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Abstract

A robust and reliable noise estimation algorithm is required in many speech enhance-

ment systems. The aim of this thesis is to propose and evaluate a robust noise estima-

tion algorithm for highly non-stationary noisy environments. In this work, we model the

non-stationary noise using a set of discrete states with each state representing a distinct

noise power spectrum. In this approach, the state sequence over time is conveniently

represented by a Hidden Markov Model (HMM).

In this thesis, we first present an online HMM re-estimation framework that models

time-varying noise using a Hidden Markov Model and tracks changes in noise charac-

teristics by a sequential model update procedure that tracks the noise characteristics

during the absence of speech. In addition the algorithm will when necessary create new

model states to represent novel noise spectra and will merge existing states that have si-

milar characteristics. We then extend our work in robust noise estimation during speech

activity by incorporating a speech model into our existing noise model. The noise cha-

racteristics within each state are updated based on a speech presence probability which

is derived from a modified Minima controlled recursive averaging method.

We have demonstrated the effectiveness of our noise HMM in tracking both stationary

and highly non-stationary noise, and shown that it gives improved performance over

other conventional noise estimation methods when it is incorporated into a standard

speech enhancement algorithm.
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Chapter 1

Introduction

1.1 Context

Speech enhancement systems aim to improve the quality and intelligibility of speech

that has been corrupted in some way, most commonly by additive noise. Improvement

in intelligibility has obvious benefits while improvement in quality is highly desirable as

it can reduce listener fatigue, particularly in situations in which the listener is exposed

to high levels of noise for long periods of time. Many speech enhancement techniques

have been developed to reduce or suppress the background noise.

Despite the possible fatigue as mentioned above, human beings are good at adapting to a

noisy environment, especially if the noise is persistent or repetitive [55]. For example, if

someone just moves to live near a railway line, the noise from trains passing by might be

unpleasant and disturbing at first. Over some time, the person will become accustomed

to the noise and barely notice that it is still present. However, the person is still aware

of other new type of noise, such as a fire alarm, though this too may be ignored in

the future if the new noise becomes repetitive. Such selective blocking and adaptation

are immensely powerful; we would like to replicate this characteristic in our speech

enhancement algorithm.

21



Almost all speech enhancement algorithms require an estimate of the noise power spec-

trum or its equivalent [10, 29]. The accuracy of this estimate has a major impact on

the overall quality of the speech enhancement: overestimating the noise will lead to

distortion of the speech, while underestimating it will lead to unwanted residual noise.

The problem of noise identification or suppression is easiest if the noise is stationary

at least over intervals of several seconds, so that the noise characteristics remain un-

changed during intervals when the presence of speech makes noise estimation difficult.

In this case, a common approach is to take a weighted average of the noisy speech po-

wer spectrum during speech absence as the noise estimate. Early systems controlled

the averaging process by using a voice-activity detector (VAD) [111] to identify noise-

dominated frames. To avoid the VAD requirement, Martin estimated the noise spectrum

by taking the minimum of the temporally smoothed power spectrum in each frequency

bin and then applying a bias compensation factor [90, 92]. This method is effective in

estimating both stationary and time-varying noise even when speech is present but, be-

cause it relies on temporal averaging, it is unable to follow abrupt changes in the noise

spectrum.

In realistic environments, especially when using a mobile device, the noise normally

includes multiple components, and can vary rapidly due to relative motion between

source and receiver or because the sound sources themselves are intermittent (e.g. rin-

ging phones or door slams). Several authors [107, 133] have recognised that such non-

stationary noise environments are better modelled as a set of discrete states than as

a single time-varying source. In this approach, each state corresponds to a distinct

noise power spectrum and the state sequence over time is conveniently represented by

a Hidden Markov Model (HMM). HMMs have been widely used in speech recognition

[123, 42], since the range of typical utterances of speech can be pre-trained and inclu-

ded in the speech HMM. Unlike speech, noise arises from a large variety of different

environments, and thus it is far less predictable. A robust noise HMM either needs to

be trained on an impossibly large number of noise sources or else, like a human listener

[8], needs to adapt rapidly to the noise sources present in any situation.
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1.2 Research Statement

The aim of this thesis is to propose a robust noise estimation algorithm for single chan-

nel speech enhancement in adverse environments where the noise characteristics are

highly non-stationary. Noise can be introduced at many points in a recording chain

and some forms of noise, such as clipping or CODEC distortion, are normally signal de-

pendent. In this thesis, however, we are concerned with additive acoustic noise which

we assume is independent of the speech signal.

In this thesis we address the problems of adaptively tracking the noise characteristics

and of efficiently updating the HMM-based noise model. We develop ways of detecting

the occurrence of new noise sources and of rapidly incorporating them into the noise

model. We also address the issues that arise in tracking the noise characteristics when

speech may be present in the signal. The standard HMM training procedure [98] can

only work on a fixed length of data. If there is any new arrival of data, we have to re-

train the model from scratch. A computationally efficient on-line HMM re-estimation

framework for noise estimation is required.

1.3 Thesis Structure

In Chapter 2, we first give an overview of a speech enhancement system, and then

provide a literature review of various popular noise estimation methods that have been

developed, including minimum statistics, minima controlled recursive averaging and

the Hirsch histogram. Finally we discuss various way of assessing noise estimators.

Many of the noise estimation methods described in Chapter 2 are based on first-order

recursive averaging, which effectively assumes a slowly changing one-state model. Thus

they cannot provide a good estimate of fast-changing or intermittent noise. A richer

model is needed when dealing with highly non-stationary noise.

This is followed by Chapter 3, where we introduce a multi-state hidden Markov model

for noise estimation. In this chapter, we model the noise in the absence of the speech.
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We present an online hidden Markov model (HMM) recursive update framework that

can track the noise and update the noise model. The noise characteristics within each

state of the model are assumed to be slowly changing. A statistics measure (Z-test) is

proposed to detect whether there is any abrupt change of the noise; when this occurs,

a new state will be created to accommodate such noise. The HMM noise estimator

described in this chapter can only work in the absence of speech and so we assume that

there is a Voice Activity Detector (VAD) available that identifies when speech is present.

For evaluation purposes, we use the initial noise-only segment of each test file to train

the noise model and then leave the model fixed during speech presence.

In Chapter 4, in order to detect and update the noise even during the speech activity,

we have incorporated a speech model into our existing noise HMM. The inclusion of the

speech model improves the identification of novel noise types by ignoring any possible

speech-like signals. Furthermore, a modified Minima Controlled Recursive Averaging

(MCRA) method is used to update the noise characteristics within each state even when

speech is present. An evaluation of this robust noise estimator is presented under dif-

ferent adverse environments.

Finally, in Chapter 5, we summarize the work presented in this thesis and give an

outline of possible future work.

1.4 Scope and Original Contribution

The following aspects of this thesis are believed to be original contributions:

1. The online re-estimation HMM framework presented in Chapter 3, which can re-

cursively update the HMM parameters without re-training the model from scratch.

2. The log likelihood measure to detect the presence of a novel noise type and the

methods of creating and merging HMM states presented in Chapter 3.

3. The noise estimation method using trained noise HMM and LTASS presented in

Chapter 3.
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4. The HMM noisy speech model, presented in Chapter 4, which can recursively up-

date the HMM parameters during speech activity.

5. The modified Minima controlled recursive averaging method to update the mean

noise power spectrum within each HMM state presented in Chapter 4.

6. The log likelihood measure to detect a novel noise type during speech activity and

the noise re-training scheme presented in Chapter 4.
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Chapter 2

Literature Review

In this chapter, we will first review different speech enhancement algorithms in terms

of their methodologies and their dependence on a good noise estimator. Different noise

estimation methods will be discussed in terms of how they exploit distinct noise cha-

racteristic from speech and thus separate them, with brief discussion on their possible

drawbacks when estimating highly non-stationary noise. Lastly, we review different

possible methods of evaluating the performance of a noise estimator.

2.1 Speech Enhancement Algorithms

Speech enhancement algorithms aim to improve the quality and intelligibility of speech

degraded by noise. For applications where no time delay is allowed, the most widely

used approach is the Kalman filter [50], but if a small delay is permitted, it is more com-

mon to perform enhancement in the frequency domain. The advantage is that speech

and noise are partially separated in the spectral domain, and their spectral components

are somewhat decorrelated. Furthermore, many psycho-acoustic models are spectrally

based and can be conveniently applied in this domain. The commonly used spectral

domains are: (i) complex spectral amplitudes, (ii) spectral magnitudes, (iii) spectral po-

wers, (iv) log spectral powers, (v) Mel-spaced spectral amplitudes, (vi) Mel-spaced log
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spectral powers, (vii) Mel cepstral coefficients. Such spectral domain methods require

the sampled input signal to be decomposed into overlapping frames using the Short

Time Fourier Transform (STFT) (see Sec. 3.4.1 for more details) in order to estimate

the power spectrum as it changes over time. The original signal can be perfectly re-

constructed with overlap-addition if no processing is done on the frame spectra, provi-

ded that the analysis and synthesis windows are chosen appropriately [4].

Following Loizou [85], we divide speech enhancement algorithms into four categories

which we will discuss below. We assume in all cases that the noise N is additive and

independent of the wanted speech signal S, such that the complex amplitude of the

observed signal O is given as, O(t, k) = S(t, k) + N(t, k), where t and k are time and

frequency index respectively. For all speech enhancement algorithms that will be dis-

cussed below, the estimated speech can be view as Ŝ(t, k) = G(t, k)O(t, k), where G(t, k)

is the gain function of the proposed speech enhancement algorithm.

2.1.1 Spectral-subtractive Algorithms

Since the noise is additive, an estimate of the clean signal spectrum can be obtained by

subtracting an estimate of the noise spectrum from the noisy speech spectrum in the

spectral power, or more commonly, the spectral magnitude domain [10]. The spectral

subtraction gain function is given by

GSS (t, k) = max

 |O (t, k)| −
∣∣∣N̂ (t, k)

∣∣∣
|O (t, k)|

, 0

 (2.1)

where
∣∣∣N̂ (t, k)

∣∣∣ denotes the estimated noise magnitude. This class of algorithm is

usually computationally simple as the enhanced signal can be obtained by computing

the inverse discrete Fourier transform of the estimated signal spectrum using the phase

of the noisy signal, and therefore only a forward and an inverse Fourier transform are

required. The subtraction process typically introduces some speech distortion as well as

residual noise artefacts known as musical noise. An over-subtraction factor κ [9, 84] is

often used to reduce the residual noise after subtraction especially when the signal to

28



noise ratio (SNR) is poor. In addition, a spectral floor $ is often used to prevent the re-

sultant spectral components from going below a preset minimum value, which is shown

as,

GSS (t, k) = max

 |O (t, k)| − κ
∣∣∣N̂ (t, k)

∣∣∣
|O (t, k)|

, $

 (2.2)

Many methods have been proposed to alleviate, and in some cases eliminate most of

the speech distortion and musical noise introduced by the spectral subtraction process

[56, 73, 86].

2.1.2 Wiener Filtering

The Wiener filter [128] reduces the amount of noise present in noisy speech by compa-

rison with an estimate of the desired clean speech. It is a linear estimator of the clean

speech spectrum, and it is optimal in the mean square sense. However, the ideal Wiener

filter requires knowledge about the statistics of the clean speech power spectrum which

is normally unavailable. The Wiener filtering algorithm can be implemented either ite-

ratively or non-iteratively. A model of the clean speech spectrum, such as the AR speech

production model [81], can be used iteratively to update the model and estimate the

Wiener filter. For non-iterative methods, the Wiener filter can be expressed as a func-

tion of the “a priori SNR” ξ: the ratio of the clean signal power spectrum to the noise

power spectrum. The enhanced speech spectrum can be obtained by multiplying the

noisy speech spectrum by the Wiener filter, where noise would be suppressed according

to the a priori SNR in each frequency bin. The Wiener filter gain is given by

GWF (t, k) =
ξ (t, k)

1 + ξ (t, k)
(2.3)

A good estimate of the a priori SNR is needed for non-iterative Wiener filter methods,

since a low-variance estimate of the a priori SNR can eliminate musical noise [12].

Ephraim and Malah proposed a decision-directed method of estimating the a priori SNR

[29] that is widely used and gives good performance [67]. A hybrid Wiener spectrogram

filter [24] exploits the correlation between different time frames to further reduce the
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Figure 2.1: Gain of various classical enhancement methods at different SNR [125].

residual noise. Both the Wiener filter and spectral-subtraction can be viewed as esti-

mating a gain that varies over time and frequency as a function of a priori SNR [125],

which is shown in Fig. 2.1. At high SNRs, the gain converges to 0 dB, little suppression

is done and most of the noisy signal will be treated as speech. Conversely, at low SNR,

the gain is very low since there is little speech power compared to noise power. From

the graph it can be seen that the Wiener filter gain characteristic is similar to that of

magnitude subtraction but with an offset of about +3 dB in SNR.

2.1.3 Statistical-Model-Based Methods

The statistical-model-based algorithms are based on explicit stochastic models of the

speech and noise [74]. Based on the speech and noise models and the observed noisy

speech, the enhancement algorithm calculates either the minimum mean squared error

(MMSE) or the maximum likelihood (ML) estimate of the clean speech. Given a set of

measurements (e.g. noisy speech) that depend on some unknown parameters (e.g. clean

speech), we wish to find a nonlinear estimator for these parameters of interest. Under

the assumption of a deterministic signal with additive Gaussian noise, the ML estimate

of the spectral amplitudes can be determined [94]. Using a Gaussian model for the

complex spectral amplitudes of both speech and noise, Ephraim and Malah developed

MMSE estimators for the spectral amplitudes [29] and log amplitudes [30] and conclu-
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ded that the latter choice gave a much lower residual noise. This widely used approach

has been extended by others [91, 13, 33, 5] to encompass other super-Gaussian distribu-

tions for the speech spectral coefficients. A basic MMSE estimator is given below,

GMMSE (t, k) =
ξ (t, k)

1 + ξ (t, k)
exp

(
1

2
E1 {γ (t, k)}

)
(2.4)

where ξ and γ are the a priori SNR and the a posteriori SNR respectively, and E1 is the

exponential integral function [2]. For large values (>20 dB) of the SNR, the MMSE gain

function is similar to the Wiener gain, where GMMSE ' ξ
ξ+1 .

These methods were initially developed under the assumption that speech was present

at all times. In reality, there are many periods of speech pauses in between words and

syllables. Furthermore, speech may not be present at a particular frequency during

voiced speech segments. Therefore a better noise suppression rule may be produced if

we assume a two-state model for whether speech is present or absent. Thus we could

estimate the probability that speech is absent at a particular frequency bin, and in-

corporate this speech-presence uncertainty in the preceding estimators to reduce the

residual noise substantially [16, 14, 57]. Similar to Wiener filtering, all the statistical-

model-based algorithms require a good estimation of the SNR of the noisy speech, i.e.

a better noise estimation will improve the quality of the enhanced speech signals when

using above algorithms.

2.1.4 Subspace Algorithms

The subspace algorithms are based on the principle that the clean signal is generally

confined to a subspace of the noisy Euclidean signal space [96]. By decomposing the

vector space of the noisy signal into a subspace occupied primarily by the clean signal

and a subspace occupied primarily by the noise signal, it is possible to estimate the

clean signal by applying either the singular value decomposition (SVD) of a Toeplitz

data matrix [21] or eigenvalue decomposition (EVD) onto the noisy signal covariance

matrix [32, 103]. By nulling the noise subspace components and retaining the speech
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subspace components, an enhanced speech signal is obtained with most of the noise

signal is suppressed. The subspace algorithm can be described as ~S = Gs ~O, where S̃

and ~O are vectors of estimated speech and noisy speech respectively, and GS is the gain

matrix defined as,

GS = ∆
(

Λ− |N |2 I
)

Λ−14# (2.5)

where ()
# denotes conjugate transpose, and ∆ and Λ is the eigenvalue decomposition of

the noisy signal convariance matrix, i.e. Õ~O# = ∆Λ∆#.

The original subspace algorithms assume the additive noise is white, if this assumption

is not true, the quality of the enhanced speech may be severely affected due to incorrect

estimation of the covariance matrix. Later algorithms apply pre-whitening of the noisy

speech signal to enhance the noise estimation [66, 20]. The implementation of subspace

algorithm is often computationally expensive as a SVD or EVD is required per frame.

