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SUMMARY



Ill

This thesis is concerned with the properties of a particular discrete 

transform, and its applications to the classification of multi-valued 

( "m-ary" ) logic functions and m-ary combinatorial logic analysis 

and synthesis. The transform used is composed of a complete set of 

orthogonal functions, namely Chrestenson Functions, and the methods 

developed are applicable for all m, m = 2, 3, ... .

The definition of multi-valued systems and some examples of multi

valued circuits are given in chapter 1. The necessity of a generalised 

design method which is not based on a particular algebra is considered, 

and the scope of the thesis is stated.

Chapter 2 introduces the algebraic notation, and continues to show 

the expansions of fully specified m-ary functions in (i) Lagrange 

form, (ii) generalised Reed-Muller form, and (iii) as polynomials 

over the field of real numbers.

Chapter 3 is an application of the mathematical developments covered 

in the previous chapter. Based on generalised Reed-Muller coefficients, 

a realisation of m-ary functions using Universal-Logic-Modules is 

described. The realisation in this case is restricted to m being a 

power of a prime.

The complex polynomial expansion of m-ary functions is considered in 

chapter 4. The coefficient set obtained is termed the "spectrum” of 

the given function. The effects of various operations in the function 

domain on the spectral values are investigated, and a classification 

of m-ary functions is described. Applications of spectral properties 

developed for m-ary combinatorial logic design are shown in examples.

The implementation of any m-ary function involves some form of
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decomposition using physically available logic functions. The spectral 

properties developed in chapter 4 are further pursued in chapter 5 

with an investigation into the relationships between the spectra of 

the logic functions involved in such a decomposition, and the spectrum 

of the overall function being realised. With the development of these 

spectral decomposition relationships, the range of tools for the spectral 

analysis of m-ary combinatorial logic is completed.

Throughout this thesis emphasis is placed on the generality of techniques 

developed, such that these techniques may be applicable to whatever 

higher-valued logic microelectronic circuit realisations may evolve 

in the future.
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CHAPTER 1 

Introduction



1. Introduction.

In this chapter the multi-valued logic system is defined and its 

advantage over a binary system is considered. Some examples of 

existing multi-valued logic circuits in Complementary Metal-Qxide 

Semiconductor field effect transistor ["CMOS"! and integrated-injection- 

logic C"I L" ) technologies are given. The necessity of a general 

design method which is not based on a particular algebra for the 

design of multi-valued logic systems is discussed and the scope of 
the following investigation is outlined.

1.1 Definition of multi-valued logic systems

In conventional binary logic systems the information on the intercon- 
necting paths of logic circuits is determined by the existance or 
non-existence of a signal, usually a signal voltage. The limitation 
of information at any one time to either one or other of these two 

states implies that n binary digits (bits) may be used to assign at 
most 2^ objects, and conversely binary representation of n symbols 

will require at least log^n bits. Thus a parallel transmission of 
information in words, i.e. log^n bits, will require log^n lines. It 

is widely known that a major obstacle which influences the size of 

integrated circuits is the limit on number of interconnection, both 
internal and input/output, possible on one chip. Consequently, 

complexity and the size of systems that may be handled with a single 

chip are limited by the number of interconnections .

A natural solution to this problem is to increase the information 

content on any single line by having more than two meaningful signal 

levels. If, for example, the permissable signal levels are increased 

to four, the same information will be conveyed on half the lines



that would be required by a binary system, similarly the number of

memory units needed to store the same amount of information in 4-leyel

memories will be halved. A prerequisite to the encoding and store of

information in multi-levels is to have available logic circuits

which process the multi-level information. Such a system ’’wherein

m discrete signal levels shall be found under appropriate conditions

on the one output line, the logic circuits responding in some pre-
27determined manner to these m chosen signal levels’’ is called a 

multiple-valued (m-valued m-ary) intern.

Although the philosophical discussions on multiple-valued logics
39go as far back as Aristotle , the algebraic work on the subject was 

initiated in this century by Post^^ in the 1920’s. Subsequently 
other researchers developed various multiple-valued algebraic 
structures for the synthesis and analysis of m-valued logic systems.
On the engineering side, the development of m-ary circuits has 
followed closely the mathematical work, and a large amount of research 
has been devoted to the implementation of the basic connectives of the 

different algebras using the currently available technology. One of

the first major works in this area is due to Lowenschuss^^. We will
2look briefly at some CMOS and I L implementations in the following 

section.

There have been two attempts to build m-ary computers. In both 

cases m was chosen to be three, because of the advantages offered 

by a balanced ternary arithmetic^^. The first of these computers, 

named SETUN, was designed and built at Moscow State University in 

1958. The reports published on the performance of this machine



indicate that the software used was complicated and hence not
28practical, and the hardware proved to he unreliable , The second

ternary computer was implemented in 1973 at Suny, Buffalo, U.S.A.

The implementation of this computer ’’was intended primarily to

discover if the implementation of a non-binary structure on a binary

computer is feasible, and to discover the cost in memory storage and

time for such implementation.....  As a feasibility exercise, this

effort was successful, and the first version of this implementation

proved that both the speed and price are of the order of the speed
30and price of binary computers" . This development, comparison and 

assessment was, of course, done before the full impact of binary 
l.s.i circuits in the digital area was present.

1.2 Examples of m-ary circuits
It is a formidable task to include all the multi-valued circuits
reported in the past in this thesis. Instead we will give below

some of the most frequently used set of function implementations in
2 .CMOS-resistor and I L technologies. Even then the reader is reminded 

that these implementations are not unique and different designs for 

the implementation of the same function within the same technology may 

exist.

Unary operators: These are functions operating on one variable. In

a m-ary system, for each of m possible values at one input, the output
Kt

may take one of m possible values thus ̂making total number of one- 

variable operators m™. However, there are only a few of them which 
appear freqently in many algebraic structures. These are literals, 
delta-functions, simple-negation and cyclic-negation. Note that in



two-valued Cbinary) system the only functionally useful unary operator 

is the Invertor Cor Not) gate.

Literals may be considered as threshold detectors. For a circuit

implementing literal x^ ’̂  the output takes the value (m-l) if input 

is i, otherwise it remains zero. For example, in a ternary system:

X x O , 0 x l ' l x 2 ' 2

0 2 0 0

1 0 2 0

2 0 0 2

Delta functions x^’̂  are similar to literals, this time the output being 
Cm-l) when i < x  < j, otherwise it is zero. Again for example, in -a 

ternary system:

X xO'l x°'2 x ^ ’2

0 2 2 0

1 2 2 2

2 0 2 2

The simple negation and cyclic negation are given by the equations

X  = (.m-l) - X  
x'*' = [x+1 ) mod-m

(simple)

(cyclic)

Again, for example, in a ternary system:

X X x-^

0 2 1

1 1 2

2 0 0



As a circuit example. Fig, 1.1 shows the CMOS-resistor technology 

implementation of the ternary literal the delta function x^*^,

and the simple negation x. Note that all these three functions are 

realised by the same circuitry. The operation of this circuit may 

be explained as follows:

We assign logic values 0,1,2 to voltages -5V,0V and +5V respectively. 

When input is logic 0 the p-type transistor conducts and all three 

output lines take the logic value 2. If the input is logic 1 COV) 
then both transistors conduct, and depending upon which rail the

output point we are considering is closest to we obtain at the output 
logic value 2,1 or 0. In the case when the input is logic 2 (+5V) 
the n-type transistor conducts and all three outputs take the logic 
value 0.

0 1 . 2 2  Note that taking the simple negation of output x ’ we obtain x ’ ,
0 0 1 2  * 1 1  and similarly simple negation of x ’ gives x ’ . The literal x ’

may then be obtained by taking binary conjunction of x^ ’̂  and x^ ’̂ .

o ;

A O

X X xGJ xO'O
0 2 2 2
1 1 2 0
2 0 0 0

-  5 V.

Fig. 1.1 CMOS-resistor implementation of some unary functions



Thus the circuit diagram for becomes

.0.1

1,2 Min.

The details of the ”Min”. circuit above vill be shown later.

33The realisation of cyclic-negation is shown in Fig. 1.2 . When
input is logic 0 (-5V), T1 conducts and both A and B are at the 

positive rail potential. Eence T3 is turned on, giving at the output 

logic 1 (OV). If X is logic 1 COV) then both T1 and'T2 conduct; thus 

point B has a negative potential turning T3 off, and the output takes 
the logic value 2(+5V). When x is logic 2C+5V) only T2 conducts and 
thus the output is at th_e negative rail potential ~5V (logic O).

We can show current-mode bipolar technology integrated injection logic 

CI^L) as an alternative to unipolar implementation.^ This time we have

units of currents as opposed to voltages to represent the logic levels.
2The I L realisation uses three fundamental circuit operations, namely 

the replication of signals using current mirrors, linear summation and

♦5 V

X 2R

5 V

0
1
2

1
2
0

Fig. 1.2 CMOS-resistor three-valued cycling gate



a) r ~

b)

c)

d)

X y
0 0
1 02 1

Fig. 1.3 a) I L current mirror,

b) Linear summation example,

c) Current source circuit,

d) Threshold detector example,



the detection of threshold yeilnes^^. These circuits are shown in 

Fig. 1.3. Note that nse of currents to represent the logic vaines 

limits the fan out of these circuits to one. This problem is 

overcome by replicating the currents using current mirrors. As 

the name "current mirror" suggests, the polarity of current i is 

reversed in the replicated copies.

Fig. l.k shows implementation of literals, simple negation and cyclic 

negation operations for the three-valued case. Similar circuits

may be used to implement unary functions in m =  ̂quaternary logi-c
6 .systems. However, necessary adjustments have to be made to current

source values. The operations of these circuits may be explained 

as follows :

The upper branch of the literal circuit implements the delta function
x^’̂  whilst the lower branch implements x^’ .̂ These two functions
are then "wire-min"-ned to give x^ ’̂  (Fig. l,ka ). The implement-

2ation of simple negation uses the "mirror-image"ing property of I L, 
and is readily achieved by adding a current source to the mirror-image 

circuit (Fig. l.Ub ).

The operation of cyclic negation circuit is similar to the literal 

circuit. In this case the upper branch adds one to the incoming . 

current value, whilst the lower half implements a function similar 

to the delta function x^ ’̂ . The two branches are then "wire min'- ned 

to give x"*%
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a)

X

b )

^  X = 2 -x

c)

X

Fig. 1.4 a) Literals x^'^,

b) Simple-negation,

c) Cyclic-negation,
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Two-input gates ; Because the functions they implement are relatiyely 

easy to manipulate Max., Kin. and mod-m Addition gates have been 

given the major attention. The CMOS-resistor realisation of ternary
Max. and Kin. [simple negation of Max. and Min. respectively) functions

32are shown in Fig. 1.5* Ternary Max. and Min. are then obtained by

taking simple-negation of the outputs. The operation of the Max. 

circuit may be described as follows:

i) When either of the inputs is logic 2, one of the n-type tran

sistors conducts, giving logic 0 at the output, 

ii) If both inputs are logic 1 then all transistors conduct, giving 
logic 1 at the output, 

iii) If either of the inputs is logic 1 and the other is logic 0 then
both p-type transistors and one of the n-type transistors conduct,
again giving logic 1 at the output, 
iv) When both inputs are logic 0, only the p-type transistors conduct,

giving logic 2 at the output.

Interchanging 2 ♦♦ 0 and p n in above arguments, the operation of the 
Min. gate may be described similarly.

A CMOS-resistor implementation of a mod-3 Adder utilises the T-gate 

which will be described later. Another possible realisation may be 

based on algebraic expression of mod-3 addition using literals. Max. 

and Min. operators. However, the expression obtained in this 

particular case is long , and the realisation is uneconomical.

Fig. 1.6 shows a two-input Max. gate and a two-input mod-3 Adder
2realisation using I L. The currents at different parts of the circuit
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a)
5 V

X
y

y \ 0 1 2
0 2 1 0
1 1 1 0
2 0 O 0

-5  V

b)

^ U Min.(x,y) 0 1 2

0 2 2 2

1 2 1 1

2 2 1 0
-5  V

Fig. 1.5 a) Max (x,y) implementation in CMOS,

b) Min (x,y) implementation in CMOS,
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a)
—

Max.(x,y)X

y

b)

X

(x+y) mod-3
y

0 otherwise

Fig. 1.6 a) Max Cx,y) using I L, 

b) mod-3 Adder.
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haye been included in the figure so thg,t the operation of these 

circuits can easily be eocplained following current yaliies. Note 

that Min. and Max. functions obey De Morgan’s law, which 3nay be 

stated as:

min Cx,y) - max (x,y)

Hence, the Min. function may be obtained from Max. function following 

the above relationship.

34T-gate: The T-gate is basically a m-ary multiplexer. Its represent
ation in ternary takes the form TCa,b,c;x) anc^.the function takes 

the same value as one of the data inputs a,b or c depending on the 
value of the control variable being 0,1 or 2 respectively. The T- 

gate may be used to restore signal levels when the signal sources for 
logic 0,1 and 2 values are connected at a,b and c data inputs.

The CMOS-resistor implementation of the T-gate is shown in Fig. 1.7. 

The bilateral switches employed in the realisation have one control 

input, one data input and one output. When the control signal is 

positive the switch is turned on and the output takes the same values 
as the data input. If the control signal is negative then the switch 

is turned off. In the realisation of the T-gate operator the bilateral
switches are controlled by signal from literal gates implementing
0 0 1 1 2  2 X ’ , X ’ and x ’ . The realisation of mod-3 Addition using the T-

gate operator should now be obvious; in this case the inputs a,b and c

are replaced by y,y~*’and Cy"^) . The implementation of is
33similar to y"*', and may be found in Carmona, et al*



5 V 15

a)

c.i/p

-5 V

i/p

c i/p

_ L
BS oYp

b )
AO

BS

BS

BS

F i g . 1.7 a) CMOS bilateral switch, 

b) T-Gate in CMOS.
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2Fig. 1.8 shows the T-gate in I L. Two threshold detectors a,t the 

input end of the circuit control the transistors which will ground 

the unwanted data inputs depending on the value of jl. The column 

of current-followers isolate the data inputs a,h,c from each other,
illand transmits the selected data to the output.

There are a number of different implementations of the ahove

operators in various technologies ■such as current-mode-logic CML
2 . . 'and Transistor-Transistor Logic T L. Most of these circuits may

he found reported in the Proceedings of the Multiple-Valued Logic'
2 ~Symposia 1971-80. The CMOS and T L voltage mode circuits are in

2general limited to ternary implementations. T L may he expanded for

quaternary [m = h ) , hut for higher radices the CML and I L current
mode circuits are better suited. The CMOS circuits have slow
operational speeds in comparison with the bipolar circuits. The ones
we have shown in the ahove examples are designed to operate at 100
kHz with R = 12 . CML on the other hand, offers high speed oper-

35ations at relatively high cost

Recently charge-coupled-devices C"CCD’s") have been suggested for use

in multi-valued logic design^^. CCD memory elements which use four
37discrete charge levels have been built and tested . These devices 

have the additional advantage that they are MOS compatible.

In conclusion it may be stated that with the current expertise available 

in semiconductor technology, there would appear to be no fundamental 

reasons why efficient multi-valued logic circuits should not be 

fabricated, were it not for the entrenched stat-us of normal binary 

circuits and systems.



IT

X

Fig. 1.8 T-Gate in I L.
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1.3 The reasons and the scope of following investigation

Most work in multi-valued circuit developments has- been devoted to 
U6implementation of a few functions, namely literals. Max., Min. and 

base-m Addition, for which we gave the examples of implementations in 

the last section. Th_ese functions are easy to comprehend, although 

the physical realisations may not be straightforward, and intuitive 

design using them for small problems is relatively easy. The minimiz

ation techniques based upon algebras which contain literals. Max. and

Min. functions in their set of basic functions may be found in litef- 
i+3 1+1+ li5ature ’ ’ . The use of/particular technology for the implementr

at ion may influence the choice of the basic set’of functions. For
example, in I^L technology the realisation of base-4 addition rather

than addition operation in a field with four elements is encouraged
2 .by the fact that I L is naturally capable of adding currents which 

represent logic values, in base-4 addition fashion.

Consider the circuits given in Fig. 1.9* The first of these circuits
30was originally developed by Edwards as a binary EX-OR gate, but with 

an appropriate selection of signal levels to represent the logic values 
0 ,1 , . . . . , m-1 this circuit may be used to implement a 2-variable m- 

valued Exclusive-OR function m-OR defined as:

i maxCx,y) if x f y
0 if X - y

2The second circuit in Fig. 1.9 shows I L implementation of the 2-
variable m-ary function Plus. This function is given as:

{ 0 if Cx + y) > m-1
Cm-l) - Cx + y) otherwise
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a)

X

y

m-OR
max(x,y) if x f  y 

0 if x= y

b)

m-1
Plus =

0 if x+y > m-1 

m-1-(x+y) "otherwise

Fig. 1.9 a) M-OR using MOS-FET,

b) Plus gate in I L.
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The development of these two circuits is based upon the natural capabil

ities of corresponding technologies, and the functions implemented by 

them are not included in the basic set of functions of algebras so 
far developed for synthesis methods. Evidently many other like circuits 

which have the property of low cost, using small on-chip silicon area, 

may be suggested. From an engineering point of view the employment of 

a large variety of electronically simple basic functions may be a big 

advantage, and thus a design algorithm which makes full use of the 

advantages offered by these functions is highly desirable. Such a 

design algorithm must be either independent of or easily adaptable to 
a change in the basic set of functions since functions with simple real

isations will vary depending on the technology and technological advance

ments .

A possible approach to solve this problem, which constitutes the principal 
material for the following investigation, may be based upon classification 
of all functions. All m-ary functions are split into classes, such that 
functions of a class may be obtained from a representative class function 
by simple and inexpensive operations. For example, a simple modification 

to a gate with n inputs is the permutation of its input connections. This 

corresponds to the rearrangement of variables in the mathematical express

ion which represents the gate, and the functions generated as such may 

be labelled as a permutation class.

In this thesis an orthogonal series of discrete functions, similar to 

Fourier Transform, will be used to obtain the spectrum of a function, 

and the modifications to the spectral coefficients under certain oper

ations in the function domain will be investigated. Under the trans
formations used the members of a class of functions are identified by
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the values of their spectral coefficients.

A realisation of any m-ary function is generated by a composition of 

functions from a basic set. Algebraic relationships between the spectra 

of functions involved in a composition will be developed. Examples will 

be shown where the algebraic developments considered may be used to 
detect functions with certain properties. As a side work, a Universal- 

Logic-Module realisation of combinatorial m-ary logic functions based 

upon expansions in Galois Field will be considered.

The work of this thesis may therefore be summarised by. the following 

flow chart :
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CHAPTER 2 

Algebraic Developments
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2. Algebraic Developments

Mathematical representations of a digital system are essential tools 

for synthesis and analysis purposes. Shannon expansions, Reed- 

Muller expansions, spectra etc. in binary (two-valued) logic and 

Lagrange forms, generalised Reed-Muller expansions, spectra etc. 
in multi-valued (m-ary) logic are examples of matliematical represent

ations of related systems^’̂ ’̂ ’̂ ’ .̂ In practice it is usually the 
case that the electronic circuits ("gates") which implement the basic 

connectives that make up such expressions are available. Thus once 
an expression (eg. a Shannon expansion in binary) that represents ■ 

a function is evaluated, then the physical implementation of the 

function readily follows using the gates which implement the required 
basic connectives (eg. AND, OR, NOT gates for Shannon expansion case).

In this chapter we shall first define the Kronecker Product (Sect. 2.1) 
and then proceed to look into various expansions of multi-valued 

functions. The expansions we will discuss are:

i) Lagrange canonical form (Sect. 2.3),
ii) Polynomials over tke field of real numbers CSect. 2.U), 

iii) Polynomials over the finite field GF(q^) (Sect. 2.5).

The expressions for these expansions will in general be of the 

form:

fCxl — [some basis functions] [Transform] f]

where f(X) is a m-valued discrete function whose local values are 

given as a column vector Fj,
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The vectors obtained by multiplication of the transform matrix 

with the function value vector f] will be called the coefficient 

vectors for real and modular polynomial expansions in the case when 

m is a prime.

2.1 Kronecker Product of matrices

Before formally defining the Kronecker Product, a particular 
notation which will be used throughout this thesis for the represent

ation of matrices will be introduced.

The usual ordering of a matrix [a J of order m x n is:

[a ] =

\,l\,2* * * ^l,n

m,l m,n
m X n (2.1)

However, in our notation, the subscripts i,j of an element a^  ̂

in the above matrix will be altered to subscripts (i-l),(j-l) 
respectively. Hence for the above matrix the elements will remain 
in their original places but their identifiers, i.e. their subscripts, 

will be altered as described, giving us:

[a] =

*̂0,0 ^0,1 . . .  a0,fn— I,

'Cm-l),Cn-l)
m  X n C2 .2I
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[a| end [̂ bJ be two matrices of orders m^ x n^ and m^ x n^ 

respectively. The Kronecker Product, [aJ 0  ^ p j i s a  matrix 

[̂ c] of order m^ x n^ such that:

and the elejijents. c. . of fc] are given by:1 j  J L J

c. . — a_ y b.p -
ijJ 1 ’ 1 O' 0 ’

where

j = '̂ 0

For example, let [a] — [l x] and Tb I =
1 x 2

1 0
-1 1

2 x 2

Then the Kronecker product [a J ®  [b ] will be;

[c]=  [1 x] ® 1 0
-1 1

1 0
-1 1

1 0
-1 1

1 0 X 0  

-1 1 -X X
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With the following theorem we state some basic but important 

properties of Kronecker product without giving the proofs. The 

reader is referred to the references cited for the detailed proofs.

kTheorem 2.1

a) for any three matrices , [ \*] ’ [̂ o] ’ have:

[h]® ( K J ® [ * o ] )  = ( N ® W )  ® [^ o ]

.......(2.3)

b) for any four matrices ĵ Â j , ĵ Â j , ^A^ J , ĵ Â J where matrices

and ^A^j are of the same order, we have :

[ A 3 ]  ®  (  [ A g ]  +  [ a ^ ]  )  =  [ A 3 ]  ®  [ A g ]  +  [A 3 ]  ®  [ a J

and

( h ]  + K ]  ) ®  [a q ] = [ * 2]  ®  K ]  + [ h ]  ®  [ * o ]

 (2.L)

c) for any p matrices IÂ ,...., DVqI and any p matrices
L P J  L J

 , ̂ B j  where, if jAJ is of order k x  1 then

is of order 1 x m for all i = 0.1,.. ,.,(_p—l) we have;

( [^p-i]® —  ®  [^0] ) ( [®p-i] ®  ®  [®oJ )
( [ ^ p - l ]  [ ® p - l ]  ) ® ------®  ( [^ 0]  [^0]  ) ..............

In the general case of Kronecker product of k matrices the expression 

will be of the form:

[®] = Pck-ii] ®  [\k-2)] ®  ®  M   (2 .6 )

(k-1)
• w
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Now, let the matrices he of order N^. It can easily be

seen from above "definitions of the Kronecker product that an

element b, , of the matrix Fb I in terms of the elements a-r t »P = 0,1,1J   ̂ J P ^
(k-1), of the matrices jX^J is given by:

(k-1)= TT p % ’Jp  (2.7)
p — 0

where

(k-2) (k-3)
q . . - -y iQ -0

q — 0 q -= 0

(2.8)

and

(k-2) (k-3)j = TT “l ■̂Ck-2) TT Bq + ---- + Jl%0 +
— 0 q — 0

(2.9l

Note that

CMp - 1) > Ip > 0 ,

and similarly

(N^ - l) > J p> 0, for all p = 0,1,____   (k-l). Given i and j,

the two k-tuples (l^^_^^,...., Iq ) and ( J ^ ^ ^ ^ ) *̂ 0̂  that satisfy 
equations (2.8) and (2.9) can be found by series of divisions. This 

can best be illustrated by the following example.
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Assume — ., Mq have the values 5, 2, 8, 6, 3, 4
respectively. It is required to find the 6-tuple that satisfies 

equation (2.8) for the decimal number 386?. We divide this number 

first by Mq , ( = L); then divide the quotient by ( = 3); and so 
on, giving us :

3867 V i| = 9 66, remainder 3

966 T 3 = 3 2 2, remainder 0

322 V 6 •= 53, remainder h

53 v 8 - 6 , remainder 5

6 f 2 — _ 3, remainder 0

3 ^ 5 — 0 , remainder 3

The k-tuple is the remainders written in the order bottom-to-top, i.e

(3 , 0 , 5, 4 , 0 , 3).

