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Utilising low cost RGB-D cameras to track the real time progress of a manual 

assembly sequence 
 
 
 
 
 
 
 
 

Abstract 
 
Purpose  
The purpose of this paper is to explore the role that computer vision can play 
within new industrial visions such as Industry 4.0 and in particular to support 
production line improvements to achieve flexible manufacturing. As Industry 
4.0 requires ‘big data’ it is accepted that computer vision could be one of the 
tools for its capture and efficient analysis. RGB-D data gathered from real-time 
machine vision systems such as Kinect ® can be processed using computer 
vision techniques.  
 
Design  
This research exploits RGB-D cameras such as Kinect® to investigate the 
feasibility of using computer vision techniques to track the progress of a 
manual assembly task on a production line. Several techniques to track the 
progress of a manual assembly task are presented. The use of CAD model 
files to track the manufacturing tasks is also outlined.  
 
Findings  
This research has found that RGB-D cameras can be suitable for object 
recognition within an industrial environment if a number of constraints are 
considered or different devices/techniques combined. Furthermore, through 
the use of a HMM inspired state-based workflow, the algorithm presented in 
this paper is computationally tractable.  
 
Originality  
Processing of data from robust and cheap real-time machine vision systems 
could bring increased understanding of production line features. In addition 
new techniques that enable the progress tracking of manual assembly 
sequences may be defined through the further analysis of such visual data. 
The approaches explored within this paper make a contribution to the 
utilisation of visual information ‘big data’ sets for more efficient and automated 
production. 
 
Index Terms—:  Industry 4.0, RGB, depth, computer vision, manufacturing 
 
1.0 Introduction 
Recent visions for computer networked Manufacturing, such as Industry 4.0 
and the Industrial Internet, promote the benefits of providing production line 



 
 

flexibility for the manufacture of customized and personalized products. In the 
process of realizing such manufacturing visions, large amounts of data will be 
obtained by sensors and then transmitted, analysed and stored. Through the 
use of computer vision techniques, data could be extracted from 
manufacturing lines in a non–intrusive way (Stork, 2015) through the utilisation 
of camera type sensors. This concept, as illustrated in Figure 1, is further 
supported by General Electric (Hryniewicz et al., 2015). In Figure 1, real time 
machine vision could gather data from workstations for entry into an industrial 
data system. The analysis of the data captured in the industrial data system 
could then be used to compose or augment the base “Big Data” set. Once 
processed, this data could be presented visually enabling the identification of 
potential changes to manufacturing processes. This cycle could enhance the 
continuous improvement process of the manufacturing effort at the workstation 
level.  
 
 

 
Figure 1: An approach for the extraction of value from data collected from 
manufacturing workstations 
 
This paper focuses on the use of a computational agent to understand the 
tasks a human is performing on a workpiece. The novelty of this approach is 
that until recently there only been a relatively limited amount of literature that 
attempted research in this direction, especially in the context of industry 4.0. A 
HMM (Hidden Markov Model) inspired workflow has been used to encode a 
well-defined manual assembly task. The HMM was used because every 
product assembly could theoretically be reduced to a sequence of steps that 
could be encoded as a HMM. The novelty to this approach lies in developing a 
computationally tractable algorithm that combines HMM theory with computer 
vision to achieve tracking of a manual assembly in real time. This enables the 
use of machine learning techniques to gain insights into conditions that could 
boost the productivity of workers performing manual assembly tasks as well as 
offer feedback to them relating to their work.  Furthermore, the research in this 
paper initiates a discussion on the non-intrusive collection of data on the 



 
 

human element of manufacturing which is as important as collecting data from 
machines on the shop floor for further processing.” 
 
 
2.0 Relevant Literature 
In order to be able to track the progress of an assembly task as well as assess 
quality, at least two high level computational processes are required: object 
recognition; assembly state recognition. 
 
 
2.1 Object recognition:  
 
Object recognition is very popular in manufacturing as it is advantageous for 
robots and automated machines to be able to recognize the parts or work 
pieces that they process. Most of the approaches of object recognition have 
focused on the detection of object features both in 2D and 3D, such as 
boundaries, contour, colour, as well as the development and combination of 
feature-based rules to estimate the objects being observed.  
 
Using 20 significant RGB-D (RGB Depth) datasets Cai et al. (2016) showed 
how parameters such as object speed, object type and colour could be utilised 
in object recognition. In addition Fu et.al. (2017) investigated issues of depth 
perception in their approach involving video segmentation of RGB-D video. 
Barron and Malik (2016) demonstrate a method which enables the recovery of 
image features such as brightness, shape, reflectance and shading from a 
single image taken from an RGB-D sensor; a development of their previous 
method called SIRFS (“Shape, Illumination and Reflectance From Shading”) 
(Barron and Malik, 2015). It was realized by Barron and Malik (2016) that 
SIRFS did not perform well on images containing occlusions and variations in 
illumination; thus they created the scene-SIRFS method, a more robust and 
accurate method based on mixture of shapes and illuminations. 
 
Another technique was developed by Lowe. (1999) called Scale Invariant 
Feature Transform (SIFT). This technique was invariant to object rotations, 
translations and changes in brightness level, while still producing accurate 
results. In a development of the method of Lowe (1999) Rothganger et al. 
(2006) proposed to model and recognise an object by redesigning the 
invariants. This approach uses the local image descriptors and the luminosity 
and colour of an image to identify the object. In research by Matas and 
Obdrzalek (2004) the 2D contour of the objects and their features such as 
lines and circles were used as well as a method to map an object in 3D from 
an image.  
 