2.1.5 Evaluating the Enhanced Speech

We may assess the improvement achieved by an enhancement in either intelligibility

or quality, or a combination of both. Intelligibility measures assess the fraction of spo-

ken words that can be correctly identified by a listener. They could be evaluated from

subjective listening tests by calculating the percentage of words or phonemes that are

identified correctly. These listening tests are usually based on the use of nonsense syl-

labus [34], monosyllabic words [26], rhyming words [126] or sentences [72] as speech

material. Alternatively, intelligibility can also be estimated indirectly from the word

accuracy of a speech recognizer on a standardized task such as the Aurora test database

[63]. Recently a number of objective metrics such as the Short Time Objective Intelligi-

bility (STOI) measure [119] have been developed that correlate strongly with subjective

intelligibility tests. When comparing different speech enhancement algorithms, two

common statistical tests, the t-test and analysis of variance (ANOVA) test , can be used

to assess significant differences between algorithms in terms of intelligibility scores .
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Quality measures assess various aspects of speech besides intelligibility, such as the

speech being more natural, pleasant, and acceptable. Subjective quality assessments

generally fall into one of two categories: those in which listeners are asked to express

a preference amongst two or more stimuli and those in which they assign a numeri-

cal value to the quality of a single stimulus (i.e. quality rating). In some forms of

the latter type, listeners assign separate values to different aspects of the quality such

as speech distortion or background noise level. The relative preference task methods

are usually subjective in nature, requiring listener’s opinion on their preferences over

paired-comparison tests, and might not be reliable. Objective quality measures estimate

quality algorithmically by measuring aspects of the noisy signal and, in the case of in-

trusive measures, comparing the noisy and clean signals. Intrusive measures include

the segmental SNR [122], spectral distance measures based on LPC (e.g. Itakura-Saito

measures [53]), perceptually motivated measures such as the Bark distortion measures

[127], and the perceptual evaluation of speech quality (PESQ) [70]. A well-presented

evaluation of several objective measures is given in [65] where it was found that PESQ

showed the strongest correlation to the listening test [1]. The PESQ score given in (2.6)

is computed as a linear combination of the average disturbance value dsym and the ave-

rage asymmetrical disturbance value dasym,

PESQ = 4.5− 0.1dsym − 0.0309dasym (2.6)

where the range of the PESQ score is 0.5 to 4.5. High correlations (ρ > 0.92) with subjec-

tive listening tests were reported in [105] for telecommunication applications. A number

of non-intrusive measures have recently been proposed that do not require access to the

clean speech signal but that nevertheless correlate well with PESQ [51].

2.1.6 Summary

Although the speech enhancement algorithms above exploit different distinct features

of speech to distinguish it from unwanted noise, they share the common objective of re-

ducing the noise while introducing minimum speech distortion. Loizou [85] compared
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different speech enhancement algorithms selected from each of the classes described

above through subjective listening tests [1]. The MMSE based methods [29, 30] consis-

tently performed the best with the highest quality and least speech distortion, while

the subspace algorithms [64] yielded the lowest quality but were good at preserving the

speech intelligibility. A few algorithms improved the quality of the enhanced speech si-

gnificantly in some conditions, but none of them provided significant improvement when

babble noise, recorded in a restaurant, was added to the speech.

2.2 Noise Estimation Algorithms

All the speech enhancement algorithms described above require an estimate of the noise

power spectrum, or equivalently the signal to noise ratio, in each time frame.. For ins-

tance, the estimated noise spectrum is used directly in the spectral subtractive algo-

rithms [10]. Alternatively it is used to evaluate the Wiener filter in the Wiener algo-

rithm [128], to estimate the a priori SNR in the (log) MMSE algorithms [30] and to

estimate the noise covariance matrix in subspace algorithms [32]. The accuracy of this

estimate has a major impact on the overall quality of the speech enhancement: overes-

timating the noise will lead to distortion of the speech, while underestimating it will

lead to unwanted residual noise. In this section, we will discuss various types of noise

estimation algorithms and the ways in which they distinguish between the speech and

noise of a signal.

2.2.1 Voice Activity Detection

The simplest approach for noise estimation is to use a voice activity detector (VAD) to

identify when speech is absent and to estimate the noise power spectrum by averaging

that of the input signal during these speech-free intervals. Speech absences occur not

only at the beginning and end of a sentence but also in the middle of a sentence, pri-

marily at the closures of the stop consonants. The appropriate averaging time-constant

depends on the assumed stationary of the noise. In general, VAD algorithms output a
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binary decision and declare a segment of speech to be voice active, i.e. VAD=1, if some

measured quantity exceeds a predefined threshold. The decision rule of a VAD is based

on one or more measurable quantities whose values differs between noise and speech

[99, 35, 111, 121], where the decision threshold is often determined empirically. Most

of the conventional VADs [111, 39, 109] assume that the noise statistics are stationary

over a longer period of time than those of speech, which makes it possible to estimate

the time-varying noise statistics in spite of the occasional presence of speech.

Generally, the VAD method does not work well if the noise signal is highly non-stationary

or the signal to noise ratio (SNR) is low [27]. Even if the VAD algorithm is accurate, it

still might not be sufficient in speech enhancement applications, especially in a highly

non-stationary noise environment, where the noise characteristics might change fre-

quently during the intervals when speech is present. Hence the noise spectrum should

be ideally continuously estimated and updated from the noisy speech even during speech

activity. In order to achieve this, it is necessary to make use of prior knowledge about

differences between the characteristics of noise and speech. Common assumptions are

that:

1. the short-time power spectrum of noise is more stationary than that of speech

2. the power of the noisy speech signal in individual frequency bands often decays to

the power level of the noise

3. the frequency of periodic noise sources changes very slowly with time; this is in

contrast to voiced speech whose pitch changes more rapidly.

These assumptions have led to noise estimation algorithms that will be reviewed in the

rest of this section. To utilize the first assumption, most noise estimation algorithms

analyse the noise signal using short-time spectra, i.e. STFT frame-based processing.

The analysis segment should be chosen to be long enough to contain speech pauses and

low-energy signal segments, but short enough to track fast changes in the noise level.
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2.2.2 Minimum-Tracking Algorithms

The minimum-tracking algorithms assume that even during speech activity, the power

of a noisy speech signal in each individual frequency bands will frequently decay to the

power level of the noise, i.e. the energy will be dominated by the noise. Hence it is

possible to estimate the noise using Minimum Statistics [93] by tracking the minimum

of the noisy signal power in each frequency band regardless whether speech is present or

not. The noise power is assumed to be the minimum power that has arisen within a past

window length of T (typically 0.5 to 1.5 seconds). This window length must be chosen to

be large enough to bridge any broad peak of the speech signal. The minimum statistics

algorithm is illustrated in Fig. 2.2 in which the upper trace shows the power in one

sub-band (centred at 250 Hz) of a noisy speech signal. The lower trace in Fig. 2.2 shows

the output of a minimum filter with T = 0.8 s. The output of the minimum filter will

inevitably underestimate the true mean noise power and it is necessary to compensate

for this bias. A fixed compensation factor was used in [93], and the estimated noise

power spectrum N̂(t, k) as given in (2.7), where t and k are the time and frequency

index respectively.

N̂(t, k) = BPmin (t, k) (2.7)

where the value of the fixed bias B depends on the minimum search window length L,

and it was set to B = 1.5 for L = 100 [93]. Pmin (t, k) is the minimum within the past L

frames of the search frames of the smoothed power spectrum P (t, k), which is given in

(2.8).

P (t, k) = λP (t− 1, k) + (1− λ)O (t, k) (2.8)

where λ is the smoothing constant typically set to between 0.9 to 0.95.

The algorithm was extended later to include a bias factor that varied with time and

frequency [90], and the minimum was found by searching the first-order recursively

smoothed periodogram. A better approximation of the compensation factor was propo-

sed by considering the statistics of the smoothed periodogram [92].

The minimum statistics algorithm [90] was reported to perform well in non-stationary
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Figure 2.2: Power in the 250Hz sub-band of a noisy speech signal and the output of a
minimum filter with T = 0.8 s (reproduced from [93]).

noise, but the adaptation time can exceed T when the noise level is increasing [101]. A

similar approach was used in [25] but, instead of taking the minimum over T , the noise

speech spectrum is smoothed using two different time constants; a short time constant

is used when the energy in a frequency bin is decreasing to ensure rapid adaptation to a

new minimum while a long time constant is used when the power increases to prevent

adaptation to the speech energy. The approach is computationally efficient but is consi-

dered to perform less well than the minimum statistics approach because selecting the

long time constant is a compromise between the response to sudden increases in noise

and preventing the speech power from modulating the estimated noise power. The adap-

tation time of the minimum statistics approach can be improved by using a Bayesian

approach to obtain a more robust estimate of the speech presence probability [95, 38].

The use of the minimum makes the technique sensitive to outliers, and other quantiles

might be used instead in order to improve robustness. This was later extended to a

two-pass approach [7] in which the quantile used in the second pass depended on the

estimated SNR from the first pass. It was found in [115] that the median gave the

best results when evaluated using a speech recogniser. Few people, however, appear to

have followed up this work and Manohar [89] demonstrated that this approach performs

poorly on non-stationary noise.
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2.2.3 Time-recursive Algorithms

The time-recursive averaging algorithms exploit the fact that, even when speech is

present, the spectral power in some frequency bins will be dominated by the noise. Thus

individual frequency bins of the estimated noise spectrum can be updated whenever the

speech-presence probability in that particular frequency band is low. Consequently, the

noise spectrum can be estimated as a weighted average of past noise estimates and

the present noisy speech spectrum [61]. The weight, or smoothing factor, is adaptive,

and usually takes large values when speech is absent and small values when speech

is present in each frequency bin [6]. The time-recursive averaging algorithms can be

regarded as a soft-decision VAD, where the estimated noise spectrum can be updated

all the time but with a time-constant that varies according to the probability of speech

presence. Sohn [112] proposed a soft-decision VAD that was based on the likelihood

ratio that is equivalent to the Itakura-Saito distortion measure or cross entropy bet-

ween background noise and observed signal [110, 54]. A similar approach is used in

Malah [88] where the estimated SNR averaged across all frequencies is used to control

adaptation together with an additional frequency-dependent factor that depends on the

estimated speech presence in each frequency bin. Lin [82, 83] presented a simpler ver-

sion, where the noise is updated adaptively from noisy speech with a time constant

which is based on a sigmoid function of the noisy speech to noise ratio. Gerkmann [46]

proposed a soft speech presence probability estimation without any minima searching

methods, which shows a good performance when incorporated with the MMSE-based

noise estimation [58].

In minima-controlled recursive averaging algorithms (MCRA) [17, 16], the speech pre-

sence probability in each frequency bin is estimated by taking the ratio between the po-

wer in the current frame and its minimum over a searching window of length T , which

is then used to control which sections of the noisy speech are averaged to estimate the

noise power. It gives an estimate with less bias and reduced variance than the original

approach [93]. The MCRA algorithm estimates the noise as,

N̂(t, k) = λ̂ (t, k) N̂(t− 1, k) +
(

1− λ̂ (t, k)
)
O(t, k) (2.9)
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where λ̂ (t, k) is the time-frequency dependent smoothing parameter,

λ̂ (t, k) = λ+ (1− λ)p(t, k)

where λ is the fixed smoothing constant, and p(t, k) is the smoothed speech presence

probability depending on whether the ratio Pmin(t,k)

P (t,k) exceeds a fixed threshold (the thre-

shold is set to 5 in [17]). Pmin(t,k) is the minimal tracking on the smoothed noisy power

spectrum P(t,k) defined in (2.8).

This noise estimator was developed slightly in [108] and an improved version of the

noise estimator was given in [15] which uses a two-iteration procedure that refines an

initial speech presence detector. This approach requires a local minimum over a fixed

length of window, thus fails to adapt quickly to any abrupt changes. Rangachari [101]

extends this approach in two ways by using a different way of calculating the mini-

mum spectrum without any fixed windows [25], which resulted in a lower latency (0.5 s

instead of 1.5 s) and a frequency-dependent threshold on the ratio of noisy speech spec-

trum to minimum spectrum which is used to estimate the speech presence probability

and thence to control the adaptation rate. The algorithm is improved slightly in [100]

by smoothing the speech presence probability over time which implicitly accounts for

its correlation between successive frames. The smoothing approach is extended further

in [78, 79] where the threshold used when deciding speech presence probability varies

with the likelihood of speech presence in the previous frame.

Hendriks [59] calculates a high resolution DFT with four times the required resolution

and compares this with the current low resolution noise spectrum estimate to give a

VAD decision for each high resolution frequency bin. The low resolution noise spectrum

is then updated using any bins (between 0 and 4) that are classified as noise-only to-

gether with an empirical bias compensation factor that is a function of the number of

noise-only bins. They found that this approach performed comparably to a subspace

approach [60] but with much lower computational cost. They found it was better than

[90] in almost all cases, especially for rapidly changing noises.
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2.2.4 Histogram-based Methods

The histogram-based algorithms exploit the fact that at moderate SNRs the histogram

of noisy-speech energy values will include a distinct peak corresponding to the noise.

The length of the window used for constructing the histogram will affect the perfor-

mance of such algorithms. Noise overestimation occurs when the window is not long

enough to encompass broad speech peaks, especially in the low-frequency bands, where

the speech energy is often high. McAulay [94] proposed an energy histogram algorithm

that determined an adaptive energy threshold to decide on the presence of speech, along

with fixed upper and lower threshold limits which take priority. The adaptive threshold

is chosen to lie at the 80th centile of the histogram of energies that are below the upper

fixed threshold. This approach is modified in [18] which fits a 2-component Gaussian

mixture model to the histogram of log energy and assumes that the lower component

represents the noise. A similar approach is used by [61] in which an adaptive threshold

is used in each frequency bin to eliminate speech frames and the peak of the histogram

of recent noise frames is used as an estimate of the noise power in that bin. The repor-

ted accuracy of this approach, which is an extension of [62], is much greater than that

of the VAD approach. The Hirsch histogram methods is shown in (2.10) below,

N̂(t, k) = λN̂(t− 1, k) + (1− λ)Omode(t, k) (2.10)

where λ is the smoothing constant, and Omode(t, k) is the mode of the distribution of the

noisy speech spectrum histogram O(t, k) over the past L frames.

A similar approach is also used by Ying [131] to train a sequential Gaussian Mixture

Model (SGMM) to track noise power in log-spectral domain. Ris [104] proposed a new

approach based on the harmonic filtering, where the speech periodicity property was

used to update the noise level estimate during voiced parts of speech, and thus can track

fast modulations of the noise energy. However, in his study, he found that minimum

statistics performed better than the Hirsch histogram [61].

[132] and [45] demonstrate that the discrete Fourier transform (DFT) or Karhunen
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Lòeve Transform (KLT) coefficients of speech signals follow a Laplacian distribution

rather than the more commonly assumed Gaussian or Gamma distributions. They the-

refore propose a voice activity detector [44] that models the noisy signal subband coeffi-

cients as the sum of zero-mean Laplacian and Gaussian random variables respectively.

They find that using the KLT rather than the DFT gives marginally better performance.

Although histogram-based algorithms can estimate the noise without any implicit or

explicit VAD, they only track the most frequent occurrence of energy values as the noise

signal, whereas other types of noise component with lower probability of presence will

be ignored. Hence they generally do not work well with a mixture of different types of

highly non-stationary noises.

2.2.5 Overview

A well-presented evaluation of several noise spectrum estimation techniques is given

in [120] where it was found that the best performance of the tested algorithms was

given by MMSE-Hendriks [58], and that this outperformed minimum statistics [90] and

MCRA [16, 15] on a wide range of noises in terms of the mean and variance of the log

estimation errors.

Most of the noise estimation algorithms described above have implicitly or explicitly

detected whether speech is absent and estimated the average noise power during these

intervals. During speech activity, the noise normally will not be updated, and it is assu-

med that the noise characteristic is unchanged during these intervals. A two-component

noise model [31], which is used to account for a slowly evolving component and a ran-

dom component has been proposed to have a better noise estimate. However, if the noise

is intermittent or highly non-stationary, such as media interference and unwanted co-

talkers, describing such noise requires a richer model.
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2.3 Noise Estimator Performance Estimation

In many speech enhancement applications, the objective is to estimate the clean speech

as closely as possible. Much attention has been given to evaluating the enhanced speech,

but little has been done on noise estimator assessment. There are mainly two ways to

assess the noise estimator, one is to compare the improvement of both quality and intel-

ligibility of the enhanced speech through the proposed speech enhancement of interest,

the other is to compare the noise power spectrum with its estimate. We will discuss

briefly both methods and their drawbacks.

2.3.1 Evaluating the Performance of Noise Estimators

Currently, there are very few methods or algorithms that have been developed specifi-

cally for noise estimator assessment. Many performance evaluations of noise estimators

are done by judging indirectly from the enhanced speech in the specific application of

interest, and showing that incorporating a better noise estimator would further im-

prove the speech enhancement algorithm. For example, Deng et. al. [23] presented a

non-stationary noise estimator using iterative stochastic approximation, and evaluated

using AURORA-2 noisy digit recognition, and quantitatively showed it is better than

MMSE noise estimator [28]. Such approaches are specific to specific to one application

rather than a general assessment of the noise estimator.

Another method is to compare the similarity between the original noise power spectrum

Nk and its approximation N̂k, where k is the frequency index in each STFT time block. A

number of quantitative spectral distortion measures have been developed for measuring

the closeness between two signal spectrum. One of them is log spectral distance, there

are a few variations to assess the distortion between two spectra. Rangachari [100]

used an MCRA based method to estimate the highly non-stationary noise and asses-

sed using mean square error 1
K

∑
k

(Nk−N̂k)
Nk

2

between the estimated and the true noise.

Such a measure may give misleading results as it is sensitive to outliers in one or two

frequency bins. Zhao [133] proposed an online noise estimation method and used log
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spectral distance
√

1
K

∑
k

(
10 log10

Nk

N̂k

)2
to assess the goodness of the noise estimation,

whereas Hendriks [59] used 1
K

∑
k

∣∣∣10 log10
Nk

N̂k

∣∣∣ instead. Taghia [120] proposed similar

error measures and further included the analysis of the variance of such error measu-

rement, and claimed that if the log distance was similar, the one having the smaller

variance of log distance would be preferred due to its lower tendency to produce musical

noise.