Indeed, we will note that
3867 — 3 C2 x 8 x 6 x 3 x L )  + 0C8 x 6 x 3 x L )  + 5C6 x 3 x L  ) +

L(3 X  h) + OCL) + 3 , 

= 3 X 1152 + 0 X 576 + 5 x 7 2  + L x l 2  + 0 x 4 + 3  ,

= 3L56 + 360 + L8 + 3

Now, let us consider a special case when all matrices p = 

0,1,...., (k-l) are identical and of order m x n, that is:

( k-1 )
[ b ]  = ®  [ a J

p = 0

[a ] ® ^   (2.10)
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Then an element b. .of the matrix 1̂ 1 in terms of the elements 1,0 L J
a^ J of the matrix[^Ajwill be given by:

P’ P

(k-l) 
n  a.b. . — , I —-T. J

p = 0 p ’ p
C2.ll)

where

(k-1)

E
p = 0

I (2.12)

and

(k-1)
0= E

p — 0
(2.13)

Therefore the k-tuple ___, Iq ) is the integer mod-m

expansion of i, and similarly the k-tuple CJQ^^^p...., Jq ) is the 
integer mod-n expansion of j.

. 1Example : Let ^A^ be the Hadamard matrix

[ a ]  -
1 1
1 -1

C2,l41

Each element a. .of this matrix is given by a. . = ( -l)^^.
1> J 1)0

The kth order Hadamard matrix is the k-Kronecker product of

[a J , namely:
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N =  W ® * "

Let tu j be an element of jĤ ĵ , then

(k-1)

V p

Hence
(k-1)E P P

k. . = C -1)2 = ° ,  (2.15)-L ) «J

where

i = T p(k-l) y p(k-2)
 ̂ (k-1) (k-2)   0*

On th_e next page is the detailed third order Hadamard matrix. The 

column and row numbers are written in mod-2 above and on the left of 
the matrix respectively.
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P 3 ]

000 001 010 oil 100 101 110 111
000 1 1 1 1 1 1 1 1 ~
001 1 -1 1 -1 1 -1 1 -1
010 1 1 -1 © 1 1 -1 -1

oil 1 -1 -1 1 1 -1 -1 1

100 1 1 1 1 -1 -1 -1 -1

101 1 -1 . 1 -1 -1 1 -1 1

110 1 1 -1 -1 -1 -1 1 1

111 1 -1 -1 1 -1 1 1 -1

Note that by above definitions an element b. . of this matrix is 
evaluated by first summing the element-by-element multiplication 

of binary [mod-2) expansions of i and j (call this si then taking 
the sth power of -1. To check this take for example h^ ^ (encircled)

2 = (0,1,0) mod 2

3 = (0,1,1) mod 2

and therefore s = 00 + 11 + 01 = 1

2.2 Tabular representation of multi-valued functions

Let V = {0,1, o... ,(m-l)} be a set with m-elements (integers modulom)

and x^, i = 0,1,.. .., (n-l), be independent variables over this set.

A fully specified m-valued (m-ary) n-variable function f(x^_^,....,Xq ) 

is defined to be the mapping:

f : V -V ,
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where is the n-cartesian product of V. Ke shall also use fCx) 

to represent f(x^_^^,.... ,Xq ) .

A n-variahle m-ary function can he represented using a map, termed a 

Karnaugh map, in which every entry of the map represents a unique 

point in n-dimensional space . For example with a two variable

ternary function f(x^,XQ), mod-3 addition is defined hy the following 

map:

 ̂0 1 2
"»0 0 1 2

1 1 2 0
2 2 0 1

An alternative representation for a function is a tabulation giving 
its truth-table. This is a listing of all n-tuples of the set 

with corresponding values of the function at those points. For 
example the truth table for above functions is:

^1 ^0
0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 0
2 0 2
2 1 0
2 2 1
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In general we represent the n-variable m-ary function f(X) as

a column vector F| such that the entries f are the values the

function takes at the point f(l , 1^), where i = yim I, .“ ^ k=o ^
This ordering of the function values as a column vector will be

called decimal ordering. We shall say that the n-tuple

...o,Iq ) is the m-ary expansion of i and, in turn, i is the

coding of ^0^* Obviously, with this definition, the
m-ary expansion of i exists if and only if i (a natural number) is
in the close4interval 0,m^-l . In the above example the function

(c
‘ values are written in decimal order of 0,1,2,....,8.

It can easily be observed that a n-variable m-ary function is
defined at m^ points. At each point the function can take one of

(m^)m-possible values and hence there are m possible n-variable 
m-ary functions. The exponential growth of the number of functions 

with both m and n can be seen in table 2.1. «
m

2
binary

3
ternary

k
quaternary
5

quinary

1

4 16 256 65536
27 19683 7 .6 3 X 10^^ 4 .4 3 X 10^8

256 4 .29 X 10^ 3.40 X lO^G ^6^55

3125 2 .9 8 X 10^7 2 .35 X 10^7

Table 2.1 Number of n—variable m-ary functions.

2.3 A canonical expansion of m-ary functions

We define one variable m-ary functions x^ ’̂ , called literals,
as:4.6.7

/
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1,1 1 if X = i , 

0 otherwise (2 .1 6:

The following tables show the binary and quaternary literals;

X ^0,0 x^’l x^’2 x3'3

0 1 0 0 0

X ^0,0 1 0 1 0 0

0 1 0 2 0 0 1 0

i 0 1 3 0 0 0 1

a) binary literals b) quaterna,ry literals

Theorem 2.2: Any n-variable m-ary function f(X) can be expanded
in the form:

m^-1
f(x)= E

i = 0 f(l) , (2.171

■wliere (I , I _ ) is the m-ary expansion of i. This'n-l’ n-2
expansion is unique

Proof : In expression of (2.17) every minterm xV l ’̂ n-1
n-l

takes the value 1 if and only if all x^ = I^, p ■= 0, . . . . ,  (n-l), 
by the definition of literals. Therefore the right hand side of the 

equation is equal to f(i) at each and every point i. The expression

is unique, since the coefficient f(i) of each minterm 
^n-1’^n-1
n-l

function.

X q is uniquely defined by the local values of the
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This expression is called the Lagrange canonical form of the 

function f(X).

Example : The canonical expansion for the function of Section 

2.2, page 33 is:

+ 2 x2'2 ,0.0 , 0 x2.2 ,1.1 + i ,2.2 ,2.2j

Omitting the terms with zero coefficient we obtain the final 

canonical expansion:

m . fa»-» . 2 .;-» . 4-* >;•» • 2 .j-*

The expression of (2.17) can also be written as:

n _ m -1
j :  x ^ - i ’ - t . . x ; ° ’'° fci) .

i = 0

. (  ®  [,»-». . .
p = 0 ^

[2.18)
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Indeed, this follovs from the definitions of Kronecher product 

(see Section 2.1) and the decimal ordering. For example, the 

above function can be represented also as:

f(x) =( ®  [xp’̂  [0 1 2 1 2 0 2 0 1 ]"̂
p - 0 '

vhere stands for the transpose of the row vector.

It is the consequence of theorem 2.1 that the functions
^ ^ , i = 0,1,.___m^-1, form a basis for the n- •

variable m-ary functions.

2.4 The real polynomial expansions of m-ary functions 
Equation 2.16 defines the one-variable functions, namely literals, 
which are used to generate a basis for the n-^ariable m-ary functions. 
Here we will show that it is possible to associate a polynomial 
defined at m-points over the field of real numbers with every one- 

variable literal. Replacing the literals with appropriate polynomials 

we obtain the real polynomial expansion of one-yariable functions.
The generalisation of this polynomial form to n-variable case follows 
directly from the distributive property of Kronecker product (Theorem 

2.1).

Let the polynomial f(x) be:

fU) = ap +  (2.19)

where the variable x is restricted to take yalues in the set Y —

{0,1,....,(m-l)} and a^, i = 0,....,(m-l), is element of real numbers.
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Our aim is to find the set of coefficients, such that at m-points,

X  = 0,1, .... ,Cm-l), the polynomial has the same values as the one- 
variable m-ary function f(%). Now, the equation (2.19) may be written 
as :

f(x) =^1 X .... ^0 ' ^(m-l)] ̂   C2.20)

Replacing the m-values which the variable x can take the following 

set of m-simultaneous equations are obtained:

f(0 ) = [l 0 ....... o ] a],

f(l) = [i 1 ....... l] a ].

f(m-l) = [l (m-l) ........ (m-l)^“ a]  (2.21)

■where aJ is the coefficient vector.

More conveniently this set of simultaneous equations can be re
expressed as:

f] = [^Sr-mJ a]  [2,211

where the elements  ̂of the matrix |̂ Sr-mJ are:

s =  (2.21 a)
i, J

For example for the quaternary case (m - 4) the matrix jsr-4j will 
be:



[sr-U] =

39

0
1
8

27

[Sr-̂ ~].,iLet [rr-nij be the inverse of [sr-m^. ,î ,e. : 

ĵ Tr-mJ = Î Sr-mJ ^

Therefore from equation (2.21): 

a J = [^Tr-mJ fJ

Table 2.2 shows the matrices ĵ Tr-miJ for m = 2,3,4 cases

(2.22)

(2.23)

1 0
-1 1

I 0 0
-1.5 2 -0.5
0.5 -1 0.5

a) [Tr-2 ] b) [Tr-3]

Table 2.2: Matrices a) ^Tr-2^ b) [Tr-3] c) ĵ Tr-4]

Replacing equation (2.23) in equation (2.20) we obtain; 

f(x) = [1 X ---- [ir-m] f]

6 0 0 0
-11 18 -9 2

6 -15 12 -3
-1 3 -3 1

c) [Tr-■H]

(2.24)

A comparison of this expansion with the expansion using literals 

gives us the following relationship:
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^ .... %(*-l)] [tt^ ]

...... (2.25)

If now the literals in equation (2.18) are replaced hy their 
polynomial expansions given hy above relationship the following real 

polynomial expansion for n-variable m-ary functions is obtained:

/  ̂  ̂ \
f(X) = f ®  ̂1 X p  [rr-m] j f ] ........ (2.26)

\ p = 0 /

Using the properties of Kronecker product (Theorem 2.1) this equation

may be reexpressed as: 
( n-1)

f(X)
'p = 0

(n-1)
®  |l Xp ---------------------------------  (2.27)

where

[rr-m] ®  ̂  = [Tr-m]® [^Tr-m]® . ... ®  [jlr-mj 
n-times

Finally the above development may be summarized with the following 

theorem:

Theorem 2.3: Every n-variable m-ary function has a unique polynomial
expansion of the form:

(n-1)
f(X) = ^ ®  [̂1 X p  x^“...................... ...... (2.28)

p — 0

wirere the coefficient vector A ] is given by

a ] = [^Tr-mJ® ^ f J ...... (2.29)
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Example : Consider the three-variable binary Gm = 2) function

given by the following map:

" o \
*2*1 
0 0 0 1 1 1 1 0

0 0 0 1 0

1 1 1 1 0

The coefficient vector a J for this particular function is evaluated 

by:
0

] =
1
-1

1 0 0 0 0 0 0 o“ o“
-1 1 0 0 0 0 0 0 1
-1 0 1 0 0 0 0 0 0
1 -1 -1 1 0 0 0 0 1
-1 0 0 0 1 0 0 0 0
1 -1 0 0 -1 1 0 0 0
1 0 -1 0 -1 0 1 0 1
-1 1 1 -1 1 -1 -1 1_ 1

and hence:
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a ] =  0 1 0 0 0 - 1 1 0

Therefore the polynomial expansion for this particular function is 

given hy the following expression:

fCx) = XQ - XpX^ + XÿC^

2.5 Polynomial expansions of m-ary functions over finite fields:

In Section 2.4 the polynomial expansions of m-ary functions over the 
field of real numbers were considered. The final expressions have 
in general rational coefficients varying over wide range of numbers. 

Here we will consider the polynomial expansion over finite fields 

denoted GF(q^), Galois field with elements; hence the coefficients 

in the final expression will be the elements of GF(q^). The addition 
and multiplication operations will be as defined over this field 
whereas earlier they were the operations over real numbers.

There is a fundamental theorem concerning the order of finite fields, 

which states :

4 8Theorem 2.4 ’ The order q^ of any finite field GF(q^) is either a
'kprime p^ or a power of a prime p^, where k is a positive integer.

Therefore the following developments in this section assumes m is 

a power of a prime p^, and the addition and multiplication over the 
set V are the field operations, which are addition modulo-m and 

multiplication modulo-m if m is a prime p^.

As an example, the following are the multiplication and addition 

tables over fields with i) 2,ii) 3,iii) 4 elements.
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i) GFC2]

ii) GF(3)

iii) GF(4)

® 0 1 • 0 1

0 0 1 0 0 0

1 1 0 1 0 1

© 0 1 2 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

© 0 1 2 3 0 1;.. 2 3
0 0 1 2 3 0 0 0 0 0

1 1 0 3 2 1 0 1 2 3
2 2 3 0 1 2 0 2 3 1

3 3 2 1 0 3 0 3 1 2

Let us now consider the following polynomial over the field GF(m) :

(m-l)
0 ---1 (m-l) .X (2.30)

where 0  and . are field operations addition and multiplication and 
a^, i = 0,1,....,(m-l) are the elements of GF(m). Above equation may

be reexpressed as: 

f(x) = [1 X  .. (m-l)
J - J (2.31)

Replacing the m-values the variable x can take in the equation of

(2 .3 1) we obtain following simultaneous equations:
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fCo)

fCi)
= [= 1 1 0

- [= 1 1
» ]  ■ * . ]  

' *.]

f (m-l) = |l (m-l).,.(m-l) . A^]

More conveniently this set of simultaneous equations can be re

expressed as:

F]= ^Sm-m J . A^ ] ,  (2.32)

where the elements s. .of |Sm-m j are: -

s. . = i^. 1,0 (2.32 a)

Notice the similarity between the developments of this transform and 
the transform in Section 2.4. In this case, however, the multiplic
ation operation is the finite field GF(m) operation and hence the 

elements of |^-mj are the elements of the set {0,1,.*. .,(m-l)}.
For example, below are the matrices |̂ Sm-m]j for i ) m = 2  ii) m = 3 

iii) m = 4 cases:

i ) [sm-2 2 =

ii) [sm-3 J =

1 0 
1 1

1 0  0 

1 1 1  

1 2  1

iii) [sm-4] =

0 0 
1 1 
3 1
2 1
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Let be the inverse of ĵ Sm-m J . Several authors^’̂

have found the inverse of the matrix [sm-mj following different 

approaches. It can be shown to be;

[^Tm-mJ =

1 0  0 . 

0 -1 - ( 2  ^j 

0 - 1  - ( 2

0 -1
-1 -1 -1

...... [2.331

In this matrix = 0,...., (m-l), is the additive inverse whereas
a “ = 1,0..., (m-l), is the multiplicative inverse of « e GF(m) .

For example, below are the matrices [lün-m] for i) m = 2 ii)m = 3

iii) m = 4 cases:

i) [Tm-2] =

ii) ^Tm-3^ =

0 
1

0 0 
2 1 
2 2

0 0 
1 3
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Now, multiplying both sides of the equation (2.32) with the matrix 

^Tm-mJ we obtain the following:

Am] = [Tm-m] . f ]  (2.34)

Above equation is used to evaluate the coefficients a^;i = 0,...., (n-l) 
necessary for the polynomial to represent a function f(x) in terms of 

the local values of the function f(x). Replacing this equation in

(2 .31) we obtain:

f(x) = 1̂ 1 X x^. o.. x^™ ^^] , [^Tm-m] . F ]  (2.35)

A comparison of this equation with the canonic^ expansion of the 
function (eq 2.18) shows that

[x°’° xl'l ....................... [1 X =2 .... > - 1 3  .

 (2 .36)

Note that we can do this comparison since when all multiplications in
equation (2 .1 8) are replaced by GF(m) multiplication operation the

canonical expansion of (2.18) remains true. This is because of the
functions, namely literals, used in that expansion. Every minterm of

the form x^^ .?... x ^ ^ takes either the value 0 or 1 which are0 n-1
respectively either the zero element or unity element in both fields,i.e

i) field of real numbers ii) finite field of GF(m). Finally,
replacing equation (2.36) in equation (2.l8) for every vector

[x°’° ..... ve obtain:L p p -I

(n-1) .
f(X) = ( ®  [ 1  Xp . ... . [Tm-m] j . f]

p -= 0
 (2 .371
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And using the properties of the Kronecker product this may be re

expressed as;

(n-1)
f(X) = ( ®  [:1 X  ----- X^“P P

p = 0
J ^  . [Tm-mJ ®  Fj

(2.38)

The result of the multiplication of nth order [Tm-m] with the 

column vector f] will be denoted aJ  and called the coefficient vector

Fxample: Let the two-variable ternary function whose GF(_3) polynomial

expansion is required be defined by the following map:

0 1 2
0 1 2
1 2 0
2 0 1

The coefficient vector for the polynomial which represents this 

function is evaluated as follows:
0 
1 
2 
1 
2 
0 
2 
0 
1

m

1 0  0 
0 2 1 
2 2 2
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1 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 1 1
2 2 2 0 0 0 0 0 0 2 0
0 0 0 2 0 0 1 0 0 1 1
0 0 0 0 1 2 0 2 1 2 0
0 0 0 1 1 1 2 2 2 0 0
2 0 0 2 0 0 2 0 0 2 0
0 1 2 0 1 2 0 1 2 0 0
1 1 1 1 1 1 1 1 1 1

_

0

And hence the polynomial to represent above function is evaluated 

to be :

f(Xi,Xo) - Xq x^ x^ X^.X^ X2 2 2 2l
1 ^1 *^0 *1 **0 J 0

1
0
1
0
0
0
0
0

I.e.

f(Xi,Xo) = ^0 ®  ̂ 1

It has been mentioned earlier in this section that the developments 

to derive the transform matrices |sr-mj ( |]?r-mj ) and [sm-mj ( [cm-mj ) 

are very similar. We will now show that the transform matrices 
|Sr-mJ J j^-m]j and jsm-mj J jjEm-mJ J are in fact equivalent in mod-m 

if m is a prime.
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Let a and b be two integers, and m be a prime. Then;

Ca + b ) mod-m -= (a} mod-m ®  [b) mod-m  (2.39)

and

(a b) mod-m = (a) mod-m . (b) mod-m  (2.1+0)

Note that ®  and . are the symbols to denote GF(m) field operations 

addition and multiplication. If the order of the field GF(m) is a 

power k ( >2) of a prime then these operations are not the same as , 

modulo addition and multiplication,and hence the above properties do 
not hold. To illustrate this consider the following example over 
the set V with 1+ elements. Now, if we assume that ©  denotes the 

GF(1+) addition operation then:

3 ©  1 = 2 GF(i+),

but

3 ©  1 = 0 in mod-4,

Also 2.2 = 3 if . is GF(4) multiplication operation but 2.2 = 0 in 

mod-4.

When m is a prime it can be shown from equations (2.21a ) and 

(2.32a ) and using above properties that :

(s. = (i )'mod-m mod-m

j-times

s.' .  (2.4l)
1,J
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where s. . and sf . are the elements of |Sr-m and Sm-m respectively i,j ijj L  J L J

Therefore ;

([Sr^])^^^^ = [Sm^] (prime m)  (2.U2)

and similarly

([Tr-m])^^^_^ = [Tm-m] (prime m)  (2.1*3)

We can use the mod-m equivalence of the two transform matrices 

[̂ Tr-mJ and [cm-mj to show the equivalence of the coefficient vectors. 

Let a J and A^J be the coefficient vectors for real polynomial expansion 

and modular polynomial expansion respectively.;.. Then: ,

( ̂  J ) mod-m ( “0 ) mod-m

( [Tr-m] )

, = [rm-m] . f]

•

(2.44)

Example: Consider the two-variable ternary function (Plus) given by

the following map:

X, 0 1 2
2 1 0

1 0 0
0 0 0
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The coefficient vector a J for the real polynomial to represent this 

function is evaluated using equation (2,29);

2" 2
1 -1®  2

1 0  0 0 0

-1 . 5 2 -0.5 1 -1

_0.5 -1 0.^ 0 -1,5
0 1

0 0
0 1
0_ -0. 5

and hence the real polynomial to represent this function will be of 

the form:

The coefficient vector A^]jfor the modular polynomial expansion of 

this function is found from the vector a ] as follows:

= ( ' ] ) mod-m

= ( [ 2  - 1 0 - 1 -1.5 1 0  1 -0 .5] ̂  )mod-m

= [ 2 2 0 2 0 1 0 1 1 ]

since ( -l)^^a-m =  ̂ ’

^ ^^mod-m * r̂lod-m
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= 0, . 2

= 0 , etc.

Hence, the modular expansion of the function will he of the form:

^ + Xq .x^ +

The evaluation of the coefficient vector A^] for this function using 
equation (2.38) confirms this result. Indeed, using (2.38) the 

coefficient vector aJ  is found to he: ^

®  2
0 0 
2 1
2 2

2
1

0
1

0

0
0
0

0

2
2

0
2

0

1
0
1

1

The algebraic developments covered in this chapter will be used as 

required in the subsequent chapters of this thesis.
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CHAPTER 3

A Universal Logic Module 
Consideration
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3. A Universal Logic Module Consideration:

Thje continuing developments in integrated circuit technology are

expected to achieve chips containing one million binary gates by

the year 2,000^^. With such a large number of gates available on

a single chip design methods based on savings at gate level become

unnecessary and uneconomical. Instead a modular design procedure which
uses simple cells as basic components, allows the construction of complex

special-purpose chips, at the same time keeping the design costs at

low levels. ULM (Universal Logic Module) implementations are well

suited for this purpose. A UIM is a cell with M inputs which is
capable of implementing all n-variable (n S  M)'"functions. The simple
and regular circuit topology to which ULM realisations lead is very
important, since with such a layout the network interconnections between
the cells are kept short and hence long distance or irregular communie at- 

12ion is minimized

The m-ary universal logic module ULM-m proposed here is an extension of
13the binary ULM proposed by Murugeson, and is based on the modular 

expansion of m-ary functions studied in the last chapter (Sect. 2.5).

The general block diagram realisation of a function f(X) would be as 

follows :

ii' r

Box c o n ta in in g  

U L M - m  c e l l s

a ^
#
e
#
•

^  n-1 m

f ( X )



55

where a^is, i = 0,1,,..., a,re set at values given hy

Generalised Reed-Muller expansion coefficients of the function f(X) 
and Xp*s, p = 0,1,....,(n-l) are the independent input variables.

In the following sections a detailed study of the above block diagram 

will be made and a method to minimize the number of ULM-m cells in 

the realisation of m-ary functions will be described.

3.1 Universal Logic Modules for the realisation of m-ary functions : 
It was shown in Section 2.5 that in the case when m is a power of a 

prime a polynomial expansion of the form

f(X) = ( ®  [l Xp . . .  (3.1)
'p=0 '

is possible for the representation of any n-variable m-ary function. 
It was also shown that the coefficient vector A ] for a particular 
function f(X) can be evaluated by an appropriate transformation 

[cm-m] from the vector f ] which is constructed by decimal ordering 

of the function local values, as follows:

a ] = [ T m - m ] ® ^  \ f ]  (3.2)

where the addition and multiplication operations are the operations

over the Galois Field GF(q^). This polynomial expression of a m-ary
2 4function is also referred to as Generalised Reed-Muller form ’ and 

the coefficients are called Reed-Muller coefficients.

l4 . 2The encouraging developments in I L technology in recent years 
have made the physical implementations of modular operations
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Caddition and jijultiplication) juore feasible. With the basic 

connectives of addition and multiplication available, a module whose 

circuit diagram is given in Fig. 3.1 may be built to implement all 

one-variable Cn = l) m-ary functions with the appropriate settings 

at the a^, i = 0,....,Cm-l) inputs. Indeed, th.e behaviour of this 
circuit can be represented matdematically by a polynomial of the form

f (x) = a^ ©  a^ .X 0 a^.x^ © .... © C3.3)

f(x)

Fig. 3.1. Fundamental ULM-m module for m-ary logic functions, n = 1

Such a module which has M-inputs (in this specific case M = m + l), 
and is capable of implementing all n-variable m-ary functions, is 

called a universal logic module CULM-m).
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The triangular topology as ahowh in Fig. 3.2 for the realisation of 

n-variahle, n >1, m-ary functions using ULM-m’s follows immediately 

from the corresponding polynomial expression form. Indeed, the 

polynomial expression for n-variable m-ary function representation 

takes the form:

fCX) — ^o^^n— 2 ’ • * * * ®  ^ n —1 *^l^^n— 2 ’ *^0^ ®  ....

(3.4)

where f̂ Ĉ:x̂ _2» * • * •’̂ 0^ ’ ^ ~ —  .,(m-l), are all (_n — 1 ) variable
functions. Once again the appropriate set of coefficients for the 
realisation of a given function f(X) is computed by the equation 

(2.38).

