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A. ANGLE-OF-ARRIVAL DISPERSION OF A PLANE WAVE

TRAVERSING A TWO-DIMENSIONAL CLOUD

An optical-frequency plane wave traversing a cloud emerges below it as a superposi-

tion of a large number of multiply scattered waves, distributed over a range of angles of

arrival. As an initial step in analyzing this phenomenon, let us consider an idealized

two-dimensional cloud of identical, round, lossless scattering particles of diameter a.

The cloud has infinite parallel boundaries T meters apart, as shown in Fig. XVII-1, and

PROPAGATION VECTOR
OF INCIDENT PLANE WAVE

CLOUD

,/ RECEIVING
/ ANTENNA

/ / / / EARTH 
/

/ / 
/

/ / /

Fig. XVII-1. Two-dimensional cloud
configuration.

has particles Poisson-distributed over it with average density da per square meter.
1

Water droplets in clouds, having diameters in the range from approximately 5 t

to 20 ±, are many times larger than a visible-light wavelength. For such particles,

scattered radiation is essentially confined to an angular spreadI of

*This work was supported by the National Aeronautics and Space Administration
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o =f- rad (1)

about the direction of the incident wave. For our idealized two-dimensional particles,

we shall assume that the scattered intensity at radial distance r from a single drop

illuminated by a unit-intensity plane wave is

Ia(y) = 2a rM (y), (2)sc 20 r 0o

where the angle y is measured from the propagation vector of the incident wave. The

"rectangle -function" notation is

J L (x) 2 (3)

0 otherwise.

The coefficient a in (2) follows from an energy conservation argument.
o

We define an angular intensity distribution function I(a), such that I(a) da is the total

(incoherently added) intensity of all plane waves at a point in space having angles of

arrival between a and a + da. In this

notation a unit-intensity plane wave

UNIT-INTENSITY arriving from direction a has the rep-
INCIDENT PLANE WAVE O

resentation

LAYER se2 ao I(a) = u (a-a ), (4)

where u ( ) is the unit impulse function.

Let the cloud be divided into N very

d// thin parallel layers, of thickness

T

IDEAL ANTENNA o N'

Fig. XVII-2. Geometry for single-layer and let all of the particles in each layer

impulse response. be collapsed onto a single horizontal

line along the center of the layer. The

particles will be Poisson-distributed on the line, with average density

- 1
p = d m (6)

We begin by finding the average impulse response h I (a, ao) of a single layer. This is

the average angular intensity function along a line fo meters below the layer, when it

is illuminated from above by the unit impulse (4). The quantity h I (a, ao) da is the aver-

age intensity measured by the antenna illustrated in Fig. XVII-2. If a particle is present
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in the indicated interval 6x on the layer, the antenna sees a scattered intensity of value

a e (a-a ). (7)
202 sec a o o

o o

Since a particle is in 6x with probability

p6x = pfo secZ a da, (8)

the average scattered intensity measured by the antenna is

pa

sec a 0 L (a-ao)da. (9)
o

The average intensity of the portion of the plane wave passing unscattered through the

layer is represented as

(1-pa sec a) uo(a-ao). (10)

Another energy conservation argument prompts us to replace sec a in (9) and (10) by

Ssec a if a I  < sec a 1 11
sec a =pa (11)

otherwise.
pa

Equations 9 and 10 imply that

pa
(a,a ) = (1-pa sec a ) u (a-ao ) + sec a (a-a). (12)

o

Since the scattering process is linear, it follows that the average impulse response

hN(aN, a ) of the entire array of N layers fo meters apart is given by the (N-l)-fold

superposition integral

hN(aN', a) = -/2 ... daN daN_2 . . dal hl(aN, aN-1) ... hl(al, ao). (13)
-rr/2

The limits + on the integrals express the assumption that we ignore all radiation that
2

has been scattered so many times that it is traveling horizontally.