The Itakura distortion dI is a psycho-acoustically motivated distortion measure in the

log spectral domain:

dI

(
N, N̂

)
= log

(∑
k

Nk

N̂k

)
−
∑
k

log
Nk

N̂k

However the Itakura distortion only measures the closeness of the spectral shape rather

than their absolute spectral difference. Since an accurate estimation of noise spectral

characteristic is important, and any estimation error might degraded the quality of the

enhanced speech, the Itakura measure is not a good choice for the evaluation of noise

estimators. The Itakura-Saito distortion dIS is a gain-dependent version of Itakura-

Saito distortion and it given by

dIS

(
N, N̂

)
=
∑
k

(
Nk

N̂k
− log

Nk

N̂k
)− 1

Owing to its asymmetric nature, the Itakura-Saito distortion will give more emphasis to

noise underestimation (i.e. Nk

N̂k
> 1) than noise overestimation (i.e. Nk

N̂k
< 1). The COSH

distortion dCOSH is the symmetric version of Itakura-Saito distortion, which weights

noise overestimation and underestimation equally. We have used the COSH measure in

our evaluation below because, as mentioned above, both overestimation and underesti-

mation of the noise have serious effects.

dCOSH

(
N, N̂

)
=

1

2

[
dIS

(
N, N̂

)
+ dIS

(
N̂ ,N

)]
=
∑
k

cosh(log
Nk

N̂k
)− 1
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Gray [52] evaluated a number of spectral distortion measures and showed that the

COSH and log spectral distortion measures are identical for small errors but recom-

mended the use of the COSH measure because it gives a greater penalty to large errors.

2.4 Review and Summary

Among different classes of speech enhancement algorithms, the MMSE based methods

have been found to perform the best with the highest quality and least speech distortion

[85]. Furthermore, it is also computationally efficient and commonly used. In the rest

of the thesis, we will use the MMSE method [30] as our speech enhancement algorithm.

Various noise estimation methods have been discussed in Sec. 2.2, histogram-based me-

thods [61] are usually computational expensive, and might ignore intermittent noise

that occurred infrequently. Minimum statistics [90] showed a good performance when

estimating non-stationary noise [104], but the adaptation time can exceed T when the

noise level is increasing [101]. Minima controlled recursive averaging method [17, 16]

relaxed the requirement of a VAD, and provide an elegant way to update the noise in

frequency bins where the speech is absent. The minimum power within a specified time

frame serves as an indicator of speech presence probability mask. A recent evaluation

[120] found that MMSE-Hendriks [58] gives the best performance over the noise estima-

tion methods mentioned above. The MMSE-Hendriks was later extended by Gerkmann

[46], and we will use this unbiased MMSE-based noise power estimator as one of our

reference algorithms for performance evaluation.

The noise estimator can be judged indirectly from the enhanced speech when incorpora-

ted into a specific speech enhancement system. Alternatively, the goodness of the noise

estimation can also be assessed by the spectral distortion between the true noise spec-

trum. COSH distance is identical to log spectral distortion measures for small errors,

and showed a greater penalty to large errors [52]. It will be used for spectral distance

measure in the rest of this thesis.
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Chapter 3

Multi-state HMM Noise Model

3.1 Overview of a HMM

The hidden Markov Model(HMM) is a powerful multi-state model that can be characte-

rised by an underlying process generating an sequence of observation. The underlying

process is assumed to be a Markov process with unobserved (hidden) states, where the

conditional probability distribution of future states of the process depends only upon

the present state. Within each state, all possible observations are emitted with a finite

probability. Thus given a observation sequence and the HMM, we can determine the

most likely state sequence to produce the observations. Fig. 3.1 shows a 3-state HMM,

and the arrows indicate the transition from one state to another.

3.2 Introduction

Many of the noise estimation methods described in Chapter 2, such as minimum sta-

tistics [90], minima controlled recursive averaging [17, 16] and unbiased MMSE-based

noise estimator [46], are based on first-order recursive averaging, which effectively as-

sumes a one-state noise model. Thus they might not follow a rapid change of the noise
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Figure 3.1: Illustration of the 3-state HMM.

characteristics, especially intermittent noise. In this chapter, we propose a multi-state

model for estimating highly non-stationary noise. There are many situations in which

the nature of the interfering noise will change over time. In some cases, the characteris-

tics (and hence power spectrum) of a source may change gradually. When this occurs, we

would like to adapt the noise characteristics associated with the corresponding state so

that it tracks the changes of the source. In other cases, the noise may change abruptly

due to the introduction of a new noise source or a change in the operation of an existing

one. Such abrupt changes should be represented in the noise model by the creation of

new model states. Over time, the occupancy of some states will fall to almost zero and

they can be removed from the model; it may however be advantageous to retain their

characteristics in a library so that, if the noise source reappears, its model does not need

to be retrained from scratch. Inspired by the human hearing ability to learn and adapt

to a new noisy environment [8], non-stationary noise can therefore be better modelled

as a set of discrete states which capture the characteristics of noise sources encountered

in the past. In this approach, each state corresponds to a distinct noise power spec-

trum and the evolution of the state sequence over time is conveniently represented by a

hidden Markov model (HMM).

Our aim in this chapter is to develop an on-line noise HMM that can track and update

the distinct noise characteristics represented by each state, and create a new state if a

novel noise source is detected. For simplicity at the start, in this chapter, we assume

that there is a perfect voice activity detector (VAD) that can identify exactly when the

speech is present, which enables us to train and update the noise model using noise
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signals only without the presence of speech. The structure of the rest of this chapter is

as follows. We first give a brief literature review of multi-state noise model. Next we de-

velop an on-line noise HMM recursive update algorithm for estimating slowly evolving

noise environment, followed by the extension of the HMM model to accommodate any

abruptly changing noises. Finally, the performance of the HMM model is evaluated both

in estimating the noise spectrum and when used with a speech enhancement algorithm.

3.3 Literature Review

In this section, we will briefly review different noise models that have been proposed.

3.3.1 Stationary Spectral Model

The most common model of the noise is that it is a Gaussian process with a slowly

changing power spectrum. The spectrum is normally represented by individual spectral,

mel-spectral or cepstral coefficients. As an example, an all-pole spectrum model is used

for the noise process and an approximation to the maximum likelihood estimate of the

auto-regressive (AR) parameters is provided by conventional Linear Predictive Coding

(LPC) analysis [31, 107]. The distance between two AR signals can be expressed as the

dot product between their autocorrelations [71].

3.3.2 Two-component model

Rennie et. al [102] propose to model the noise as the sum of a slowly evolving com-

ponent and a random component in the Mel log-power spectral domain, and claim that

this model is both more realistic and allows better tracking of the evolving component.

The power of the continuously evolving component is modelled as a first order Gaussian

AR process in each frequency bin, while the random component is zero-mean Gaus-

sian. In order to account for abrupt changes in noise level, there is a small but non-zero
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probability that the continuously evolving component may revert to a prior mixture

of diagonal-covariance Gaussians; they also suggest reverting to a minimum-statistics

noise estimate as an alternative. The paper gives update procedures for the mean and

variance of the noise level components under the assumption of a fixed Gaussian mix-

ture model for the speech. A similar noise model was also used implicitly by [89].

3.3.3 Hidden Markov Model

A number of authors present their noise model as a multi-state HMM, but in most cases

they actually use only a single state (albeit with multiple mixture components). A brief

review of ways of estimating a noise HMM can be found in [49]. Sameti et al. [107]

use a 3-state Gaussian mixture model (GMM) model for each noise type. During non-

speech intervals, a library of noise types is searched and is used for any subsequent

speech spurt. In order to reduce the danger that fricatives will be interpreted as noise,

only non-speech intervals longer than 100 ms are used. Srinvansan [113, 114] uses a

codebook of auto-regressive (AR) coefficient sets for both speech and noise spectra and

explicitly finds the MMSE choice of AR coefficients and maximum likelihood gains for

each frame; the codebook used is mostly predefined from training noise data but also

includes the estimate from minimum statistics [90]. A similar codebook model was used

by Zhao [133] who used 10th order LPC, eight 16-mixture states for speech and five

states for noise; however their system is different in how the noise states are updated.

The system updates the noise model at each frame using an expectation–maximization

(EM) procedure with a forgetting factor, to update noise states and noise gains. They

show that this method tracks noise amplitude changes better than minimum statistics,

and gives a better improvement of segmental SNR. They also note that the LPC order

of 6 is inadequate for noise spectra with many harmonics.
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Figure 3.2: Overview of a typical speech enhancement system.

3.4 HMM noise Modelling

In this chapter, we assume that there is a perfect voice activity detector (VAD) that can

identify exactly when the speech is present, which enables us to train and update the

noise model using noise signals only without the presence of speech. This assumption

will be removed in Chapter 4 where we extend the algorithm to allow operation in the

presence of speech. Within each state of the HMM, there is only one mixture component

to represent a distinct type of noise power spectrum. In the following sections, we will

first consider how the noise model can be updated effectively when the characteristics

of the noise change slowly, then how it can adapt to abrupt changes in the noise.

3.4.1 Frame-based processing

In many speech enhancement systems, the short time Fourier transform (STFT) is used

to analyse the characteristics of signals which change over time. Fig. 3.2 shows a typical

speech enhancement system, where the noisy speech signal is assumed to be the sum of

the noise and speech signal. It is first converted from the time domain to the frequency

domain using the STFT, where the noise can be estimated and used by the speech en-

hancer to obtain the enhanced speech. It is then converted back into the time domain by

using inverse short time Fourier transform (ISTFT). In the remaining sections of this

chapter, we assume that the observed noisy speech signal is decomposed into overlap-

ping frames, which are windowed and transformed into the frequency domain using the

Discrete Fourier Transform (DFT). We have used a 50% overlap of frames and applied

a square-root Hanning window in both the analysis and synthesis stages to give per-
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fect reconstruction in the absence of any frequency domain processing. The observed

complex-valued frequency-domain signal in time frame t is defined as ot(k) with fre-

quency index k ∈ {1 . . .K}. Assuming the noise is additive, the observed signal model

is defined as ot(k) = st(k) + nt(k), where st(k) and nt(k) are clean speech and noise

respectively.

3.4.2 Model Structure

In this chapter, we assumed there is a perfect VAD to identify when speech is absent,

i.e. ot(k) = nt(k) for frames we will use for training the noise model. We first initialize

the Hidden Markov model on the basis of the first T0 observed frames, i.e. O(T0) =

{Ot : t ∈ [1, T0]}[3]. The model parameter set for an HMM with H states is ζ = {π,A,B}

[98], where π = {πi} is the set of initial state probabilities, A = {aij} is the set of state

transition probabilities and B = {bj (Ot)} is the set of observation probabilities within

each state j.

Following [29] we assume that in time frame t, the spectral component of the noise in

frequency bin k, ot (k), is Gaussian distributed with uncorrelated real and imaginary

parts. Under this assumption, the power spectral components Ot (k) = |ot(k)|2 will fol-

low a negative exponential distribution or, equivalently, a χ2 distribution with 2 degrees

of freedom,

p (Ot (k)) =
1

E {Ot (k)}
exp

(
− Ot (k)

E {Ot (k)}

)
(3.1)

where E { } denotes expectation. Under the assumption of a perfect VAD, the speech

is absent in the observed signal Ot (k), i.e. Ot (k) = Nt (k) , where Nt (k) is the noise

power spectrum. Hence, with respect to a mean noise power spectrum vector µ0, the log

observation probability log b (Ot) is given by

log b (Ot | µ0) = log

(∏
k

1

µ0 (k)
exp

(
−Ot (k)

µ0 (k)

))
=
∑
k

(− logµ0 (k)− Ot (k)

µ0 (k)
) (3.2)
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under the assumption that the frequency components ofOt are conditionally independent

given µ0.

If we do not have any information about the initial state probabilities, π, we can assume

them to be the steady state probabilities of the HMM, i.e. π is taken to be the eigenvector

satisfying ATπ = π. Furthermore, the observation probabilities B are determined from

(3.2) using µ0 = µj , where µj is the mean power spectrum of state j. Therefore, we can

simplify the noise model as ζ = {µ,A} where µ = {µj : j ∈ [1, H]}.

In the following section we will develop an adaptive algorithm for estimating the HMM.

Since our noise model is adaptive, we will denote the model at time T by ζ(T ), and,

in general, we will use the (T ) superscript to denote the model parameters estimated

from the available observations O(T ) = {Ot : t ∈ [1, T ]}. The superscript will normally

be omitted if all quantities in an equation are from the same model.

3.4.3 Model Initialization

In order to initialize the noise model, we first cluster the initial T0 frames into H states

using the k-means algorithm where T0 � H. We then use Viterbi decoding [97] to

obtain the maximum likelihood sequence of states i (t). The mean spectrum in state j,

µj , is then taken to be the average of all frames assigned to state j and the transition

probabilities are calculated as

aij =
cij (1, T0)∑
j cij (1, T0)

(3.3)

where cij (1, T0) is the total transition count from state i to state j based on the maxi-

mum likelihood state sequence {i (t) : t ∈ [1, T0]}. It can happen that within this state

sequence i (t), there is not any transition from state i to state j, i.e. cij (1, T0) = 0. If

this happens, the transition will be forbidden and aij will remain permanently at zero.

Under the assumption that the prior probability of each state is 1/H, Laplace’s law of

succession [48] suggests that the state probabilities should be estimated by including
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one additional “pseudo-count” for each state. Dividing this pseudo-count equally bet-

ween the H possible next states results in the following estimate for the state transition

probabilities which is used instead of (3.3):

aij =
1
H + cij (1, T0)

1 +
∑
j cij (1, T0)

(3.4)

Thus the constant terms in the numerator 1/H and denominator 1 ensure that the

probability of any state transition that has not yet been observed is initialized to a

small positive value. If
∑
j cij (1, T0) is large, then (3.4) is approximately the same as

(3.3). If
∑
j cij (1, T0) is 0, then the transition probabilities to state j will be equal. Thus

the initial model is created as ζ(T0) =
{
µ(T0), A(T0)

}
.

The processing steps of the model initialization can be summarized as follows:

1. Cluster the initial T0 frames into H states using the k-means algorithm

2. Apply Viterbi decoding to obtain the maximum likelihood state sequence i (t)

3. Compute the mean µ(T0) and the state transition probability A(T0) based on i (t)

3.4.4 Model Update Equations

From the standard Baum-Welch equations [97], we obtain a recursive expression for

the forward probability α and backward probability β for the model, ζ(T ), based on the

observations, O(T ),

α
(T )
i (t) =

∑
j

α
(T )
j (t− 1)ajibi(Ot) with α

(T )
i (0) = πi (3.5)

β
(T )
i (t) =

∑
j

aijbj(Ot+1)β
(T )
j (t+ 1) with β

(T )
i (T ) = πi (3.6)

where bj (Ot) is the observation probability of Ot belonging to the state j as given by

(3.2). In addition, we introduce the total probability density, P , of the observation O(T )

and it will be used as a normalization constant in (3.9) - (3.11) below
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P (T ) =
∑
i

α
(T )
i (T )β

(T )
i (T ) (3.7)

Thus the model ζ(T ) =
{
µ(T ), A(T )

}
can be obtained

µ
(T )
i =

∑T
t=1 λ

T−tα
(T )
i (t)β

(T )
i (t)Ot∑T

t=τ1
λT−tαi(t)βi(t)

a
(T )
ij =

∑T−1
t=1 λT−1−ta

(T−1)
ij α

(T )
i (t)bj(Ot+1)β

(T )
j (t+ 1)∑T−1

t=τ1
λT−1−tα

(T )
i (t)β

(T )
i (t)

(3.8)

These are the standard Baum-Welch update equations except for the exponential “for-

getting factor” λT−t which reduces the contribution of time frames that are in the distant

past [76]. The choice of λ is a compromise between being able to track rapidly changing

noise characteristics within a single state (where λ is small) and obtaining good para-

meter estimates (where λ is close to 1).

In order to simplify the development in the following sub-section, we define the following

quantities:

Ui(τ1, τ2) =
1

P

τ2∑
t=τ1

λτ2−tαi(t)βi(t)Ot (3.9)

Qi(τ1, τ2) =
1

P

τ2∑
t=τ1

λτ2−tαi(t)βi(t) (3.10)

Rij(τ1, τ2) =
1

P

τ2∑
t=τ1

λτ2−tαi(t)bj(Ot+1)βj(t+ 1) (3.11)

where the U , Q, R are the weighted sums of the state observations, state occupancies

and transition prevalence respectively. With these definitions, the model can be expres-

sed as
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µ
(T )
i =

U
(T )
i (1, T )

Q
(T )
i (1, T )

a
(T )
ij =

a
(T−1)
ij R

(T )
ij (1, T − 1)

Q
(T )
i (1, T − 1)

(3.12)

Notice that the quantities U , Q, R have been normalized by the total stationary proba-

bility density P , as described in (3.7). The model parameter µi and aij are unaffected

since the normalization factor 1
P presents both in the nominator and denominator, so

that (3.12) will be exactly the same as (3.8). However, the quantity P is important for

the recursive update that will be introduced in Sec. 3.4.5.

3.4.5 Recursive noise model update

In this section, we derive a procedure for updating the noise model recursively so that

it is able to track slowly varying noise sources. This will be extended in Sec. 3.4.6 to the

tracking of rapidly changing noise spectra. We assume that we have already determined

ζ(T−1) and now wish to perform a time update on the model to obtain ζ(T ). Re-evaluating

(3.5) - (3.12) directly would require us to save the entire set of observations {Ot}. To

avoid this, we wish to retain only the L most recent observations and assume that for

sufficiently old frames, the state occupation probabilities are unchanged, i.e.