Example: Consider the two-variable ternary function Cn.-= 2, m - 3)
given by the map below:

^>10
0 1 2
1 0 2

1 2 1 1
2 0 2 0

The Reed-Muller coefficients for this function are computed to be

a ] = Tm-3]® [ 1 2 0 0 1 2 2 1 0 ] ^

®  2
1 0  0

- 0 2 1 .[1 2 0 0 1 2 2 1 o]"^

2 2 2
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^ [ 1 1 0 2 1 0 0 2 0 ]

Tkie circuit diagram of ttus proposed ULM for tke ternary case and the 

realisation of above function using ULM-3’s are shovn in Fig. 3.3Ca) 

and (b) respectively,

3. 2 The effect of interchange of variables on UIM-m realisations 

Once the Reed-Muller coefficients necessary to realise a fully 
specified function fCx) are evaluated by use of the appropriate 

transformation [ïm-rn] the circuit configuration to implemen"^ the 
function f(_X) using ULM-m’s is straightforward. It should be noted 
that there is one ULM-m at the final level, m ULM-m's at the (n - l)th 
level, (m x  m) ULM-m's at the [n - 2)th level... Cand so on) of the 
final realisation, see Fig, 3.2. Therefore in general the number of 
ULM-m's necessary to implement a n-variable m-ary function can never 

exceed: ,

1 ^ m ^ ^ ,... + ^ m - 1  ̂  [3 .4 )
m  - 1

The exponential growth of number of ULM-m's necessary for the implement

ation of any given function with the number of variables n upon which 
the function depends, is undesirable from the practical point of view. 

However, the total number of modules necessary for the final realisation 
may be reduced if one or more of the following conditions are satisfied.

i) If all the coefficients of a particular ULM-m module are zero
valued then clearly it is unnecessary to include this module in the 

final realisation,
ii) Equally, if all but the a^ coefficient [see Fig. 3.1) are 

zero, then a^ is fed through unchanged and the UIM-m is again unnecess

ary.
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f(x)

110
2
10
0
20

(a)

ULM-3

ULM-3

ULM-3

ULM-3

f(X)

(b)

Fig. 3.3: a) The circuit diagram for ULM-3,

b) The realisation of the two variable ternary function 

f] = [ i 2 0 0 1 2 2 1 O using ULM-3 s.
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fuù or
iiil Finally, UI^-^u’s \(ith. identical a,̂ inputs a,t any ley el 

of the realisation can he combined into a single UIM’-m,

A basic operation we can perform to utilise above three conditions

which leads to a possible minimisation of modules without effecting the

fundamental ULM-m realisation topology of Fig. 3.2, is the interchange of

inputs in the final realisation. Assume that the x and x inputs toP q
the final ULM-m realisation of the function f(X) are interchanged, 
see Fig. 3.U. This in turn requires the rearrangement of the order,of 

coefficients such that the function realised by ULM-m remairrs unaltered. 

Indeed this requirement can readily be seen from the pçlynomial 
expansion of the function f(X):

f(X) = ^ ®  [l Xp . . a] .(3.5)
' p=0 '

Here an entry a. of the column vector A is the coefficient of the
I , 1 In-1 p q 0 . .term x . . x x . . x^ , such that n-1 p q 0

(n-1) p
i = ^  '   (3.6)

p - 0

with the interchange of variables x^ and x^, a new function f (X) is 

obtained such that :

f ( q ' • • • • • • • • .... ,XQ) — f (̂ 21—1 ' • • * • .... , .... ,XQ)

.......(3.7)

Hence with the original ordering of the coefficients a^ will now appear

with the monomial x ^7^----x^^--- x ---- x Therefore for then—_L q p V
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A ] ^

î " . . î " -'

Box containing 

ULM-m cells
f(X)

Box containing 

ULM-m cells 4- f (X)

Fig 3.4: Interchange of input connections to ULM-m

realisation
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UU4-JQ block to realise the original function f{X], th.e "coefficient" 

inputs to the circuit sh.ould be rearranged sucht that when the input 

values are written as a column vector A ’J with entries a^' , the entries 

â ' correspond to entries a^ of the original coefficient vector aJ 

as follows :

a. • = a.1 1

where, i ’ = I  ̂ m^^ ^ ̂ + ....+ I mf + .... + I +.... + 1̂, m^ n-1 p q 0

and i = I _ I m^ + .... + I m^ + .... + I_'m^ .n-1 q p 0

Because the inputs to each UI24-m are altered as described without 
effecting the original function being implemented, the three conditions 
that lead to the minimisation may be sought and utilised.

To illustrate this with an example, consider the two-variable ternary 
function f(x^,XQ) given in the example of Section 3.1: We repeat
the function value vector F J and the coefficient vector A^ for conven

ience:

f] = [1 2 0 0 1 2 2 1 0 ] 

a] = [ 1 1 0 2 1 0 0 2 0 ]

Clearly the realisation shown in Fig. 3.3 is minimal for the particular 

chosen pattern of x^ and x^ input connections, since none of the three 
conditions apply for this particular realisation and the number of ULM-m's 

therefore required is 4. However, with the interchange of x^^x^ the 
following re-ordered coefficient vector A ’] is obtained:

- .........................= [ 1 2 0 1 1 2 0 0 0 ]
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This now gives the ULM-S realisation as follova:

f(X)ULM-3ULM-3

ULM-3

ULM-3

Here the lowest module in the first-level of realisation is redundant 
because all its coefficients are zero-valued, and thus the realisation 

now requires a total of three rather than four ULM cells.

It should be noted that in the n-variable case the number of combin

ations of possible input connections is 1 x 2 x .... x(n-l) x n = nl. 

This is a function that grows faster than exponential and for each 

combination of input connections the check for the possible minimisation 

is obviously a very difficult task. To the author’s knowledge there 

is no efficient algorithm that solves this problem, once the number of 

variables becomes greater than can be goemetrically plotted in map 

form.
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In conclusion we should note that the physical realisations of 

GFQiiI operations are not hacked by available hardware if m is a power 

of a prime, as in the case m = However, base-U adder and multip
lier circuits in reference lU may be modified to implement addition 

and multiplication in base—3 which are in this case the same as GF(3) 

operations.



66

CHAPTER A 

Spectral Considerations
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4. Spectral Considerations

In the previous chapter5 the real and modular polynomial expansions 

of m-ary functions were considered and a universal logic module 

realisation of m-ary functions discussed. It was shown that ULM-m 

realisations are restricted to m-heing a power of a prime.

Here we will consider the polynomial expansions of m-ary functions 
over the field of complex numbers. In this case the coefficient 
set obtained will be called the spectrum of the function. Spectral 

transformation of binary functions and binary logic synthesis using 
spectral data has been reported by a number of authors
The extension of the work from binary to m-ary logic area has been
considered by Karpovsky^^ and Moraga^. Here we pursue further this 
general area. A summary of the spectral properties proved in this -
chapter is given in Appendix A.

.1 The polynomial expansions of m-ary functions over the field of 

c omplex numb er s:
We define an isomorphism between the additive group of integers mod-m 
and the multiplicative group of complex numbers as follows:

Xc : X — - a

dwhere a = e and
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We shall denote by y the image a^ of x  obtained by the isomorphism 

c. The codomain of this mapping is called the character group of

V.5

Here we derive the transformation required to express a m-ary 

function by a complex polynomial, following a development similar 

to that of Section 2,k and Section 2.5. In the one variable case 

such a polynomial will be of the form:

\ I I * m—1fCx) = Sq + y +   + y
2 m-1

where

= [ l y y ^ ..................... s] .  ih.i]

[®'o •   '
and y = a*, character of x as defined above

Now substituting the m-values which the variable x can take we 
obtain the following simultaneous equations:

f(0 ) = [ 1 1 ............. 1 ] s]
fCl) = ^ 1 a a^

f(m-l) =[l a“"^ . . . .  a^“~^^]s'j  {k .2)

In matrix form this set of simultaneous equations may be expressed as:

F ] = [ Tc-m ] S ]  ..(^.3)

where the elements t. .of the matrix f Tc-ml are:
i j J  L J

t . . = â *̂   C^.^)1 5 J

A careful examination of the matrix  ̂Tc-m J  will show that :
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a) it is symmetric, ^ince;

= t . .0,1

b) the sum of elements of each row except the first row is equal to 

zero. For the k ’th row this sum will be:

m-1 -
a^^ = 1 + a^ + a ^  + . . o . +

i = 0

_ mk 1 - a
1 - a 

2̂7t ̂ mk
but â "" = emk

= 1, making the numerator of above expression zero, and 

therefore

(m-l)

2  \ , i  " °
i = 0

c) the element by element multiplication of each row with complex 
conjugate of any other row gives another row of the matrix [  Tc-m J.
For proof, consider the pth and qth rows of ̂  Tc-m J:

,. r T P (m-1)p 1pth row = [ _ l a ...............a J,
■ V, r , q (m-l)q 1qth row = I 1 a . . . . .  a J,

the complex conjugate of the qth row gives :

(qth row)* = ^1 a
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and element by element multiplication of the two vectors will 

give;
[ 1 3 ? " % ...................gCm-l)(p-q)]

This obviously is another row of |^Tc-m J , and since p is not equal

to q this row is not the first row which contains all "ones”.

d) the inner product of two rows is zero. This is because the element 

by element multiplication of one row with the complex conjugate of any 

other row gives another row other than the first row of Tc-m J and 
the sum of the elements of any row other than the first is^zero i.e. 
the rows of I Tc-m I are mutually orthogonal. Note that inner product 

of any row with itself gives m.

The inverse of |^Tc-m J can now be easily established from above 

observations a,b,c and d.

Theorem H.l: The inverse of ^Tc-m J  is given by:

^îc-m J  ̂ ~ m [ Tc-m J

where ^Tc-m ̂  is the complex conjugate of QPc-mJ

Indeed, since ^Tc-m^ has mutually orthogonal rows the inverse of 

[rc-m^ is given by:

[^Tc-mJ ^ = 2. [Tc-m J ̂  ,
m

but because Tc-mJ is symmetric, so also is [Tc-m^ , giving;

[ic-m J ^ = 1 [ Tc -m^  (^.5)
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The scaling factor 1̂ is due to the fact that the inner product of
m

any row with itself gives m.

Below are some examples of the matrix [Tc-m J ;
i) m = 2 (binary)

fTc-2] = 1
2

ii) m  = 3 (ternary)

1 1
1 -1

[tc-3]= 1

,2tt
^"3 owhere a = e , = 1 /120

iii) m = (quaternary)
1 1 1 1

= 1 
?

1 j -1 -j
1 -1 1 -1
1 -j —1 j

.2tt
/—where ] = e , = V-1

1 /90°

If we multiply both sides of equation (^.3) with ̂ Tc-mJ we obtain:

s']=^ [Tc-m] F ]  (4.6)

Replacing (4.6) in equation (4.1) we have:

f(%) = ^ [ 1  y . . . . y” "^J [Tc-m] f]  (4.7)
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Comparing this equation with equation (2.18) we find that;

[  x " '"  3^ -1  . . . . ^  1  [ l y  . . . . y * - l ]  [Tc-m ]

.................(4.8)

Finally, replacing equation (4.8) for every vector l),(^ l) J
in equation (2.l8) and using the distributive properties of Kronecker

product we obtain:

/  ̂  ̂ \
f(X) = ( ®  ^  [ l  Yp Yp . . . . y p " ^ ][T c -^ ] jF ]  ' . . . . ( 4 . 9 )

'P = 0

\ (  ®  [l Fp Fp - - - - y r ^ l )  [Tc-m]®" f]
p = 0 '

(4.10)

Let c f ] denote the vector obtained from vector F ] by replacing all
its elements with their images obtained by the mapping c. In the

following we will call the vector sj obtained by the product of
[irc-m] and cfJ and scaling factor — the spectrum, i.e.

m

Sj = ^^^[ic-m] cF] ......... (4.11)

Equation (4.10) will then be altered as:

/ _ \
cf(x) = f ®  [i Yp . . . . y* 1] js] ........ (4.12)

' p = 0 '

where S l  = Fs^ s _ . . . . s  1 ^J L 0 1

Multiplying both sides of (4.11) with the inverse transform matrix, the



73

m atrix  re la tio n s h ip  between the spectrum and the lo c a l values o f the  

function  is  obtained. This re la tio n s h ip  would be o f the form;

c f ]  = ( [T c -m ]®  * s]

where * stands fo r  the complex conjugate.

Example 1 . The truth table of a two variable binary function EX-OR 

is given below:

^1 ^0 f(x^,XQ )
H x ,

c f  = ( -1 )

0 0 0 1

0 1 1 • -1

1 0 1 -1

1 1 0 1

The spectrum of this function is given by:

]
1
-1

1
-1
-1
1

1 1 1 1 i" o'
1 -1 1 -1 -1 0

- i 1 1 -1 -1 -1 0
1 -1 -1 1 1 1

Example 2. Consider the twomariable ternary function Plus, given by 
the following truth table.
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0
0 1 2
2 1 0

1 1 0 0
2 0 0 0

If now the function values 0,1 and 2 are mapped onto 1, a and a as 

defined by the mapping c, the truth table will be:

2a a 1

a 1 1

1 1 1

The spectrum for this function is computed by the transform:

1 1 1
21 a a

1 a a

giving:

S] ^ - [ a+5 a^+2a 4a^+2a a^+2a a+2 2â J-l 4â =»-2a 2&' à-1

5aZ+l]
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where a -= e

4.2 Some properties of spectrum 
We have shown in Section 4.1 

matrix [ Tc-m] is given hy;

We have shown in Section 4.1 that an element t. .of the m-^ry transformI, j

t. . = (a^j)*1 5 J

where a = e and * stands for the complex conjugate.

The nth order m-ary transform matrix is the nth Kronecker pcWer of
Hit

[tc-î  and hy definition of^Kronecker product.^_(Sect. 2..1) an element
t . .of the nth order transform matrix is given by:1 9 J

(n-1)

h,j = T T   (k.i3)p = 0 P P

where  , Iq ) and ( ...... , Jq ) are the m-ary (integers
mod-m) expansions of i and j .

Replacing the values of t.̂  _ in equation (4.13) we have
S ’ p

I J *
7 7  (a FF)

= (aCh(i'j))*  14.14)

(n-1)
where Ch(i.j) = ^  .

p = 0
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The step functions t.(_j) — t- . defined in the close interval1 1J 0
[o,m^) as above form a complete orthogonal basis and are a different 

ordering of Chrestenson f u n c t i o n s ^ C h r e s t e n s o n  functions 

(call them hĵ Cj) in order to distinguish them from t^(j]) are defined 
in references 5 and l6 as follows:

/ ^  ^n-l-p'^pV
h.(j) P=° )  (4.15)

Let m-ary expansions of i and i be —  , Iq ) and (Iq ,....,
respectively. It is clear from above definitions of h^(j) and t j  ) 

that :

ĥ , (j) = t^( j)

and t ., (j) = h.(j) .

A n X n matrix Jd may be constructed such that the elements Jd_ _y.
are given by:

Jdp,q
1 if p = n-q
0 otherwise.  (4.l6)

The relationships between the two vectors [^n-l*'*’̂ 0^ and L^q **'*̂ n-J 
is then shown to be:

Bn-1 ---^o]   ^n-lJ  (^-17)

This shows that the spectrum obtained using the functions h^(j) will 
contain the same spectral coefficients in a different order as the 
spectrum obtained using the functions t^(j). The recursive construction 

of the nth order transform matrix TcmJ®  ̂  defines a fast algorithm to 
compute the spectrum with the minimum number nm^Cm^'ll of operations'^.
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Let us now consider that we haye a set of m-ary logic gates available 

The set 0^ of functions that correspond to these gates is called a 

functionally complete set if ad 1 m-ary functions can be generated by 
a combination of following operations'^;

i) interchange of variables

9 * • 9 % p 9  • 9 % q 9  • • 9^ q ) 1  ’ ’ * * ’^ p ’ * ' ’^ 0 ^

where f(X) e 0^

ii) making two or more variables identical _

f(Xn_2>Xn-3’ = ^^^n-2’̂ n-2’̂ n-3’* * where f(%) e 0%.

iii) setting variable(s) to a constant(s)

f(x^_2 , ,Xq) = f(h,x^_g, ,Xq) where f(X) s and h e V

iv) composition of functions

9--- 9%o) = fCgCx^_^,..,x ),x , ..,Xq ) where f(x   ,x^)

and g(x^_^, ,x ) e 0^.

The corresponding operations for the gates are illustrated in Fig. 4.1, 
It is clear that any m-ary function is physically realisable utilising 

gates which are physical implementations of the functions from the set 
0^ if and only if the set 0^ is functionally complete. The functional 
completeness properties of m-ary algebras are summarised in reference 

1 5 . Reference 15 also contains a comprehensive bibliography on this 
subject.
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i)

ii)

iii)

iV)

"o
Xp

*- f’(X)

(constant)

Xn-2

►  f(X)

f(X)

(X)

%n-1

Fig. 4.1 The operations considered i) Interchange of inputs,

ii) ”Held-at" one gate input,

iii) Commoning two inputs,

iv) Cascade composition of gates
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Some examples of a functionally complete set of functions used in 

this thesis are:

a) The set containing unary functions as defined in Section 2,3 

together with th_e two-variahle functions multiplication and addition,

h) The set containing Galois Field operations addition and multiplic

ation in the case when m is a power of a prime.

Now, let us continue with, deyelppments to inyestigate the modifications 

to spectral coefficients with the operations i) through iv). Unless 
otherwise noted we shall denote the spectrum of the function fC%) "by 
Sj and the ith element of the yector S^J hy s^Ci). and s^(i)
are defined likewise.

Theorem k.2 [Interchange of Variables).

Let f (x^_^, .. ,x^,. . . ,0Cq) fCx^_^, ... ,x^, . ,x^, .. ,x^)

then ŝ 'Ci) = s^[i)

where i = I _m^^ + ... + I m ^ +  . . + I m^ + ... + 1 ^  n-1 p q 0

and i'= I m̂̂  ^ +  + I m^ + .. + I m^ + ... +1^n-1 q p 0

 (A.1 8)

This theorem is a special case of linear transformation of arguments 
theorem k .'J and proof of the latter will he found subsequently.

Example. Consider the two-variahle ternary function f(x^,x^) given hy 
the following map.
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° 1 2
0 0 1 2

1 • 2 0 2
2 1 1 0

The spectrum of this function is evaluated to he:

sj = [ 0 3a + 3a^ 3 3 0 6 3a + 3a^ 3 o] ̂

If now and x^ variables are interchanged a function f[x^ ,XQ) = »

f(xQ,x^) is obtained. The spectrum for this function is found hy
reordering the ahove vector elements. The yeotors and are 

shown helow, arrows indicating where the original spectral values s^(i) 

now appear:
interchanges

i = 00 01 02 10 11 12 20 21 22

S^J ~ i ^ 3a+3a^ 3

2" ”  *" 23 3a+3a 3a+3a 0

Theorem h.3 [Making two variables identical)

h-2’ n-2

then s^<l) = s^(l^) + Sj(ij) + .... + 

where i = ^ ^

and ii. = k ^ ©  (m-k)) ^ ^ t- ,

(4.19)

"k n-2
k = 0,1, ... , m-1.

, ^ Iq for all
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Proof. Consider the complex polynomial expansion of the original 
function fCX);

/ Cn 1) \
®  [l .... y” l]j Sj]  C4.20)

Let - k ®  Cm~k) ) ^ + ....+ I for all k — 0,1,....,
m-1.

If now the nth and [n-l)th variables in equation 0+.20) are made 

identical then the spectral coefficients s^(i^), k = 0,1,...^, m-1, will

V s  loappear with the same monomial y^_^ .... y^ .- mis is so, since:

k I 3 lo I„_2 lo
^n-2 ^n-2 ^n-3 '''' ^0 = ^n-2 ' ’ ' ’ ^0

Therefore s^(i^) k = 0,...., m-1 may be collected in one bracket to
give:

s^(i) = Sjiig) + s^ti ) + ---- +

n-2where i = I „m + .... + I .n-2 0

The complex polynomial expansion for the function obtained by making 
nth and (n-l)th variables of f(X) may now be expressed as:

/ - \ cfÛ_2, .... , %o) = I ®  [1 .... y”"^])s^.]  (4.21)
\p = 0 '

Example. Consider the function f[x^,x^) of the previous example on 

page 80 . If now the x^ variable is commonned with X q we obtain the 

function fCx^jX^) with spectral values:
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;^'(0) = s^(OO) + s^(l2) + s^^2l) ,

= 1 .

s^'(l) = s^(Ol) + s^(lO) + s^(22) ,

= -̂  (3a + 3a ̂ + 3 + 0) ,

= 0 .

Sf'(2) = s^(02) ■+ s^(20) + s^(ll) ,

= ~  (3 + 3a + 3a^ + O) ,

= 0 .

Note that we have now obtained a spectrum which contains at most m^^ 
non-zero spectral coefficients. Indeed the function obtained by making 
two variables of the original function identical has (n-l) arguments and 
thus the number of spectral coefficients required to define it is reduced 
to one mth of the number of coefficients in the original spectrum* This 
is not a surprising result since the spectral coefficients are the set 

of numbers for the complex polynomial expansion of the function, and if 

the function is not dependent on a variable, say then all the 

coefficients appearing with monomials involving x̂  ̂must be zero valued.

Theorem 4 .1 (Setting a variable to a constant)

Î et f^^P"~'2 Ï * * * * *^0 ̂ ^ (^ *^n—-2 ***** *̂ q ̂ where h 0,1,...,, (m—1 ).
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Then,

h

m-1

= ( [Tc-m] ®  [id] ̂ - 1 )  Ŝ ]

(4.22)

Proof. Consider the matrix relationship between the function f(X) 
and its spectrum (equation (4.11) rpt. ) :

S j  = -^ [Tc-mJ ®  ” cFj ,  (4.23)

multiplying both sides of the equation with the inversa transform we 
obtain:

cFJ = j^Tc-mJ®^ 14.24)

We know that by definition the vector cfJ contains the local values 
(mapped on unit circle in complex plane with mapping c) of the function 

f(X), decimally ordered. Therefore first m^^ entries of cF] are

the local values of the function fC0 ,x^_2 *___,%Q) and the next
entries are the local values of the function fCl^x^^g, ,Xg), and so

on, and hence the corresponding spectra for functions fj^(x^^, ... .,
Xq ) , h = 0,1,...., [m-1 ), may be evaluated as follows:
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■ [To-m]®

[Tc-mj®

0
_ 1

V
cF

•

0
'm-1

More conveniently the right hand side of this equation may he expressed 
as :

= ........

where is the mxm identity matrix.

Replacing equation (4.23) in above for the vector cl̂  ve obtain:

= M ® "  "f] •

(4.25)

and using the distributive properties of Kronecker product (Theorem 

2.1) we finally obtain:
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m-1 C4.26)

Example: Consider again the function given in the example on page 80»
Replacing the appropriate values in equation (4.26) we obtain the 
spectra j for the functions fĵ (x̂ ) = ffx^sX^) as follows:

1 1 1 1 0 0
1 a 2a 0 1 0
1 2a a 0 0 1

1 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 3a + 3a^
0 0 1 0 0 1 0 0 1 3
1 0 0 a 0 0 2a 0 0 3
0 1 0 0 a 0 0 2a 0 0
0 0 1 0 0 a 0 0 2a 6

1 0 0 2a 0 0 a 0 0 3a + 3a^
0 1 0 0 2a 0 0 a 0 3
0 0 1 0 0 a2 0 0 a 0 _
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giving:

2“10 2a + 1 1 + 2a
—1 2 1 _ -1 2

' J  = ° , S^1 = a + 2a 3 ' ®f„1 = 2a + a
yj

1
Ij

1 + 2a ^  1 . 2a2_

1
3

Repeated application of above theorem gives the spectra of the 
decomposition about a subset of variables. In the case when a function 

f .. .. ,Xq ) has a disjoint decomposition we have the following 

lemma:

Lemma 4.4 (Cascade composition of functions)^.

Let f'(X) be a cascade composition of the form

f (x̂ _̂  ̂, .. . . ,Xq ) — f (g(x^_^ 5 ... . ,x^) , ... . ,Xq )

and let S,
■gC

f(gCi),x^_^, ,Xq ) .

0 to (m^ ^-l), be the spectra of the functions 

Then:

■gCo).

■gCil.

■gCm
(4.27)

We shall in chapter 5 give a more precise relationship between the 
spectra and and when we study the decomposition of 

functions in terms of their related spectra in greater detail. But
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now we continue proving further properties of the spectrum studied 

in references 5 a,nd l6. Our first definition will he used in 

certain theorems following.

Let * h e  a defined operation, e.g. mod-m addition, multiplication, 
etc., and i and j he two numbers. Th.e expression Ci ^  j 1-means *  

operation between the corresponding elements of the m ’̂ ry expansions 

of i and j . For example;

( i © j )  = ^^n-1 ®'^n-1’ ^n-2 ®  '^n-Z'--- ’ ^0 ®  '

If [l ] is a square matrix then L x i (i x. is matrix product " 
between m-ary expansion of i considered as a column Crow) vector and 
the matrix [l] . For example, let [jd] be the Jordan matrix 

defined on page 76, and Clĵ _2 , • • • • jIq) be the m-ary expansion of i as 
usual, then:

(jd X i)=

1 I ^n-1
0  1 I on'-'2

■ ■ 0  , iQ _

(Iq ^Ii , »in-l^

Theorem . Let fC0,O,, ., . ,0) —  0 and

fCx) =
k if Cx^_2, ,Xq ) = (0,0,--- ,0)
f(X) otherwise

where k e V,

Then s^i(i) = s^ (i) + m ^Cck-l) C4.281



Frpof. The spectrum of f*Cx) is given hy;

hut cf*CO,0, .. .. ,0) = ck

= ck -1 + cfCOjO,....,0),

since

cf(0,0,----,0) = e

= 1.

