represents a sub-
graph that includes the root n and some internal nodes, but has
the leaves as primary inputs. Fig. 1(b) shows in gray the subgraph
described by the cut for the output cout with leaves a, b and cjy. A
cut is k-feasible (denoted here as k-cut), if it has at most k leaves.

All (or part of all) k-cuts of a logic network are found using cut
enumeration algorithms [19, 20].

As stated in the introduction, the multiplicative complexity of
a Boolean function is defined as the minimum number of AND
gates sufficient to implement it over the basis {AND, XOR, NOT} [4,
14]. More general, we also call the multiplicative complexity of a
logic network the actual number of AND gates to implement the
circuit [7].

2.2 Affine functions classification

This section reviews affine function classification, which is a strong
Boolean function classification technique based on affine opera-
tions.

Definition 2.1 (Affine operations [21]). The following set of five
affine operations on a Boolean function can be used to partition all
Boolean functions into equivalence classes [21].

(1) Swapping two variables. From f(x1,...,Xi,...,Xj,...,Xn),

one obtains g = f(x1,...,xj,...,%i,...,xn) by swapping
XieXj
variables x; and x;j. We denote this operation as f -5 g.

(2) Complementing a variable. From f(x1,...,x;,...,Xn), one
obtains g = f(x1,...,%i,...,Xn) by complementing vari-

able x;. We denote this operation as f iR g
(3) Complementing the function. One obtains g = f from f by
complementing the whole function. We denote this operation

as f —g.
(4) Translational operation. One obtains g = f(x1,...,x; ®
Xj,...,xn) from f(x1,...,x4,...,x,) by replacing x; with
X ®x;

x; ® xj. We denote this operation as f —— g.
(5) Disjoint translational operation. One obtains g = x; @ f from

f by XOR-ing it with input x;. We denote this operation as
Dx;
f—y9

These operations partition all n-variable Boolean functions into
equivalence classes by means of the following equivalence relation.

Definition 2.2 (Affine equivalence [22]). We say that two n-variable
Boolean functions f and g are affine-equivalent, if there exist oper-

ations 01, . . ., 0 from Definition 2.1 such that
f oL Ok g.

One can readily verify that affine equivalence is an equivalence
relation. In the remainder, we write f = g, if f is affine-equivalent
to g. Further, we refer to the equivalence class of f as [f] = {g |

f=gh

We can define one element of [f] to be the representative function
of that class. In an abuse of notation, we use [f] both as the set of
all Boolean functions in the equivalence class, and also to denote
the representative itself. Note that f = g, if and only if [f] = [g].

Example 2.3. We can show that (x1x2x3) = x1 Ax2, where in this
case x1 A x3 is considered a 3-variable Boolean function in which

Cout sum Cout

aAnb o

a b a b Cin Cin b a

(a) Circuit
of the rep-
resentative

(b) Circuit of the (c) Final full adder
representative and XAG
operations

Figure 2: Method overview example

x3 is a don’t care input.

X9 _ X20x3 _ X1 Dx2
X1 Axy — x1 AXg — x1 A (X & x3) —

— — EBxl
(x1 ® x2) A (X2 ® x3) = x1X2 ® X1X3 ® X2X3 —

X1 @ x1%9 @ x1X3 B X2X3 = x1X2 D x1X3 D X2x3 = (X1X2X3)

Using this equivalence relation the set of all n-variable Boolean
functions forn = 1, 2,3, 4, 5, 6 collapses into just 1, 2, 3, 8, 48, 150 357
equivalence classes [4, 23], respectively. An algorithm to compute
the representative of each class and the set of operations o7 . . . 0%
has been recently proposed in [24, 25].

3 PROPOSED METHOD OVERVIEW

The goal of this work is to minimize the number of AND gates in
an XAG, as AND gates minimization is a crucial aspect in many
cryptography applications. This section presents the general idea
and illustrates the proposed method using an example. The opti-
mization algorithm and details on the implementation are given in
Section 4.