α
(T )
i (t)β

(T )
i (t)

P (T )
≈ α

(T−1)
i (t)β

(T−1)
i (t)

P (T−1) for t ≤ (T − L) , TL (3.13)

We will use TL instead of T −L for compactness in all the equations below. Noticing that

the forward transition probability is independent of time T , i.e. α(T )
i (t) = α

(T−1)
i (t), the

difference between the two quantities in (3.13) arises because βi is calculated using (3.6),

from a starting point of time T and T − 1 respectively. The assumption in (3.13) will be

valid provided that the state assignment at t = T has a negligible effect on that at t = TL

or, equivalently, that the second largest eigenvalue ofA is� 1−1/L. Since the transition
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probability matrix can be expressd as An = V−1DnV, where the columns of V contain

the eigenvectors of A, and D is a diagonal matrix with respective eigenvalue, the rate of

convergence will depend on non-unity eigenvalues of the transition probability matrix.

With this assumption, the normalized partial accumulated sum of the mean U can be

expressed as below:

U
(T )
i (1, TL) =

∑TL

t=1 λ
TL−tα

(T )
i (t)β

(T )
i (t)Ot

P (T )

≈
∑TL

t=1 λ
TL−tα

(T−1)
i (t)β

(T−1)
i (t)Ot

P (T−1) = U
(T−1)
i (1, TL)

Similarly, we find that

Q
(T )
i (1, TL − 1) ≈ Q

(T−1)
i (1, TL − 1)

R
(T )
i (1, TL) ≈ R

(T−1)
i (1, TL)

These equations show that we can assume the accumulated sum of each quantity re-

mains unchanged up to time TL given the arrival of a new frame T . Thus we can write

the update equations as

µ
(T )
i ≈ λLU

(T−1)
i (1, TL) + U

(T )
i (TL + 1, T )

λLQ
(T−1)
i (1, TL) +Q

(T )
i (TL + 1, T )

(3.14)

and

a
(T )
ij ≈

a
(T−1)
ij

(
λLR

(T−1)
ij (1, TL − 1) +R

(T )
ij (TL, T − 1)

)
λLQ

(T−1)
i (1, TL − 1) +Q

(T )
i (TL, T − 1)

. (3.15)

The advantage of these expressions is that the first terms in the numerator and de-

nominator of both (3.14) and (3.15) can be calculated recursively without reference to

past observations and the sums implicit in the second terms extend over only the past
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L observations. To determine the time updated model ζ(T ), we first initialise it using

µ
(T )
i = µ

(T−1)
i

a
(T )
ij = a

(T−1)
ij

α
(T )
i (T − 1) = α

(T−1)
i (T − 1)

we then calculate αi(T ) from (3.5), βj(t) for t ∈ [TL + 1, T ] from (3.6). We can then

calculate all the remaining quantities in (3.14) and (3.15) and update the model. Finally,

in preparation for the next time step, we update the first terms in the numerator and

denominator of (3.14) and (3.15) using

U
(T )
i (1, TL + 1) = λU

(T−1)
i (1, TL)+

α
(T )
i (TL+1)β

(T )
i (TL+1)OTL+1

P (T )

Q
(T )
i (1, TL + 1) = λQ

(T−1)
i (1, TL)+

α
(T )
i (TL+1)β

(T )
i (TL+1)

P (T )

R
(T )
ij (1, TL) = λR

(T−1)
ij (1, TL − 1)+

α
(T )
i (TL−1)b(T )

j (OTL
)β

(T )
i (TL)

P (T ) (3.16)

Although it is not needed for updating the model, we also want to accumulate the total

transition count cij (1, TL + 1), since it will be required in Sec. 3.4.6

cij (1, TL + 1) =


cij (1, TL) + 1 for i = arg maxi α

(T−1)
i (TL)β

(T−1)
i (TL),

j = arg maxj α
(T )
j (TL + 1)β

(T )
j (TL + 1)

cij (1, TL) otherwise

(3.17)

3.4.6 Adapting to rapidly changing noise characteristics

In order to accommodate an abrupt change to the noise characteristics as might, for

example, arise from the introduction of an entirely new noise source, we need to create

a new state to model the newly observed noise spectrum. Fig. 3.3 shows a example

of the spectrogram of an antique clock, there is a constant “tic-toc” sound in the back-

ground, with a sudden arrival of “chime” sound from the chime. To avoid increasing the
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Figure 3.3: Spectrogram of an antique chiming clock.

complexity of the model with the repeated introduction of new states, we merge two of

the existing states whenever we create a new state.

Goodness of fit test

In order to decide when to introduce a new state, we calculate a measure Z(T ) that

indicates how well the most recent L frames of observed data fit the current model, ζ(T ).

From (3.2), it is straightforward to show that if E {Ot} = µ, then the mean and variance

of the observation log probability density are given by

E {log b (Ot | µ)} = E

{∑
k

(− logµ (k)− Ot (k)

µ (k)
)

}
= −

∑
k

(logµ (k) + 1)

Var {log b (Ot | µ)} =
∑
k

E
{

(
Ot (k)− µ (k)

µ (k)
)2
}

=
∑
k

µ2 (k)

µ2 (k)
= K

Accordingly we define Z(T ) as the normalized difference between the weighted log-

likelihood of the most recent L frames and its expectation
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Figure 3.4: Illustration of the creation of a new noise state, where two states are merged
in the new model thereby making room for the new state.

Z(T ) =

∑T
t=TL+1 λ

T−t (log b (Ot)− E {log b (Ot)})√∑T
t=TL+1 (λT−t)

2
V ar {log b (Ot)}

=

∑T
t=TL+1 λ

T−t∑
k

(
1− Ot(k)

µi(t)(k)

)
√
K
∑T
t=TL+1 λ

2T−2t
(3.18)

where i(t) gives the state occupied at time t in the maximum likelihood state sequence.

The normalization factor in the denominator is the standard deviation of the numera-

tor under the assumption that the likelihoods of each frame are independent given the

correct state sequence. With this assumption, Z(T ) should be zero mean and unit va-

riance. However, if the number of frequency bins, K, is large, the spectral components

in adjacent frequency bins become more strongly correlated and we can no longer as-

sume that they are independent. For this reason, the appropriate value of Z(T ) must be

determined empirically.

Creating a new state

If
∣∣Z(T )

∣∣ exceeds an empirically determined threshold, θZ , then this indicates that ζ(T )

should be re-estimated and a new type of noise might be present. In this case, we there-
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fore create a tentative model, ζ̂(T ), in which two of the existing states have been merged

and a new state created, such that the total number of states H is fixed. This is to avoid

the over-fitting that would result from repeatedly introducing additional states. We re-

quire that the modelling improvement that results from introducing a new state must

outweigh the degradation that results from merging two existing states. An example

for 3-state HMM is illustrated in Fig. 3.4, which shows the original HMM, ζ(T ), at the

top. To create ζ̂(T ), states 2 and 3 are merged and a new state 3
′
is added.

For the tentative model ζ̂(T ), we first determine the pair of states, {i0, j0} , whose mer-

ging will cause the least reduction in log-likelihood of the model, which is defined as,

Qi0 (1, TL)D(µi0 , µ̂i0)+Qj0 (1, TL)D(µj0 , µ̂i0), whereD(µi, µ̂j) =
∑
k

(
µi(k)
µ̂j(k)

− log µi(k)
µ̂j(k)

− 1
)

is the Itakura-Saito distance and equals the expected decrease in log likelihood of a

frame whose original mean power spectrum µ is re-modelled by a new mean µ̂. We then

initialize the state means for the model ζ̂(T−1) as

µ̂(T−1)
r =


OT for r = j0

Qi0
(1,TL)µ

(T−1)
i0

+Qj0
(1,TL)µ

(T−1)
j0

Qi0
(1,TL)+Qj0

(1,TL) for r = i0

µ
(T−1)
r otherwise

(3.19)

The state j0 models the new noise spectrum (which we assume is exemplified in frame

T ) and state i0 is initialized as a weighted average of the previous states i0 and j0. The

weights in (3.19) are taken to be the occupancy counts Qi0(1, TL) and Qj0(1, TL) from

(3.10), where the most recent L frames which are excluded because they may contain

examples of the new state. We also re-evaluate the accumulated transition counts of the

new model from cij (1, TL) that have previously updated in (3.17),

ĉij (1, TL) =


0 for j = j0

cij0 (1, TL) + cii0 (1, TL) for j = i0

cij (1, TL) otherwise

(3.20)
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and re-estimate the transition probability âij using (3.4). We then re-train this initial

model, ζ̂(T−1), using Viterbi decoding on the most recent L frames, {Ot : t ∈ [TL + 1, T ]}.

Update the new Baum-Welch

The final step in creating the new model is to perform a Baum-Welch update as detailed

in section 3.4.5. In order to do this, we need the accumulated sums U, Q and R defined

in section 3.4.4. However these sums were accumulated based on the old model which

includes two states, i and j, that now have been merged. Accordingly we re-distribute

the accumulated sums of each old state to the states of the new model. The ratio of

re-distribution is based on φij , which is the probability that a frame that was previously

in state i of the old model belongs to state j of the new model: φij =
b
(
µ
(T−1)
i |µ̂(T−1)

j

)
∑

j b
(
µ
(T−1)
i |µ̂(T−1)

j

) .

Now, we re-calculate the accumulated sums by distributing them to each of the new

states according to the new mean µ̂(T−1):

Û
(T−1)
i (1, TL) =

∑
m

φmiU
(T−1)
m (1, TL)

Q̂
(T−1)
j (1, TL) =

∑
m

φmjQ
(T−1)
m (1, TL) (3.21)

R̂
(T−1)
ij (1, TL − 1) =

∑
m

∑
n

φmiφnjR
(T−1)
mn (1, TL − 1)

By using the Expectation–maximization (EM) re-estimation algorithm from (3.14) &

(3.16), ζ̂(T ) is obtained.

Log-likelihood test

We only wish to use this revised model if it will result in an increase in log likelihood.

Accordingly the increase, I(T ) , in the log-likelihood of the L most recent frames is esti-

mated as
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Figure 3.5: Flow diagram illustrating the criteria used to decide whether to create a
new state.

I(T ) =

(
T∑

t=TL+1

λT−t
∑
i

Q̂i (t, t) log b(Ot, µ̂i)−Qi (t, t) log b(Ot, µi)

)

− λL

1− λ
∑
i

∑
j

φijπiD(µi, µ̂j) (3.22)

where D(µi, µ̂j) =
∑
k

(
µi(k)
µ̂j(k)

− log µi(k)
µ̂j(k)

− 1
)

is the Itakura-Saito distance and equals

the expected decrease in log likelihood of a frame whose true mean power spectrum is

µi when it is modelled by a state with mean µ̂j . The first term in (3.22) gives the log

likelihood improvement of the most recent L frames while the second term approximates

the decrease in log likelihood of the earlier frames. If I(T ) > 0 , the model is updated by

replacing ζ with ζ̂ , replacing the accumulated sums with those calculated in (3.19) and

(3.21).

3.4.7 Noise estimation algorithm overview

The criteria used to decide whether to create a new state are illustrated in Fig. 3.5. At

each frame the Z-test is evaluated to determine how the current model fit to the past L

frames . If the test indicated a poor fit, a tentative model is created in which two states

are merged and a new state created. Finally if the new model gives a better fit to the

observation, it replaces the existing model.

The processing steps of the proposed algorithm can be summarized as follows:
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1. Compute the initialized model ζ(T0) using Viterbi training on observations O(T0) =

{Ot : t ∈ [1, T0]} and set T = T0.

2. Compute and update the model ζ(T ) from ζ(T−1) using (3.14) - (3.15).

3. Compute the Z(T ) using (3.18).

4. If Z(T ) > θZ ,

(a) Create a tentative model ζ̂(T−1) using parameters described in (3.19) - (3.21).

(b) Compute I(T ) using (3.22).

(c) If I(T ) > 0, update the model ζ(T ) = ζ̂(T ).

5. Increment T = T + 1, and go back to step 2 for the next time frame.

3.5 Noise Estimation during Speech Activity

In this chapter, we are assuming that an external voice activity detector (VAD) is avai-

lable and we only update the noise model when speech is absent. During speech pre-

sence we freeze the noise model ζ, and use it to estimate the noise state for each frame.

In the speech enhancement experiments described below, we assume that the clean

speech power spectrum may be approximated as γtµ̄ where µ̄ is the Long-Term Ave-

rage Speech Spectrum (LTASS) [69] and γt is the speech level at time t. For each noise

state, j, we evaluate the likelihood b (Ot | µj + γtµ̄) and select the maximum likelihood

estimate of the speech level as γt (j) = arg maxγt b (Ot | µj + γtµ̄), thus the observation

probabilities are given by b (Ot | µj + γt (j) µ̄). Once we have evaluated the observation

probabilities we can use the Viterbi algorithm to determine the most likely noise state

sequence. Given the noise state sequence, we use the corresponding state means, µj , as

the a priori noise estimates within speech enhancement algorithms.
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3.6 Experimental Results

As discussed in 3.2, a good noise estimator should be able not only to track slowly evol-

ving noise spectra, but also to detect and update any abrupt change in noise characte-

ristics. In this section, we first demonstrate the noise tracking abilities of our proposed

multi-state HMM noise estimation algorithm. Then in the context of speech enhance-

ment, we compare the performance of our noise algorithm with other noise estimation

algorithms.

For all the experiments, the signals are sampled at a frequency of 16 kHz and decom-

posed into overlapping frames. The DFT is then used to determine the power spectrum

of each frame. Using the frame settings recommended in [90], the time-frames have a

length of 32 ms with a 50% overlap resulting in K = 257 frequency bins. The window

length L should be long enough for the HMM re-estimation, but short enough to fol-

low follow non-stationary noise variations. A suitable search window is typically 0.5 to

1.5 seconds [17]. In our experiment setting, we retain the most recent L = 30 frames

(480 ms), and also set the initial training time T0 = 30 frames. The forgetting factor is

chosen to be λ = 1− 1/(2L), which gives a time constant of 2L = 960 ms. The other noise

estimation methods used for comparison are the minimum statistics estimator [90, 92],

unbiased MMSE-based noise estimator [58, 46] and 1-state recursive averaging. The

1-state recursive averaging model (1-state RA) is defined as µ(T ) = (1− λ)µ(T−1) +λOT ,

where the same value of λ is used as above. This 1-state RA is representative of noise es-

timation methods based on temporal averaging when speech is absent, for instance, the

Minima Controlled Recursive Averaging [16]. The threshold θZ defined in Sec. 3.4.6 is

determined to be 30 empirically. The noise signals will be used below are from a library

of special sound effects and NOISEX database [124].

3.6.1 Noise Tracking

In this section, we evaluate the performance of the 1-state RA and 3-state HMM noise

estimation models on three types of noise (a) slowly evolving (b) Non-stationary and
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(c) 3-state HMM (d) Noise States

Figure 3.6: Spectrogram of (a) increasing car noise, with its estimation using (b) 1-
state recursive averaging (c) a 3-state HMM; (d) Spectrum of estimated noise states at
t = 15 s.

(c) abruptly changing. We evaluate the performance of the algorithms using COSH

distance between the true noise spectrum and its estimates.

Slowly evolving noise

A good noise estimator should be able to track and update gradual changes in the noise

characteristics. Fig. 3.6(a) shows the spectrogram of car noise with increasing ampli-

tude at the rate of 2 dB/sec. The spectrogram of the estimated noise using the 1-state

recursive averaging method and the 3-state HMM method are shown in Fig. 3.6(b) and

Fig. 3.6(c) respectively, where both of them show a good representation of noise. It

can be seen that the 3-state HMM performs slightly better as it is a richer model, and,

as will be seen in Table 3.1 below, the 3-state HMM results in a lower COSH error.

Fig. 3.6(d) shows the spectrogram of the updated noise states of the HMM at the end
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(c) 3-state HMM (d) Noise States

Figure 3.7: Spectrogram of (a) machine gun noise, with its estimation using (b) 1-state
recursive averaging (c) a 3-state HMM; (d) Spectrum of estimated noise states at t =
15 s.

of the signal. We can see that between the three states we have a good description of

the recent evolution of the signal and that the second state corresponds with the most

recent frames.

Non-stationary noise

Fig. 3.7 (a) shows the spectrogram of a machine gun noise. The noise consists of im-

pulsive sounds separated by silent intervals. The spectrogram of the estimated noise

using 1-state recursive averaging method and 3-state HMM method are shown in Fig.

3.7(b) and Fig. 3.7(c) respectively. The 1-state RA model fails to follow the rapid change

of noise characteristics and converges to an average spectrum. In contrast, the HMM

has assigned separate states to model the silence and gun fire, as can be seen from Fig.

3.7(d). By comparing Fig. 3.7(c) with Fig. 3.7(a), we see that even with only three states,
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(c) 1-state RA (d) 3-state HMM

Figure 3.8: Spectrogram of (a) car+phone noise, with its estimation using (c) 1-state
recursive averaging (d) a 3-state HMM; (b) Mean power of the three noise states together
with the value of the Z-test defined in (3.18).

the HMM is able to model the noise signal well.

Abrupt noise detection

In this experiment, the noise of a ringing phone is added to a background car engine

noise which is predominantly low frequency. Fig. 3.8(a) shows the spectrogram of this

composite noise and it can be seen that the noise spectrum changes abruptly whenever

the phone rings. The spectrogram of the estimated noise using 1-state recursive avera-

ging method is shown in Fig. 3.8(c). As would be expected this model is unable to track

the rapidly changing noise and smears the spectrum in the time direction. A 3-state

HMM is used to estimate this noise, and the state assignment is shown in Fig. 3.8(b),

and the Z-test value Z(T ) is plotted above, which measures how well the L most recent

observations fit the model. We see that when the first phone ring occurs, at approxi-
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Car Gun Phone
1-state RA 17.4 36769.0 6458.5
2-state HMM 13.1 443.0 25.0
3-state HMM 13.0 366.1 11.6
4-state HMM 13.1 287.2 10.8

Table 3.1: COSH distance of different noise estimations using 1-state RA and 3-state
HMM.

mately 2.3 s, there is an abrupt fall in Z(T ) which indicates the arrival of a novel noise

spectrum. Since state 3 has very low occupancy count before the merge, two of the exis-

ting states, state 2 and 3, are therefore merged and state 3 is reallocated to model the

new noise spectrum. The corresponding spectrogram for our proposed model is shown

in Fig. 3.8(d) in which the estimated noise spectrum follows the state mean of the maxi-

mum likelihood state sequence. We see that the abrupt changes in noise spectrum are

perfectly tracked and well modelled.

