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Abstract

Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this rea-
son, modern solutions are trying to utilize any available information which could help to constrain, improve
or explain the measurements. So called Context Information (CI) is understood as information that sur-
rounds an element of interest, whose knowledge may help understanding the (estimated) situation and
also in reacting to that situation. However, context discovery and exploitation are still largely unexplored
research topics.

Until now, the context has been extensively exploited as a parameter in system and measurement models
which led to the development of numerous approaches for the linear or non-linear constrained estimation
and target tracking. More specifically, the spatial or static context is the most common source of the
ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the
prediction or the measurement update of the filters. In the case of multiple model estimators, context can
not only be related to the state but also to a certain mode of the filter. Common practice for multiple model
scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches
are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was
also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which
assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the
noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter
noise, which can be further enhanced by conditioning on context.

We believe that interactions between the environment and the object could be classified into actions,
activities and intents, and formed into structured graphs with contextual links translated into arcs. By
learning the environment model we will be able to make prediction on the targets future actions based on its
past observation. Probability of target future action could be utilized in the fusion process to adjust tracker
confidence on measurements. By incorporating contextual knowledge of the environment, in the form of
a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties
of the tracking solution and improve the consistency of the track. The promising results demonstrate
that the fusion of CI brings a significant performance improvement in comparison to the regular tracking
approaches.
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Preface

This thesis is the result of the author’s 3-year Ph.D. study under the supervision of Assist. Prof. Lauro
Snidaro. First three chapters are independent research topics on the general framework of context-aware
target tacking. The last chapter is a result of a cooperation conducted in collaboration with Magneti Marelli
s.p.a. on the subject of fusion of sensory and contextual data for environment perception and mapping on
autonomous vehicles. While writing about the conducted research, I tried my best to integrate the material
into a single compact study on the context exploitation in data fusion. Part of this research has been already
submitted to academic conferences for publication, while the rest is expected to be published in the near
future. The following is a list of these publications:

• L. Snidaro, L. Vaci, J. Garcia, E. D. Marti, A.-L. Jousselme, K. Bryan, D. D. Bloisi, and D. Nardi.
A framework for dynamic context exploitation. In Proceedings of 18th International Conference on
Information Fusion, volume 1, pages 1-18, Washington, DC, 2015. IEEE. [135]

• L. Vaci, L. Snidaro, and G. L. Foresti. Encoding context likelihood functions as classifiers in particle
filters for target tracking. In Proceedings on Multisensor Fusion and Integration, pages 310-315,
Baden-Baden, Germany, 2016. IEEE. [153]

The main theme of this work evolves around the idea of modeling contextual information as individual
entities’ actions and intents and exploitation of this inferred knowledge in an information fusion process.
Design aspects and issues to be considered when developing such a context-aware information fusion
system, capable of dynamical context exploitation across all levels of the fusion, are discussed in Sec. 3.

There are two main challenges associated with the context exploitation in the domain of information
fusion. First, how could be contextual information learned from the environment and subsequently inferred
in the process of reasoning. Second, how could be CI utilized in the process of data fusion. These tasks can
not be completely separated from each other as the capability to accurately infer on context siphons into
enhanced data fusion performance and vice versa. The applicability of the later into the Bayesian recursion
becomes the essence of this work as problems of CI learning, classification and reasoning are already well
established in the literature.

The initial attempt for building the context-adaptive framework is based on the seminal work of W.
Koch & M. Ulmke [152] on constrains exploitation in the Bayesian filtering. A modification of this ap-
proach, that encodes different types of contextual information as likelihood functions via classifiers in
particle filters, discussed in the Sec. 4, was presented as a solution for multi-level context representation
and exploitation. However, this method is only concerned about the problem of detection and exploitation
of the spatial context and not at all capable of utilizing CI at higher levels of abstraction. It therefore be-
come apparent, that the data fusion architecture that respects the spatio-temporal relationships of the events
and successfully utilizes this new knowledge in estimation process needs to be developed.

The idea of seeing target’s actions as a probabilistic graphical model [49] with the relevant spatial
and event-temporal context associated with each node of the graph became a backbone of the framework
developed in Sec. 5. The belief that a target seeks an objective is used in aiding of the tracking by adjusting
mode transition probabilities in the interactive multiple models estimation process. The mode transition
probabilities are estimated recursively during the course of tracking [68]. The proposed technique utilizes a
quasi-Bayesian estimator in order to predict the mode transition matrix of the IMM in terms of the multiple
models mode probabilities and the joint likelihood of contextual information and measurements.

The exploitation of context is not exclusive to the Bayesian framework but could be also applied to
theories used for reasoning under a uncertainty such as the Dempster-Shafer theory. As an example, a con-
cept for the context-aware grid-based fusion and occupancy mapping designed for the autonomous system
perception is discussed in Sec. 6. By realizing that occupancy-grid techniques do not utilize predefinitions
of map features thus completely avoid the data association problem, they also weight the measurement
grids equally unless specified otherwise by the user. When sensors readings are highly contrasting, the
fusion of grids becomes increasingly more challenging. It therefore becomes apparent, that sensor weights
needs to be adjusted recursively during the fusion process. Strategies that exploits discrepancies between
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the grid maps in such a manner where the fusion of contradicting information become less susceptible to
sensor weighting are discussed and evaluated on the real world scenario in Sec. 6.

As a final remark, the process of forming this Ph.D. thesis was not an easy one but full of inspiration
and challenges. As the quote of Henry Ford says: “Obstacles are those frightful things you see when you
take your eyes off your goal”, the challenges here faced were many but the desire to overcome them made
this work become a reality and made ourself stronger and better in the process.
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Introduction

Contextual Information could be said to be that information that “surrounds” a situation
of interest in the world. It is information that aids in understanding the (estimated) situation
and also aids in reacting to the situation, if a reaction is required [134].

1.1 Motivation
Modern surveillance systems almost exclusively rely on the target tracking techniques in order to recognize
the moving objects of interest within an environment. The objective of tracking algorithm is to partition
sensor readings into sets of observations, or tracks, originated from the same source and to provide location
of that source, in a form of timely ordered sequence, for further processing. Therefore, target tracking can
be seen as a generalization of the dynamic estimation theory, i.e. the process of inferring the value of a
quantity of interest from indirect, inaccurate and uncertain observations, for the cases where:

• objects of interest are continuously changing their dynamics,

• received measurements does not necessary originate from the particular object,

• measurements could be faulty and/or missing,

• initial guesses of object states, such as position, velocity or attitude, might not be available.

Tracking objects in complex and noisy dynamic environments pose a challenge for any existing tracking
algorithm. For this reason, modern solutions are trying to utilize any available information which could
help to constrain, improve or explain the measurements. So called context (CI), is understood as informa-
tion that “surrounds” a situation of interest in the world. It is information that aids in understanding the
estimated situation and also aids in reacting to the situation, if a reaction is required [134].

For instance, maritime traffic surveillance applications require extended and continuous tracking of
vessels far beyond territorial waters and within several sensor coverage areas [10]. Spatial coverage gaps
of sensors, extended periods when measurements are missing or are highly cluttered, and intermittent
nature of cooperative sources pose multiple challenges to conventional tracking algorithms. In order to
improve track accuracy and continuity the navigation field concept, a mathematical model for the inclusion
of contextual information, was introduced into maritime target tracking systems (Fig. 1.1). In this scenario,
the context is encoded as the navigation force field which effects the superposition of forces acting on
transiting vessel. Strength and direction of the navigation force field depend on the relative position of
target w.r.t. source points, which can be either attractive (blue) or repulsive (red). These forces might be
seen as representation of engine or rudder induced forces acting on the ship. It is reported in [10], that
occurrence of track losses was reduced by over 15% in presence of the context.

The use of road maps and terrain information to enhance the performance of ground target tracking with
GMTI (ground moving target indicator), in so called road matching framework, was presented in [152].
As shown in Fig. 1.2, road networks of the road sample can be decomposed into eleven edges (roads)
and ten nodes distinguished as five junctions (•), three sources (◦), two road signs (⊗) confining a bridge.
At first, contextual information about roads is incorporated into target kinematics as a constraining factor.
At second, detectability of a target is evaluated on bases of terrain visibility and the clutter notch of the
sensor. At last, target kinematics is approximated by a number of so called “random walkers” generated at
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Figure 1.1: Context as an intensity map of the maritime traffic [10].

Figure 1.2: Context as a road map diagram [152].

every intersection. Each walker propagates along the road(s) according to the target kinematics and road
type. The weight of each walker is calculated after the measurement update of the tracker and one with the
highest score is declared to be the true target. Simulation results performed on a realistic ground scenario
show strongly reduced target location errors compared with the case where a road-map information is
neglected. Furthermore, detection of stopping targets was beneficently reduced by modeling the clutter
notch of the GMTI sensor.

Away from tracking, in the domain of autonomous driving systems, the context information have been
recently considered for the purpose of evidential grid mapping [83]. In an autonomous driving scenario,
it is of a crucial importance to distinguish static objects attached to infrastructure, e.g. road sign, from
mobile road users, e.g. cars, cyclist or pedestrians. Furthermore, autonomous driving systems are tasked
to distinguished the navigable spaces in the their vicinity and safety navigate through the newly built map
(Fig. 1.3). In the figure, a LiDAR perception (sensor grid) scheme enhanced by geo-referenced maps
(GIS or context grid) is used to capture complex dynamic environments by a multi-grid fusion framework.
An adaptation of the conjunctive combination Dempster-Shafer rule is employed to resolve the conflicts
occurring in the process of mapping. The method relies on temporal accumulation to make the distinction
between stationary and moving objects, and applies contextual discounting in order to model information
obsolescence. As a result, proposed method is able to better characterize the state of the occupied cells
by differentiating moving objects, parked cars, urban infrastructure and buildings. Another benefit of this
context-aware approach is the capability to separate the navigable spaces from the non-navigable ones.

These examples demonstrate the usefulness of contextual information for purposes of target tracking
and data fusion in general. The exploitation of context has been a very active research topic for over a
decade and the key element in design of any modern surveillance system. In this study, context information
deduced from a priori observed target behavior will be further analyzed and evaluated.
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Figure 1.3: Context in support of environment map building [83].

1.2 Exploitation of Contextual Information in Information Fusion
Latest issues and challenges associated with the context based information fusion were recently surveyed
and discussed in [16] and [134]. Authors concluded, that understanding and principled exploitation of
context in information fusion (IF) systems is still rather limited. They claim, that domain knowledge has
been traditionally acquired ad hoc from experts or static archives and applied to stove-piped solutions that
could hardly scale or adapt to new conditions. Authors envision, that context, considered as locally relevant
(and possibly dynamic) domain knowledge, should play a key role at any level of a modern fusion system
to gain adaptability and improved performance. As can be seen on Fig. 1.4 context supports all levels of
information fusion and management. Context is in a form of physical measurements and object features

Figure 1.4: Context in support of information fusion [16].

commonly utilized at signal refinement (sub-object assessment) and object assessment levels of fusion. So
called environment, or static/physical, context can be associated within geographic maps as a feature space,
which can be for instance represented as the road width or the off-road areas. The knowledge about entity’s
actions, plans or any information besides physical is traditionally utilized at higher levels of fusion [149],
i.e. situation or impact assessment. Finally, dynamic context variables such as meteorological conditions,
sea state, situation variables or inputs coming from an inference engine have also been considered. Snidaro
at al. [133] observe two types of heterogeneity in a sensor fusion processes. The horizontal, in the sense
that refers to same-level information produced or extracted by concurrent or cooperative sources which
operate in the same environment. For instance, an object appearance can be described by features as color,
shape, velocity or class, which are at the same abstraction level. The vertical, in the sense that considers
that fusion can take place between different levels of information abstraction, from sensory data to features,
from decisions to soft/hard data, including also high-level layers. In this case, the object of interest can be
represented by multi-layered information with different degrees of refinement and detail. The process by
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Figure 1.5: Exemplification of context heterogeneity at different abstraction levels [133].

which the entirety of the domain knowledge acquired is fractured into pieces and assigned to the proper
algorithms is here referred to as context shifting and illustrated in Fig. 1.6. CI has local scope and validity
and is thus pertinent to the scenario at hand. The granularity of the scope of certain information can be more
fine-grained and be applicable only to sub-areas of the observed environment. Fig. 1.7 illustrates, context

Figure 1.6: Shifting of contextual information [133].

switching, the case of two cameras observing the activities of two different parking lots. Take for example
the case of two different parking areas for a public/enterprise building. The first is for visitors/customers
and allows free parking while the second is dedicated to staff personnel only. Activity in the two areas
is likely to be different, for example knowing that working hours should be in the 8-19 range the system
could exploit this information to detect anomalous events.

Figure 1.7: Shifting of contextual information on parking lot example [133].

In general, challenges related to the context implementation in area of information fusion are associated
with:

• context formalism and representation,
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• relevant context discovery and reasoning.

Context Formalism and Representation

By following the Stang’s survey [138], the context models most applicable to information fusion are im-
plemented:

• Key-Value Models are the simplest way of representing context. They provide values of context
attributes as environmental information and utilize exact matching algorithms on these attributes.
These models may suffice for use in Level 1 fusion, but they lack capabilities for complex structuring
required by higher level fusion;

• Ontology-based models provide a formal and uniform way for specifying core concepts, sub-concepts,
facts and their inter-relationships to enable realistic representation of contextual knowledge for rea-
soning, information sharing and reuse;

• Logic-based models define context as facts, expressions and rules. Usually contextual information
is used in a logic-based system in terms of facts or information inferred from rules. McCarthy [103]
defines contexts by axioms describing and interrelating concepts. Furthermore, McCarthy introduced
a basic context related notation: ist(c, p), meaning that a logical sentence p holds in the context c,
where c is meant to capture all that is not explicit in p that is required to make p a meaningful
statement;

• Multi-context systems [48] define context as a specific subset of the complete state of an individual
entity that is used for reasoning about a given goal. Multi-context systems are seen as a (partial)
theory of the world which encodes an individual’s subjective perspective about it;

• Extended Situation Theory [3], which expands th situation theory in order to model the context with
situation types. The variety of different contexts is addressed in the form of rules and beliefs related
to a particular point of view;

• The Sensed Context Model proposed in [53] is similar to the Extended Situation Theory. It uses
first-order predicate logic as a formal representation of contextual propositions and relationships.

Relevant Context Discovery and Reasoning

Relevant context is often not self-evident, but must be discovered or selected as a means to problems-
solving. Therefore, context exploitation involves an integration of data fusion with planning and control
functions. Discovering and selecting useful context variables is an abductive data fusion and management
problem that can be characterized in a utility or uncertainty framework. In information fusion, as in other
problem solving applications, contextual reasoning involves inferring desired information on the basis of
other available information [142]. The concept of relations and relationships for assessment and practical
exploitation of situations was proposed in [140], [141], [119]. Relations, construed to be abstractions, and
relationships, which are anchored to sets of referents within a situational context. The ontology of these
items could be represented by a means of the factor graphs. This is illustrated in Fig. 1.8, in which entities
x1 and x2 and relation r form a relationships fi. Steinberg and Rogova [142], [119] assess the context

Figure 1.8: Factor graph representation of relationships [142].

either from the inside-out or from the outside-in. Such an assessment relates to the notions of context-of
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(CO) and context-for (CF) presented in [52]. Former is defined as a situation of interest that provides
constraints and expectations for constituent entities, relationships and activities, e.g. “In the context of the
present economic and political situation, we would expect an increase in property crime.” Alternatively,
reference items can be assessed, whether individual entities or situations, in context: “The economic and
political situation provides a context for understanding this crime.” In the second use (CF), context is
relative to one or more reference items. The reference items (RI) for which context is considered can be
either an entity or an entity attribute for level 1 estimation or a set of entities and their relationships (i.e. a
situation at some level of granularity). In other words, context-for is a notion that is relative to a problem
to be solved (as in the formulations of [48] and [3]). One’s assessment of RIs, whether individual entities,
relationships or situations, can be conditioned on larger situations in which these occur. The specific RIs
of interest can be defined as a set of state variables, so called problem variables, which an agent wishes to
evaluate. A data fusion problem may be stated in terms of a set of problem variables and a utility function
on the accuracy of evaluating these variables.

It is not uncommon in fusion, that the variables to be estimated are not directly measured, or are not
accurate enough. In such cases, the values of problem variables may be inferred, or estimated, on the ba-
sis of other variables. Such inference, commonly performed by neural (NN) or Bayesian belief networks
(BN), assumes a model of the dependencies between measurement variables and problem variables. Afore-
mentioned models usually constitute from multiple layers of abstraction, where a set of items and relations
defining a CF can be called a set of context variables, while a set of items and relations of interest (the RI)
constitute the problem variables, and vice versa. Context variables are exogenous variables that the system
selects as means for evaluating problem variables, thus following distinction can be made:

• latent endogenous variables η (i.e. unobserved problem variables),

• latent independent, or exogenous, variables ξ,

• γ an observed endogenous indicators of latent endogenous variables η,

• observed exogenous indicators of latent exogenous variables ξ.

As explained in [140], exogenous variables may be selected for evaluation as means to resolving observed
or latent problem variables. Fig. 1.9 represents relationships among problem and contextual elements. Both
context variables and problem variables may be known a priori and both can contain static and dynamic
variables. For example, context variables in ground target tracking can include the static (local terrain)
and dynamic variables (weather). Dependencies between problem variable and context variables can be
represented by means of factor graphs that contain the problem situation as a subgraph. Fig. 1.10 represents

Figure 1.9: Relation of problem variables and contextual variables [140].

hierarchical relationships between reference items and contexts for these items. Context variables are
typically chosen on the basis of their utility in solving a given problem.

One of the major challenges of modeling and exploiting problem contexts (CF) is determining the
selection of context variables. In general, such selection should be based on a constraining ontology of
context variables and their relations with problem variables, i.e relevancy and consistency. A context
variable can be called relevant to a set of problem variables, if the values of these problem variables are
dependent on the context variable under consideration. Alternative measure of the context relevance can be
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Figure 1.10: Hierarchical relation of problem variables and contextual variables [142].

constituted as the increase in information gain when a particular CI is being inferred. Therefore, relevant
context variables can be inferred by means of the problem variables. This is done on the basis of three
factors:

• the utility assigned to the given degree of problem variable accuracy,

• the likelihood of achieving that accuracy by some course of action (e.g. by selection, acquisition and
processing of context variables),

• the cost of the course of action, which may involve costs of data collection, communications and
processing, as well as lost opportunity costs.

Selection of contextual variable assumes that the ambient “context of” (CO) reference items are known.
However, CO might be unknown or implicitly changed and thus it needs to be discovered. This scenario can
happen in highly dynamic environments, in which situational items and relationships constantly change.
Inconsistencies between the characteristics and behavior of the initial set and currently observed situational
items could be credited to either a new CO appearance or uncertainties in the models. Analyzes of this
inconstancies, from effect to cause, is an abductive process executed in the following steps:

• constructing or postulating hypotheses about possible CF,

• computing plausibility of these hypotheses,

• selecting the most plausible hypothesis.

A very important consideration here is the quality (credibility, reliability, etc) of the reference items. Ab-
ductive reasoning for context discovery in fusion applications has to take into account the lack of complete
knowledge about contextual and problem variables at all required levels of granularity. The process of
context discovery may also serve as a means for problem variable evaluation.

1.2.1 Context Inclusion in Low-Levels of Fusion
Data fusion processes at signal or object refinement levels [17] allows incorporating different kind of
external factors, such as equality and inequality constrains, which can be modeled as linear or non-linear
functions of the state vectors. In majority of cases, the context information is at JDL levels 0 and 1
implemented as a constraining factor since it bounds or limits the state evolution. The knowledge of
context can be applied to any of the three low-level fusion functions, depicted as fusion nodes (Fig. 1.11),
complemented with a management process [50]:

• Data alignment (also known as common referencing): normalization operations are performed, such
as coordinate or units transformations and uncertainty transformations, to align data from informa-
tion sources to be fused.

• Data association: multiple inputs of either estimates or measurements are examined in order to
determine which (hypothetical) entity that the system believes to exist they are associated to or
originate from.

• State estimation: often about entity attributes (e.g., kinematic properties, classification attributes
such as color, identity, etc.) exploiting prediction models and estimation/inference processes.
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• Fusion management: actions to control the output of fusion processes, such as creation, deletion,
merging, etc.

Figure 1.11: Fusion node and adaptation to context [50].

Contextual information (CI) exploitation has been recently considered in the design of modern object
tracking algorithms [18]. An exhaustive overview of the context-driven fusion approaches is reported by
Snidaro et. al and Simon in [134] and [127], respectively. For the purpose of this thesis, a spacial attention
is given to approaches which exploits context in aiding the data association and filtering processes.

Data Association

Data association can be characterized as the process of associating uncertain measurements to existing
tracks or alternatively existing tracks to measurements. This problem encompasses a number of challenges
related to the track detection, maintenance, and deletion in either single or multi-senor and possibly multi-
targets scenarios. Commonly used solutions to this challenging problem are based on probabilistic data
association (PDA) strategies. Recent works on context exploitation for data association can be decided
among:

• Adaptive association probabilities calculation [90], [90],

• Hypothesis reduction and argumentation techniques [29], [42].

Whereas in many works the detection probability of PDA is set up once, Lherbier et al. [90] proposed
a method that estimates the detection probability for each object dynamically using the contextual infor-
mation modeled by a Bayesian Network (BN-JPDA). BN infers detectability and visibility of an object as
contextual relationships to its’ observation, whereas nodes between two objects are modeled as and occcul-
tations. Proposed method shows an efficient behavior on real data compared to the usual JPDA approach.
Analogously in [90], Bayesian networks are used for computing the evolution of the detection probabilities
in a convoy tracking scenario within busy urban environment. Contributions of this article are threefold.
First, a labeled version of the Gaussian Mixture Cardinalized Probability Hypothesis Density (GMC-PHD)
that allows to differentiate the tracks was introduced. The second contribution concerns the hybridization
of the GMC-PHD algorithm to the Variable Structure Interacting Multiple Model with Constraints Mul-
tiple Hypothesis Tracking (VS-IMMC-MHT) algorithm in order to improve the performances, specially
for group of closely spaced objects. Finally, the third contribution concerns the convoy model by using
DBN that proposes an original answer to convoy detection process. The authors in [104] apply a simple
PDA where a weighted average over all feasible plot-target assignments is performed. Proposed method
incorporates context information, such as road-map and terrain data, and a refined sensor model to include
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the clutter notch in the tracking process. Results based on simulation scenarios show a significant improve-
ment of the tracking performance in terms of track precision and track continuity. Authors in [29] use map
information to prevent unnecessary hypothesis branching during MHT tracking and improve the state esti-
mation accuracy by considering the road network information. An analogous strategy was applied in [42]
in order to boost the efficiency of aforementioned method. A framework for feedback multi-target tracking
that accounts for scene context was proposed in [99]. Information about target birth and spatially persistent
clutter are incrementally learned based on mixtures of Gaussians. The corresponding models are used by a
PHD filter that spatially modulates strength of a particular hypothesis given the learned CI. In cases where
the measurements are not well described as Gaussian random variables the standard association based on
the chi-squared metric will likely fail. Stubberun et al. [144] suggest to enhance the concept of chi-squared
metric by a fuzzy-logic based association, by exploiting variable scale target location region, capable of
handling the non-Gaussian measurements. Article [87] describes a modification of an association algo-
rithm for object tracking based on the evidence theory. Information such as bathymetric data is used to
describe the influence on location possibilities of a submarine or a ship.

Bayesian Filtering

Contextual information can be in the form of equality and/or inequality constraints exploited for the linear
or non-linear systems based on following techniques [127]:

• Linear systems with inequality constrains

– Estimate Projection [128],

– Gain Projection [56],

– Probability Density Function Truncation [129],

– Interior Point Likelihood Maximization [12],

– Second Order Expansion of Nonlinear Constraints [162],

– Moving Horizon Estimation (MHE) [116],

• Linear systems with equality constrains

– Model Reduction [157],

– Perfect Measurements [28],

– System Projection [77],

• Non-linear Systems

– Moving Horizon Estimation (MHE) [117],

– Sequential Monte Carlo (SMC) [2], [152].

