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Abstract Autonomous navigation in open and dynamic
environments is an important challenge, requiring to solve
several difficult research problems located on the cutting
edge of the state of the art. Basically, these problems may be
classified into three main categories: (a) SLAM in dynamic
environments; (b) detection, characterization, and behavior
prediction of the potential moving obstacles; and (c) online
motion planning and safe navigation decision based on world
state predictions. This paper addresses some aspects of these
problems and presents our latest approaches and results. The
solutions we have implemented are mainly based on the
followings paradigms: multiscale world representation of
static obstacles based on the wavelet occupancy grid; adap-
tative clustering for moving obstacle detection inspired on
Kohonen networks and the growing neural gas algorithm;
and characterization and motion prediction of the observed
moving entities using Hidden Markov Models coupled with
a novel algorithm for structure and parameter learning.

Keywords Multiscale occupancy grids ·World state
estimation · Online reconstruction ·Motion prediction ·
Intelligent vehicles

1 Introduction

To some extent, autonomous navigation for robotic systems
placed in stationary environments is no longer a problem.
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D. Vasquez (B)
Swiss Federal Institute of Technology, Zurich, Switzerland
e-mail: vasquez@mavt.ethz.ch

The challenge now is autonomous navigation in open and
dynamic environments, i.e., environments containing mov-
ing objects (potential obstacles) whose future behavior is
unknown. Taking into account these characteristics requires
solving of several difficult research problems at the cutting
edge of the state of the art. Basically, these problems can be
classified into three main categories:

– simultaneous localization and mapping (SLAM) in
dynamic environments;

– detection, tracking, identification and future behavior pre-
diction of the moving obstacles;

– online motion planning and safe navigation.

In such a framework, the system has to continuously char-
acterize the fixed and moving objects that can be observed
both with on-board or off-board sensors. As far as the moving
objects are concerned, the system has to deal with problems
such as interpreting appearances, disappearances, and tem-
porary occlusions of rapidly manoeuvring objects. It also
has to reason about their future behavior (and consequently
to make predictions).

From the autonomous navigation point of view, this means
that the system has to face a double constraint: constraint on
the response time available to compute a safe motion (which
is clearly a function of the environment’s dynamics), and a
constraint on the temporal validity of the motion planned
(which is a function of the validity duration of the predic-
tions). In other words, one needs to be able to plan motion
fast, but one does not need to plan motion very far in the
future.

This paper addresses some aspects of the previous prob-
lem, and presents our latest approaches and results. Figure. 1
shows an overview of the whole system, along with the sys-

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159148807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


52 Intel Serv Robotics (2008) 1:51–72

Laser
Scanner

Wavelet
Occupancy Grid

Object
Extraction

Object
Tracking

Motion
Prediction

Motion Planning
&

Navigation Decisions

Localization

Fig. 1 System overview. Shadowed blocks indicate the components presented in this paper

tem components which are detailed in this paper. The solu-
tions we have implemented rely on the following modules:

– multiscale world representation of static obstacles based
on wavelet occupancy grid;

– adaptive clustering for moving obstacle detection
inspired on Kohonen networks and the growing neural
gas algorithm;

– characterization and motion prediction of the observed
moving entities using incremental motion pattern learn-
ing in order to adapt hidden Markov models.

This paper is organized in four main sections. Section 2
describes how we use wavelets to build an occupancy grid
based representation of the world. Section 3 deals with the
process which goes from distinguishing between grid cells
that belong to static and moving objects, up to tracking indi-
vidual objects in space. Section 4 describes how tracking out-
put is used to learn and predict typical motion patterns of the
objects populating the environment. In Sect. 5, we describe
our experimental platform—the automated valet parking—
and discuss our experimental results. We finish the paper by
presenting our conclusions.

2 Wavelet-Based world reconstruction

Occupancy grids (OG), [1], partition the workspace into a
cartesian grid. Each cell of the grid stores the probability that
an obstacle lies at the cell location. It provides robots with the
ability to build accurate dense map of the static environment,
which keeps track of all possible landmarks and represents
open spaces and static obstacles at the same time. Only simple
update mechanism, which filters moving obstacles naturally
and performs sensor fusion, is required. However, this sim-
plicity comes with a major drawback: to efficiently represent
the world a huge amount of cells are needed. To counter this
problem we propose, here, a new algorithm for a new rep-
resentation that allows to keep advantages of a grid with a
compact representation. This model is based upon a mathe-

matical tool for sparse function coding called wavelets, that
will be introduced now, along with our notations.

2.1 Wavelets

In this paper, the occupancy state is represented as a spatial
function. Our main contribution is an occupancy function
updating technique that can be performed in a compact man-
ner. The mechanism behind several compression schemes
is to project a data function onto a set of elementary func-
tions which is a basis for the vector space of approximation
functions. For example, the Fourier transform projects a data
function onto a set of sine and cosine functions. The approxi-
mation process consists of selecting a finite set of components
from the lower frequencies and rejects the high-frequency
components, which are frequently considered as noise. How-
ever, this leads to poor compression results, especially for
non-linear functions such as OGs (due to structures such as
walls or corners, for example). Indeed, a similarity exists
between OGs and images, [1]. An approximation space that
is useful for these type of signals are wavelet spaces, [2].
Wavelets work by averaging neighboring samples to get a
new lowerresolution image of the signal (Table. 1). Clearly,
some information has been lost in this averaging and down-
sampling process. In order to recover the original signal,
detail coefficients are required to capture the missing infor-
mation. The popular wavelet transform known as the Mallat
algorithm successively averages each scale, starting from the
finest scale. The averaging produces the next coarser scale
and differences with neighboring samples at the finer scale
gives the associated detail coefficients.

Table 1 Elementary step of direct and inverse 1D Haar transform for
two neighboring samples 2i and 2i+1 (si is the new coarser scale coef-
ficient whereas di is the detail coefficient necessary to perform exact
reconstruction in the inverse transform)

Haar wavelet transform Haar inverse wavelet transform

di = p(x2i )− p(x2i+1) p(x2i+1) = si − 1
2 di

si = p(x2i+1)+ 1
2 di = p(x2i )+p(x2i+1

2 p(x2i ) = di + p(x2i+1)
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Fig. 2 1D Haar mother
functions, left the scale mother
function � and right the scale
wavelet function �

(a) (b)

Fig. 3 The 1D image (upper,
left) is: [8, 10, 9, 5, 0, 0, 4, 4],
and its unormalized (used here
because it is simpler to display)
Haar representation is:
[5, 3, 1,−2, 0, 0]. The image is
then reconstructed one level at a
time as follows:
[5] → [5+ 3, 5− 3] = [8, 2] →
[8+ 1, 8− 1, 2− 2, 2+ 2] =
[9, 7, 0, 4] and so on. Here 0 is
the finest scale index or the scale
where data is gathered and −2 is
the coarsest scale
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There is no loss of information in that process since the
information contained in the finer scale can be recovered
from its average and detail coefficients difference. Since two
neighboring samples are often similar, a large number of the
detail coefficients turn out to be very small in magnitude,
truncating or removing these small coefficients from the rep-
resentation introduces only small errors in the reconstructed
signal, giving a form of “lossy”signal compression. Loss less
compression is obtained by removing only zero coefficients.

In this paper wavelets are just used as a special kind of vec-
tor space basis that allows good compression. Details about
wavelet theory is beyond the scope of this paper and refer-
ences can be found in [2–4].

2.1.1 Notations

Wavelets are built from two set of functions: scaling and
detail functions (also known as wavelet functions). Scal-
ing functions, �(x), capture the average or lower frequency
information. Detail functions, �(x), capture the higher fre-
quency information.