Wu and Bainbridge-Smith (2011) explained that a RGB-D camera such as 
Kinect® is a fast and accurate way to extract 3D information of an object 
compared to other optical devices. This results in a real time 3D point-cloud 
database which is then post-treated in order to identify a part. As in 2D object 
recognition, object features often provide a mechanism to understand and 
recognise an object. For example, Gupta et al. (2014) used depth features as 
well as used object contour detection, and segmentation in their work on RGB-



 
 

D cameras. Gupta et al. (2015) also followed a similar approach and 
presented algorithms for 3D contour detection and hierarchical segmentation. 
Prior obtained datasets enabled them to train a classifier to classify the objects 
detected.  
 
Another assumption that can be used in 3D object detection and recognition is 
depth saliency. The central assumption of this approach is that the salient 
object tends to stand out from its surroundings (Ju et al., 2015). Ju et al. 
(2015) emphasised that this approach is suitable for fast and precise object 
recognition and can potentially be utilized for tracking the progress of an 
assembly task. Borji et al. (2015) also made the point that saliency detection is 
an important focus for future research in this area and put forward a 
benchmark for object detection formed from the qualitative and quantitative 
assessment of 41 models. Using the saliency assumption, spatiotemporal 
background priors were also proposed by Xi et al. (2016).   
 
Wang and Posner (2015) propose a sliding window approach to the analysis 
of 3D point cloud data, with a search space composed of objects positioned at 
any orientation, utilising a voting system. An approach often neglected in 3D 
object detection research, due to inefficiency in operation, the sliding window 
when used with voting is claimed by Wang and Posner (2015) to be 
comparable in efficiency to sparse convolution. The approach proceeds by 
transforming the point cloud into a 3D grid then a fixed dimension feature 
vector is mapped for each occupied cell within the grid (empty cells are 
mapped to zero). The resulting entity is a feature grid through which the 
detection window transitions in all three dimensions for each angle of rotation. 
In essence detection windows passing from different orientations cast votes 
on occupied cells in the matrix.  
 
Even though the above techniques have been used for decades, new 
approaches such as deep learning offer greater robustness in object detection 
and recognition tasks. For example, they are more resilient to illumination 
changes and object variability (Tang et al., 2017, Ballester and Araujo, 2016). 
This is often achieved via. The collection of a large data set from the problem 
domain on which a neural network is trained in order to derive mathematical 
models (as in the case of CNN) or “sequence rules” (as in the case of RNN 
(Sutskever, 2014)). The volume of the dataset ensures that all or most 
possible variations of the domain are taken into consideration.  
 
Sedgahat et al. (2017) utilised deep learning in 3D object classification; this 
approach can also be used with object detection techniques such as those 
utilising a 3D sliding window method. A 3D voxel grid representation of an 
image is fed into the algorithm of Sedgahat et al. (2017) which is based on 
VoxNet (Maturana and Scherer, 2015). Within the training stage the object 
orientation is noted and made an explicit part of that phase. The 3D object is 
rotated multiple times and presented to the network, voting is then utilised to 
determine the object’s classification. It was found that by requiring the network 
to capture the orientation, an improved classification could be achieved. Qi et 
al. (2017) introduce a Neural Network approach to object classification named 
PointNet. This approach is able to process point cloud representations directly 



 
 

without the need for a voxel grid or image collection. Qi et al. (2017) claim that 
this approach addresses three tasks involved with 3D object recognition: 
object classification; part segmentation and semantic segmentation.   
 
Even though the aforementioned machine learning concepts are often used in 
computer vision processing tasks such approaches are best suited to 
situations where the rules cannot be easily defined (Amazon, 2017). In the 
case of this paper, machine learning was not used. This is because most 
assembly tasks are well defined and follow a sequence of steps.  Hence, it is 
possible for a human to write the sequence rules in algorithmic form. 
Embedding these rules in a computational agent equipped with an RGB-D 
camera enables the achievement of assembly state recognition. 
  
2.2 Assembly State Recognition:  
 
The unique capabilities of RGB-D cameras enable them to be used to map a 
room, a shop floor and a work bench as well as capture the gestures of 
workers efficiently in different environments (Bu et. al, 2016).  
 
Because of their RGB stream, RGB-D cameras can be used for typical real-
time machine vision inspection tasks while their Depth stream enables the 
possibility to extend typical 2D inspection tasks to the third dimension by 
making use of 3D geometrical features.  
 
Due to these capabilities, machine vision offers the potential to be used as a 
substitute in inspection tasks typically performed by humans. For example, 
Sture et al. (2016) showed that Salmon deformities and wounds can be 
identified using real-time machine vision achieving a detection rate of e 86% 
for deformities and 89% for wounds. Furthermore, Schmitt et al. (2015) 
designed a real-time machine vision system that can detect significant quality 
deficiencies in fibre-reinforced plastics under certain conditions. Li and Huang 
(2015) developed a method to inspect tyres, gathering geometrical data from 
images these authors then assessed the quality using tyre features identified 
from images.  
 
 
Machine vision could also be extended to the real-time monitoring of tasks 
carried out by humans for inspection as well as digital assisted assembly. In 
literature, most of the research involves the use of Augmented Reality (AR) to 
provide instructions and aid to humans during manufacturing tasks. For 
example, Radkowski and Oliver (2013) used natural feature tracking in order 
to realise the tracking of rigid objects for an on-site assembly assistance 
system. The tracking system tracked multiple circuit boards without the need 
of markers. An AR system was used to provide feedback to the worker on 
what part to pick up next. A similar approach was followed in Radkowski 
(2015, 2016) where they went on to develop a 3D tracking method, also with 
AR, for use in a mechanical engineering assembly environment with different 
degrees of complexity.  
 