COSH errors

The average COSH distances between the true noise signal and its estimates using 1-

state RA model and multi-state HMMs are shown in Table 3.1. The results confirm our

observations for Fig. 3.6 to 3.8. For slowly varying car noise, both noise estimators work

well and have a low COSH distance for the true noise spectrum. The 3-state HMM is

a richer model than the 1-state RA estimator and so is able to achieve slightly lower

error. The 1-state RA model is unable to track abrupt changes in noise characteristics,

and shows large COSH errors when estimating non-stationary noise such as “Gun” and

“Phone” noise. On the other hand, the 3-state HMM always shows a better noise esti-

mation than 1-state RA method. The COSH error for the “Gun” noise is larger than for

the other signals as the echo from the firing of the machine gun varies depends on the

interval between each gunfire. For stationary white noise, which can be modelled preci-

sely by a single state, the COSH errors for different number of the states stay roughly

the same. For other two types of noise, the COSH errors decrease as number of state

increases, but the improvements are small, as compared to the RA method.
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Figure 3.9: Spectrogram of (a) the unenhanced noisy speech corrupted by the car+phone
noise, and the MMSE enhanced speech using different noise estimator (b) RA (c) MS (d)
HMM.

3.6.2 Speech Enhancement

In this section, we incorporate our HMM noise estimator into a speech enhancer to eva-

luate whether our noise estimator improves the quality of speech as compared to other

noise estimation methods. We will first demonstrate an example of how well the noise

can be suppressed using our method, then we will run a set of experiments to show the

improvements in terms of PESQ and segmental SNR of the enhanced speech. All the

clean speech signals were taken from the IEEE sentence database [106] by concatena-

ting three sentences to give an average duration about 10 seconds.

MMSE speech enhancer

Fig. 3.9(a) shows an example of a speech signal corrupted by a ringing phone noise at

0 dB SNR, shown in Fig. 3.8 (a). We assume that there will be non-speech segment at
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Unenhanced RA MS HMM
PESQ 2.18 1.91 2.15 2.44

∆PESQ 0 −0.27 −0.03 0.26

Table 3.2: PESQ scores and improvements of the enhanced speech with car+phone noise.

the beginning of the signal, roughly 5 seconds in this case, and it is used to train our

noise estimation model, and the rest of the signal forms the speech active segment. The

noise characteristics are assumed to remain stationary while the speech is active.

The speech active segments of the given noisy speech signal is then enhanced by the

MMSE algorithm [30] using different noise estimators. Fig. 3.9 shows the enhanced

speech signals using respectively (b) 1-state recursive averaging (RA), (c) minimum sta-

tistics (MS) [11] and (d) multi-state hidden Markov model (HMM) respectively. The

noise-only segment is not included in the spectrograms for the enhanced speech. The

RA and HMM estimators are trained on the initial noise-only segment and frozen at

approximately t = 5 seconds, while the MS estimator is allowed to adapt continuously

throughout the signal. We see that the stationary low frequency noise component is ef-

fectively removed using all three methods but only with the HMM method in Fig 3.8(d),

is the phone ringing largely eliminated. As seen previously in Fig. 3.8(c), the noise es-

timate from the RA method is blurred in time and so, with this estimate, distortion is

introduced in the gaps between rings. Even though the MS method tracks the variation

of noise level during speech presence, it cannot respond quickly enough to eliminate

the phone noise. Although the training segment includes only one phone ring, this is

sufficient for the HMM method to learn its characteristics and to attenuate it greatly

when it subsequently occurs. We assess the quality of the speech by means of the PESQ

(Perceptual Evaluation of Speech Quality) score [70]. The PESQ score for the unenhan-

ced noisy speech is 2.18, and the PESQ scores and the improvements for the enhanced

speech signals when using the RA, MS and HMM methods to estimate the noise are

shown in Table 3.2. We see that as measured by PESQ, the RA and MS methods ac-

tually degraded the speech whereas the HMM method improve it. This indicates that

our proposed HMM method gives a noticeably greater quality improvement than the

other methods.
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white/gSNR -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced -12.38 -7.38 -2.39 2.61 7.60 12.60
RA -0.74 2.54 5.68 8.92 12.41 16.17
MS -1.42 1.91 5.12 8.35 11.63 14.91
UM -1.65 1.92 5.22 8.39 11.47 14.41
HMM -0.74 2.54 5.68 8.92 12.41 16.17

Table 3.3: Segmental SNR of enhanced speech corrupted by white noise using different
noise estimation methods.

gun/gSNR -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 2.19 7.19 12.19 17.18 22.18 27.18
RA 0.90 3.23 6.03 9.68 14.10 18.86
MS 2.38 6.10 9.50 12.79 15.99 19.19
UM 2.19 5.87 9.38 12.61 15.36 17.67
HMM 2.22 3.82 5.53 7.98 11.38 15.66

Table 3.4: Segmental SNR of enhanced speech corrupted by machine gun noise using
different noise estimation methods.

Evaluation using Segmental SNR

A set of experiments was performed with noise+speech at different SNRs with a noise-

only segment at the beginning of the noisy speech signal as before. 20 different clean

speech signals were used, with an average duration of about 10s. Four different kinds

of noise estimation algorithms were evaluated: (i) 1-state recursive averaging (RA), (ii)

minimum statistics (MS), (iii) unbiased MMSE-based noise estimator (UM) [46] and (iv)

our proposed multi-state hidden Markov model (HMM). The number of states used for

the HMM is set to 3 for all the noisy speech signals below.

Tables 3.3 to 3.5 shows the segmental SNR (sSNR) at different global SNR (gSNR) of

enhanced speech which is corrupted by (i) white noise, (ii) gun noise and (iii) “car+phone”

noise respectively, and the sSNR improvement at different SNR for different noise are

shown graphically in Fig. 3.10. For the white noise shown in Table 3.3 and Fig. 3.10(a),

the HMM method shows almost identical sSNR scores to the RA method as white noise

is stationary and the noise characteristics does not change over time. The UM and MS

methods shows a slightly lower sSNR at low gSNR, as they both underestimate the noise

power when the noise power and speech power are comparable. For the “car+phone”

noise in Table 3.5 and Fig. 3.10(c), the HMM method improves the sSNR score at all
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car+phone/gSNR -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced -6.04 -1.05 3.95 8.95 13.94 18.94
RA -0.34 3.35 6.89 10.28 13.69 17.41
MS -0.34 3.75 7.51 10.80 13.74 16.35
UM -1.09 3.32 7.31 10.82 13.77 16.20
HMM 4.24 7.05 9.19 12.27 16.48 19.12

Table 3.5: Segmental SNR improvement of enhanced speech by "car+phone" noise using
different noise estimation methods.
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Figure 3.10: Improvement of Segmental SNR scores at different SNRs for (a) white
noise (b) machine gun noise (c) "car+phone" noise.

SNRs and consistently outperforms the other methods by a large margin. We see that

the UM and MS methods degrade the sSNR score at nearly all SNRs indicating their

inability to track highly non-stationary noise. The noise estimate from the RA method

is blurred in time and so, with this estimate, more speech distortion is introduced in

the gaps between machine gun firing or phone rings. Thus it performs poorly at low

SNR. For the machine gun noise in Table 3.4 and Fig. 3.10(b), all noise estimation

methods failed to track this non-stationary noise, resulting in a decrease of sSNR. The

MS method shows the least sSNR degradation, while UM method shows similar result.

The RA methods perform poorly at low gSNR as expected, but the HMM method shows

the worst performance at high gSNRs. Fig. 3.11(a) shows an example of a speech signal

corrupted by machine gun noise at 20 dB SNR. Because machine gun noise power is

much smaller than that of the speech, it cannot be easily differentiated from speech.

Fig. 3.11(b) shows the estimated noise spectrum using the MS method. Comparing

this with the actual noise spectrogram in Fig. 3.7(a), we see that the individual bursts

of gun fires are smeared together and in consequence the sSNR is reduced. Although

the HMM method correctly identifies the noise states in the training period (see Fig.

71



Time (s)

F
re

qu
en

cy
 (

kM
el

)

 

 

2 4 6 8 10 12 14
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

P
ow

er
/M

el
 (

dB
)

−30

−25

−20

−15

−10

−5

0

5

Time (s)

F
re

qu
en

cy
 (

kM
el

)

 

 

6 8 10 12 14
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

P
ow

er
/M

el
 (

dB
)

−60

−55

−50

−45

−40

−35

−30

−25
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Figure 3.11: Spectrogram of (a) the unenhanced noisy speech corrupted by the machine
gun noise at 20 dB SNR, and the estimated noise spectrogram using (b) MS (c) HMM.
The estimated noise spectrum using HMM and −5 dB SNR is shown in plot (d).

3.7(d)), it wrongly assigns almost all the frames to the “burst” state as can be seen from

the estimated noise spectrogram in Fig. 3.11(c). In contrast, at a gSNR of −5 dB, the

noise state assignment is much better as can be seen from Fig. 3.11(d), and as a result,

the sSNR shows a small improvement.

Evaluation using PESQ

In order to evaluate the PESQ score of the enhanced speech, a similar set of experiments

was performed as in the previous section. Tables 3.6 to 3.8 shows the PESQ score at

different SNR of enhanced speech which is corrupted by (i) white noise, (ii) gun noise

and (iii) "car+phone" noise respectively, and the PESQ improvement at different SNR

for different noise are shown graphically in Fig. 3.12. For stationary noise, such as white

noise, the HMM method shows almost identical PESQ scores to the RA method, while
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white/gSNR -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 1.13 1.36 1.68 2.05 2.39 2.74
RA 1.61 2.00 2.35 2.63 2.88 3.12
MS 1.56 1.94 2.29 2.59 2.85 3.09
UM 1.53 1.93 2.30 2.62 2.88 3.10
HMM 1.61 2.00 2.35 2.64 2.88 3.12

Table 3.6: PESQ of enhanced speech corrupted by white noise using different noise
estimation methods.

gun/gSNR -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 1.97 2.35 2.71 3.01 3.27 3.48
RA 1.99 2.45 2.78 3.05 3.28 3.48
MS 1.89 2.27 2.61 2.89 3.12 3.31
UM 1.89 2.29 2.63 2.91 3.15 3.33
HMM 2.23 2.55 2.83 3.04 3.26 3.51

Table 3.7: PESQ of enhanced speech corrupted by machine gun noise using different
noise estimation methods.

the UM and MS method shows a slightly poorer PESQ score especially at low gSNRs.

For the "car+phone" noise, the HMM method improves the PESQ score at all SNRs and

consistently outperforms the other methods. We see that the other methods degrade the

PESQ score at nearly all SNRs indicating their inability to track highly non-stationary

noise. All these observations confirm our results from the previous section using relative

segmental SNR. However, for the machine gun noise, the situation is different. The MS

and UM methods degrade the PESQ score at all SNRs since they do not estimate this

intermittent noise at all well as we can see in Fig. 3.11(b). The HMM method has

a good PESQ improvement at low global SNR, but at high gSNR the PESQ score is

essentially unchanged from that of the unenhanced speech.. This confirms our previous

results regarding the estimation of noise states illustrated in Fig. 3.11(b) & (c), namely

that at low gSNR, the model is better able to distinguish between speech and noise and

therefore better able to assign the correct noise state to each frame.

Summary of quality assessments

The improvement of the segmental SNR and PESQ scores averaged across all global

SNRs for different noise types are shown in Tables 3.9 and 3.10 respectively. Fig. 3.13

shows the hammering noise at a construct site. We have included this “hammer” noise
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car+phone/gSNR -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 1.91 2.18 2.50 2.75 2.96 3.16
RA 1.65 1.91 2.25 2.60 2.86 3.07
MS 1.95 2.15 2.37 2.60 2.79 2.98
UM 1.93 2.12 2.40 2.61 2.81 3.00
HMM 2.28 2.44 2.64 2.93 3.15 3.21

Table 3.8: PESQ improvement of enhanced speech by "car+phone" noise using different
noise estimation methods.
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Figure 3.12: Improvement of PESQ scores at different SNRs for (a) white noise (b) gun
noise (c) "car+phone" noise.

as one of the examples of non-stationary noise. When the noise is stationary, such as

white and car noise, the improvement of the PESQ scores or segmental SNRs are about

the same for all four methods. For the non-stationary noise, our proposed HMM method

shows a much better PESQ improvement, indicating that our HMM method has a better

noise estimation. However, in the case of the improvement of the segmental SNR, the

HMM method perform well except for the machine gun noise. Although we have a good

machine gun noise estimation in Fig. 3.7(d), we are not able to identify the correct noise

state sequence especially when the noise power is small compare to that of speech. This

indicates that we might need a better speech model.

3.6.3 Listening Test

Given the results from previous two experiments, we conducted a further listening test

to verify the performance of our proposed algorithm in comparison to other algorithms.

The listeners are instructed to to state their preference between two enhanced speech

signals with input global SNR of 0 dB where different enhancement algorithms have
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Figure 3.13: Spectrogram of hammering at a construction site.

∆ sSNR white car gun phone hammer
RA 7.39 8.28 -5.88 2.10 3.89
MS 6.64 5.78 -3.70 2.19 3.58
UM 6.52 5.61 -4.17 1.94 3.45
HMM 7.39 8.30 -6.92 4.94 4.40

Table 3.9: mean segmental SNR improvement of enhanced speech signals using dif-
ferent noise estimation methods.

been used for the two signals: one is the proposed HMM algorithm, the other is one of

the following: (i) unenhanced, (ii) RA or (iii) MS. The listeners do not know which algo-

rithms are presented and the presentation order is random. Based on their preference,

the following rating is assigned: “1” if they prefer the HMM algorithm, “0” if they prefers

the other algorithm, or “0.5” if they are indifferent. A group of 10 listeners participated

in this listening test, the mean rating scores of each comparison with HMM for dif-

ferent noise types are shown in Tables 3.11. As compared to the original (unenhanced)

noisy speech, the proposed HMM is always preferred for all noise types except for the

gun noise. This is possibly because although some of the gun noise is eliminated, some

speech distortions are introduced due to incorrect state assignment. When compared to

other enhancement methods, the HMM algorithm performs as well as RA, MS and UM

methods for stationary white and car noise, but is preferred for non-stationary phone

and hammer noise. The RA method for gun noise is not desirable because it introduced

significant speech distortion. These results correlate well with our previous results for

the improvements in segmental SNRs and PESQ scores.
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∆ PESQ white car gun phone hammer
RA 0.54 0.16 0.07 -0.18 0.29
MS 0.49 0.04 -0.05 -0.10 0.25
UM 0.50 0.05 -0.05 -0.10 0.26
HMM 0.54 0.16 0.11 0.20 0.43

Table 3.10: mean PESQ Improvement of enhanced speech signals using different noise
estimation methods.

v.s. HMM white car gun phone hammer
unenhanced 1.0 1.0 0.7 1.0 1.0
RA 0.5 0.5 1.0 1.0 1.0
MS 0.5 0.5 0.75 1.0 1.0
UM 0.5 0.5 0.7 1.0 1.0

Table 3.11: mean rating scores of enhanced speech signals using different noise estima-
tion methods. A high score indicates that the HMM method was preferred.

3.7 Summary

In this chapter we have proposed an adaptive model for non-stationary noise signals ba-

sed on a multi-state HMM in which each state describes a distinct noise power spectrum

following a negative exponential distribution determined from its mean noise characte-

ristics. We have described an update procedure that enables the model to track gradual

changes in the amplitude or power spectrum of a noise source by adapting the mean

power spectrum associated with each state. In addition, we have presented a method of

detecting the presence of a noise source that does not match the existing model. When

such a noise source is detected, our algorithm creates a new state and initializes the

new state to represent the new source. At the same time, to avoid an ever-increasing

number of model states, the two nearest states are merged and the state means and

transition probabilities adjusted accordingly.

The noise modelling algorithm has been evaluated on noise examples that are statio-

nary, gradually changing and highly non stationary. In all cases, the algorithm is able

to create an accurate model of the noise and to track its changes over time. Its perfor-

mance was compared with that of a recursive averaging approach typical of state-of-the-

art estimators that use a VAD. It was found that the new algorithm almost always gave

a better estimate of the noise, especially in the case of highly non-stationary noise.
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The algorithm has also been evaluated by incorporating it into a speech enhancement

system. For the purposes of this evaluation, the noise model was not adapted during

speech presence and was combined with a very simple 1-state speech model in order to

identify the correct noise state sequence during the presence of speech. It was found

that, where the noise state sequence was correctly identified the new algorithm resul-

ted in improvements in both segmental SNR and in quality as measured by PESQ. For

one of the tested noise signals however, even though the noise model was accurately

acquired, the noise state sequence was incorrectly identified when speech was present

especially at high SNRs. In this case the speech enhancer performed poorly which re-

sulted in a degraded segmental SNR. This indicates the need for an improved speech

model in order to improve the discrimination between speech and noise.