The set of wavelet basis functions can be constructed by
the translation and dilation of the scaling and detail functions
(Figs. 2 and 4). Thus each of the basis function is indexed
by a scale l and a translation index t : �l

t (x) and �l
t (x). In

this paper, the non-standard Haar wavelet basis is used. For
non-standard Haar wavelet basis, there is only one mother
scaling function and 2d −1 mother wavelet functions, where
d is the dimension of the signal. Expanding a function O in
the Haar wavelet basis is described as:

O(x) = s−N
0 �−N

0 +
l=0∑

l=−N

∑

t

∑

f

dl
t, f �

l
t, f , (1)

where the second subscript f is an index to one of the 2d −1
detail function, and N the level such that the whole grid
appears as a point. As can be seen in Eq. 1, only one scal-
ing coefficient and one scaling function are required in the
expansion of any function O(x). As shown in Fig. 3, the
scaling coefficients at other levels are computed as part of
the decompression or compression process.
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Ψ1(x, y) = Ψ2(x, y) = Ψ3(x;y) =

Fig. 4 These graphically defined 2D mother wavelet functions are +1
where white and−1 where black in the unit square shown and implicitly
zero outside that domain. They are tensorial product of 1D wavelet and
scaling functions. The 2D scaling function is +1 over the whole unit
square and zero outside

The scaling coefficient for a certain level l and transla-
tion t holds the average of values contained in the support of
the scaling function. The support of any Haar basis function
in dimension d is a d-cube, e.g.a square in 2D. If the finest
level is 0 and coarser levels are indexed by decreasing nega-
tive integers, the side of such a d-cube is 2−l where the unit
is in number of samples at level 0.

2.1.2 Tree structure

The key step in a wavelet decomposition is the passage from
one scale to another. The support of a Haar wavelet func-
tion at level l is exactly partitioned by the support of the 2d

wavelet functions at level l + 1 (see Fig. 3 for dimension 1).
Therefore it leads to a quadtree for the case of 2D space

that hierarchically maps the whole space. A node of the
2D-tree stores three detail coefficients and potentially four

children that encode finer details if they are necessary to
reconstruct the expanded function (Fig. 4, 5). The key step
of a node creation is described in Figure 6.

This data structure is exactly a quadtree, but it not only
stores spatially organized data, but also summarizes the data
at different resolutions. The root of the tree stores the scaling
coefficient at the coarsest level and the support of the corre-
sponding scaling function includes all the spatial locations
of the signal data.

2.2 Occupancy grids and telemetric sensor models

OG is a very general framework for environment modeling
associated with telemetric sensors such as laser range-finders,
sonar, radar or stereoscopic video camera. Each measurement
of the range sensor consists of the range to the nearest obsta-
cle for a certain heading direction. Thus a range measurement
divides the space into three area: an empty space before the
obstacle, an occupied space at the obstacle location and the
unknown space everywhere else. In this context, an OG is
a stochastic tessellated representation of spatial information
that maintains probabilistic estimates of the occupancy state
of each cell in a lattice [1]. In this framework, every cell
is independently updated for each sensor measurement, and
the only difference between the cells is their positions in the
grid. The distance which we are interested in, so as to define
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Fig. 5 2D Haar wavelet transform and inverse transform with lifting scheme: algorithm elementary step. It is straightforward that the computing
of this step is simple and fast

Fig. 6 A key step of a Haar
wavelet transform in 2D. 4
scaling samples at scale l
generates 1 coarser scaling
coefficient at scale l + 1 and 3
details coefficients at scale l that
are stored in a wavelet tree node.
In general the tree node has 4
children that described finer
resolutions for each space
subdivision. But if each child is
a leaf and has only zero details
coefficients then all the child
branches can be pruned without
information loss. And the tree
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cell occupancy, is the relative position of the cell with respect
to the sensor location. In the next subsection, the bayesian
equations for cell occupancy update are specified with cell
positions relative to the sensor.

2.2.1 Bayesian cell occupancy update

Probabilistic variable definitions:

– Z a random variable1 for the sensor range measurements
in the set Z .

– Ox,y ∈ O ≡ {occ, emp}. Ox,y is the state of the cell
(x, y), where (x, y) ∈ Z

2. Z
2 is the set of indexes of all

the cells in the monitored area.

Joint probabilistic distribution (JPD): the lattice of cells is a
type of Markov field and in this article sensor model assumes
cell independence. It leads to the following expression of a
joint distribution for each cell.

P(Ox,y, Z) = P(Ox,y)P(Z |Ox,y) (2)

Given a sensor measurement z we apply the Bayes rule to
derive the probability for cell (x, y) to be occupied (Fig. 7).

p(ox,y |z) = p(ox,y)p(z|ox,y)

p(occ)p(z|occ)+ p(emp)p(z|emp)
(3)

Thus the two conditional distributions P(Z |occ) and
P(Z |emp) must be specified in order to process cell occu-
pancy update. Defining these functions is an important part
of many works [1,5] and, in the following, the results in [6]
which proves that for certain choice of parameters2 these
functions are piecewise constants:

p(z|[Ox,y = occ]) =
⎧
⎨

⎩

c1 if z < ρ

c2 if z = ρ

c3 otherwise.
(4)

p(z|[Ox,y = emp]) =
⎧
⎨

⎩

c1 if z < ρ

c4 if z = ρ

c5 otherwise.
(5)

when ρ is the range of the cell (x, y).
As explained in [7], the cell update requires operations that

are not base inner operators of a vector space (product and
quotient). Thus a better form is necessary to operate update
on wavelet form of occupancy functions.

1 For a certain variable V we will note in upper case the variable, in
lower case v its realization, and we will note p(v) for P([V = v]) the
probability of a realization of the variable.
2 The parameters are the prior occupancy probability which is chosen
very low, the world is assumed to be very empty, the sensor model fail-
ure rate and the sensor range discretization. Only the first parameter is
relevant for establishing the piece-wise constantness of the functions
[6].

2.2.2 Log-ratio form of occupancy update

As the occupancy is a binary variable, a quotient between
the likelihoods of the two states of the variable is sufficient
to describe the binary distribution. The new representation
used is:

odd(Ox,y) = log
p([Ox,y = occ])
p([Ox,y = emp]) (6)

In the bayesian update of the occupancy, the quotient makes
the marginalization term disappear and thanks to a logarithm
transformation, sums are sufficient for the inference:

log
p(occ|z)
p(emp|z) = log

p(occ)

p(emp)
+ log

p(z|occ)

p(z|emp)
(7)

= odd0 + odd(z) (8)

Therefore the vector space generated by the wavelet basis
with its sum inner operator is sufficient to represent and
update OGs.

2.2.3 Log-ratio form of sensor model functions

It is straightforward to derive from Eqs. 4 and 5, the sen-
sor model equations in log-ratio form that we note as the
following:

odd(z) =
⎧
⎨

⎩

0 if z < ρ

log(c2/c4) = oddocc if z = ρ

log(c3/c5) = oddemp otherwise.
(9)

when ρ is the range of the cell (x, y). One can notice that the
update term is zero if the cell is beyond the sensor readings,
thus no update is required in this case.

2.3 Hierarchical rasterization of polygons

This section describes the main contribution of this article
which consists of a fast algorithm for updating an occupancy
grid expanded as a non-standard Haar wavelet series from a
set of range measurements.