The Kalman Filter is an optimal estimator for the linear state space models, and thus the solution of choice
for the recursive constrains exploitation. If the constraints result in non-linear functions, a linearization step
is required before adopting the above mentioned techniques in the Kalman filter. If the constraints maintain
their non-linearities, non-linear filtering algorithms, such as Extended Kalman filter (EKF), Unscented
Kalman filters (UKF) or Particle filters (PF), need to be employed for the target estimation purposes.
According to [112], an underlying aspect when comparing constrained Bayesian filters is the entry point
of the constraint, that is either prediction or measurement update of the filter.

Kalman filters are commonly used to estimate the states of a dynamic system. However, in the appli-
cation of Kalman filters there is often known model or signal information that is either ignored or dealt
with heuristically. The idea of using state constraints to improve the tracking performance dates back to
the 90s, when attempts to exploit hard linear equality constraints in Kalman filtering led to the definition
of the pseudo-measurements approach [150]. A rigorous analytic method of incorporating state inequality
constraints in the Kalman filter was proposed by Simon et al. [128]. At each time step the unconstrained
Kalman filter solution is projected onto the state constraint surface in order to improve the prediction ac-
curacy of the filter. A gain projection approach for KF was introduced by Gupta et. al. [56]. Another
possibility to induce inequality constrains to the Kalman filter is by truncating the probability density
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function (PDF) [129]. In this approach, KF estimates the constraints and then computes the constrained
filter estimate as the mean of the truncated PDF. Simulation results obtained from turbofan engine model
demonstration shows, that incorporation of state variable constraints increases the computational effort
of the filter but also improves its estimation accuracy. In [12] authors have shown, how interior point
methods can be applied to maximize the Kalman-Bucy smoother likelihood subject to nonlinear inequality
constraints. A key contribution of this approach is that it exploits the same decomposition that is used
for unconstrained Kalman-Bucy smoothers and so the required operations scale linearly with the number
of measurements. In [116] authors consider moving horizon strategies for constrained linear state estima-
tion. Authors argue, that formulating a linear state estimation problem with inequality constraints, prevents
recursive solutions such as Kalamn filtering, and, consequently, the estimation problem grows with time
as more measurements become available. To bound the problem size, authors proposed moving horizon
strategies for constrained linear state estimation.

Wen et al. [157] introduce an algorithm for implementing multi-sensor system in model-based envi-
ronment with consideration of equality constraints. Authors suggested to improve effectiveness of sensor
data fusion through consistent representation of environment geometry, effective sensor modeling and an
optimal estimation algorithm. Authors utilize CAD model in order to generate geometric features and
constraints of the environment. Measurement models are used to predict sensor response to certain fea-
tures and to interpret raw sensory data. Constrained minimum mean squared (MMS) estimator is used to
recursively predict, match and update the location of features. A constrained filtering method is proposed
in [28] in order to deal with the filtering problems for nonlinear systems with constraints. Authors, con-
vened the problem into a sequence of recursive estimation problems, in which, the system equations and
constraint conditions are treated as pseudo-measurements. To resolve the singularity problem arising from
the constraints, a modified maximum-likelihood method for nonlinear systems was proposed. The state
estimation problem for linear systems with linear state equality constraints was thoughtfully analyzed in
[77]. Authors construct the optimal estimate, which satisfies linear equality constraints, from the noisy
measurements. By using the constrained Kalman filter for the projected system and comparing its filter’s
Riccati equation with those of the unconstrained and the projected Kalman filters authors demonstrated,
that the constrained estimator outperforms the other filters for estimating the constrained system state.

State estimator design for a nonlinear discrete-time system is a challenging problem, further compli-
cated when additional physical insight is available in the form of inequality constraints on the state variables
and disturbances. One strategy for constrained state estimation is to employ on-line optimization using a
moving horizon approximation [117]. In the article authors propose a general theory for constrained mov-
ing horizon estimation for linear and nonlinear state estimation. In [2] the use of Sequential Monte Carlo
(SMC) methods for road constrained target tracking is considered. The proposed algorithm propagates the
joint PDF of the target kinematic state and target ID in a road constrained environment. Road map assisted
ground targets tracking is also considered in [152] and [143]. Authors model the target dynamics in quasi
one-dimensional road coordinates which are mapped onto the ground coordinates using linear road seg-
ments. Here the author proposes the use of a Gaussian sum algorithm within a Variable Structure Multiple
Models (VSMM) scheme. As long as the predicted estimate is inside the same road, a Kalman filter is used
to perform the update step. When the target approaches a junction, an on-road projection is necessary, and
a multiple hypotheses approach is followed. Hard inequality state constraints of airplanes flight envelope
are considered in [27]. During the measurement update of the filter, only particles that satisfy the constraint
are accepted and the rest are rejected from the cloud of independent particles. The proposed PF algorithm
converges to the true a posteriori PDF for a sufficiently large number of particles, but might be unfeasible
due to the computational load required. Mertens et al. [104] use topographic background information
to enhance the tracking of ground vehicles in complex dynamic environments. Presence of CI in such a
scenario significantly improved the quality and continuity of tracks, particularly during stop and go maneu-
vers and target masking due to Doppler blindness. Similarly, Gustafsson et al. [59] improved navigation
and tracking performance of road bound vehicles by imposing road constraints on their trajectories. The
so called road-assisted navigation, takes advantage of dynamic matching between the motion model of a
vehicle and the road network implemented as manifold. Road map assisted ground targets tracking is also
considered in [143]. The context-aided tracker or ConTracker [102] utilizes CI obtained from naval maps,
such as a water depth, trade route paths, and areas/buildings with a high strategic value, in order to detect
anomalies in the ship traffic. A refined GMTI sensor model with state dependent detection probability
and information about the clutter notch is proposed. Both equality and inequality constraints are used to
model the known road network. The latter are used to model non-zero width roads. The authors investigate
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the performance of both Gaussian sum and particles based approximations, in which the prediction step is
performed in road coordinates, while the update step is carried out in the 2D Cartesian space.

Multiple Model Filtering

Utilizing multiple cooperating filers, each optimized for a certain mode of the target, is a common practice
for dealing with targets which are either constantly maneuvering or actively avoiding the detection. In both
cases, context information can not only be utilized as a parameter in kinematic equations, but it can also
provide useful clues about the motion mode of the target. Most common approaches to context aware MM
filtering include:

• Feature aided tracking [148], [37],

• Gaussian mixture estimators [147],

• MC joint tracking and classification [6], [7].

As of now, target recognition and feature-aided tracking are the most common examples of the mode con-
text exploitation [148], [37]. Here, modal observations are modeled as classifiers over a set of plausible
target modes. Combination of context observations and the kinematic measurements leads to the joint
probability density of the likelihood function [164], [41]. According to the Bayesian recursion rule, up-
dates of the hybrid state densities results a mixture of Gaussians with an exponentially increasing number
of components. For this reason, a lot attention has been devoted for development of tractable approximate
estimators with resolvable computation time [41]. So called, image-enhanced IE-IMM is capable to sig-
nificantly enhance the performance of classical IMM when a readings from high quality modal sensor are
available, but this advantage diminishes as the quality of the mode observations becomes poorer. Alterna-
tively, Sworder et al. [147] decided to limit the growth of the Gaussian mixture components by a hypothesis
merging techniques, which lead to the development of Gaussian wavelet estimator (GWE). The compar-
ative simulation results indicates, that in some cases (e.g., strong context, poor kinematic data) GWE can
outperform IE-IMM and IMM counterparts by a 25% and 50%, respectively. An exact hybrid filter based
on change of measure that accounts for intermittent mode measurements was presented in [5], along with
an approximate, GPB-type implementation and EM-based estimation of the transition probability matrix.
More recent studies on feature-aided IMM tracking were presented by Blasch and Yang in [19] and [163],
respectively. In their work, authors present a mutual-aided target tracking and identification scheme that
exploits the couplings between the target kinematic and object features. In [101] the use of PF for littoral
tracking is proposed. The authors formulate the problem as Joint Tracking and Classification (JTC), where
a target class is assigned for each isolated land or water region. A similar approach is followed in [6],
where the authors propose a modified version of the JTC-PF algorithm that uses class-dependent speed
likelihoods. Based on recently proposed Monte Carlo techniques, a multiple model (MM) particle filter
and a mixture Kalman filter (MKF) are designed for two-class identification of air targets: commercial
and military aircraft. In [7] a variable structure multiple model particle filter (VSMM-PF) which uses the
concept of directional process noise to model motion along particular roads. The information available
through a road map is modeled using a Jump Markov system with state dependent transition probabilities.
Each road segment is represented by two way-points determining direction, location, and length of each
road. A binary valued probability represents the visibility constrains. The inequality constraints on target
speed are applied in prediction through the generation of random variables from a truncated Gaussian.

Dempster-Shafer Theory of Evidence

A commonly used alternative to the Bayesian filters is formulated as the Dempster-Shafer Theory (DST) of
fusion. DST is considered as one of major paradigm shifts for reasoning under uncertainty. Despite being
capable of combining the independent pieces of evidence, the DST has been also strongly criticized because
of its unexpected behavior and by providing counter-intuitive results when combining highly conflicting
information. However, it is genuinely agreed that Dempsters rule provides valid results in scenarios where
the initial conditions are respected and the problem is well modeled.

In [35] a real-time Generalized Data Association Multi Target Tracking systems (GDA-MTT) is pro-
posed on bases of proportional conflict redistribution (PCR) rules. PCR allows a very efficient target type
tracking and reduces drastically the latency delay for correct target type decision with respect to Demspter’s
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rule. A Two-Layer Conflict Solving (TLCS) data fusion scheme based on Dempster-Shafer Theory and on
Fuzzy-Pattern-Classification (FPC) concepts is proposed in [98]. Authors aim to provide an approach to
data fusion which offers a stable conflict scenario handling. Similarly in [122], fusion of each piece of
evidence is discounted in proportion to the degree that it contributes to the conflict. This way the contrib-
utors of conflict are managed on a case-by-case basis in relation to the problem they cause. Discounting
is performed in a sequence of incremental steps, with conflict updated at each step, until the overall con-
flict is brought down exactly to a predefined acceptable level. A Demspter-Shafer multi-level data fusion
composed of a multi-criterion fusion and a multi-sensor fusion was proposed in [85]. The benefits of the
proposed approach are twofold: first, contrary to conventional approaches, the source independences are
guaranteed. On the other hand, the consideration of the conflict as an additional source of information
for the decision step, allows the speed limit assistant to stay undecided about the final speed limit. These
benefits have been highlighted in the comparisons of this multi-level Speed Limit Assistant with a con-
ventional approaches. In [65], Hasse diagrams were utilized to improve the understandability of the PCR
methods. Through a comparative study, the advantage of PCR6 over PCR5 for more than three sources
was presented.

While there are numerous cases where DST was implemented for the navigation purposes, the articles
addressing the multi-sensor data fusion cases are nearly nonexistent. It is worth noting, that basic DST
formula is in complex fusion systems further altered by a human expert knowledge in order to improve
quality and reliability of the solution [160], [137]. In order to cope with a luck of expert knowledge or with
an unknown and unpredictable evidence, the DST was extended to new more flexible theories such as:

• Transferable Belief Model (TBM) [33], refutes the constraint on the frame of discernment and the
underlying probability model, which allows to allocate belief to the elements of the empty set,

• Dezert-Smarandache Theory (DSmT), extends the DST to allow usage of hybrid and dynamic mod-
els and solves numerical issues which originates while combining highly conflicting pieces of evi-
dence,

• Adaptive Combination Rule (ACR), which maximizes the conjunctive and the disjunctive rules based
on the distribution of the conflict according to a new choice of weighting coefficients,

• Proportional Conflict Redistribution (PCR) [130], [44], redistributes the partial conflicting masses
to the elements involved in the partial conflicts only, considering the conjunctive normal form of the
partial conflicts.

1.2.2 Context Inclusion in Higher-Levels of Fusion

Data fusion processes at situation assessment, impact assessment or process refinement deal almost elu-
sively with symbolic information sources. Exploitation of context in higher levels of fusion, i.e. JDL level
2 and above, was recently documented in [134]. Situation Assessment involves inferences of the following
types:

• Inferring the presence and the states of entities on the basis of relationships in which they participate,

• Inferring relationships on the basis of entity states and/or other relationships,

• Recognizing and characterizing observed situations,

• Projecting unobserved (e.g. future) situations.

In Situation Assessment, hypotheses concerning relationships and situations are built and evaluated. These
relationship and situation hypotheses can also be represented as factor graphs. In situation assessment
(as in all data fusion), the characteristic relationships are epistemic, i.e. between the information system
(cognitive agent) and inferred world states, reflecting the beliefs of the information system. The uncertainty
in these beliefs needs to be represented by an uncertainty metric, e.g. a likelihood, in the relationship
function [16].
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Situation Assessment

The fundamental principles of designing a situation-aware data fusion architecture has been discussed by
Steinberg and Rogova [142]. Briefly, the authors suggest to model events or situations in the world as a
set of relations and relationships in the form of factor graphs. In this sense, CI could seen as a background
knowledge which is associated to every relation pair or in different words to each node of the graph. The
uncertainty in these relations can be best described by a likelihood functions. Such a factor graphs could be
then used for the context reasoning either in logical or probabilistic manner. In the information fusion (IF),
contextual reasoning relates to an inference of problem variables i.e. desired information given the basis
of context variables i.e available information. Generally speaking, the process of finding a relevant context
is not trivial and often involves a complex integration of IF with planning, abductive logic and control
functions. For instance Steinberg [140] models contextual information as situations and suggests the use of
structural equation modeling (SEM) techniques for evaluating dependencies between problem and context
variables. In [119] context-dependent information quality attributes, namely, credibility, reliability, and
timeliness, are introduced and their incorporation into sequential decision making for pattern recognition
is discussed. In short, context is represented by the time-dependent distance between an observed target
and a sensor, and a situation-based time-dependent threshold on credibility.

Recent advances on artificial intelligence techniques in providing automatic and self-adaptive systems
were discussed by Suarez-Tangil et al. [145]. In their work, authors proposed security information and
event management (SIEM) system with self-adaptation capabilities capable of optimizing the operator in-
tervention routines. Machine learning is applied for rule extraction to classify reported events accordingly
to a context-based pattern definition of attacks. A proposal to dynamically represent context knowledge
with ontologies and evaluate anomalous situations is presented by Gomez-Romero et al. in [51]. This paper
proposes a double-layer fusion system for context-based situation and threat assessment with application
to harbor surveillance. The first layer uses an ontological model to formally represent input data and to
classify harbor objects and basic situations by deductive reasoning according to the harbor regulations. The
second layer applies belief-based argumentation (BAS) in order to determine the threat level of situations
which are considered to the unusual. The recent approach of Snidaro et al. [136] discusses the fusion
of uncertain sensory and contextual information for maritime situational awareness. In the article, events
and anomalies are key elements in the process of assessing and understanding the observed environment.
Building an effective situational picture for a surveillance system involves combining high-level informa-
tion with sensory data. The Markov Logic Networks framework is employed to both encode a priori and
contextual knowledge and to fuse evidence from multiple sources, possibly reasoning over incomplete data.
Application of agent-based systems into situation-aware information fusion has been discussed in [30], [4].

The problem of context reasoning, as an essential part of a situation and impact assessment respec-
tively, could be conveniently scaled into the problem of a plan recognition. Plan recognition seeks to infer
on a entity’s plan based on the observed entity’s actions and their effects. The role of CI in plan recognition
is twofold. Firstly it creates additional links between events and entities. Secondly it adjust our confidence
that an entity is following a certain plan. Probabilistic reasoning is the most popular approach in nowadays
plan recognition and as such approaches utilizing Bayesian networks (BN) and their variants are very pop-
ular [23], [94] or [154]. Furthermore, the casualty of relations and relationships, modeled by factor graphs,
could be directly translated into the BN as states/nodes at multiple hierarchical levels and at different time
slices i.e. dynamic Bayesian net works (DBN). As the target progresses trough the network and forming
a chain of events, then the BN could infer on target’s future actions based on its past. Similarly, relevant
context could be then discovered or selected based on target’s future or past actions, respectably.

Situation Assessment and Target Tracking

To the best of our knowledge, BN were for the first time proposed to aid object tracking by Hautaniemi and
Saarinen [61]. They intended to enhance the classic multiple target tracking (MTT) algorithm, based on
interactive multiple model filter (IMM) and probabilistic data association (PDA), with the quantities other
than kinematic measurements i.e. context. Authors argued that PDA was unable to deal with a contextual
information (CI) and therefore BN were developed as an additional inference method to aid data association
and track identification processes. In [115] DBN are used to capture the modal nature of the tracking sea
species. More specifically, the state space model of a tracked ocean animal was represented as a DBN
itself including both continuous (the velocities) and discrete variables (the propulsive mode of the animal,
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and the discrete observation variables). Such a hybrid system was then used to adapt the bandwidth of
the multiple model bootstrap filter based on the most probable models given their conditional probability
densities (CPDs). Schubert and Wanielik [123] argued that context in [61] does not influence the tracking
directly or in case of [115] a tracking procedure is computationally very expensive. Therefore, the authors
proposed their own approach for incorporating additional information into the IMM called the Meta Model
filter. With structure similar to BN, the Meta Model represent causality of events in form of an adaptive
transition probability matrix. Elements of such a matrix are nodes and states which represent the possible
modes and transitions to other modes respectively. The usefulness of such a Meta Model filtering was
demonstrated in a line change maneuver recognition algorithm for vehicles with uncertain velocities and
yaw rates. In their most recent publication [124], the authors leverage their expertise into development of
an Advanced Driver Assistance System (ADAS) using unified Bayesian approach for tracking and situation
assessment.

Aforementioned work assumes a priori knowledge of the transition probability matrix (TPM). How-
ever, the TPM is a design parameter whose choice could significantly influence the estimation process.
Therefore, algorithms which can identify the TPM during the course of tracking were extensively studied
in literature [68], [67]. Furthermore, variable structure algorithms, referred to as expected-mode augmen-
tation (EMA), for multiple-model estimation were developed [91], [92]. In EMA approach, the original
model set is augmented by a variable set of models intended to match the expected value of the unknown
true mode. An on-line maximum likelihood estimator for the transition probabilities associated with a jump
Markov linear system (JMLS) was proposed by Orguner et al. [110]. The maximum likelihood estimator is
derived using the reference probability method, which exploits an hypothetical probability measure to find
recursions for complex expectations. Expectation maximization (EM) procedure is utilized for maximiz-
ing the TPM likelihood function. These models are generated adaptively in real time as probabilistically
weighted sums of modal states over the model set.

1.3 Contribution and Objectives
In a short summary of Sec. 1.2, the process of context exploitation in the data fusion, especially in the field
of target tracking, is application oriented and offers very little of generality or adaptability to ever changing
environmental conditions. The principle frameworks capable of adaptive context exploitation across all
levels of fusion are still being developed. Until now, the context has been extensively exploited as a
parameter in system and measurement models which led to the development of numerous approaches for
constrained estimation and target tracking. Here, the spatial or static context is the most common source
of the ambient information, i.e. features, utilized for enhancement of the state variables. In the case of
multiple model estimators, context can not only be related to the state but also to a certain mode of the filter.
Common practice for multiple model scenarios is to represent states and context as a joint distribution of
Gaussian mixtures. These approaches are commonly referred as the join tracking and classification (JTC).
Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association.
Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally
governed by the empirical knowledge of the noise characteristics of sensors and operating environment,
i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on
context. CI in a form of events and entities’ intents, i.e. event or intent CI, and its relation to the time, i.e.
event-temporal and intent-temporal CI, has been recently considered for aiding the mode selection process.
The key idea was to utilize probabilistic reasoning to infer the mode state and/or the mode transition matrix
of the target. Aforementioned methodologies are only a few examples of CI utilization in the modern target
tracking systems. We believe that context awareness can be further enhanced by a tighter integration of the
reasoning techniques with the low-level fusion processes. In line with the idea we present the objectives of
this thesis as follows:

• Investigate a feasibility of a hybrid context reasoning approaches by utilizing probabilistic or logic-
based reasoning processes;

• Investigate possibility to incorporate temporal, spatial and logical context into a hybrid reasoning
architecture;

• Investigate feasibility of adaptive context exploitation and reasoning;
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• Evaluate proposed methodology against state of the art algorithms for information fusion, e.g. target
tracking, intent recognition, anomalies detection.

Contributions of the thesis are fourfold:

• An adaptive framework that dynamically takes into consideration contextual information in order
to support mission goals was presented. Furthermore, architecture concepts to be considered in the
development of context-aware fusion systems were discussed and illustrated in a maritime use-case
scenario (Sec. 3).

• The problem of multi-level context representation and exploitation for target tracking is presented in
Sec. 4. An approach for encoding different types of contextual information as likelihood functions
via classifiers in particle filters was proposed and evaluated on synthetic dataset.

• Framework discussed in the Sec. 5)views target actions as a hidden Markov process with an event
context associated with each node. Relevant context is at each time step selected based on immediate
and goal driven sets of actions. Inference in the HMM is conditioned on prior target measurements
and the belief state conditioned on context. This posterior is then compared with a target state
estimate in order to adjust switching probability in the Interactive Multiple Models (IMM) tracking
process.

• Context-aware grid-based environment mapping and obstacle detection techniques are discussed in
Sec. 6. A multi-sensor solution for general purpose environmental mapping, based on Bayesian
occupancy filter and Dempster-Shafer theory, which combines advantages of grid-based mapping
and situation assessment is presented and evaluated on autonomous driving vehicle scenario. It has
been shown, that discrepancies between the grid maps can be exploited in such a manner, where
fusion of contradicting information will be less susceptible to the sensor weighting and the accuracy
of mapped environment can be further improved.

1.4 Outline of the Thesis
The structure of the thesis follows schematics below (Fig. 1.12), where each block represent a chapter and
lanes outline the logical connections between individual chapters. Introduction Sec. 1 explains the motiva-
tion, objectives and state of the art of this work. Fundamental theory utilized for experiments throughout
the work is summarized in Sec. 2. The architecture for adaptive context-aware tracking is introduced in

Figure 1.12: Outline of the Thesis.

Sec. 3. Practicality and usefulness of newly introduced context exploitation concepts is demonstrated in
two tracking scenarios, extensively discussed in Sec. 4 and Sec. 5. Away from target tracking, the im-
portance of context is also demonstrated in the field of environment map building for autonomous vehicles
(Sec. 6).
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2
Fundamentals

“Always pass on what you have learned.”

2.1 System Theory
A physical system can be described by a general nonlinear state space model of time varying variables as

ẋt = f(x,u, v, t),
y = h(x,u, e, t).

(2.1)

Above model is characterized by a system state x, input signal u, measurements y, process noise v, mea-
surement noise e. Functions f(.) and h(.) can be either linear or non-linear function of the system evolution
and the measurement model, respectively. The linear time varying state space model can be written as

ẋt =Atxt + Bu
t ut + Bv

t vt,
yt =Ctxt + Du

t ut + wt,
(2.2)

where matrices At,Bu
t ,Bv

t ,Ct,Dt represent transitions of states, direct inputs, system noise uncertainties,
outputs, direct feedthrough, respectively. Linear system theory could be applied to non-linear systems by
using approximations over the set of linear models. Discrete time equivalent of the system equations (2.2)
can be obtained by sampling over time interval T

Fk =eAtT ,

Gu
k =

 T

0

eAtτdτ Bu
t .

(2.3)

Discrete time equivalent of the nonlinear system equations (2.1) is presented as (2.11).
Nearly constant velocity (CV) (2.4) and coordinated turn (CT) (2.5) models were employed for mod-

eling the system kinematics. 2D state space models are defined in the local level frame and read as follows
pxk+1
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vxk+1

vyk+1

 =
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and 
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. (2.5)

Uncertainties in state space model (2.4) and (2.5) are generated by a zero mean Gaussian distributed ac-
celeration noise ak = N (0, σ2

a). It is assumed, that ωk is a priori known parameter and therefore the
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angular velocity is not estimated within a state vector xk. This simplification avoid the usage of varying
structure multiple model estimators (VSMM). Simplified sensor models consisting directly from position
measurement are considered in the experiments.


yxk
yyk


=


1 0 0 0
0 1 0 0


pxk
pyk
vxk
vyk

+


wx

k

wy
k


(2.6)

Uncertainties in observations are modeled by a Gaussian distributed white noise wk ≈ N (0, σ2
w) both for

x and y components.