Thus the right hand side of above equation may be written as;

Cck-l 1 

0

and hence :

cF + .

Lck-ll

.»J = 8^ + (ck-l)

Cck-l)

i.e. s^»(i) = s^Ci) + m ^(ck-l)
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Theorem ^ .6^^ (Argument translation!

Let f'(X) - fCX ©  w)

then s .(i) = t . s (i)I i,w I

where t̂. ^ is the Ci»w)th element of the nth order transform matrix,

Proof. To calculate the spectrum of the function f'CX) the equation 
(4.11) may he reexpressed as:

m^-1
Sf'(i) = C" 2  t. . cf'(j) ,................ ..........(It.29)

” 0=0

replacing f(j) with f(j ©  w) we obtain:

m^-1
s„i(i) = ^  t. . cf(j©w).............. ......... (4.30)

“ j=0

It was shown in the beginning of this section that an element t- , of1 >0
the transform matrix is given by:

t. . = ) * ̂) j

where Ch(i,j) = I J
n-1

]P P
p=0

Therefore :

n-1
but Ch(i,j 0 w) = I (J - W )— n n T)P P P

p=0

= Ch.Ci,j) - Ch(i,w)
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where CW^_^,.... is the m~ary expansion of w.

And hence;

_ ( Ch-Ci,j) - Ch-CijvL)h.u @ w] - ' & '

= t. , t.  [4.31)

Now equation [4.30) may he reexpressed as follows

m^-1
E  h,Cj iv) ...r....cit.32l

™ j=o
Replacing equation [4.31) in equation [4.32) we obtain:

m^-1

0=0

Theorem 4.7^’̂ ^ [Linear transformation of argument)

Let ÎlJ be a nxn non-singular matrix containing elements which are 

non-zero dividers in V, and let:

f'(X) = f(X X L),

then s^i[i) = s^[L ^ x i)  [4.33)

The above restriction on the elements of[bjbeing non-zero dividers in V 

guarantees that the only effect considered is that of the permutation of 

the values of f[X).



91

Proof. First we show that Ch(_i, j ̂  L) - CIlCL x  i,Jl as follows;

n-1 n—1
E  Ip E  Jq
P=0 q=0

n-1 n-1
=  Y )  J  I  1q ^  p q,p 

q=0 p=0

= Ch(L X i,j)

w h e r e  1  a r e  t h e  e l e m e n t s  o f  I L . p,q L J

Thus :

* i , ( J î U -  I*

= ( gCh(L X i,j) )

^CLxi),j .......

Now, the spectrum Ŝ «J of the function f'(X) is given by:

n , m —1

"f-
“ j=0

m^-1
= 4r E  cfCj X L)
“ 0=0

m^-1
= 4r E  h.cj^cL-i)  c^.35)
“ j=0

Replacing equation (4.34) in equation (4.35) we obtain:



92

m^-1

m j=o CL xi),j

= s^CL ^ X i)

Note that theorem 4.2 is a special case of theorem 4,7 [l] is

a permutation matrix . Indeed in this case:

[ I p ] '

giving:

Sf'(i) = s^(Lp X i) -•

But the integer which corresponds to (L^ x  i) and its transpose
(i X Lp) is the same and hence, in the case when is a permutation
matrix we have

s^,(i) = s^Ci X L^)

Theorem 4.8^’̂ ^ (Disjoint spectral translation)

Let f‘(X) = f(X) ©  x^ ,

then s^i(i) = s^(i ^  m^)  (4,36)

Proof. The value of x^ at the point j will he equal to and hence
the spectrum is given by:

n  ̂m -1
" "IT 2  \,j c(f(j) + J^)  (4.37)
“ 0=0
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The mapping c is an isomorphism between th_e additiye group of 

integers mod-m and the multiplicative group of complex numbers on the 

unit circle (Sect. 4.1). Therefore equation C4,37);#sy Le rewritten 

as :

n _ m -1

“ j=0.

m^-1 J

= ^  1 cf(j) a ^  (4.301
* j=a

A  , _ /, * J,
£1,0Note that t . . a ^ ̂  ) a ^

= (aCk(i'j) - Jk) ,

n-1
but Ch(i,j) - Jĵ = 2  ( V p ■ Ik)

P=0

^n-1 ^n-1 + • • • + ( 1 )  + ... + IqJq

Ch(i 6 m^,j) ,

and hence t. - a = tr. _ k\ .  (4.39)1,0 Ll^JnlsO

Replacing (4.39) in (4.38) we obtain:

m^-1
-Li) = 4r E t,, , k. . cf(j)

j"
f 11 —  / • n ^ \m • Q ( 1 £ m ), J

= s^(i £  m^l
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Corollary. If f'U) = f (X) ©  gCX)

where g(lX) is a linear function of the form:

gCx) = ©  ... ©

and w is an integer whose m-ary expansion is .... ,W^), then the

spectrum S^J is given by:

s^,(i) = s^ (i £ w)

This result is obtained by successive application of theorem 4.8.

Theorem 4.9 (Cyclic negation of the function ftx)

Let f (X) = f (X) ©  k where k e V

then ŝ . (i) = s^(i) a^  (4.4o)

Proof. Proof follows directly from th.e definition of isomorphism c :

m^-1
(i) = C; E  j ® k )

“ J=0

= S^(i) a^

We define the inverse x of a variable x over th_e set V as follows; 

X  = (m-l) - X
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For example in quaternary On — 4) the truth table for th.e inyerse 

operation would be as follows:

. X  . . . X

0 3
1 2
2 1

3 0

Theorem 4.10 Let f(x} — f(X) ,

then s^.Ci) = c(-l) s^CD x  i)

where [d J ■= (m-l) Id]

(4.41)

nxn

Proof. m^-1
Sf' (i) = ^  t. . c((m-l) - f(j))

j=0
n  ̂m -1

= ^  t^^j cm c(-l) c(-f(j))
j=0

But cm = am

-f( j)

= 1 , 

and c(-fCj)) = a

= CcfU)) .

Therefore equation (_4.42) may be reexpressed as

(4.42)



96

Ci) = c(-l) ^  ^  t. . CcfCj))n A ) J
«
m^-l

j=0
= c(-l) E  (cfCj))*

............ (It.1(3)

= (a(m-l)Ch(i,j)) *

- iL,j .........

Replacing equation (4.44) in (4.43) we finally obtain: 

ŝ , (i) = c(-l) s^(D X i)

Theorem 4.11 Let f'(X) = f  ,x^,--- sX^),

then s^»(i) = a ^  s^lL^^x i)  (4.45)

where j lJI is an nxn matrix whose elements 1 are given by;L K J p, q

(m-l) if p = q = (n - l) -k
1 = { 1 if p = q f (n - 1) -k
P, St I

0 otherwi se  (4.46)

Proof. The inverse x of x can be expressed as 

X ■= (m-l ) - X

= (jQ-ll ©  (#-l),x
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Therefore ,....,x^,....,x^) may be obtained from

—  ,x^,....,Xq ) = Cx) as follows:

(x^_2 »---’̂ k’---- ’̂ 0^ =(Cx X \ )  ©  (m-l)m^)    (4,471

Note that, since (m-l). (m-l) — 1, we see from above definition of 

[ L^] that the inverse of is itself.
Now, let f " ( X )  =  f ( X  X  I ^ )  , 

hence f ' ( x )  =  f  “(X ©  (m-l)m^).

Applying theorem 4.6 we obtain:

s ,(i) = t s „(i)
i ,  ( m - l  )m

But , by theorem 4.7 ŝ „(_i) = s^(l^ x i). Therefore:

*s ,(i) = t s (1, X i)  (4.-48)
^ X i),Cm-l)m^ f ^  -

Note that Ch(L^ x i,(m-l)m^) = 0 + ... + (m-l)^ 1^ + ... + 0 %Q

=  ,

and hence t = a
CL^ X i),(m-llm

:k= a .

Replacing this in equation (4.48) the result of theorem 4.11 is 
obtained.

Theorem 4.12 Let f(X) — f(X)

where (X) ^ (x^_^ ----,x^)

*then s i(i) = t s (D x i)  (4.49)
I 1,Cb""1) ^ -

where [|dJ = (m-l) [ Id] nxn
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Proof. The proof of this theorem is similar to proof of theorem 

4.11. In this case (if) is given hy:

CX) = (CX X  D) ©  U^-l) )   (4.501

With- the successive applications of theorem 4.6 and 4.7 we obtain;

s »(i) = t s (D X i)
i,(m -1)

The results of theorem 4.10 and 4.12 may now be combined to give 

following lemma. **

Lemma 4.12 Let f*(X) ■= f(X)

then s , (i) = c(-l) t s (i)  (4.51)
 ̂ lP_x ^

Corollary. A function is self-dual, i.e. f(X) = f(X) if and only if

s (i) = c(-l) t s*(i)
^ (D X  i),(m*-l) ^

n-1 - *
1+ L  IVa' s ( i ]

Theorem 4.13 (Convolution theorem)

Let f(X) = f^(X) ©  fgCX)

rn̂ -1
then s (i) s (t ) s (i £  t )  (4.52a )

T-0 1 2
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n _ m -1
s„ Ci 1 t) s Ct )  (4.52b )

^ 0  I  2

Proof. The spectrum of f(X) is given by:

m^-1
(i) = ^  2  "̂ ijj c(f^(j) ©  fg(j))

“ j=o

m^-1
= 4r E  h,j ■ ......... (‘*••53)
“ j=0

The inverse transform given in equation 4.12 may be expressed as:

n _ m -1
cf(j) = ^ 2  X Sf(T) •••........(4.54)

T=0

Replacing (4.54) in (4.53) for f^tj) and rearranging the summation 
we obtain:

m^-1 m^-1
^f (i) =  E  (■*) E  t- . t Cf,(j)  (It.55)

“ T=0 2 "'I I'"
*But the product t . . t . gives : i,J J,T

t. . t.* = aCh(i'j) (aCh(j'T) )*i 9 j J 9 1
= aCh(i £  T,j)

^(i £ xljj
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Hence equation (_4,55l may be reexpressed as;

n -, n Tm - l  m - l
s = E E \i0TUj

^ T=0  ̂ j^O

m^-1
^  s^ (t) s^ (i £ t)
T=0 ^

Equation (4.52a ) is obtained by interchanging f^(j) and ) 
wherever they occur in above development.

4.3 Classification of m-ary functions and a -design example
The spectral properties discussed in theorems 4.6 through. 4.12 haye

an important common feature. The functions f*(X) obtained by applying
the operations stated in tHese theorems from a function f(X), have
spectra which are permutations and/or complex scaling of th_e spectrum

Ŝ j of the original function f(X). In general these operations are
called spectral translations. In the classification of logic functions

an equivalence relationship is defined such that two functions are the
members of the same class if one can be obtained from the other by

spectral translations. The equivalence classes generated as such are
represented by a member of the class. The tables which, list these

25classes have been constructed by Edwards for binary functions up to
5 • •5 variables and by Moraga for 2-variable ternary functions. To the

author’s knowledge there is no theoretical method to enumerate the 

equivalence classes as a function of the number of variables and the 

radix m. Both Edwards and Moraga used exhaustive search mechanisms to 
obtain th.e list of classes. The very small number of classes, 48 for
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all the 4.3 X 10^ variable binary functions using theorems 4.6 to 

4.9 and 12 for all the 19683 2-variable ternary functions using 
theorems 4.6 to 4.12, is important to note.

Below is an example of application of above theorems for ternary 
logic analysis.

Example. Let us consider the following two-variable ternary function 

f(x^,x^) given by the map:

0 ■ 1 0
1 1 2
2 1 1

Assume that gate f is a physical realisation of this function. The
spectrum is computed to be:

J = |- [3a 3 3 3 3 3a 3a^ 3 3a'
1 -

Suppose now the following realisation of a function f*Cx) is given 
by the following figure:

'O'

X, —#1
■Zj) 0 ^  ^
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We find the spectrum Ŝ ,j of the function f ’ (X) which is algebraically 
given by:

f'(x^,x^) = f(x^, ©Xg) © X q

from the spectrum Ŝ j with successive applications of releyant thjeorems 

as follows :
i) First the spectrum Sj of the function fCx^jXg) is found by using 
theorem i+.ll. In this case the matrix j * i s  given by:

2 0
[ \ ] =  ■

and therefore the spectrum Sj is obtained as follows:

i 9 s^(i) 1a 9 s^(i) = 9 a s^(l^ 2  i)

00 3a 00 1 3a
01 3 01 1 3
02 3 02 1 3
10 3 20' a 3

11 3 21 a 3a
12 3a 22 a 3
20 3a^ ' 10 2a 3a^
21 3 11 2a 3a^
22 3a^ 12 2a 3

The circuit realisation of fCx^jX^) will be as shown below:

f(XyXg)
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ii) Now the spectrum S^J of the function is evaluated

from the spectrum Sj with the application of theorem ^t7t In this

case ttie matrix [lJ is given hy: 

1 1
0 1

[ l] =

so that :

[^1 =0 ] [ L] = [ ^1 ® X o ]  .
The inverse ^ of is found to he:

1 2 
0 1[L]

-1
Cmod-3),

and hence the spectrum of the function f(x^,x^ © X q ) is found as;

i L ^ X i 9 s^(i) 9 Sgfi) = 9 s^(L il
00 00 3a 3a
01 21 3 3a^
02 12 3 3
10 10 3 3
11 02 3a 3
12 22 3 3
20 20 3a^ 3a^

21 11 3a^ 3a

22 02 3 3

The circuit realisation of f (x̂  ̂,x^ ©  is obtained from the 
previous circuit simply hy combining two inputs through a mod-3 adder

to X q input as shown on the next page:
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fCx^.x^exp)

iii) Next the spectrum of the function f(x^,Xj^ ©:Xq ) ©  Xq is 

found using theorem 4.8 as follows :

i i e_ 1 9 Sgfi) 9 s^(i) = 9 Sgli e_ 1)
00 02 3a 3

01 00 3a^ 3a

02 01 3 3a^

10 12 3 3
11 10 3 3

12 11 3 3
20 22 •3a2 3
21 20 3a 3a2

22 21 3 3a

iv) And finally we obtain the spectrum Ŝ îJ of the function 
f*(x^,XQ) = f (3î ,x̂  ©  x^) © X q using theorem 4.10. In this case the 

matrix J is:

2 0
[d ] =

0
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i D X i 9 s^Ci) 9 Sji(i) = 9 cC-l) s^ (D i)
00 00 3 3a^
01 02 38, 3
02 01 3a^ 3a
10 20 3 3a^
11 22 3 3a
12 21 3 3
20 10 3 3a^
21 12 3a^ 3a^
22 11 3a 3a^

In the example above, the functions f^x^jX^) and ffx^.x^) are in the 
same class by definition of spectral classification,and the spectrum 

of f’(x^,x^) has been obtained from the spectrum of flx^,x^) by applic

ation of relevant theorems following the circuit diagram for the realis
ation of f'(x^,Xç^). Thus example shown illustrates m-ary combinatorial 

logic circuit analysis using spectraJ. methods. The spectral synthesis 
of m-ary combinatorial logic may be described on the same example as 

follows:

Suppose that f^Cx^jX^) is to be realised and f(x^yXg) is the spectral 

class representative according to some complexity criterion. It is 

found by comparing the spectrum of f(x^,XQ) with the spectra of 

different class representatives that f'Cx^jX^) belongs to the same 
class as f (x^,x^). f (x^,x^) may now be obtained from f (x^,x^) with 

spectral translations. Note that this involves a lot of computation 
since the class which some spectra belong to is difficult to recognise 

if the spectral translation requires argument translation or
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complementation, see theorem ^.6 and 4,11 respectively. In concluding, 

the spectral logic design methods assume that simple and reliable 

realisations for modulo adders exist. The computatations involved in 
spectral translations are not suited for hand-work and use of m-ary 

computers for this purpose would be most advantageous.

This chapter has therefore taken the published binary work in spectral 
logic into the general higher-valued case, revising the properties of 
multi-valued spectral logic and investigating further the modifications 
to spectral coefficients under the operations i) setting variable(s) to 

a constant(s) and, ii) making two or more variables identical. We 

shall in the following pages consider the decomposition relationships 

in the spectrum using the properties developed in this chapter.
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CHAPTER 5

Spectral Decomposition 
Theorems



108

5. Spectral Decomposition Theorems

The realisation of any m-ary function takes place hy some form of 

decomposition into functions which are readily available in physically- 

implemented form. Mathematically tbe overall function is represented
OL

as^function of functions. The general block diagram of any realisation 

is shown later in Fig. 5.3.

In this chapter we look at some of the existing work and general 

results concerning the decomposition of discrete functions, and 

investigate and prove further relationships between the speetra of 

functions involved in the decomposition topology.

5.1 Decomposition
Consider the block diagram realisation of a function fCX) shown in - 

Fig. 5.1. The function f[X) implemented as such is a composition of 
functions hCX^) and @ 1=0,.., k-1; mathematical representation
of this will be of the form:

f(X) = ^(Sk-l^^-l^' ^k-2^\-2^’ --- ’ goCXg)) ,

where each X^, 1=0,...., k-1 is a subset of X = {x^_^,....,x^}.

In many cases some inputs at the first level of the implementation are 

preceded by other gates or systems, creating a more complex overall 
complete picture.

In order to differentiate between various decompositions we have the 
following definitions.

A composition is said to be a) simple or b) complex if it is a 
composite function of functions in the form:
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1

k-1

* f ( X )

Fig. 5.1 Block diagram realisation of function f(X) as composite 

function of functions.
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a) fCx) = h(X^,g(Xçj)} , or  C5.1)

b) fCx) = g^Uç)) ,  C5.2)
respectively. A complex .decomposition tnay be either miltiple, in 

which case it will be of the form (_5.2), or iterative in which case 

the variables in the multiple decomposition are also replaced by other 

functions. Furthermore, a composition is disjunctive if in above for 

every pair p,q the sets {X^} and {X^} are disjoint, otherwise it is 
non-disjunctive.

Historically the problem of finding decompositions of a given function
21was first studied by Ashenhurst for the case of binary logic functions

A fast algorithm for detection of non-dec ompo sab il it y was developed by
22 23 .Shen, et al . Karp studied the problem in a more general frame and 

stated necessary and sufficient conditions for dec ompo sab ility for the 
case of logic functions. Some important points from these works are 
summarised below.

Let f(X) be a n-variable m-ary function and X^ = {x^_^,....,Xg}
(q < n-l) and X^ = {x^_^, .. .. ,Xq } be a partition of X = ,... . ,Xq } .

» «a a +n n-n v TWe define an equivalence relation r[X.,f) on the set as follows:
(i,i) c r(X^,f) if and only if

f(x^-l, ,x^,I^_^, . . .. ,Iq ) = f  * * * *̂ 0̂

..........(5.3)
for all values of {x^_^,.... ,x^} , where the q-tuples (lg_^, . ,.. ,Iq ) 

and (l^_^, ... . ,Iq ) are the m-ary encodings (expansions) of i and i' 

respectively.
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The number of equivalence classes generated by 1 j-.s denoted

kCx^jf), and is the number of different functions generated by 

fixing first q-variables of the function fCX). The following tlieorem 

follows from the definition of k(XQ,f).

23 4Theorem  ̂.1 ’ A n-variable m-ary function fCx) has a disjoint

decomposition of the form:

f(X) = h(X^,g(XQ))

if and only if k(X„,f) < m

We can see this more clearly by constructing a partition matrix. This 

is the same as Karnaugh map representation of a function f(X), but 
the columns are now identified by the variables of the set X^ and 
the rows are labelled with the variables of the set X^. The column 
multiplicity of such a map is the number of different columns it 
contains. Clearly the column multiplicity is the same as k(XQ,f) 

defined above and if the column multiplicity is less than or equal to 

m then the column variables may be replaced by a function gCX^).

For example, consider tbe following 3-variable binary function.

^0
0 0 0 1 1 1 1 0
0 1 0 1
1 0 1 0

The column multiplicity of this map is 2 ; therefore we can replace 

the column variables with the function.
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g lying -QS a reduced map;

g(xi,Xo)

0 1
1 0

A fast algorithm which compares tho rows rather than the columns
22of the partition matrix was developed by Shen, et al for the 

m  = 2 binary case. The algorithm is based on the following theorem':

Theorem ^. 2 Let be a partition of X,~’then the n-variable

binary function fCx) has a disjoint decomposition iff for all 
Xp,x^ e Xq and e X^ of the partition matrix one of the following 
holds :

a) one of the rows is all O’s
b) one of the rows is all I ’s

c) two rows are identical
d) one row is inverse of the other.

A proof of this theorem may be found in reference 22. Note that in 

the example given above condition d is satisfied.

Now consider a section of the partition matrix, which is obtained by 
setting the remaining (n-3) variables to some constants.
This will be of the form;

X  X

0

q.0 0 0 1 1 1 1 0
mQ m, m 3 my

1 ""5 my mg
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Every square Cminterm) in this map can be either logic yalue 0 or i,
8thus making the number of possible functions 2 —  256. Among these

U 22functions 88 will satisfy the conditions of theorem 5.2 . Therefore 

*for a randomly given function the probability that a pair of rows will 
satisfy the conditions of theorem 5.2 is CH/32) and hence the probab

ility that the conditions a) to d) are satisfied for all possible
2(0-3 )

values of remaining (n-3) variables is (11/32) . On the average

only a small number of pairs of rows (less than 32/2 1) will have to be

checked to show that it does not satisfy the conditions of theorem

5 .2 . Thus one would expect that the time required to check all possible
n* 3combinations of three variables ,3 , would grow approximately

3as n .

The running times for this algorithm in the case when f(X) has a disjoint 

decomposition grow very rapidly, since the number of points that the 

conditions of theorem 5*2 satisfied becomes exponentially large, and 
each of them has to be checked completely " .

A generalisation of theorem 5 .2 to the m-valued case would be very 
lengthy, mainly because the number of one variable functions m^ grows 
very rapidly as m-increases. However, the probability that a randomly 

given function has a disjoint decomposition may be calculated as 
follows :

If is the number of ways of partitioning a set of u elements into 
V non-empty subsets, then

Z
k—0
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These are called Stirling nimbers of the second kind, and this

formula may be found in handbooks of mathematical functions^^. A
function which admits disjoint decomposition will have a partition

matrix with column multiplicity of less than or equal to n. For the
■ 2three variable case the partition matrix will have m-rows and m '■

columns, each column defining any one of the m^ one-variable

functions. The number N of the functions whose partition matrices 

will have column multiplicity l,2,....,m is therefore given by:

vl QV

v=l m

Indeed, we have m -columns and v-symbols Cv = 1,.. .. ,m) ,|may be
distributed in these columns vl ways. We multiply this with

m m
C™ since there are C™ combinations of one-variable functions. The 

table below shows N-as a function of m; the ration N/m is the 

probability that a randomly given three-variable m-ary function will 
admit disjoint decomposition of the form hCx^»g(x^,x^)).

N
m N m3m
2 88 3,44 X lO"^

3 5,33 X 10? 6,79 X io"7
h 7,21 X 10^7 -212,12 X  10

5 7,24 X 10^2 3,08 X 10“^^

It can be seen from this table that although the number of disjoint 

decomposable functions is large, they constitute a very small proportion 
of all three-variable functions.
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5.2 Evaluation of the spectra of;multi^leyel functions 

We now consider the case when a function f(%l has a two-ley el 

realisation as shown in Fig. 5.2. We incorporate the spectra S

^hl Sg j sP = 0,....,k-l with the functions f CX) ,hCx^_^,... ♦ 
and gpCx),p=0,.... ,k-l respectively.

Let us denote the k-tuple (g^_^Ci), jg^Ci)) by an integer

such that :

k-1

1 = T ,
p=0

m C5.4)

At a point i the functions g^[%) ,p = 0, ,k-l take the values g^(i),
and the value of the function fCX) at the point i is determined by the 
value of the function h(x^_^, .... at point z^. Therefore the 
function values f(i) may be computed from the spectrum S^j as follows:

z^th row of 

kth order inverse

transform matrix Tc^m (5.5)

The z.th row elements t . of the inverse transform matrix are given 1 2^,0
by (see Section 4.2)

k-1

t . = a C5.6)

since (g^_^(i),. . .. ,g^(i) ) is the m-ary expansion of z. by equation
(5.4).