Our optimization method is based on two major considerations:

(1) The multiplicative complexity of a function is invariant under
affine operations. Each affine operation can be realized by (i) an
XOR gate, (ii) an inversion or (iii) a permutation of two inputs. All
of them do not affect the number of AND gates in an XAG. Thus, to
find the multiplicative complexity of a Boolean function, it is enough
to know the multiplicative complexity of the representative of its
equivalence class. In other words, each function can be written as
an XAG using the same number of AND gates of its representative.

(2) As the number of affine classes is orders of magnitudes smaller
than the number of functions, a minimum circuit implementation
over {AND, XOR, NOT} is known [4, 26] for each representative up
to 6-input functions. In this scenario, minimum means minimum
in terms of AND gates. The minimum XAG implementation of
each Boolean function (up to 6-input) can thus be obtained by the
XAG of its representative. This is obtained by adding XOR gates,
inverters, and input permutation in accordance with the operations
from Definition 2.1. As stated above, this will not influence the
number of AND gates.

These two considerations allow us to optimize the number of
AND gates of a Boolean function by (i) using the minimum XAG of

Algorithm 1 Cut-rewriting to minimize the number of AND gates
(multiplicative complexity) of an XAG

Input: XAG of the cut ¢ of node n, DB_representative_to_xag
Output: Optimized XAG for cut ¢

1: f «Boolean function of n with respect to the leaves
: representative « representative of the equivalence class of f
: operations < operations to go from f to representative
. if representative € DB_representative_to_xag then
repr_circuit «— DB_representative_to_xag[representative]
else
return c
: end if
: new_cut_circuit < repr_circuit+ gates corresponding to op-
erations on inputs and outputs
10: return new_cut_circuit

O N U W

the representative and (ii) augmenting it by the gates required for
each transformations. In the following, we use the full adder from
Fig. 1 as an example.

Example 3.1. Consider the full adder in Fig. 1(a), which has three
AND gates. The objective is the minimization of such gates. Let us
focus on the coyt output, which has the subgraph highlighted in
Fig. 1(b). The subgraph implements the majority of three inputs
(abci,) which has truth table (in hexadecimal form) equal to 0xe8.
The representative of the class is the function 0x88, which is the
AND gate represented in Fig. 2(a). As in Example 2.3, a A b is
considered a 3-variable Boolean function in which ¢;, is a don’t
care input. This means that the full adder can be build using one
AND gate together with some of the operations from Definition 2.1.
The operations o; . . . 0 to transform a majority gate into a AND
gate are the ones from Example 2.3: b,b® cin, a® b, cout ® a. These
add three XOR gates to the circuit in Fig. 2(a), and one inversion.
The gates introduced are highlighted in Fig. 2(b). The final XAG of
the full adder in shown in Fig. 2(c). We can conclude that the full
adder has a multiplicative complexity of at most 1.

To sum up, we minimized the number of AND gates of a full
adder by (i) using the minimum XAG of the representative (Fig. 2(a))
and (ii) by adding to it the gates corresponding to each operation

(Fig. 2(b)).

4 OPTIMIZATION ALGORITHM

This section presents the optimization algorithm to reduce the
multiplicative complexity of large (beyond 6-input) XAGs. It is based
on the considerations and example shown in Section 3. First, we
present the algorithm, then we give details on our implementation.

The algorithm is based on cut rewriting and is a general version
of the DAG-aware AIG rewriting presented in [1]. The work in [1]
aims at minimizing the AIG size by iteratively selecting AIG sub-
graphs and replacing them with smaller pre-computed subgraphs.
Our algorithm implements a similar approach, based on cut enu-
meration [20]. The idea is to replace XAG subgraphs with new
graphs which have smaller multiplicative complexity.

For each cut, the minimum representation in term of AND gates
can be computed as described in Example 3.1. Alg. 1 presents the

pseudo code. The minimum representations over the basis {AND,
XOR, NOT} for all affine class representatives up to 6 inputs! are
used to create a database mapping all representatives up to 6 inputs
to their minimum XAG representation. Further, as optimum results
are known for functions with up to 6 inputs, the cut enumeration
has been restricted to 6-cut. First, the Boolean function of the cut
with respect to its leaves is computed. The work presented in [25]
is then used to compute the affine class representative and the
operations. The XAG of the representatives is retrieved from the
database previously stored, and XOR gates, inverters and permu-
tations according to the different operations are added in order to
obtain the XAG implementing the correct function. Once the circuit
for the cut is obtained, the algorithm continues as in [1]. In our
case, the gain is evaluated considering the reduction in the number
of AND gates.