2.3.1 Problem statement

The standard approach for updating occupancy grids, in the
context of laser sensors, will be to traverse the cells along
each laser sensor ray and update the cells. This method of tra-
versal induces difficulties in calculating the area of coverage
for each laser sensor ray in order to avoid inaccuracies such as
aliasing. An easier alternative will be to traverse every cell of
the grid and for each cell, perform a simple test to determine
the state of the cell. In this case, with a grid size of 1,024 cells
per dimension, a 2D square grid contains more than 1 mil-
lion cells and for relative small cells (5 cm) the covered area
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is smaller (51.2 m) than the common lidar maximal range
(�100 m). Even if real-time performance can be obtained in
2D for small field of view, it is not the case as soon as the field
of view is large. Therefore the problem is to find a method that
efficiently updates the grid without traversing every cell of
the grid. As shown in Fig. 7 and Eq. 9, a range measurement
defines three sets of cells (Fig. 8). The first set, E , contains
cells that are observed as empty. The second set, U , contains
cells that are considered as unknown. The third set, B, con-
tains cells that are partially empty, unknown or occupied. The
elements of the third set are mainly found at the boundaries
formed by the sensor beams at its two extreme angles and
at the location and in the neighborhood of an obstacle. The
last remark of the previous section states that the U set can
be avoided in the update process. Therefore an update step
must iterate through the cells that intersect the polygon that
describes the sensor beam boundaries, i.e.,the B set (Fig. 8).
The following describes an algorithm that performs the cor-
rect iteration through the grid in an efficient manner through
the utilization of wavelets.
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Fig. 7 Update of a 2D OG after a sensor reading, initially each cell
occupancy was unknown, i.e.,0.5 probability. The sensor beam has an
aperture of 7◦. The sensor is positioned in (0,0)
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Fig. 8 A range-finder beam. The range finder is located at Ω and its
field of view is surrounded by red boundaries. It defines the three kind
of cell types. The band, within the obstacle, lies is at the top right end
of the field of view. Thus the cells marked with a “D” stand for cells
where a detection event occurs

2.3.2 Hierarchical space exploration

The key idea in the exploration of the grid space is to define
a predicate: existIntersection that is true if a given set of grid
cells intersect the surface defined by the field of view of the
sensor beams (the most outer boundaries in red, Fig. 8). The
absence of intersection indicates that the given set of cells
are outside the sensor field of view and can be discarded for
occupancy update. For the case of existIntersection evaluat-
ing to true, a special sub case would be when the set of cells
are totally included in the sensor field of view, then all the
cells of the set belong to E and their occupancy are decreased
by the same amount of oddemp. So it is equivalent to decrease
the occupancy of the coarse area that contains all these cells
by oddemp.

As the algorithm is able to obtain uniform regions recur-
sively, the grid representation should allow the update of
regions, and wavelets provide a natural mechanism for doing
so. In this algorithm, the grid is traversed hierarchically fol-
lowing the Haar wavelet support partition. For each grid area,
the existIntersection predicate guides the search. If there is
intersection the traversal reaches deeper into the grid hierar-
chy, i.e.,explores finer scales. Otherwise it stops the wave-
let transform for the current branch of the wavelet tree as
described in Fig. 6 for the 2D case.

Algorithm 1: HierarchicalWavRaster( subspace S, sen-
sor beam B )

1: for each subspace i of S: i = 0, . . . , 3 do
2: if sizeof(i) = minResolution then
3: vi = evalOccupancy(i)
4: else if existIntersection( i , B ) then
5: if i ∈ E then
6: vi = oddemp /*eq. 9*/
7: else
8: vi = HierarchicalWavRaster( i , B )
9: end if
10: else
11: vi = 0 /*i ∈ U*/
12: end if
13: end for
14: {sl+1,obs

S , dl,obs
f1,S , · · · , dl,obs

f3,S } =waveletTransform({v0,· · ·, v3})
15: for each dl

f,S : do

16: dl
f,S ← dl

f,S + dl,obs
f,S /*update inference*/

17: end for
18: returns the scaling coefficient sl+1,obs

S

Algorithm 1 gives the pseudo-code of the hierarchical grid
traversal. The algorithm is recursive and begins with the root
of the wavelet tree as the initial subspace. The result of this
first function call is used to update the mean of the wavelet
tree which is also the coefficient of the scaling function. The
root represents the whole grid and is subdivided in to four
subspaces following quad-tree space organization. Then each
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considered subspace S is either an area that have four sub-
spaces or a leaf of the tree, that is a cell in the grid. The sizeof
function get the resolution of the subspace i and minResolu-
tion represents the resolution of a cell in the grid.

The evalOccupancy function evaluates the occupancy of
a cell; it can proceed by sampling the cell, or by calculating
if each sample point lies in an occupied, empty or unknown
area. Then, the odd values for each sample point in a cell are
averaged. Alternatively, the max occupancy in the cell can
also be chosen.

Such an algorithm is far more efficient than a complete
traversal of the grid especially with range-finder that mea-
sure several beams at a time. With this kind of range-finder
the field-of-view polygon is very large and the U and the
E set are very large causes early cut in the space traversal.
Therefore the leaf of the space representation are almost an
obstacle. Then the representation is almost as simple as a sen-
sor impact record in a quad-tree but stores all the occupancy
volumetric information in addition.

2.3.3 Bounded map

To ensure good compression and map dynamics, the possi-
ble occupancies are bounded. On the one hand, these bounds
allow that large portions of the map that are empty converge
towards the lower bound and are considered at large scale
as constant values. Thus the wavelet representation allows to
store only large scale coefficient, early in the tree, to describe
these areas. On the other hand, these bounds make it possible
that the map is updated at correct speed: if an occupied part of
the map represents a car parked in a parking lot, the map must
be rapidly updated when the car drives away. In that example,
the map must evolve from the upper occupancy bound to the
lower occupancy bound. If these bounds are controlled, it is
possible to fix it according to oddemp and oddocc such that
the update speed needed is reached.

The building map process begins with a tree that is com-
posed of a single root. While sensor information is processed,
nodes are added in the tree when new regions are discovered.
But as the world is not static, there are moving obstacles
that produce measurement (as with a parked car that moves).
Therefore there are occupied or empty area appearance and
disappearance. But as the grid is bounded it is possible for
each subspace at each scale to deduce if the maximum depth
is reached. Indeed if the occupancy equals one of the two
bounds, no finer information is necessary to describe the area.

Here follows the demonstration for the lower bound:
if ∀ci , odd(ci ) ≥ omin and s = 1

n

∑n
i odd(ci ) = omin

then ∀ci , odd(ci ) = omin.
Otherwise:

∃ j, odd(c j ) > omin (10)

1

n − 1

∑

i 
= j;1≤i≤n

odd(ci )+ 1

n − 1
odd(c j ) = n

n − 1
omin

(11)
1

n − 1

∑

i 
= j;1≤i≤n

odd(ci ) = 1

n − 1
(nomin − odd(c j ))

But nomin − odd(c j ) < (n − 1)omin following Eq. (10),
then

1

n − 1

∑

i 
= j;1≤i≤n

odd(ci ) < omin (12)

which is not acceptable under the first hypothesis.
In such case when only coarse resolution are updated it

is possible that some nodes remain at finer resolution that
have no more sense in a bounded map context. Therefore a
function is needed to prune the tree in this particular case.

The algorithm described above is generic. It works for
every kind of range-finder but it requires that the existInter-
section function is also defined.
The efficient defining of these two functions is the subject of
the next section.

2.3.4 2D laser scans and map correction

One of the most important part of the previous algorithms are
the intersection queries. So they must be really optimized in
order to retrieve fast algorithms. For 2D laser scans, a bundle
of range measurements in contiguous beams, we propose to
use an approximation of the query which only ensures that if
there is an intersection the result will be correct.

The principle is to compute the polar bounding box3:
[rmin; rmax] × [θmin; θmax] of the cartesian cell traversed and
then verifying if there exists a laser beam with a range mea-
surement inside the bounding box. As each range beam is
usually indexed by its angle, the comparison is very fast.
If the bounding box is inside the angle field of view of the
sensor, the ranges are checked to classify the bounding box
position inside one of the two cell sets E or B.

