1,480 research outputs found

    Efeitos do solo e clima numa vinha de uva de mesa com cultura de cobertura. GestĂŁo da rega utilizando redes de sensores

    Get PDF
    [ENG] TThe use of mulches in vineyards and orchards is a traditional agricultural practice used with the aim of saving moisture, reducing weed growth and improving organic matter content in the soil. In table grape vineyards trained to overhead system in Puglia region (Southeastern Italy), plastic sheets covering the canopy are often used to either advance ripening or delay harvest. In this environment, the living mulches could contribute to the modification of the microclimate around the canopy below the plastic sheets. This condition has an influence on the climatic demand and on both the vegetative and productive activities, mainly in stages with a high evapotranspiration. However, the presence of living mulches could increase the demand of available water and nutrient resources and this could cause a lower yield. The aim of this study was to acquire a suitable knowledge to manage irrigation and verify the influences of living mulches on the vine by using wireless sensor networks to measure the vapor pressure deficit, soil water potential and content.[POR] A utilização de coberturas do solo em vinhas e pomares é uma prática agrícola tradicional, utilizada com o objetivo de preservar a humidade do solo, reduzir o crescimento de infestantes e melhorar o teor de matéria orgânica no solo. Em vinhas de uva de mesa, conduzidas em sistema de pérgula na região de Puglia (sudeste da Itália), são frequentemente usadas coberturas de plástico para promover o avanço da maturação ou o atraso da colheita. Neste ambiente a utilização de enrelvamentos pode contribuir para a modificação do microclima do copado. Esta condição pode influenciar a demanda atmosférica, bem como a atividade vegetativa e reprodutiva da videira, principalmente em períodos de elevada evapotranspiração. No entanto, a presença do enrelvamento pode originar um aumento da demanda dos recursos disponíveis, nomeadamente água e nutrientes, o que poderá provocar uma quebra de produção. O objetivo deste estudo foi adquirir conhecimento para a gestão da rega e, simultaneamente, verificar a influência dos enrelvamentos na atividade da videira, usando para o efeito redes de sensores “sem fio” para medir o déficit de pressão de vapor, o potencial e o conteúdo de água no solo.The development of this work was supported by: The Spanish Ministry of Science and Innovation through the project RIDEFRUT (ref. AGL2013-49047-C2-1-R), the “Fundacion Seneca, Agencia de Ciencia y Tecnologia” of the Region of Murcia under the “Excelence Group Program”, and the Technical University of Cartagena under the PMPDI Program

    A computational model for path loss in wireless sensor networks in orchard environments.

    Get PDF
    A computational model for radio wave propagation through tree orchards is presented. Trees are modeled as collections of branches, geometrically approximated by cylinders, whose dimensions are determined on the basis of measurements in a cherry orchard. Tree canopies are modeled as dielectric spheres of appropriate size. A single row of trees was modeled by creating copies of a representative tree model positioned on top of a rectangular, lossy dielectric slab that simulated the ground. The complete scattering model, including soil and trees, enhanced by periodicity conditions corresponding to the array, was characterized via a commercial computational software tool for simulating the wave propagation by means of the Finite Element Method. The attenuation of the simulated signal was compared to measurements taken in the cherry orchard, using two ZigBee receiver-transmitter modules. Near the top of the tree canopies (at 3 m), the predicted attenuation was close to the measured one-just slightly underestimated. However, at 1.5 m the solver underestimated the measured attenuation significantly, especially when leaves were present and, as distances grew longer. This suggests that the effects of scattering from neighboring tree rows need to be incorporated into the model. However, complex geometries result in ill conditioned linear systems that affect the solver's convergence

