1,636 research outputs found

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Utilising low cost RGB-D cameras to track the real time progress of a manual assembly sequence

    Get PDF
    Purpose The purpose of this paper is to explore the role that computer vision can play within new industrial paradigms such as Industry 4.0 and in particular to support production line improvements to achieve flexible manufacturing. As Industry 4.0 requires “big data”, it is accepted that computer vision could be one of the tools for its capture and efficient analysis. RGB-D data gathered from real-time machine vision systems such as Kinect ® can be processed using computer vision techniques. Design/methodology/approach This research exploits RGB-D cameras such as Kinect® to investigate the feasibility of using computer vision techniques to track the progress of a manual assembly task on a production line. Several techniques to track the progress of a manual assembly task are presented. The use of CAD model files to track the manufacturing tasks is also outlined. Findings This research has found that RGB-D cameras can be suitable for object recognition within an industrial environment if a number of constraints are considered or different devices/techniques combined. Furthermore, through the use of a HMM inspired state-based workflow, the algorithm presented in this paper is computationally tractable. Originality/value Processing of data from robust and cheap real-time machine vision systems could bring increased understanding of production line features. In addition, new techniques that enable the progress tracking of manual assembly sequences may be defined through the further analysis of such visual data. The approaches explored within this paper make a contribution to the utilisation of visual information “big data” sets for more efficient and automated production

    Adaptive Hidden Markov Noise Modelling for Speech Enhancement

    Get PDF
    A robust and reliable noise estimation algorithm is required in many speech enhancement systems. The aim of this thesis is to propose and evaluate a robust noise estimation algorithm for highly non-stationary noisy environments. In this work, we model the non-stationary noise using a set of discrete states with each state representing a distinct noise power spectrum. In this approach, the state sequence over time is conveniently represented by a Hidden Markov Model (HMM). In this thesis, we first present an online HMM re-estimation framework that models time-varying noise using a Hidden Markov Model and tracks changes in noise characteristics by a sequential model update procedure that tracks the noise characteristics during the absence of speech. In addition the algorithm will when necessary create new model states to represent novel noise spectra and will merge existing states that have similar characteristics. We then extend our work in robust noise estimation during speech activity by incorporating a speech model into our existing noise model. The noise characteristics within each state are updated based on a speech presence probability which is derived from a modified Minima controlled recursive averaging method. We have demonstrated the effectiveness of our noise HMM in tracking both stationary and highly non-stationary noise, and shown that it gives improved performance over other conventional noise estimation methods when it is incorporated into a standard speech enhancement algorithm

    Geometric and Bayesian models for safe navigation in dynamic environments

    Get PDF
    Autonomous navigation in open and dynamic environments is an important challenge, requiring to solve several difficult research problems located on the cutting edge of the state of the art. Basically, these problems may be classified into three main categories: (a) SLAM in dynamic environments; (b) detection, characterization, and behavior prediction of the potential moving obstacles; and (c) online motion planning and safe navigation decision based on world state predictions. This paper addresses some aspects of these problems and presents our latest approaches and results. The solutions we have implemented are mainly based on the followings paradigms: multiscale world representation of static obstacles based on the wavelet occupancy grid; adaptative clustering for moving obstacle detection inspired on Kohonen networks and the growing neural gas algorithm; and characterization and motion prediction of the observed moving entities using Hidden Markov Models coupled with a novel algorithm for structure and parameter learnin

    Word hypothesis of phonetic strings using hidden Markov models

    Get PDF
    This thesis investigates a stochastic modeling approach to word hypothesis of phonetic strings for a speaker independent, large vocabulary, continuous speech recognition system. The stochastic modeling technique used is Hidden Markov Modeling. Hidden Markov Models (HMM) are probabilistic modeling tools most often used to analyze complex systems. This thesis is part of a speaker independent, large vocabulary, continuous speech understanding system under development at the Rochester Institute of Technology Research Corporation. The system is primarily data-driven and is void of complex control structures such as the blackboard approach used in many expert systems. The software modules used to implement the HMM were created in COMMON LISP on a Texas Instruments Explorer II workstation. The HMM was initially tested on a digit lexicon and then scaled up to a U.S. Air Force cockpit lexicon. A sensitivity analysis was conducted using varying error rates. The results are discussed and a comparison with Dynamic Time Warping results is made
    corecore