In the next chapter, we extend our noise modelling algorithm so that it is able to track

changing noise spectra and create new noise states even in the presence of speech.
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Chapter 4

Noise Modelling in Speech

Presence

4.1 Introduction

In Chapter 3, we developed an on-line HMM noise estimator that can work for a noise-

only fragment, and we assumed the noise characteristics remained unchanged during

the speech activity, i.e. we froze the model update once the speech is active. In order to

detect and update the noise even during speech activity, there are mainly two problems

we aim to solve: update slowly changing noise characteristics within each state during

speech activity, and detect the advent of a new noise type which is different from either

speech or an existing noise state. The first can be achieved by exploiting the fact that

even during speech activity, the spectral power in some frequency bins will be dominated

by the noise. Whenever the speech presence probability is low in some of the frequency

bins, we can update the corresponding noise model states in those particular bins. In

order to avoid the possible inclusion of any speech as a novel noise type, we introduced

a multi-state speech model to be incorporated into the noise HMM described in Chapter

3, such that a new state is only created when the characteristics of the new noise is
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significantly different from any combination of the states of both the speech and noise

models.

Our aim in this chapter is to develop a robust HMM noise estimator that can track

and update our model of highly non-stationary noise even during speech presence. The

structure of the rest of this chapter is as follows. We first give a brief literature re-

view of joint speech and noise modelling. Next we incorporate the speech model into

the noise HMM to calculate the log likelihood of the observation probability using the

joint speech+noise model. We propose a modified minima controlled recursive averaging

method to update the mean power spectrum of each noise state especially during speech

presence. We also propose an initial retraining scheme for use when a new noise type

is detected. Finally, the performance of the HMM is evaluated both in estimating the

noise spectrum and when used with a speech enhancement algorithm.

4.2 Noise Estimation using a Speech Model

Joint estimation of speech and noise from a combined speech and noise model has been

widely used in speech recognition in which the probability of a speech state is determi-

ned by marginalising over all possible noise states [123]. It is later extended by Gales

[40] and in subsequent papers [41, 42, 43]. These authors used HMMs to model both

speech and noise in the mel-cepstral domain giving a combined model whose state count

was the product of the speech and noise model counts. In practice, the noise model nor-

mally had very few states and often only one.

In [118] and [36], an EM approach is used to estimate the speech, noise and channel

adaptively in the log spectrum domain. Each of these three components is represented

with a Gaussian mixture model. In most of the examples they give, the noise model

comprised only a single mixture but, for the case of aircraft noise at an airport, they

investigated the use of up to 16 mixtures (the speech model, in contrast, used 256 mix-

tures). A first-order Taylor-series approximation is used to linearise the mapping bet-

ween the log power domain and the linear power domain. In [37], the authors found
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that their adaptive noise modelling reduced speech recognition word errors by about

15% compared to a non-adaptive model estimated from the beginning of the recording

and that increasing the noise model from 1 to 4 mixtures gave a further improvement

of up to 0.3%. A similar model (in the Mel log spectral domain) is used in [23] whose au-

thors develop a recursive estimate of the parameters of the single-mixture noise model

which was extended to a Bayesian formulation in [22].

A difficulty with the joint estimation approach when used for enhancement is that it

is necessary to estimate the absolute speech energy; speech models developed for re-

cognition generally ignore the overall speech level since it does not affect the speech

state sequence. Subramanya [117] model speech using a 4-component GMM in the

magnitude-normalised spectral domain rather than the more usual cepstral domain as

this is the correct domain for adding noise and speech and avoids the difficulties that

arise from the non-linear logarithmic transformation into the cepstral domain. They

claim that applying magnitude normalisation significantly reduces the complexity re-

quired in the model although it entails modelling the overall speech energy separately.

Kristjansson [77] uses a noise GMM and found that selecting the maximum likelihood

noise state performed similarly to marginalising over all noise states. Yao [129, 130]

proposes a particle filter is used to represent the possible sequences of speech states,

and the noise state may be estimated by marginalising over the speech states. In this

application the speech model can be quite simple and only 18 states with 8 Gaussian

mixtures per state in the log spectral domain is used. In a development of this work,

Lee and Yao [80] estimate the noise characteristics in the log spectral domain using

expectation–maximization (EM) but without a particle filter.

Zhao [133, 134] uses AR models for both speech (10th order) and noise (6th order) and

has a fixed speech model with eight 16-mixture states (trained on TIMIT). The noise mo-

del uses five 1-mixture states together with an extra safety state derived from minimum

statistics. At each frame the system updates the noise model using an EM procedure

with a forgetting factor, to update noise states and noise gains. The system estimates

a MMSE noise power spectrum by combining a Weiner filtered noisy speech spectrum
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Figure 4.1: Overview of the noisy speech model.

with the spectrum of the noise state and taking a weighted average over all states.

As a summary, many methods has been proposed for joint estimation of speech and noise

from a combined speech and noise model. They have been widely used in speech recog-

nition task. Speech models developed for recognition often ignore the overall speech

level. In the context of speech enhancement, the speech model can be comprised of two

components: a speech level model, and a magnitude normalised speech model which can

be pre-trained from a speech data base.

4.3 Noise Estimation During Speech Presence

4.3.1 Model overview

In this section we add a model of speech to our adaptive noise model and jointly esti-

mate both the speech and noise. Since the speech signal is corrupted with uncorrelated

additive noise, the observed noisy speech signal is given by Ot (k) = St (k)+Nt (k) where

t and k are the time and frequency indices respectively. In order to determine the noise
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state during speech activity, we need to incorporate a speech model into our existing

noise estimation model described in Sec. 3.4. An overview of the production model for

noisy speech is shown in Fig. 4.1. It includes three components: the adaptive noise

model developed in the previous section, a model for normalised speech and model for

the overall speech level. The output, Ni, from the adaptive noise model is added to that

of the speech and speech level model. The “normalised speech model” is trained on clean

speech utterances that have been normalized to an active level of 0 dB as measured ac-

cording to ITU P.56 [68]. Thus this model incorporates the spectral and level variations

between different phones but not long term changes in speech level or amplifier gain.

The speech model should also be trained using multiple speakers to ensure that it is

speaker-independent. The output from the speech model is multiplied by that from the

speech level model to give the speech power spectrum in each frame. The advantage

of separating the speech model into these two components is two-fold: the number of

states required in the “normalised speech model” is greatly reduced and the speech le-

vel model can enforce the long-term consistency of average speech power over periods of

several seconds. The latter constraint is key to identifying abrupt changes in the noise

when speech is present.

Since the speech level changes slowly over time, the estimated speech can be viewed as

the product of the normalized speech power and the speech level. The speech model is a

densely connected HMM and is pre-trained from a collection of clean speech signals with

a normalized speech level. The complexity of the speech model is a compromise between

accurate modelling of the speech and the computational requirement of the system.

The speech level model is a sequential HMM, where the speech level γ̃ for the state

̃ is chosen from a discrete data set of possible speech levels. A fairly good estimation

of speech level is required to distinguish abrupt changes of the noise when speech is

present. The speech level HMM is sparsely connected with each state connected only

to its immediate neighbours as illustrated in Fig. 4.1. The speech level model has a

lower frame rate than the other two model and the combination of frame rate and level

increment places a hard limit on the rate of change of speech level.
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4.3.2 Log Mel-frequency domain

According to the hidden Markov model we introduced in Sec. 3.4, which is derived from

the model ζ(T ) and the observations O(T ) based on information available at time T , the

forward and backward state occupation probabilities are given by:

αi(t) =
∑
j

αj(t− 1)ajibi(Ot) with αi(0) = πi (4.1)

βi(t) =
∑
j

aijbj(Ot+1)βj(t+ 1) with β
(T )
i (T ) = πi (4.2)

P (T ) =
∑
i

α
(T )
i (T )β

(T )
i (T ) (4.3)

where the power spectral components Ot (k) are assumed to follow a negative exponen-

tial distribution, and bj (Ot) is taken to be the corresponding probability density from

(3.2). The observation probabilities of a speech spectral model can be better represented

using Gaussian pdfs in the Mel-frequency log power or cepstral domains [19]. For our

noisy speech model, the first of these two is preferred because it preserves spectral loca-

lity when the speech energy and noise energy occupy predominantly different spectral

regions. We therefore consider spectra in three different domains:

• the power domain indexed by k,

• the Mel-frequency power domain indicated by a subscript [M ] and indexed by m.

• the Mel-frequency log power domain indicated by a subscript [L] and also indexed

by m.

The Mel frequency scale [116] is defined by the nonlinear transformation of a frequency

f Hz into Mel as [87],

mel(f) = 1000
log
(

1 + f
700

)
log
(
1 + 1000

700

) . (4.4)
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If in a particular signal state, the mean and variance of the power spectrum are given

by µ (k) and σ2 (k), we can transform a mean spectrum, µ(k) into the Mel power domain

by convolving it with a bank of triangular filters, Mm(k), as in [19] to give

µ[M ](m) =
∑
k

Mm(k) ? µ(k). (4.5)

If we assume that the spectral components are independent, the corresponding trans-

formation for the variances is given

σ2
[M ] (m) =

∑
k

M2
m(k) ? σ2(k). (4.6)

The transformation into the Mel-frequency log power domain for an observed power

spectrum O(k) is likewise given by

O[L](m) = log
(
O[M ](m)

)
= log

(∑
k

Mm(k)O(k)

)
. (4.7)

Under the further assumption that the spectral components in the Mel-frequency power

domain have a log-normal distribution, we have the following exact transformation [75,

41],

σ2
[L] = log

(
1 +

σ2
[M ]

µ2
[M ]

)

µ[L] = log
(
µ[M ]

)
− 1

2
log

(
1 +

σ2
[M ]

µ2
[M ]

)
. (4.8)

The log observation probability in [L] domain, ~b, of an observation, O, is therefore given

by
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log~b (O) = −1

2

∑
m

log
(

2πσ2
[L] (m)

)
+

(
O[L](m)− µ[L] (m)

)2
σ2
[L] (m)

(4.9)

where µ[L] and σ2
[L] are obtained from µ[M ] and σ2

[M ] using (4.8).

Incorporating the speech model

Given an observation of a noisy speech signal, we are interested in its log likelihood

based on the noisy speech model illustrated in Fig. 4.1. The normalised speech model

can be trained in the Mel-frequency power domain: ζs =
{
νj , ς

2
j

}
, where νj and ς2j are the

mean and the variance for the speech state j. The noise model is given as ζ =
{
µi, σ

2
i

}
where the mean µi and the variance σ2

i have been converted into Mel-frequency domain

accordingly. Given the speech level γ̃ at state ̃ of the speech level model, the mean µ[M ]

and variance σ2
[M ] of the noisy speech model required in (4.8) can be expressed in the

Mel-frequency power domain as the sum of components from the noise model state and

level-adjusted speech model state:

σ2
[M ]|σ

2
i , ς

2
j , γ̃ = σ2

i (m) + γ2̃ ς
2
j (m)

µ[M ]|µi, νj , γ̃ = µi(m) + γ̃νj(m)

given that the speech and noise signals are uncorrelated. Thus the log observation pro-

bability log~b (O), described in (4.9), can be expressed as a function of
{
µi, σ

2
i , νj , ς

2
j , γ̃

}
.

The computational complexity of implementing our noisy speech model can be substan-

tially reduced by imposing the constraint that the transition probabilities of the nor-

malized speech model depend only on the destination state. With this constraint, the

maximum likelihood speech state, j, is independent of the previous state sequence. Thus

for any given noise state, i, and speech level state, ̃, we can determine the most pro-
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bable speech state, j, from (4.9), and the observation probability for any noise state can

be expressed by

log~bi
(
Ot | µi, σ2

i , γ̃.
)

= max
j

{
log~bi,j

(
Ot | µi, σ2

i , νj , ς
2
j , γ̃.

)}
(4.10)

However, in our noise estimation, we do not have any prior knowledge of the speech

level, and we have to estimate it from the observed noisy speech. In order to estimate

the speech level, we perform a Viterbi algorithm over the most recent L frames to find

the maximum likelihood sequence of noise states, i(t), and speech level states, ̃(t). For

TL + 1 < t ≤ T , the probability of a state sequence ending in states i and ̃ is calculated

recursively as

φi,̃ (t) =

[
max
i′ ,̃′

φi′ ,̃′ (t− 1) ai′ iã̃′ ̃

]
~bi
(
Ot | µi, σ2

i , γ̃(t)
)

(4.11)

where ã̃′ ̃ is the transition probability of speech level from γ̃′ to γ̃, the initial values

φi,̃ (TL) are saved from the previous iteration and ~bi
(
Ot | µi, σ2

i , γ̃
)

is defined in (4.10).

From this, i(T ) and ̃(T ) are taken as arg maxφi,̃ (T ).

Since the speech level of a particular speech remains constant most of the time, we

define the speech level state transition probabilities ã̃′ ̃ as below

ã̃′ ̃ =


κ for ̃ = ̃

′

(1−κ)
2 for ̃ = ̃

′ ± 1

0 otherwise

(4.12)

where κ is the frame rate of the speech level can change.

From the Viterbi decoding algorithm, a most probable sequence of speech levels γ̃(t) is

obtained by backtracking, thus the log observation probability of noisy speech is given

as
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log~bi
(
Ot | µi, σ2

i

)
= max

j

{
log~bi,j

(
Ot | µi, σ2

i , νj , ς
2
j , γ̃(t)

)}
(4.13)

Since both the µi (m) and σ2
i (m) can be calculated from µi (k), we will, for clarity, write

log~bi (Ot) instead of log~bi
(
Ot | µi, σ2

i

)
in the remainder of this section.

Overview

The calculation of log observation probability can be summarised as below,

1. convert the mean spectrum of each noise model state in the frequency domain,

µi (k), into the Mel-frequency domain to give mean and variance µi (m) and σ2
i (m)

using (4.5) and (4.6)

2. convert the observed power spectrum in the frequency domain, Ot (k), into the log

Mel-frequency domain O[L](m) using (4.7)

3. given a noise state, for every speech level, select a speech state that maximises the

log-likelihood calculated in (4.10)

4. find the best sequence of speech level states ̃(t) from the modified Viterbi proce-

dure described in (4.11)

5. the observation probability for a given noise state, ~bi (Ot), is calculated from γ̃(t)

with associated speech state determined in step 3 using (4.13)

We note that the Mel-frequency log power domain is used only for calculating log~bi (Ot).

Unless otherwise stated, the expressions in the following sections for estimating the

mean and variance of the noise spectral components all operate in the linear-frequency

power domain.
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4.3.3 Time-Update

In this section, we present the noise estimation algorithm and the update procedures

used for slowly evolving noise environments. From Sec. 3.4, in order to update the

noise model parameters recursively, the accumulated mean power spectrum for state i

is calculated recursively as

U
(T )
i (1, TL + 1) = λU

(T−1)
i (1, TL) +

α
(T )
i (TL + 1)β

(T )
i (TL + 1)OTL+1

P (T )
(4.14)

where speech is assumed to be absent, i.e. Ot (k) = Nt (k). However, in the presence of

speech, Ot (k) = St (k) + Nt (k), we only wish to update those frequency bins in which

the speech is absent. To do this, we determine a speech presence mask ηi (k), where

ηi (k) = 1 indicates the speech is present at frequency k given the noise estimate is

µi (k).

The speech presence mask in each frequency bin is obtained using a minimum statistics

approach presented in [16]. However, instead of tracking the global minimum spectral

power, we have to track the minimum $i (k) for each individual noise state. Each of

the observations, Ot, is first assigned to the noise state with the highest observation

probability, arg maxi bi(Ot). The observations assigned to any particular state are then

smoothed using Oi,t (k) = εOi,t−1 (k) + (1− ε)Ot (k), where ε is a smoothing factor. Mi-

nimum tracking is performed over the past L frame estimates of Oi,t (k) to obtain $i (k).

The speech presence mask ηi (k) is then determined by comparing the spectral power of

the observation, Oi,t (k), within the minimum $i (k),

ηi,t (k) =


1 if Oi,t(k)

$i(k)
> Γ

0 otherwise

where Γ is a decision threshold used to identify whether the speech is present in this

time-frequency bin. Similar to [16], we use Γ = 5 for all frequency bins in Sec. 4.4 below.
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Thus the update equation for the weighted state observation sum is

U
(T )
i (1, TL + 1; k) =


U

(T−1)
i (1, TL; k) if ηi,TL+1 = 1

λU
(T−1)
i (1, TL; k) +

α
(T )
i (TL+1)β

(T )
i (TL+1)OTL+1(k)

P (T ) otherwise

By defining λ̂i (TL + 1; k) = λ+ (1− λ) ηi,TL+1 (k) the expression above can be simplified

as

U
(T )
i (1, TL + 1) = λ̂i (TL + 1)U

(T−1)
i (1, TL)

+ (1− ηi,TL+1)
α
(T )
i (TL + 1)β

(T )
i (TL + 1)OT−L+1

P (T )
(4.15)

The remaining update equations only require the occupation probability of each state,

which depends on the observation probability given in (4.13), and thus remain unchan-

ged from the previous model, which is given below,

Q
(T )
i (1, TL + 1) = λQ

(T−1)
i (1, TL) +

α
(T )
i (TL + 1)β

(T )
i (TL + 1)

P (T )
(4.16)

R
(T )
ij (1, TL) = λR

(T−1)
ij (1, TL − 1) +

α
(T )
i (TL − 1)~b

(T )
j (OTL

)β
(T )
i (TL)

P (T )
(4.17)

and the means and transition probabilities are now calculated as

µ
(T )
i ≈ λLU

(T−1)
i (1, TL) + U

(T )
i (TL + 1, T )

λLQ
(T−1)
i (1, TL) +Q

(T )
i (TL + 1, T )

(4.18)

and

a
(T )
ij ≈

a
(T−1)
ij

(
λLR

(T−1)
ij (1, TL − 1) +R

(T )
ij (TL, T − 1)

)
λLQ

(T−1)
i (1, TL − 1) +Q

(T )
i (TL, T − 1)

. (4.19)
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4.3.4 Adapting to rapidly changing noise characteristics

In situations where the noise characteristics evolve slowly with time, they will be tra-

cked by the update procedure described in Sec. 4.3.3 above. However when an abrupt

change occurs such as, for example, the introduction of an entirely new noise source,

it is necessary to create an entirely new noise state. The procedure is similar to that

described in Sec. 3.4.6 but needs to be modified to take account of the possible presence

of speech.