As this intersection function is an approximation, some-
times finer traversals are done to evaluate the occupancy of
cells whereas those cells belong to a coarse area which is
part of set U or set E . In this case, the leafs or nodes are use-
less and the associate detail coefficients are zero. To take this
case into account and the useless nodes added due to moving
obstacles also, the compression function is launched but at
a low frequency (every 100 scans for instance). It removes
all the extra nodes: when a coarse area with bound value has
child, all childs are removed and when all the detail coeffi-
cients are zero in a branch of the tree, the whole branch is

3 rmin and rmax stand for the maximum and minimum range of the cell
and θmin and θmax for the maximum angle and the minimum angle of
the cell respectively.
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removed. In addition, the compression function can change
all the coefficients with a norm lower than a certain threshold
to zero to provide lossy compression feature.

3 Object extraction

3.1 Foreground selection

In the previous sections, an efficient algorithm was presented
to build a dense and precise map of the static environment.
In the following, this map is named the background in ref-
erence to the computer vision terminology when the set of
all moving obstacles in the field of view are thus named as
foreground.

The aim of this subsection is to present how to extract
cells of the map that are occupied by a moving obstacle in
front of the sensor field of view i.e.,the foreground. Then this
set of foreground cells is communicated to a second algo-
rithm that computes a clustering step in order to decrease the
number of observations for the data association step of the
target tracking algorithm.

This extraction is based on the difference map Md which
computes an estimation of the similarity between the map
constructed with the current measurement (the observed map
Mo ) and the static map (Ms) of the environment for each
cell (Fig. 9).

Fig. 9 Upper left the observed map M0. Upper right the static map
Ms. Bottom left the difference map Md. Bottom right the extracted fore-
ground. For all the maps, the more hot is the color, the more positive is
the value

3.1.1 Difference map

The matching measure S used in this algorithm was first pro-
posed in Moravec and Elfes [8]. For each cell c in Mo, the
similarity is:

sc = oddMo
c ∗ oddMs

c . (13)

It consists in the product of the log-ratio occupancy of the
observed map and the static map. Thanks to the log-ratio, an
occupied cell has a positive log-ratio whereas an empty cell
has a negative one. Therefore the product of the log-ratios of
two cells that agree about their occupancy is positive (neg-
ative by negative or positive by positive) while the product
for two cells that disagree about their occupancy is negative.
This similarity value is low whenever a change in the envi-
ronment occurs. So there are no difference between a place
left by a parked object and a place temporarily occupied by a
moving object. Therefore we focus only on the cells detected
as occupied by the current sensors: all cells c where oddMo

c

is strictly positive.

3.2 Clustering

Assuming that the number of objects k in a difference map
is known, applying clustering to object extraction using the
k-means [9,10] algorithm is straightforward:

(a) Initialize k cluster centers µi with arbitrary values.
(b) Assign each foreground cell to its closest cluster center.
(c) Reestimate every cluster center µi as the mean of the

centers of the cells allocated to that cluster.
(d) Repeat steps 2–4 until some convergence criterion is

met (e.g., minimal cluster reassignment).

However, in most cases, the value of k is unknown.
Furthermore, even knowing k, the quality of the obtained
clustering depends heavily on initialization, since the
algorithm trends to get stuck in local minima. Finally every
iteration has a cost of O(Nf k) (where Nf is the number of
foreground cells) and, sometimes, many iterations are needed
before converging.

In order to deal with those problems, we have proposed an
object extraction approach which combines a self-organizing
network inspired by Kohonen self-organizing maps [11] and
the growing neural gas [12] as well as a graph theoretic algo-
rithm used to cut edges in the network’s graph.

3.2.1 SON clustering

The network is built from M = W×H nodes connected with
undirected edges, arranged in a grid with H rows and W col-
umns (Fig. 10a). This means that, with the exception of nodes
located in the borders, every node i will be connected to four
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Fig. 10 Approach overview. The images show the different steps of our algorithm using a synthetic difference map

other nodes or neighbors neigh(i), individually denoted by
u(i), d(i), r(i) and l(i) for up, down, right and left, respec-
tively. Every node i has two associated variables: its mean
value µi = (xi , yi ) and a counter ci ∈ [0, N f ]. In a similar
manner, for every edge connecting nodes i and j there will
be a counter ei, j ∈ [0, N f ]. Besides W and H , the algorithm
has other two parameters: 0 < εn < εw ≤ 1, which are
learning rates whose exact meaning will become clear later.

The following paragraphs describe the steps that our algo-
rithm performs for every time step, using the difference map
as input.

Initialization The network is initialized by assigning values
to all the µi node centers in order to form a regular grid
(Fig. 10a). Also, the values of all the weights are set to zero.

{ci ← 0, ei, j ← 0 ∀ i, j | i ∈ [1, M], j ∈ neigh(i)} (14)

Learning The learning stage takes every foreground cell p
of the difference map (Fig. 10b) and process it in three steps:

(a) Determine the two nodes whose means are closest to p:

w1 = arg min
i∈[1,M] ‖p − µi‖ (15)

and

w2 = arg min
i∈[1,M]\w1

‖p − µi‖ (16)

(b) Increment the values of ew1,w2 and cw1 :

ew1,w2 ← ew1,w2 + 1 (17)

and

cw1 ← cw1 + 1 (18)

(c) Adapt the mean of w1 and all its neighbors:

µw1 ← µw1 +
εw

cw1

(p − µw1) (19)

µi ← µi + εn

ci
(p − µi ) ∀i ∈ neigh(w1) (20)

Relabeling nodes As a result of the learning step, the net-
work adapts its form to cover the objects in the difference
map (Fig. 10c). The last step of our algorithm finds groups
of nodes by merging nodes according to the weight of their
common edges ei, j . The idea is that a higher value of ei, j

corresponds to a higher likelihood that nodes i and j belong
to the same object. Under this assumption, it is possible to
compute a maximum likelihood estimation of the probabil-
ity, denoted by Pi, j , that two nodes “belong together” using
the Laplace law of succession4:

Pi, j = ei, j + 1

N f + (W − 1)H + (H − 1)W
(21)

Also by using the Laplace law of succession, we calculate
the value of the uniform link probability distribution, which
may be seen as the maximum entropy estimate of Pi, j prior
to learning.

Ulinks = 1

(W − 1)H + (H − 1)W
(22)

In a similar fashion, the weight ci is an indicator of the
likelihood that node i belongs to an object (i.e., instead of the
background), which may be formulated as a probability Pi .

Pi = ci + 1

N f +W H
(23)

With the corresponding uniform being:

Unodes = 1

W H
(24)

We use a conventional scanning algorithm to relabel the
nodes. The only particularity of our approach is that Pi, j is
used as the region-merging criterion instead of using colors
or other features. Here, we will outline the labeling algo-
rithm, however, the presentation of the complete implemen-
tation details is beyond the scope of this paper. The reader
is referred to [13,14] for efficient linear-time ways to imple-
ment the algorithm.

4 Pi, j is a notational shortcut introduced for the sake of readability,
being rigorous it should be written as P([Oi = m] | [O j = m]), where
Oi = m indicates that node i has been assigned to cluster m. A similar
shortcut has been used with Pi for the same reasons.
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Fig. 11 An example of clustering on the occupancy grid shown in
Fig. 6. It may be seen that pedestrian legs detected by the laser range-
finder are successfully paired by the clustering algorithm

The algorithm starts from the upper left node and
proceeds by scanning from left to right and from top to
bottom, for every node i the following steps are applied
(Figs. 11, 12):

a. Assign the label∞ to i .
b. If Pi,l(i) > Ulinks, assign to i the label of l(i) (merge with

left region).
c. If Pi,u(i) > Ulinks, assign to i the minimum between its

current label and the label of u(i). Let a be that minimal
label and let b be the label of u(i). Relabel all nodes on
the previous rows having label b to a (merge with upper
region).

d. If i’s label is∞ assign the next unused label to i (create
a new region).