Note that t . given in equation (,5.6) is merely the image of somej j
linear combination of functions g^(X) under the mapping c . Therefore



116

n-1

Fig. 5.2: Two level realisation of f(X) in the form;

f(X) =    Eo(X))
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the colinnns of this matrix are merely the local 4^ yalue5 of some 

linear combination of functions g^Cx), and hence equation C5.5Î tiay 

nov be reexpressed as;

- k—1 “I/ m t \ —
1 cG “ . . . c ( > G J 10 V P P/
1 p=0

•

C5 .7 )

vhere G j  ,p = 0,....,k-l are the vectors which contain local values 
of gp(X) in decimal order.

Multiplying both sides of equation C5.7) with the nth order transform 
matrix the following theorem is obtained:

Theorem ^.3 A function fCX) is a composite function of functions of 
the form:

f (X )  = (5.8)

iff the corresponding spectra satisfy the relationship:

1

0

s • • • ®k-l 
p?o •

0

-

h] = Sf]

15.9)
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Above development bas shown that equation (3-9) is satisfied when 

fCx) has a decomposition of the form (508), If there is a relation

ship of the form (5.9 ), then f(x) has a decomposition of the form 

(5 .8 ) comes from the fact that spectrum-function pair is unique.

Example, Let f. (X) and f_(X) be two fully specified n-variable
binary functions with spectra 8 1 and 8 1 respectively. It is

]J 2 j
required to find the spectrum 8j  of the function fCx). which is the 
Boolean disjunction ("Or") of the two functions fp(X) and f^CX).

In this case the spectrum of a two input Or function is^given 

by:

Sg] = i  [-2 2 2 2 ] * ,

putting these values in equation C5.9) we obtain:

and hence;

-2

2

2

2

-1 s ^  _
h 2̂

/ °
+ + +fj 2 y

•
(5 .1 0)
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This relationship for the Boolean sum was found by Eris following 

a dissimilar approach.

Continuing with the example, if now the two functions f^Cx) and 

f^Cx) are, say, the following two-yalued Boolean functions:

f^(X) = V XqXg

and f (X) = x^x V

then the corresponding spectra are computed to give:

tj = ^ [ ^ 2 2 2 2 2  -6 2 2j

S p ] = ^ j ^ 2 2  -6 2 2 2 2  2j'̂
We may use the convolution theorem (theorem 4.13) to evaluate the

resulting spectrum of f^(X) 0  fg(X):

7
(i) s (t ) s (i ^  t ) ,Sf @ f  "f/^^ "f

T=0

giving:

© f  J  = [  °  ° ° ° ° ° ° 1 ]  •

Hence, we finally obtain the spectrum of the function 

f(X) = fp(X) V f^(X) by putting above values in equation (5.10)
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1 2 2 0

0 2 2 0

0 2 -6 Q
0 t .2

0 2 2 0

0 -6 2 0

0 2 2 0

0 2 2 1
_

whence :

]  = H '
2 2 -2 2 2 - 2 2 6

A natural extension of this theorem gives the relationships between 
the spectra of functions which are realised in more than two-levels. 

For example, with the three-level composition shown in Fig. 5.3 the 

mathematical representation would be of the form:

f(X) =  ,ep(X)),-,gQ(ej^_^(X)..... .e^fX))

 (5.11)

The relationship between the corresponding spectra is therefore 

obtained by repeated application of above theorem 5.3, giving;
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—
1 l'

0 0

0 ... s 0 ... s ...
0 S e  I P P 0 ^ V p

_
.C5,12i

■mwhere .. . . ,1̂ )̂ and ( J^_^,. .. ., are the integer mod-;
expansions of column numbers i and j .respectively.

5*3 Disjoint décomposâtility of m-ary functions by spectral means 
We now consider a simple disjoint decomposition of a function f(X). 
The mathematical representation of tliis will be of the form:

f(X) = h(X^,g(.XQ)) C5.13)

where X^ = (x^_^,.... ), and X = (x _ ) is a partition of
X — .... jXq ) .

The block diagram realisation that makes -use of this decomposition is 

shown in Fig. 5.4.

Theorem 5.4 A m-valued n-variable function fCx) has a simple disjoint 
decomposition of the form [5.13) iff the spectra S 
respective functions satisfy the relationship:

f ]  ’ ^g] ' ®h]

[ s j ) s j =  sj

where fldj is m x m identity matrix.

C5.14)
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n-1

f(X)

Fig. 5.4 Simple disjoint decomposition of f(X)
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1

and [Sg] = 0

•
.......C5.15)

Proof. Let us consider that the last Cn-k) variables of fC%) are 
assigned to some constant logic values so that the functions f^CX^) 

are obtained such that: -

f(Z^_l,------------- ,Xq )

n—k—1
where z = ^ ] m^ ^p+h ’ E V q = k,....,n-1

By theorem U.U the spectra J and the spectrum are related as
follows

/  r -------j ® a k  ® k \
(^LTc-mJ ® [ l d j  j S^ j  =

C5.16)

Similarly the spectra S^ j of the functions h^Cx^) = h(Z^_^.... ,Z^,Xq )

in terms of the spectrum are given by:
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We also have the relationship between the spectra S_ 

given by theorem 5*3 above:

(5.1T)

and

(5.18)

n-kEquation (5.18) is valid for all z = 0,m -1 and hence it may be

extended to give:

0  n-k

........ (5.19)

Replacing (5.16) and (5.17) in (5.19) and multiplying both sides with

mn-k

( [Tc-m] ®  ®  n- k ®  [s^])
m

( [Tc-m] ®  ° ®[ld] ) S j  =
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using distributive properties of Kronecker product we obtain;

®  [ Sq ]) ( [t ^ ^ J  ®  @  [id] ) Sj^] =  s j

and finally:

[ B j )  s.] . aj

The sufficiency part of the theorem, namely if there is a relation

ship of the form C5.1^) between the corresponding spectra then a 
simple disjoint decomposition of the form (5.13) exists, stems from 

the fact that the spectrum-function pair is unique.

Equation (5.1^) gives us a system of simultaneous equations whose 
solutions will completely specify the unknown function for the 
realisation in the form shown in Fig. 5.^. The unknown function may 

be gCx^) or h(^,XQ) and there may be a unique solution, no solution 
or many solutions to the system of simultaneous equatidtis. These 
various cases are illustrated with the following examples.

Example 1 . A binary example with unique solution:
Consider a simple 4-variable (n = 4) binary (_m = 2) function f(X) 

given by the following map :

^0 ^1
0 0 0 1 1 1 1 0

0 0 0 0 1 0
0 1 0 0 1 0
1 1 1 1 1 1
1 0 1 1 0 1
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Using conventional techniques the following realisation for this 

function may be obtained:

C5.20)

computation of the spectrum gives :

^ [ -2 2 2 -2 10 6 6 -6 2 -2 -2 2 -2 2 2 -2] 
Now let us choose gCx^jX^) as a two input And function whose spectrum

IS :

,] = i  [2 2 2 -2]

Hence for the binary case under consideration;

[^o]

2
2

2
-2

since only S. = S^J = ^(%n-l) gj Gxists in this simple example
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Putting the latter values in equation [5.14) the following 

simultaneous equations are obtained:

'0 — -2
- 2
- 2

-2

+  '3 = 10

"3 - 6

"3 — 6

-'3 - -6
- 2

- -2

"5 = -2

-'5 = 2

= -2

"7 = 2

"7 = 2

-'7 - -2

where S,h
t

] = 8 ["o "3 "4 "5 "6 "t]

The solution for above set of simultaneous equations is clearly:

Sh] = I [-2 2 2 6 2 -2 -2 2]"^

and hence the given function f[X) is reduced to the following decomp

osition where g[x^,x^) is the And function x^.x^:



^2 ^3

'^0
0 0

Therefore

129

0 I

fix] = h.U^,x^,gCx^,XQ)}

1 1
0 0 0 1 1
1 1 1 1 0

1 0

(5.21)

A gate count of realisations using C5.20) and (.9.21) shows that the 
decomposition realisation uses one 2-input And gate and one NOT gate 
less than the conventional design, assuming-2-input And and 2-input 

Or gates are used only.

Example TI. A binary example with no solution.

Let us now obtain a function f*(X) from f(X) of the above example by 
interchanging the variables and . i.e:

f ’ ( x ^ , X 2 , x ^ , X Q )  =  f ( x ^ , X Q , x ^ , X 2 )

The spectrum S^J of f'Cx) can be found from the spectrum 8^ of f (X) 

with the application of theorem k.2 in chapter 4, giving:

 ̂ ÏÏ [  ̂ 10 6 2 -2 6 -6 2 -2 -2 2 -2 2 2 -2] ̂

Again, putting these values in the equation of (5.1^) we obtain the 
following simultaneous equations:

2 So + = - 2

s ^ =  2

s = 10 
-s^ = 6

etc.
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Obviously tkere is no s^ Cand s^) to satisfy above equations and 

■we can terminate our calculations at this point concluding that f[X) 

does not have a disjoint decomposition of the form:

if is the Boolean conjunction ,

Example III. A ternary example where the function g(X^) is to be 
found.
Consider a three variable ternary function f(x2 ,x^,XQ) give* by the 
follo-wing table:

x^

^0 X 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2
0 2 1 0 2 1 1 2 2 2
1 1 0 0 1 1 1 2 2 2
2 0 0 0 1 1 1 2 2 2

It is desired to find if a disjoint decomposition exists where 

hCx^, is a two variable max. function x^ V x^. The spectra 
and S^j are evaluated using the ternary transform and the spectral 

values are replaced in equation C5.1^) giving th_e following set of 
simultaneous equations:
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SgCa + 51 + a^Ca^ + 2 a l - 15a^ 12a

s^Ca + 5 l + s^Ca^ + 2 a l - 6 a " + 3a

SgCa + 5) + SgCa^ + 2a} - 15a" + 3a

s^Ca + 5) + s ^ (a ^  + 2a) = 6 a " + 3a

s^^Ca + 5) + s'l^Ca^ + 2a) 3 a " + 6

s^Ca + 5) + s'^Ca^ + 2a) = 12a" + 6

s^Ca + 5) + SgCa^ + 2a) = 15a" + 3a

s ^ (a  + 5) + Sy(a^ + 2a) - 12a" + 6

S g la  + 5) + Sg(a^ + 2a) - 21a" + 6

SQ(2a^+U) + s^Ca + 2) = 6a + 66

s^(2a^+ i+) + s ^ (a  + 2) = 6a^ + 12a

Sg(2a^+1&) + s'̂ ia + 2) = 15a^ + 12a

s (2a^+l+) + s ^ (a  + 2) = 6a2 + 12a

s^C 2a^+ li) + s ^ (a  + 2) = 6a + 3

s (2a^+4) + s '^(a  + 2) = 6a2 + 3a

s^(2a^+U ) + Sg(a + 2) = 15 a^ + 12a

s^C2a^+U) + Sy(a  + 2) = 6a2 + 3a

S g(2a^+^) + Sg(a + 2) = 15a^ + 3a

s^Ca + 2 ) + Sç(2a^ + 1) = 6a2 + 12a

s^Ca + 2) + s ^ l2 a ^  + 1) = 6a + 3
s ^ (a  + 2) + Sg(2a^ + 1) = 6a2 + 3a

SgCa + 2) + SgC2a^ + 1) = 6a + 3
Sj^Ca + 2) + sJ^C2a^ + 1) - 6a + 12

s^Ca + 2) + s'̂ (2â  + 1) - 3a" 6

SgCa + 2) + Sg(_2â  + l ) - 6a2 + 3a

s ^ (a  + 2) + s!̂ C2â  + 1) — 3a^ + 6

SgCa + 2) + SgC2a^ + 1) - 12a" + 6
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where Eg ] - g [ "o

and = n [ s. S

. s

. s

8]

8]

Note that we only need to compute the values of s^,p =0,8 hut 

it is necessary to confirm that these values satisfy all equations.

A unique solution to above set of equations is possible, and will be 

found to be:

"o a + 5

"l = 2
a 4- 2a

"2 - + 2a

"3 = 2a + 2a

= 2a + 2

= 2a^ + 1

^6 = 4a^ 2a

'7 = 2a^ + 1 -

^8 = 5a^ + 1

The inverse transformation on this set of spectral, values will show.

if not already recognised, that it is the spectrum of the Plus 

operator whose truth table is given below:

'̂1

\ 0 1 2
0 2 1 0
1 1 0 Q
2 0 0 0

and hence the final decomposition synthesis for the function is

fCx) = {C^Q ijj V J where Y denotes Plus.
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Example IV, A ternary example vittimiany decompositions.
The set of simultaneous equations obtained by replacing spectral 

values in C5*l^) imay in some cases be consistent but vith infinite 

solutions. The case arises under certain circumstances vhich will be 

discussed after the following example.

Consider a 3-variable ternary function fCx^jX^jX^) given by the 

following map:

Xi X q

0 0 0 1 0 2 1 0 1 1 1 2 • 2  0 2 1 ' 2 2
0 2 2 0 0 O' 2 2 0 2
1 2 2 1 1 1 2 2 1 2

2 0 0 1 1 1 0 0 1 0

It is desired to know whether this function has a simple disjoint 
decomposition of the form below in which gCx^^x^) is defined as:

0
0 1 2
1 1 2

1 2 2 1
2 1 2 1

Let sj = ^  [ s^ s^ . . . . SgJ ^ be the spectrum of a two variable

ternary function hCx^jX^). The set of simultaneous equations follow
ing, is obtained by incorporating the relevant spectra in equation 

(5.1^) for the decomposition of the form:

fCxg,x^,XQ) = hCx^jgU^jX^) ).
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+ C5a + ka.^ \ "l + iha. + 5â ) 2̂ - 3 + 6a^
C2a + a^l "l + C2 + a^) ®2 - 12 + 6a2
C2 + a) "l + Ca + 2a^) 2̂ = 6a + 12a^
C2a + a^} "l + C2 + a^l 2̂ - 12 + 6aZ
C2 + a) "l + Ca + 2a^l ^2 - 6a + 12a^
C5a + Ua^l + C5 + a^l 2̂ - 30 + 6a^
(2 + a) "l + Ca + 2a^l ^2 = 6a + 12a^
C5 + a) + C4a + 5â ) ^2 - 24a + lOa^
(2a + a^) + C2 + a^) 2̂ = 12 + 6a"

+ (5a + 4a^) + CUa + 5â ) = 6a + 3a"
C2a + a^) ®1( + (2 + â ) = 6a + 12a"
(2 + a) + Ca + 2a^) = 6 + 12a

»(2a + a^) + (2 + â ) "5 = 6a + 12a"
C2 + a) + Ca + 2a^) "5 = 6 + 12a
(5a + Ua^) + C5 + â } "5 = 6a + 30a"
(2 + a) ®i( + (a + 2a^) "5 = 6 + 12a
C5 + a) + (Ua + 5a^) "5 = 24 + 30a
(2a + a ) + (2 + a^l '5 - 6a + 12a"

+ (5 + X ) "7 + (4a + 5â ) ^8 = 39 + 42a"
(2a + a^) "7 + (2 + â ) ^8 = 3 + 6a"
[2 + a) "7 + Ca + 2a^) ^8 = 6a + 3a"
(2a + a^) "7 + C2 + â ) ^8 - 3 + 6a"
(2 + al "7 + Ca + 2a^l ^8 - 6a + 3a"
(5a + ha^] "7 + C5 + â ) ®8 = 12 + 15a"
C2 + a) ®T + Ca + 2a^) ^8 - 6a + 3a"
(5 + a) "7 + C4a + 5a^) ®8 = 15a + 3a"
(2a + a^) ®T + (2. + â ) ^8 = 3 + 6a"
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Eliminating the linearly independent rows, the following reduced set 

of simultaneous equations are obtained:

9s^ + C5a + 4a") s^ + (4a 5a") s^ = 3 + 6a"
C2a + a") s^ + C2 + a") ŝ  = 12 + 6a"

9s^ + (_5a + 4a") ŝ  ̂+ (_4a + 5a") s^ = 6a + 3a"
C2a + a") ŝ  + C2 + a") ŝ  = 6a + 12a"

9sg + (5a + 4a") s^ + (4a + 5a") Sg = 39 + 42a"
(2a + a") s^ + (2 + a") Sg = 3 + 6a"

Obviously there are infinite number of solutions to this set of

equations. One solution may be obtained by.putting s^^= S|̂ = 0,

giving:

S^] ^ ^  [ 3 0 6 3a" 0 6a" 6 + 6a" 0 3 + 3a" j .

Taking the inverse transform on these values we obtain:

ch] = [ 2 + 2â  a" 1 1 a" a 2 + 2a 1 a .

Note that at two points chC0,0) ■= 2 + 2a" and chC2,0) = 2 + 2a there 

are undefined values under the mapping c. (Under this mapping, the 

values should be of the form a^ where k s V -= {0,1, .. .. ,m-l}. (2 + 2a)

is not an element of the co domain of mapping c). This is because of 

the random values we have chosen for three of the spectral values to 

solve the simultaneous equations above. In fact, the values at h(0,0) 

and h(2,0) do not affect the final realisation of the function fC%) and 

therefore may be assumed to be "don't cares". Any function which agrees

with the local values of the function h(x^,x^) at the points where

h(x^,x^) is specified, will be suitable to replace hCx^jX^). For the
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particular case in this example a hCx^^x^l will be giyen as;

h] = [ 1 2 0 0 2 1 2 0 1 ]"^

The infinite solution case occurs when the range of the mapping 

defined by the function s CXq ) is a proper subset of Y. If the 

function gCX^) never takes the value k e V, then in a composition of 

the form:

fU) = hU^,g(X^)) ,

the values of the function hCX^,x^) at points h(_X^,k) will be irrel

evant to the specification of f (_X). The infinite solutions occur 
because the function hCX^,x^) can take any value at points hCX^,k) . 

The range of the mapping defined by g(x^,x^) in the above example is 

{1,2}, and hence the function values h(x^,0) do not effect the final 
realisation.

Note that in the case of binary systems a proper subset of {0,1} 

is either {0} or {1}, and if the range of gCx^) contains only one 

element g then gCX^) is independent of all the variables {X^} and 

can be replaced by the constant g. Above developments assume that 

the function f(X) has no redundant variables and hence the infinite 

solution case in the disjoint decomposition synthesis of binary systems 
cannot occur.

5.4 Discussion

The simultaneous equations of (_5.l4) contain m^ or m^ unknowns, 

depending on wh.eth.er the function gCXg) or h(X^,x^) is to be determined. 

However, a careful examination of C5»l4) shows that the equations are
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separated into groups each containing jn or On~l) unknowns. Indeed 
the ejcamples in Section 5.3 illustrate that, for example in m  = 2 

binary case, each group of equations contain two unknowns, one of 

which is readily obtained without any computation. Advauce knowledge 

of either gCX^) or hCx^jX^^) will ease the construction of a heuristic 

algorithm to search for decbmposibility. For example, a binary 

function f(X) has a decomposition of the form h(x  ̂,gCX ) ) where 

hCx^,x^) is a two input And function if s(0) + sC2^-l) -= 1. This may 

be shown by incorporating the relevant spectra in C5*l^) as follows;

" 1 “ 2~

1 0 0 s i \  2
0 1 0

/  '
• -2

Let s(0) e S^J and s(0),s[2 -l) e S^J ; then the above set of 

equations give us:

1 + sCO) = 2 sCO)

1  -  s C o )  -  2  s C 2 ^ - l )  

i.e. sCO)  + s C 2 ^ - l )  = 1

The sufficiency of this condition stems from the fact that by theorem 

k.k adding corresponding entries of the bottom half of S^J to the top 

half gives the spectrum of f(0 ,x^_2 j. • . . ,  and if a component of this 

spectrum is 1 then the remainder will be zero. Note that this is 

possible if and only if in the spectrum S^J the following holds;
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sCi) = -sC2^-l ^ i) for ail i — 1,....,2^ ^-2

The spectral analysis methods of m-ary combinatorial logic systems 

have now been completed with the spectral properties developed in 

this chapter in addition to those discussed in chapter

Any decomposition of f b y  successive evaluation of functions 

involved in the decomposition defines a synthesis algorithm. Obviously 

the time required to perform a complete search for minimum-cost 

solutions will be prohibitive due to the exponentially growing number 

of functions that may be involved in the decomposition. A more 
conventional method may use look-up tables which list all possible 
decompositions of classes so that, once the class of a function is 

identified the synthesis will readily follow using the decomposition 

charts.

A summary of the significance of the spectral techniques developed in 
this chapter and the preceding chapter k will be given in the following 
pages.
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CHAPTER 6 

General Conclusions
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6 . General Conclusions ;

In Chapter 1 multi-valued systems were defined, and examples of 

several existing ternary C3-^alued) combinatorial circuits were given.
An overall assessment of the published material on combinatorial 

circuits covered the following;

Ca) The development of combinatorial circuits followed closely the 

mathematical developments in this area» Many designs are implement
ations of a few primitive sets of functions, which include the Deltç, 

literals. Max., Min. and Addition operations, and a multiplexer, 
namely the T-Gate operator. Evidence shows tbg,t efficient multi

valued logic circuits can be fabricated with the current expertise 
available in semiconductor technology, 

n
(b) There are m m valued n variable functions. Further examples in 
Chapter 1 showed that there exists inexpensive circuit implementations 

for some of these functions which are not included in the primitive 
sets of gates noted above. It is concluded that the development of a 

general design method which allows maximum use of the advantages offer

ed by a large set of primitive gates will encourage the circuit designers 

to invent, at reasonable cost and using small on-chip silicon area, 
novel m-ary circuits.

In Chapter 2 various expansions of multi-valued functions were consider

ed. The local values of the function, expressed as a vector, were 
transformed into a set of coefficients using an appropriate transform, 
such that the function and the corresponding set of coefficients were 

uniquely related. The expansion of a given m-ary function over the 

field of real numbers was considered to be impractical, since the
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coefficients obtained vary oyer wide range of rational numbera» The 

expansions over a finite field QFCml with.m elements overcome this 

problem, since each coefficient may now take only one of m  values. 

However, GF(ml expansion is possible if and only if m  is a.power of 
a prime.

A practical application of the mathematical developments in this 

Chapter was demonstrated in Chapter 3, and a Universal-Logic-Module 
implementation based on GF(m) expansion was considered. The set of' 

primitive gates in this case consists of the GF(m) Multiplier and 

the GF(m) Adder. For the ternary case the Mod=-3 Adder*and Multiplier 
circuits reported elsewhere are suitable for this purpose. However, 
for m = 4, GF(4) Adder and Multiplier circuits have to be developed 

for a Universal-Logic-Module realisation of quaternary logic functions 
It vas shown by means of an example that the interchange of input 
variable connections to a ULM realisation may result in**a reduction 

on number of modules necessary for a given function implementation.

A fundamental problem of finding the minimum-cost connection pattern 
of the input variables remains unsolved.

Chapter U introduced the function spectrum; the set of spectral values 
are the coefficients of the complex polynomial expansion of m-ary 
functions such that the variables and the function now take complex 

values. Chapter 5 continued with developments in this spectral logic 

area, investigating particularly the spectral relationships in a 

composite function. A summary of the significant results of these 

latter two chapters may be outlined as follows :
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Ci) Spectral Classification; Many operations in the function domain 

correspond to permutations and/or complex scaling of the spectral 
coefficients in the spectral domain. The latter are generally known 
as spectral translations. The m-ary functions whose spectra are 

equivalent under spectral translations constitute a class. Existing 

information indicates that the number of equivalence classes gener

ated Tinder spectral translations is small, but further research is 
required to find a method to generate n-variable classes with the 
information on (n-l) and less variable classes. Tables listing all 

5-variable classes in binary^^ and all 2-variable classes Ih ternary^ 
were constructed using exhaustive search mechanisms which required 
a fair amount of computation.

(ii) Spectral Synthesis; The spectral synthesis method based on 
spectral classification assumes that spectral translations have in
expensive and practical implementations. This assumption seems to be 
reasonable since realisations for Mod-m Adders and Inverters have 
already been reported in I^L and CCD technologies. Each, class may 

be represented by a member for which a simple realisation exists. A 
synthesis algorithm first identifies the class to which a function 

belongs, and implementation readily follows using appropriate spectral 

translation operations.

Further research in this area may be the construction of charts, 
which will show the de compos ability relationships between the classes.

Ciii) Spectral Analysis; The main contribution of the investigation 

in this thesis to the spectral logic has been in the spectral analysis 

area. The composition relationships between the spectra given in
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Chapter 5 and the other properties pursued in Chapter 4 are consider

ed to be invaluable mathematical tools for m-^ry combinatorial logic 
analysis. The spectral analysis methods have the characteristic 

that the circuits to be analysed may contain any gate which, implements 

a m-ary function, and is not confined to any given algebra.