2.2 Information Fusion
The general information fusion theorem of n ∈ {1, . . . , N} independent sources [58] can be for a linear
system equations (2.2) expressed as

Ik =I1 + I2 + · · ·+ In,

x̂k =I−1
k (I1x̂2 + I2x̂1 + · · ·+ x̂nIn),

(2.7)

where x̂k is the estimate and Ik is an information matrix and product x̂kIk = fk is referred as an information
state. The information can thus be seen as weighting of the estimates. In case of the weighted least square
estimate x̂WLS leads to the well known formulas

Ik =

N
n=1

HT
nR−1

n Hn,

fk =

N
n=1

HT
nR−1

n yn,

x̂WLS
k =I−1

k fk.

(2.8)

If the estimates are updated sequentially in space or time expressions (2.8) will become

Ik =Ik−1 + HT
k R−1

k Hk,

fk =fk−1 + HT
k R−1

k yk,

x̂WLS
k =I−1

k fk.

(2.9)

The loss function minVk(x) is for WLS estimate defined as

minVk(x) =

K
k=1

(yk − Hkx̂k)
T R−1

k (yk − Hkx̂k). (2.10)

2.3 Bayesian Estimation
Consider a general discrete time state space system of a form

xk+1 = fk(xk) + gk(vk) or p(xk+1|xk), (2.11)

yk = hk(xk) + wk or p(yk|xk), (2.12)

where fk and gk are nonlinear functions of the target state vector xk and process noise vk, respectively.
Variable hk represents a nonlinear relationship between sensor output yk and target state vector xk affected
by a measurement noise wk. The goal of estimation is to infer the state variable xk with the available sensor
measurements y1:k. By using the Bayesian framework, this estimation problem relates to the recursive
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evaluation of the probability density function (PDF) p(xk|y1:k) in two consecutive steps, the prediction
and the measurement update of the state vectors.

p(xk−1|y1:k−1)
Prediction−−−−−→

Update
p(xk|y1:k−1) (2.13)

p(xk|y1:k−1)
Measurement−−−−−−−→

Update
p(xk|y1:k) (2.14)

The prediction state density p(xk|y1:k−1) of state xk is calculated from the prior PDF p(xk−1|y1:k−1) by
using Chapman-Kolmogorov equation

p(xk|y1:k−1) =


p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (2.15)

Equality (2.15) follows the 1st order Markov property which assumes that p(xk|y1:k−1) only depends on
state xk and xk−1 at time k and k − 1 respectively. The measurement update p(xk|y1:k) is computed from
the prior distribution (2.15) and measurements y1:k by a Bayesian formula which results in

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(2.16)

The 1st order Markov property for equation (2.16) implies that p(xk|y1:k) only depends on measurement
yk at time k.

2.3.1 Kalman Filter
Given that system model, represented by distributions p(xk+1|xk) (2.11) and p(yk|xk) (2.12), is linear and
Gaussian distributed, the best linear unbiased estimate of the PDF p(xk|y1:k), i.e. solution to the Bayesian
recursion (2.13) and (2.14), is provided by the Kalman filter (KF) [58]. The linear sate space densities for
prediction (2.13) and measurement update (2.14) can be for KF reformulated explicitly as

p(xk|y1:k−1) = N (xk; x̂k|k−1,Σk|k−1), (2.17)

and
p(xk|y1:k) = N (xk; x̂k|k,Σk|k), (2.18)

respectively. The Gaussian mean x̂k|k−1 and covariance Σk|k−1 are for the state evolution N (xk; x̂k|k−1,Σk|k−1)
computed as

x̂k|k−1 = Fk−1x̂k−1|k−1 + Gk−1vk−1,

Σk|k−1 = Fk−1Σk−1|k−1FT
k−1 + Gk−1Qk−1GT

k−1.
(2.19)

The measurement update (2.18) of the Kalman filter reads as follows

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1),

Σk|k = (I − KkHk)Σk|k−1,

Kk = Pk|k−1HT
k (HkΣk|k−1HT

k + Rk)
−1.

(2.20)

2.3.2 Extended Kalman Filter
Kalman filter solution to the nonlinear state estimation problem is commonly reffed as the Extended
Kalman Filter (Alg.: 1). In comparison to the Kalman filter recursion, EKF linearizes the system equations
(2.11, 2.12) by applying 1st order Taylor series expansion around the latest state estimate, i.e.

fk(xk) ≈ fk(x̂k) + Fk(xk − x̂k|k),
gk(xk) ≈ fk(x̂k) + Gkvk,
hk(xk) ≈ hk(x̂k) + Hk(xk − x̂k|k),

(2.21)
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where

Fk =
∂fk(x, v)

∂x
⇒

∂fk(x̂k|k, 0)
∂x

,

Gk =
∂fk(x, v)

∂v
⇒

∂fk(x̂k|k, 0)
∂v

,

Hk =
∂hk(x)
∂x

⇒
∂hk(x̂k|k−1)

∂x
.

(2.22)

Single step of the Extended Kalman filter is presented as the Alg. 1 shown below.

Algorithm 1: Extended Kalman filter
Step 0: Initialize
Set x̂k−1|k−1 = x0 and Σk−1|k−1 = Σ0

Step 1: Time update

x̂k|k−1 = fk−1(x̂k−1),
Σk|k−1 = Fk−1Σk−1|k−1F

T
k−1 +Gk−1Qk−1Gk−1

T ,

Step 2: Measurement update

x̂k|k = x̂k|k−1 +Kk(yk − hk−1(x̂k|k−1)),

Σk|k = Σk|k−1 −KkSkKk
T ,

Sk = HkΣk|k−1Hk
T +Rk,

Kk = Σk|k−1Hk
TSk

−1.

2.3.3 Particle Filter
Arguably, the most popular algorithm to nonlinear recursive estimation is the particle filter (PF), exten-
sively evaluated in [57]. PF represents any arbitrary probability density function p(xk|y1:k) by samples or
particles xi

k, i.e.
xi
k ≈ p(xk|y1:k), i = 1, . . . , N. (2.23)

The particles are used to form an approximative distribution as

p(xk|y1:k) ≈ p̂(xk|y1:k) =

N
i=1

wi
k|kδ(xk − xi

k),

N
i=1

wk|k = 1, (2.24)

where p̂(xk|y1:k) is an approximated distribution, δ(xk − xi
k) is a the Dirac delta function and wi

k|k the
weights of the particles. The time update of the Bayesian recursion (2.11) is in case of PF evaluated as

p(xk|y1:k−1) ≈


p(xk|xk−1)

N
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1)dxk−1,

≈
N
i=1

wi
k−1|k−1


p(xk|xk−1)δ(xk−1 − xi

k−1)dxk−1,

≈
N
i=1

wi
k−1|k−1p(xk|xk−1).

(2.25)

The particles xi
k−1 in above equations (2.25) are sampled from proposal distribution π(xk|xi

k−1), i.e.
xi
k−1 ≈ π(xk|xi

k−1). Proposal distribution is very often defined by the state transition PDF, that is
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π(xk|xi
k−1) = p(xk|xi

k−1). In this case, the weights updates results to

wi
k|k−1 =

p(xi
k|xi

k−1)

π(xi
k|xi

k−1, yk)
wi

k−1|k−1 =
p(xi

k|xi
k−1)

p(xi
k|xi

k−1)
wi

k−1|k−1 = wi
k−1|k−1. (2.26)

The measurement update p(xk|y1:k) (2.12) is computed by a Bayesian formula (2.16), which can be in
terms of the particles xi

k represented as

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1) ≈
N
i=1

wi
k|k−1p(yk|xk)δ(xk − xi

k). (2.27)

Denominator in (2.16) is only a normalizing factor independent of xk thus can be safety omitted if the
distribution is numerically normed as shown by (2.27). Similarly, the particle filter weights are updated as

wi
k|k =

wi
k|k−1p(yk|x

i
k)N

j=1 w
j
k|k−1p(yk|x

j
k)

. (2.28)

The MC recursion tempt to degrade over time as all relative weights would tend to zero except for one
that tends to one. Therefore, when particle depletion ratio reaches 0.5 a Sampling Importance Resampling
(SIR) or Sampling Importance Sampling (SIS) techniques are applied in the recursion. A single step of the
Particle filter algorithm is presented as the Alg. 2.

Algorithm 2: Particle filter
Step 0: Initialize
Initilaze particles according to x̂

(i)
0 = p(x0) and appropiate weights w(i)

0|0 for all i = 1, . . . , N.

Step 1: Time update
Generate new particles according to the proposal distribution

xi
k ≈ π(xk|xi

k, xk), ∀i ∈ {1, . . . , N}

Update the weights according to

wi
k|k−1 =

p(xi
k|x

i
k−1)

π(xi
k|x

i
k−1,yk)

wi
k−1|k−1.

which in case π(xk|xk−1, yk) = p(xk|xi
k−1) simplifies to wi

k|k−1 = wi
k−1|k−1.

Step 2: Measurement update
Claculate importance weights according to

wi
k|k =

wi
k|k−1p(yk|xi

k)N
j=1 wj

k|k−1
p(yk|xj

k)
, ∀i ∈ {1, . . . , N}

Step 3: Resampling
Apply sampling importance resampling (SIR) or sampling importance sampling (SIS) when the
particle depletion ratio reaches 0.5.

2.3.4 Interactive Multiple Model Filter
Assume a discrete state space system (2.11, 2.12) with Markovian coefficients

xk = fk(mk)xk−1 + gk(mk)vk or p(xk,mk|xk−1) (2.29)

yk = hk(mk)xk + wk or p(yk|mk, xk). (2.30)
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Parameter mk is a mode state taking values (1, 2, ..., Nm) and represents the current system model in
use. The history of the mode state mk can modeled as a homogeneous Markov chain with transition
probability matrix (TPM) πji

k−1|k−1 = p(mi
k|m

j
k−1). The goal of estimation in Markovian jump systems

(MJS) framework is to infer the posterior density of the target xk for a specific model history mi
1:k with

the available sensor measurements y1:k. This estimation problem relates to the recursive evaluation of the
probability density function p(xk|mi

k, y1:k) over all possible mode sequences mk that end in the mode mi
k

in five consecutive steps (2.31 - 2.35).

p(mj
k−1|y1:k−1)

Mixing−−−−→ p(mi
k|y1:k−1) (2.31)

p(xk−1|mj
k−1, y1:k−1)

Mixing−−−−→ p(xk−1|mi
k, y1:k−1) (2.32)

p(xk−1|mi
k, y1:k−1)

Prediction−−−−−→
Update

p(xk|mi
k, y1:k−1) (2.33)

p(mi
k|y1:k−1)

Mode−−−→
Update

p(mi
k|y1:k) (2.34)

p(xk|mi
k, y1:k−1)

Measurement−−−−−−−→
Update

p(xk|mi
k, y1:k) (2.35)

Product of the posterior probability of the mode sequence p(mi
k|y1:k) (2.34) and the posterior distribution

over the system state p(xk|mi
k, y1:k) (2.35) conditioned on the mode sequence mi

k can be seen in a view
of total probability theorem as the p(xk|y1:k) defined as

p(xk|y1:k) =

Nm
i=1

p(mi
k|y1:k)p(xk|mi

k, y1:k). (2.36)

The recursion (2.31 - 2.35), extensively discussed in Sec. 5.3.1, yields a common approximation of
p(xk|y1:k) in (2.36) by a Gaussian mixture with N2

m components i.e.

p(xk|y1:k) ≈
Nm
i=1

µi
kN (xk; x̂ik|k,Σ

i
k|k). (2.37)

The number of components in the Gaussian mixture (2.37) grows exponentially over time, therefore tech-
niques such as pruning or merging are used to reduce the number of Gaussian mixture components [93].
Interactive Multiple Model (IMM) filter introduced by Blom and Bar-Shalom [20] approximates posterior
mode probabilities µi

k in equation (2.37) with

µi
k ≡p(mi

k|y1:k),

µi
k =

N (yk; ŷik|k−1,Si
k)Σ

Nm
j=1πjiµ

j
k−1

ΣNm

l N (yk; ŷlk|K−1,S
l
k)Σ

Nm
j=1πjlµ

j
k−1

,
(2.38)

Mode transition probability πji
k−1|k−1 = p(mi

k|m
j
k−1) is genuinely assumed to be known a priori and to be

constant time invariant matrix. With such an approximation the overall posterior mean x̂k|k and covariance
Σk|k are equal to formulas (2.39) and (2.40) respectively.

x̂k|k =

Nm
i=1

µi
kx̂ik|k (2.39)

Σk|k =

Nm
i=1

µi
k[Σ

i
k|k + (x̂i

k|k − x̂k|k)(x̂
i
k|k − x̂k|k)

T ] (2.40)

This estimate (2.39) and covariance (2.40) can be given to the user as the output. The mode conditional
means {x̂i

k|k}
Nm
i=1, covariances {Σi

k|k}
Nm
i=1 and mode probabilities {µi

k}
Nm
i=1 must be calculated recursively

from their previous values {x̂i
k−1|k−1,Σ

i
k−1|k−1, µ

i
k−1}

Nm
i=1. A single step of the IMM filter is presented

as the Alg. 3.
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Algorithm 3: Interactive Multiple Model filter
Step 1: Mixing
Calculate the mixing probabilitis {µji

k−1|k−1}
Nm
i,j=1 as

µji
k−1|k−1 =

πjiµ
j
k−1

ΣNm

l=1πliµl
k−1

.

Calculate the mixed estimates {x̂0i
k−1|k−1}

Nm
i=1 and cova- rainces {Σ0i

k−1|k−1}
Nm
i=1 as

x̂0i
k−1|k−1 =

Nm
j=1

µji
k−1|k−1x̂

j
k−1|k−1,

Σ0i
k−1|k−1 =

Nm
j=1

µji
k−1|k−1[Σ

j
k−1|k−1 + (x̂j

k−1|k−1 − x̂0i
k−1|k−1)(x̂

j
k−1|k−1 − x̂0i

k−1|k−1)
T ].

Step 2: Mode matched prediction update
For ith model, i = 1,...,Nm caluclate the predicted estimate x̂i

k|k−1 and covariance Σi
k|k−1

from the mixed estiamte x̂0i
k−1|k−1 and covariance Σ0i

k−1|k−1 as

x̂i
k|k−1 = F ix̂0i

k−1|k−1,

Σi
k|k−1 = F iΣ0i

k−1|k−1F
iT +GiQGiT .

Step 3: Mode matched measurement update
For ith model, i = 1,...,Nm caluclate the updated estimate x̂i

k|k and covariance Σi
k|k

from the mixed estiamte x̂i
k|k−1 and covariance Σi

k|k−1 as

x̂i
k|k = x̂i

k|k−1 +Ki
k(yk − ŷik|k−1), Σ

i
k|k = Σi

k|k−1 −Ki
kS

i
kK

i
k
T
,

ŷik|k−1 = Hix̂i
k|k,

Si
k = HiΣk|k−1H

iT +DiRDiT ,

Ki
k = Σi

k|k−1H
iTSi

k
−1

,

and the updated mode probability µi
k as

µi
k =

N (yk; ŷ
i
k|k−1, S

i
k)Σ

Nm
j=1πjiµ

j
k−1

ΣNm

l N (yk; ŷlk|K−1, S
l
k)Σ

Nm
j=1πjlµ

j
k−1

.

Step 4: Output estimate calculation
Calculate the overal state estimate x̂k|k and covariance Σk|k as

x̂k|k =
Nm
i=1

µi
kx̂

i
k|k, Σk|k =

Nm
i=1

µi
k[Σ

i
k|k + (x̂i

k|k − x̂k|k)(x̂
i
k|k − x̂k|k)

T ].
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2.4 Dempster-Shafer Theory
Suppose a following frame of discernment (FOD) (Fig. 6.6 right) for a power set 2{O,F}

2X = {∅, O, F,Ω}. (2.41)

Symbols O, F , ∅ and Ω represent the occupied, free, null and the conflict set, respectively. Set ∅
will always have a mass function equal to zero mk(∅) = 0, since a cell must be in any of the states
mk ∈ {O,F,Ω} defined in the FOD (2.42). The latter set is especially interesting since it represents the
status of a cell being neither free F nor occupied O but in conflict Ω. Even though the power set 2X

is composed of four propositions, it can be seen from basic probability assignment (BPA) theorem that
masses mk(O) and mk(F ) are sufficient to fully describe the whole FOD (2.41).

A∈2X

mk(A) = mk(∅) +mk(O) +mk(F ) +mk(Ω) = 1,

m(Ω) = mk(O ∪ F ) = 1−mk(O)−mk(F ),

mk(∅) = 0.

(2.42)

Belief X of FOD 2X is a resulting probability that accounts for all the evidence that supports the proposi-
tion X . It represents the degree to which X , in our case occupied or free X ∈ {O,F}, is believed to be
true.

Bel(X) =

A⊆X

m(A). (2.43)

On the other hand, plausibility of set X ∈ {O,F} of FOD 2X considerate the evidence that does not
provide knowledge about the preposition X . It therefore represents the degree to which X is believed not
to be false.

Pl(X) = 1−


A∩X=X ,A∈2X

m(A). (2.44)

According to DST, two sources of information mk(1) and mk(2) are combined into a fused belief function
mk(12) through the operator ⊕, which could represent either conjunction ∩ or disjunction ∪ formula, in
accordance with X ̸= ∅ (2.45) and X = ∅ (2.46)

mk(12)(X) = (mk(1) ⊕mk(2))(X) =
(mk(1) ∩mk(2))(X)

1− (mk(1) ∩mk(2))(∅)
, (2.45)

mk(12)(∅) = (mk(1) ⊕mk(2))(∅) = 0. (2.46)

The (mk(1) ∩mk(2))(X) is the conjunctive combination rule such that

(mk(1) ∩mk(2))(X) =


A∩B=X;A,B∈2X

mk(1)(A)mk(2)(B). (2.47)

The denominator of (2.45) is a normalization factor where the (mk(1) ∩mk(2))(∅) is a measure of a con-
flict between sources of information. If combining information is highly contradicting, term (mk(1) ∩
mk(2))(∅) becomes close to 1 and denominator of (2.45) become close to zero. That is the fundamen-
tal weakens in DST theory and underlaying topic of criticism. Furthermore, it can be shown that the
Dempster-Shafer combination rule is commutative and associative. Therefore, the fusion of n sensors
{mk(1),mk(2), . . . ,mk(n)} can be performed sequentially, as follows

mk(12n)(X) = ((mk(1)(X)⊕mk(2)(X))⊕ . . . )⊕mk(n)(X). (2.48)

2.5 Data Association
In general, information about target behavior is obtained by no = (1, ..., No) spatially distributed sensors
(observers). We denote the observer locations by pno

o , and allow them to vary in time. At any particular time
step k the combined set of measurements from all available observers will be denoted by y = (y1, ..., yNo),
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where yno = (yno,1, ..., yno,Ny ) is the vector comprising of the number of Ny measurements originated
from the no-th observer. During the course of tracking, measurements may not only originate from the
target itself but also from false alarms e.g. clutter. Additional clutter measurements could be a result
of multi-path effects, spurious objects, sensor errors, etc. For this reason, number of measurements Ny

originated from each sensor (observer) yno is not necessary constant but varies over time. We assume that
each target could generate at most one measurement per sensor at the given time k. We further assume that
several or all measurements may arise due to clutter.

We refer to the assignment of either measurement to target or target to measurement as the data asso-
ciation process, with the later being utilized here. Both formulations carry the same information, but are
used in different contexts. We define target to measurement association hypothesis as θ = (θ1, ..., θNo),
where θno = (rno , yno

c , yno
t ) is the target to measurement association hypothesis at the no-th observer,

with yno
c and yno

t being the number of clutter and target originated measurements, respectively. Note that
yno = yno

t + yno
c . Elements of the association vector rno = (rno,1, ..., rno,Nt) are given by

rno,nt =


0 if the target nt is undetected by an observer no,

yno ∈ (yno,1, ..., yno,Ny ) if the target nt generated the measurment ny

at observer no.

(2.49)

We assume that measurements originated from a single observer are conditionally independent from
each other and of those originated from other observers. Therefore, the measurement likelihood p(y|x) can
be factorized based on the measurement to target association hypothesis as follows

p(y|x, θ) =
No

no=1

 Nyc
nyc=1

pno
c (yno,nyc )

Nt
nt=1

pno(yno,rno,nt |xnt)


. (2.50)

Likelihood pno
c is the clutter model defined for the observer no, which is genuinely assumed to be uniform

over the volume of measurement space Vno . Therefore, equation (2.50) could be simplified to

p(y|x, θ) =
No

no=1


(Vno)

yno
c

Nt
nt=1

pno(yno,rno,nt |xnt)


. (2.51)

The likelihood in the second product can be rewritten as

pno(yno,rno,nt |xnt) =


1 if rno,nt = 0,

pno
t (yno,rno,nt |xnt) otherwise.

(2.52)

The association hypothesis θ might not be know a priori, and thus needs to be estimated or marginalized
from the problem. To achieve this in a Bayesian framework it is necessary to define a prior distribution
p(θ) over the association hypothesis θ. We assume the prior p(θ) to be independent of the state vector and
past values of association hypothesis. Thus, the prior can be factorized over the observers no as follows

p(θ) =

No
no=1

p(θno). (2.53)

Prior p(θno) is for the each observer no defined as

p(θno) = p(rno |yno
c , yno

t )p(yno
c )p(yno

t ) (2.54)

where yno
c and yno

t are clutter and target originated measurements at observer no, respectively. Measure-
ment to target associations at observer no are included in vector rno . Furthermore, we define p(rno |yno

c , yno
t ),

p(yno
c ) and p(yno

t ) as follows

p(rno |yno
c , yno

t ) = [Nθno (yno
c , yno

t )]−1 (2.55a)

p(yno
c ) = (θno

c )yno
c exp(−θno

c /yno
c !) (2.55b)

p(yno
t ) =


xt

yno
t


p

yno
t

d (1− pd)
xt−yno

t . (2.55c)
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The number of valid hypotheses for a given number of target measurements equals to

Nθno (yno
c , yno

t ) =


xt

yno
t


yno !

(yno − yno
t )!

(2.56)

Equation (2.56) enumerates the number of possible associations between the detections yno
t and the targets

xt multiplied by the number of ways a subset yno
t can be chosen from the available measurements yno

t . The
number of clutter measurements is assumed to be Poisson distributed with rate parameter of θno

c , which is
supposed to be fixed and known. It is common practice to define the rate parameter θno

c in terms of the
spatial density of the clutter µno constrained by the volume of measurement space Vno , i.e. θno

c = µnoVno .
Assuming that all targets xt share the same fixed and known detection probability pd, the association prior
Nθno can be factorized over the individual target associations as

p(θno) = p(yno
c )

Nt
nt=1

p(θno)p(rno,nt |rno,1:nt−1) (2.57)

where

rno,1:nt−1) ∝


1− pd if yno = 0,

0 if yno > 0 and yno ∈ {rno,1:nt−1},
pd/yno,nt otherwise.

(2.58)

Vector of unassigned measurements yno,nt = yno − yno,l, where l : rno,nl ̸= 0 l ∈ (1, ..., nt − 1), takes
into account the assignment of previous associations (nt − 1). Note that this sequential factorization can
be performed over any permutation of the target ordering. Note further, that the prior for the number of
target detections is implicitly captured by the factorization of the association vector, and hence disappears
from the expression for the prior. This factorization will aid in the design of efficient sampling strategies
to combat the curse of dimensionality with an increase in the number of targets.

2.6 Bayesian Target Tracking
A high level implementation of Bayesian tracking logic (Fig. 2.1), for system defined by (2.11) and (2.12),
will be discussed here.

Figure 2.1: Track handling in a target tracking.

• Initialization, at time stamp k = 0 initialize tentative tracks, construct initiator, from all measure-
ments yk=1.

initiator = initialize(state estimate, state covariance,meas. estimate, inovation covariance, . . .

age, last update time,M/N logic state, score, . . . )

• Prediction update, compute prediction update of a state p(xk|y1:k−1) and measurement vector
p(ŷk+1|xk, y1:k−1) according to (2.15) for each track initiator.

initiator = predictionUpdate(initiator)
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• Gating, impose a hard decisions on measurements which are not considered feasible for a given
initiator. Gating region, in case of elliptical gates, for a initiator state vector xjk is centered around
predicted measurement location ŷj

k+1|k with a volume proportional to

(yik+1 − ỹjk+1|k)
T S−1

k+1|k(y
i
k+1 − ỹjk+1|k) > γG. (2.59)

Here the S−1
k+1|k is an innovation covariance and γG is χ2 distributed threshold given the probability

of gating pG and number of measurements yIk+1.

gate decesions = gating(initiator,measurments)

• Measurement association (Sec. 2.5), in the cases when measurements fall into the gate {yik}
ny

i=1

evaluate them against hypotheses θ0 and θi for a given initiator xjk.