Computing cluster representations Having labeled the
nodes, a cluster m may be represented using the gaussian
distribution of a point p5:

P∗(p | m) = G(p; µ∗m, S∗m) (25)

The cluster’s prior may be used to filter out clusters whose
prior is below a given threshold, it is computed as:

P∗m =
∑

i∈m

Pi (26)

Its mean value,

µ∗m =
1

P∗m

∑

i∈m

Piµi (27)

5 Hereafter, cluster parameters will be denoted by a superscript asterisk,
in order to distinguish them from node parameters.

And its covariance,

S∗m =
∑

i∈m

Pi

P∗m

[
(xi − x∗m)2 (xi − x∗m)(yi − y∗m)

(xi − x∗m)(yi − y∗m) (yi − y∗m)2

]

(28)

3.2.2 Discussion

Our self-organizing network may be seen as a cross between
Kohonen self-organizing maps (SOM) and the growing neu-
ral gas algorithm. With the first, our approach shares the
fixed topology and number of nodes M , which may be easily
fixed due to the fact that the number of samples per frame
is bounded by the size of the difference map. This should
work well on the condition that M is much greater than the
maximum expected number of objects in the image.

On the other hand, our SON borrows GNG idea of assign-
ing weights to links between nodes. However, the way these
weights get updated in GNGs is highly discontinuous and,
from our point of view, not well suited for modeling it as a
probability. Hence, we have profited from the fact that no
link deletion/addition takes place in our setting and replaced
the GNG age parameter with a counter, which we consider
as more appropriate for representing probabilities.

Finally, weight updating bears similarities to both
approaches. It applies the GNG use of two constant learning
rates εw and εn , however, since in our case, foreground cells
are processed from top to bottom and from left to right, this
results in a skewing phenomenon in which the same nodes
get updated many consecutive times and tends to “follow”
the direction of sampling. In order to alleviate this situation
we have chosen to use a decreased learning rate’s influence
with the number of cells ci that have been assigned to the
given node, in a way that resembles SOM decaying learning
rates.

3.2.3 Complexity analysis

Thanks to the existence of efficient algorithms, the cost of
labeling is linear with respect to the number of nodes in the
SON, moreover, the computation of the cluster representa-
tion (i.e., gaussian parameters, mixture of gaussian parame-
ters and bounding boxes) may be performed at the same time
than labeling. Thus, the algorithm’s complexity is bounded
by the learning algorithm complexity which is O(Nf M).

3.3 Tracking

The tracking procedure is an object-based tracking system
like in Schulz et al. [15]. For each object a particle filter is
used to robustly estimate its position. For the data associa-
tion a joint probabilistic data association is performed. The
observed map is again used to evaluate which objects are
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Fig. 12 A typical frame of our
system running with a CAVIAR
video. The small boxes
correspond to ground truth, the
bigger ones and the gaussians
(ellipses) are estimated by our
system

occluded and where static obstacles forbid the presence of
a moving target. That ensures that no unobserved target is
removed from the target pool and that the prediction step of
the particle filters is coherent with the static map.

4 Motion pattern-based motion prediction

Motion tracking provides an estimation about the current
state of the dynamic obstacles that populate the environment,
however, this information is not enough for motion planning:
in order to be able to deal with a dynamic environment, it is
also necessary to know how those obstacles will evolve in the
future. Since, in most cases, this knowledge is not available,
it is necessary to resort to prediction.

The conventional approach of predicting motion on the
basis of the object’s kinematic and dynamic properties is not
well suited for objects such as humans, vehicles, and the like,
because their motion is motivated by other factors which are,
in general, difficult to model (e.g.perception, internal state,
intentions etc.). Over the last decade, an alternative approach
has emerged; it is based on the idea that objects follow typical
motion patterns within a given environment [16–23].

A motion prediction system based on this idea should ful-
fill two tasks:

1. Learning: observe the moving objects in the workspace
in order to determine the typical motion patterns.

2. Prediction: use the learned typical motion patterns to
predict the future motion of a given object.

However, existing approaches focus primarily on off-line
learning algorithms, implying that learning should be per-
formed before prediction. This is problematic because, for
this to work, it is necessary that learning data includes all the
possible learning patterns, which is a very difficult condition
to meet. It would be preferable to have a system which oper-
ates in a “learn and predict” fashion, where learning takes
place continuously, taking as input the same data that is used
for prediction.

Since uncertainty is inherent to both prediction and sens-
ing, we have decided to base our solution in a probabilistic
framework—Hidden Markov Models (HMM) [24]—which
is widely used in the literature of motion prediction [22,25,
26] using off-line learning. In contrast, our approach is based
on a novel incremental parameter and structure learning algo-
rithm which enables the system to work with a “learn and
predict” framework.

4.1 Problem overview

We assume that tracking data is available as a collection
of observation sequences (i.e.,trajectories). Every individ-
ual sequence6 O1:T = {O1, . . . , OT } corresponds to the
tracker’s output for a single object and its observations are
evenly spaced on time. Taking this information as input, our
approach consists of the following:

1. Learning: complete observation sequences are used to
learn the HMM structure and parameters. This process
is incremental, and takes place immediately after the final
observation for a trajectory has been received. Our learn-
ing algorithm is described in Sect. 4.4.

2. Prediction: for every new observation that is output by
the tracking system, bayesian inference is applied to
maintain the probabilistic belief of the object’s state, and
to project it into the future. Thus, a prediction consists of
a probability distribution of the object’s state for a given
time horizon H . Prediction is described in Sect. 4.5.

4.2 Hidden Markov models

For lack of space, this discussion of Hidden Markov models
(HMM) is summary and strongly biased towards their appli-
cation as motion models, the interested reader is referred to
Rabiner [24] for a more comprehensive introduction.

6 For the sake of readability, notation O1:t will be used as a shortcut
for the variable conjunction O1 O2 · · · Ot−1 Ot .
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HMM are a popular probabilistic framework used to
describe the evolution of dynamic systems. In the context
of this paper, an HMM may be regarded as a quantization of
the object’s state space into a small number of discrete states,
together with probabilities for transitions between states. The
system state at time t is indexed by a single finite discrete
variable St , however, it is assumed that its value is unknown
and hidden (i.e.,not observable), thus, a probability distribu-
tion (i.e.,the belief state) is used to represent it. The system
state may be updated on the basis of observations Ot gath-
ered through sensors, which are related to the state through
an observation probability.

Formally, HMMs are defined in terms of three variables:

– St , St−1, the current and previous states, which are dis-
crete variables with value St , St−1 ∈ {1, . . . , N } for a
fixed N .

– Ot , the observation variable, which is a multidimensional
vector in R

M .

With the following joint probability decomposition:

P(St−1 St Ot ) = P(St−1)︸ ︷︷ ︸
stateprior

P(St | St−1)︸ ︷︷ ︸
transition

probability

P(Ot | St )︸ ︷︷ ︸
observation
probability

(29)

where the state prior is computed recursively from the pre-
vious time step:

P(St−1) = P(St−1 | O1:t−1) (30)

Both the observation and transition probabilities are
assumed to be stationary, that is, independent of time:

P(Oi | Si ) = P(O j | S j ) ∀i, j ∈ {1, . . . , T } (31)

P(Si | Si−1) = P(S j | S j−1) ∀i, j ∈ {2, . . . , T } (32)

This hypothesis permits to define the parametric forms of
the three probabilities in the JPD without taking time into
account:

– P(S0 = i) = πi . The state prior will be represented as a a
vector π = {π1, . . . , πN } where each element represents
the prior probability for the corresponding state.

– P([St = j] | [St−1 = i]) = ai, j . Transition probabilities
are represented with a set of variables A, where each ele-
ment ai, j represents the probability of reaching the state
j in the next time step given that the system is in state i .