For many cases of interest, we shall find that essentially all of the area under the

function hN( ) is concentrated well within the interval

aNI <2'
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as long as a is reasonably close to zero. We can then replace the integration limits

in (13) by ±oo. If we make the substitution

sec a = 1,

which is accurate within about 10% for

jal < 0.45 rad,

then the approximate impulse response

pa
h (a, a0 ) (1-pa) u (a-ao) + 2- J L (a-a ) (14)1 0 0 0 20 0 0

0

is a function only of the difference (a-a ). We are now able to apply the Central Limit
theorem to Eq. 13 to obtain the result

h(a,) 1 (15)1 N-aohN(aN , ao )  exp - (15)
UhNJZ~ _ 2Nah

in the limit as N goes to infinity, where

ah = o /

Now, when N becomes infinite, the layer thickness

T
o N

goes to zero. This causes the layer model to become exactly equivalent to the actual

two-dimensional cloud. We note that the quantity

Npa

Uh\ 1 N = o0 3

N1 d a

o 3=00 oa

=0 a (16)

in (15) is independent of both N and o . Now, the parameter

= (daa)-1d = (d a)
e a
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is the two-dimensional equivalent of the "extinction distance" D which enters into the
1 e

familiar equation

-x/D
I(x) = I e e

o

for the attenuation of a plane wave traversing a distance x in a cloud of scattering par-

ticles. We can therefore make the substitution

Td a = - = N
a d e

e

in (16). The quantity Ne is the so-called "optical thickness" of the cloud. The average

impulse response of the entire cloud is thus given by

cloud 
(a-a) 2

hcloud(a , ao)= exp 2  (17a)

in which

IN
a = . (17b)a o

Let us check the reasonableness of the assumption that hcloud( ) is concentrated well

within the range

when ao is quite close to zero. We know that 95% of the area under a Gaussian curve

lies within the range +2a; hence, we require that

S < T (18)a 4

Now, typical parameters for fair-weather cumulus clouds,2 for example, are 5-6 p for
8 10 -3

the particle size a and 10 -010 m for the volume density d . From Eq. 1, we have

0 0. 05 rad
o

for 0. 5-p light. Using the approximate relation1

D = d

for three-dimensional clouds, we find that Ne might be as large as 500 for clouds up to' e
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a few thousand meters thick. But (17b) implies that (18) is satisfied for

N < 740.
e

We can now use (17a) to compute the total power PA(a', a ) received by a two-

dimensional antenna placed as in Fig. XVII-1 and aimed in direction a'. Suppose that

the effective width of the antenna is W meters, and that its power gain pattern is g(0).

Let the intensity of the incident plane wave be I . We then have

IW 2Ip /2 F(a-a )
PA(a , a ) = exp 22 g(a-a') da. (19)

A o rh -1T/2 2c2
a a

H. M. Heggestad
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B. ON THE FOURIER TRANSFORMS OF BOOLEAN FUNCTIONS

The classification and study of the structure of Boolean functions and their realiza-
1-8

tions have received considerable attention in the past ten years. Both have benefited

from what is variously known as the coordinate representation, 3 ' 7 the discrete Fourier

transform,1,3,5 and the Rademacher-Walsh expansion of the functions. 1'4, 8 Despite

the amount of work done in this area, some interesting questions concerning discrete

Fourier transforms have remained unanswered. Two of these questions will be con-

sidered here; one question will be answered, and some partial results will be discussed

for the other.

1. Correspondence between Fourier Coefficient Sets and

Equivalence Classes

Muller, in an early work, found by exhaustive computation that there were only 8

distinct unordered sets of absolute values of Fourier coefficients among the 65, 536 four-

variable Boolean functions. Ninomiya 7 and Lechner 5 showed that each such distinct set

corresponds to a single equivalence class under what Lechner has named the restricted

affine group (n/1), RAG(n/1). (Note that n is the number of variables in the function.)

Unlike most transformation groups that have been extensively studied, RAG(n/1) is not

a direct product of a group operating on the domain, D, and a group operating on the
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range, R. It is the subset or restriction of affine transformations on D X R such that

it is the largest group operating on D X R which does not involve either feedback from

R to D or nonlinear operations on the domain and range coordinates. Here, linearity

is used in the wider sense to include affine transformations.

Ninomiya 7 conjectured that 1:1 correspondence between distinct sets (in the

unordered magnitude sense) of Fourier coefficients and equivalence classes under
5

RAG(n/1) would not hold for functions of more than four variables. Lechner provided

part of the information necessary to establish this conjecture by calculating that there

are 48 equivalence classes under RAG(5/1). While this provides an upper bound on the

number of distinct sets of Fourier coefficients, it provides no information about how to

calculate these sets.

Ninomiya' s conjecture has been established by the author using a semiexhaustive

tabulation of the unordered sets of Fourier coefficients of five-variable functions. This

tabulation produced 40 such sets, 8 less than the known number of equivalence classes

under RAG(5/1). Thus there must be different equivalence classes having the same set

of unordered Fourier coefficients.