We assume that the maximum number of noise states is fixed in advance and so it is

necessary to merge the two closest states before creating a new one; this process was

illustrated for a three-state noise model in Fig. 3.4 in Sec. 3.4.6. The criteria used to

decide whether to create a new state is the same as illustrated in Fig. 3.5. Similar to

Sec. 3.4.6, a “Z-test” is used to assess how well the most recent L frames match the

existing noise model. However, this needs to be done in the log Mel-frequency domain.

If the test indicates a poor fit, a tentative model is created by merging the closest two

states and creating a new one. Only if this tentative model provides an improved fit to

recent observation frames is it substituted for the existing model.

In order to decide when to introduce a new state, we calculate a measure Z(T ) that in-

dicates how well the most recent L frames of observed data fit the current model, ζ(T ).

From (4.9) and (4.13), it is straightforward to show that, given its mean and variance

and assuming the spectral components are independent, the log-likelihood of an obser-

ved frame, Ot, has the following mean and variance in Mel-frequency log power domain:
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E
{

log~b
(
Ot | µ, σ2

)}
= E

{
−1

2

∑
m

log
(

2πσ2
[L] (m)

)
+

(
O[L](m)− µ[L] (m)

)2
σ2
[L] (m)

}

= −1

2

∑
m

(
log
(

2πσ2
[L] (m)

)
+ 1
)

V ar
{

log~b
(
Ot | µ, σ2

)}
= E

−1

4

∑
m

((
O[L](m)− µ[L] (m)

)2
σ2
[L] (m)

− 1

)2


=
1

4

∑
m

E


(
O[L](m)− µ[L] (m)

)4 − 2σ2
[L] (m)

(
O[L](m)− µ[L] (m)

)2
+ σ4

[L] (m)

σ4
[L] (m)


=

1

4

∑
m

3σ4
[L] (m)− 2σ4

[L] (m) + σ4
[L] (m)

σ4
[L] (m)

=
M

2

Accordingly we define Z(T ) as the normalized difference between the weighted log-

likelihood of the most recent L frames and its expectation

Z(T ) =

1
2

∑T
t=TL+1 λ

T−t∑
m

(
1− (Ot(m)−µ[L](m))

2

σ2
[L]

(m)

)
√

M
2

∑T
t=TL+1 (λT−t)

2
(4.20)

where i(t) gives the state occupied at time t in the maximum likelihood state sequence.

If
∣∣Z(T )

∣∣ exceeds an empirically determined threshold, θZ , then this indicates that ζ(T )

should be re-estimated and a new type of noise might be present. In this case, we

therefore create a tentative model, ζ̂(T ), in which two of the existing states are merged

and a new state created.

Initialising the new state

As for the speech absent procedure in Sec. 3.4.6, we first create an initial model ζ̂(T−1)

and then perform the time update from Sec. 4.3.3 to determine ζ̂(T ). For the tentative

model ζ̂(T−1), we first determine the pair of states, {i0, j0} ,whose merging will cause the

least reduction in likelihood. In contrast to the speech absent case, we cannot initialise
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the new state to OT because OT might be corrupted by speech. Accordingly, a robust

initial estimate for the mean power spectrum, Θ, of the new state is obtained by taking

the median in each frequency bin of the L
′

frames out of the most recent L that have

the lowest likelihood under the current noise model, i.e. log~bi(t)
(
Ot | µi(t)

)
. The choice

of L
′

is a compromise; it needs to be large enough to provide a robust initial estimate of

the new state’s power spectrum but small enough that the majority of included frames

include examples of the new noise source, (currently we set L
′

= L/3). The motivation

for this is that the low likelihood frames are those most likely to include examples of

any new noise source and that in each frequency bin the noise will be dominant in at

least some of them. Therefore, we initialize the state means for the model ζ̂(T−1) to be

µ̂(T−1)
r =


Θ for r = j0

Qi0
(1,TL)µ

(T−1)
i0

+Qj0
(1,TL)µ

(T−1)
j0

Qi0
(1,TL)+Qj0

(1,TL) for r = i0

µ
(T−1)
r otherwise

(4.21)

where the state j0 models the new noise spectrum, and state i0 is initialized as a weigh-

ted average of the previous states i0 and j0.

We now re-train the initial model, ζ̂(T−1), using Viterbi decoding on the most recent L

frames by backtracking, {Ot : t ∈ [TL + 1, T ]},

ϕ̂j,̃ (t) =

[
max
i,̃ı

ϕi,̃ı (t− 1) aij ãı̃̃

]
~bj
(
Ot | µ̂j , σ2

j , γ̃
)

where the maximum likelihood sequence of the noise state and speech level can be ob-

tained. In order to update the mean of the new state µ̂j , we are only interested in the

frames that have been assigned to noise state j in our previous Viterbi decoding. We

first define the set of frames, Ωj , for which this is true:

Ωj = {t : t ∈ [TL + 1, T ] ; frame t assigned to noise state j} (4.22)

It is possible that some of the frames within Ωj might contain speech energy in addition
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to noise, and so, when determining the initial new state mean µ̂j , we need to mask out

any time-frequency bins that might be dominated by speech energy. Thus the new state

mean µ̂j (k) can be updated using the recursive expression shown below,

µ̂j (k) = median {Ot (k) : t ∈ Ωj ; Ot (k) < Γµ̂j (k)} (4.23)

where the median is used to avoid extreme value. In rare cases, the subset of Ωj

defined in (4.23) might be empty since all the available frames might be masked by

high energy of speech in certain frequency bins. If this is true, then we set µ̂j (k) =

min {Ot (k) : t ∈ Ωj}. The process is repeated until µ̂j converges. For this newly created

state mean µ̂j , we will repeat the Viterbi decoding until Z(T ) is minimized.

The initialization of the new state mean can be summarised as below,

1. Initialize the mean µ̂
(T−1)
r as described in (4.21)

2. Apply the Viterbi decoding on the most recent L frame to obtain set Ωj

3. For each frequency bin k, check whether Ot (k) < Γµ̂j (k)

4. Recalculate µ̂j (k) as described in (4.23)

5. Go to step 3 until µ̂j (k) converges

6. Recalculate Z(T ) as described in (4.20)

7. Go to step 2 unless Z(T ) does not decrease

Recalibrating the new model

The accumulated sums in (4.15) to (4.17) can now be re-calculated by distributing the

existing sums between the new states accordingly,
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Û
(T−1)
i (1, TL) =

∑
m

φmjU
(T−1)
m (1, TL)

Q̂
(T−1)
j (1, TL) =

∑
m

φmjQ
(T−1)
m (1, TL) (4.24)

R̂
(T−1)
ij (1, TL − 1) =

∑
m

∑
n

φmiφnjR
(T−1)
mn (1, TL − 1)

where φij =
b
(
µ
(T−1)
i |µ̂(T−1)

j

)
∑

j b
(
µ
(T−1)
i |µ̂(T−1)

j

) estimates the probability of a frame that was previously

in state i being in state j of the new model. As a final step, the time update of Sec. 4.3.3

are applied to update from ζ̂(T−1) to ζ̂(T ).

However, we only wish to use this revised model if it will result in an increase in log

likelihood. Accordingly the increase, I(T ) , in the log-likelihood is estimated as

I(T ) =

T∑
t=TL+1

λT−t
∑
i

Q̂i (t, t) log b(Ot, µ̂i)−Qi (t, t) log b(Ot, µi)

− λL

1− λ
∑
i

∑
j

φijπiD(µi, µ̂j) (4.25)

where D(µi, µ̂j) =
∑
k

(
µi(k)
µ̂j(k)

− log µi(k)
µ̂j(k)

− 1
)

is the Itakura-Saito distance and equals

the expected increase in log likelihood of a frame whose true mean power spectrum

is µi is modelled by a state with mean µ̂j . The first two terms in (4.25) give the log

likelihood improvement over the most recent L frames while the last term approximates

the decrease in log likelihood of the earlier frames.

4.3.5 Safety-net state

In order to increase the robustness of our model, we define our last noise state, i = Hn,

to be a “safety-net state”. This safety-net state will be trained and updated as previously
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described but with an exception: the mean of this state µHn
is determined using Mini-

mum statistics (MS) [90, 11] instead of with (4.18). The introduction of this safety-net

state prevents the noise model from diverging even if wrong state assignments are made

during speech active intervals. However, the safety-net state was only used in the early

stage of HMM algorithm development. With the latest HMM algorithm presented in

this thesis, the safety-net state is never assigned in the most likely state sequence, and

we will turn this safety-net state off for all the experiments below.
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4.4 Experimental Results

For all the experiments, the signals are sampled at a frequency of 16 kHz, and the power

spectrum calculated for overlapping frames using the STFT. Similar to the setting in

Sec. 3.6, the time-frames have a length of 32 ms with a 50% overlap resulting in K = 257

frequency bins. We retain the most recent L = 30 frames (480 ms), and also set the initial

training time T0 = 30 frames. The forgetting factor is chosen to be λ = 1− 1/(2L), which

gives a time constant of 2L = 960 ms. Since the number of Mel-freqency bins M is small,

Z(T ) can be assumed to be normal distributed with mean of 0 and variance of 1, thus

the threshold θZ defined in Sec. 4.3.4 is set to 1.645, i,e, reject the existing model at 5%

significance level.

4.4.1 Training of the speech model

As described in Sec. 4.3.2, we need to train our speech model in the Mel-frequency do-

main. The number of states, Hs, in the speech model is set to 8; this was found to be

the smallest number of states that gave a reasonable representation of the normalized

power spectra encountered in speech. The transition probability from any state to ano-

ther state is set to be 1/Hs, i.e. it is initialised as equally likely to go from any state to

any other state. For the speech training set we chose 10 sentences from IEEE sentence

database [106]. We first normalize the active level of each sentence to 0 dB using [68],

then convert the speech power spectrum S (k) into the Mel-frequency power spectrum

S (m) = (M ∗ S (k)) as described in Sec. 4.3.2. Using a K-means clustering algorithm

[11], we partitioned the speech into Hs − 1 states, then we have added the Hsth state as

a silence state, with the mean and variance in each frequency bin equal to 0. The mean

power and its variance of each state are shown in Fig. 4.2.

For the speech level γ, we define a discrete set from −20 dB to 0 dB relative to the mean

energy level of the noisy speech signal with 2 dB increments, this corresponds to an

SNR range of −20 to +∞ dB. The speech level state transition probabilities ãı̃̃ defined

in (4.12) are given by,
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Figure 4.2: Spectrogram of the (a) mean (b) variance of different speech states.

ãı̃̃ =


0.8 for ̃ = ı̃

0.1 for ̃ = ı̃± 1

0 otherwise

4.4.2 Noise Tracking

In this section, we evaluate the performance of the MS and 3-state HMM noise estima-

tion models on three types of noise (a) slowly evolving (b) non-stationary and (c) abruptly

changing. We evaluate the performance of the algorithms using COSH distance between

the true noise signal and its estimates. In this section, we have turned off the safety-net

state, which uses the UM method to determine the mean as one of the state of our noise

estimation.

Slowly evolving noise

A good noise estimator should be able to track and update gradual changes in the noise

characteristics. Fig. 4.3 (a) shows the spectrogram of noisy speech at an overall level of

0 dB SNR, corrupted by a car noise with increasing amplitude of power, where the active

level is the same as the average power of car noise, and shown in Fig. 4.3(b). The noise

level increases by roughly 7 dB over 10 seconds. The spectrogram of the estimated noise
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Figure 4.3: Spectrogram of (a) noisy speech corrupted by (b) increasing car noise with
its estimation using (c) MS (d) a 3-state HMM.

using MS method and 3-state HMM method are shown in Fig. 4.3(c) and (d) respectively.

From both the figures, we can see that they have modelled the noise well, although

3-state HMM performs slightly better visually. In this, and subsequent experiments,

we assume the first 1 second of the signal contains no speech; this interval is used to

initialised the noise model and is omitted from the other plots shown in Fig. 4.3(c) and

(d).

Non-stationary noise

Fig. 4.4(a) shows the spectrogram of a speech signal corrupted by the machine gun noise

shown in 4.4(b) at 0 dB. The spectrogram of the estimated noise using the MS method

and the 3-state HMM method are shown in Fig. 4.4(c) and Fig. 4.4(d) respectively.

The MS model is unable to follow the rapid change of noise characteristics and the

noise estimates remains close to zero throughout. The HMM performs much better
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Time (s)

F
re

qu
en

cy
 (

kM
el

)

 

 

2 4 6 8 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

P
ow

er
/M

el
 (

dB
)

−60

−55

−50

−45

−40

−35

−30

−25

Time (s)

F
re

qu
en

cy
 (

kM
el

)

 

 

2 4 6 8 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

P
ow

er
/M

el
 (

dB
)

−60

−55

−50

−45

−40

−35

−30

−25

(c) MS (d) 3-state HMM

Figure 4.4: Spectrogram of (a) noisy speech corrupted by (b) machine gun noise with its
estimation using (c) MS and (d) a 3-state HMM.

and assigns the correct state to the machine gun bursts that occur within the speech.

Because the levels are quite similar, some machine gun noise frames are incorrectly

classified as speech (e.g. between 7s and 8s). Note that in this example, the initial

training interval (0 to 1s) included an example of the machine gun noise and so was

included in the initial HMM noise model.

Abrupt noise detection

In this experiment, the noise of a ringing phone is added to a background car engine

noise which is predominantly low frequency. Fig. 4.5(a) shows the spectrogram of a

speech signal corrupted by this composite noise at 0 dB and it can be seen that the

noise spectrum changes abruptly whenever the phone rings. In this example, the initial

training interval (0 to 1s) does not include any example of the ringing noise, so the new

noise must be acquired during speech presence. The spectrogram of the estimated noise
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(c) MS (d) 3-state HMM

Figure 4.5: Spectrogram of (a) noisy speech corrupted by car+phone noise with its esti-
mation using (c) MS (d) a 3-state HMM; (b) Z-test values.

using the MS method is shown in Fig. 4.5(c). As would be expected this model is unable

to track the rapidly changing noise and fails to include any phone noise. Fig. 4.5(b)

shows the the value of Z(T ), which measures how well the L most recent observations

fit the model. We see that when the first phone ring occurs, at approximately 4.3 s,

there is an abrupt fall in Z(T ) which indicates the arrival of a novel noise spectrum.

The red cross at t = 4.3 s indicates where the new state is created. Two of the existing

states are merged and a new state is reallocated to model the new noise spectrum.

The corresponding noise spectrogram for the HMM is shown in Fig. 4.5(d) in which

the estimated noise spectrum tracked the abrupt changes in noise characteristics, and

shows a much better noise estimation than MS method. It is worth noting that the car

noise component of ringing state is lower at first (at about 4.3 to 5.4 s), but gradually

adapt to the actual energy level later (at about 8.3 to 9.4 s). This is due to the fact that

during initial creation of the new state, the low frequency component that corresponds

to the car noise is partially masked by the speech, and it takes some time for it to update
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Car Gun Phone
MS 20.3 2006.4 6458.0
2-state HMM 8.8 1032.1 62.1
3-state HMM 8.8 849.6 31.2
4-state HMM 8.8 788.5 28.9

Table 4.1: COSH distance of different noise estimations.

to the actual level.

COSH errors

The average COSH distances between the true noise signal and its estimate using the

MS model and using the HMM model with 2, 3 and 4 states are shown in Table 4.1. The

results confirm our observations in Fig. 4.3 to 4.5. The MS model gives a low error for

the car noise but is unable to track abrupt changes in noise characteristics, and shows

large COSH errors when estimating non-stationary noise such as “Gun” and “Phone”

noise. For the “gun” noise, both the HMM method also gives a large COSH error. The

reason for this is that in some frames the state assignment is incorrect and the noise

is under-estimated. Since the slow evolving car noise is quasi-stationary, there is no

significant modelling improvement when the number of HMM states is varied from 2

to 4. In contrast, for the highly non-stationary car and phone noises, the COSH error

continues to improve as the number of HMM states is increased. The improvement

between 3 and 4 states is, however, very much less than that between 2.

4.4.3 Speech Enhancement

In this section, we incorporate our HMM noise estimator into a speech enhancer to as-

sess whether our noise estimator improves the quality of speech as compared to other

noise estimation methods. We will first demonstrate an example of how well the noise

can be suppressed using our method, then we will run a set of experiments to show the

improvements in terms of PESQ and segmental SNR of the enhanced speech. All the

clean speech signals were taken from the IEEE sentence database [106] by concatena-

ting three sentences to give an average duration of about 10 seconds.
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(c) MMSE+UM (d) MMSE+HMM

Figure 4.6: Spectrogram of (a) the unenhanced noisy speech corrupted by the car+phone
noise, and the MMSE enhanced speech using different noise estimator (b) MS (c) UM
(d) HMM.