– P(Ot | [St = i]) = G(Ot ; µi , σi ). The observation
probability will be represented by a gaussian distribution
for every state. The set of all the gaussians’ parameters
will be denoted by b = {(µ1, σ1), . . . , (µN , σN )}.

The full set of parameters for an HMM is denoted by λ =
{π, A, b}. An additional concept which is very important is

structure, which is determined by the prior assumptions on
which transitions between states are allowed (i.e., have a tran-
sition probability greater than zero). It is often useful to visu-
alize the HMM structure as a graph, where discrete states are
represented by nodes, and valid transitions are represented
by directed edges between nodes (Fig. 13).

4.3 Motion patterns representation with HMMs

Practically all HMM-based motion models in the literature
assume that the state space consists of the object’s bidimen-
sional position in world’s coordinates, and represent motion
patterns as non-connected trajectory-like subgraphs within
the HMM structure (Fig. 14).

In contrast, our approach is based on an extended state
definition: the state consists of the object’s current and final
coordinates (xt , yt , xT , yT ), thus, the intended destination
becomes part of the state. This extended state has two advan-
tages: (a) by estimating the belief state, we automatically
obtain an estimation of the objects final destination; and

1

2

3

P(S0 = 1)

P(S0 = 2)

P(S0 = 3)

P(Ot | St = 1)

P(Ot | St = 2)

P(Ot | St = 3)

P(S t
= 2 | S t− 1

= 1)

P(St = 3 | St− 1 = 1)

Fig. 13 A basic three-state HMM, with its associated probabilities

Fig. 14 An HMM structure for a parking environment, where motion
patterns are represented as non connected order 2 subgraphs (only a few
motion patterns are displayed)
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Fig. 15 a Example of a
decomposition of space into a
grid of rectangular cells (dotted
lines), and the corresponding
topological map representation
(dots and solid lines); b a
continuous trajectory; and c the
same trajectory represented as a
succession of nodes and edges
in the map

(a) grid and map (b) trajectory in space (c) trajectory in the map

(b) since learning takes place when a trajectory has ended,
the final destination is available during learning, and may
be used as an additional criterion to discriminate between
different motion patterns.

Another particularity of our approach is that the structure
does not consist of unconnected components, instead, edges
are arranged in a network according to the topological prop-
erties of the states as will be explained in Sect. 4.4.

4.4 Learning algorithm

Our learning algorithm takes whole observation sequences as
input and processes them in two steps: (a) update the HMM
structure using a topology learning Network; and (b) update
the HMM parameters according to the current structure.

The key intuition behind our learning algorithm is that
the structure of the HMM should reflect the spatial structure
of the state space discretization, where transitions between
states are only allowed between neighboring regions. In our
approach, structure learning consists basically in building a
topological map: a discrete representation of the state-space
in the form of a graph, where nodes represent discrete regions
and edges exist between contiguous nodes, meaning that it is
possible to move continuously between them without passing
through any other region.

The idea may be illustrated on a regular grid discretization
of a two-dimensional space (Fig. 15), Where a topological
map may be built by connecting the center of every cell to
every one of its neighbors—the cell with which it shares a
common border. Notice that an object which moves continu-
ously should inevitably pass through region borders in order
to go from one region to other, therefore, all the possible con-
tinuous motion instances may be approximated exclusively
in terms of the edges that exist already in the topological
map.

However, grid discretizations are wasteful on computa-
tional resources, and it is preferable to discretize the space
according to observed data. Nevertheless, this poses the prob-
lem of how to perform this discretization and, at the same
time, identify neighbor regions in an efficient way. More-
over, the searched solution needs to be incremental.

Fortunately, there exists a family of tools which deals pre-
cisely with these problems: topology representing networks
(TRNs) [27]. They incrementally build a topological map
by applying two steps: (a) partition space in discrete regions
using vector quantization, and (b) find pairs of regions with
a common border and link their respective centers.

4.4.1 Partitioning the space with vector quantization

The idea of vector quantization is to encode a continuous
d-dimensional input data manifold M by employing a finite
set C = {c1, . . . , cK } of reference d-dimensional vectors.
A point x of the manifold is represented using the element of
C which is closest to it according to a given distance measure
d(x, ci ), such as the square error.

This procedure induces an implicit partition of the mani-
fold in a number of subregions

V j = {x ∈ M
∣∣ d(x − c j ) ≤ d(x − ci )∀i} (33)

called Voronoi regions (Fig. 16), such that every input vec-
tor that is inside a Voronoi region V j is described by the
corresponding reference vector c j .

The goal of a vector quantization algorithm is to find val-
ues for the reference values in order to minimize the mean

Reference Vectors

Input Vectors

Voronoi Region

Fig. 16 Example of a partition in Voronoi regions: there are some two-
dimensional input vectors (crosses). Reference vectors are represented
by big points and Voronoi regions are indicated by boundary lines, the
set of all those boundaries is called a Voronoi graph
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quantization error or distortion:

E =
K∑

i=1

∫

x∈Vi

d(x, ci )P(x)dx (34)

4.4.2 Linking neighbor regions: delaunay edges

Topology representing networks are based on the idea of
connecting neighbor Voronoi regions, – e.g.regions with a
common border—with edges, called Delaunay’s edges. The
set of all edges constitutes the dual of the Voronoi graph and
is known as the Delaunay’s triangulation (Fig. 17).

TRNs use a subset of the Delaunay triangulation to repre-
sent the network’s topology. The edges are learned using the
competitive hebbian rule, also known as hebbian learning,
proposed Martinetz [28] which consists in creating a new
edge between two reference vectors every time that, for a
given input, they are the two closest vectors to that input and
they are not linked already (Fig. 18).

4.4.3 The instantaenous topological map

We have decided to use the instantaneous topological map
(ITM) proposed by Jockusch and Ritter [29], among the dif-
ferent TRNs exist in the literature [12,27,30], because it is

Delaunay Links

Fig. 17 Voronoi graph and delaunay triangulation

Input Nearest unit

Second neares t

New edge

Fig. 18 Hebbian learning

specially designed for the inputs which are correlated in time,
which is the case of observation sequences. Although we list
it here for reference (alg. 2), here we will discuss only its
application to our problem, the interested reader is referred
to the original paper for details on the inner working of the
algorithm.

Algorithm 2: ITM-Update(Ot , 
, τ, ε : U ,L)

input :
Input vector Ot
Covariance matrix 


Insertion Threshold τ

Smoothing factor ε

modifies:
Topological map nodes U
Topological map edges L

begin1

b = arg mini∈U d2

(wi , Ot )2

s = arg mini∈U\b d2

(wi , Ot )3

wb = wb + ε(Ot − wb)4
if s /∈ N (b) then L = L ∪ {(b, s)}5
for i ∈ N (b) do6

w̄b,i = (wi + wb)/27

if d2

(w̄b,i , ws) < d2


(w̄b,i , wi ) then8
L = L \ (b, i)9
if N (i) = ∅ then U = U \ i10

end11
w̄b,s,=(ws + wb)/212

if d2

(w̄b,s , ws) < d2


(w̄b,s , Ot )13

and d2

(wb, Ot ) > τ then14

U = U ∪ {r}wr = Ot15
L = L ∪ {(b, r)}16

if d2

(wb, ws) < τ then U = U \ s17

end18
end19

end20

The ITM algorithm builds incrementally a set U of nodes,
and a set L of edges connecting nodes. The input of the algo-
rithm consists of input vectors which, here, will correspond
to observations Ot of a moving object.

Associated with every node i is a reference vector or
weight wi .