θ0 = All measurments {yik}
ny

i=1 are false alarms (FA)

θi = Measurment {yik}
ny

i=1 belongs to the target, rest are false alarms (FA)

Probabilities p(θi|{yi0:k}
ny

i=1) associated with hypothesis θi are computed as a cases where

p(θi|{yik}
ny

i=1) ∝


(1− pDpG)β

ny

FA if i = 0,

p(yik|{yi0:k−1}
ny

i=1)pDβ
ny

FA otherwise.
(2.60)

Within this work the probability p(yik|{yi0:k−1}
ny

i=1) is defined as N (yk; yk|k−1, Sk|k−1).

association decesions = associate(initiator,measurments, gate decesions)

• Measurement update, process the current initiators with their associated measurements. Compute
Bayesian update p(xk|y1:k) (2.16) on basis of association PDF, which can be in terms of totally
probability theorem expressed as

p(xk|y1:k) =
ny
i=1

p(xk|θik, y1:k) p(θ
i|{yik}

ny

i=1), (2.61)

where ny is number of measurements in the gate.

initiator = measurmentUpdate(initiator,measurments, association decesions)

• Track management [13], is a decision logic purpose of which is to start a new initiators from un-
assigned measurements, update track logic states and scores, confirm or delete those initiators which
does not meet the criteria.

falg =checkCreate(initiator),

falg =checkConfirm(initiator),

falg =checkDelete(initiator).

2.7 Simultaneous Localization and Mapping

Nowadays approaches to the environment mapping are based either on feature recognition and tracking
techniques, i.e. feature-based models ([36], [45], [121], [156], [80]), or operate on the occupancy based
map building principle ([62], [76], [79], [108], [109]). The two approaches are by no means mutually
exclusive, but they in fact supplement each others weaknesses.
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2.7.1 Feature Based SLAM
The Simultaneous Localization and Mapping (SLAM) refers to the problem of determining ones pose x
(position and orientation) using observation to landmarks m of unknown position. Landmarks (features,
beacons) can represent any well-defined point in the world as corners, lines or markers. The autonomous
system is tasked to incrementally build a map of its environment and at the same time use this map to
compute its own location. Conversely, in the autonomous vehicle application the location of the vehicle
is supposed to be known and the objective is to map the surrounding environment for possible obstacles
and threats. Process of map building requires recursively propagate the state distribution p(xk+1|xk) and
landmarks positions uncertainties p(mk+1|mk) recursively in tree steps: a dynamic motion model (2.62),
a map (2.63) and a measurement model (2.64).

xk+1 = f(xk,uk, vk) or p(xk+1|xk) (2.62)

mk+1 = mk or p(mk+1|mk) (2.63)

yk = h(xk,mk,uk) + wk or p(yk|xk) (2.64)

In above equations, f represents a nonlinear function of the target state vector xk, the vector of input signals
uk and process noise vk. The list of landmarks or map features are represented by multi-dimensional
matrix mk. Variable h represents a nonlinear relationship between sensor output yk, target state vector xk
and system inputs uk affected by a measurement noise wk. The goal of nonlinear estimation is to infer the
state variable xk conditioned on landmarks mk with the available sensor measurements y1:k. By using the
Bayesian framework, this estimation problem relates to the recursive evaluation of the probability density
function (PDF) p(xk,mk|y1:k) in two consecutive steps, the prediction and the measurement update of the
state vectors.

p(xk,mk|y1:k)
Predition−−−−→
Update

p(xk+1,mk+1|y1:k) (2.65)

p(xk+1,mk+1|y1:k)
Measurment−−−−−−→

Update
p(xk+1mk+1|y1:k+1) (2.66)

The prediction state density p(xk+1,mk+1|y1:k) of state xk and map mk is calculated from the prior PDF
p(xk,mk|y1:k) by using Chapman-Kolmogorov equation

p(xk+1,mk+1|y1:k) =
p(mk+1|xk+1,mk)p(xk+1|mk)p(xk,mk|y1:k)dxkdmk.

(2.67)

Equality (2.67) follows the 1st order Markov property which assumes that p(xk+1,mk+1|y1:k) only de-
pends on states xk+1, mk+1 and xk, mk at time k + 1 and k respectively. The measurement update
p(xk+1,mk+1|y1:k+1) is computed from the prior distribution (2.67) measurements yk by a Bayesian for-
mula which results in

p(xk+1,mk+1|y1:k+1) =
p(yk+1|xk+1,mk+1)p(mk+1|xk+1)p(xk+1,mk+1|y1:k)

p(yk+1|y1:k)
(2.68)

The 1st order Markov property for equation (5.10) implies that p(xk+1,mk+1|y1:k+1) only depends on
measurement yk+1 at time k + 1.

Typical sensor observations yk are taken from the scanning laser which returns horizontal distance and
bearing to a landmark. Landmarks could be also obtained from the visual sensors in forms of distinct
corners or patches. The measurements are inferred into the recursion as a likelihood functions p(yk|xk)
(2.64). Without the loss of generality, the measurement equation could be expressed at time k as follows

yk = Hx
k x̂k + Hm

k C1:Ik
k m̂k + ek. (2.69)

Equation (2.69) reads, that a particular measurement i ∈ {1, . . . , I} obtained by a sensor in a scan k, e.g.
yik, needs to be associated with an already existing landmark mj

k via association matrix C1:Ik
k . The data

association process (Sec. 2.5) determines weather the detection yi
k in fact originates from the landmark, or

it is a clutter, or it should be declared as a new landmark/obstacle through the process commonly referred
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Figure 2.2: Detections handling in a SLAM framework.

in a target tracking to as a track life. The modification of the track life routine for the SLAM, e.g. landmark
handling, is visualized on the Fig. 2.2.

Assume that certain number of measurements y1:I
k were obtained at scan k and there already exist

landmarks mk in the map. Landmarks should be seen as an objects which keep some level of their own
history. Typical landmark carries knowledge of its age, state estimate x̂k+1|k, state covariance P̂k+1|k, last
update time, score, M/N logic state, etc. The primary goal of the landmark logic is to:

• initialize (detect) new landmarks by forming a tentative landmarks and confirm only the persistent
ones,

• maintain the current landmarks location with respect to the vehicle position by feeding the confirmed
landmarks with only relevant data,

• delete the landmarks with the persistent absence of data or low quality,

under the notion of false alarms (FA) and clutter. At the time k, the poses of all landmarks mk are with
respect to the vehicle state xk propagated into the time k+1. The prediction step of a filter (2.65) alongside
with state variables flow is visualized by dashed lines. Following the Bayesian recursion rule (2.67),
observations at time k y1:Ik needs to inferred into the predicted landmarks m̂k+1|k and vehicle states x̂k+1|k.
This step requires to resolve the landmark to measurement association problem i.e. to find C1:Ik

k matrix
in (2.69). Genuinely, it is not recommended to evaluate all detection to landmark combinations when the
number of involved quantities is ≥ 10. Therefore, we impose a hard decisions i.e. gating on measurements
which are not considered feasible for a given landmark. Gating region for a landmark mj

k is centered
around predicted measurement location ŷj

k+1|k with a volume proportional to

(yik+1 − ỹjk+1|k)
T S−1

k+1|k(y
i
k+1 − ỹj

k+1|k) > γG. (2.70)

Here the S−1
k+1|k is an innovation covariance and γG is χ2 distributed threshold given the probability of

gating pG and number of measurements yIk+1. In the cases when measurements fall into the gate yik+1 there
are probabilistically evaluated against hypotheses θi governed by a multiple-sensor multiple-landmarks
association process (JPDA) (Sec. 2.5).

2.7.2 Grid Based SLAM
Consider a system model defined by set of equations (2.62, 2.63, 2.64). The map of the environment, i.e.
the occupancy grid map, is represented by multi-dimensional matrix mk (2.71) conditioned on the vehicle
state xk and sensor observations yk.

mk =


m11

k m12
k · · · m1j

k

m21
k m22

k · · · m2j
k

...
...

. . .
...

mi1
k mi2

k · · · mij
k

 (2.71)

Each element of the grid matrix mij
k holds the information about the probability that corresponding location

on the map is occupied with a probability p(mij
k ) ranging between {0, 1}. The cell of the grid map is
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denoted by mij
k where i = {1, . . . , Ni} represents the number of grid rows Ni and j = {1, . . . , Nj}

number of grid columns Nj . The map building step (2.64) can be formulated as an optimization problem
that maximize the probability that particular cell is in fact occupied (or free) m̂1:k given the prior knowledge
of the environment m1:k−1, vehicle poses x1:k and sensor measurements y1:k. In other words, m̂1:k can be
computed as the maximum a posteriori prediction of a function

m̂1:k = argmax
m1:k

p(mk|m1:k−1, x1:k, y1:k). (2.72)

The probability that a single cell p(mij
1:k) is filled given the measurements y1:k and poses x1:k is computed

by the Bayesian formula

p(mij
1:k|x1:k, y1:k) =

p(yk|m
ij
1:k, xk, x1:k−1, y1:k−1) p(m

ij
1:k|xk, x1:k−1, y1:k−1)

p(yk|x1:k, y1:k−1)
. (2.73)

The terms in above equation (2.73) are denoted as the map estimate p(mij
1:k|x1:k, y1:k), the measurement

likelihood p(yk|m
ij
1:k, xk, x1:k−1, y1:k−1), the map prior p(mij

1:k|xk, x1:k−1, y1:k−1) and the evidence or
normalize factor p(yk|y1:k−1, x1:k). By assuming that current readings are independent of all previous
states, e.g. by applying the 1st order Markov assumption and by knowing the map prior, probability of
map occupancy (2.73) can leads to

p(mij
1:k) =

p(mij
1:k|xk, yk)

1− p(mij
1:k|xk, yk)

1− p(mij
0 )

p(mij
0 )

p(mij
1:k|x1:k−1, y1:k−1)

1− p(mij
1:k|x1:k−1, y1:k−1)

. (2.74)

By applying logarithm to the occupancy grid computation (6.10) numerical errors from multiplying mi-
nuscule floating point numbers can be significantly reduced.

log p(mij
1:k) = log

p(mij
1:k|xk, yk)

1− p(mij
1:k|xk, yk)

+ log
1− p(mij

0 )

p(mij
0 )

+ log p(mij
1:k−1). (2.75)

For this update rule, one needs only to specify p(mij
1:k|xk, yk) e.g. the inverse sensor model, the initial map

p(mij
0 ), and the prior occupancy probability of a given cell p(mij

1:k−1). The iterative Bayesian filter update
for computing the new cell estimate p(mij

1:k) can be recovered from the log odds representation (2.75) by
the following equation

p(mij
k ) = 1− 1

1 + explog p(mij
1:k−1)

. (2.76)

Please refer to the Sec. 6.3.1 for more information about the occupancy grid mapping. Alternative solution
to the mapping is presented as the Dempster-Shafer Theory of Evidence discussed in detail in Sec. 2.4 and
6.3.3.

2.8 Hidden Markov Models
Inference in hidden Markov models (HMM) is in many ways similar to the Bayesian recursion, however
there are fundamental differences which deserve to be highlighted [58]. Consider a simple HMM model
expressed in discrete time k

xk+1 = F xk. (2.77)

The basic HMM formulation assumes only one unknown discrete state ξ ∈ {1, 2, . . . , Nx}. The probability
of a state xk ∈ xk being a Markov variable ξjk ∈ ξk at time instance k is expressed as

xj
k = p(ξk = j), j = 1, 2, . . . , Nx. (2.78)

The posterior filter distribution is denoted as

πj
k|k = p(ξk = j|y1:k), j = 1, 2, . . . , Nx. (2.79)
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The hidden Markov variable is at each time instant k observed as

p(yk = i|ξk = j) =Hij , i = 1, 2, . . . , Nx,

p(yk = i) =

Nx
j=1

Hijp(ξk = j), i = 1, 2, . . . , Nx,

=

Nx
j=1

Hijxj
k, i = 1, 2, . . . , Nx.

(2.80)

Applying a time update (2.15) into formalism (2.80) results in

πi
k|k−1 =

Nx
j

p(ξk = i|ξk−1 = j) p(ξk−1 = j|yk−1),

=

Nx
j

πk−1|k−1(j) F
ij .

(2.81)

Similarly, applying (2.16) to formalism (2.80) gives

πi
k|k =

p(ξk = i|yk−1) p(yk|ξk = i)

p(yk|yk−1)
,

=
πi
k|k−1 H

ykiNx

j πj
k|k−1 H

ykj
.

(2.82)

The maximum a posteriori estimate (MAP) of ξk is defined as ξ̂k = argmaxi π
i
k|k and commonly solved

by the Baum-Welch Alg. 4.
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Algorithm 4: Baum-Welch Algorithm
Step 0: Initialization
Initialize θk|k−1 = [aijk|k−1, b

ij
k|k−1, s

i
k|0] with random initial conditions or with priors aijk|0, b

ij
k|0, s

i
k|0.

Step 1: Expectation Calculation (E-Step)
Let αi

k = p(ck, sik|θk|k−1) denotes the probability of seeing observations ck = {cj1, c
j
2, . . . , c

j
K} while

being in state i at time k. Then αi
k can be found recursively by a forward procedure as shown below

αi
1 = si0 b

i
k|0(c1) = si0 p(c1|si0),

αi
k = bik|k−1(ck)

Nm

j=1 α
j
k−1a

ij
k|k−1 = p(ck|sik)

Nm

j=1 α
j
k−1a

ij
k|k−1.

Let βj
k−1 = p(ck|sjk−1,θk|k−1) denotes the probability of ending particular seqnece of observations

ck = {cjK , . . . , cjk−1} in state sjk−1 while starting in state i at time k. Then βi
k can be calculated

recursively by a backward procedure as follows

βj
K = 1,

βj
k−1 =

Nm

j=1 β
i
ka

ji
k|k−1b

i
k|k−1(ck) =

Nm

j=1 β
i
ka

ji
k|k−1p(ck|s

i
k).

According to Bayes’ theorem the probability of being in state i at time k, i.e. γi
k, given the observation

seqnece ck and the parameters θk|k−1 reads as follows

γi
k = p(sik|ck,θk|k−1) =

p(sik, ck|θk|k−1)

p(ck|θk|k−1)
=

αi
kβ

i
kNm

i=1 α
i
kβ

i
k

The probability of being in state i and j at time k and k − 1 respectively given the observed sequence
ck and the parameters θk|k−1, i.e. p(sik, s

j
k−1|ck,θk|k−1), reads as follows

ξjik = p(sik, s
j
k−1|ck,θk|k−1) =

p(sik, s
j
k−1, ck|θk|k−1)

p(ck|θk|k−1)
=

αj
k−1a

ji
k|k−1β

i
kb

i
k|k+1(ck)Nm

i=1

Nm

j=1 α
j
k−1a

ji
k|k−1β

i
kb

i
k|k+1(ck)

The denominators of γi
k and ξjik are the same. Furthermore, they represent the probability of making

the observations ck given the parameters θk|k−1.

Step 2: Maximization Calculation (M-Step)
State transition matrix aijk is computed as expected number of transitions from state sjk−1 to state sik
compared to the expected total number of transitions away from state sjk−1.

ajik =

K
k=k−1 ξ

ij
kK

k=k−1 γ
i
k

Liklihood function βi
k represents the number of times observation sequence ck have been equal to vk

while in state sik over the expected total number of times being in state sik,

bik(vk) =

K
k=1 1ck=vk

γi
kK

k=1 γ
i
k

where indicator function 1ck=vk is defined as

1ck=vk =


1 if cik = vik
0 otherwise.



3
A Framework for Dynamic Context

Exploitation

While the benefits of exploiting Contextual Information (CI) are starting being recognized
by the Information Fusion (IF) community, most current approaches for CI inclusion lead to
stove-piped solutions that hardly scale or adapt to new input or situations. This paper makes
a step in the direction of better CI exploitation by presenting some results of an international
collaboration investigating the role of CI in IF and proposing an adaptive framework that
dynamically takes into consideration CI to better support mission goals. In particular, we
discuss some architecture concepts to be considered in the development of fusion systems
including CI and we present how context can be dynamically exploited at different levels of a
fusion engine. The concepts are illustrated in a maritime use-case.

3.1 Introduction
By surveying recent proceedings on contex in IF [134, 18], three important conclusions could be made
about context information (CI) exploitation. First, domain knowledge is in a vast number of cases tailored
for application driven solutions of limited scalability and adaptability. Second, CI is not given the same
level of importance throughout the levels of fusion, which reduces system performance. Third, frameworks
which will be able to capture the nature of the context regardless of the target application are merely not
existent. Furthermore, it seems that nowadays context aware systems (CAS) do not consider the fact that
context is typically of dynamic nature. That is, a context variable may be latent, but it could be discovered
through an inference process or it could be dependent on the user’s and target’s goals [134].

Llinas in [96] surveyed available frameworks for IF over the last decade. Based on his findings one
should consider: a) graphs/network methods for creating contextual relations between events and entities;
b) Common Referencing (CR), Data Association (DA), and State Estimation (SE) as basic functionalities
of all fusion nodes; c) a Resource Management module (RM) to be coupled to the fusion engine in order
to promote adaptation. Frameworks are expected to accommodate hard and soft information as well. From
these premises, arguably the greatest weakness of current frameworks lies in their inability to provide
adaptive feedback and to dynamically control the fusion process.

Steinberg and Bowman envisioned adaptability issues in [141], by introducing the concept of adaptive
context discovery and exploitation. Their proposal is to seek, discover, select and fuse CI, modeled as
context variables, as a part of goal-driven decision process e.g. through problem variables. Engineering
implications posed by adaptive context discovery and exploitation were addressed subsequently in [60],
and [21] and led to the development of the Data Fusion and Resource Management (DF & RM) Dual Node
(DNN) architecture [141]. DF & RM DNN allows any decision process to be completely characterized
in terms of IF and RM processes. The architecture has proven to be particularly useful in the design
and evaluation of large, complex decision systems. It is therefore particularly apparent the importance of
adaptability in presence of CI that can be very transient depending on the current situation and target’s and
mission goals [134]. The weaknesses of current approaches are therefore stimulating the efforts for finding
a truly adaptive CAS architecture in order to improve the performance of fusion processes.

In his work [96], Llinas goes beyond the survey and sets a stepping stone for further CAS development.
The architecture he propose further develops ideas originated from Bowman and Steinberg [139], and



34 3. A Framework for Dynamic Context Exploitation

from his own work [97], along with the already mentioned suggestions originated from the survey [96].
The design aspects of this architecture will be explained and expanded within the body of this paper.
One way to extend the sub-structure of current concept could be, for example, achieved by Blackboard
architectural concepts [146]. Blackboard systems are knowledge-based problem solvers that work through
the collaboration of independent reasoning modules.

This paper presents some results of an international collaboration investigating the role of CI in IF and
proposing an adaptive framework that dynamically takes into consideration CI to better support mission
goals. Before introducing the architecture here proposed (Sec. 3.3), some terminology and fundamental
concepts need to be recalled in the following section. A maritime use-case (Sec. 3.4) has been used to
illustrate some functionalities of the designed architecture.

3.2 Fundamentals
It is a well known fact that functions which enable human-like reasoning are considered beneficial for the
fusion, has a direct implication to context consideration. In this sense, Context could be said to “surround”
an element of interest in the world [134] or, according to Day [34], context is “any information that can be
used to characterize the situation of an entity”. Finding relevant CI is not self-evident and often involves
a complex integration of IF with planning, abductive logic and control functions. Contextual reasoning is
therefore seen as an inference process, where desired information i.e. problem variables can be in some
sense enhanced (e.g., reducing uncertainty, augmenting accuracy) by CI. As of now, no unified framework
for designing such context aware system exist, but one might consider concepts for a priori and a posteriori
CI exploration respectively as a good reference [96]. We provide in the rest of this section some definitions
of the key concepts used in this paper.

3.2.1 Definitions
Context: Context is understood as information that surrounds an element of interest, whose knowledge
may help understanding the (estimated) situation and also in reacting to that situation [134]. As pointed
out by Steinberg and Rogova [142], context can be used in IF to:

• Refine ambiguous estimates,

• Explain observations,

• Constrain processing, whether in cueing or tipping-off or in managing fusion or management pro-
cesses.

Architecture: Structure useful for creating solutions to a problem, which describes the parts composing
a solution and how they are organized and related. Architectures can focus on different organizational
aspects including physical/processes distribution and topology.
Framework: “A conceptual structure intended to serve as a support or guide for the building of something
that expands the structure into something useful” [96]. A framework tailored for a specific domain (e.g.,
Information Fusion) may include specific components fitting a broad range of applications in that domain.
Middleware: Software layer placed on top of another component. It provides higher level, domain-specific
functionalities that improve the usability of the base component by services, applications and libraries.
Fusion Node: Abstraction of a generic fusion process that can be thought as composed by four consecutive
steps (Uncertainty Characterization, Common Referencing, Data Association and State Estimation). It
defines an interface for exchanging information (input and output) and managing its internal state and
configuration.
Problem Space Characterization: The description of a generic problem (e.g., tracking) as an observable
set of variables that need to be known, and how they are related. With this information, an intelligent
algorithm manager can select from a repository the best algorithms that solve a fusion problem.

It can be noticed that these definitions are very generic and may resemble human judgment to integrate
context knowledge in evaluating situations. For this reason, the aim of this proposal is highlighting the sep-
aration between context inputs and information sources from an architectural approach, avoiding particular
solutions where context representation and exploitation is dependent on the application.
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3.2.2 Context in Information Fusion

Visentini et al. [155] observe two types of heterogeneity in a sensor fusion processes. The horizontal
heterogeneity, in the sense that CI refers to same-level information produced or extracted by concurrent
or cooperative sources which operate in the same environment. For instance, an object appearance can
be described by features as color, shape, velocity or class, which are at the same abstraction level. The
vertical heterogeneity, in the sense that CI considers that fusion can take place between different levels
of information abstraction, from sensory data to features, from decisions to soft/hard data, including also
high-level layers. In this case, the object of interest can be represented by multi-layered information with
different degrees of refinement and detail. In this regard, Snidaro et al. [133] also introduce the concepts
of context shifting and switching. The process by which the entirety of the domain knowledge acquired is
fractured into pieces and assigned to the proper algorithms. CI could also have local scope and validity and
is thus pertinent to the scenario at hand. The granularity of the scope of certain information can be more
fine-grained and be applicable only to sub-areas of the observed environment.

Steinberg and Rogova [139], [142], [140], [141] favor to use concept of relations and relationships for
assessment and practical exploitation of situations. Context in these rations could be assessed either from
the inside-out i.e. “context-of” or from the outside-in i.e. “context-for”. “Context-of” is used when a cer-
tain expectations could be made based on situations on the other hand the term “context-for” is used when
a relation to one or more reference or problem items or variables need to be solved. A data fusion problem
may be stated in terms of a set of problem variables and a utility function on the accuracy of evaluating
these variables. Such inference assumes a model of the dependencies between measurement variables and
problem variables which could be conveniently modeled by a factor graphs. Authors suggested, that selec-
tion of relevant context should be based on a constraining ontology of context variables and their relations
with problem variables. Selection of contextual variable assumes that context of is know. This might not
be the case for all applications and therefore this context needs to be discovered trough reasoning. Pro-
cesses of relevance and reasoning are throughout the article refereed to dynamic context exploitation and
are considered to be the main logic of presented middleware.

3.2.3 Context Adaptive Architectures

Ideas introduced by Llinas in [96] and Gomez-Romero et al. [49] established the basis for context-aware
architectural designs. In their work, CI can be fully static or dynamic, possibly changing along the same
timeline as the situation. Furthermore, authors argue that full characterization and specification of CI
may not be able to be known at system/algorithm design time. Therefore, an “a priori” framework, that
attempts to account for the effects on situational estimation of that CI that is known at design time, was
introduced. Llinas et. al. also consider that CI may, like observational data, have errors and inconsistencies
itself. Accommodation of these errors in data fusion processes leads to development of hybrid algorithms
for “a posteriori” context exploitation. “A posteriori” in comparison to “a priori” includes checks of the
consistency for a current situational hypothesis with the newly discovered CI. Both architectures assume the
existence of a “middleware” layer which will be not only able to sample CI data and shape it into a suitable
form for fusion processes, but also discover new CI. Our vision on how to realize such a middleware is
presented in the next sections.