 
 

The use of RGB-D cameras and 3D part recognition for assembly state 
estimation is the focus of Gu et al. (2018). The goal of the work is skill capture 
for replication of manufacturing assembly actions by robot. Gu et al. (2018) 
find that their Portable Assembly Demonstration (PAD) system is able to 
generate an assembly script suitable for implementation by a robot. Future 
work with this approach will involve development of the technique to address 
the improved detection of occluding and occluded objects. 
 
Funk et al. (2015) introduced a combined projection and AR (Augmented 
Reality) method for the order picking process within a warehouse 
environment. The research, while utilising marker assisted methods, also 
envisages using an AR generated marker in future developments. Bi and 
Kang (2014) present a technique to reconstruct surfaces applied to flexible 
machining systems based on feedback from vision sensors. Aehnelt et al. 
(2014) examined the challenges related to activity detection in an industrial 
setting and concluded that the need to be able to detect discrete tasks within a 
workflow still exists as a required research target. Towards solving this 
challenge, Hartmann (2011) identified 3 methods for the recognition of 
discrete assembly tasks performed by a worker: statechart model, Hidden 
Markov Model (HMM) and Dynamic Bayesian Network (DBN). The statechart 
model worked for the recognition of tasks where uncertainty does not affect 
the data. HMM and DNB have delivered highly positive results in terms of task 
recognition at 95%. DBN achieved better results; however, due to its 
complexity, the time required to analyse data and convert it into an appropriate 
format was unacceptable in practice. The DBN technique also requires that 
context based knowledge of the task is acquired before the implementation of 
a solution. 
 
In manufacturing lines that involve manual assembly context based knowledge 
of the tasks can be readily obtained from available manuals. The major 
challenge is to ensure that this knowledge can be converted easily into a 
computational format with little set up time when deployed across many 
domains. Also, in order to ensure widespread adoption in manufacturing 
industries, the developed approach must be affordable for Small and Medium 
sized Enterprises.   
 
This paper aims to investigate if the aforementioned challenge can be partly 
solved through the use of HMM-inspired workflows and natural feature 
tracking through the use of object colour features and low cost RGB-D 
cameras.  
 
Along their use in gaming low cost RGB-D cameras such as the Kinect are 
becoming popular for use in manufacturing applications. Such cameras have 
been specifically designed to track the skeleton of a human, research is still 
ongoing for their use in robust and accurate object detection and recognition in 
manufacturing.  
 
As a result, despite the relevant work found in literature, object recognition in 
the form of tracking the progress of an assembly task still requires more 



 
 

research. Towards this goal, this paper presents an investigation of combined 
2D and 3D techniques for assembly state tracking and recognition. 
 
3.0 Methodology 
 
In order to achieve widespread adoption in manufacturing enterprises, the 
Microsoft Kinect RGB-D camera was used in this work. An object’s 
characteristics in terms of colour and geometry can be extracted from the data 
streams of the Kinect using both 2D and 3D techniques drawn from literature. 
In terms of 2D techniques the work of Matas and Obdrzalek (2004) appears to 
be robust as it is able to deal with occlusions, in addition the work of Gupta et 
al. (2014) is insightful as it provides approaches for object contour recognition 
and datasets creation. The work of Prabhu et al. (2015) outlines a method to 
enable the tracking of the progress of a manual wheel assembly process.  
 
Building on the above techniques, this research aims to:  

Ɣ Investigate techniques that enable the tracking of workpieces based 
on their features (2D and 3D).  

Ɣ Investigate techniques that enable the extraction of manual assembly 
progress through the tracking of workpiece feature changes  

Ɣ Use readily available context based knowledge in the creation of 
HMM-inspired workflows for tracking manual assembly tasks.  

Ɣ Validate the above techniques with a number of use case scenarios  

In order to ensure industrial relevance, a number of visits were made to an 
electronic circuit board manufacturer to gather data and understand the 
requirements of the shop floor managers. These visits involved the installation 
of the Kinect® on all workstations of a manual manufacturing line. 
Datastreams containing both RGB and depth data were obtained through the 
use of Kinect®. A CAD model of the facility was also produced as part of this 
research which was an important asset in the identification of the key features 
for use in the development of the computer vision techniques. 
 
3.1  Exploiting 2D Natural features on objects 
 
3.1.1 Applying Colour and distance thresholds 

In order to ensure easy setup and possibility of deploying to various domains, 
the first 2D technique investigated was based on the colours of workpieces in 
the considered domain. The image retrieved from the Kinect® has a resolution 
of (640 * 480) where each pixel is defined by an RGB value. Through the use 
of pre-defined thresholds, it is possible to identify objects through their colours. 
By using a distance measure, a combination of colours in a radius could be 
used to identify an object as well as the progress in its assembly state.  
 
In setting the parameters of colour thresholds and distance to an appropriate 
context informed value, the program was able to detect and track objects with 
a particular RGB as well as the progress in an assembly task. Figure 2 shows 
the recognition of parts within a scene. Initial tests utilized coloured blocks. 



 
 

The drawback of this technique is that like all computer vision applications, it is 
easily affected by lighting conditions.  
 
As a result, and in order to get consistent results, controlled lighting was used 
as well as a white background as shown in Figure 2.  
  