    PEACH: predicting frost events in peach orchards using IoT technology

    Get PDF
    In 2013, 85% of the peach production in the Mendoza region (Argentina) was lost because of frost. In a couple of hours, farmers can lose everything. Handling a frost event is possible, but it is hard to predict when it is going to happen. The goal of the PEACH project is to predict frost events by analyzing measurements from sensors deployed around an orchard. This article provides an in-depth description of a complete solution we designed and deployed: the low-power wireless network and the back-end system. The low-power wireless network is composed entirely of commercial off-the-shelf devices. We develop a methodology for deploying the network and present the open-source tools to assist with the deployment and to monitor the network. The deployed low-power wireless mesh network is 100% reliable, with end-to-end latency below 2 s, and over 3 years of battery lifetime. This article discusses how the technology used is the right one for precision agriculture applications.EEA JunĂ­nFil: Watteyne, Thomas. Institut National de Recherche en Informatique et en Automatique (INRIA). EVA Team; FranciaFil: Diedrichs, Ana Laura. Universidad TecnolĂłgica Nacional (UTN), Mendoza; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂŠcnicas; ArgentinaFil: Brun-Laguna, Keoma. Institut National de Recherche en Informatique et en Automatique (INRIA). EVA Team; FranciaFil: Chaar, Javier Emilio. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria JunĂ­n; ArgentinaFil: Dujovne, Diego. Universidad Diego Portales (UDP), Santiago; ChileFil: Taffernaberry, Juan Carlos. Universidad TecnolĂłgica Nacional (UTN), Mendoza; ArgentinaFil: Mercado, Gustavo. Universidad TecnolĂłgica Nacional (UTN), Mendoza; Argentin

    Smart sensing-enabled decision support system for water scheduling in orange orchard

    Get PDF
    The scarcity of water resources throughout the world demands its optimum utilization in various sectors. Smart Sensing-enabled irrigation management systems are the ideal solutions to ensure the optimum utilization of water resources in the agriculture sector. This paper presents a wireless sensor network-enabled Decision Support System (DSS) for developing a need-based irrigation schedule for the orange orchard. For efficient monitoring of various in-field parameters, our proposed approach uses the latest smart sensing technology such as soil moisture, leaf-wetness, temperature and humidity. The proposed smart sensing-enabled test-bed was deployed in the orange orchard of our institute for approximately one year and successfully adjusted its irrigation schedule according to the needs and demands of the plants. Moreover, a modified Longest Common SubSequence (LCSS) mechanism is integrated with the proposed DSS for distinguishing multi-valued noise from the abrupt changing scenarios. To resolve the concurrent communication problem of two or more wasp-mote sensor boards with a common receiver, an enhanced RTS/CTS handshake mechanism is presented. Our proposed DSS compares the most recently refined data with pre-defined threshold values for efficient water management in the orchard. Irrigation activity is scheduled if water deficit criterion is met and the farmer is informed accordingly. Both the experimental and simulation results show that the proposed scheme performs better in comparison to the existing schemes. Š 2001-2012 IEEE

    Procedure for Selecting a Transmission Mode Dependent on the State-of-Charge and State-of-Health of a Lithium-ion Battery in Wireless Sensor Networks with Energy Harvesting Devices

    Get PDF
    Diverse methods and considerations have been proposed to manage the available energy in an efficient manner in Wireless Sensor Networks. By incorporating Energy Harvesting Devices in these type of networks it is possible to reduce the dependency of the availability of the Energy Storage Devices, particularly the lithium-ion battery. Recently, the State-of-Charge and State-of-Health of the battery have been considered as inputs for the design of the Medium- Access-Control protocols for Wireless Sensor Networks. In this article, different guidelines are proposed for the design of Medium-Access-Control protocols used in Wireless Sensor Networks with Energy Harvesting Devices considering the State-of-Charge and State-of-Health as indicators for the estimation of the transmission time of the sensor node. The proposed guidelines consider different currents used during the transmission to estimate the State-of-Charge and Stateof- Health of the battery. The incorporation of these indicators aim to improve the decision-making process of the sensor node when transmitting.Diverse methods and considerations have been proposed to manage the available energy in an efficient manner in Wireless Sensor Networks. By incorporating Energy Harvesting Devices in these type of networks it is possible to reduce the dependency of the availability of the Energy Storage Devices, particularly the lithium-ion battery. Recently, the State-of-Charge and State-of-Health of the battery have been considered as inputs for the design of the Medium- Access-Control protocols for Wireless Sensor Networks. In this article, different guidelines are proposed for the design of Medium-Access-Control protocols used in Wireless Sensor Networks with Energy Harvesting Devices considering the State-of-Charge and State-of-Health as indicators for the estimation of the transmission time of the sensor node. The proposed guidelines consider different currents used during the transmission to estimate the State-of-Charge and Stateof- Health of the battery. The incorporation of these indicators aim to improve the decision-making process of the sensor node when transmitting