Finally, it is concluded that the spectral information enjoys many 

further properties, which find applications in classification, synthesis 

through classification and decomposition, and analysis of m-ary 

combinatorial functions. Increasing commercial interests iiT higher- 
valued logic than binary are likely to be felt_,in the future, and 
therefore the research area of the work reported herewith is likely 
to be of increasing future significance.
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APPENDIX A

Summary of
The Spectral Properties
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SUMMARY OF SPECTRAL PROPERTIES

Definitions

V = {0 ,1 ,...,m-l} set with m elements, integers mod-m

f(X) = V

vector of independent variables over V

n-variable m-ary function

column vector whose entries are the 

local values of f(X) in decimal' order

Similarly j =
and

©

m-ary exp^sion of i
n-l

such that i =  ̂ m^I
p=0 ^

and Ip E V for all p = 0,1.,...,n-l

X _ w  = ( (x^_^ 0  W^_^) ,.. . ,(Xç̂  0  Wq ) )
L ï i  = [ L ] x [ l ^ _ ^ .........  I^Ÿ

a = eJ
2tt
m mth primitive root of unity on complex 

plane

c :k

n-l
Ch(i.j) = I I J

p=0 p p

t.(j) =

where * stands for complex 

conjugate

character of k e V

set of stepping functions defined in 

the interval [o,m^)
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[Tc-!*iJ m X m transform matrix such that*- m X m

elements t. . are given hy: t >0
t. . = (a^j)*1 » J

I^Tc-mJ 0  ... 0  [Tc-m] nth Kronecker power of []Tc-m]

n-times nth order transform matrix

1s (i) = —  I t.(j) cf(j) spectrum of f(X)
 ̂ j=0 ^

Or in vector form:

8 f ]  = c F]■* m

5 , etc. are defined similarly

Theorems

1) Let f(o) = 0  and

f'(x) = ( k if X = (0) where k e V
( f(X) otherwise 

Then s^,(i) = .s^(i) + m ^ (ck - l)

2) Argument translation:
f’(X) = f(X®w)

Then s ,(i) = t* s„(i)I 1 ,w I

3) Linear transformation of argument: 

f'(X) = f(X ^ L)

Then s^,(i) = s^(L ^ - i)

where [l ] is a n x n non-singular matrix containing elements which 

are non-zero dividers in V.
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4) Disjoint spectral translation

f’(X) = f(X) 0  where k = 0,1,...,n-l
Thens^, (i) = s^(i®m^)

5) Cyclic negation of a function

f’ (X) = f(X) 0  k where k e V

Then s^,(i) = s^(i) a^

6) Inverse (simple negation) of a function 

f'(X) = f(X)

Then s^,(i) = c(-l) s* (D - i)

where [d ] = diag (m-l)

T) f’(X) = f(x^_^,... .. ,Xq )

Then s^,(i) = a ^ s^(L^ % i)

where Z c L. is given by: p,q k
(m-l) if p = q = (n-l) - k 

Z = / l  if p = qp,q J
0 if otherwise

8) Making two variables identical

f'(=n-2'Xn-3'''-'Xo) = V 2 ’V 2 ’V 3 ”  ' '’̂ 0^
Then s^,(i) = s^d^) + s^(i^) +   + s^(i^_^)

where i = km^ ^ + (I ©  (m-k) )m^  ̂+ I m^ ^ + .... + I m°k n-2 n-j 0

and i = I _m^  ̂+ I m^  ̂+ .... + I_m°, for all k = 0,1, ,m-ln-2 n-3 0 ’

9) Setting a variable to a constant
f’(x ,...,x ) = f(k X ,...,x ) where k e Vk n~^ u , n-^ u
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Then

S,
i l

i ]
= Ŝ J

10) Convolution theorem

f'(X) = f^(X) 0fg(X)
m^-1 0Then s ,(i) = % s (w) s (i'^w)
w=0 1 2
rn̂ -1
I s (i^ w) s (w) 

w=0 1 2
0

11) Decomposition
f'(X) = k(g^_^(X) , g ^ _ 2 ( X ) . ,gç̂ (X))

Then

1
0 s

So
0

• • • S
k - 1

I S J.
p=0 P P

i jth column

12) Disjoint decomposition
f ’ ( x )  =  k ( g ( X ^ ) , X ^ )  where { x ^ , X ^ }  is a partition of {x}
Then

Q  [ y )  = Sj]

where
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[ “=] =

1 -

0 'l.g ^2.g ^(m-l).g
0

* _
- -

-oooOooo-
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REPORT NO 1 "A functionally complete ternary 

system „

(Reprinted from:
I.E.E. Electronic Letters, 
Vol.l4, 1978, No.3, pp.6 9 -7 1 )
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These two functions therefore have truth values as below:

Xj

0 1 2

0 0 1 2

1 1 0 2

2 2 2 0

TOR operator X j t X j

X,

0 2
1 0

2 0

A  F U N C T IO N A L L Y -C O M P L E T E  T E R N A R Y  
SYSTEM

Indexing terms: Integrated logic circuits. Ternary logic

A single two-input ternary operator and a single one-input 
ternary operator are proposed, which together with the logic 
values 1 and 2 form a functionally-complcte set o f ternary 
operators. A particular feature of the proposed operators is 
their ease o f realisation in semiconductor integrated-circuit 
form, the two-input operator being circuit-wise similar to 
recently-developed binary exclusive-OR reaUsations.

Introduction:  The theoretical advantages o f three-valued 
(ternary) logic over two-valued (binary) logic are well known; 
these advantages promise to become increasingly desirable due 
to pin limitations on complex digital integrated-circuit 
packages. Circuit reaUsations of ternary functions have been 
investigated by several authorities,'”*° this area representing 
the greatest challenge to the practical adoption of three-valued 
systems. The difficulties o f reahsation o f certain previously 
proposed circuits and slow operating speeds characterise many 
of these proposals. Here we introduce two ternary operators 
which together with logic 1 and 2 enable any ternary function 
f { X )  to be reaUsed, the particular features o f these operators 
being their ease o f realisation in monoUtluc i.e. form.

Proposed operators: The two proposed ternary operators are 
as follows:

(a) the two-input TO R  function defined by

/(%„%,) = %,
=  max {%/, X p  i f  X j ^  X j

=  0 if  X i  =  X j

As will be shown later,.this TOR ( ‘Ternary exclusive-OR') 
function may be realised by an exclusive-OR type circuit 
configuration.

(b )  the single-variable (unary) operator defined by

°(%,)° =  2 if % ,=  0 

=  0 if  ;ir, 0

This operator may also be termed a ‘literal' or a ‘threshold' 
operator by certain authorities

Unary operator

The function-completeness o f the above operators for all 
possible 27 single-variable ternary functions may be checked 
by simple evaluation. The full Usting is%iven in Table 1.

Functional completeness for the 2-variablc case may be 
demonstrate<Lby the following.

Consider the function o f two variables

f ( X i , X j )  =  i i X i T X j ) T X j ) T X i

Let this output be Z . Then Z  =  1 when X j =  1, X j  =  2, and is
0 on all other input minterms. A further operation

\ Z ) ° t 2

will convert this Z  =  1 output minterm to 2, leaving the 
0-valued minterms unchanged.

Now by permutation of the truth-values of the input 
variables by appropriate siagle-variable operations on X j  
and/or X j  (see Table 1), this single output minterm o f value
1 or 2 may be realised in any chosen minterm position in the 
truth-table for /(% ,,% ,). The full truth table for any required 
function fX X j ,X j )  can therefore be realised by the minterm 
expansion:

f i X j ,  X j)  = / , (% „  X j )  T h i X j ,  X j )  T .. . T f „ i X j . X j ) ,  

where

fiiXj,Xj), MXj.Xj)...

are each functions with a single output minterm of value I 
or 2, otherwise 0, and n < 9 .  Hence functional completeness 
for two-variable case is shown. Note that this mintemi 
expansion is not necessarily minimal; certain minimisation 
procedures are available with the TOR operator to give 
reduced-length expressions.

With functional-complcteness present for both single
variable and two-variable cases, functional-complcteness for 
functions of any number o f input variables is assured.

Circuit realisations: The particular merit o f the above 
operators is their ease o f realisation in bipolar or m.o.s., 
technology. In particular the TOR operator is based upon 
previously-discussed exclusive-OR circuits,’ ’ and takes 
the forms shown in Fig. 1. The single-variable function °(A',)° 
is a simple inverter circuit, also as shown in Fig. 1.

The propagation time o f these circuits will be seen to be 
comparable with their times when used in binary situations, 
unlike a number o f previously-disclosed ternary circuits, which 
due to increased circuit complexity exliibit correspondingly 
increased propagation times. Cascading of the TO R ciicuits

ELECTRONICS LETTERS 2nd February 1978 Vol. 14 No. 3 C9
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lu rcjlise functions such as (A', t X j)  t  is available, subject
to similar limits as in the binary case."’

Table I C I NI RATION OF ALL S IN G LE -V A R IA B LE
FUNCTIONS O F /(A ',) USING TOR AND UNARY  
Ol’FRATORS

X, 0 \ 2

A, 0 d 0 (trivial case)

y. 0 0 1 ((Xj T \ )T Xi)T [

A, 0 0 2 (AT, T 2) 7 2

7, 0 1 0 ((A', 7 2) 7 2) 7 A",

y, 0 1 1 “(AT,)® 7 («(A',)'’7 1)

As 0 1 2 AT,

At. 0 2 0 7(%, 7 2)

Ai 0 2 1 ( H X i f r  1)7 (AT, 72)

As 0 2 2 "(%,)" 7 2
y, I 0 0 (AT, 7 l)7((.V, 7 2)7 2)

A.Ü 1 0 1 (((AT, 7 2) 7 2) 7 AT,) 7 1

At, 1 0 2 X, 7 1

A.2 1 1 0 (AT, 7 1)7%, _

y.3 1 1 1 (trivial case)

y,4 1 1 2 ((AT, 7 2) 7 2) 7 1

y.s 1 2 0 (°(Ar,)°7 2)7(Ar,7 1)

A, 6 1 2 1 ('‘(Ar̂ )O 7 (T, 7 2)) 7 1

At7 1 2 2 (»(%,)" 7 2) 7 1

A.8 2 0 0 “(AT,)®

Ai9 2 0 1 (°(AT,)°7 l)7((Ar, 7l)7AT,)

A20 2 0 2 °(Ar,)°7(.V, 7 1)

A2. 2 1 0 (®(Ar,)« 7 AT,) 7 (.V, 7 1 )

A22 2 1 1 °lXifT  1

/23 2 I 2 “ (AT,)® 7 AT,
A24 2 2 0 AT, 7 2
A25 2 2 1 (AT, 7 2) 7 1

A26 2 2 2 (trivial case)

logic 2 forces to 2, and lowering Si  to 0 forces Q i  to 1. 
Tlic required logic for each half o f Fig. 2a is mapped in

J Î .
T
i V

1

iiJ

X;----- L T T I  .

X,TXj
ov

x.rxj

ov

xc

X.XTX.

Fig. 1 TOR and unary operator realisations in enhancement-m.o.s.
and bipolar form

a m.oj., positive logic, say 0 = OV, j = +5V, 2 = +10V
b m.o.s., negative logic, say 0 = OV, 1 — —SV, 2 = —lOV
c bipolar, positive logic (negative logic circuits using opposite

polarity devices equally possible)

(normally 1 )

(normally 1)
a

02(2.1.0)

Further considérations: While functional completeness ensures 
that any ternary function f { X )  can be realised by the use of 
the above two operators only, many authorities have 
previously considered the advantages of an augmented set of 
operators above the minimum-necessary set. In particular, the 
immediate availability of a set of unary functions is 
advantageous, often considerably reducing the algebraic and 
overall circuit complexity of a given function. Among the 
commonly encountered are the set o f six unary operators:

AT, AT,i AT,t x ; °(X if '(AT,)' '(AT,):

0 2 1 2 2 0 0

I 0 2 I 0 2 0

2 1 0 0 0 0 2

The availability of a choice o f unary operations eases the 
realisation of ternary tristable circuit elements. The specifica
tion of the ‘best’ tristable circuit, however, is a subject for 
continuing development, but a simple unclocked type of 
circuit which provides steady ternary output signals may be 
proposed as in Fig. 2. In order that the two halves of Fig. 2a 
shall be circuitwise identical requires outputs g , and Q i  to 
be the diagonal-inversion of each other, that is Qz — Q i ,  
with logic I being the quiescent input level on both inputs 
5| and 5 j.  Raising input 5 | to logic 2 forces output g , to 2; 
lowering 5 | to logic 0 forces g , to 1. Similarly, raising to

70

0 I 2 0 1 2

1 2- 2 0 1 2 2

1 1 2 I 1 1 2

1 0 2 2 1 0 2

2, l?M,2|
Fig. 2 Simple u ndocked symmetrical 'set-reset' ty p e  tristable circuit 

a schematic
b truth table for each output Q, and g,

Fig. 2b, which is realisable as follows:

e, = {(5,7-1) T (((5, T (2jÎ )  T e , î )  t 5.) r

(°{((5|T<22i)7-(22i)T5.}'>r2)}

Qi  identical except inputs and Q,  instead o f5 i and Qi.
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SOME PROPERTIES OF THE SPECTRA OF TERNARY LOGIC FUNCTIONS

V. H. TOKMEN

School of Electrical Engineering, University of Bath

Abstract

The transformation of conventional digital data 
into an alternative mathematical domain, the 
spectral domain, has previously been considered 
for both binary and higher-valued logic functions. 
The coefficient values in the spectral domain 
maintain the same information content as the 
original digital domain data, and may be used for 
logic analysis and synthesis purposes. Here we 
investigate how four logical operations on ternary 
input variables in the 3-valued digital domain 
modify the resultant coefficient values in the 
ternary spectral domain. The objective of this 
development is its subsequent application to the 
problem of synthesis of ternary (and higher-valued) 
logic functions.

1. Introduction

Spectral transformation of binary functions and 
binary logic synthesis using spectral data has 
been reported by a number of authors^  ̂  ̂ . The
extension of these spectral techniques to higher
valued combinational logic synthesis is also being 
pursued^»^ ^ . These techniques involve the 
transform of the function domain data into spectral 
domain data, using one of many possible transform 
matrices constructed from orthogonal functions. 
Mathematically this may be expressed as:

[t ] q] = s]
where - the chosen orthogonal transform.

Q] == the function domain data arranged 
as a column vector (truth-table).

s] == the resultant spectral domain data for the given function.

The spectral coefficients of may each be
considered as a measure of the dependence of the 
function on one or other variable of the function, 
or mod.m addition of combinations of these 
variables^  ̂. If, for example, all the
spectral coefficients involving the i—  variable
are zero-valued, then the i—  variable is 
redundant.

At this stage of development, it is difficult to 
define which subsets of spectral coefficients are 
more important than others when using the 
coefficients for synthesis purposes, as the 
type(s ) of logic gate available must be taken into 
consideration. However, the effect on the spectral 
coefficients of certain logical opérations in the 
function domain, for example linear transformation 
of the variables, has b e A  reported at a previous 
MVL Symposium^. In this paper we will continue to 
investigate these relationships, as a necessary 
prerequisite to the use of spectral data for logic 
synthesis purposes.

In particular, we will consider the effect of the 
following universal algebraic operations in the 
ternary function domain on the resultant ternary 
spectral domain:

(a) the interchange (permutation) of variables 
of the function, see Figure 1(b),

(b) the "commoning" (making two or more 
identical) of variables of the function, 
see Figure l(j: ),

(c) the holding of a variable at one of the 
logic levels ("held-at" conditions), see 
Figure 1(d),and

(d) cascade composition of functions, see 
Figure 1(e).

These four operations are illustrated in Figure 1. 
Note that they jointly cover the operations 
possible to synthesise any given function from a 
(potentially unlimited) supply of physically 
realizable logic gates. Operations (a) to (c) 
concern functions of a lower degree than n which 
are realizable by a n-input gate.

2. Definitions

2.1) V = {0,1,2} is a set with three elements.
2.2) Z = (Z Z ...Z ) is a n-tuple, wheren-l n-2 0

Z. e V, i = 0, ..., n-l, with 
^ n-l

i=0Z.3) X = (X X ...X ) is the input vector, where n n-l 1 ^

X. e V, i = 1, ..., n.

CH14ÜU-4/79/00ÜU-J088$UU.75 ©  197d IEEE
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x̂.

Xh-

Xi
X,

-flXn XzXn

x^—
X; _ V ^

-f'(Xm X̂ \)

lb)

(O
Xi

——f (X "X̂Xf)

(CO nshcnl-) (d)

-f([g(Ym-Y2Y,)]Xn-,-XzX,)
•n-1

le)
Figure 1 The logical operations considered:

(a) original gate, realising a n-variable 
function f(X),

(b) interchange of two input variables,
(c) commoning of two X^ inputs,
(d) "held-at" at one gate input,
(e) cascade composition.

2.4) f:V^ V is a fully-specified n-variable 
function, the truthtable of f being a
column vector pj whose entries f ( Z )
are the local values of the function f ( X ) »
ordered decimally.

2.5) q J is a column vector, whose entries are q(z)
f (z)ordered decimally, where q(z) = u 

.2 tt 

u = e=>^ .

and

2.6) Chrestenson functions® are a set of orthogonal 
stepping functions defined in the interval
[0 ,3") and (0 ^ w ( 3^-1): t^(z) = (w ,z )^

n-l
where Ch(w,z) = ^  ' W z

^  rw = ^  W.3 ,
i=0

i=0

2.7) The spectral coefficients of a n-variable 
ternary function using the Chrestenson 
functions as the transform are individually 
given by:

,n3 - 1
t^(z).q(z).

z=0

where t^(z) is the complex conjugate of 
t^(z). Re-expressed in vector form, this is 
merely S - T Q » which is one transformation 
of the complete transform Sj = QJ 
previously noted, and where the elements of 

[ 7 ] are t = t (z). wz w
Note that as t t the transform matrix zw^ 7  J  is diagonally symmetric ; also the rows 
of ^ 7 J are mutually orthogonal. Therefore 
the inverse of |^7J is simply its conjugate 
multiplied by a scaling factor , giving:

Such orthogonal transformations may be shown 
to be unique, the information content of
Sj and Q J  being identical.

89
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3. The Algebraic Operations and Resultant 
Spectral Changes

3.1) Permutation of gate inputs, see Figure 1(b) 
(simplified from Karpovsky^)

Required:

f ’(X X ...X.X X , ) = f ( X X  ...X.X----X.)n n-l 3 1 1 n n-j i ] 1
Note: This interchange of pairs of variables may
be repeated to achieve any desired input 
permutation.

Then the new spectral coefficients in terms of
the original spectral coefficients S are given 
by:

S' = S I, where : w w
,n-l.w = {3“ "W + ... + 3^W. + 3^W. + ... + W„}, n ] 1 ^

and
, n - 1,w ’ = {3“ 'W + ... + 3^W. + 3^W. + ... + W-} n 1 ] 0

Proof :
From (2.7) we have :

3"- 1 ____
K  " X) tw(z).q(z'),

z=0

where z = {3^"^Z + ... t 3^Z. + 3^Z. + ... Z„}n-l 3 1  0

and z ’ = {3^"^Z + ... + 3^Z. + 3^Z,+... Z.}n-l 1 3  0
But 3̂ -1 3"- 1
S' = t (z).q(z') = V '  t (z').q(z),w / J w w

0 if W ^ 0.n-l

v: = { ( 2 © W  )3"  ̂ + ( 1 © W  )3"~^+ ...+W„3°}1 n-l n -2 "

w^ = { ( 1 © W  + ( 2 © W  -)3"‘%  ... + W-3°}2 n-l n-z u

and where ©  = mod.3 addition.

s'w
Proof:

Consider the function column vector pj , where 
pj = f ( X) • If Xj is now made equal to X ^ , then 
the column vector pj will be altered to p'J such 
that the original values of f(X) when X^ = X^ 
are now repeated in blocks of threes.

Examination of the transform matrix ^jJ^^ill show
that the last {3^  ̂ x 2} rows ̂ f  the matrix have a 
structure such that when each row is divided into 
blocks of threes, these blocks contain"1 , u and u^, 
which together sum to zero. (Note that these are 
the rows whoTe  ̂X 0.*) The multiplication of
Q J » “ F J J with the transform matrix ^J J will
therefore result in a spectrum with spectral 
coefficient values S' = 0  for W / 0. However,

T1 1 W r  -j n 1
the first 3 rows of J  contain blocks of three
of the same value. Hence we require to'find three
rows of ̂  7  j which take the same values for

z=0 z=0

Zp = Z ^ , and take different values for Z q ?! Z^ ,
so that when the spectral values associated with 
these three rows are added, their contribution 
to the spectral coefficient value S from Z^ = Zj
is tripled, but their contribution from Z^ / Z^
sums to zero.

and from the definition of the Chrestenson 
functions it follows that :

t '(z) = t (z')

Therefore :
3"- 1 ____  3"- 1 ____

Sw = t^(z').q(z) = t^,(z).q(z) = Ŝ ,
z=0 z=0

These three rows can be found from examination of 
the exponents of the Chrestenson functions which
make up |^7 j , and are:

Ch(w^,z) = + ... +

CMw^.z) = + + +
Ch(Wj,z) =

3.2) Commoning gate inputs, see Figure 1(c) 

Required:

f'(X X ...X_X_) = f(X X ,...X^X,)n n-l 2 2 n n-l 2 1

Then the new spectral coefficients S' in terms of
the original spectral coefficients are given
by:

S = S + S + SW Wp Wj W 2

where w = {W 3^"" + W ^3^"^ + ... + W„3°]0 n-l n-2 0

that is :
Ch(Wg,z) = k, where k is an integer, 
Ch(w^,z) = 2Z^ + Z^ + k,
Ch(w^,z) = Zp + 2Zj + k.

If Zp = Z j , then Ch(Wj,z) = k + 3Z^ 
and Ch(Wg,z) = k + 3Z^

and therefore
t (z) = t (z) = t (z).

Wq w^ W2

90
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But if i Z ^ , then we have the following numeri
cal results:

2Ẑ  +

It can be seen from this table that 
t ( z ) = ut ( z ) ,W^ W q

and t (z) = u^t (z),w . w„

where i j » i»j e {1,2}, 
and therefore

t (z) + t (z) + t (z) = 0.W q WJ Wg

Hence the commoning (making equal) of two function 
variables reduces the n-variable function to a 
(n-l) variable function. Therefore, finally, if 
the spectral coefficient values whose

^ ^ 0 are omitted, and all remaining values
in are divided by three, then the conventional
minimum length, minimum coefficient value spectrum 
for the (n-l) variable function f'(X) is obtained.

3.3) "Held-at" input, see Figure 1(d)

Consider a n-variable function f(X X ...X,) with 
th ^ 1spectrum S^. If the n —  input of the logic gate

that realizes the function f(X) is now held at a
logic level, the new function realized by this 
gate and corresponding spectrum will be:

where $^1 = the spectrum for the healthy n-
variable function, re-ordered as 
defined below.

M  M  [>J

[i] y i j  u ^ i ] %

[ l ]  u ^ l ]  u[l]

s?

s-

^  f(0 X ... X ), that is X held at 0,n-l 1 n

^ f (1 X ... X ), that is X held at 1,n-l 1 n

^  f ( 2 X ... X ), that is X held at 2.n-l 1 n

Proof:

In order to simplify the mathematics of the proof, 
a different ordering of the Chrestenson transform
matrix T J will be employed. This re-ordered
matrix will be called j » (Hadamard ordering).
We now have:

M -

N = [V,]
[“.-J

"■[".-J

■{“.-J

The elements of this matrix can be shown to be:

h =wz
n-l

where p(w,z) = ^  W Z
s=0

The transform matrix will produce the same
set of spectral coefficients as obtained using the 

transform matrix, but re-ordered as follows:

S = where W* = {W, Dn-l
n - 1 ■

n-l
= X) 3\w ,

i=0
n-l

The column vector q J may be written as three 
adjoining vectors

Qo]
Q.]
q

where , q J  and Q^j are the column vectors 
with X^ = 0, 1, and 2, respectively. Then:
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["-J [ ” ] [ " Î 1 ..1

[ ' ]  [ c ] [ ” ] = S îJ

[ " ]  [ " ] [it:,] qJ q

where [ c ] *is the complex conjugate of k . J

The column vector can be replaced by

q] = f [h„]ss]
and hence it follows that

[■] [■] [1] q
[I] u[l] .yi] % • %,]
[I] U^I] u[l] 1

From the above relationship between the usual 
Chrestenson ordering of the spectral coefficients 
and this revised Hadamard ordering, if the 
Chrestenson ordered set of spectral coefficients 
are used to calculate the stuck-at coefficients, 
we finally have:

i i i o o o .  1 0 0 0 . . . . !ooo. . . .
0 0 0 . . . . 1 1 1 1 0 0 0  . | o oo. . . . 
0 0 0 . . . . I 0 0 0 . . . . | 1 1 1 0 0 0 .  
0 0 0 1 1 1 .  | 0 0 0 . . .  . ^ 0 0 0 . . . .

1 1
, i 1 .

o o o . . . . | o o o . . . . i o o o . i i i  

luu^ooo. j 0 0 0 . . . . ! 0 0 0 . . . .
0 0 0 .  ... jiuu^.. . . 1 0 0 0 . . . .