 
Figure 2: Parts recognition and tracking using colour feature 

 
3.1.2 Applying shape recognition 
In order to make the colour recognition and distance measure approach more 
robust, a second technique that relied on the 2D geometrical shape features of 
an object was investigated. This technique detected and used edges derived 
from the image to reconstruct the contours of objects in the scene. Using 
context informed minimum area and perimeter thresholds, it was possible to 
filter out unnecessary objects in the scene that do not correspond to the task 
being tracked. Figure 3 highlights the contours of three simple metallic parts 
within an industrial environment.  In this way the shape recognition technique 
tracks parts and return the location of the centre of mass of the object in real 
time. The location of the centre of mass of detected objects is then used in the 
distance measure already described in 3.1.1 to track assembly state of 
workpieces.  
 

 
Figure 3: Contours of 3 metallic parts 

 
 



 
 

3.2 Investigation of 3D Solutions 
In the Kinect® two components, the infrared projector and the infrared (IR) 
CMOS (Complementary Metal-Oxide-Semiconductor) sensor, enable depth 
data to be obtained. The value of one pixel of the depth image corresponds to 
the distance between the sensor and the location where the IR ray is reflected. 
These values were normalized in order to get a range of data from 0 to 255, 
where 0 is black and 255 is white. As a result, it was possible to get a 
greyscale image of the observed scene.  

 
 
 

 
Figure 4: Methodology for the comparison of two scenes using a stored library 
set of object templates 
 
Using the greyscale images of the observed scene, two techniques were 
investigated for recognizing 3D objects: Sum based algorithm and Full image 
template matching.  
 
3.2.1 Sum based algorithm 
In the first technique, a prior set of data representing the objects to be 
recognized was created. The data of each object was then reduced to a sum 
of all the depth elements and used as a sum template s. This resulted in a 
library set, S, of stored object sum values (Figure 4).  
 
During real time operation, the real life images obtained from the scene were 
converted to a sum value i and compared to the stored sum templates. The 
difference between i and any of the stored sum templates s was used to 
determine which sum template best matches with the real world image. 
Hence, the smaller the difference, the better the match.  
 



 
 

This implemented technique is robust against rotation or orientation of 
observed objects. However, the approach requires the Kinect® to be set up in 
the same position and height all the time. Indeed, if the Kinect® is set up at a 
different height between the real world capture and the template acquisition, 
the comparison would not produce any result as the objects in the scene 
would appear either smaller or bigger than the actual case.  
 
3.2.2 Full image template matching 
The second technique investigated is the full image template matching. This 
technique involves sliding a full image template that represents the object to 
be recognised across the actual image.  
 
The templates used in this work came from CAD (Computer Aided Design) 
models that can be readily found on the open source 3D repository called 
Thingiverse. The methodology used for template matching using the CAD 
model is described in Figure 5. These models are normally in STL (Standard 
Triangle Language) format; STL represents an unstructured triangulated 
surface composed of faces and vertices.  
 
In order to generate a grayscale image, it was necessary to keep only the top 
surface image of an object. An algorithm that stored the top values of an STL 
file in a matrix was created. This matrix represents the top surface of the CAD 
parts as ‘seen’ from the viewpoint of a Kinect® sensor. The algorithm then 
converted the matrix into a grayscale image for full image template matching.  
 
The advantage of this approach is that downloaded CAD models can be 
automatically rotated as well as resized in order to obtain various orientations 
and distances from the Kinect®. This results in a template library of different 
grayscale images that correspond to different orientations and distances for a 
particular object. The algorithm uses prior generated and stored templates to 
find the best match in a real time image by sliding the stored template across 
the scene. The problem with this approach is that as the library of stored 
templates increases, it becomes less computationally tractable.  
 
Nevertheless, using stored CAD models of a part has an industrial relevance 
because most manufactured parts would have a CAD model. This enables the 
novel use of stored domain knowledge.    
 



 
 

 
Figure 5: Methodology for template matching using CAD model 
 
In order to test this technique, a V8 cylinder model as well as a Stanford 
bunny’s CAD model (Figure 6) were downloaded and processed according to 
the right hand side of the methodology shown in Figure 5. Consequently, 
several templates of both models in different orientations were generated and 
stored.  
 

 
Figure 6: CAD model view in 3D Builder. Rabbit and V8 cylinder body 

 
 
During the testing phase, the bunny was 3D printed and both the orientation 
and position of the bunny was moved in real time in order to test the approach. 
Figure 7 shows an example of the output of the implemented solution for 
various scenes.  
 
 
 



 
 

 
Figure 7: Results of full image template matching for Stanford bunny example 
 
Due to the small size of the parts, the output from the Kinect® was not always 
reliable especially when the part presented sharp edges. The sharp edges of 
the V8 cylinder led to a loss of data due to the fact that the edges deflected 
the IR beams away from the receiver component of the Kinect. This meant 
that such regions showed up as black in the generated grayscale image. 
 
3.3 Deriving HMM inspired state-based workflows using context based 
knowledge  
The object affordance theory states that objects cannot move or transform 
themselves. Humans make use of an object’s characteristics and features to 
transform or assemble them into finished products. As a result, it is possible to 
use an object’s transformations to track the progress of a task and suggest 
what the human needs to do at the next step. Using a simple workflow in the 
form of a finite state machine, it is possible to keep track of the past, current 
and future steps in a manual assembly task. In order to track the manual 
assembly task, the use of 3D feature changes and 2D feature changes were 
investigated as well as prior knowledge of the manual assembly task.  
 