The forty sets are listed in Table XVII-1 and the Fourier transforms for a function

from one of the equivalence classes represented by each set are listed in Table XVII-2.

Note that 8 equivalence classes under RAG(5/1) are not represented in Table XVII-2.

The problem of determining which sets of Fourier coefficients correspond to more than

one equivalence class is now an unsolved problem.

The procedure used to generate the Fourier coefficients was an extension of a well-

known method employed by Dertouzos. The discussion here will be restricted to five-

variable Boolean functions. Let the 16 Fourier coefficients for a four-variable function

R(x 1 , x 2 , x 3 , x4 ) be

b l b 2 b 3 b 4 ,b o ; b 12' b13' b14' b23' b24 b34; b123 b124 b134' b234
(1)

1234'

Then if, G(x, 2 x 32 , x 43 , x4 , x 5 ) is any five-variable function, it is always possible to expand

it as follows:

G(xl x 2 ' x 3 ' x 4 , x 5 ) = X 5 R 1 (x 1 , x 2 , x 3 , x 4 ) + 5R 2 (x 1 , x 2 , x 3 , x 4 ). (2)

If Ri has the 16 Fourier coefficients b and R 2 has coefficients b , where i takes on

the 16 values in (1), then G has the 32 Fourier coefficients given by

1 2
b. = b. + b.

(3)
1 2

b. b - b..
15 i i1
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Table XVII-1. Unordered sets of Fourier Coefficients of
five -variable functions.

S 1 0 13 1. 22 28 30

S31 0 0 o o
2 4 7 0 0 0 0
3 21, ' 3 0 0 C
4 20 10 1 o 0 1 0 o
5 9 0 0 3 1 '

6 2 C 2 1 1 C.
7 18 12 0 1 1 0 0

8 1 3 0 1 0 0 0
9 15 15 1 0 1 0 0

10 21 7 1 3 0 0 0
11 22 11 4 2 0 0 0 0

12 1 10 2 2 0 0 0 0

13 10 7 5 1 0 0 0 0

14 15 13 3 1 0 0 0 0

15 1 10 0 0 0 0 0 0

16 12 10 '4 0 0 0 0 0

0 L L 12 1 20 24 20 32

17 31 0 0 0 0 0 0 0

18 1 15 0 0 0 0 0 1 0
19 24 0 7 0 0 0 1 0 0
20 12 1 3 0 0 0 1 0 9
21 16 12 0 3 0 1 0 0 0

22 12 14 0i 1 0 1 0 0 0

23 0 30 0 1 0 1 0 0 0

24 10 1 5 C 0 0 1 0 0
25 2 0 0 0 4 0 0 0 0

26 14 14 0 2 2 0 0 0
27 22 0 0 2 0 3 0 0
28 10 1 '4 0 2 0 0 0 0
29 11 1 i 2 1 0 0 0 0

30 9 15 6 1 1 0 0 0 0

31 19 0 12 0 1 0 0 0 0
32 7 1 8 0 1 0 0 0

33 1 10 0 6 0 o o0 0 0

34 12 12 4 0 0 0 0 0

35 0 28 0 4 0 0 0 0 G

36 10 13 C 3 o 0 0 0 0

37 8 1 -  8 2 0 0 0 0 0

38 G 15 10 1 0 0 0 0 0

39 1 0 16 0 0 0 0 0 0

40 '4 1 12 0 0 0 0 0 0

Note: Headings are magnitudes of Fourier
coefficients. Each entrygives the num-
ber of coefficients in a particular set
having that magnitude.
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Table XVII-2 (Part 1). Fourier transforms.