4.1 Implementation details

The maximum number of leaves for each cut is equal to 6 (Alg. 1).
Thus, as we are dealing with 6-input functions, we make use of truth
tables to represent the Boolean functions. Truth tables for 6-input
functions can be efficiently stored in computers as a single 64-bit
unsigned integer, and are fast to compute. Further, our algorithm
allows us to limit the maximum number of cuts computed for each
node. In our experimental evaluation, we found that a cut limit of
12 leads to a good trade-off between runtime and quality.

The database stores the XAGs for each representative. In practice,
this can be stored as one “large” XAG, called hereafter XAG_DB.
XAG_DB has 6 inputs, and 147 998 outputs (this number is explained
below). Each output is the XAG of one representative. The total size
of this XAG is 2339 563. XAG_DB is created once and can be reused
for several rewriting calls. The database_to_xag function in Alg. 1
maps the truth table of each representative to its corresponding
output in XAG_DB.

The work presented in [25] is used to calculate the affine rep-
resentative and the required operations. The classification is per-
formed by rearranging the coefficients of the function’s Rademacher-
Walsh spectrum [21] based on their magnitudes. Depending on the
distribution of coefficients, the number of iterations to reach the
representative can vary significantly among different functions. In
most cases, a representative is found very quickly, but for some
functions this computation can be inefficient. We address this prob-
lem using two techniques. First, we maintain a cache of computed
representatives and affine operations for all considered Boolean
functions during rewriting. Therefore, no Boolean function needs to
be classified twice. Also, we put an iteration limit on the classifica-
tion routine, which causes us to omit some Boolean functions from
rewriting. In our experiments, we consider 147 998 of all 150 357
affine equivalence classes.

5 EXPERIMENTS

In this section we evaluate the efficacy of the proposed algorithm.
First, we compare our method to generic size optimization algo-
rithms. Finally, we present results for benchmarks in the context of
MPC and FHE.

! Available at: https://github.com/usnistgov/Circuits/tree/master/slp

We implemented the proposed algorithm into the open source
logic synthesis framework mockturtle.? All the experiments have
been carried out on Intel Xeon E5-2680 CPU with 2.5 GHz and
with 256 GB of main memory. The database containing the MC-
optimum circuits for each representative of all 6-input functions
fits into a compressed file of 12 MB. The limit on the number of
cuts for each node has been set to 12, and we put an iteration limit
on the classification routine to 100 000.

5.1 EPFL benchmarks

In this experiment, we demonstrate that our method decreases the
number of AND gates when applied to benchmarks optimized using
state-of-the-art generic size optimization.

We present our results on the EPFL benchmark suite [16], and
we use the synthesis package ABC [15] as baseline for our compar-
ison. In case of the EPFL benchmarks, our starting point are the
best-known size-optimized 6-LUT benchmarks. As state-of-the-
art size optimization, we apply a synthesis script that interleaves
priority-cut-based 2-LUT mapping (&if) [28], structural choices
(&dch and &synch2) [19, 29], and Boolean network optimization
and resynthesis (&mfs) [30]. We apply the synthesis script

&st; &synch2; &if -m -a -K 2; &mfs -W 10;
&st; &dch; &if -m -a -K 2; &mfs -W 10

ten times, and we pick the final result as our baseline. The result is a
2-LUT network, i.e., a logic network in which each gate corresponds
to an arbitrary 2-input function. Note that a 2-LUT network can be
directly translated into an XAG without increasing the number of
gates by choosing inverters appropriately. Therefore, it provides us
with a good starting point, despite the fact that it uses a unit cost
model that accounts the same cost for both AND and XOR gates.