This was converted into a workflow. The global work flow for a theoretical 
assembly task on a production line is given in Figure 8. As a first stage a set of 
key features linked to the workstation are identified (Figure 9). The workspace 
buffers in Figure 9 were used to give information about the current state of the 
workstation. For example, if two parts are available in buffer 1, and one part 
exits from buffer 1, it can then be assumed that this part will be processed in 
the assembly area. 
 



 
 

In the same way if buffer 2 receives a part from the assembly area, the 
assembly process is considered as complete. With this simple reasoning, data 
is only extracted from the view of the physical area of the workstation. In 
Figure 10, the position of the operator’s hands in the scene can also be 
extracted. Hence, this position can give information concerning the area where 
the hands are completing a task. Using the Kinect®, the height of the hands, 
can also provide information relevant to assembly progress.  
 
 

 
 
Figure 8: Workflow for a theoretical assembly process. 
 

   

 
Figure 9: Buffers on a workstation in a manual production line 

 

 
Figure 10: Hand Position and Assembly State for Feature Extraction in a 
manual production line.  



 
 

 
As a result of the aforementioned process, information about the task being 
performed can be inferred and a descriptive statement established. In an 
Industry 4.0 context, the tracking of the hand could enable the potential 
improvement in the efficiency of the line as it could provide an insight into 
alternative ergonomics for the workstation. In addition body movements of the 
operator could be tracked in order to identify work arduousness or drudgery 
linked to the movements and effort made by the operator.  
 

 
(a). Objects-related features at time: t 

 
(b). Objects-related features at time t +  

 
Figure 11: Trackable object related features on the production line 
 

Feature changes on objects can also be extracted from the parts being 
assembled. Figure 11a and Figure 11b show changes in the black socket 
block. The changes indicate a modification of the assembly state. In Figure 11, 
the addition of copper-coloured pins into the black socket block show a 
change in the assembly state of the socket.  
 
Tools are also key features in the assembly process; the displacement of one 
tool can imply the beginning of a task. The position of a tool can be compared 
to both the part and hand so that if the difference between two features is 
lower than a threshold, it can be assumed that the assembly task has started; 
for example, in Figure 11b, the hand has picked up the tool which induces the 
start of another state of the assembly task.  



 
 

 
The state of a fixture on the workstation can also provide information. For 
example, Figure 12 shows two different assembly states. The modification of 
the handle position on the fixtures could indicate that the assembly has 
reached another state.  
 
 
 
 
 
 
 

       
   (a)     (b) 
Figure 12: Modification of a fixture shown between two different assembly 
states. In (a), a fixture handle is depressed to the left to clamp the black 
socket in place while in (b), the fixture handle is turned to the right in order to 
release the black socket.  
 
3.4 Theoretical insights into the use of HMM inspired state-based 
workflows 
In the theoretical assembly line in Figure 8, each of the steps could be seen as 
a state in a Hidden Markov Model. There are a finite number , of such states 

 in the model  that describes the sequence of states  
required to build a final product . 
 
Each state  will emit a set of observations,  where  
is the number of observation symbols in state . Using a known model  of the 
assembly process (because most assembly lines will be properly documented 
and well-rehearsed to boost production), the state transition probability 
distribution , will be determined by the number of actions in each state  
required to transition the object to the next state . If there are  number of 
actions in state  for example and  is the number of completed steps at time , 

then the transition probability at time  is given by . This means that there is a 
heavy reliance on a human to complete the required actions in the right 
sequence in order to transition to another state. As such, we rely on the 
following assumptions.    
 
Assumptions: 

 
1. Assuming the human operator is rational; obeys a set of instruction in a 

manual and operates according to the principle of obtaining maximum 
reward,  the transition probabilities from one state to another is 

Fixture 
handle 

Copper pins waiting to be 
put into the black socket 

Black 
Socket 

Black Socket 
with pins 



 
 

dependent on time and the number of successful sequential actions, 
, performed by the human on the object. In such a scenario, it is 

beneficial for the human to operate on the principle of obtaining 
maximum reward according to Equations 1 and 2.  
 

   

 

Where  is the state transition function,  is the reward function, ܳ are 
the states,   is the policy which contains the actions  and  is the 
value of the reward. As mentioned, it is beneficial for the human to 
maximize the number of successful sequential actions, ,  because if 
she or he is deemed inefficient, he or she could be replaced. 

As a result, the transition probabilities between states is mostly 
dependent on time or the number of successful actions completed. As a 
result, provided there are successful actions being completed, the 
longer the part stays in a particular state, the higher the probability it will 
change state to the next state in the sequence. 

2. Each observation  is unique so that when in a known state , it is 
possible to use a optimality criterion over the set of observations 
observable in just that state i.e.  to detect what 
stage  in the state  the product is in. 

 
3. That each product is assembled from the start  every time and that an 

automated observer is able to initialise itself to start tracking from . 
 

4. The changes in the object’s state is caused by human actions  as 
the object is inanimate. As a result, the object’s change from  to  is 
caused by a human action. Consequently,  and as such,  is 
an observation . By tracking , it is possible to understand 
the object’s progress on the assembly line. The more completed 
actions  are made towards a , the greater the probability of emitting 

 as  
 

3.4.1 Implications for algorithm development 

Using assumption 3, the automated observer starts tracking an object from the 
first time it enters into the assembly area. At this stage, it is at the initial state 

. 
 