1)30 2 2

2)26 6 6

3)22 10 10

4)22 6 10

5)18 14 14

6)18 14 6

7)14 6 18

8)18 6 6

9) 6 6 6

10)14 14 6

11)10 14 14

12)14 6 6 6

2 -2 2

2 -2 2

2 -2 6

6 -2 6

2 2 2

2 -6 10

6 -2 6

10 -6 10

6 -6 18

6 -2 14

c-, -I ' -zr L-' (-4
m*. e-t C',, r

1
A -4~.

-2 -2 -2 2

-2 -2 2 6

-6 -6 2 -2

-2 -6 -2 -2

-2 -2 2 2

-10 -2 2 2

-2 -6 6 6

-2 -2 -6 2

-6 -6 -6 6

-10 -2 -2 -2

2 -6 10 1-2 -2

-2 14 1-2 -2

13)10 6 14 10 -6 10 -2 -2

14) 6 6 6

15)10

16) 6

6 -2 14 110 -10

6 10 -6 10

6 6 6 6

2 2 -2 2 -2 -2 -2 -2 2 -2

2 -2 -6 -2 -6 -2

6 -2 2 -2 2

2 -2 6 2 2

2 -2 -2 -2 -2

2 -2 -2 -2 6

2 -2 6 -6 -6

2 -2 6 -2 6

-6 -6 6 -6 6

-2 -2 -2 -2 6

2 10 -6 -2 -2 -2 -2

-2 -2 -10 -2 6 -2 6

2 10 2 -2 6 -10 -2

-2 6 -10 -2 -6 -2 6

-10 -2 2 10 2 -2 6 -2

-10 -10 -2 6 -2 -10 6 6

2

-2

2

2

-2

-6

6

6

2

6

-6

6

6 -6

6 6

2 2

-v l Id.'~
cn n -n -n ('1 (-

(n mN (N C. H
cq -4 -4r

2 -2 -2 -2 -2 2

-6 -2 2 -2 2 -2 2 -2 2 2

-10 -2 2 -2 2 2 2

-6 -2 -2 -6 2 6 2

14 -2 -2 -2 -2 2 2

-6 -2 6 -2 -2 2 2

-6 -2 -2 -6 2 -2 2

-6 -2 -2 -2 -2 10 2

-2 -2 2 -2 2 2 -2

-2 -2 6 -2 -2 -2 -2

-6 -2 -2 -2 -2 2 2

6 -2 -2 -2 -2 -2 -2

-6 -2 -2 -2 -2 2 2

-2 -2 6 -2 6 -2 -2

-6 6

-2 -2

6 -2 -2 2 2

6 -2 6 -2 -2

-2 -2 -2

2 -2 -6

2 -2 -2

2 -2 -2

2 -2 2

2 -2 -2

2 2 2

-2 -2 -2

10 -2 -2

6 -2 -2

2 -2 6

6 -2 -2

2 -2 -2

-2 6 -10

Ln

-t -4T 'T M-
It. n n

4 4 C'~j
-~ ~ (N

2 2 -2 2

2 6 2 2 -2 -2

2 -2 -2 -2 2 2

2 -6 -2 2 2 2

2 2 -2 -2 2 2

2 -6 -2 -2 2 2

2 -6 -2 2 2 2

2 -6 -2 -2 2 2

2 -2 -2 -2 -2 10

6 -2 -2 -2 -2 6

2 -6 -2 -2 2 2

6 -10 -2 -2 -2 6

2 -6 -2 -2 2 2

6 -2 -2 -2 -2 6

2 -6 -10 -2 2 2

6 -2 -2 -2 -2 6

I

O -4 c- -t
cn -It L



Table XVII-2. (Part 2).