The results are shown in Table 1. The initial benchmarks are
generated as previously discussed. The “One round” results are
obtained by applying one iteration of our proposed method, while
the “Repeat until convergence” results show the number of AND
and XOR gates after more iterations of our algorithm. In this last
case, the algorithm is run until no further improvement is obtained.
A —//— entry indicates that no improvement was possible even
with applying a single iteration of our proposed method. On average,
15 iterations are needed before convergence. The maximum number
of iterations encountered by our tool is equal to 58 (multiplier
benchmark). The experiments show that the number of AND gates
reaches a local minimum for all benchmarks, and the normalized
geometric mean decreases both for arithmetic and random-control
benchmarks. The total improvement is shown in the last column
of both the “One round” and “Repeat until convergence” results.
On average, we decrease the number of AND gates of 34%. The
arithmetic benchmarks benefit more from our method and are
optimized up to 77% in the number of AND gates. On the contrary,
the random-control benchmarks are optimized 23% on average.

Note that we do not consider any XOR optimization in this work.
An algorithm to minimize the number of XOR for crypthography
applications can be found in [14].

2 Available at: https://github.com/Isils/mockturtle [27]. A python script for the experi-
mental evaluation is also available at: https://github.com/eletesta/dac19-experiments
3See version v2018.1 on https://github.com/lsils/benchmarks

Table 1: Experimental results for EPFL benchmarks

Name Inputs Outputs Initial One round Repeat until convergence
AND XOR AND XOR time [s] impr. AND XOR time [s] impr.
Adder 256 129 550 255 318 529 374 42 % 128 549 536 77 %
Barrel shifter 135 128 2688 0 896 1728 1541 67 % 832 1728 16.65 69 %
Divisor 128 128 12001 3897 6378 8779 100.83 47 % 6060 8994 1132.23 50 %
Log2 32 32 24941 3592 19942 8583 32734 20% 19436 9371 11988.6 22 %
Max 512 130 2687 0 1471 1387 1736 45 % 931 1479 81.82 65%
Multiplier 128 128 16119 4301 12209 8122 16997 24% 11940 8614 9202.11 26 %
Sine 24 25 4937 519 4194 1572 56.76 15 % 4075 1770 40547 17 %
Square-root 128 64 12336 3746 7101 9122 10335 42% 6244 9640 41898 49 %
Square 64 128 9225 3850 5323 7984 3434 42 % 5181 8084 158.92 44 %
Normalized geometric mean 1 0.60 0.49
(arithmetic)
Round-robin arbiter 256 129 1181 0 1181 0 1785 0% 0%
Alu control unit 7 26 86 2 85 8 0.7 1% 85 8 1.22 1%
Coding-cavlc 10 11 536 16 507 152 10.05 5% 494 197 23.86 8 %
Decoder 8 256 341 0 341 0 0 0% 0%
i2¢ controller 147 142 823 15 659 342 17.22 20 % 623 502 109.12 24 %
int to float converter 11 7 133 13 112 76 182 16 % 100 101 4.66 25%
Memory controller 1204 1231 7418 361 5393 3165 89.62 27 % 5113 4168 259297 31%
Priority encoder 128 8 368 0 327 158 412 11% 327 158 81 11%
Lookahead XY router 60 30 96 0 96 0 16 0% 0%
Voter 1001 1 7308 1833 6046 4917 5574 17% 5651 6066 26221 23 %
Normalized geometric mean 1 0.90 0.87

(random-control)

Table 2: Experimental results for MPC and FHE benchmarks

Name Inputs Outputs Initial One round Repeat until convergence

AND XOR AND XOR time[s] impr. AND XOR time [s] impr.
AES (No Key Expansion) 256 128 6800 25124 6800 25124 3748 0% 0%
AES (Key Expansion) 1536 128 5440 20325 5440 20325 2732 0% 0%
DES (No Key Expansion) 128 64 18124 1337 17404 4096 25157 4% 15093 11105 8876.11 17 %
DES (Key Expansion) 832 64 18175 1348 17403 4168 256.69 4% 15126 11263 9262.73 17 %
MD5 512 128 29084 14133 12300 29270 101.53 58 % 9381 30325 14544 68 %
SHA-1 512 160 37172 24166 17141 42415 114.55 54 % 11820 44311 293.8 68 %
SHA-256 512 256 89478 42024 52921 86304 311.68 41% 30201 91278 12562.8 66 %
32-bit Adder 64 33 127 61 38 146 0.83 70 % 32 150 098 75%
64-bit Adder 128 65 265 115 100 260 2.06 62% 64 284 261 76 %
32x32-bit Multiplier 64 64 5926 1069 4290 2351 57.19 28 % 4107 2473 135.02 31%
Comp. 32-bit Signed LTEQ 64 1 150 0 121 69 365 19% 114 89 63 24%
Comp. 32-bit Signed LT 64 1 150 0 129 74 39 14% 108 116 10.17 28 %
Comp. 32-bit Unsigned LTEQ 64 1 150 0 121 69 323 19% 114 89 6.38 24 %
Comp. 32-bit Unsigned LT 64 1 150 0 129 74 4.04 14 % 108 116 10.59 28 %
Normalized geometric mean 1 0.68 0.56