3.3 Architecture Design

This section describes an architecture to integrate context sources in Information Fusion (IF) processes
in a general way, so that any fusion system in which contextual knowledge is available can be developed
following this architecture. The approach does not make assumptions or puts restrictions about specific
fusion processes or information and context sources, but it will be defined at an abstract level, so that
specific algorithms and applications can be developed based on the architecture. In the first place, the types
of context sources are commented, and a general mechanism to access context from fusion processes is
discussed, following a middleware paradigm. Then, the adaptive IF framework is explained. The key idea
is the exploitation of context knowledge to adapt the IF processes in order to optimize their performance.
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3.3.1 Context Sources

A fusion system may access a number of different sources of contextual knowledge depending on the
specific domain. In many applications, it is available in static repositories such as maps, GIS databases,
representations of roads, channels, bridges, etc.; in other cases, context comes through dynamic data, such
as meteorological conditions. In this case, we talk about context variables, implying the need of context
access and update processes running in parallel with the core fusion processes. Finally, sometimes CI
cannot be observed directly, and only indirectly deduced from other sources (inferred context). In addition,
we can distinguish physical and logical context. In the first case, we will have physical descriptions (like
GIS files) or variables (like meteorological phenomena) which are measurable objectively. In the case of
logical knowledge (such as entities engaged in a coordinated trajectory, traffic regulations, mission goals,
etc.), context can come from knowledge, human reports, learned from data or result from indirect inference
processes based on other pieces of information. This characterization of context sources is illustrated in
Fig. 3.1. Therefore, contextual sources can classified in terms of the nature and way of accessing available

Figure 3.1: Context source types [135].

information:

• Physical and logical structures:

– Static datasets with information: roads, GIS databases, terrain characterization (navigation),
urban environment, procedural information, normative, etc. In the maritime case, navigation
routes or stationary areas are examples of context data sets, and some times they can be learned
from historical data, as in the case of patterns of life reflecting the real behavior of entities of
interest.

– Contextual variables such as physical fields: weather, wind, sea state, clouds, etc. These vari-
ables are distribution of magnitudes, changing in space and time.

• Observed relations. Dynamic reports, human messages, and other documents represent the explicit
input to the fusion process about situation (normal, labor day, anomaly, emergency, etc.), time of
the day or week (working, meeting, etc.). These variables usually take discrete values indicating
different contexts, coming from direct observation. The instantiated relationships are input to the
system as context in some way, such as a human observation directly input to system. In the maritime
case the geopolitical situation can be an example of dynamic observed relation.

• Inferred relations: Context can be deducted as dynamic relationships. A possibility is employing
an automatic inference process, which may lead to the idea of a parallel representation of context
process with its own processes and sources available.
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3.3.2 Middleware
A way to systematically address advanced and generic context-based IF design deals with a context ac-
cess and management system, in charge of providing useful context information about the entities as a
transversal independent module. As mentioned, context services supporting fusion processes can be very
heterogeneous, including, for example, access to reference databases, meteorological information, image
repositories, GIS systems, texts, Internet, etc. Accessing such heterogeneous information represents a
challenge. The middleware approach can alleviate this problem by placing a component between context
data and its consumers. This solution is a popular choice in context-aware computing applications, as
analyzed in the survey [75]. IF processes access contextual resources through the interface exposed by
the middleware. So, the context middleware acts as a transversal independent module in charge of de-
ciding which context information is relevant, as illustrated in the Fig. 3.2 below. The basic mechanism

Figure 3.2: Context middleware mechanism [135].

follows a query-response process: the middleware returns the selected relevant context information from
the available sources, according to the values inferred and hypotheses raised by fusion processes. Two
basic elements can be identified in both sides:

• At the context side, the middleware is responsible for collecting, updating and making context knowl-
edge usable by fusion processes.

• At the fusion side, the fusion adaptation logic uses the contextual inputs, so all processes and modules
need to be described in terms of context input and interconnections to apply the adaptation.

In Fig. 3.2, and also in the architecture presented in the next subsection, all IF processes are abstracted as
nodes consisting in four main basic functions applied to the data. This abstraction is taken from [96], but
including Uncertainty Characterization as part of the fusion process. In general, any fusion node accepts
either sensor data from some input source or an estimate (fused or otherwise formed) from some prior
processing node. In this characterization, processing operations involve four basic functions:

• Uncertainty Characterization (UC): uncertainty associated to the information provided by the source,
exploiting available models and related information.

• Common Referencing (CR): normalization operations, such as coordinate or units transformations,
to align data from information sources to be fused.
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• Data Association (DA): the multiple inputs (estimates or measurements) are examined in order to
determine which (hypothetical) entity that the system believes to exist they are associated to or come
from.

• State Estimation (SE): computation of attributes (e.g., kinematic properties, classification attributes
such as color, identity, inferred relationships, etc), exploiting the associated data together with pre-
diction models in estimation/inference processes.

Context middleware is responsible for providing usable context:

• Relevance: search for relevant pieces of context;

• It must provide up-to-date context. This means that it must integrate on-line information appropriate
and potentially useful for the fusion processes;

• Granularity: it implies adaptation to the needs of fusion algorithm. For instance, in the access to
wind representation, it can be 2D but needed 3D. Some aggregation or interpolation may be required
to adapt the scales at both sides;

• Characterize the uncertainty in the contextual information provided, considering both the intrinsic
uncertainty in contextual information and that propagated due to uncertain in query (for instance
uncertainty in the location to index spatial context).

The operations to be done by the context middleware services are indicated below:

• Regarding search of applicable context to the fusion query:

– Search of context relevant to the situation: physical (roads, bridges, channels, etc.), operational
rules, etc.

– Compatibility: validate the collected information as appropriate for query and check its com-
patibility (map, number of objects, etc.). In some cases, con- text maybe is not applicable
(off-road, operational rules not met, etc.)

• Regarding transformation and normalization in the context response:

– Context correlation and alignment with fusion process. This is especially relevant for use of
real- time dynamic contextual sources, i.e. meteorological services;

– Spatial alignment: fundamental for efficiency: search with appropriate representation and al-
gorithms (maps, GIS, roads, etc.);

– Time alignment (prediction functions): necessary when context is dynamic: simple temporal
indexing, extrapolation models, etc.

– Time alignment (prediction functions): necessary when context is dynamic: simple temporal
indexing, extrapolation models, etc.

With respect to context relevance, as commented in [140] and [141], a big challenge is determining the se-
lection of context variables. In general, such selection should be based on previous knowledge of relations
among context variables and problem variables. A possibility could be the development of an ontology
based on relevancy of contextual variables to problem variables and their consistency. A context variable
can be called relevant to a set of problem variables defining the reference items and relations between them,
if the values of these problem variables change with the value of the context variable under consideration.
Another criterion for determining a particular context as relevant may be the increase in information as the
result of utilizing that context variable for estimation and/or inference. Finally, the problem of selecting
context variables is more complex since relevance is often time- variable. Situations of interest are often
dynamic, such that the availability of any sought data may also be time-variable. Even the mission-driven
information needs and fusion processes can be also dynamic, making the utility of information given by
context pieces also time-variable. Therefore, the middleware is presented as an approach to generalize the
context access and exploitation by fusion processes, organized as a set of operations done over the infor-
mation available in different sources. The context middleware manager is responsible for searching and
providing the relevant and updated information in the expected format and scale, considering the needs
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and requirements of the fusion node, so that fusion operations can take into account the context, indepen-
dently of the specific strategy adopted. The service-oriented architecture is the key to develop a general
perspective in the design and avoid particular solutions depending on the specific types and nature of the
contextual sources available.

3.3.3 Architecture
The adaptive fusion architecture presented in this section is depicted in Fig. 3.3, as an extension of [96].
Raw input data, covering both hard (electronic, physics-based) sensors and soft (human observers) sources,
undergo detection, semantic labeling, and flow control composite functions. Once the best qualified de-
tections have been achieved, there is the question of assigning them to the various Fusion Nodes to be
processed and generate the desired outputs. The key to keep interaction with the contextual sources,

Figure 3.3: An adaptive information fusion framework [135].

through the middleware interface presented in previous subsection, is a function module called Problem
Space Characterization below the detection operations. To adaptively manage a system with a library of
alternative algorithms that address a generically-common problem space (e.g., object tracking problems),
knowledge of the performance bounds of any library algorithm in terms of an observable set of parame-
ters needs to be known. With such knowledge, an intelligent algorithm manager (part of the InterNodal
Adaptive Logic) can terminate and invoke the best algorithm for the current problem-space condition. An
important point here is that the problems-space complexity parameters need to be observable by the system
sensor set. Besides, we may distinguish a static configuration logic, describing all problem-space variable
and inter-relations, and the possibility of dynamic adaptation. A typical example is the set of categories in a
classification problem, which may change dynamically accordingly to the operative conditions or available
context. This knowledge may also be contextually-dependent, so we have CI also feeding this knowledge
base and control logic. The context middleware presented in previous subsection is in charge of providing
the appropriate context pieces accordingly to the fusion variables state. This context is delivered by the
adaptation manager to the different adaptive processes defined along the architecture, including the specific
processes at the sources, the functions composing each individual fusion process (IN Adaptive logic boxes)
and the inter-level processes, depending on the type of solution developed.

By definition, all the adaptation processes (highlighted in black in Fig. 3.3) are part of JDL Level 4,
which is one of the basic goals of the architecture: exploiting the context in order to refine and adapt the
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different fusion processes (including data sources). Feedback as adaptation is a fundamental aspect: the
framework should show adaptive behavior such as inter- nodal feedback to allow (or perhaps require) that
the Nodes share and exploit information if possible. One can see this in traditional Level 1 fusion for track-
ing and identification usually done in two separate Fusion Nodes; kinematics are of course helpful for iden-
tification, and identification is helpful for example to know an objects feasible dynamic motion. In turn,
an adaptive Inter-Level feedback process is also shown, allowing situational estimates to feedback their
estimates to other levels; an example of this would be a situational estimate that would suggest that ma-
neuvering behaviors could be expected, informing Level 1 object tracking logic to open the tracking gates
and capture the diverging measurements occurring upon the maneuver, i.e., as a maneuver-anticipation
strategy instead of the (generally too-late) post-maneuver detection strategies often employed in tracking
systems. As already mentioned in [141], all control loops need to define stopping criteria that terminate
the otherwise-endless looping; that requirement is shown by triangles in the Fig. 3.3.

3.4 Case Study

In this section, an example of instantiation of the architecture, discussed in the previous section, is provided
within a maritime use case. This use case is part of a selection of other use cases developed at CMRE to
emphasize maritime security challenges and facilitate the collaboration and integration of different com-
munities [69]. We identify the elements of context possibly considered, driven by the user’s needs to take
the decision.

3.4.1 Contextual Information

Significant portions of the world population live in coastal areas, and many large cities directly border
the water. The maritime environment is complex, directly connecting the world via its waterways, with
relatively limited regulation and a mixture of traffic ranging from large container vessels to smaller fishing
boats and pleasure craft. Coastal areas are vulnerable to threats arriving from the maritime environment, as
was seen in the Mumbai hotel bombings in 2008. Civil authorities are responsible for monitoring harbor
areas and protecting ports and critical infrastructure from threats arriving via maritime routes. Generally,
some form of surveillance will be in place for major port areas, with any suspicious activity monitored,
according to current threat levels and typical types of activity in the port. In heightened levels of threat, all
unauthorized vessels approaching the port would be detected and monitored, with an assessment made of
its behavior and intent assessed in order to allow early intervention if required. Intelligent systems making
of use data and information fusion technologies are certainly an asset for harbor protection (e.g., [126],
[46], [51]) and as an example, the fusion architecture (Fig. 3.3) is instantiated within the following use
case.

The scenario takes place in a port loosely based on the port of La Spezia, Italy, due to the variety
and complexity of its activities. Some physical contextual information directly related to harbor zones
characteristics is available such as water depths, channels, restricted areas, fishing areas, borders, harbors
(fishing, recreational, etc), shipping lanes, ferry lane, military and LNG (Liquid Natural Gas) anchorage
areas. A fair degree of Pattern of Life (PoL) is known about the area from experience and automated
traffic pattern extraction routines [111]. There is significant fishing in the area and fishing vessels behavior
and fishing areas is generally understood. There are also several regular smaller passenger vessels for
local tourism and private yachts and small boats. Other large vessels’ including cargo vessels, tankers,
and cruise ships operate normally in the area. Large passenger ships are required to report their Estimated
Time Of Arrival and AIS information to the port authorities but smaller vessels do not have formal reporting
requirements.

In this scenario, it is peacetime, there is no specific terrorist threat, but we are still in a post 9/11
security environment with a risk of potential malicious acts, from a variety of motivations. There is also
an increased resentment after a recent wave of illegal immigration caused by political and economical
instability of neighborhood regions. Thus, the geopolitical context is relatively quiet and the Harbour
Protection Level (HPL) is set to ONE over a scale of three levels. For the environmental context, the
meteorological conditions are clam (the weather is clear, sunny, there is no fog, the sea state is at the lowest
level) within the port.
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3.4.2 Response Event
The use case presented here is a civil harbor protection response where the national authorities have just
alerted the local authorities of a possible recent or imminent Improvised Explosive Device (IED) drop
within the port [69]. After the notification, the local security coordinator executes the pre-planned response
to confirm or disconfirm the credibility of the threat, including actions such as: (1) Elevate HPL to level
TWO, (2) Increase local security measures (e.g., divert traffic and classify all real-time small vessel traffic),
(3) Notify the investigation team, (4) Request for the deployment of Autonomous Underwater Vehicles
(UUVs), to check the sea bed within the port and clear the area. The investigation team will conduct
historical analysis of the electronic media and data (radar, SAR imagery, video from a Pan-Tilt-Zoom (PTZ)
camera, phone traffic, AIS messages exchange, twitter, etc) of the last hours, interview local witnesses (e.g.,
harbor pilots, local fishermen, etc), looking for any suspicious or abnormal event missed during routine
surveillance. An event of interest may have been missed because of the surveillance team was unaware of
the threat at that time. The UUVs will adapt their search path based on any finding of the investigation
team (e.g., localization of a suspicious activity).

The user context is defined by the user’s needs to take his decision. Based on the information provided
by the investigation team together with the UUVs team, the local security coordinator will decide whether
the threat is real or not and then, to step up the level of security or to return to normal security posture
respectively [136]. The local security coordinator evaluates the risk regarding the probability of the threat
(was it a hoax or not), the vulnerabilities of the port (e.g., the LNG terminal, ferries, container terminal,
etc) and the consequences of the event (e.g., loss of life, economical). Based on some prior intelligence
information, the evaluation of the threat by the investigation team first focuses on small vessels (fishing
boat, pleasure craft, etc). Immediately, real time small vessel traffic is to be classified by type. Further,
among other aspects of the investigation, the captured data from the previous 24 hours will be reviewed
and revisited in the light of the new threat declaration to possibly detect any suspect behavior from small
vessels.

3.4.3 Instantiated Fusion Architecture
Table (Tab.: 3.1) provides exemplar tasks to support the local security coordinator across the different
levels of the JDL model [17]. In rows, are listed the JDL levels 1 to 3 (level 0 is not considered here)
while the four main fusion functions of Uncertainty Characterization, Common Referencing, Association
and State Estimation and Prediction (Sec. 3.3) are listed as columns. To emphasize that the refinement
process (level 4) applies at each level, it is added as a last column. Problem variables (observational,
decisional and contextual) are also mentioned for each level. Let us denote by x a vector of measurements

Variables Fusion Node Functions
Observation Decision Context UC CR DA SA Level 4

Process Refine.

Level 1 vessel length vessel behavior XUser1
T track XSAR

T ↔ x → Track x → T̂ ∈ XUser1
T →

Object vessel width split XRad
T

Assessment and merge XUser1
T XUser2

T

Level 2 vessel speed vessel type route set route Grid align. x → V V → Adjustment
Situation vessel type desig. areas extraction SAR, AIS, {normal} of camera
Assessment vessel length sea state RADAR {abnormal} parameters
Level 3 vessel behav. vessel identity HPL threat x → x → V V → ID ∈ Detailed
Impact vessel flag statistics standard standard intervention
Assessment and costs categories categories plan

Table 3.1: Example of fusion node functions across the JDL levels for the use case [135].

(or observations) about different attributes (e.g., position, speed, heading, length, type) provided by several
sources such as the coastal radar, the PTZ camera, the SAR imagery or AIS if available. Let us also denote
by X s

A the domain of the variable associated with attribute A for a given source, distinguishing between
possible different domains across the different sources.

Level 1: The State Estimation T̂ of the type of the vessel corresponding to a suspicious track (i.e., a
small vessel) is performed, based on the vector of measurements x. As the type is a perennial property,
no prediction is required. The Association assigns any new declaration or measurement from the sources
to the suspicious track. The different sources report over different attributes (e.g., the vessel width and/or
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vessel length for the SAR analyst or for the camera analyst, the vessel length for the radar) and over
different domains X s

T : Fishing vessels vs cargo vessels vs tankers vs service ships for the SAR imagery
analyst, specific types of fishing vessels for the camera analyst). The Common Referencing at this level
aligns for instance (but not only) the different type scales to a common one, as being suggested by the user
context driven by his mission goal. The Uncertainty Characterization identifies some uncertainty origins
such as the source’s reliability, or the measurements’ likelihoods and transforms the uncertainty into a
suitable mathematical model of a dedicated mathematical framework [69].

Level 2: The behavior analysis of each detected small vessel aims at detecting any behavior such
as “Speed too high for the type of vessel”, “Fishing pattern while not in a fishing area”, “Loitering in
the port area”, “Rendezvous”. The anomaly detection task can rely on several State Estimations for a
further global State Estimation (e.g., Normal vs Abnormal). Anomaly detection essentially compares the
estimated attributes at level 1 (vessel speed, vessel heading, vessel type) to expected ones as represented
by predefined patterns of life of routes or dedicated areas [111]. The Common Referencing aligns the
spatial scales of the different sources (AIS, RADAR, SAR), regarding the vessel position. In addition to
the Uncertainty Characterization of contextual information (routes) in routes’ representation (contextual
knowledge), the UC at this level is essentially similar to UC at level 1 and some likelihood functions may
be elicited from past AIS records. However, other dimensions such as the uncertainty derivation (objective
vs subjective), may be characterized as well for a better interpretation of uncertainty representation by the
user. The Association identifies any piece of information contributing to the task and being possibly related
to the vessel’s behavior. For instance, an phone or radio call associated to the vessel may be used.

Level 3: In case of the detection of an abnormal behavior, the impact is assessed involving some risk
analysis elements such as the cost of (relevant vs non-relevant) intervention need to be considered. The
State Estimation and Prediction is the classification of the vessel as the threat (i.e., the one dropping the
IED) which considers both its behavior and static information. The Association ensures that all ID state-
ments from concern indeed the suspect vessel. The Uncertainty Characterization includes some aspects
of threat assessment (probability of abnormal behavior) from Level 2 but also the assessment of the vul-
nerability and cost of critical assets in the area, for a further risk assessment at the Prediction task. The
Common Referencing aligns the identification statements of the different sources to the standard categories
applied by the local Harbor Protection team.

Level 4: The refinement step influences each of the three above JDL levels, to adapt to some contextual
change:

• Level 1: The classification is refined based on new user’s needs: At a first instance, the local se-
curity coordinator was interested in distinguishing between small and large vessels as represented
by XUser1

T . A finer assessment was then required to discriminate between different types of small
fishing vessels and pleasure craft, as represented by XUser2

T .

• Level 2 the anomaly detectors’ performance is directly impacted by the speed estimation. An up-
dated meteorological information requires to adjust sensors’ parameters for an updated assessment
of vessel speed and an improved anomaly detection.

• Level 3 the path planning of the UUVs may be adapted and modified on the fly based on the past
location of a suspect vessel.

3.4.4 Dynamic Parameter Adaptation
The system can exploit contextual information for adapting the sensor parameters. A possible way of
performing the dynamic parameter adaptation is to establish a relationship between the context variables
and the parameters of the sensors. Given the context variables in (Tab.: 3.1), they can be represented as
quadruple < T, r, a, l >, where T is the vessel type, r the expected route, a the designed area, and l the
HPL. A set of different context instances can be obtained by combining their values: < T, r, a, l >→
{C1, . . . , Cn}. For example, in case of < ferryboat, toSlickville, ferrylane,TWO >, the associated context
Ci can be labeled as “ferry boat of 5 PM”. Given a particular context, a set of parameters for the sensors
can be established though a relationship Ci → {p1, . . . , pn}, where pi is a single parameter of a sensor in
the system. In the case of the ferry boat, the position of the PTZ camera can be set to point on the ferry
lane, with a zoom level adequate to the estimated distance of the boat from the camera site. As another
example, in the case of a possible threat coming from a small boat, radar parameters can be changed to be
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more sensitive for the detection and tracking of small vessels. The SAR imagery parameters can be adapted
by estimating the speed of the suspect vessel. In the same way, the parameters of the fusion nodes can be
updated. For example, if the context variable tuple contains fishing area as designed area, the parameters of
the vessel route analysis process can be set to account for non-linear trajectories, since fishing vessels are
expected to perform circular trajectories. This example illustrates the potential use of context information
to adapt fusion processes in a maritime scenario. However, in order to implement the framework some
steps are needed to obtain a full functionality. First, the context middleware should access the available
sources, represented in a convenient way in order to provide the relevant and updated context. Second, it is
necessary to develop appropriate interfaces to access the real fusion processes and adapt their parameters
based on available context inputs, and manage the adaptation flows from the context middleware to each
data processing node.

3.5 Conclusions
This work addresses several concepts and issues to be taken into account in developing a context-aware
fusion system. We have discussed an architecture for dynamically exploiting context at different levels in a
fusion engine. The solution adopts a middleware approach which provides a convenient way of designing
an interface level between data/information sources and the fusion functions, brokering all relevant con-
textual data sources to the correct data sinks. The concept has been applied to a port protection use-case
and will be further developed as part as an international collaboration investigating the role of CI in fusion
systems.
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4
Encoding Context Likelihood

Functions as Classifiers in Particle
Filters for Target Tracking

While several attempts have already been made in exploiting contextual information (CI)
for target tracking, the vast majority of the approaches focuses only on one specific type of
CI (e.g. terrain information). In this chapter, we address the problem of multi-level context
representation and exploitation for target tracking. Specifically, we present an approach for
encoding different types of contextual information (CI) as likelihood functions via classifiers
in particle filters. The proposed solution is sufficiently versatile as to be able to couch different
types of CI. Promising results have been obtained from our simulations on synthetic data.

4.1 Introduction
Context-aided object tracking has received significant interest recently [18]. In information fusion (IF),
context is understood as information (context variables) that surrounds an object or situation of interest,
whose knowledge allows refined understanding of the problem variables. It is information that aids in
understanding the (estimated) situation and also aids in reacting to the situation, if a reaction is required
[134]. As pointed out by Steinberg and Rogova [142], context can be used in IF to refine ambiguous
estimates, explain observations or constrain processing. However, most of the existing approaches on
context-aware tracking propose ad-hoc solutions for encoding some specific type of contextual information
(CI) (e.g. terrain conditions that can affect movement in ground target tracking). Since the movement
and behavior of tracked entities can be subject to several external influences, in this paper we propose a
principled solution to encode different types of contextual knowledge in the form of likelihood masks [155]
within the formalism of particle filters. The idea is to represent different forms of contextual information,

Figure 4.1: Example of likelihood masks for different context [155].

possibly ranging from sensor-related to high-level domain expert knowledge, as conditioning factors in the
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process of target tracking. Fig. 4.1 provides an intuitive depiction of the underlying concept. Starting from
the left, the picture shows the mask related to the presence of buildings and structures that influence the
observation capability of the sensor and constrain a target’s location on the roads. The next mask represents
the field of view of the sensor, excluding the possibility of a detection outside its range. The weather mask
is completely white meaning that weather is not likely to be playing any influence for the time being. The
fusion of the three masks yields the one shown on the right and its generation will be discussed in Sec.
4.3.3. The masks here illustrated are merely exemplary and others could be developed depending on the
application. Moreover, all contextual masks are in principle dynamic and could be updated as soon as new
information is available. As we show in Sec. 4.3.1, context integration can be conveniently couched in
the formalism of constrained Bayesian filtering, while likelihood masks can be straightforwardly applied
in the measurement update of the filter (Sec. 4.3.2). We evaluate the proposed concept through simulations
performed on a synthetic dataset (Sec. 4.4.2) and discuss the results detailing where and how context could
aid the tracking.