18) 28 4

19) 24 8

20) 24 8

21) 20 12

22) 20 .12

23) 20 4

24) 8 20

25) 16 16

26) 16 16

27) 16 16

28) 16 16

29) 16 8

30) 12 8

31) 16 8

32) 8 16

33) 12 12

34) 12 4

4 4 0 0

B 8 0 0

8 4 -4 4

2 4 0 0

4 4 -8 8

4 4 -4 4

8 8 0 8

6 0 0 0

4 4 -4 12

8 0 -8 8

4 4 4 4

4 12 -4 12

8 8 -8 16

8 8 -8 8

4 4 4 4

2 12 0 0

2 12 -8 8

35) 12 4 4 4 -12 12

('4 (0 1 -O -n 10 --t 10 1
r-4 -4 -4 -4 C '4 (4 MO CI) -z

0 0 0 0

0 0 0 4

0 0 0 0

-4 -4 0 0

0 0 0 4

-8 0 0 4

-4 -4 -4 12

-4 0 0 8

0 0 0 0

-12 0 0 0

-8 0 0 0

-4 -8 0 0

-4 0 -8 0

-4 -4 -4 4

0 0 -8 0

-4 0 0 8

0 0 0 12

0 0 0 12

-4 -4 -4 12

0 0 0

0 -4

0 0

0 0

0 -4

0 0 -4 0

-4 -4 -4 4

-4 -4 -4 0

0 0 0 0

0 0 0 -4

0 0 0 0

8 0 0 -4

0 0 8 -4

0 0 8 -8

0 0 8 0

-8 -8 0 -4

0 0 -4 0

0 0 4 -8

-4 -4 4 -4

('4 ('4 mO C -T O -. "
-4 - , -4 1-4 r- (' ('4 CO

0 0 0 0 0IJVI I UN~hlm4~ Cclo o~

0 0 0 0 0

0 -4 -4

0 0 0

0 0 4

0 -4 4

-4 -4

-8 -8

-8 -4

-12 -4

4 4 -4 -4

-4 -4 -4 -4

0 0 -4 -4

0 0 16 0

4 4 -4 -4

8 0 -8 0

4 4 -4 -4

4 -4 -4 -4

0 0 -4 -4

8 -8 -8 0

4 4 -4 -4

-4 -4 -4 -4

-4 -4 -4 -4

4 4 -4 -4

0 -4

0 -8

4 -4

0 -4

8 -4

4 -4

-4 0

0 0

4 0

8 0

-4 0

-4 0

-4 4

0 0

-4 0

0 -4

0 -4

-4 ' O -" 0 o

17)32 0 0 0 0 0

4 -4 4 4 4 4 4

IFLu Ln L Lf n -It

4 m ('4 m (,4
-4 ,-4 -4 -4 C,4 ,-4

0 0 0 0 0 0

0 4 4 4 -4 0

0 0 0 0 0 0

0 0 -4 -4 4 0

0 4 -4 -4 4 0

0 -4 -4 -4 4 0

4 4 4 4 4 -4

4 -4 -4 0 4 4

0 0 0 0 0 0

4 -4 -4 0 0 4

0 -8 0 0 0 0

4 -4 -4 0 0 4

4 -4 -4 0 0 4

4 -4 -4 -4 0 4

0 -8 0 0 0 0

4 -4 -4 0 8 4

0 -4 4 -4 12 0

0 -4 -4 -4 4 0

-4 -4 -4 -4 4 4

0 0

0 0

0 0

0 0

0 0

0 0

4 4

4 -8

0 0

0 -4

0 0

0 -4

0 -4

0 0

0 0

8 4

0 0

0 8

1

1

0 0 0 0 0



Table XVII-2 (Part 2 continued).

0 q M

36) 8 12 8

37) 8 8 12

38) 12 8 8

39) 8 8 8

40) 8 8 4

8 0

4 -4

8 -4 8

8 -8

4 4 4

8 -4 0

12 -4 0

-4 -4

8 -8 0

-4 -8 -8

- ,- - n Nt
-1 .- 4 e-j CI

0 8 -12 4

-8 8 0 0

-4 8 8 -8

8 0 0

8 8 -8

l In -n 1010 -11 10 L01 - CNt CN
In Mn ~I -4 -4 -4

4 0 0 0 -4 -4 -4

8 -4 -4 4 -4 -4 -4

4 0 4 -4 -4 -4 0

8 0 8 -8 -8 8 8

8 -4 4 4 -4 -4 -4

It In -n -It In -n -n

-4 -4 -4 ' .i I

0 0 0 4 12 -4 -8

8 0 8 0 0 0 -4

4 0 8 0 -4 4 -4

0 0 0 0 0 0 0

0 8 8 0 -8 8 -4

-It Ln 10 10 10 -MI M1 _T
C4- - -4~j ,

4 -4 -4 0 -4

4 -4 -4 -8 0

4 -8 0 -8 4

0 -8 -8 0 0

4 -4 -4 0 0

Note: The subscripts of the Rademacher-Walsh functions are listed at the top of the
table. The magnitude and sign of the corresponding coefficient is listed below
each subscript. The numbering of the transforms corresponds to the numbering
in Table XVII-1.

I _
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Conceptually, we want to let R 1 and R 2 in (2) vary independently through every four-

variable function. This would guarantee that every five-variable function was generated.

Using (3) and the known Fourier coefficients of all four-variable functions, we could cal-

culate the Fourier coefficients of all five-variable functions. These could then be classi-

fied according to the unordered magnitudes of coefficients. This would be a prohibitively

long calculation. Therefore, a number of transformations are utilized which greatly

reduce the number of four-variable functions that must be considered in (2).