An edge between nodes i and j will be denoted as (i, j),
since edges are not directed, it holds that (i, j) ≡ ( j, i). A
useful concept is the neighborhood of a node i , which is the
set of all nodes to which i is linked:

N (i) = { j ∈ U ∣∣ (i, j) ∈ L} (35)

The algorithm requires a distance metric, we have used
the Mahalanobis distance:

d2

(u, v) = (u − v)T 
−1(u − v) (36)

Finally, an insertion threshold τ needs to be specified to
the algorithm. It may be seen as a measure of the mean
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discrete partition size to be obtained, expressed in terms of
the Mahalanobis distance.

4.4.4 Integrating the parts: HMM update

Algorithm 3 presents the overall structure and parameter
update for an observation sequence.

Algorithm 3: HMM-Update(O1:T , 
, τ, ε : U ,L, λ)

input :
Observation sequence O1:T
Covariance matrix 


Insertion Threshold τ

Smoothing factor ε

modifies:
Topological map nodes U
Topological map edges L
HMM parameters λ = {π, b, A}

begin1
for t ∈ {1, · · · , T } do2

Enhanced I T M_update(Ot )3
end4
for every new node i ∈ U do5

πi = π06
end7
for every node i that has been removed from U do8

πi = 09
end10
for every new edge (i, j) ∈ L do11

ai, j = a012
a j,i = a013

end14
for every edge (i, j) that has been removed from L do15

ai, j = 016
a j,i = 017

end18
for i ∈ U do19

µi = wi20
σi = 
21

end22
Precompute forward (αi ), backward (βi ) and joint observation23
probabilities (pO ) for the observation sequence O1:T
for i ∈ U do24

πi = πi + αt (i) βt (i)
PO K25

ai, j = ai, j+
∑T

t=2 αt−1(i)p([St= j |[St−1=i] λ)p(Ot |[St= j] λ)βt ( j)
∑T

t=2 αt−1(i)βt−1(i)26
end27

end28

– Lines 2–4 update simply call the ITM-update for every
observation in the sequence.

– Lines 5–18 insert or delete states and transitions in the
HMM according to changes in the ITM. When nodes
are inserted, the state prior is initialized to a default value
π0. Something similar is done for transition probabilities,
which are initialized to a0.

– Lines 19–27 update the HMM parameters. Since the
covariance is fixed a priori, and mean values are com-
puted as part of the ITM update, the observation prob-
abilities may be updated directly from ITM’s weights.
The state prior, and transition probabilities, on the other
hand, are recomputed using the well known forward and
backward probabilities [24], but, in order to enable incre-
mental learning, sums are stored in πi and ai, j instead of
probabilities. This permits to normalize the probabilities
taking into account the whole observation history.

4.5 Predicting state

The tasks of maintaining an object’s belief state and predict-
ing its motion are carried on using exact inference. For a full
connected HMM this would not work in real time, because
exact inference performs marginalization over all allowed
transitions (O(N 2)). In contrast, the number of allowed tran-
sitions in our approach depends linearly on the number of
discrete states (O(N )) thanks to the use of the Delaunay tri-
angulation, hence exact inference is viable even for relatively
large HMMs.

The belief state of an object is updated on the basis of new
observations by applying the following expression:

P(St | O1:t ) = P(Ot | St )
∑

St−1

[
P(St | St−1)P(St−1 | O1:t−1)

]

where P(St−1 | Ot−1) is the belief state calculated in the
previous time step.

Prediction is made by propagating the belief state H time
steps ahead into the future using the following expression:

P(St+H | Ot ) =
∑

St+H−1

P(St+H | St+H−1)P(St+H−1 | Ot )

(37)

5 Experiments

5.1 Experimental platform

A very relevant target application for the techniques pre-
sented in this paper is an automated valet Parking (AVP). The
robotic system consists of a “smart” car operating autono-
mously in a “smart” city parking. Both the car and the parking
are equipped with sensors providing them with information
about the world.

Let us imagine the following scenario: you drive your car
and leave it at the entrance of a given parking. From then
on, it operates autonomously and goes to park itself. As soon
as the car enters the parking, the car on-board intelligent
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Fig. 19 Trajectory data sets
used for testing motion
prediction

system connects to the parking’s own intelligent system and
requests a free parking place. The parking then confirms the
availability of a parking space and provides the car with a
model of the parking and an itinerary to the empty place.
From then on, the car, using information obtained from both
its own sensors and the parking sensory equipment, can go
park itself.

From an architecture point of view, the AVP scenario
involves two “intelligent” systems communicating with one
another: the car on-board system and the parking off-board
system. As mentioned earlier, it is assumed that both sys-
tems are equipped with sensors providing them with infor-
mation about the environment considered. While the car sen-
sors will provide it with a local view of its surroundings, it
can be expected that the parking sensors will provide the
car with an overall view of what is going on in the whole
parking.

We have focused primarily in studying the application of
the techniques described in this paper to the “smart park-
ing” subsystem. For our experiments, we have placed a robot
equipped with a LMS-291 laser scanner in the INRIA’s car
park, and captured 3,816 scans with it. Moving objects
appearing in this data consisted mainly of members of our
team which have moved freely in face of the robot.

For our motion prediction experiments, we have used two
other data sets (Fig. 19): (a) a set of trajectories captured in
a parking in the University of Leeds using a visual tracker;
and (b) a set of synthetic data produced with a trajectory
simulator (Fig. 20).

Fig. 20 Common elements in prediction example images

5.2 Wavelet occupancy grid performances

We performed experiments7 on 2D real data in the presence
of moving obstacles. The map have 900, 000 cells with a res-
olution of 10 cm × 10 cm. With these 2D data, the average
computing time to build and fusion a grid is 29 ms (30 Hz)
and the number of data gathered is 3,815 scans with a SICK
LMS-291. The required memory for such a map is 3 kB
(Fig. 21). It must be compared with the 3.6 MB required
for such a number of cells: only 0.08% of the memory is
necessary with the wavelet representation.

Comparisons with a standard grid construction algorithm
were performed and show that there are no significant dif-
ferences.

5.3 Clustering results

Unfortunately, at this moment we are not able to quantita-
tively evaluate our experiments due to the lack of ground
truth information, obtained, for example, from a centimetric
GPS. Nevertheless, our qualitative results seem promising
(see Figs. 11, 12). Indeed, most of the time our algorithm
correctly finds the number of objects in the scene and is able
to detect that the non-connected regions corresponding to the
legs of a person actually belong to the same object.

Concerning performance, the average processing time for
our algorithm with a 3,600 node network on a 300 × 300
occupancy grid, is 6.7 ms per frame with an average num-
ber of cells above the threshold equal to 170. This seems to
confirm the adequacy of our algorithm to its use in real-time,
even if its performance may vary depending on the number
of input cells above the threshold.

5.4 Prediction results

We have conducted extensive experiments with our motion
prediction technique using the data sets mentioned above.

7 This experiment was done with an Intel(R) Pentium(R) 4 CPU
3.00 GHz.
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(a) (b)

(c) (d)

Fig. 21 Scaled view of OGs provided by different scales of WavOG
representation a scale 0, cell size: 10 cm× 10 cm. b Scale 2, cell size:
40 cm × 40 cm. c Scale 3, cell size: 80 cm × 80 cm. (d) scale 4, cell
size: 1.60 m×1.60 m. The data were provided by CSIRO on a long-run
experiment. The size of the map is approximately 450 m× 200 m. The
unknown areas are not shown for visualization purposes. The number of

cells vary from 9 millions to 36,000 from scale 0 to scale 4 and the ratio
is 1 for 256 if the scale 4 is compared to the scale 0. It is obvious that the
precision of the map decreases when the scale increases; however, the
shape of the environment is sufficient enough for path planning since
scale 3 in the big open area which is very interesting and promising for
multiscale path planning algorithm for instance
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Here, we will summarize some of the qualitative and quan-
titative aspects of our experimental results.