4.1.1 Overview of the Framework

Here, we assume context to be implemented as a constraining factor in the form of a likelihood function or
likelihood mask. An overview of the algorithms taking into account constraints in the estimation process
can be found in [127]. Based on the survey, a distinction can be made between available techniques for
linear and non-linear dynamic systems utilizing either linear or non-linear constraints. Knowledge of soft
or hard constraints could be applied in Bayesian recursion either in the prior density function or in the
likelihood [112]. While both approaches are equivalent from a Bayesian perspective [104], in our case the
inclusion of sensor-related CI is more straightforward in the update step. Our choice to employ a particle
filter (PF) to drive the tracking process is motivated by the nature of likelihood masks. As shown in Fig.
4.1, likelihood masks are layers of contextual knowledge regarding the tracking area. One could consider
any information, related to the sensor measurements, as a plausible likelihood mask. The main challenge
here is to find a representation for these masks that will encode the different contextual information and
successfully utilize this knowledge in the tracking process.

The process of likelihood mask generation starts with the clustering of contextual knowledge. Any
existing classifier could be used in this step, however most algorithms are designed with certain assump-
tions and favor some type of biases [161]. Each cluster has assigned a label which carries the contextual
knowledge as a normalized weighting factor projected over the tracking area. We will demonstrate the
process of likelihood mask generation in a road network example as shown in the Fig. 4.2 below. The idea

Figure 4.2: Illustration of likelihood mask generation for road constraints.
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is to utilize the knowledge of traffic routines (position of detected targets) and aerial images in order to
extract a topologically correct road network. In a recent study [106], authors argue that topological com-
pleteness of the road network is more important than pixel-accurate segmentation. Therefore, authors pose
road extraction as a pixel-wise labeling task with two classes “road” and “background”, while exploiting
a local context and long-range structure dependencies between clusters. Local context is learned directly
from data by training a classifier on rich appearance features. The pixel-wise road scores are formulated
as candidate likelihood functions of the position and road width. The hierarchical graphs refine the section
of candidate likelihoods such that they best explain the image evidence i.e. they optimally cover the road
network. Without loss of generality we assume that road images (Fig. 4.2a) consist of three distinct ar-
eas: roadway α, sidewalk β and off-road γ. In reality, road extraction especially in urban environments is
challenged by varying road appearance, occlusions as well as heterogeneous background. Aforementioned
effects are, for the purpose of this study, treated as a time varying bias and random noise in map pixels
(Fig. 4.2b). We further assume that classifier results in a road likelihood mask which is optimal for a given
road topology (Fig. 4.2c). That the candidate likelihoods A and B are in fact a consecutive segments of
a Road1 with appropriate width α. The likelihoods C and D are segments of a Road2 and off − road,
respectively. Resulting road likelihood mask is a sum of all road likelihood segments.

In summary, we can generate likelihood masks for any sensor in two steps. At first, the source of CI
should be aligned w.r.t. the global frame so that context features could be extracted. Here, the functional
relation between measurement and contextual space needs to be defined. Secondly, the contextual space
needs to be clustered and labeled from the dataset. Labels, projected over the tracking area, carry the
contextual knowledge in form of weights or constraints. Likelihood masks are functions of the sensor state
vector conditioned on the label space. Combining likelihood masks in Fig. 4.1 translates to the process of
merging of probability density functions (PDF), i.e. likelihood mask mixtures, over the target space [155].

The resulting multivariate mixture model could be highly nonlinear and therefore we have chosen to
approximate the posterior state distribution with the Monte Carlo approaches, i.e. particle filter. Since we
assumed, that the likelihood mask is aligned with the target reference frame, state vector particles could
be conveniently used for sampling both measurement and contextual likelihood within a single filter step
(Sec. 4.3.2). By adding the contextual likelihood in the measurement update step we constrain the spread
and weight of the particles. Thus, allowing the filter to account for and react upon the situations that the
object could encounter during tracking. As shown in Fig. 4.3, the shape of the likelihood could change
significantly and as such dramatically influence the performance of tracking. In Fig. 4.3a particles are

Figure 4.3: Illustration of prior PDF shape affected by a road constrains.

spread alongside the road (indicated by the constrained likelihood ellipsoid), thus encouraging the filter to
expect new measurements of the target from the longitudinal direction. On the other hand, in case of an
intersection (Fig. 4.3b), it is desired that spread of particles will be larger w.r.t constrain and unconstrained
scenario to account for possible change of a direction. Here, likelihood mask increases the ambiguity
of measurements. This could result in decreased accuracy of the estimate, but on the contrary the filter
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becomes more robust towards sudden trajectory changes and could prevent track losses. In summary, we
present an approach for encoding different types of contextual information (CI) as likelihood functions via
classifiers in particle filters.

4.1.2 Main Contributions
The contribution of this work are threefold:

• Particular object tracking scenario under inclusion of context was evaluated.

• Methodology for generation of contextual likelihood masks was introduced.

• A framework for object tracking utilizing likelihood masks was proposed.

4.1.3 Relations to the Context Exploitation Framework
Likelihood masks (Fig. 4.1) are functions of contextual observations conditioned on the state vector ex-
pressed as the mixtures of Gaussian distributions (4.16). As outlined in Sec. 4.1.1, likelihood masks are
generated in the process of clustering preceded by the context space alignment (Fig. 4.2). By assuming that
the FN (Fig. 3.2) is tasked to track the objects according to the block schematic (Fig. 2.1), context infor-
mation can be applied in the low level fusion (Fig. 1.11) either in the prediction step or in the measurement
update of filters (SE processes), or alternatively influence the hypothesis generation procedure during the
data association (DA) process (Sec. 4.3.1). In this work, so called, spatial context enters the fusion node
(Fig. 3.2) through a context middleware (CM) whose main function is to constrain the posterior densities
during a state estimation process discussed in Sec. 4.3.1 and Sec. 4.3.2. The context is considered to be
static and only applied at the object assessment level. For this reason the adaptation management functions
are not required in the proposed methodology.

4.2 Related Work
Contextual information (CI) exploitation has been recently considered in the design of modern object track-
ing algorithms [18]. For example, [104] use topographic background information to enhance the tracking
of ground vehicles in complex dynamic environments. Presence of CI in such a scenario significantly im-
proved the quality and continuity of tracks, particularly during stop and go maneuvers and target masking
due to Doppler blindness. Similarly, Gustafsson et al. [59] improved navigation and tracking performance
of road bound vehicles by imposing road constraints on their trajectories. The so called road-assisted navi-
gation, takes advantage of dynamic matching between the motion model of a vehicle and the road network
implemented as manifold. Utilizing road constrains for target tracking was also considered in [2]. The pro-
posed algorithm propagates the joint PDF of the target kinematic state and target ID in a road-constrained
environment. Inequality constraints on target speed and off-road distance are treated using a min-max
saturation approach, which requires a low computational load while leading to suboptimal constraints sat-
isfaction. Road map assisted ground targets tracking is also considered in [143]. Here the author proposes
the usage of a Gaussian sum algorithm within a Variable Structure Multiple Models (VSMM) scheme. As
long as the predicted estimate is inside the same road, a Kalman filter is used to perform the update step.
When the target approaches a junction, an on-road projection is necessary, and a multiple hypotheses ap-
proach is followed. Good results are presented, but the approach cannot be extended to nonlinear inequality
constraints. The context-aided tracker or ConTracker [102] utilizes CI obtained from naval maps, such as
a water depth, trade route paths, and areas/buildings with a high strategic value, in order to detect anoma-
lies in the ship traffic. Ground targets tracking with airborne GMTI sensor measurements is considered in
[152]. A refined GMTI sensor model with state dependent detection probability and information about the
clutter notch is proposed. Both equality and inequality constraints are used to model the known road net-
work. The latter are used to model non-zero width roads. The authors investigate the performance of both
Gaussian sum and particles based approximations, in which the prediction step is performed in road coor-
dinates, while the update step is carried out in the 2D Cartesian space. Hard inequality state constraints are
considered in [27]. The paper is focused on tracking of airplanes with a known flight envelope (i.e. mini-
mum and maximum velocities). The authors propose to obtain samples from a truncated distribution using
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a Rejection-Sampling approach, where particles are re-proposed if they do not meet the constraints. The
proposed PF algorithm converges to the true a posteriori PDF for a sufficiently large number of particles,
but might be unfeasible due to the computational load required. In [7] a VSMM-PF is used for tracking of
ground targets with GMTI sensors. The information available through a road map is modeled using a Jump
Markov system with state dependent transition probabilities. Each road segment is represented by two
way-points determining direction, location, and length of each road. The visibility is defined as a binary
valued probability, and an entry/exit condition is given by a Boolean variable for a subset of the roads. The
inequality constraints on target speed are applied in prediction through the generation of random variables
from a truncated Gaussian.

4.3 Model Formulation

4.3.1 Contextual Bayesian Estimation

In this section we will briefly recall constrained Bayesian filtering based on pivotal work published by Papi
at al. [112]. The formalism will be tailored towards exploitation of CI in the measurement update in the
form of contextual constraints. Consider a discrete-time state-space system of a form

xk+1 = fk(xk) + vk or p(xk+1|xk), (4.1)

yk = hyk(xk) + wk or p(yk|xk), (4.2)

ck = hck(xk) or p(ck|xk), (4.3)

where fk is a nonlinear function of the target state vector xk and process noise vk. Variable hyk represents
a nonlinear relationship between sensor output yk and target state vector xk affected by a measurement
noise wk. The contextual information ck is represented as nonlinear dependency hck on state vector xk.
The goal of nonlinear estimation is to infer the state variable xk with the available sensor measurements
y1:k conditioned on context c1:k. By using the Bayesian framework, this estimation problem relates to the
recursive evaluation of the probability density function (PDF) p(xk|y1:k, c1:k) in two consecutive steps, the
prediction and the measurement update of the state vectors.

p(xk−1|y1:k−1, c1:k−1)
Prediction−−−−−→

Update
p(xk|y1:k−1, c1:k−1) (4.4)

p(xk|y1:k−1, c1:k−1)
Measurement−−−−−−−→

Update
p(xk|y1:k, c1:k) (4.5)

The prediction state density p(xk|y1:k−1, c1:k−1) of state xk is calculated from the prior PDF p(xk−1|y1:k−1, c1:k−1)
by using Chapman-Kolmogorov equation

p(xk|y1:k−1, c1:k−1) =
p(xk|xk−1)p(xk−1|y1:k−1, c1:k−1)dxk−1.

(4.6)

Equality (4.6) follows the 1st order Markov property which assumes that p(xk|y1:k−1, c1:k−1) only depends
on state xk and xk−1 at time k and k−1 respectively. The measurement update p(xk|y1:k, c1:k) is computed
from the prior distribution (4.6), measurements yk and context c1:k by a Bayesian formula which results in

p(xk|y1:k, c1:k) =
p(yk|xk)p(ck|xk)p(xk|y1:k−1, c1:k−1)

p(yk|y1:k−1, ck)p(ck|c1:k−1)
(4.7)

The 1st order Markov property for equation (4.7) implies that p(xk|y1:k, c1:k) only depends on measure-
ment yk and ck at time k.
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4.3.2 Particle Filter with Constrained Measurement Update
In comparison to the standard particle filter implementation, extensively studied by Gustafsson et al. [59],
the constrained particle filter utilizes both measurement p(yk|xk) and context likelihood p(ck|xk) during
the measurement update step. This slight change to the standard particle filter equations will be presented
in the following. As outlined in [112], adding an additional likelihood function in the weight evaluation
process is very straightforward.

wi
k =

1

ck
wi

k−1

p(yk|xi
k)p(ck|xk)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
. (4.8)

Here, the state vector xk should not be confused with particles xi
k and their associated weights wi

k indexed
by i, where i = 1 : N . The normalization factor c is defined as

ck =

N
i=1

wi
k−1

p(yk|xi
k)p(ck|xk)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, yk)
. (4.9)

By far the most common implementation of the particle filter suggests the conditional prior of the state
vector to be used as proposal distribution i.e.

q(xi
k|xi

k−1, yk) = p(xi
k|xi

k−1) (4.10)

where p(xi
k|xi

k−1) is referred to as the prior of xk for each trajectory. This yields to simplified version of
(4.8)

wi
k =

wi
k−1p(yk|xi

k)p(ck|xk)N
i=1 w

i
k−1p(yk|xi

k)p(ck|xk)
. (4.11)

The context likelihood function p(ck|xk) could be expressed as constraint factor of two cases

p(ck|xi
k) =


1, if ak ≤ hck(x

i
k) ≤ bk

0, otherwise.
(4.12)

Here the ak and bk are hard constraints. The generation of the likelihood function p(ck|xi
k) is discussed in

section 4.3.3.

4.3.3 Likelihood Masks
We outlined the process of likelihood masks p(ck|xk) generation by using a road map likelihood example
(Fig. 4.2). Here, the source of context are image pixels (features) obtained from the areal images. However,
without loss of generality, the process of likelihood mask generation remains unchanged regardless of
context origin. Obtaining contextual knowledge from the data is a governed by feature detectors, a problem
beyond the scope of this study. For the purpose of this work, we assume that context features are correctly
acquired by the system, and therefore, we focus on the process of context modeling and classification.

We propose to model context as a parametric probability density function p(ck) represented as a
weighted sum of probability densities.

f(ck;α1, .., αk) =

K
k=1

wkp(ck, αk). (4.13)

If we assume that p(ck) is a Gaussian, then (4.13) could be expressed as a Gaussian mixture model (GMM).

p(ck|wk, µk, σk) =

K
k=1

wkN (µk, σk). (4.14)

Here, the k − th component is characterized by normal distributions with weights wk, means µk and
covariance matrices Σk. Gaussian mixtures are flexible and offer relatively high model scalability achieved
by changing the number of components K in the mixture (4.14). Furthermore, GMM is able to capture
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the complex spatial topology and utilize the Bayesian framework to iteratively adapt for changes in the
environment. The covariance matrices Σk can be full rank or constrained to be diagonal. Additionally,
parameters (wk, µk,Σk) can be shared, or tied, among the Gaussian components, such as having a common
covariance matrix for all components. The choice of model (4.14) configuration is determined by the
amount of data available and how well the GMM fits to a particular contextual information. The parameters
are estimated from training data using the iterative Expectation-Maximization (EM) algorithm or maximum
a posteriori (MAP) estimation from a well-trained prior model. That is, to find the model parameters
(wk, µk,Σk) which maximize the likelihood of the GMM given the training data. For a context sequence
c of k training vectors c = {c1, c2, ..., cK}, the GMM likelihood, assuming independence between the
vectors, can be written as,

p(c|wk, µk, σk) =

K
k=1

p(ck|wk, µk, σk). (4.15)

In order to incorporate (4.14) into a Bayesian estimation, it is multiplied with the known distribution
p(xk|ck) of the state vector xk conditioned on the context ck. The contextual likelihood p(ck|xk) is also a
Gaussian mixture model of the form

p(ck|xk, wk, µk, σk) =

K
k=1

wkN (µk, σk). (4.16)

As shown in (4.12), this likelihood is used to express the contextual constraints. As already mentioned, any
classifier could be used to learn the context likelihood function. Gaussian mixtures where here employed
as they allowed both unsupervised data clustering and classification. The result of GM classification is
dependent on amount of dataset points, number of Gaussian mixtures K employed, as well as the amount
of parameters wk, µk, Σk shared among the Gaussian components. Too many clusters K complicates the
classification result, therefore, makes it hard to interpret and analyze. A division with too few clusters
K causes the loss of information and misleads the final interpretation of data. Good practices on how to
estimate the number of Gaussian mixtures K in (4.16) are summarized in [161]. However, we argue that
K should be no less than a number of intersections given a particular road network.

4.4 Experimental Results

4.4.1 Simulation Design
Nearly constant velocity model was employed in the synthetic dataset generation and estimation process.
2D state space model is defined in the local level frame and reads as follows

pxk+1

pyk+1

vxk+1

vyk+1

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1



pxk
pyk
vxk
vyk

+


T 2

2 0

0 T 2

2
T 0
0 T


axk
ayk


. (4.17)

Acceleration ak is driving the system noise generation defined as N (0, σa = 2ms−2). Initial conditions
for the system are set to x0 = [5km 5km 25ms−1 25ms−1]T . We are using simplified sensor model
consisting directly from position measurements.


yxk
yyk


=


1 0 0 0
0 1 0 0


pxk
pyk
vxk
vyk

+


wx

k

wy
k


(4.18)

Uncertainties in observations are modeled by a white noise wk ≈ N (0, σw = 20m) both for x and y
components. This model is used for generating the target originated measurements with the detection
probability of PD = 0, 9. Generated measurements are added to 200 sets of clutter by selecting a random
target start time ts distributed uniformly over the interval ts ∈ (0, 50) seconds. Clutter measurements are
Poisson distributed with the rate βFA = 1.10−7. The spatial distribution of the false alarms is uniform in
the region x, y ∈ (0, 10km).
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The implemented tracking algorithm follows the logic and advices published in [13]. Gating of the
measurements yk with the current initiators yk|k−1 is evaluated against gating threshold γG.

(yk − ỹk|k−1)
T S−1

k|k−1(yk − ỹk|k−1) (4.19)

Here the S−1
k|k−1 is an innovation covariance and γG is χ2 distributed given the probability of gating PG =

0, 9 and number of measurements yk. In the cases when measurements fall into the gate {yik}
ny

i=1 we
evaluate them against hypotheses θ0 and θi.

θ0 = All measurments {yik}
ny

i=1 are FA

θi = Measurment {yik}
ny

i=1 belongs to the target, rest are FA

Probabilities p(θi|{yi0:k}
ny

i=1) associated with hypothesis θi are computed as a cases where

p(θi|{yik}
ny

i=1) ∝


(1− PDPG)β

ny

FA if i = 0,

p(yik|{yi0:k−1}
ny

i=1)PDβ
ny

FA otherwise.
(4.20)

Here the probability p(yik|{yi0:k−1}
ny

i=1) is defined as N (yk; yk|k−1, Sk|k−1).
The particle filter uses conditional prior of the state vector as a proposal distribution, i.e. q(xi

k|xi
k−1, yk) =

p(xi
k|xi

k−1), sampled with 500 particles. When the particle depletion reaches a ratio of 0.5, the filter com-
mences re-sampling. During the weights update, measurement p(yk|xi

k) and context p(ck|xi
k) likelihoods

are sampled with the same set of particles xi
k. For computation of context weight factor cwi

k, we first eval-
uate the Mahalanobis distance of a particle xi

k from a multi-variable Gaussian mixture distribution. This
results in a vector of distances d = [d1, d2, . . . , dl] in a length l equivalent to the number of components
i.e. Gaussian PDFs, the mixture comprises from. That is

dxi
k
=


(xi

k − µ1:l)
T
Σ−1(xi

k − µ1:l) (4.21)

with a Σ being slices of covariances of the Gaussian mixture. Towards the goal of evaluating context weight
factor cwi

k, the minimum distance of d = [d1, d2, . . . , dl] is chosen. Assuming the road map scenario, the
hard constraint affects the context weights as

cwi
k =


0, if d ≥ 3σ

1, if d < 3σ.
(4.22)

4.4.2 Results and Discussion
The reference scenario used for data evaluation is shown in Fig. 4.4. The scenario consists of three roads,
visualized by dot-dashed lines, intersecting at two points. The process of trajectory and measurements
generation follows the motion model discussed in Sec. 4.4.1. The resulting trajectory is a sum of pseudo-
randomly generated segments which fits into the road map. The target appears at random time in the
bottom section of lateral road (labeled as Road3) and continues trough first intersection (Road2 and Road3
crossing) upwards till it reaches second intersection (Road1 and Road2 crossing). Here the vehicle could
continue straight or turn. The vehicle trajectory is 90s long from the time it first appears. At the time
of writing the paper, the trajectory generator was undergoing development, and as a consequence, we are
not able to demonstrate stop-and-go maneuvers. Acceleration is treated as a random input variable which
simulates vehicle speed changes over the course of its trajectory. Furthermore, the trajectory changes at
the intersections are very rapid leaving the tracker susceptible to track losses.

Fig. 4.5 reports the tracking result estimated by a particle filter without the presence of context. In the
figure, gating ellipsoids are associated with the tracks initiators. Relative error of the 90s long simulation
run is indicated by a green line on the Fig. 4.8. The average error in position achieved during the simulation
run was x̄x = 31.61m in x direction and x̄y = 32.29m in y direction.

Having the nominal solution been created, the task is to generate the road likelihood and then incor-
porate this contextual information into the tracking process. From the road map, scaled and aligned w.r.t
global coordinate frame, road features (pixels) were extracted. By choosing a number of Gaussian mixtures
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Figure 4.4: Reference trajectory (red) accompanied with the reference measurements (blue) in a road
scenario (black).

Figure 4.5: Reference trajectory compared against PF tracking.

k = 3, covariance matrices Σk constrained to be diagonal and parameters (wk, µk,Σk) to be tied among
the Gaussian components, the following GM model (Fig. 4.6) was obtained as a result of classification.
The road likelihood mask was obtained as a result of classification process where a number of Gaussian
mixtures k = 3, covariance matrices Σk constrained to be diagonal and parameters (wk, µk,Σk) to be tied
among the Gaussian components. Road3, Road2 and Road1 GMs are carrying the knowledge about road
width equal to 21m, 7m and 14m std. in position, respectively. It is worth mentioning, that sensor std. is
set to be 20m. Therefore, we do not expect context knowledge to have much influence on performance in
the blue section of the trajectory.

Fig. 4.7 shows the performance of the particle filter, this time, augmented with the contextual knowl-
edge of the road network. In comparison to Fig. 4.5, the spread of particles during contextual tracking was
reduced in accordance to the road constraints, which lead to improved state estimation. This fact is also
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Figure 4.6: Road likelihood mask represented as a Gaussian mixture model.

reflected by mean error values, which were reduced from x̄x = 31.61m to x̄x = 4.17m in x direction and
from x̄y = 25.15m to x̄y = 32.29m in y direction.

Figure 4.7: Reference trajectory compared against contextual PF tracking.

Plots of relative errors for PF with and without contextual information knowledge are shown on the
figure (Fig. 4.8).

By looking at the relative error characteristics, neither filter was able to prevent the track loss at the
intersections i.e. at times t1 = 30s and t2 = 60s to the simulation. However, the context tracking
solution was able to recover from the track loss slightly faster. The shape and orientation of the Gaussian
mixture has significant effect on filter performance (Fig. 4.9c, 4.9d). It can be observed, that the contextual
constraints of Road2 (Fig. 4.9c) apply only in longitudinal direction, thus constraining particles in x and
not at all in y direction. On the contrary, Road1 (Fig. 4.9d) constrains particles in the y direction and not
at all in x direction.

We have performed 30 Monte-Carlo runs of a scenario, where a vehicle appears at random time some-



4.5. Conclusion 55

Figure 4.8: Reference trajectory compared against PF tracking.

Figure 4.9: Likelihood mask effect on shape of gating ellipsoids. Figure a correspond to conventional
tracking while Figure b to context enhanced tracking

where in Road1. The vehicle randomly selected segments of the trajectory which involve turning towards
intersection of Road2 and Road3. At the 2nd intersection the vehicle chooses to either turn or continue
straight. Collected statistic of relative error and variance in position for target tracking with and without
context is summarized in the table (Tab.: 4.1). Given the scenario, we can observe approximately 27%
improvement in tracking performance by using the road context.

Target Relative Error Relative Error
Tracking Mean [m] Variance [m]
Context 15,62 3.25

No-Context 21,59 13.76

Table 4.1: Comparison of target tracking with and without context

4.5 Conclusion
We proposed a solution to the problem of multi-level context representation and exploitation for target
tracking. The presented approach encodes different types of CI in the form of likelihood functions. Like-
lihood functions are applied as constrains in the particle filter measurement update. Given the scenario,



56 4. Encoding Context Likelihood Functions as Classifiers in Particle Filters for Target Tracking

we have been able to improve accuracy of the target estimate approximately by 27%. Despite achiev-
ing promising results, there are multiple factors and limitations which needs to be considered during the
algorithm design.