Dertouzos1 has shown that complementation of a function corresponds to negating

each of its Fourier coefficients; that is, bi = -b. for every i. Also, complementation

of a single variable x. of a function corresponds to negation of every Fourier coefficient
J

containing j in its subscript.

Thus

1. Complementing the functions R 1 and R 2 causes a complementation of the func-

tion G

*Cc 1 22b. = -b. - b. = -(b+b -b
1 1 1 1 1 1

b b b = - b -b = -bi

2. Complementing the function R 1 causes a reordering and negation of the Fourier

coefficients of G

* 1 2 1 2
b.= -b. + b = =

b b i - i = -bi5

bi5 = -b = - +bi = -b

3. Complementing the function R 2 causes a reordering of the Fourier coefficients

of G

* 1 2b. = b. - b. = b.i i i = bi5

* 1 2b b=b + b = b.
i5 i i 1

4. Complementing a variable, xj, of the function R 1 causes a reordering and nega-

tion of half of the Fourier coefficients of G

b. = b. + b. b.
1 1 1

i not containing jb I _ b.2

b. = b -b = b
15 i 5
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* 1 2 12\
bi -b. + b. = -\i-b.i = -b.

i containing j
* 1 2 i 2\

b. = -b - b2 = -(bl+bi) = -b.
i5 i 1 1 1/ 1i

5. Complementing a variable, xj, of the function R 2 causes a reordering of half of

the Fourier coefficients of G.

Accordingly, the set of unordered magnitudes of Fourier coefficients is invariant

under negation of the functions R 1 and/or R 2 and/or the negation of variables of RI

and/or R 2 . Therefore, in order to generate all possible sets of Fourier coefficients

(unordered magnitudes), it is sufficient for R 1 and R 2 to vary independently through the

set composed of a single representative function from each NN class.

One further transformation may be conveniently utilized. Consider an arbitrary

pair of functions chosen as above for R 1 and R 2 . The function R1 must be in one of the

8 equivalence classes under RAG(4/1), and therefore can be transformed into some

canonic form, R 1 . If the same transformation is applied to R 2 , yielding R 2 , the rela-

tive ordering of Fourier coefficients between the two functions will be preserved. This

transformation can only reorder and/or negate coefficients. Since invariance under

negations has been established and the relative ordering of the Fourier coefficients has

been preserved, the function G* formed from R 1 and R 2 according to (2) must have the

same set of unordered coefficient magnitudes as G.

Thus it is only necessary to let R1 be chosen from the set of representative functions

of equivalence classes under RAG(4/1) and R 2 be chosen from the set of representative

functions of equivalence classes under NN.

The Fourier coefficients for classes under RAG(4/1) have been obtained from

Ninomiya.7 The Fourier coefficients for the 222 classes under NPN were also found

by Ninomiya. These were used to generate the coefficient for the NN classes.

2. Generation Problem

The most extensive (and probably earliest) study of the structure of Boolean functions

through coordinate representation or Fourier transform techniques was done by

Ninomiya. 7 One problem that he investigated was that of generating the Fourier trans-

form of Boolean functions directly in the transform or spectral domain. While there is

no lack of necessary and sufficient conditions for a set of numbers being the Fourier

transform of a Boolean function, none of the conditions provide any reasonable method

for generating the set of numbers in the transform domain.

Some necessary conditions have been derived by Ninomiya, and probably others that

do allow the generation of all sets of unordered magnitudes that can be derived from the

transforms of Boolean functions. These conditions happen to be sufficient for functions

of four or fewer variables, the only cases considered by Ninomiya. His work in this
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area, then, can be separated into two parts: (i) generation of sets of unordered magni-

tudes of numbers; and (ii) ordering and signing each set so that it is the transform of

a Boolean function while proving that all functions derivable from that set are equivalent

under RAG(n/1).

An extension of Ninomiya's work to the five-variable case was attempted; this met

with limited success because of some essentially different features of the five-variable

problem.

First, the generation of sets of unordered magnitudes of coefficients was accom-

plished by using the following well-known necessary conditions (see, for example,

Ninomiya 7 ).

1. The coordinates of a Boolean function are integers, the sums of whose squares
2n

is 2 , and, for n a> 2, all come from either the set (0, 4, 8, 12, .. .) or the set

(2, 6, 10,14, .. .).