5.2 MPC and FHE benchmarks for
cryptographic applications

In this section, we demonstrate our approach in the context of MPC
and FHE, by optimizing the number of AND gates for best-known
reported benchmarks.* Both these cryptographic applications ben-
efit from AND gates minimization. XOR gates and inverters are
for free, while AND gates are considered more expensive in both
cases [8].

The results are shown in Table 2. As in the previous case, we
distinguish between “One round” results and “Repeat until conver-
gence”. The first four benchmarks are block ciphers, followed by
three hash functions, and seven arithmetic functions. Of most in-
terest is the improvements in the block ciphers and hash functions.
No improvement is possible with our technique in both variants
of the AES block cipher, which indicates that the reported number
of AND gates may be close to the multiplicative complexity of the
function. An improvement of 17% was possible in the case of the
DES cipher, while a much larger improvement was possible for
all three hash functions, with more than 66% improvement after
repeating the proposed approach until convergence.

It is worth noticing that the our method optimizes the number
of AND gates needed to implement the 32-bit adder down to 32,
which is known to be optimum [31]. The same applies for the 64-bit
case.

6 CONCLUSION

We have proposed an algorithm to reduce the number of AND
gates in an XAG, which is a logic network composed of AND, XOR,
and inverter gates. Such XAG optimization plays a central role in
cryptography applications such as fully homomorphic encryption
and multi-party computation. For both these applications, XOR
gates and inverters are for free, while AND gates are considered
slower and more expensive. We presented a fully automatic algo-
rithm based on cut rewriting. It optimizes the number of AND gates
by exploiting affine classification together with cut enumeration
to explore optimization potential in local subcircuits. Our experi-
ments show that we can reduce the number of AND gates by 34%
on average when compared to generic size optimization. We also
demonstrate improvement in best-known benchmarks for MPC
and FHE applications.

ACKNOWLEDGMENTS

We wish to thank Alan Mishchenko, Tim Giineysu, and René Per-
alta and his team at NIST for fruitful discussions. This research
was supported by the EPFL Open Science Fund, by the Swiss Na-
tional Science Foundation (200021-169084 MAJesty) and by the ERC
project H2020-ERC-2014-ADG 669354 CyberCare.

REFERENCES

[1] A.Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG rewriting a
fresh look at combinational logic synthesis,” in Design Automation Conference,
2006, pp. 532-535.

[2] L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A
new paradigm for logic optimization,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 35, no. 5, pp- 806-819, 2016.

4 Available at: https:/homes.esat kuleuven.be/~nsmart/MPC/

[3] J. Boyar and R. Peralta, “A small depth-16 circuit for the AES S-Box,” in Interna-
tional Information Security Conference, 2012, pp. 287-298.

[4] M. Turan Sénmez and R. Peralta, “The multiplicative complexity of Boolean
functions on four and five variables,” in Lightweight Cryptography for Security
and Privacy, Cham, 2015, pp. 21-33.

[5] J.Boyar, R. Peralta, and D. Pochuev, “On the multiplicative complexity of Boolean
functions over the basis (A, @, 1), Theoretical Computer Science, vol. 235, no. 1,
Pp. 43-57, 2000.

[6] N. Courtois, D. Hulme, and T. Mourouzis, “Solving circuit optimisation problems
in cryptography and cryptanalysis,” IACR Cryptology ePrint Archive, vol. 2011, p.
475, 2011.

[7] D. Goudarzi and M. Rivain, “On the multiplicative complexity of Boolean func-
tions and bitsliced higher-order masking,” in International Conference on Crypto-
graphic Hardware and Embedded Systems, 2016, pp. 457-478.