As one might expect, informativeness of context is the primary contributor to improved tracking perfor-
mance. Therefore, generation of accurate and information rich likelihood masks is of crucial importance.
We addressed the issue of accuracy by employing Bayes classifiers on training datasets, and adopted the
context model with the best fit for the data. Regarding information richness, we assumed context features
to be known as a priori. The proposed solution of employing classifiers to cluster and partition contextual
data proved to be very versatile by providing: the ability to couch different types of knowledge, a princi-
pled functional representation exploitable as likelihood in the tracking process, the ability to dynamically
update contextual likelihoods by re-training.

Constraining particles in the measurement update could lead to large amount of particles with small or
vanishing weights. By reducing the size of the likelihood Particle filter become less efficient and eventually
lead to track losses. For this reason the constrains has to be applied with the care.

It has become apparent, that presented solution experienced difficulties, while tracking the target at
the intersections. An immediate solution, would suggest to the apply constrains into the prediction update
of the filter and constrain the prior distribution. However, constraining both prediction and measurement
update of the filter at the same time will make particle filter ineffective for tracking from Bayesian point of
view.



5
Context-Based Goal-Driven

Reasoning for Improved Target
Tracking

Tracking objects in complex dynamic environments can be less challenging once their
intents are recognized. Inferring on a targets’ future actions based on their past can be ad-
dressed via probabilistic reasoning. Context information plays a crucial role in the reasoning
process as it provides additional clues about targets’ intents. However, architectures com-
bining context reasoning with target tracking are merely not existing. The framework here
discussed views target’s actions as a Hidden Markov Model (HMM) with relevant context as-
sociated with each node. Context is at each time step selected based on immediate and goal
driven sets of actions. Inference in the HMM is conditioned on prior target’s measurements
and the belief state conditioned on context. This posterior is then compared with the target’s
state estimate in order to adjust the switching probability in the Interactive Multiple Models
(IMM) tracking process.

5.1 Introduction

The significance of Contextual Information (CI) for object tracking has been demonstrated in an increasing
number of works [18], [16]. In information fusion (IF), any information that surrounds an object or situ-
ation of interest could be considered as contextual. However, only relevant context (contextual variables)
provides useful clues in understanding the estimated situation and events [134]. However, the process of
finding a relevant context is not trivial and often involves a complex integration of IF with planning, ab-
ductive logic and control functions. As of now, no unified framework for design of such context-aware
event-driven system exist, but one might consider concepts for “a priori” and “a posteriori” CI exploration
respectively as a good reference [49]. Situations and events in the world rarely happen independently [140],
[141], [119], the spatial layout of events and their sequential patterns could provide useful clues not only
for situations understanding, but also for learning of relevant context and ultimately improve accuracy and
robustness of a tracking process.

Consider the scenario depicted in (Fig. 5.1), where a vehicle is being tracked by an airborne sensors in
an urban environment of a priori known topology. Low visibility, complex dynamics of the targets, high
clutter and target density make tracking in the real world equivalents of such scenarios extremely difficult
[104]. In these cases, the exploitation of a priori information, i.e. road topology, become essential in order
to maintain track accuracy and continuity [59], [102], [153]. However, the understanding of context is not
only limited to spatial relationships (location in space), but could also include higher levels of abstraction.
In our case a spatio-temporal relationships. As the vehicle progresses throughout the road network, it
creates a sequence of events denoted by event state s at any given time k. Every time a vehicle reaches an
intersection, it could decide (based on the topology) to drive “right”, “left” or going “straight” and by
doing so it creates an event which could be related to a specific mode of a tracking algorithm. Events can
be seen as the nodes of the graph tied together by a series of relationships. Relationships which binds the
events together in a space and a time will be referred to a spatio-temporal context c [166]. Spatio-temporal
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Figure 5.1: Relationship between event and spatial context.

context is a latent variable which needs to be learned from causalities naturally occurring between the
objects in events. Having learned a priori knowledge of spatio-temporal context, with respect to certain
observable variables characterizing the targets in relation to specific behaviors, the future actions of the
target could be anticipated by abducing that the target is pursuing a certain goal given the context. This
example shows the importance of spatial and temporal context relationships for target tracking as well as
emphasizes the synergies between information fusion, i.e. object and situation features, at different layers
of abstraction.

5.1.1 Overview of the Framework

Many existing works on target tracking exploit CI at the object assessment level [93], [17] also known as
JDL fusion level 1 [14]. At this level, CI is generally considered as a constraining factor which affects
evolution of the kinematic parameters of the system [127]. Knowledge of soft or hard constrains could be
applied in Bayesian recursion either in the prior density function or in the likelihood [112]. We will be
referring to all these solutions as object/target tracking (TT) with CI exploitation at the level 1 (Fig. 5.2) or
shortly CE1 tracking.

Figure 5.2: Target tracking with CI exploration at JDL level 1

The CE1 architecture allows the utilization of spatial context, such as topographic background infor-
mation, road constraints, naval maps as successfully demonstrated in [104], [59], [102], [112] and our own
work [153], respectively. However, we are not only concerned about the problem of detection and exploita-
tion of spatial context but all available context. The main challenge is to develop a representation of the
tracking scene that respects the spatio-temporal relationships of the events and successfully utilizes this
new knowledge in the fusion process. To achieve this goal, we build upon existing spatio-temporal con-
text representations, situation assessment strategies and interactive multiple model techniques that, when
combined together, provide a powerful framework for context exploitation.

Having the situation depicted in (Fig. 5.1) in mind, we describe causalities occurring between situa-
tions and a single event as a Hidden Markov Model (HMM) (Fig. 5.3). An event occurs at/between each
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Figure 5.3: Event model structure represented as HMM

intersection and encaptures the notion of the vehicle driving “straight” or “turn” with either “high” or
“low” kinematics. The tracking algorithm perceives the event at time k as a probability of modal state
sik associated with the nearly constant velocity models “CV mode 1, 2” and the coordinated turn models
“CT modes 1, . . . , 4”. In our demonstration scenario, we observe only three types of maneuvers cjk, e.g.
turning “right”, turning “left” and continuing “straight”, which could be either of “high” or “low” kine-
matics. However, one could think of adding “U-turn”, “reverse” or “lane change” maneuvers to increase
the complexity of a simulation. The unknowns in the presented HMM model are the emission probabil-
ities p(cjk|sik), which define the observation to event relationships, and the mode transition probabilities
p(sik|s

j
k−1). As it will be described later, we consider the transition mode probability p(sk|sk−1) as a prob-

lem variable, which we intent to infer from the observations, context and the goals pursued by targets. The
emission probability p(ck|sk) represents spatio-temporal contextual variables ck condition on event sk we
learn from the environment. Individual events, modal sik or contextual cjk, are combined together in space
and time in order to form sequences {c}Ns

1 or {s}Ns
1 of length Ns, respectively. Each sequence represents

an unique goal that target seeks to reach within given topology. As the vehicle progresses through the
network, we infer on target future actions based current evidence and a priori knowledge. The belief that a
vehicle seeks an objective is used to aid the tracking process. Events regions (Fig. 5.1) are not necessarily
constant and they vary in size and shape based on the event they represent. As the vehicle approaches
an intersection the event becomes more relevant the shorter the distance to centroid of a context event is.
Assuming that the relevance is an exponential function we decided to represent it as a Gaussian distribution
N (µ,Σ) of an event centroid µ and area of effect Σ.

Estimation of a target kinematics in scenario (Fig. 5.1) is usually referred to as a maneuvering tar-
get tracking problem under motion-mode and measurement-origin uncertainties, best described by a semi-
Markov processes (Fig. 5.4). The evolution of mode state mj

k−1 to the next mode mi
k is in the semi-Markov

Figure 5.4: Semi-Markov Process

process is chosen at random according to the transition probability πji
k−1|k−1. The time between mode mi

k
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and mj
k−1, i.e. the sojourn time τ i in mode mi

k, is selected based on the sojourn time PDF f(τ ji). By de-
noting the mode state of an estimator by mi

k instead of sik, we distinguish between Gaussian Model (GM)
and Hidden Markov Model (HMM). Despite these two models are both belonging to the same family of
Bayesian estimators, they are fundamentally different and their estimated mode probabilities p(mi

k|m
j
k−1)

and p(sik|s
j
k−1) are not necessarily equal. By realizing that mode of a system in semi-Markov setting is

not time invariant, i.e. mk ̸= m for ∀k, a class of sojourn-time dependent Markov (STDM) cooperating
multiple model (CMM) algorithms are arguably the most relevant solutions for described maneuvering tar-
get tracking problem [93]. However, the most popular CMM realization, the Interactive Multiple Models
(IMM) [20], ignores the sojourn-time dependencies as the mode dependent state estimate x̂jik|k is equal

to the expectation E[xi
k|m

j
k−1,m

i
k, yk−1] = E[xi

k|m
j
k−1, yk−1]. In other words, the time behavior of

the mode state mi
k is modeled as a Markov chain with a fixed time-invariant transition probability matrix

(TPD) i.e. Πk−1|k−1 = πji
k−1|k−1 = p(mi

k|m
j
k−1). Therefore, an extension of the IMM configuration

to the case of STDM process was proposed in [26]. Usefulness of the STDM IMM in real life applica-
tions is rather limited as the knowledge of sojourn-time dependent transition probability matrices is rarely
available and hard to obtain. For this reason, we decided to utilize and slightly alter the classical IMM by
adding a TPM estimation step into the recursion (Alg. 3). By doing so, the mode dependent conditional
means E[xik|m

j
k−1, xj

k−1, yk−1], covariances Σ[xi
k|m

j
k−1, xjk−1, yk−1], mode and transition probabilities

p(mi
k|m

j
k−1) will be computed recursively from prior values. An approximate Bayesian recursions for

the TPM posterior, i.e. p(Πk|mi
k, yk, yk−1), were in terms of the multiple models probabilities and likeli-

hoods proposed by Jilkov and Li in [67] and [68], respectively. We build upon Jilkov’s and Li’s work, and
by extending the TPM posterior for the prospect of events, i.e. p(Πk|mi

k, yk, yk−1, ck, ck−1), we seek to
compensate for the lack of sojourn time knowledge and for ambiguities occurring between mode transi-
tions by inclusion of a context c. The unknown sojourn time PDF f(τ ji) of the mode mi

k can be expressed
by an event-temporal relationship also known as a context relevance. The ambiguities occurring between
different modes can be mitigated by an event context and by a goal driven reasoning.

Utilizing event models is not uncommon in the information fusion, and proposed architecture (Fig. 5.5:
Evaluation phase) leverages from concepts developed for situation assessment purposes [124]. Context
features are classified either as a spatial context and directly utilized in CE1 tracking process (Fig. 5.2),
or as a CI where meaning is discovered during reasoning in the event-relational model. By inferring on
observed features, the probability of an event or situation outcome could be evaluated. Assessing the
situations and events in process of object tracking is the backbone of proposed TT architecture with CI
exploration at JDL level 2 (Fig. 5.5) or shortly CE2 tracking.

Figure 5.5: Target tracking with CI exploitation at JDL level 2

5.1.2 Main Contributions

The contribution of this work are threefold:
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• A methodology for situational context exploitation via goal-driven reasoning (Fig. 5.3) is introduced
and evaluated on a ground vehicle tracking scenario (Fig. 5.1).

• A context adaptive framework for unified situation assessment and target tracking is introduced
and evaluated. In comparison to existing approaches. The proposed framework allows for context
exploitation at JDL level 1 and 2 simultaneously (Fig. 5.5).

• The tracking filter adapts to target’s modes recursively based on target’s originated measurements and
actions. Existing adaptive solutions utilize only an a priori defined set of modes which are engaged
under certain conditions. Existing solutions rely heavily on domain expert knowledge, which is seen
as a major drawback, that our solution avoids.

5.1.3 Relations to the Context Exploitation Framework
In this section we establish connections between the CE2 tracking (Fig. 5.5) and the adaptive context
exploitation framework (Fig. 3.3) presented in Sec. 3. We assume that measurements originate from
sensors insensitive to the context, thus contextual and measurement sources are conditionally independent
from each other. Measurements enters the fusion node (Fig. 3.2) which is performing object tracking of
maneuvering targets, i.e. the object assessment process (Fig. 2.1). Within the FN (Fig. 3.3), unfeasible
observation are excluded from the processing during the ellipsoidal gating, i.e. the uncertainty character-
ization (UC) process. The state estimation (SE) process is governed by the IMM filter which recursively
estimates not only the state vector of the target but also its’ mode (Sec. 5.3.1). The data association (DA)
problem is resolved by a JPDA methodology (Sec. 2.5). The problem of common referencing (CR) is
ignored as only simplified sensor models are employed during the experimentation.

The context information represents the habits of a specific target navigating throughout the road net-
work. The meaning of the contextual information, i.e. the relation to a specific mode of the target at given
time, is inferred during the reasoning process (Sec. 5.3.4), described as the HMM (Fig. 5.3), and feed
into the adaptation management module. The design of such a context-adaptive logic is presented in this
chapter as a recursive mode transition estimation algorithm discussed in Sec. 5.3.2 and Sec. 5.3.3. As
opposed to our previous work (Sec. 4), CI is dynamic in nature and evolves over time. As mode evidence
about the target objective is being accumulated the stronger our belief about the target’s objective becomes
(Fig. 5.6). This belief is further adjusted by the relevance function, which is exponentially scaled by the
distance to each intersection (Fig. 5.7).

5.2 Related Work
Contextual information (CI) exploitation has been recently considered in the design of modern object track-
ing algorithms [16]. For example, Mertens and Ulmke [104] used topographic background information to
enhance tracking of ground vehicles in complex dynamic environments. Presence of CI in such a scenario
significantly improved quality and continuity of tracks, particularly during stop and go maneuvers and
target masking due to the Doppler blindness. Similarly, Gustafsson et al. [59] improved navigation and
tracking performance of road bound vehicles by imposing road constraints on their trajectories. So called
road-assisted navigation, takes advantage of dynamic matching between the motion model of a vehicle
and a road network implemented as manifold. The context-aided tracker or ConTracker [102] utilizes CI
obtained from naval maps, such as a water depth, trade route paths, and areas/buildings with a high strategy
value, in order to detect anomalies in the ship traffic. Target features observed by visual sensors proved
to be invaluable and by far the largest source of CI. Image features are more directly related to the target
motion mode rather than the kinematic measurements. As such, incorporation of image context in tracking
is closely related to target recognition and feature-aided tracking. For instance, one of the early study [148]
utilizes the observations of aircraft shape in order to adjust the time constants in the range-bearing path
tracker and subsequently discern changes in the target motion patterns. Another method for classification
aided target tracking presented in [37] is concerned about processing of features and attributes in the data
association process and successful utilization of these features in multiple sensors tracking scenarios. A
model for image-based observation for discrete target mode estimation was presented in [164]. Loosely
speaking, modal sensors are in aforementioned studies modeled as classifiers. Mode observations along-
side with the sensors measurements are related to the states and target modes in a Bayesian sense via joint
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posterior distribution, respectively. Evans at. al. [41] argue, that optimal filter capable of couping with such
a hybrid state estimation is computationally prohibitive. Therefore, authors propose the image-enhanced
(IE) IMM filter as a practical solution for effective reduction of Gaussian mixtures components. However,
in light of [17] exploitation of CI in the field of target tracking [16] is still rather bound to the low level
information fusion (LLIF) i.e. object assessment. By neglecting higher levels of the information fusion
(HLIF) the capability of the tracking algorithm to reason or to find relevant context is very limited.

In order to justify the above statement one might want to pay a closer attention to the recent works
of Steinberg and Rogova et al. [142], [140], [141], [119]. Briefly, the authors suggest to model events or
situations in the world as a set of relations and relationships in the form of factor graphs. In this sense, CI
could seen as a background knowledge which is associated to every relation pair or in different words to
each node of the graph. The uncertainty in these relations can be best described by a likelihood function.
Such a factor graphs could be then used for the context reasoning either in logical or probabilistic manner.
In the information fusion (IF), contextual reasoning relates to an inference of problem variables i.e. desired
information given the basis of context variables i.e available information. Generally speaking, the process
of finding a relevant context is not trivial and often involves a complex integration of IF with planning,
abductive logic and control functions. As of now, no unified framework for design of such context aware
system exist, but one might consider concepts for “a priori” and “a posteriori” CI exploration respectively
as a good reference [49]. In conclusion, inferring on target’s intents and goals is on mutual benefit to target
tracking and supports the trend in the IF community to combine deferent levels of a fusion into a single
framework [15], [14].

The problem of context reasoning, as an essential part of a situation and impact assessment respectively,
could be conveniently scaled into the problem of a plan recognition. Plan recognition seeks to infer on a
entity’s plan based on the observed entity’s actions and their effects. The role of CI in plan recognition is
twofold. Firstly it creates additional links between events and entities. Secondly it adjust our confidence
that an entity is following a certain plan. Probabilistic reasoning is the most popular approach in nowadays
plan recognition and as such approaches utilizing Bayesian networks (BN) and their variants are very
popular [23], [94] or [154]. Furthermore, the causality of relationships, modeled by factor graphs, could
be expressed by multiple hierarchical levels of Bayesian networks at different time slices i.e. dynamic
Bayesian net works (DBN). As the target progresses through the network and forming a chain of events,
then the BN could infer on target’s future actions based on its past. Similarly, relevant context could be
then discovered or selected based on target’s future or past actions, respectably.

To the best of our knowledge, BN were for the first time proposed to aid object tracking by Hautaniemi
and Saarinen [61]. They intended to enhance the classic multiple target tracking (MTT) algorithm, based
on interactive multiple model filter (IMM) and probabilistic data association (PDA), with quantities other
than kinematic measurements i.e. context. Authors argued that PDA was unable to deal with a contextual
information (CI) and therefore BN were developed as an additional inference method to aid data associa-
tion and track identification processes. In [115], DBN are used to capture the modal nature of the tracking
sea species. More specifically, the state space model of a tracked ocean animal was represented as a DBN
itself including both continuous (the velocities) and discrete variables (the propulsive mode of the animal,
and the discrete observation variables). Such a hybrid system was then used to adapt the bandwidth of
the multiple model bootstrap filter based on the most probable models given their conditional probability
densities (CPDs). Schubert and Wanielik [123] argued that context in [61] does not influence the tracking
directly or in case of [115] a tracking procedure is computationally very expensive. Therefore, the au-
thors proposed their own approach for incorporating additional information into the IMM called the Meta
Model filter. With a structure similar to a BN, the Meta Model represents causality of events in form of an
adaptive transition probability matrix. Elements of such a matrix are nodes and states which represent the
possible modes and transitions to other modes respectively. The usefulness of such a Meta Model filtering
was demonstrated in a line change maneuver recognition algorithm for vehicles with uncertain velocities
and yaw rates. In their most recent publication [124], the authors leverage their expertise into development
of an Advanced Driver Assistance System (ADAS) using unified Bayesian approach for tracking and sit-
uation assessment. In [114], an alternative method for learning dynamic models from training datasets of
observed state space trajectories was presented. So called the Switching Linear Dynamic Systems (SLDS)
describe a complex nonlinear dynamics by the successive linear models indexed by a switching variable.
In order overcome the exponential complexity of the exact inference of the DBN, the authors proposed
approximation techniques based on the Viterbi algorithm and the structural variational inference. Different
from the previous appearances, a methodology that represents the environment by the attractive forces was
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recently proposed in [25]. Such a framework assumes the existence of attractive spots in the environment
which could be used for altering the motion of agents. A switching model is used to describe near and far
velocity fields, which are in turn used to learn attractive characteristics of environments.

The aforementioned work assumes a priori knowledge of the transition probability matrix (TPM). How-
ever, the TPM is a design parameter whose choice could significantly influence the estimation process.
Therefore, algorithms which can identify the TPM during the course of tracking have been extensively
studied in literature [68], [67]. Furthermore, variable structure algorithms, referred to as Expected-Mode
Augmentation (EMA), for multiple-model estimation were developed [91], [92]. The EMA approach, the
original model set is augmented by a variable set of models intended to match the expected value of the un-
known true mode. An on-line maximum likelihood estimator for the transition probabilities associated with
a Jump Markov Linear System (JMLS) was proposed by Orguner et al. [110]. The maximum likelihood
estimator is derived using the reference probability method, which exploits an hypothetical probability
measure to find recursions for complex expectations. The Expectation Maximization (EM) algorithm is
utilized for maximizing the TPM likelihood function. These models are generated adaptively in real time
as probabilistically weighted sums of modal states over the model set.

In conclusion, spatial context represents only a small portion of the background information suitable for
aiding the target tracking processes. In this work, we propose a realization of the multi-level data fusion
framework (Fig. 5.5) capable of exploiting spatial and situational context. The presented methodology
models the relations between contextual observations alongside with sensors measurements and the state
variables as conditional dependencies, and thus completely avoids the use of JPDs in the Bayes recursion
[37], [147]. Approaches that model the conditional dependencies between events and situations in the form
of DBNs, utilize pre-set TPM matrices in order to model the behavior of targets [124], [61] and [115]. On
the contrary, our approach models the transition probabilities as parameters which are recursively estimated
during the IMM tracking process. Differently from [68] and [110], we expanded the TPM estimator process
for the inclusion of context.

5.3 Model Formulation

5.3.1 Maneuvering Target Tracking
The state dynamics of the maneuvering target could be conveniently modeled as a discrete system with
Markovian coefficients

xk = fk(mk)xk−1 + gk(mk)vk or p(xk,mk|xk−1) (5.1)

with observations
yk = hk(mk)xk + wk or p(yk|mk, xk). (5.2)

Where xk is the system state vector estimated from the observations yk. Parameter mk is a mode state
taking values (1, 2, ..., Nm) and represents the current system model in use. Functions f(mk), g(mk) and
h(mk) are mode dependent state transitions. Vectors vk ∼ N (wk; 0,Q) and wk ∼ N (wk; 0,R) are
mutually uncorrelated Gaussian distributed white noises with covariances Q and R respectively.

Suppose a target which is moving according to the kinematic model defined by (5.1) and (5.2). During
the time period (1 : k) a total number of Nm different model histories m1:k might have occurred. The
history of the mode state mk ∈ (1, 2, .., Nm) can modeled as a homogeneous Markov chain with transition
probability matrix (TPM) πji

k−1|k−1 = p(mi
k|m

j
k−1). The goal of estimation in Markovian Jump Systems

(MJS) framework is to infer the posterior density of the target xk for a specific model history mi
1:k with

the available sensor measurements y1:k. By using Bayesian framework this estimation problem relates to
the recursive evaluation of the probability density function (PDF) p(xk|mi

k, y1:k) over all possible mode
sequences mk ∈ (1, 2, .., Nm) that end in the mode mi

k in five consecutive steps (5.3-5.7).

p(mj
k−1|y1:k−1)

Mixing−−−−→ p(mi
k|y1:k−1) (5.3)

p(xk−1|mj
k−1, y1:k−1)

Mixing−−−−→ p(xk−1|mi
k, y1:k−1) (5.4)

p(xk−1|mi
k, y1:k−1)

Prediction−−−−−→
Update

p(xk|mi
k, y1:k−1) (5.5)
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p(mi
k|y1:k−1)

Mode−−−→
Update

p(mi
k|y1:k) (5.6)

p(xk|mi
k, y1:k−1)

Measurement−−−−−−−→
Update

p(xk|mi
k, y1:k) (5.7)

The product of the posterior probability of the mode sequence p(mi
k|y1:k) (5.6) and the posterior distri-

bution over the system state p(xk|mi
k, y1:k) (5.7) conditioned on the mode sequence mi

k can be seen in a
view of the total probability theorem as p(xk|y1:k) defined by

p(xk|y1:k) =

Nm
i=1

p(mi
k|y1:k)p(xk|mi

k, y1:k). (5.8)

The mode (5.6) and measurement update (5.7) are computed from their prior distributions p(mi
k|y1:k−1)

and p(mi
k|y1:k−1) and measurements y1:k by a Bayesian formula which result in (5.9) and (5.10), respec-

tively.

p(mi
k|y1:k) =

p(yk|mi
k)p(m

i
k|y1:k−1)

p(yk|y1:k−1)
(5.9)

p(xk|mi
k, y1:k) =

p(yk|mi
k, xk)p(xk|mi

k, y1:k−1)

p(yk|y1:k−1)
(5.10)

The 1st order Markov property for equations (5.9) and (5.10) implies that p(mi
k|y1:k) and p(xk|mi

k, y1:k)
only depends on measurement yk at time k. The prediction state density p(xk|mi

k, y1:k−1) of state xk in
(5.5) is calculated from the prior PDF p(xk−1|mi

k, y1:k−1) by using Chapman-Kolmogorov equation

p(xk|mi
k, y1:k−1) =


p(xk|xk−1)p(xk−1|mi

k, y1:k−1)dxk−1. (5.11)

By the law of the total probability expression (5.4) becomes

p(xk−1|mi
k, y1:k−1) =

Nm
j=1

p(mi
k|m

j
k−1, y1:k−1)×

p(xk−1|mj
k−1, y1:k−1).