Using assumption 4,  triggers a subroutine indicating that the human has 
just carried out an action. Since each observation  is 
unique (assumption 2), using an optimality criterion, the automated observer 
searches the model  observation set  for which observation is the closest 
match to the current observation. However, since we know what state  we 
are in, we can reduce the search space to just  thereby making it more 
computationally tractable. Using assumption 1, that the human is rational and 
will try to maximize reward, the object’s changes  will follow a logical 

(1) 

(2) 



 
 

sequence  of states to completion. The transition from one state 
to another is also guaranteed. 
 
 
4.0 Results  
As discussed above, one of the priorities in this research was to ensure that 
the approach developed could be utilized across many domains. In this 
section, it is shown how the approach of this paper was tested, utilising simple 
lab based approaches in the first instance culminating in a number of 
increasingly difficult use cases.    
 
4.1 Assembly of Coloured Blocks use case:  
The first sequence to be considered was the assembly of some coloured 
blocks. These parts were chosen because of the different colours available 
and their simplicity of assembly. The Figure 13 shows the assembly sequence 
developed. 
 

 
Figure 13: Assembly sequence of blocks 

 
The workflow of the sequence was developed and converted into a state 
machine of the solution. In Figure 14, the assembly sequence and actions 
undertaken between each step are highlighted.   
 
The program was tested under the following conditions: only the coloured 
parts are available in the scene, the operator then follows the instructions 
provided by the program.  
 
The results are shown, in Figure 15, which presents the different states of the 
assembly process. The program is able to track the different stages of the 
assembly task and give instructions for future steps. This was based on the 
number of parts in the assembly area and the distance between the centre of 
mass to give a statement about the assembly state (see section 3.1.1 and 
3.3).  
 
Once a workpiece is fully assembled, the program proposes to remove the 
workpiece to start a new assembly process. The operator has to adhere to the 
instructions given by the program to follow the assembly process as it cannot 
skip steps. This ensures that: (1) the operator does not miss any steps; (2) the 



 
 

operator receives assistance from the system and (3) an inline inspection is 
carried out constantly thereby eliminating a need for another workstation 
dedicated to visual inspection tasks.  
 

 
(a) Diagrammatic assembly sequence of the coloured blocks in Figure 14. 



 
 

 
(b) Flowchart of the assembly sequence 

Figure 14: Workflow for the assembly of coloured blocks 
 
 



 
 

 
Figure 15: Tracking object assembly using coloured features 

 
4.2  Assembly of metrology parts use case: 
The second assembly process considered involved the use of metallic 
metrology parts. These parts were chosen as they were representative of real 
industrial parts. The purpose of this use case was to ascertain if the program 
can run within an industrial environment. The Figure 16 shows the metallic 
workpieces and their assembly sequence. The parts are assembled in a tower 
formation. 

 
 
 
 
 
 
 
 



 
 

 
 
 
 

 
 

Figure 16: Assembly sequence of metrology parts. A pictorial side view is also 
shown due to the lack of contrast between the metrology parts when viewed 

from above.  
 
The metrology parts were chosen because of their simple shapes and metallic 
aspect. Therefore, the method involved here must recognize the parts using 
just shape features. 
 
Once the assembly sequence was identified, the workflow was created. Two 
different tests were carried out, the first one involving buffers, and the second 
without buffers. The difference between the two tests is relevant because the 
workflow used to track the assembly progress will be different.  
 
If buffers are used, the allocation of parts in the scene can provide a lot of 
information about the assembly sequence. Otherwise, if no buffer is available, 
the allocation of parts in the scene is not sufficient to identify the assembly 
state. In this case the recognition methods have to be very robust as reliance 
must be placed on the tracking of shape or colour features anywhere in the 
assembly area instead of just the parts in the buffers.  
 
Although the solution worked, it was identified that the tracking of the last 
stage (assembly of small cube on top of the big square) was problematic. The 
colours of the two parts were very similar. As a result, another feature was 
chosen to identify the cube. This relied on the volume data from the depth 
information. As a result, this strategy involved the use of both 3D and 2D 
techniques.  
 
4.3 A bottle packing use case 
In this use case, the packing of bottles into a box was investigated. The centre 
of mass of bottles and a box as well as the number of the objects along with 
the buffer states on the workbench were all used. The distance measure 
between objects and the buffer as discussed in 3.3.1 was also used.  
 
The workflow sequence in this use case involved an off screen worker loading 
the left buffer with the right number of bottles (two in this case). A seated 
worker loads the working area in the centre with a box. Then the seated 

Cylindrical 
part 

Rectangular 
part placed on 
cylindrical part 

Cube part placed 
on rectangular part 



 
 

worker takes the two bottles from the left buffer and loads them into the box. 
After loading the bottles, the worker moves it to the right buffer to be picked by 
another worker off screen (Figure 17).   

  
Figure 17: Workflow sequence of loading shower gel bottles into a packing 
box 
 
Note that the operations of loading the box and bottles can be completed in 
parallel. Using this workflow, any discrepancies were flagged up as a potential 
assembly error or problem. For example in Figure 18 (b-d), when the observed 
actions was different from the workflow state in Figure 17 (b), our system was 
able to display either: “item missing” or “faulty item”.  
 