2. For any function, the sum of the absolute values of any two coordinates never

exceeds 2n

This operation generated 191 sets of coefficients - many more than the maximum of

48 sets established by Lechner or the 40 sets found earlier. Many of these can be elim-

inated, however, by using the following condition of Ninomiya:

3. For any function whose coordinates are in the set (0, 4, 8, 12, .... ) either all or

exactly half the coordinates are equal to 0, modulo 8.

This reduces the number of sets to 84, fifty-three of which are of the (2, 6, 10, 14, ... )

type and 31 of the (0, 4, 8, 12...) type. In the four-variable case, application of these

three conditions reduces the number of sets to exactly 8 - which in fact is the correct

number of sets. Thus the conditions that are sufficient at n = 4 are no longer so at

n = 5.

Additional conditions are needed to eliminate further sets from consideration. Some

of these conditions, based on work by Hatfield, 4 have been derived.

There are 2 n terms in the Fourier transform of a Boolean function of n variables.

Choose any k < n independent Rademacher-Walsh functions (or "frequencies") from

these 2 n . Taking all possible products of these functions generates a subset of the

2k R-W functions.

EXAMPLE 1. Let n = 5, k = 3 and choose r 1 ,r 2 3 5 , r 1 2 .
This generates the subset r o , rl, r2 r1 2 , r 3 5 , r 1 3 5 , r 2 3 5 , r 1 2 3 5 '

Now if k < n, consider any R-W function not in the subset just formed. Multiply

each function in the subset by this new function. This generates a second (disjoint) sub-

set. Repeat this process, using as the multiplying function any function not already

included in any subset. This produces 2 n - k subsets.

EXAMPLE 2. The subset produced in Example 1 is

(r o , r l, r 2 , r 2 , r 3 5 r3 5, rl35, r235, r 1 2 3 5 )
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Choose r 2 3 as the multiplying function, thereby generating

(r 2 3 , r 1 2 3 , r 3 , r 1 3 , r 2 5 , r 1 2 5 , r 5  r15).

Choose r4, thereby generating

(r4 , r 14 , r24 r12 4, r 324, r r 13 4 5, r 2345, r 2 3 4 5).

Choose r 1 23 4

(r1234, r234, r134, r34, r 124 5 , r24 5 , r1 4 5 , r4 5).

Note that these are 25-3 = 4 subsets.

Now consider just that portion of the R-W expansion (Fourier transform) of a func-

tion F involving R-W functions belonging to a subset formed as above. This can be

written in the form

A=br +b rr +r(b r+b rr)
A baa babrba c (bacra +babcrbra)

+ rd(b adr +b abdrbra) + rc(b acdra+babcdr + ....

where r b , r c , rd... are the k independent R-W functions, and ra is ro (if the subset

contains ro) or the multiplying function for that subset.

A can now be evaluated at a vertex by setting the r. to ±1, depending on the vertex.

As shown in Hatfield, the evaluation of A at a vertex can be written as

A= <r (1+rb )(lir )(±rd) ... F>, (4)

where the signs to be used are determined by which vertex A is being evaluated at, and

K denotes summation over all of the vertices of the function F.

It is also shown that the product (1±rb)(l±rc)(l±rd) ... is nonzero at exactly 2

vertices of the function. Thus the summation over the vertices of F indicated in (4)

reduces to a summation over 2 vertices. Note also that ±ra(l±rb)(l±r(rc)(1rd)...

is always equal to ±2k or 0.

Now consider various values of k. If k = n-l, the evaluation of A at a particular

vertex reduces to the summation over 2 vertices. For convenience, consider all eval-

uations to be carried out at the vertex x, = x 2 = ... = 1. This sets all the signs +. (The
n-l

result at any vertex is sufficient for our purposes.) Thus (4) reduces to 2 times the

sum of raF over two vertices (the particular ones being determined by rb, rc , rd. . .). The
n

function and ra may be ±1 at each vertex and thus the sum is ±2 or 0, yielding ±2 or

0 as the value of A at that vertex.

Now since k = n - 1, there are 2 n-(n-1) subsets of this size. The other subset is

specified by the same rb, r c rrd, .. but a different ra. Because of the orthogonality

condition on the r i (see Hatfield ), this new ra must have the same sign as the old at

half the nonzero vertices of the product (l+rb)(l+rc)(l+rd) and must differ at half. Thus

if the first subset summed to ±2n(0), the second must sum to 0 (±2n).