■ 1 • 1

o o o . . . . | o o c . . . . t o o o . i - j - j ‘

S„

1 û u 0 0 0 . | o 0 0 . . . . | o 0 0 .... 
0 0 0 0 j ; . 1 : . . . . ̂ 0 c 0 . . . .

1 ■ 1 •

' • 1 ■1o o o . . . . | : o o . . . .  ooo.iu^u 
1 1

3.4) Cascade composition of functions, see Figure 
1(e)

Given two functions f and g with n and m variables, 
respectively, with individual spectra in Hadamard
ordering of Sjv̂  I and I , we may generate a 

new function as shown in Figure 1(e), given by;

h > ]  V i V z - - -  '

which we may denote by (f*g). Then the spectrum 
for (f*g) is given by:

H i l Sa
/ i

m+n-1

[ h] = 

.}■

where I H  I = the Hadamard-ordered transform, of 
dimensions m+n-1,
the spectra, of function f , with
its n ^  input 0,1 or 2, repeated
3"* times as defined by

i b>’
the resultant complete spectrum of 
the n-input function (f*g), in 
Hadamard ordering.

Proof :
Proof follows closely from that of section (3.3) 
above, viz:

Sa] =

H.-1 0

G(f.g)
1

But

Therefore

]'w 3n- Hm+n-1

f c ]

[ c , ]

whence

m+n-1 ^

92



169

where is the matrix obtained by

multiplying each element of w matrix by

'3 X 3
4. Closing Remarks

Given a logic gate which realizes a n-variable 
function, the operations (3,1) to (3.3) above 
produce functions of (n-l) variables realizable by 
the same gate. Repeated such operations clearly 
produce functions of (n-2) variables, and so on. 
With the addition of the simple logical operation 
of negation an appropriate n-input gate may be 
used to implement some or all of the functions of 
< n inputs. In the binary case the existence of 
n=3 functions which are each capable of realizing 
all the binary n=2 functions, and also n=5 
functions which are capable of realizing all the 
binary n=3 functions have been reported", the 
specification of these "master" n-input functions 
being derived from binary spectral considerations. 
Corresponding developments for the ternary case 
are being c o n s i d e r e d ^ ^ ^ , but a prerequisite to 
this complete development is an understanding of 
ternary spectral manipulations.

Operation (3.4) above is clearly one which may 
enable the cascade synthesis of required logic 
functions to be undertaken using spectral data, 
and therefore is complementary to operations (3.1) 
to (3.4). It may finally be noted that these 
developments mry be extended to the consideration 
of the spectra of m-valued functions, m > 3.
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A CONSIDERATION OF UNIVERSAL-LOGIC-MODULES FOR TERNARY SYNTHESIS, BASED 
UPON REED-MULLER COEFFICIENTS

V H Tokmen and S L Hurst 

School of Electrical Engineering, University of Bath

Abstract

Ternary switching functions may be realised by the 
use of universal-logic-modules ("ULM's"), the 
specification and use of such modules being based 
upon the canonic Reed-Muller ternary expansion. 
Function realisation, however, requires computation 
of the Reed-Muller coefficients for the particular 
function being realised. In this paper a straight
forward matrix method of solving the coefficients 
for any given ternary function is disclosed. The 
method does not require the lengthy solution of 
3" simultaneous equations, but instead involves 
the multiplication of three matrices of order 
3m ^ 3m determine the 3" unknown coefficients,
where m =

The method may be shown to be extendable to any 
q-ary system, where q is a power of a prime.

1. Introduction

The uncomplemented Reed-Muller expansion for a 
two-variable (n = 2 ) binary function, namely:
f(Xj,x̂ ) = {â  0  â x̂  ©  â x̂  0  â x̂ x̂ }, ...(1)
where x^,x^ e {0 ,1 }, ©  = m o d .2 addition
(= Exclusive-OR), and a ^ , i = 0,1, ..., are the 
binary Reed-Muller coefficients, a^ e {0,1}, may 
be factorised as:
f(x̂ ,x̂ ) = {(â  (±. a^x^)© x̂ .(â © â x̂ )} ...(2)

U L M 2

U L M Z

(b)

Figure 1 Binary universal-logic-module based 
upon the binary Reed-Muller canonic expansion.
(a) basic n = 2 ULM of Murugesan.
(b) tree structure of n = 2 ULM's for functions 

of three variables (Note, x^ inputs may be
interchanged, with corresponding modification 
to the coefficient values).

This forms the basis of the binary universal logic 
module proposed by Murugesan^’^ ^ , where it is 
appreciated that each parenthesis bracket in the 
factored expansion may take one value from the 
set {0,l,Xj,Xj}. This is illustrated in Figure
1(a). For functions of more than two variables, 
an assembly of such modules such as shown in 
Figure K b )  develops.

For the ternary case, the corresponding n = 2 
Reed-Muller expansion takes the usual form:
f(Xj ,x^) = {a^ C+ © a ^ x ^ r + a ^ x

2
(+

22̂
(3)

where x^ ,x^ & { 0 , 1 , 2 } , ©  = mod. 3 addition, and
a., i = 0 , 1 ,  ..., are the Reed-Muller coefficients,
a^ e {0,1,2}. It will be noted that there are
3^ Reed-Muller coefficients to describe any 
ternary function of n variables. A similar 
development may be applied to Equation (3) as was 
applied to the binary Equations (1) and (2), 
giving the mod. 3 factorisation:

= {(â  ©  â x̂  ©  â Xj2 ) (ÇP ©  â x̂
©  â x̂ Z) ©  (ag ©  a.̂x̂ ©  â x ̂ )}

. . .  (H)

248
' (p IEEE
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Each parenthesis bracket in equation (4) may now 
be realised by a single-variable universal logic 
module, as illustrated in Figure 2(a).

The assembly of such modules for the realisation 
of equation (4) therefore is as shown in Figure 
2(b). The triangular topology for more than two 
ternary variables (n > 2) should be clear, 
similar to that published for the binary case.

f (Xi)

(b)
Figure 2 Ternary universai-logic-module based 
upon ternary Reed-Muller canonic expansion.
(a) basic n = 1 ternary ULM, incorporating 

mod.3 multiplication and addition.
(b) tree structure of n = 1 ULM's for functions 

of two variables. (Note, the x^ inputs may
be interchanged, with corresponding 
modification to the coefficient values.)

To apply this form of realisation for any given 
ternary function f(x) thus requires the calcu
lation of the a^ constants for the particular
function. This is the purpose of the algebraic 
development disclosed in the following sections, 
finally leading to the establishment of equation 
(22), which will give the desired coefficients.

The number of universal logic modules ("ULM's") 
necessary to realise any given ternary function 
of I. variables will not exceed

Should all the a. coefficient inputs into a 
particular ULM be zero-valued, then clearly it is 
unnecessary to include this module in the final 
hardware realisation. Equally, if a^ and a^ but
not a^ (see Figure 2(a)) are zero, then a^ is fed
through unchanged and the ULM is unnecessary.
Hence it is desirable from the cost point of view 
that the number of ULM's with zero-valued a^ and a^
coefficients is maximised, which may be achieved 
by the appropriate permutation of the x^ inputs in
the general realisation structure illustrated in 
Figure 2(b). Further, if two (or more) ULM's at 
any level of realisation have identical inputs, 
then such ULM's may be combined into a single ULM 
with the same input signals. Thus the possible 
permutations of the x^ inputs may markedly influence
the minimum number of ULM's necessary for the 
realisation of the given function, this» feature 
being considered in the final section.

The physical implementation of the mod.3 multi
pliers and adder in the ULM of Figure 2(a) in 
monolithic jform would ,^ppear to be most promising
in I^L technology**, 
by other authorities.

Work in this area is in hand

E 3
i = l

i-1 ,(3" - 1) (5)

2. Matrix relationships for the Reed-Muller 
coefficients

A major problem is the determination of the a^
coefficients for any given function f(x)^ ^ ^ .
The usually-described method is to solve the set 
of 3*̂  simultaneous equations which exist and have 
to be satisfied when each minterm value of f(x) 
is listed. This is a lengthy procedure when n is 
large. Here we will develop an alternative matrix 
method for solving the a^ values, and then continue
further using these values in a ULM realisation.

2.1) Definitions and basic developments 

Definition 1

Let V = {0,1,2} be the value set for the ternary 
algebra, and x^ c V be the independent ternary
input variables, i = 1, 2, ..., n.

Definition 2

If F:v" V is a n-variable ternary function, 
then F may be expressed in a modified Reed-Muller 
form^, as below:

f(Xi,X2,...,Xn) - I ’^ 2 ’■*‘^n-i^

... (E)

where 'T, = mod.3 addition and . = mod.3 multi
plication .
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The latter will continue to be omitted from here 
on.

Similarly, each internal function may be expanded; 
for example

 V l ’ =

. . .(7)
When this process is repeated n times we have the 
full expansion containing 3" terms, namely:
f(x̂ ,X2,...x̂ ) = |â  ©  â x̂  ©  â Xĵ

©  x ^ C a ^ ©  a^x^ ©  â x̂ 2)
©  Xĝ (â  ©  â x̂  ©  agX̂  ) ©---

Pi ?2 Pq Pn 
©  a^x^ x^ Xg . . .x^ © ------

where i = Pj^^ + p^3^ + ... + p^3^  ̂ , and a^ 
and p^ e {0,1,2}.

(8)

Definition 3

(a ) is a row matrix of order 1 x 3 ,  where

m = ^; n is assumed to be even integer.*

where k Ih

, k k11 12 13
Pi P2 Pm, x„1 2 ' '^m ’
_1 _m-13 + . . . P_3

where a. e {0,1,2} are the same as in Equation (8). 
Note that all the 3" a. coefficients are contained 
in this matrix.

Hence it follows from Definitions 3 and 4 that 
Equation (8) is given by:

f(Xj,X2,.. . ,x̂ ) = Xj [̂ A J X J  ...(9)

Definition 5

j  and are matrices of the order s"* x s"',
such that if e and e then

Pi ?2 Pm 
\h = h  -2 ""m

where h-1 = p^3^ + p^S^ + ... + p^3"^ ̂ ,

g-1 = x^3° + x^S^ + ... + x^3"’ \
and r^ r^ r ^
Z.. = X X ...X , where i-1 = r 3° + r 3^1] m+i m+2 n. 1 2

+ ... t'3 3"’"^ 'm

and j-1 = X 3° + X 3^ + —  x 3^  ̂m+1 m+2 n

It readily follows that

[Y2] = M * ...(10)

m

Let us define a matrix of dimensions b x b as 
follows, where b = c .

3

..m(b) X t I is a column matrix of order 3‘" x 1.
r. r„ r

X;] -
I., c X % ]  where 1.^ =

j-1 = r 3° + r 3^ + .. . + r 3"* ^.1 2  m

Definition 4

is the Reed-Muller coefficient matrix of
, _m m order 3 x 3 ,

[A] A 3̂ +1

3™-l 3"-l

Mhx:

[Ilexc [Olcxc lOlcxC

[Ilc.o IIICXC niexc

[Ilcxc [Ilcxc

the unity matrix.

Theorem 1

bxb

'ix in terms of the
matrices is given by:

[K]

* Note, should the number of variables n in a given 
problem not be an even integer, then we may take 
the next highest integer value, and assume in all 
the subsequent algebraic developments that this 
additional variable is eventually redundant, 
that is it is a dummy variable.
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[YJ
3™x3™

[K] 3x 3
[K13x 3

0

[K] 3x3 

3“x3®

[K]9 x9
[K]

Proof

Each row of matrix can be considered as an
Xj^J row vector with vector elements given numerical
values. Let k be a real number such that 

m
k = X. 3^  ̂ , then the first row of

i = l ^
is

= ^ 2  x^3^  ̂ , then the first row of| Y  1
i=l ^ L J

is X qJ » the second row of |^Y^^ is Xjj » etc.

If I^YjJ is a 3 X 3 matrix, then Xj^J with one 
variable will be X^J = |̂ 1 x^^J  ̂ ...(13)

In particular

Xq] = [1 0 o]*

X J  = [1 1

Xg] = [1 2

1],

1].
giving

'x„]' 1 0  0

1Y,1 . = 1 1 1

. 4 1 2  1

(14)

With two variables we have:

Xfcl = L  Xj Xj2 X

= [1 X, X

9x9

m 9x9
gmygm

• • • [KJ jmxgm ...(12)

3®x3™

X,] = [1 1 i][[Il

X J  = [1 2

X3I = [1 0 o][[l]

3x3

3x3

(0]
3x3 [°l3xs]

[0]_ . [0]3x3

3x3 ^̂ 3̂x3 [I]

3x3

3x3

X .1 = [1 2 [I-]•̂3x3]
— (16)

Therefore.:

1Y,1 -

1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 ^ 0
1 2 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 2 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 2 1

[I] '"L.a

I”, " I . . 3

‘ 1 ■ 

1x3

Hence :

Xn] = [ 1 0 0 ]

1 O 0 X2 O O X 2 0 O
O l O O x g O O X g O

O O l O O X g O O x ^

3x9

••(15)

'[K] , [0] [0 ]3x3

[0] [K13X3 [0 ] [K]gx9

[0] [0] 1K13X3

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

Note, all matrix element subscripts are integer, 
and all matrix multiplications are mod.3.
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Definition 6

Let be the function output matrix of order
3"» X 3""

"ii = f(Xi

where
i-1 = x,3«

and
j-1 = ’̂ m+1

Theorem 2

...(17)

,.m- 1

,m- 1

It follows from the previous definitions that

W = [ Y . ] [ A ] [ Y a ]
Proof
From equations (9) and (17)

L :  = \ ] [ A ]  X j .(19)

where

and

k =

I =

a=l

n

a=m+l

a- ( m + 1 )

Therefore i = k and j = Z.

'  \ ]  [A] Xj] •

Now are the rows of | Y 1 and X? 1 '•

^ [Y Jare the columns of 
that :

Therefore it follows

M  = [ Y , ] [ A ] [  Y J . ..(18)
(repeated)

3. Evaluation of the Reed-Muller coefficients 
for a given function

Matrix is a non-singular matrix and its 
inverse therefore is :

lllcxc [Olcxc [ol

[Kl"‘ = I I I

"Nlexc ^tllcxc 2[I] b̂ b

...(20)

...(21)

Therefore from equation (10) we have

[ ' f  [f][> .r ■ [»]
and from equation (10) we have

[ ' F  ■ ( [ ' ] • ) "  ■
But for any non-singular matrix wé have

([«]*)" . ([M]-')' .
and hence Equation (20) finally may be written:

w  ■ k r  [F] (lY,!-)'

rFinally, expressing Y^ in terms of

matrices, we have:
[Kj

[V,]"'
M 3.3 0

0 *^3

[K]3“ k3“
[K]gx9 0 
0 [K] 9x9

[K]3“x3“

[K]Tx3 0
•••. I

0  [K]3x3

...(23)

As an example of the application of these final 
equations, let us determine the Reed-Muller 
coefficients for a four-variable ternary function,
whose output values expressed in the 3̂ ' x 3^

[ F ]matrix format p are as follows :

and matrices

where -j = c as before.

* Note, the

for n = 2, 4 and 6 are given in the final 
Appendix.
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Function

00
01
02
10

11

12

20
21
22

From Equation (23) we have:

- 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 2 0 0 1 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 2 0 0 1 0 0 0 2 2 2 0 0 0
2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 1 0 0
0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 2 1
Û 0 2 0 0 2 0 0 2 0 0 0 0 0 0 2 2 2

1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0
0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 2 2 2

2 0 0 2 0 0 2 0 0
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1

Hence

1 0 2 0 0 0 2 0 1
0 2 2 0 0 0 0 1 1
0 1 2 0 0 0 0 2 1
000201201
0 0 0 0 1 1 0 1 1
0 0 0 0 2 1 0 2 1
0 0 0 1 0 2 2 0 1
0 0 0 0 2 2 0 1 1
0 0 0 0 1 2 0 2 1

The evaluation of Equation (22) therefore gives

0 1 0 1 0 0 0 0 0  

1 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0  0, 
0 0 0 0 0 0 0 0 0  

000000000 
000000000 
000000000 
000000000

and hence the function is merely:

4. The effect of interchange of variables on ULM
realisations

It has previously been noted that when ULK 
realisations are required, choice of the x.
inputs at each level of realisation can influence 
the total number of ULM's necessary in the 
realisation. Let us now consider this feature.

Let R be a n-tuple H R  ...R R , and r be a real n n-l 2 1

number such that R.31
i-1 = r , where R^ e V.

Let us number the rows and the columns of the |
matrix with the subscripts of the first elements 
of each row and column, respectively, in m o d .3. 
Then it can be seen from Equation (9) that the
coefficients in the r^^ row (or column) of
appear with the variables x.^^ . The interchange
of inputs x^ of such a combinational circuit will
cause the row (or column or both) numbers of |"A ]
to be changed.
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If then the rows and columns of the [A] matrix
are re-arranged so that the row and column numbers 
are brought back to their original places, the 
function remains unaltered, since the coefficients 
will be still appearing with the same variables. 
This interchange of variables can be done so that 
the number of "blocks" of zero's are maximised, 
and hence the number of ULM's to be used to 
implement the function is reduced.

For example, consider the function ,x^) whose 
truthtable is :

0 1 2
0 1 1 0
1 1 0 0

2 2 1 1

From equation (23) we have:

[A] =

1 0  0 
0 2 1 
2 2 2

1 1 0  
1 0  0 
2 1 1

1 0  2 
0 2 2 
0 1 2

O—

(b)

2 1
0 0
1 1

1 
1

2
Thus a circuit realisation satisfying the above 
function is as shown in Figure 3(a), using four 
ULM blocks in this particular realisation.

However if Xj and x^ are interchanged, recalcu
lation of the Î̂ /\J coefficient matrix will give:

[A’] =

1 1 2  
2 O' 1 

1 0  1

with the corresponding realisation shown in 
Figure 3(b)

In this simple example no two blocks at the first 
level of realisation have all-zero or the same 
set of a^ input coefficients, but the middle ULM
is now redundant as only the a^ constant 1 is fed
on to the second-level U L M . Thus calculation of
all different ĵ /\J coefficient matrices and
examination of the zero-valued or identical- 
group-of-three valued coefficients will show the 
maximum redundant ULM configurations.

Figure 3 Ternary ULM realisation of f(Xj,x^) = 
1,1,1,1,0,0,2,1,1

(a) with x^ in the first level of realisation
(b) with x^ in the first level of realisation,

the first-level^middle ULM now being 
redundant.

5. Further comments

Functions in q-valued logic, where q is a 
positive integer power of a prime p, can be 
represented as polynomials over the Galois field 
GF(q). For example, the polynomials for a 
single-variable q-valued function will take the 
form

f(x) = a. + a^ .X + a .Xq- 1
q-l

where a^ e V  = {0,1,...,q-l) and +,. are addition
and multiplication operations, respectively, over 
the field GF(q). The computation of the a^
coefficients in terms of the local values of the 
function f(x) has been described by several 
authorities®”^Î In particular. Green et. al. have 
given matrix solutions for the determination of 
coefficients, which involves the computation of
a (q^ X q") inverse matrix for the n-variable 
case. The development described in this paper 
has computational advantages over Green et.al's 
method in that :
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(a) the inverse matrix to be computed is of the
^/9 /̂9order of (q ^ x q ■̂ ), hence reducing the 

memory space required to store the data,
and
(b) the number of additions for the computation 

of the coefficients is smaller.
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APPENDIX

The

final equation

matrices used in the

[•]  ! '. ]■  [ f ] ( [ d  ) - 2
are given below for n = 2, n = 4, and n = 5.

References (a) n = 2
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Murugesan, S.: "Universal logic gate and its
applications". Int. Journal of Electronics, 
42, No.l, 1977, pp.55-63.
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3. Edwards, C.R., and Hurst, S.L.: "An analysis
of universal logic modules". Int. Journal
of Electronics, No.6, 1975, pp.625-628.

4. Dao, T.T.: "Threshold I^L and its applica
tions to binary symmetric functions and 
multivalued logic", IEEE Trans. Solid 
State Circuits, SC.1 3 , 1977, pp.133-137.

5. Moraga, C .: "Logic design of multi-valued
switching circuit using modulo adders". 
Report No.22/77, Abteilung Informatik, 
University of Dortmund, W. Germany, 1977.

6. Green, D.H., and Edkins, M. : "Synthesis
procedures for switching circuits repre
sented in Reed-Muller form over a finite 
field", lEE Computers & Digital Techniques, 
1, No.l, 1978, pp.27-35.

7. Bernstein, B.A.: "Modular representation of
finite algebras", Proc. 7th International
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pp.207-216.

8. Benjauthist, B ., and Reed, I.S.: "Galois
switching functions and their application", 
IEEE Trans. Computers, C .25, 1976, 
pp.78-86.

9. Wesselkamper, T.C.: "Divided difference
methods for Galois switching functions", 
ibid., C.27, 1978, pp.232-238.

10. Pradham, D.K.: "A theory of Galois switching
functions", ibid., C . 2 7 , 1978, pp.239-248.

11. Green, D.H., and Taylor, I.S.: "Modular
representation of multiple-valued logic 
systems", Proc. lEE, 121, 1974, pp.409-418.

(b) n = 4

[Yj
- 1

1 0  0 
0 2 1
2 2 2

1 0  2 
0 2 2 
0 1 2

100000000
021000000
222000000
000200100
000012021
000111222
200200200
012012012
111111111

102000201
022000011
012000021
000201201
000011011
000021021
000102201
000022011
000012021
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[Yj
-1

10 0 
0 2 1 
2 2 2 
0 0 0 
0 0 0 
0 0 0 
2 0 0 
0 12 
1 1 1  
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
2 0 0 
0 12 
1 1 1  
0 0 0 
0 0 0 
0 0 c 
10 0 
0 2 1

0 0 0 
0 0 0 
0 0 0 
2 0 0 
0 12 
111 
2 0 0 
0 12 
111 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
I C O  
0 2 1 
2 2 2 
10 0 
0 2 1 
2 2 2

0 0 
0 0 
0 0 
1 0 
0 2 
2 2 
2 0 
0 1 
1 1
0 C 
0 0 
0 0 
C 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
2 0 
0 1

1 0 
0 2 
2 2

0 0 
0 0 
C 0 
0 0' 
1 0 
2 0 
0 0 
2 0 
1 0 
0 2 
0 C 
0 1 
0 0 
0 0 
0 0 
0 1 
0 0 
0 2 
0 2 
0 0 
0 1 
0 c 
2 0

0 0 
0 0
0 Q 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0
1 2 
1 1 
0 0 
0 0 
0 0 
0 0
2 1 
2 2 
0 0 
1 2 
1 1 
0 0 
C C 
0 0 
0 0

2 2

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0  0 2 
0 2 10 
2 2 2 1 
1 0  0 1 
0 2 10 
2 2 2 2 
0 0 0 0 
0 0 0 0 
0 0 0 0 
10 0 2 
0 2 10 
2 2 2 1 
10 0 1 
0 2 10 
2 2 2 2

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 2 
0 0 0 
12 0 
110 
0 0 2 
2 10 
2 2 1 
0 0 2 
0 0 0 
0 0 1 
0 0 0 
1 2 0 
110 
0 0 1 
2 10 
2 2 2

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
2 1 0  0 0 
2 2 0 0 0 
0 0 2 0 0 
0 0 0 1 2 
0 0 1 1 1  
0 0 2 0 0 
12 0 12 
1 1 1 1 1  
0 0 0 0 0 
1 2 0 0 0 
1 1 0  0 0 
0 0 10 0 
0 0 0 2 1 
0 0 2 2 2 
0 0 10 0 
2 10 2 1 
2 2 2 2 2

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
10 0 
0 2 1 
2 2 2 
2 0 0 
0 12 
111 
0 0 0 
0 0 0 
0 0 0 
2 0 0 
0 12
I C O  
0 2 1 
2 2 2

-| -1

1 0 2 0 0 0 2 0 1 0 0 0 Q 0 0 0 0 0 2 0 1 c 0 C 1 0 ?
0 2 2 0 0 0 0 1 1 0 0 0 0 0 0 c 0 0 0 1 1 0< 0 0 2 2
0 1 2 0 0 0 c 2 1 0 0 0 0 0 0 c c 0 0 2 1 0 0 G 0 1 2
0 c 0 2 0 1 2 0 1 c c 0 c 0 c 0 c 0 0 0 0 1 0 2 c 2
0 0 0 0 1 1 0 1 1 0 0 0 0 c 0 c 0 0 0 0 0 0 2 2 0 2 2
c 0 c 0 2 1 0 2 1 0 c 0 0 c 0 0 0 0 c 0 c c 1 2 0 1 2
c c 0 1 c 2 2 0 1 c 0 0 0 0 c 0 0 0 0 0 0 2 c c 2
c 0 0 0 2 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 2
0 0 0 0 1 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 c 0 2 1 0 1 2
0 0 0 c 0 0 0 0 0 2 0 i 0 0 0 1 c 2 2 0 1 0 0 0 1 0 2
0 0 0 0 0 0 0 0 c 0 1 1 c 0 0 0 2 2 0 1 1 0 0 0 0 2 2
0 0 0 c 0 c 0 0 0 0 2 1 c 0 0 p 1 2 0 2 1 0 0 0 0 1 2
0 c 0 0 0 0 0 0 0 0 c 0 1 c 2 0 2 C 0 0 1 c 2 1 C 2
0 0 0 0 0 0 0 0 0 0 0 c c 2 2 0 2 2 0 0 c 0 2 2 0 2 2
0 c 0 c 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 c c 0 1 2 c 1 2
0 0 0 0 0 0 0 0 0 c 0 0 2 0 1 1 c 2 : 0 c 2 0 1 1 0 2
0 0 c 0 0 0 0 0 0 c c 0 0 1 1 0 2 2 0 0 0 0 1 1 c 2 2
0 0 0 c 0 0 0 0 0 c 0 0 0 2 1 0 1 2 c c c 0 2 1 0 1 2
c 0 c c c 0 0 0 0 1 0 2 c c c 2 0 1 2 0 1 0 0 0 1 C 2
0 c 0 c 0 0 0 c 0 0 2 0 0 0 c 1 1 G 1 1 0 0 0 0 2 2
0 0 0 c 0 0 0 0 0 c 1 2 0 c 0 0 2 1 0 2 1 c 0 C 0 1 2
c 0 0 c c 0 0 0 c 0 0 0 2 c 1 2 C 1 c 0 0 1 3 : 0 2
0 0 0 c c 0 0 0 0 : 0 0 c 1 1 0 1 1 0 0 c 0 2 2 c 2 2
0 c c c 0 0 0 0 c 0 0 0 0 2 1 0 2 0 c 0 0 1 2 0 1 2
c 0 c c 0 c 0 0 0 0 0 0 1 0 2 2 0 1 c 0 0 2 C 1 1 C 2
c 0 c 0 0 0 c 0 c 0 0 0 0 2 2 c 1 1 c 0 c 0 1 1 c 2 2
0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 2 0 0 0 0 2 c 1 2
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Abstract— The relationship between the spectral coefficients of the functions in a two-level decomposition 
and the overall function spectrum are considered, and an algebraic relationship established to give the latter 
from the former. These algebraic relationships hold for binary or higher-valued logic systems. The 
extension to three- or more-level realisations is mathematically straightforward.