 

  
(a) Empty workbench (b) Loading the workbench 

  
(c) Worker filling the box (d) Loading operation finished 

 
Figure 18: Incomplete loading of shower gel bottles into a box.  
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Our system was able to show the number of bottles currently on the 
workbench. In Figure 19 (b), when the number of bottles exceeded the 
expected number according to the workflow sequence diagram in Figure 17, a 
“buffer overflow” message was displayed. Also, Figure 19 (c) shows that when 
the right number of bottles is loaded into the box, the system is able to display 
a “box complete->shift” message. Since the computer vision processing is 
completed at the workbench, the delivery of images in real time to a central 
computer is not required. Notice also in Figure 19 (d) that system is able to 
identify that the box was packed correctly for the next stage of the processing 
which could be wrapping.  
 
 
 

  
(a) Loading of two bottles and box into 

buffer 
(b) Loading of three bottles into buffer 

  
(c) Filling of the box with two bottles (d) Loading operation finished 

 
Figure 19: Complete loading of shower gel bottles into a box.  
 
 
 
4.4 Production line assembly of electronic components use case 
Figure 20 shows an industrial workstation that was chosen because of its 
similarity to a real industrial environment. In this scenario, all the main features 
of the workstation are visible. The challenge here was in defining the workflow 
sequence for the assembly of the electronic component and if the sequence 
could be tracked.   
 



 
 

For this use case the colour features of objects were considered. 
Nevertheless, due to the high number of parts, their small dimensions and the 
multiple occlusions that occur as a result of the human hand, the tracking of 
workpiece changes is difficult to achieve.  
 
Use of the depth data stream from the Kinect was made within this case. 
Figure 18 shows the type of depth data from the production line. The black 
colour area on the depth image is considered as an area of errors, returning a 
0 value. The error occurs because of the limitations of the Kinect. This could 
be due to the infra-red receiver not receiving a return ray due to specular 
reflection caused by the objects.  
 
Nevertheless, the recognition of the parts within the workstation is possible but 
due to the many variations in this assembly use case, the implementation of a 
solution that tracks the workpiece changes in this type of environment remains 
a future research target.   
 

 
Figure 20: A RGB-D capture of a production line workstation (Colour based 

top, depth based bottom).  
 
5.0 Discussion 
The main objectives of this research were to investigate techniques that 
enable the detection of a workpiece based on features and use of sequence 
workflows to extract manual assembly progress through the tracking of 
workpiece feature changes. This involved the testing and validation of the 
developed techniques using various use case scenarios.  
 
In order to implement a robust and reliable approach, (i) it is advisable to 
understand and analyse the assembly sequence as a first step; (ii) this can 
then be converted into a computational workflow to enable the detection of the 
progress of an assembly task.  
 



 
 

This work relied on the use of 2D and 3D techniques for object recognition 
while the use of a workflow sequence enabled the encoding of the steps 
required to assemble a workpiece. 
 
5.1 Using 2D techniques 
The 2D related work, while utilising existing research, attempted to link these 
findings to an industrial environment. Although the recognition of parts can be 
achieved easily in a constrained environment, the 2D techniques appeared to 
be difficult to implement in a common industrial environment.  
 
For example, colour-based techniques presented a drawback due to the 
propensity of colours to change as a result of rising and falling light levels. 
One core challenge is to constrain the scene to maintain the same colour 
appearance throughout the day. Lighting the scene with LED in a closed 
workstation could enhance the colour recognition. In the case of this solution 
the colour features would always be the same. Moreover, when considering 
the shape of the parts, the main challenge is that the gradient of colour 
between the parts and the workstation surface has to be significant to enable 
the recognition of the shapes. This requires a constrained environment, where 
the colour of both parts and the workstation surface are significantly different.  
 
Deep learning techniques could have been applied in this work to solve some 
of the problems with illumination, but this requires the collection of a large 
dataset for training. Furthermore, as mentioned previously, if a domain is well 
understood, the use of machine learning could be bypassed and rules written 
to effectively capture the domain (Amazon, 2017). 
 
5.2  3D techniques 
3D related work has brought new perspectives and ideas for future 
development. The generation of grayscale images from a CAD model to track 
both objects and progress of an assembly task shows some promise despite 
the aforementioned limitations of the Kinect®.  
 
Multiple strategies including sum and template matching were investigated for 
3D object and task recognition. This presents an opportunity to develop more 
robust strategies involving mathematical functions that are capable of 
describing the image itself. Such future developments could enhance the 
efficiency and reliability of the recognition. 
 
As the detection of manual assembly tasks has to be performed in real-time, 
another challenge is to implement the 3D techniques in real-time. Different 3D 
techniques currently receive an image as the input, not a real time video 
sequence. Therefore, although the template matching is a robust object 
recognition method, it appears that the time required to detect a single object 
is significant. As a result, it will be necessary to adapt this solution to cope with 
real-time requirements. One solution could be to select a single zone of 
interest from the scene in order to speed up the recognition method. 
 
 
 



 
 

5.3 Combination of 2D and 3D techniques 
Though 2D object recognition can be completed in real time, a combination of 
2D and 3D methods could be interesting to implement in order to make a more 
robust and reliable technique. This combination could indeed improve the 
recognition and tracking of the parts as several methods based on different 
object features would be used at the same time. For example, combining both 
depth and colour of the scene can avoid the problems of misrecognition of 
objects using colour. However, one main challenge is the real-time 
perspective. Combining two recognition techniques would indeed increase the 
time for recognition. Therefore, a compromise between the techniques used 
and the time required for recognition has to be made. 
 
5.4 Overall value of this work 
The generation of a grayscale image from a CAD model appears to be very 
valuable. By using the generation of grayscale images from a CAD model, it is 
only necessary to add the CAD model into a library of workpieces so that the 
recognition system can then identify the workpiece on the workstation. Using 
the CAD model, the system can generate multiple object orientations to create 
different grayscale images owing to given orientations. Therefore, it would 
save time and increase the flexibility of the proposed method as a new 
workpiece can be inserted very quickly into the library and subsequently 
detected on the workstation. 
 