If k = n - 2, the summation of r F is over 4 vertices. This sum can be ±4, ±2, or 0.
a
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Table XVII-3. Summary of results for k > n - 4.

Magnitude of the sum of Magnitudes of possible

k 2k R-W coefficients in sums of the other subsets

a subset

0

0, 2n

2 n-1

0

0, 2n-1, 2n

2n-1 , 3x2n-2

0, 2
n - 1

2n-2

0

0, 2n - 2 , 2n - l , 3x2 n - 2 , 2n

2 n - 3 , 3x2n - 3 , 5x2n - 3 , 7x2n - 3

0, 2n - 2 , 2n - l , 3x2 n - 2

2n-3 , 3x2n-3 , 5x2n-3

0, 2n-2 2n-i

2n-3, 3x2n-3

0, 2n-2

2n-3

0
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n-i

n-2

n-3

n-4

0

2n1

0

2n-i

2
n

0

2n-2

2n-1

3x2
n - 2

2
n

0

2n-3

2n-2

3x2
n- 3

2n-1

5x2
n - 3

3x2
n - 2

7x2
n - 3

2
n

184



Table XVII-5. Sets not corresponding to Boolean functions.

1 20 1
2 22 7
3 27 0
4 25 :3
5 23
6 OC 0
7 2 4 3
8 20
9 25 C(

10 23 3
11 26 1

12 2 "( 4
13 25 1
14 1 10
15 2) 1
16 10 1 -

10
tI

2
2
1

3
1

1

3

5

1(3

0
2

2
1
1
1

(

3
3
3
2

1 22 2 3 0

0) 0 8 12 1 2 0 204 20 32

2 6 10 14 18 22 26 30

18 13 0 0 0 1 0 0

21 6 4 0 1 0 0 0

3 17 12 2 0 1 0 0 0

4 13 18 0 0 1 0 0 0

5 23 4 2 3 0 0 0 0

6 20 7 3 2 0 0 0 0

7 16 13 1 2 0 0 0 0

8 23 1 7 1 0 0 0 0

9 21 4 6 1 0 0 0 0

10 17 10 4 1 0 0 0 0

11 13 16 2 1 0 0 0 0

12 11 19 1 1 0 0 0 0

13 9 22 0 1 0 0 0 0

14 22 1 9 0 0 0 0 0

15 20 4 8 0 0 0 0 0

16 18 7 7 0 0 0 0 0

17 14 13 5 0 0 0 0 0

18 10 19 3 0 0 0 0 0

19 8 22 2 0 0 0 0 0

20 6 25 1 0 0 0 0 0

21 4 28 0 0 0 0 0 0

17 1,
18 25
19 13
20 12
21 15

3C
3 (2

Note: Headings are magnitudes of Fourier
coefficients. Each entrygives the num-
ber of coefficients in a particular set
having that magnitude.

0 4 8 12 1 f 20 24 28 32

22 13 13 2 3 1 0 0 0 0

23 1lt 11 2 5 0 0 0 0 0

Note: Headings are magnitudes of Fourier
coefficients. Each entry gives the num-
ber of coefficients in a particular set
having that magnitude.

Table XVII-4. Eliminated coefficient sets.
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With k = n - 2, there is a total of 4 subsets; thus there are 3 other subsets to be con-

sidered. If the sum for the first subset is ±4, the other 3 must sum to zero, again

because the new ra agrees in sign for exactly half the nonzero vertices. If the first sub-

set sums to ±2, the others must also and if the first sums to 0, the others sum to 0 or

±4. The value of A is then 2n - 2 times this sum.

Similar results hold for smaller values of k. These results are summarized for

k > n - 4 in Table XVII-3.

If we let n = 5 and k = 5 we find that each subset consists of exactly two R-W

functions. Thus if the sum of corresponding R-W coefficients of a subset is ±32,

Table XVII-3 requires that the other 15 subsets of coefficients sum to 0. Similarly, if

two coefficients sum to ±28, the other 15 pairs must sum to ±4. The coefficient sets

that can be eliminated on the basis of these requirements are listed in Table XVII-4.

This reduced the possible sets to 63. No test has been found for eliminating more

sets. Included in these 63 sets are the 40 sets actually corresponding to Boolean func-

tions given in Table XVII-1, and 23 sets not corresponding to Boolean functions given

in Table XVII-5.

L. Hatfield
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