    Internet of Things Applications in Precision Agriculture: A Review

    Get PDF
    The goal of this paper is to review the implementation of an Internet of Things (IoT)-based system in the precision agriculture sector. Each year, farmers suffer enormous losses as a result of insect infestations and a lack of equipment to manage the farm effectively. The selected article summarises the recommended systematic equipment and approach for implementing an IoT in smart farming. This review's purpose is to identify and discuss the significant devices, cloud platforms, communication protocols, and data processing methodologies. This review highlights an updated technology for agricultural smart management by revising every area, such as crop field data and application utilization. By customizing their technology spending decisions, agriculture stakeholders can better protect the environment and increase food production in a way that meets future global demand. Last but not least, the contribution of this research is that the use of IoT in the agricultural sector helps to improve sensing and monitoring of production, including farm resource usage, animal behavior, crop growth, and food processing. Also, it provides a better understanding of the individual agricultural circumstances, such as environmental and weather conditions, the growth of weeds, pests, and diseases

    Low-Cost IoT Remote Sensor Mesh for Large-Scale Orchard Monitorization

    Get PDF
    Population growth and climate change lead agricultural cultures to face environmental degradation and rising of resistant diseases and pests. These conditions result in reduced product quality and increasing risk of harmful toxicity to human health. Thus, the prediction of the occurrence of diseases and pests and the consequent avoidance of the erroneous use of phytosanitary products will contribute to improving food quality and safety and environmental land protection. This study presents the design and construction of a low-cost IoT sensor mesh that enables the remote measurement of parameters of large-scale orchards. The developed remote monitoring system transmits all monitored data to a central node via LoRaWAN technology. To make the system nodes fully autonomous, the individual nodes were designed to be solar-powered and to require low energy consumption. To improve the user experience, a web interface and a mobile application were developed, which allow the monitored information to be viewed in real-time. Several experimental tests were performed in an olive orchard under di erent environmental conditions. The results indicate an adequate precision and reliability of the system and show that the system is fully adequate to be placed in remote orchards located at a considerable distance from networks, being able to provide real-time parameters monitoring of both tree and the surrounding environment.info:eu-repo/semantics/publishedVersio

    Distinct difference configurations: multihop paths and key predistribution in sensor networks

    Get PDF
    A distinct difference configuration is a set of points in Z2 with the property that the vectors (difference vectors) connecting any two of the points are all distinct. Many specific examples of these configurations have been previously studied: the class of distinct difference configurations includes both Costas arrays and sonar sequences, for example. Motivated by an application of these structures in key predistribution for wireless sensor networks, we define the k-hop coverage of a distinct difference configuration to be the number of distinct vectors that can be expressed as the sum of k or fewer difference vectors. This is an important parameter when distinct difference configurations are used in the wireless sensor application, as this parameter describes the density of nodes that can be reached by a short secure path in the network. We provide upper and lower bounds for the k-hop coverage of a distinct difference configuration with m points, and exploit a connection with Bh sequences to construct configurations with maximal k-hop coverage. We also construct distinct difference configurations that enable all small vectors to be expressed as the sum of two of the difference vectors of the configuration, an important task for local secure connectivity in the application
    • …
    corecore