Moreover, the use of low cost equipment is very attractive for industry. The 
setup of RGB-D cameras on the production line implies a cost effective 
solution that is highly portable with low set up times. Furthermore, most 
industrial applications of computer vision or machine vision utilize such 
technology for inspecting parts. This study pushes this barrier by presenting a 
way to track an actual manual assembly sequence on a production line. The 
data obtained from this approach could then be mined for crucial insights such 
as ergonomic improvement metrics, defects rates and their causes. This 
research also presents a feasible entry point for SMEs interested in utilizing 
industry 4.0 concepts in their production lines.  
 
The use of an RGB-D camera for the recognition of objects has been 
demonstrated in a number of previous research works. However, according to 
present knowledge, no clear links between such research and industrial 
applications that track a manual assembly sequence have been identified. The 
findings within this paper demonstrate that RGB-D cameras can be suitable 
for object recognition and manual assembly tracking within an industrial 
environment if a number of constraints are applied. The approaches 
investigated in this paper could offer new perspectives to industry and 
increase the uptake of tracking of manual assembly tasks in an industrial 
environment. Furthermore, through the use of a HMM inspired state-based 
workflow as discussed in section 3.3 and 3.4, the developed algorithm is 
computationally tractable. 
 
 



 
 

There are four main limitations that were discovered in the course of this work. 
These limitations were related to the Kinect sensor used as well as the 
techniques utilized.  
 
Firstly, it was discovered that the Kinect® gave poor depth quality when 
considering parts with shiny surfaces, sharp edges or objects whose sizes are 
very small.   
 
Secondly, during the conversion of the CAD model to grayscale images, an 
increase in the number of vertices led to better resolution and accuracy. 
However, this leads to a heavy computational load during the conversion 
process. Nevertheless, this could be completed offline and then used in real 
time to detect objects.  
 
Thirdly, the testing of the algorithm using various use cases has demonstrated 
that the use of a single technique to recognize the parts can result in a low 
level of reliability. This was especially true when the components to be 
manually assembled were stacked on top of each other.  A further 
investigation that combines 2D and 3D feature detection could make object 
recognition more robust.  
 
Fourthly, the approach relies heavily on the contextual knowledge of the 
manual assembly in order to generate a computational workflow. The authors 
believe that this is a trade-off for not using a deep learning approach such as 
Long-Short Term Memory network. The approach ensures that training data is 
keep to a very minimum or non-existent and can be deployed to many new 
use cases easily and rapidly. Nevertheless, the manual setting of the 
thresholds for the object recognition component is still required.  
 
6.0 Conclusions 
This project has exploited RGB-D cameras to investigate the feasibility of 
using computer vision techniques and a HMM inspired state-based algorithm 
to track the progress of a manual assembly task on a production line in real 
time.  
 
Using a set of increasing complex of use cases, it has been shown that it is 
possible to track a manual assembly process being completed by a human. 
This was achieved by using: (i) contextual based object recognition based on 
known object features and (ii) a knowledge of the sequence of the manual 
tasks to be carried out on a workpiece.  
 
For contextual based object recognition, 2D and 3D image processing 
techniques were investigated in order to recognise objects. 2D techniques 
highlighted in literature used several features of an object for object 
recognition. Features that were colour, shape or contour based were revealed 
to be acceptable features for industrial object recognition according to 
literature.  
 
The techniques investigated during this project confirmed the expectations 
from literature. The selected 2D techniques achieved good results and the 



 
 

recognition of colours and shape of objects using 2D features was found to be 
robust. In contrast the identified 3D techniques used in isolation were 
unsuitable due to the resolution limits of the Kinect®. As Kinect® was 
designed for skeleton recognition, the tracking of small parts in real-time still 
needs to be investigated.  
 
As a result, 2D techniques, were used to achieve the tracking of a manual 
assembly sequence in 4 different use cases. In the first use case, coloured 
blocks were as part of an experiment to track a manual assembly task. Even 
though encouraging results were achieved, the parts used had simple colours 
and shapes, and the surrounding environment was constrained. The second 
use case was similar to the first except that a 3D feature based on volume 
geometric data was used to mitigate the limitations of using a pure 2D based 
colour detection strategy.  
 
In the third use case, the complexity of the manual assembly was increased.  
This involved packing a box of shower gels. The results of this use case 
showed that if: (i) the constraints on the surrounding environment were 
maintained as in the first use case; (ii) the workbench was clearly laid out and 
(iii) the human’s actions in each unique area (i.e. buffer and central area) were 
predictable, then it is possible to track an assembly sequence in real time.  
 
This means that if the human actions are less predictable, then they could 
pose a challenge to our approach due to the over reliance on a complete 
knowledge of the manual assembly process.  
 
In the fourth and final use case, a manual assembly process on an actual 
production line was tracked. The results of this use case revealed two 
problems: (i) the arrangement of items in the central buffer used by the human 
was less predictable than the second use case. Furthermore, some of the 
parts in the central buffer were reflective and too small to be detected by the 
Kinect ®.  As a result, it was more challenging to track objects and as such the 
manual assembly as a whole.   
 
Overall, the tests and validation in different scenarios revealed that although 
the Kinect® resolution was too low, the recognition of objects as well as 
tracking a manual assembly progress in real time could be achieved if certain 
constraints were applied.  
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