Fig. 4.6(a) shows an example of a speech signal corrupted by a ringing phone noise at

0 dB SNR, shown in Fig. 4.5 (a). It is assumed that there will be non-speech segment

at the beginning of the signal, roughly 1.5 s in this case, and it is used to initialize our

noise estimation model, and the rest of the signal forms the speech active segment.

The speech active segments of the given noisy speech signal is then enhanced by the

MMSE algorithm [30] using different noise estimators. Fig. 4.6 shows the enhanced

speech signals using respectively (b) minimum statistics (MS) [90, 11], (c) unbiased

MMSE estimator (UM) [46, 11] and (d) multi-state hidden Markov model (HMM) res-

pectively. The noise-only segment is not included in the spectrogram for the enhanced

speech. We see that the stationary low frequency noise component is effectively remo-

ved using all three methods but only with the HMM method is the phone ringing largely

eliminated. Even though the MS and UM methods track the variation of noise level du-

ring speech presence, they cannot respond quickly enough to eliminate the phone noise.
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Unenhanced MS UM HMM
PESQ 2.25 2.28 2.29 2.44
∆PESQ 0 0.03 0.04 0.19

Table 4.2: PESQ scores and improvements of the enhanced speech.

white -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced -12.35 -7.35 -2.36 2.64 7.64 12.63
MS -1.23 1.97 5.13 8.33 11.60 14.85
UM -1.58 1.94 5.23 8.38 11.45 14.39
HMM -0.766 2.61 5.70 8.83 12.25 15.97

Table 4.3: Segmental SNR of enhanced speech corrupted by white noise using different
noise estimation methods.

We can assess the quality of the speech by means of the PESQ score [70]. The PESQ

score for the unenhanced noisy speech is 2.25, and the PESQ score for the enhanced

speech signals when using the MS, UM and HMM methods to estimate the noise are

shown in Table 4.2. It can be seen that for this example, the MS and UM methods give

a negligible improvement in PESQ, where as the HMM method results in a significant

improvement.

Evaluation using Segmental SNR

A set of experiments was performed with noise+speech at different SNRs with a speech

absent segment at the beginning of the noisy speech signal as before. 20 different

clean speech signals were used, with an average duration of about 10s. Three different

noise estimation algorithms were evaluated: (i) minimum statistics (MS), (ii) unbiased

MMSE-based noise estimator (UM) and (iii) our proposed multi-state hidden Markov

model (HMM). The number of states used for HMM is set to 3 for all the noisy speech

signals below.

Tables 4.3 to 4.5 show the segmental SNR (sSNR) at different global SNRs (gSNR) of

enhanced speech which has been corrupted by (i) white noise, (ii) gun noise and (iii)

"car+phone" noise respectively, and the sSNR improvement at different SNR for dif-

ferent noise are shown graphically in Fig. 4.8. As we can see for the white noise, the

HMM performs the best, whereas the UM and MS methods show a slightly lower sSNR
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gun -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 2.07 7.07 12.06 17.06 22.06 27.05
MS 2.28 6.00 9.42 12.71 15.91 19.11
UM 2.10 5.79 9.30 12.54 15.31 17.61
HMM 4.75 8.90 12.02 17.27 21.51 25.77

Table 4.4: Segmental SNR of enhanced speech corrupted by machine gun noise using
different noise estimation methods.

car+phone -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced -4.15 0.84 5.84 10.84 15.83 20.83
MS 1.70 6.02 10.00 13.44 16.15 18.51
UM 1.06 5.65 9.79 13.50 16.11 18.11
HMM 5.49 9.08 13.31 15.95 18.60 21.18

Table 4.5: Segmental SNR improvement of enhanced speech by "car+phone" noise using
different noise estimation methods.

at low gSNR, as they underestimate the noise power when the noise power and speech

power are comparable. For the "car+phone" noise, the HMM method improves the sSNR

score at all SNRs and consistently outperforms the other methods. We see that the UM

and MS methods degrade the sSNR score at nearly all SNRs indicating their inability

to track highly non-stationary noise. For the machine gun noise, both MS and UM me-

thods failed to track this non-stationary noise, resulting in a decrease of sSNR. At high

values of gSNR, the HMM method degrades the sSNR but as the gSNR is decreased, it

becomes easier for the algorithm to identify the frames containing machine gun noise.

For gSNR≤ 0 dB the HMM method therefore successfully improves the sSNR.

Evaluation using PESQ

For evaluation of the PESQ scores of the enhanced speech signals, a similar set of expe-

riments was performed as in the last section . Tables 4.6 to 4.8 show the PESQ score at

different SNRs of enhanced speech which has been corrupted by (i) white noise, (ii) gun

noise and (iii) “car+phone” noise respectively, and the PESQ improvement at different

SNR for different noise are shown in Fig. 4.8. For the stationary noise white noise, the

HMM method shows similar PESQ scores to the UM and MS methods. For the non-

stationary machine gun noise, all three methods degrade the PESQ score although the

degradation is lowest at all SNRs for the HMM method which results in PESQ scores
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Figure 4.7: Improvement of Segmental SNR scores at different SNRs for (a) white noise
(b) machine gun noise (c) "car+phone" noise.

white -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 1.13 1.36 1.68 2.05 2.40 2.74
MS 1.56 1.95 2.30 2.59 2.85 3.08
UM 1.55 1.95 2.32 2.63 2.88 3.10
HMM 1.59 2.02 2.38 2.65 2.88 3.11

Table 4.6: PESQ of enhanced speech corrupted by stationary white noise using different
noise estimation methods.

very similar to those of the unenhanced noisy signal. For the abrupt "car+phone" noise,

the HMM method improves the PESQ score at all SNRs and consistently outperforms

the other methods. We see that the other methods degrade the PESQ score at nearly

all SNRs indicating again their inability to track highly non-stationary noise. All these

observations confirm the results obtained for segmental SNR.

Summary

The average improvement of the segmental SNR and PESQ scores across all global

SNRs for different noise types are shown in Tables 4.9 and 4.10 respectively. When the

noise is stationary, such as white and car noise, the improvement of the PESQ scores

or segmental SNRs are similar for all three methods although the HMM method is

consistently the best by a small margin. For the non-stationary noise, our proposed

HMM method shows PESQ and sSNR improvements that are positive for all noises and

substantially better than the other two methods. In the case of the improvement of the

segmental SNR, the HMM method shows a good improvement over all SNRs.
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gun -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 1.97 2.35 2.71 3.01 3.27 3.48
MS 1.89 2.27 2.61 2.89 3.12 3.31
UM 1.89 2.29 2.63 2.91 3.15 3.33
HMM 1.96 2.36 2.72 2.98 3.21 3.40

Table 4.7: PESQ of enhanced speech corrupted by machine gun noise using different
noise estimation methods.

car+phone -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB
unenhanced 2.15 2.50 2.82 3.07 3.26 3.45
MS 2.22 2.48 2.72 2.90 3.07 3.24
UM 2.17 2.45 2.69 2.88 3.09 3.26
HMM 2.56 2.70 3.07 3.23 3.41 3.50

Table 4.8: PESQ improvement of enhanced speech by "car+phone" noise using different
noise estimation methods.

Comparison with previous HMM

For the HMM noise estimation we have used in Sec. 3.5, we froze the HMM update

during the speech activity and used Long-Term Average Speech Spectrum (LTASS) as

our speech model to determine the noise state sequence. The performance of the average

improvement of the quality of enhanced speech for different noise types are shown in

Table 4.11, where “HMM-LTASS” denotes the noise model used in previous chapter

and “HMM” denotes the noise model of our current proposed algorithm. It can be seen

that for stationary noise, both methods achieved identical improvements in terms of

segmental SNR and PESQ scores. For the non-stationary noise, the HMM-LTASS has

states that already have included the different noise characteristics that will arise in

the noisy speech, while the current HMM method does not have any prior knowledge

thus has to identify the new arrivals of noise characteristics in the presence of speech.

Despite the more challenging task, the HMM method performs nearly as well as HMM-

LTASS method. There is an improvement in sSNR for the car+phone noise for the HMM

method, since it has richer speech model, thus can better differentiate noise states in

the presence of speech. For the machine gun noise, there is a significant improvement of

sSNR but a decrease in PESQ scores. This is mainly because the HMM method did not

correctly identify the silence intervals and the gun firing due to the similarity between

the characteristics of proposed speech model and the machine gun noise.
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Figure 4.8: Improvement of PESQ scores at different SNRs for (a) white noise (b) gun
noise (c) "car+phone" noise.

∆ sSNR white car gun phone hammer
MS 6.64 5.78 -3.65 2.63 3.58
UM 6.52 5.61 -4.12 2.37 3.45
HMM 7.39 8.30 0.48 5.60 4.40

Table 4.9: mean segmental SNR improvement of enhanced speech using different noise
estimation methods.

4.4.4 Listening Test

Given the results from previous two experiments, we conducted a further listening test

to verify the performance of our proposed algorithm in comparison to other algorithm.

A listening test was conducted as in Sec. 3.6.3, where a rating is assigned based on

their preference: “1” if they prefer the HMM algorithm, “0” if they prefers the other

algorithm, or “0.5” if they are indifferent. A group of 10 listeners participated in this

listening test, the mean rating scores of each comparison with HMM for different noise

types are shown in Tables 4.12. As compared to the original (unenhanced) noisy speech,

the proposed HMM is preferred for all noise types except for the gun noise. When com-

paring to other enhancement methods, the HMM algorithm performs as well as UM

and MS methods for stationary white and car noise, but is preferred for non-stationary

phone and hammer noise. For the HMM-LTASS in Sec. 3.5, the proposed HMM method

performs similarly in white, car and hammer noise, but gun noise is less preferred since

it has a higher residual noise but with less distortion, and the phone noise is slightly

preferred as it gives a better state assignment. These results correlate well with our

previous results for the improvements in segmental SNRs and PESQ scores.
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∆ PESQ white car gun phone hammer
MS 0.49 0.04 -0.11 -0.10 0.25
UM 0.50 0.05 -0.10 -0.12 0.26
HMM 0.54 0.16 0.01 0.20 0.43

Table 4.10: mean PESQ Improvement of enhanced speech using different noise estima-
tion methods.

∆ sSNR white car gun phone hammer
HMM-LTASS 7.39 8.30 -6.92 4.94 4.40
HMM 7.39 8.30 0.48 5.60 4.40
∆ PESQ white car gun phone hammer
HMM-LTASS 0.54 0.16 0.11 0.20 0.43
HMM 0.54 0.16 0.01 0.20 0.43

Table 4.11: mean segmental SNR improvement of enhanced speech corrupted by white
noise using different noise estimation methods.

4.5 Summary

In this chapter we have extended the adaptive noise model that was introduced in Chap-

ter 3 to enable it to track changing noise spectra and to create new noise states when

needed even in the presence of speech. To make this possible, we have incorporated two

additional components in order to create a composite production model for noisy speech.

The new components are a level-normalized speech model and a speech level model.

The separation of the speech model into two components allows the easy imposition of

strong constraints on the rate of change of speech level; these were found to be essential

for the identification of new noise sources during speech presence.

In order to track gradually changing noise spectra when speech is present, we identify

the noise state corresponding to each time frame and update the corresponding noise

spectra only in those frequency bins in which the noise is dominant. All the frequency

bins in a state will therefore be updated over time, but only when the speech power

spectrum falls below that of the noise.

By far the most challenging goal is the identification and modelling of new noise sources

even when speech is present. We detect the presence of a new noise source when a low

probability is assigned by our composite speech+noise model to the spectrum of the

observed signal. Having detected a new noise source in this way, we create a new state
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v.s. HMM white car gun phone hammer
unenhanced 1.0 1.0 0.65 1.0 1.0
MS 0.5 0.5 0.65 1.0 1.0
UM 0.5 0.5 0.65 1.0 1.0
HMM-LTASS 0.5 0.5 0.4 0.6 0.5

Table 4.12: mean rating scores of enhanced speech signals using different noise estima-
tion methods. A score of 1 indicates that the the enhancer using the HMM model from
this chapter was preferred.

to represent it and initialize the state’s mean power spectrum using a robust procedure

that takes into account the possible presence of speech.

The adaptive noise modelling procedure has been evaluated on noise examples that are

gradually changing and that are highly non-stationary. We have demonstrated that the

algorithm is able to track both types of noise and also to detect new noise sources even

when speech is present. However, even with the more sophisticated speech model used

in this chapter, we have found that there are some circumstances in which speech is

wrongly interpreted as noise resulting in an incorrect noise state sequence.

The algorithm has also been evaluated by incorporating it into a speech enhancement

system where its performance was compared with two state-of-the-art noise estimators

as well as the HMM-LTASS estimator from Sec. 3 which was trained on a noise-only

signal in the absence of speech. Despite its more demanding task, the performance of

the new estimator was almost identical to to that of the HMM-LTASS estimator and,

for all noise types, it resulted in an average improvement in both segmental SNR and

PESQ. Except for the PESQ improvement of the machine gun noise for HMM-LTASS, it

was found that for all the tested noise types at all SNR levels the average improvement

in both segmental SNR and PESQ was greater when using the new noise estimation

algorithm than with either of the competing noise estimators.
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Chapter 5

Summary and Conclusions

5.1 Summary and discussion

The aim of this thesis was to propose and investigate robust noise estimation methods

for speech enhancement systems under adverse noisy environments. The thesis des-

cribes the successful development of a robust noise model that can recursively track

both gradual and abrupt changes in the acoustic noise in a signal. In Chapter 3, we

proposed the use of an HMM as a model for non-stationary noise in which each of the

HMM states is associated with a distinct mean noise power spectrum. To cope with noise

characteristics that change gradually over time, a procedure is described for adaptively

updating each state’s mean power spectrum without requiring the noise model to be

completely retrained after each frame. The procedure includes a forgetting factor so

that a higher weight is given to more recent frames. The updating procedure was then

extended to detect the occurrence of a previously unseen noise power spectrum and,

in response, to create a state representing the new noise source. In order to preserve

the same total number of states, the procedure also merges together the two existing

noise states that are closest to each other. The adaptation of the noise model is suspen-

ded whenever speech is present. By combining the model with a fixed LTASS model of

speech, the maximum likelihood sequence of noise states is estimated during a speech
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interval and the corresponding mean noise power spectra are used as the noise esti-

mate for a speech enhancer. In Chapter 4, the model updating procedure is extended

so that noise can be tracked and new noise states introduced where appropriate even

during intervals when speech is present. To achieve this, an extended speech model was

used which combined a pre-trained model of level-normalized speech together with a

separate HMM representing the overall level of the speech. The factoring of the speech

model in this way allowed long term temporal constraints to be placed on the speech

level which were essential for reliably distinguishing between speech and noise. Both

versions of the noise estimator were evaluated using an MMSE speech enhancement

algorithm and it was found that the use of the multi-state HMM noise model resulted in

consistent improvements in quality (as measured by PESQ) compared to conventional

techniques that estimate only a single, quasi-stationary, noise power spectrum.

In summary, we have developed a noise HMM that can track and update fast-changing

noise characteristics in a noisy speech signal without any prior training. The model

parameters comprise the mean power in each state and the transition probability bet-

ween states. The mean power within each noise state is only updated if the speech

presence probability in individual frequency bin is low. A log-likelihood based measure

is proposed to assess the goodness of fit of our existing model, such that a novel noise

characteristic can be detected and a new state is created accordingly. In our experi-

ments, we showed that the noise HMM is capable of robustly tracking both stationary

and highly non-stationary noise, and that when it is incorporated into a standard speech

enhancement algorithm, it gives a better performance, in terms of the enhanced speech

quality improvement, than other state-of-the-art noise estimation methods.

5.2 Conclusion and Future Directions

In this thesis, robust noise estimation for speech enhancement was studied. We pro-

posed the on-line adaptive noise HMM, which can effectively track any highly non-

stationary noise even during speech activity. In the following some future work arising

from this thesis is discussed.
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The methods developed in this thesis give excellent results when no speech is present.

Reliable identification of new noise sources when speech is present still, however, re-

mains a challenge. In our model, the accurate estimation of the overall speech level is

important for reliably distinguishing between the occurrence of a new noise source and

an abrupt change in speech level. We therefore apply strong constraints to the rate at

which our estimated speech level is permitted to change. Recent work [47] within our

research group indicates that it is possible to obtain reliable estimations of the speech

level even when the SNR is poor. Incorporating reliable external speech level estima-

tion would potentially provide two benefits to our algorithm. First, the error in the

estimated speech level would reduce and hence the accuracy of state assignment during

speech presence would improve. Second, the algorithm would cope better with situa-

tions in which the true speech level changes rapidly because the constraints currently

imposed by our algorithm would be removed.

As can be seen in Fig. 4.4, there are some occasions when, even though the estima-

ted noise model is correct, our algorithm assigns incorrect noise states to some frames.

These assignment errors have a serious effect on the resultant speech enhancement and

arise because the model is not sufficiently able to distinguish between speech and noise.

Drawing on research in speech recognition, it may be that incorporating delta coeffi-

cients in addition to static coefficients into the spectral models would improve the state

assignment of the model.

Finally, other variations of HMM can be used for better noise estimation. For instance,

in our HMM, we have assigned each noise state with a distinct characteristics, such

that N different noise types will give 2N different combinations, thus require 2N states

to fully describe the noise. A factorial HMM, with each state representing a distinct

noise type, can be used to effectively reduce the number of states required. Noise can

be estimated as any combination of N states, instead of a single state in our proposed

model.
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