[8] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner, “Ci-
phers for MPC and FHE,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2015, pp. 430-454.

[9] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-

manig, and G. Zaverucha, “Post-quantum zero-knowledge and signatures from

symmetric-key primitives,” in Conference on Computer and Communications Se-

curity, 2017, pp. 1825-1842.

L. Giacomelli, J. Madsen, and C. Orlandi, “Zkboo: Faster zero-knowledge for

boolean circuits,” in Security Symposium, 2016, pp. 1069-1083.

[11] A. C.-C. Yao, “How to generate and exchange secrets,” in Annual Symposium on
Foundations of Computer Science, 1986, pp. 162-167.

[12] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushanfar, “Tiny-

Garble: Highly compressed and scalable sequential garbled circuits,” in Sympo-

sium on Security and Privacy, 2015, pp. 411-428.

V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates and

applications,” in International Colloquium on Automata, Languages, and Program-

ming, 2008, pp. 486—498.

J. Boyar, P. Matthews, and R. Peralta, “Logic minimization techniques with appli-

cations to cryptology,” Journal of Cryptology, vol. 26, no. 2, pp. 280-312, 2013.

[15] R.K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength verifi-
cation tool,” in Computer Aided Verification, 2010, pp. 24-40.

[16] L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational
benchmark suite,” in Int’l Workshop on Logic and Synthesis, 2015.

[17] L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A

novel data-structure and algorithms for efficient logic optimization,” in Design

Automation Conference, 2014, pp. 194:1-194:6.

1. Halecek, P. FiSer, and J. Schmidt, “Are XORs in logic synthesis really necessary?”

in Design and Diagnostics of Electronic Circuits & Systems, International Symposium

on, 2017, pp. 134-139.

[19] A.Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to technology
mapping for LUT-based FPGAs,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 240-253, 2007.

[20] P.Pan and C. Lin, “A new retiming-based technology mapping algorithm for
LUT-based FPGASs,” in Int’l Symp. on Field Programmable Gate Arrays, 1998, pp.
35-42.

[21] C.R.Edwards, “The application of the Rademacher-Walsh transform to Boolean

function classification and threshold logic synthesis,” IEEE Trans. on Computers,

vol. 24, no. 1, pp. 48-62, 1975.

R. J. Lechner, “Harmonic analysis of switching functions,” in Recent Developments

in Switching Theory, A. Mukhopadhyay, Ed. ~Academic Press, 1971, pp. 121-228.

[23] E.R.Berlekamp and L. R. Welch, “Weight distributions of the cosets of the (32, 6)
Reed-Muller code,” IEEE Trans. on Information Theory, vol. 18, no. 1, pp. 203-207,
1972.

[24] D. M. Miller and M. Soeken, “A spectral algorithm for ternary function classifica-
tion,” in Int’l Symp. on Multiple-Valued Logic, 2018, pp. 198-203.

[25] M.Miller and M. Soeken, “An algorithm for linear, affine and spectral classification

of Boolean functions,” International Workshop on Boolean Problems, pp. 237-254,

2018.

C. Calik, M. S. Turan, and R. Peralta, “The multiplicative complexity of 6-variable

Boolean functions,” Cryptology ePrint Archive, Report 2018/002, 2018.

[27] M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli, “The EPFL logic synthesis
libraries,” May 2018, arXiv:1805.05121.

[28] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, “Combinational and
sequential mapping with priority cuts,” in Int’l Conf. on Computer-Aided Design,
2007, pp. 354-361.

[29] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam, “Reducing
structural bias in technology mapping,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 12, pp. 2894-2903, 2006.

[30] A. Mishchenko, R. K. Brayton, J. R. Jiang, and S. Jang, “Scalable don’t-care-based
logic optimization and resynthesis,” ACM Trans. on Reconfigurable Technology
and Systems, vol. 4, no. 4, pp. 34:1-34:23, 2011.

[31] J. Boyar and R. Peralta, “Tight bounds for the multiplicative complexity of sym-
metric functions,” Theoretical Computer Science, vol. 396, no. 1-3, pp. 223-246,
2008.

[10

[13

[14

(18

[22

[26

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190429080835
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