1. INTRODUCTION
The synthesis of logical functions, that is functions which are the mappings from the cartesian 
products of a set V with n elements onto V, using spectral techniques has been the Object of 
research by a number of authorities in recent years [1-5], Such techniques involve the 
transformation of information given in truthtable form into a spectral domaimusing orthogonal 
transforms, and manipulating the resultant spectral domain data so as to achieve an efficient 
design realisation using the range of available logic gates. Although most research has 
concentrated upon two-valued (binary) synthesis, an attraction of spectral synthesis methods is 
that the properties of orthogonal transforms and the design principles can be shown to be 
applicable for any m-valued system, where m ^  2 is an integer. A number of properties and the 
theorems concerned have been published [2,6,7].

This paper investigates the general relationship between the spectra of (^ + 1) m-valued 
functions that are used in a two-level realisation of a function G{X), and the spectrum of G(X). 
Such a two-level realisation is shown in Fig. 1. The function G{X)  is therefore a composition of 
the individual functions f = 0 , . . . ,  & -  I and g, where g may be any logichl function. An 
extension to more than a two-level realisation follows.

Input n-tuple Second-level it-tuple; Zq, Z, Z , .

GiX)

2nd level function, 
spectrum S^]

g(Z)

U^)

1st level functions, 
spectre ] , 5 , J  5 , J

Fig. 1. Two-level realisation of a function G(X), function inputs Ai. / = 0 to « - 1.

2. DEFINITONS
(1) V = { 0 , 1 , . . . ,  m -  1} is a set with m elements (integers mod-m).
(2) G,fi- V" -^V, / =  0 , 1 , . . . ,  Â: -  1, are a set of /c fully-specified n-variable functions.
(3) X  = {X„-^X„-2 . . .  Xo) is a n-tuple, where X , i = 0 , . . . ,  n -  1 G V.

233
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(4) X = 2  m'%,. (1)i“0
(5) g: F* ->V is a fully-specified ^-variable function.
(6) The local values of /,(X ), / = 0 , 1 , . . . ,  it -  1, form a it-tuple which will be denoted by Z,

I.e.

and

2 = 2  w  1*0
(7) Function G is the composition such that

G (X)  =  U - 2( X ) , . . . ,  foiX)).

(8) The spectrum S/] of a function /  is given [2,6] by the transform

[H]Q/] = S/1,

where the entries q(x) of Q/] are

q(x) =  ordered decimally and u =

(2)

(3)

(4)

(5)

(6)

and where the entries ĥ y of [H] are

n - l

ĥ y = where  ̂=  2  T/W;i-O (7)

where y = I"JÔ rn'Yi and w = m'Wj, and ĥ y is the complex conjugate of ĥ y.
This transform matrix [H] is symmetric, and the rows of [H] are mutually orthogonal [2,6]. 

Therefore the inverse of [H] is simply its conjugate [H] with a scaling factor (1/m"), giving

(8)

(9) Q/,], S/,], Qg], Sg), Qc] and Sc] are defined likewise.

/ k ] ’ F / GV is the spectrum of the linear combination of functions
1=0

/,, ( = 0, !,...,&-1.
(Note, E denotes mod-m summation).

3. DEVELOPMENTS
Theorem. The output spectrum Sc] of a two-level composed function G (X)  in terms of the 

first-level spectra S/.], / = 0 , 1 , . . . ,  k -  1, and the second-level spectrum Sg], see Fig. 1, is given 
by

m' SS
fiYi

#e (9)

m" xm*  m* X 1 m" x 1

where the yth column of the m " x m *  matrix is the spectrum column vector S ® a n d  
y = 1-Zo m'Yj.
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This relationship therefore may be re-written as

235

m

"m"1 - -

0
0 # #

-

,] -S o ] (9a)

Proof. At a point X  = (X„-xXn-2 ■ ■ ■ Xo), the functions fX X )  each take a certain value, 
which collectively form a k-tuple that determines the value of g{Z) and hence output G{X)  at 
the point X. The value of g(Z) at this point is found by multiplying Sg] with the zth row of the 
m* X m* inverse transform matrix. Therefore Qc] is given by

m'
zth row of matrix

[H]
Sg] = Qc] (10)

/ X m* m"xm*
where z = Ef=0 mÿ,(%), and [A] is the complex conjugate of [H]. **

We shall call this m" x m* matrix [T]. From eqns (7) and (10) it may be shown that the elements 
of [Tj are

' k-t
= ff"*, where </> = 2  fiiX)Yi.1=0

Therefore the yth column of the matrix [T] is merely the column vector

^ Ï//F,i*0
(11)

The multiplication of both sides of eqn (10) with the transform [H] # therefore yields
eqn (9). m" xm"

Example. Required: the spectrum Sc] of the Boolean product (AND) / , of two fully- 
specified functions / i , / 2, with spectra S/,] and S/J, respectively.

Now in this case, the spectrum Sg] of a 2-input A N D  function is 2,2,2,-2]; hence

whence

1
2"

2"' - - - 2~ -

0
0 S/. S/2 S/,©/2 2

2 = Sc

: - 2

(12)

1
2 ■

2"'
0
0 + S/1 + S/, “ S/,©/j (13)

It may be noted that this relationship for a Boolean product was found by Eris[8] following a 
dissimilar approach.

Continuing, if now the two functions / ,  and are, say, the simple Boolean functions

f \{X )  — X\X2X^ V X \X i

and

fliX) — V %2^3
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the corresponding spectra S/,], S/J and may be computed [9], giving

S/.] = 2,2,2,2,2,-6,2,2 

S/, =  2,2,-6%2,2,2,2
and

S/, ®/:] = 0,0,0,0,0,0,0,8.

Hence from eqns (12) and (13) the spectrum of G = / i . /2 is given by

Sc] =

8- 2 ' 2 0"
0 2 2 0
0 2 -6 0
0 -k 2 + 2 - 0
0 2 2 0
0 — 6 2 0
0 2 2 0
o_ 2_ 2_ 8_

whence

Sg] = 6 ,2,-2 ,2 ,2 ,-2 ,2 ,^2.

The ease of incorporating any final function of g(Z) with its associated spectrum S^] will be 
apparent from this simple Boolean AND example.

4. MULTI LEVEL >2 REALISATIONS 
The above development considered a composed function G(X)  with a two-level realisation. 

It should be clear that the composed spectrum for more than two levels of realisation may be 
calculated by repeated application of the above development. For example with the three-level 
composition shown in Fig. 2 where the output may be expressed as

0{X)  =  h {gs--i(Jk-)(X), . . .  ,  fo(X)), g i - 2 (  . . . . ) , . . . ,  goifk-]{X), . . . ,  foiX))} 

then the spectrum Sg] in terms of the preceding spectra is given by

(14)

V n - - —
1 0

0
0
0 s, = Sg

■ - - —
m" x m ' m * x l  m" x 1

3rd level function, 
spectrum

2nd level functions. 
spectro Sj ], / •O to 5 -

I st level functions, 
spectro S ,] ,  /-O  to * - |

G{ X)

Fig. 2. Three-level realisation of a function G(X).
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where , ao) and , jSo) are the mod-m expansions of the column numbers a and
13 respectively.

5. CONCLUSIONS
The application of the above equations enables the spectrum of any function G{X)  to be 

determined from the spectra of its decomposition functions, without the need to determine the 
full truthtable of G(X).  Work to apply these mathematical relationships for multivalued 
synthesis purposes is being pursued.
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Abstract

The disjoint decomposability of multi-valued logic 
functions is investigated in terms of the function 
spectra. It is shown that if a set of simultan
eous equations containing the spectral coefficient 
values can be satisfied, then a given decomposi
tion of the function is available. Two sinqple 
examples of the method are shown.

List of symbols used

U = {0,1,.

x^,i = 0 to

< V l > V 2 ’-

, m-1 

n-1

total number of independent 
input variables, 
number of values in the 
logic system; m = 2 for 
b i nary, m = 3 for ternary 
et c .
set with m-elements, 
integer mod-m. 
independent input variables 
taking values on the set U. 
n-tuple, an element of U^, 
m-aiy expansion of v.
an integer such that

n-1
V = I 

i=0
m̂ V.. 1

1. Introduction

With the introduction of I^L technology, circuit 
configurations suitable for multi-valued 
(m-valued) logic applications have been investigated 
by several authors^ . A l t h o u ^  thife technology 
is naturally capable of readily implementing many 
functions (e.g. plus, max.T mod. addition, etc.) 
at reasonable cost and using small" on-chip sili
con area, there is at present no design algorithm 
to make maximum use*"of the advantages offered by 
these functions for combinatorial logic design.

Indeed, consider for example the following three- 
variable ternary function, expressed in < 0 , 1 , 2 >  
notation :

2 O * z " l X

1
0 1 2 0  1 2 o 1 2

0 2 1 O - 2 1 1 2 2 2

1 1 0 0 1 I 1 2 2 2

2 0  0 0 1 1 1 2 2 2

f ( X )

X1

rP.q

X
f.6,h
s j . sj

X .
J

X .
J

X .
J

e t c .

maximum Qf x ^ ,x^
minimum of x . , x .

1 J
multiplication Mod of 
x.,x.
plus connective, defined as 
x^ Xj = (m-l) - (x.+Xj)
if (x^+x^) < (m-l), = 0
otherwise.
delta functions, defined as
xP'S = (m-l) i f p < x f q ,

= 0 otherwise, 
p j q .  P , q e  0,... ,(m-l) .
as above with p = q .  
m-ary functions of the x. 
inputs.
spectrum of the functions 
f,g, etc.

Evaluation of the delta functions contained in 
this example would give the following synthesis:

f(Xg,X̂ ,X̂ ) = {xj x̂ .x̂ l.xl'2
l.xO.xO.l l.xO.l.x

However it will later be shown that this function 
is more simply given by :

Definition

= {(:

The simple disjunctive decomposition of a n- 
variable function f(X), X = x ^ _ ^ , . ..,x^,x^,
exists if f(X) can be expressed as
f'x) ' "(Vl...
The block diagram of such a realisation is shown 
in Fig.l.

CHI577-6/80/0000-0088 $00.75 0 1 9 8 0  IEEE 88
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%0'

J
X, -f(X)

Fig. 1 Simple disjunctive decoüç>osition of f(X)

The permutation of the x. input variables allovs 
the function g to be depindent upon any subset of 
the variables Our aim is tq detect a
simple disjunctive decomposition of the given 
function f(X) if it exists. Here we propose a meth
od to detect such deconqposability using spectral 
rather than break, count techniques^ or other 
algebraic methods^.

We w ill call functions of n-variables (e.g. the 
Plus, max., mod-addition, etc.) "simple" functions 
if they are readily available physically. The 
method proposed will be used to detect disjoint 
decomposability in peu-ticular \rtien g is a simple 
function.

Definitions and notation used

2.1 Let w be an integer between 0 and m -1 and 
..,Wq ) be its m-ary expansion. Then

the spectrum s^ of a m-valued n-variable function 
f(X) is defined as follows:

n , m -1
s = w Iv=0

t^(v)y(v),

where
(n-1)

Ch(w,v)

-j ^a = e m ,

y( v) = f(v) a ,

and
tw(v) = Ccnjg(x"’<“ -">)

.. .(1)

2.2 Many properties of the spectral transforma
tion and several spectral synthesis 

techniques have been investigated in recent 
y e a r s ^ , mainly for the binary (m = 2) area. 
The properties which we here propose to utilise 
will be stated without proof; for proofs see the 
cited references. A basic property, however, is 
that the spectrum^function relationship is 
unique^, the function in terms of its spectrum 
being given by the inverse transformation

y( v) (2)

2.3 A sinq>ler way to consider and to express these 
transformations is in terms of matrix relation

ships. The forward transformation of Eq.(l) may be 
expressed as :

' [Tn]Y] ..(3)

where the vth entry of the column vectors and y J
are s^ and y(v) respectively, and the elements

t of the transform matrix j T  1 are t (v). w,v L nJ w
In the same manner we may re-express Eq.(l) as:

y ] = \ [ t J  s J .(U)

where is the complex conjugate of the matrix
For example for the n = 1, m = 3 case the

transijform matrix will be of the form:

N  '

where a = e-  .-J 2?
3

It can easily be seen from the definition of 
spectral transformation that, for all m, the trans
form matrix has a recursive structure, that is:

[ T n ]  ' [ T , ] . [ v J  ...m
where « stands for the Kroneeker product. Hence, 
for example for n = 2, m = 3 the transform matrix 

j is evaluated by: **

1 1 1  
1 a^ a 
1 a a^

1 1 1  
1 a2 a 
l a  â

1
1
1
a2
a2
â
a

1
a
a2
a
a2
1
a2
1
a

3. Developments

Ccmsider now the block diagram realisation of a 
function f(X), as shown in Fig.l, where for the 
moment g is any function, not necessarily a simple 
functicxi as defined above.

89
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Fixing each of the last (n-k) variables of the
function f(X) at one of the m logic levels, we
obtain functions f , such that: z
f(Zn -1’’"  * ^ ’*k-l’"  * **0^ = ^ z ^ \ - l ’*’' ’ ■

n-k-1
where z - I  m'z

i=0 i+k

and Zj e U, j*k,...,(n-l)

If S 1 and S  J, z = 0 , —  ^^-1, are the spectra
of the fianctions f(X) and f respectively, then it
can be shown, see Appendix, that:

(n-k) (n-k)

s]

'f (

where

k k m X m

Similarly for each z , gate h at t? second-level 
realisation implements a function h with spectrum 
'' related to J as follows :

(n-k) (n-k) (T)

Each

ln-k)+l

on the other hand is related to J by

— — —

c c
'■‘(m-l)Og

0

0 •  •  •
%

— — — —

(8)

By combining Equations (6), (7) and (8) above, we 
may prove the following theorem:

Theorem

A m-valued, n-variable function f(X), X = *n-l*’*' 
x^, has a disjunctive decomposition of the form

f(

if the 
functions

o' =
spectra S j .  S ] .  S j
ns satisfy the^relati

V)

(6)

1
IFo] ^ 

\ c
«-'h Sf

° [ S g]

of the respective 
onship

..(9)

m C
•̂ 1 ©  g "2 O  g ^(m-1) ©  g

0
• ••

0

— —

where

[So]

Therefore if a particular g is specified for any 
function f(X), the decomposition of f(X) into g, 
h is possible if all the simultaneous equations in 
(8), where the components of are initially
unknown, have unique solutions. Moreover, the 
solutions completely specify the function h.

^ . Example Wo.l, a Binary Example

Consider a simple l*-variable (n = M  binary (m=2) 
function f( X) given by the following map :

0 0 01 11 10

0 0 0 0 1 0

01 0 0 1 0

11 1 1 1 1

10 1 1 0 1

f ( X )

90
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Using conventional design techniques we may obtain 
the following realisation for this function:

f(X) = {x .Xĵ  V X .X

[ “g] '

-22 - ’ h 2
0 pi 0 2
0 ej 0 2
0 _0 -2

sine» only S j =  ? in thii
simple example.

Putting the latter values in Eq.(9) we obtain the 
following simultaneous equations whi^h have to be 

* ■ jfied, where = s^,s^ s^J :s at i s j

2Sg + ŝ

2sĵ +

2sg +

-2
2
2
-2
10

6

6

-6
2

-2
-2
2

-2
2
2
-2

The solution for h in the above simple example 
is clearly:

Sj = -2. 2, 2, 6, 2, -2, -2. 2]^ ,
and hence the given function f(X) is reduced to 
the following decomposition, where g is the AND 
function x^.x^:

1̂ ' *2 ' *3 ̂
 (10)

Computation of the spectrum of f(X) givesi

vSf] = -2, 2, 2, -2, 10, 6, 6, -6, 2, -2, -2, 2,
-2, 2, 2, -2]̂

Now let us choose g as a simple two-input AND gate, 
whose spectrum is

•%] = -"1
Hence for the binary case under consideration:

01

Therefore 

f(X) = h(x^,x^,g(xg,x^)

= {g.x,

10

V g.x, V g.x J (10) 
(n-k)+lNote that although Eq.(9) contains m 

unknowns for the specified functions g and f, the 
equations are grouped into distinct sets of simul
taneous equations, where each group of equations 
has m unknowns and m equations. For example, in 
the above problem there are 8 unknowns
(^(n k)+lj^ k groups (m™ with 2 unknowns (m)
and U equations (m^). Therefore, in the general 
m-valued case the problem is reduced to solving 
simultaneous equaticwis for m unknowns. The fact 
that we have m^ equations with m unknowns does 
not create any addition^, difficulties for the 
solution, since assuming g is known in advance 
(that is it is chosen from one of our available 
simplei-functions)'', then m linearly-independent 
roVs of the matrix SqJ can be selected in advance.

Repeated application of the above decomposition 
method clearly results in the realisation top
ologies indicated in Fig.2.

K-1

fix) :

M) (b)

Fig.2 Repeated application of disjoint 
decomposition

a) f(x) - ̂ (x^_^,... ,g^(x^ ,... ,Xĵ),

b) f(X) - h ̂ '  ' "

5• Example No.2. a Ternary Example

The search for the decomposability of m-ary 
functions, m > 2, by spectral means involves the 
solution to a set of equations with complex 
coefficients^»^»®.' Consider the ternary (m=3) 
function f(X) given in the Introduction of this 
paper.

Let us consider whether this function is decom
posable about X ,x^ using the Plus function 
g = Xq 'V X . In this case the matrix 
would be : J

91



191

[Sg]
3^“
0 c

"g ^2 ®  g

* — -

9 (a + 5) (a^ + 5)
0 (a^ + 2a) (2a^ 4- ka)
0 (Ua^ + 2a) (2a^ + a)
0 (a^ + 2a) (2a^ + ka)
0 (a2 + 2) (5a + 1)
0 (2a^ + 1) (2a + 1)
0 (ka^ + 2a) (2a^ + a)
0 (2a2 + 1) (2a + 1)
0 (5a2 + 1) (a2 + 2)

The following simultaneous equations may now be ob
tained by incorporating the relevant spectra of 
$ 1 and S 1 in Eq.9 (c.f. the previous binaryfij -i 2v/3example). Note that a = e , and the s *s
are the spectral coefficients, also complex, for
the residual function h.

9 s_ + (a + 5)s, + (a^ + 5)s = l$a^ + 12a

9 s10

1 ^ ' 2  
(a^ + 2a) s^ + (2a^ + ^4a)Sg = 6a^ + 3a
(ka^ + 2a)s^ + (2a^ + a)Sg = 15a^ + 3a
(a^ + 2a)s^ + (2a^ + lia)sg = 6a^ + 3a
(a^ + 2)s^ + (5a + l)sg = 3a^ + 6
(2a^ + l)s^ + (2a + l)Sg = 12a^ + 6
(ka^ + 2a)s^ + (2a^ + a)s^ = 15a^ + 3a
(2a^ + l)s^ + (2a + l)Sg = 12a^ + 6
(5a^ + l)s -+ (a^ + 2)s_ = 21 a^ + 6

a + 5)s^^ + (a2 + 5)s^g = 6a + 66
a^ + 2a)s^^ + (2a^ + 4a)s^g = 6a^ + 12a
l»â  + 2a) s^^ + (2a^ + a)s^g = 15a^ + 12 a 
a^ + 2a) s^^ + (2a^ + l4a)s^ = 6a^ + 12a
a^ + 2)s^j + (5a + l ) s ^  = 6a + 3
2a^ + l)s^^ + (2a + l)s^g = 6a^ + 3a
Ua^ + 2a)s^^ + (2a^ + a)s^^ = 15a^ + 12a
2a^ + l)s^^ + (2a + l ) s ^  = 6a^ + 3a

' ®20

5a^ + l)s_, + (a^ + 2):

“ •* 5)s2i 
a2 + 2a)

11 
+ (a2 5)s22

^2 = 15a ‘̂ + 3a 

= 6a^ + 12a
+ (2a^ + l*a)Sgg = 6a + 3 

Ua^ + 2a)Sg^ + (2a^ + a)Sgg = 6a^ + 3a 
a^ + 2a) Sg^ + (2a^ + l4a)Sgg * 6a + 3 
a^ + 2)Sg^ + (5a + l)Sgg = 6a + 12

(2a2 + D s g ^  + (2a + l)Sgg 3â  + 6
(l»â  + 2a) Sg^ + (2a^ + a)Sgg = 6a^ + 3a 
(2a^ + l)Sg^ + (2a + l)Sgg = 3a^ + 6
(5â  + l)Sĝ  + (a2 + 2)Sgg 12a2 + 6

A solution to this set of simultaneous equations is 
possible, and will be found to be;

‘o ka^ + 2a

‘l a + 5

'2 = a^ + 2a

'lO = a + 5

=11 = 2a2 + k

Ï2 a + 2

'20 a2 + 2a

'21 a + 2

22 2a2 + 1

The inverse transformation on this set of spectral 
coefficient values will show, if not already rec
ognised, that it is the spectrum of the 2-input 
Maximum operator. Hence the final decomposition 
synthesis for the function is:

f(X) = {(x^ 4- x^) V

6. Conclusicxis

A method is given to detect simple disjoint de- 
conposability of a giyen m-valued (m i- 2) logic 
function. The method presented here makes use of 
the spectrum of the given function f(X) and of the 
functions (gates) with which it is desired to 
effect the deconpo^ition, and involves the solu
tion to a set of m simultaneous equations each 
with m unknowns for the m-valued case. The decom
position is possible if each and all sets of sim
ultaneous equations have unique solutions. The 
method is applicable irrespective of the logical 
complexity or otherwise of the gates which we 
desire to use in the decomposition.

Further, if it is found that the decomposition 
using the desired gates is possible, then the 
detection and proof of this decomposition fully 
defines the spectrum and hence functional relation
ships of the next level (remainder) function h.
The detection of such simple disjoint decomposa
bility of a given multi-valued function may be 
considered as the first stage in the design of 
combination ail multi-valued logic.
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Appendix

The nth order transform matrix is obtained by 
taking nth Kroneeker power of the first order trans
form matrix i.e.

[Tn] '  |[tJ .  N  1
n times

Consider now the functions f^, such that; 

^z^\-l V  ^̂ (̂n-l)’'"’\ ’*k-l’'"’*0̂
n-k-1

where z = ^ m Z.
i=0 i+k

It follows from the ordering of the vector y J that 
the spectra J corresponding to above functions

Replacing Yj with its spectrum and inverse trans
form matrix, we obtain on the left-hand side of 

_the above equation:

• :■ [BP,..,] ■ [ # ] ]  J
and hence

Sf.

ra'[f(n-k)]*DK  ̂/ j  fj ■

f^ is found by:
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