5.4.1 Qualitative results

Figure 22 shows a typical example of the prediction process
using synthetic parking data. It consists of a set of images
arranged in columns and rows. Rows correspond to different
values of t .

The first column shows the mean values (blue to green
points) of the predicted state from t + 1 up to t + 15. The
second and third columns show the form of the predicted state
and goal probability distributions, respectively, for t + 15.

Images in the three columns share some elements (see
Fig. 20): (a) the complete sequence of observations up to
the current t , which is depicted as a series of red points; (b)
the current state and goal estimations, or expected values,
which are pictured as red and yellow ellipses, representing
the expectation’s covariance.

A particular difficulty of prediction in parking lots is that
there are many places in the environment which could be
an object’s destination. This is apparent, for example, in
row t = 38, where goals having a significant probability
roughly cover half of the environment. Of course, this situ-
ation changes as the car continues to move and by t = 49,
there are only two zones having a high probability of being the
goal.

Having so many possible goals also influences the shape
of the predicted state probability, which may become quite
irregular, as for t = 49. This irregularity is also an indica-
tor that a big number of alternative hypothesis that are being
taken into account, which is unavoidable without additional
information such as the free or occupied status of parking
places.

5.4.2 Measuring prediction accuracy

A common performance metric for probabilistic approaches
is the maximum data likelihood or approximations like the
bayesian information criterion [31]. However, for our par-
ticular application, this metric has the drawback of not hav-
ing any geometric interpretation. Intuitively, we would like
to know how far was the predicted state from the real one.
Hence, we have preferred to measure the performance of
our algorithm in terms of the average error, computed as the
expected distance between the prediction for a time horizon
H and the effective observation Ot+H .

〈E〉 =
∑

i∈S
P([St+H = i] | O1:t )‖Ot+H − µi‖1/2 (38)

for a single time step. This measure may be generalized for
a complete data set containing K observation sequences:

〈E〉 = 1

K

K∑

k=1

1

T k − H

×
T k−H∑

t=1

∑

i∈S
P([St+H = i] | Ok

1:t )‖Ok
t+H − µi‖1/2

(39)

It is worth noting that, as opposed to the standard approach
in machine learning of conducting tests using a “learning”
and a “testing” data sets, the experiments we have presented
here will use only a single data set. The reason is that, since
learning takes place after prediction, there is no need to such
separation: every observation sequence is “unknown” from
the perspective of prediction.

5.4.3 Leeds parking data

This is a difficult data set for a number of reasons: there
are two different kinds of objects (vehicles and pedestrians)
moving at very different speeds; the number of available tra-
jectories is limited (267), hence, there are some trajectories
which correspond to motion patterns that have been observed
just once.

We have subsampled data by using only one out of three
observations as input for our algorithm. The reason is that
the position change that may be observed for pedestrians at
full camera rate is far smaller than the detection noise: even
assuming a relatively high mean speed of 5 Km/h, the posi-
tion change between two consecutive frames at 24 frames/s
is about only 6 cm. Building a model with the required reso-
lution would be very expensive with only marginal benefits,
if any, due to the high noise/signal ratio.

Figure 23 shows the evolution of both the model’s size and
the average error as a function of the number of processed tra-
jectories. There seems to be an overall convergence process
combined with sudden stair-like increases in both model size
and average error (see for example the graph at 100, 160 and
250 processed trajectories). Actually, these increases corre-
spond to the unique motion patterns that we have mentioned
above.

Figure 23b shows a plot of the time taken by prediction
and learning with respect to the number of trajectories already
processed, the number of edges is also plotted as a reference.
Times are given per-observation, hence, in the case of learn-
ing, they should be multiplied by the length of the observa-
tion sequence, which for this data set was 70 on the average.
As it may be expected, learning and prediction processing
times increase according to the growth in model size. More-
over, even in the worst case, prediction does not take more
than 25 ms per observation, which is almost the double than

123



Intel Serv Robotics (2008) 1:51–72 69

Fig. 22 Prediction example (parking environment). The left colum shows the object trajectory up to t in red, and the mean values of the predicted
state, from t + 1 to t + 15 in blue. Center and right columns show the predicted position for t + 15 and the object’s goal, respectively, using a grid
representation
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Fig. 23 Error and computation
times for the Leeds Parking data
set
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normal camera frame rate. As for learning, it has always been
less than 1 s per trajectory.

We may observe the presence of sharp peaks in processing
times. This situation, which we will also observe in the other
data set, has been caused by some unrelated process which
has been executed concurrently with our tests thus reducing
available CPU time for our task.

5.4.4 Synthetic parking data

This data set has two distinctive features: observations
include velocities, meaning that the learnt structure occu-
pies a six-dimensional manifold; and a big set of possible
destinations, with about 90 parking places. As we will see,
our algorithm performs surprisingly well, taking into account
the added complexity.

Given the size of the data set and its features, it was surpris-
ing to find out that the error evolution and growth (Fig. 24a)
in model size performed that well, with a final number of
edges below 1,500 despite the diversity of goals. We believe
that the main reason for this reduced size is that, due to the
environment’s structure, trajectories leading to goals in the
same area tend to share a considerable number of states.

Because of the moderated model size, time performance
was correct, with a prediction time of little less 60 ms, and
an average learning time of about 3 s after 500 processed tra-
jectories. Even if prediction times are slightly slower than
camera frame rate, we think that there are very good results,
taking into account the characteristics of this data set.

It is worth noting that the learning and prediction times
for this example are longer than in the previous one, given an
equivalent number of processed trajectories. For example,
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Fig. 24 Error and computation
times for the synthetic parking
data set

0 100 200 300 400 500
0

1
2

3
4

5
6

Model size and mean error

Trajectories

M
ea

n 
E

rr
or

 (
m

et
er

s)

0
50

0
10

00
15

00

E
dg

es

Error
Edges

(a)

0 100 200 300 400 500

0
20

40
60

80

Model size and inference times

Trajectories

T
im

e 
pe

r 
ob

se
rv

at
io

n 
(m

s)

0
50

0
10

00
15

00

E
dg

es

Edges
Prediction
Learning time

(b)

in Fig. 23, for 200 processed trajectories the learning and
prediction times are around 20 and 5 ms, respectively; the
equivalent values on Fig. 24 are around 40 and 10 ms, which
are roughly the double. This is explained by the fact that the
number of edges in the parking experiments is approximately
the double of those obtained with Leeds data; this illustrates
how the prediction and learning times grow in a linear fashion
with respect to the size of the model.

6 Conclusions

This paper addressed the problem of navigating safely in a
open and dynamic environment sensed using both on-board
and external sensors. After a short presentation of the con-
text and of the related open problems, we focused on three
complementary questions:

1. How to build a multiscaled model of the environment
allowing efficient reconstruction and updating opera-
tions?

2. How to detect moving obstacles in such an environment?
3. How to characterize and predict the motion of the

observed moving entities?

Our answer to these questions relies on an appropriate
combination of geometric and bayesian models, based on
the following complementary approaches:

– multiscale world representation of static obstacles based
on wavelet occupancy grid;

– adaptive clustering for moving obstacle detection
inspired on Kohonen networks and the growing neural
gas algorithm;
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– characterization and motion prediction of the observed
moving entities using incremental motion pattern learn-
ing in order to adapt a hidden Markov models.

We have validated our proposed approaches by perform-
ing experiments in the context of a specific application: the
automated valet parking, at INRIA’s installations. Our results
show that the geometric and bayesian models we have used
integrate well, and constitute a promising research direction
towards achieving safe navigation in dynamic environments.

Although this paper only addresses some points, our
team’s research interests also cover the other tasks of the
chain (Fig. 1). For an overview of our work, the reader is
invited to consult our web page at http://emotion.inrialpes.fr.
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