(5.12)

Density p(mi
k|m

j
k−1, y1:k−1) relates to mode mixing (5.3) and represents the Chapman-Kolmogorov equa-

tion for a Markov chain (5.13).

p(mi
k|y1:k−1) =

Nm
j=1

p(mi
k|m

j
k−1)p(m

j
k−1|y1:k−1) (5.13)

Probability p(xk−1|mj
k−1, y1:k−1) is assumed to be know from the previous step and to be Gaussian dis-

tributed i.e.
p(xk−1|mj

k−1, y1:k−1) = N (xk−1; x̂ik−1|k−1,Σ
i
k−1|k−1). (5.14)

Substituting Gaussian distribution (5.14) into (5.12) and evaluating the whole recursion (5.3-5.7) yields a
common approximation of p(xk|y1:k) in (5.8) by a Gaussian mixture with N2

m components i.e.

p(xk|y1:k) ≈
Nm
i=1

µi
kN (xk; x̂ik|k,Σ

i
k|k). (5.15)

One might notice that the number of components in the Gaussian mixture (5.15) grows exponentially over
time. Therefore, numerous techniques which reduce the number of components in the Gaussian mixture
either by pruning or merging were developed [93]. Among them, the Interactive Multiple Model (IMM)
filter introduced by Blom and Bar-Shalom [20] becomes a solution of choice. IMM approximates posterior
mode probabilities µi

k in equation (5.15) with

µi
k ≡ p(mi

k|y1:k) (5.16)
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Exact expression for the mode probability µi
k is shown in the IMM algorithm (Alg.: 3). Furthermore the

mode transition probability πji
k−1|k−1 = p(mi

k|m
j
k−1) in expression (5.13) is genuinely assumed to be

known a priori and to be constant time invariant matrix. With such an approximation the overall posterior
mean x̂k|k and covariance Σk|k are equal to formulas (5.17) and (5.18) respectively.

x̂k|k =

Nm
i=1

µi
kx̂ik|k (5.17)

Σk|k =

Nm
i=1

µi
k[Σ

i
k|k + (x̂i

k|k − x̂k|k)(x̂
i
k|k − x̂k|k)

T ] (5.18)

This estimate (5.17) and covariance (5.18) can be given to the user as the output. The mode conditional
means {x̂i

k|k}
Nm
i=1, covariances {Σi

k|k}
Nm
i=1 and mode probabilities {µi

k}
Nm
i=1 must be calculated recursively

from their previous values {x̂i
k−1|k−1,Σ

i
k−1|k−1, µ

i
k−1}

Nm
i=1. A single step of the IMM filter is presented

as an algorithm (Alg.: 3).

5.3.2 Adaptive Transition Probability Matrix

In the introduction Sec. 5.1.1 we discussed the importance of intent context for tracking targets with MJS
properties. In order to utilize the contextual information in a IMM framework (Sec. 5.3.1), we propose
to compute the mode transition probability matrix Πk or πji

k recursively. In light of [68] and [67], we
present the Bayesian recursion (5.20) for updating the TPMs posterior density p(Πk) given the prior PDF
p(Πk−1) and two observations formulated as the measurement and context likelihood functions.

p(Πk|yk, yk−1, ck, ck−1)

=
p(Πk, yk, yk−1, ck, ck−1)

p(yk, yk−1, ck, ck−1)

=
p(yk|Πk, yk−1, ck, ck−1)p(Πk, yk−1, ck, ck−1)

p(yk|yk−1, ck, ck−1)

=
p(yk|Πk, yk−1, ck, ck−1)p(ck|Πk, yk−1, ck−1)

p(yk|yk−1, ck, ck−1)p(ck|yk−1, ck−1)

p(Πk, yk−1, ck−1)

=
p(yk|Πk, yk−1, ck, ck−1)p(ck|Πk, yk−1, ck−1)

p(yk|yk−1, ck, ck−1)p(ck|yk−1, ck−1)

p(Πk|yk−1, ck−1)p(yk−1, ck−1)

p(yk−1, ck−1)

(5.19)

By exploiting the conditional independence between contextual ck and the measurement yk variables and
by assuming the 1st order Markov assumption recursion (5.20) simplifies to

p(Πk|yk, yk−1, ck, ck−1)

=
p(yk|Πk, yk−1) p(ck|Πk, ck−1) p(Πk|yk−1, ck−1)

p(yk|yk−1) p(ck|ck−1)
.

(5.20)

In the above equation, probability p(yk|Πk, yk−1) is referred to a measurement likelihood, p(ck|Πk, ck−1)
is context likelihood, p(Πk|yk−1, ck−1) is the TPM prior, terms p(yk|yk−1) and p(ck|ck−1) are measure-
ment and context normalization factors, respectively.

Following the derivation presented in [68], the measurement and context likelihood in (5.20) are, in
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light of total probability theorem, defined as

p(yk|Πk, yk−1)

=

Nm
j=1

p(yk|m
j
k−1,Πk, yk−1) p(m

j
k−1|Πk, yk−1)

=

Nm
j=1

p(yk|m
j
k−1,Πk, yk−1)

×
Nm
i=1

p(mj
k−1|m

i
k−1,Πk, yk−1)

× p(mi
k−1|Πk, yk−1)

≈
Nm
j=1

Λj
k

Nm
i=1

πji
k µi

k−1

= Λ′
kΠ

′
kµk−1 = µ′

k−1ΠkΛk

(5.21)

and similarly

p(ck|Πk, ck−1)

=

Nm
j=1

p(ck|mj
k−1,Πk, ck−1) p(m

j
k−1|Πk, yk−1)

=

Nm
j=1

p(ck|mj
k−1,Πk, ck−1)

×
Nm
i=1

p(mj
k−1|m

i
k−1,Πk, yk−1)

× p(mi
k−1|Πk, yk−1)

≈
Nm
j=1

Γj
k

Nm
i=1

πji
k µi

k−1

= Γ′
kΠ

′
kµk−1 = µ′

k−1ΠkΓk

(5.22)

with the following approximation being applied in derivations (5.21) and (5.22)

p(yk|m
j
k−1,Πk, yk−1) ≈ Λj

k (5.23)

p(ck|mj
k−1,Πk, ck−1) ≈ Γj

k (5.24)

p(mi
k−1|Πk, yk−1) ≈ µi

k−1. (5.25)

Measurement and context likelihoods (5.21) and (5.22) assume the knowledge of TPM Πk at time k which
is not feasible to estimate within the same recursive cycle (k|k − 1). Therefore, the TPM Πk is approx-
imated with the transition probability matrix estimate from the previous cycle e.g. Πk−1. Terms Λj

k, Γj
k

and µi
k−1 approximate the nonlinear dependences p(yk|Πk, yk−1), p(ck|Πk, ck−1) and p(ck|Πk, ck−1)

on Πk by a linear function µ′
k−1ΠkΛkΓk.

The measurement p(yk|yk−1) and context p(ck|ck−1) normalization factors are under local linear ap-
proximation (5.21) and (5.22) defined by (5.26) and (5.27), respectively.

p(yk|yk−1)

=


p(yk|Πk, yk−1) p(Πk|yk−1)dΠ

=


µ′

k−1ΠkΛk p(Πk|yk−1)dΠ

= µ′
k−1Πk−1Λk

(5.26)
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p(ck|ck−1)

=


p(ck|Πk, ck−1) p(Πk|ck−1)dΠ

=


µ′

k−1ΠkΓk p(Πk|ck−1)dΠ

= µ′
k−1Πk−1Γk

(5.27)

By substituting (5.21), (5.22), (5.26), (5.27) into (5.20), we obtain the simplified Bayes rule of the form

p(Πk|yk, yk−1, ck, ck−1)

=
(µ′

k−1ΠkΛk)(µ
′
k−1ΠkΓk)

(µ′
k−1Πk−1Λk)(µ

′
k−1Πk−1Γk)

p(Πk|yk−1, ck−1).
(5.28)

Recursion (5.28) can be further simplified with respect to the marginal PDFs p(Πk|yk, yk−1, ck, ck−1) for
each row i ∈ mk of the TPM Πi

k, i.e.

p(πi
k|yk, . . . , ck−1) =

 Nm

i=1

p(Πk|yk, . . . , ck−1)dΠ/dπi,

=
Ai

(µ′
k−1Πk−1Λk)(µ

′
k−1Πk−1Γk)

,

(5.29)

where dΠ/dπi = dπ1, . . . , dπi−1, dπi+1, . . . dπNm . Term Ai refers to a marginal integral of the i-th row
of p(πi

k|yk, . . . , ck−1) and can be solved as follows

Ai =

 Nm

i=1

(µ′
k−1ΠkΛk)(µ

′
k−1ΠkΓk)

p(Πk|yk−1, ck−1) dΠ/dπi

=

 Nm

i=1

Nm
l=1

(µ′l
k−1π

′l
kΛk)(µ

′
k−1π

′l
kΓk)

p(Πk|yk−1, ck−1) dΠ/dπi

=

Nm
l=1

µ′l
k−1

 Nm

i=1

π′l
kp(π

i
k|yk−1, ck−1) dΠ/dπiΛkΓ

′
k

(5.30)

By assuming the marginalization of the form Nm

l=1

πl
k p[π1, . . . ,πNm |yk−1, ck−1]dπ

1, . . . , dπNm

= πl
k−1 p[π

i|yk−1, ck−1]

(5.31)

expression (5.30) further simplifies to

Ai =
 Nm

i̸=l

µl
k−1π

′l
k−1 + µi

k−1π
′i
k−1


×ΛkΓ

′
k p[πi|yk−1, ck−1]

=
 Nm

l=1

µl
k−1π

′l
k−1 + µi

k−1π
′i
k−1 − µi

k−1π
′i
k−1


×ΛkΓ

′
k p[πi|yk−1, ck−1]

= {µ′
k−1Πk−1ΛkΓ

′
k

+ µi
k−1[π

′i
k − π′i

k−1]ΛkΓ
′
k} p[πi|yk−1, ck−1].

(5.32)

The result of (5.29) and (5.32) represents the polynomial approximation of posterior density p(Πk|yk, yk−1, ck, ck−1)
estimation which is the subject of discussion of Sec. 5.3.3.
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5.3.3 A Quasi-Bayes TPM Estimator
The goal of the estimation process is to compute the optimal conditional probability Π̂k that maximize the
TPM likelihood function p(y1:k, c1:k|Πk), approximated by equalities (5.21) and (5.22), given the prior
knowledge of the transition probabilities Πk−1, sensor measurements y1:k and context knowledge c1:k,
i.e. to compute the maximum a posteriori prediction Π̂k = argmaxΠ p(y1:k, c1:k|Πk). Solutions to this
estimation problem were extensively studied in [68], where the approaches based on recursive estimation
of finite mixture components offered the best trade-off between accuracy and computational complexity.

Following the derivations in previous Sec. 5.3.2, the marginal TPM likelihood p(yk, ck|πi
k, yk−1, ck−1),

where i = 1, . . . , Nm, can be seen as the Gaussian mixture of the form

p(yk, ck|πi
k, yk−1, ck−1) =

Nm
j=1

πji
k gjik (5.33)

where
gjik ≈ g̃jik p(yk|y1:k−1) p(ck|c1:k−1) (5.34)

with marginal likelihood functions

g̃jik = 1 + ηik[λ
j
kγ

j
k − πi

k−1ΛkΓ
′
k]. (5.35)

Having realized that TPM likelihood can be expressed as a mixture (5.33), the MMSE estimation of
marginalized transitional probabilities π̂i can be conviniently transformed into a classification problem
referred to as Prior Probability Estimation of finite mixtures. In general, PPE is formulated for mixture
models as

f(yk|Π) =

Nm
j=1

πj
k gjk(yk) (5.36)

with known mixture components gjk(yk), where the goal is to estimate weights π̂j
k, where

Nm

j=1 π̂
j
k = 1,

for a given sequence of observations y1, y2, . . . , yk with PDF f(yk|Π). Jilkov at al. [68] argue, that a
Quasi-Bayesian TPM estimator [131] is the solution of choice since it provides a quasi-posterior mean of
the PPE, and thus meets the MMSE TPM estimation criteria perfectly. Similarly to the Gaussian mixture
approximations, the underlaying idea of the Quasi-Bayesian (QB) approach is to approximate the posterior
weighted sum of Nm Dirichelt distributions by a single Dirischlet distribution at each time step. Within
an iteration, the QB estimator computes the recursive estimate of TPM π̂j

k from a Dirichelt prior p(πj
k−1)

and a likelihood (5.36) via (5.37) and (5.38).

π̂j
k =

αj
k

k + α0
(5.37)

αj
k = αj

k−1 +
αj

k−1g
j
kNm

m αl
k−1g

l
k

(5.38)

5.3.4 Context Likelihood and Hidden Markov Model
A Hidden Markov Model (HMM) is a probabilistic graphical model that represents the sequence of domain
variables sk with k = 1 : K and their conditional dependencies in the form of a directed acyclic graph
(Fig. 5.3). A domain variable, in our case the mode of a tracking filter sik at time k, is seen as a node
of the graph and its relation to the other nodes represented as a conditional probability p(sik|s

j
k−1) of that

node to its parents. In graph theory, probability p(sik|s
j
k−1) is commonly referred to as the state transition

matrix Ak|k−1 with elements ajik|k−1. As the vehicle navigates throughout the road network (Fig. 5.1) it
creates a time sequence sk = {si1, . . . , sik, . . . , siK} consisting of events sik where i ∈ 1 : Nm. At any
given time k, the probability of a state sik is conditionally independent from its non-descendant sjk−1 as
stated by the 1st order Markov assumption, e.g. p(sik|s

j
1, . . . , s

j
k−1) ≈ p(sik|s

j
k−1) where j ∈ 1 : Nm. It

is worth noting, that both mode transition probability matrices πji
k−1|k−1 = p(mi

k|m
j
k−1) and p(sik|s

j
k−1)

express the evolution of modal state from time k − 1 to k, but they are by no means the same as former is



5.3. Model Formulation 69

conditional dependent on observations y1:k and context c1:k i.e. p(Πk|yk, yk−1, ck, ck−1) and later merely
depends on context c1:k i.e. p(Πk|ck, ck−1) ≈ p(sk|ck, ck−1).

Having HMM setting in mind, state sequence sk is considered to be a hidden variable the knowledge
of which is inferred from the sequence of contextual observations ck as a joint probability distribution of a
form

p(ck, sk) = p(ck|sk)× p(sk|sk−1) =

K
k=1

p(ck|sk)×
K

k=1

p(sk|sk−1). (5.39)

We assume, that the length of contextual sequence ck is equal to the length of state sequence sk i.e. c1:K =
s1:K . As visualized on the Fig. 5.3, six kinds of context variables are utilized in the presented scenario,
namely cj ∈ {straight, stop&go, right, sharp right, left, sharp left}. Context variables cjk are related
to the states sik through a likelihood function p(cjk|sik) commonly referred to as an emission probability
matrix Bk|k−1 = bjik|k−1. By knowing the joint probabilities of all observations with a particular hidden

state sequences {p(ck, sk)}Ns
1 , the total probability of contextual observations p(Ck) can be computed by

summing over all possible hidden state sequences

p(Ck) =

Ns
c=1

p(ck, sk) =
Ns
c=1

p(ck|sk)p(sk). (5.40)

Alternatively, the total probability of the state sequence p(Sk) can be represented as

p(Sk) =

Ns
s=1

p(sk, ck) =
Ns
s=1

p(sk|ck)p(ck). (5.41)

The role of HMM for context reasoning is twofold. First, HMM captures the state transition proba-
bilities p(sk|sk−1) and individual contextual likelihoods, i.e. emission probabilities p(ck|sk) from the all
observed sequences Ck for set of possible states sik during the training phase. Second, HMM infers on
likelihood p(ck|sk) and estimates the probability of state variables sk during the evaluation phase.

The training phase of the HMM is an expectation maximization problem governed by the Baum-Welch
(forward-backward) algorithm (Alg.: 4). Baum-Welch iterative search method seeks to find the local
maximum of parameter space θk|k−1 = [Ak|k−1,Bk|k−1, sk|0] that maximizes the probability of contextual
observations p(Ck) i.e. maximizes the loss function of the form θ̂k = argmaxθ p(Ck|θk|k−1) where
Sk ⊂ θk|k−1. Intuitively, the maximum likelihood estimate of the probabilities ajik|k−1 or bjik|k−1 can be

computed by counting the number of times the transition ξ(sjk−1 → sjk) or γ(cjk → sik) between states i
and j was taken, and then normalizing by the total count of all times a transition from state i was made.
That would for a matrix ajik|k−1 mean that

ajik|k−1 =
ξ(sjk−1 → sjk)
s∈S ξ(sik → ssk)

. (5.42)

However, this intuition (5.42) could not be directly applied for HMM, since path taken by states sk is
considered to be hidden from an input sequence ck. For this reason, the Baum-Welch Alg. 4 iteratively
estimates the expected state occupancy count γi

k, i.e.

γi
k = p(sik|ck,θk|k−1) =

p(sik, ck|θk|k−1)

p(ck|θk|k−1)
, (5.43)

and the expected state transition count ξjik , i.e.

ξjik = p(sik, s
j
k−1|ck,θk|k−1) =

p(sik, s
j
k−1, ck|θk|k−1)

p(ck|θk|k−1)
, (5.44)

from the previous values of bjik−1|k−1 and ajik−1|k−1, respectively in so called E-step. Probability p(sik|ck,θk|k−1)

in (5.43) is a result of multiplication of forward αi
k = p(ck, sik|θk|k−1) and backward probabilities
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βj
k−1 = p(ck|sjk−1,θk|k−1) evaluated by well-known Forward-backward algorithm. According to the

Bayes theorem point of view γi
k in (5.43) becomes

γi
k = p(sik|ck,θk|k−1) =

p(ck, sik|θk|k−1) p(ck|sjk−1,θk|k−1)

p(ck|θk|k−1)
. (5.45)

Evaluation of the expected state transition count ξjik requires incorporation of prior likelihood bjik−1|k−1

and transition matrix ajik−1|k−1 into (5.44), which can be represented in view of forward and backward
probabilities as

ξjik = p(sik, s
j
k−1|ck,θk|k−1) =

p(ck, sik|θk|k−1) p(s
i
k|s

j
k−1) p(ck|s

j
k−1,θk|k−1) p(ck|sik)

p(ck|θk|k−1)
. (5.46)

In the subsequent maximization or M-step, ξik and γji
k are used to refine ajik|k−1 and bjik|k−1 estimates,

respectively.
By observing a particular sequence of contextual measurements ck, the fundamental task of HMM dur-

ing the evaluation phase is to determine the most probable mode sequence sk, which is among all possible
sequences Sk, the underlying source of context. During the so called decoding, HMM infers the likelihood
of the observation sequence for each possible hidden state p(ck|sik) by computing the forward probabili-
ties of mode states sk, i.e. solving (5.40). By utilizing the Baum-Welch algorithm, the joint probability
likelihood p(sik, ck|θk|k−1) is a product of forward p(ck, sik|θk|k−1) and backward p(ck|sjk−1,θk|k−1)
processes as indicated by the numerator of expression (5.43). Therefore (5.40) can be rewritten as

p(Ck) =

Ns
c=1

Nm
i=1

p(sik, ck|θk|k−1) =

Ns
c=1

Nm
i=1

Nm
j=1

p(ck, sik|θk|k−1) p(ck|sjk−1,θk|k−1). (5.47)

The most probable hidden state sequence ŝk of all possible sequences Sk is the one which maximizes the
contextual observation likelihood p(Ck) (5.47), that is the maximum of the loss function ŝk = argmaxs p(Ck|θk|k−1)
where Sk ⊂ θk|k−1.

5.4 Experimental Results
In this section we discuss and address the challenges associated with synthetic dataset generation, simula-
tion design and analyze the effect of context on the tracking performance. Our vision on the context-aware
target tracking (Fig. 5.5), motivated and briefly outlined in section (5.1.1), combines the situation assess-
ment module with the target tracking algorithm into a multi-layer data fusion architecture. The multi-target
maneuvering target tracking scenario, depicted in the Fig. 5.1, can be conveniently modeled as an iterative
multiple model estimation problem under motion mode and measurement origin uncertainties. As opposed
to the standard IMM implementation [20], evolution of mode states is not determined by sojourn-time
independent transition probability matrix but evolves dynamically over time. Adaptability is achieved by
estimating the rate of chance of TPM elements by observing target originated measurements alongside with
contextual information. In order to prove the benefits of context on tracking, we developed a simulation
scenario (5.4.1) consisting of synthetically generated data, on which we tested the IMM target tracking
algorithm, context inference and learning, and recursive TPM estimation. Generation of synthetic mea-
surements was a necessity as the real-world datasets, which consist from continuous stream of sensory
measurements and context information, are merely non-existent.

5.4.1 Simulation Design
Goal-driven context-aware object tracking relies on the assumption that target navigating throughout the
network (Fig. 5.1) seeks a certain goal which can be represented by a sequence of decisions sk, i.e.
modes of the tracking filter, from a start k = 1 to an end k = K. We perceive these events as a se-
quence of contextual observations c1:K , which can be interpreted as certain habits associated with indi-
vidual targets, but their relation to the mode sequence sk remains hidden from the observer. Relation-
ship between a single context observation or event cjk, where j ∈ {straight, stop&go, right, sharp right,
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left, sharp left}, and an mode state sik is i ∈ {CV1,CV2,CTR1,CTR2,CTL1,CTL2}, is represented by a
likelihood function p(ck|sk). The objective of the HMM is to infer the likelihood of observed sequence
for each possible state p(ck|sik) by computing the forward probabilities of mode states sk, i.e. to solve
(5.40) by using Alg. 4. In other words, conditional likelihood p(ck|sik) is inferred from the distributionNs

c=1

Nm

i=1 p(s
i
k, ck|θk|k−1) = p(Ck), evaluated as (5.47), given the most probable hidden state sequence

ŝk = argmaxs p(Ck|θk|k−1). Here, θk|k−1 is an emission parameter for an observation cjk associated with
state sik. Such inference is only feasible when the topology of hidden Markov model is a priori know (Fig.
5.6). Therefore, the behavior model (Fig. 5.3) for each target xi, i.e. the sequence of decisions s1:k,
needs to be learned in a form of HMM parameters (Sec. 5.3.4), that is the number of possible mode states6

i=1 s
i
k where i ∈ {CV1,CV2,CTR1,CTR2,CTL1,CTL2} (types of nodes • in Fig. 5.6), the number of

possible context events
6

j=1 c
j
k, where j ∈ {straight, stop&go, right, sharp right, left, sharp left} (types

of context ◦ in Fig. 5.6), the context event sequence c1:k of target xi
k from a start k = 1 to an end k = K

(length of arks ◦ in Fig. 5.6), state transition probabilities πk|k−1 (edges or connections between •) and
emission probabilities θk|k−1 (arks or connections from ◦ to •). As illustrated in the Fig. 5.6, the infer-
ence is performed at each road intersection at the time k when the vehicle enters a validity region, i.e. a
spatio-temporal context neighborhood of sik. Probability that a vehicle will perform a maneuver sik, in this

Figure 5.6: Hidden Markov model topology and spatio-temporal context neighborhood.

case a turn left i ∈ CTL1, is inferred by the Bayes theorem (5.46) on the basis of a context likelihood
p(sik, s

j
k−1|ck,θk|k−1) and a priori state transition count p(sik−1, s

j
k−2, ck|θk|k−1). It is not uncommon in

the field of plan recognition, that probabilities on target actions sik are inferred at every time step k, not
only at the times when a vehicle enters some validity region of the context cjk, which lead to development
of large variety of dynamic Bayesian networks (DBN) implementations. Reasoning schemes capable of es-
timating the start and end times of events, e.g. Abstract Hidden Markov Models [22], at different layers of
abstraction, e.g. Hierarchical Hidden Markov Models [24], are indeed very appealing, however, the usage
of HMM is well justified for cases were the area of event occurrence, i.e. location of a road intersection in
the global coordinates, is precisely defined.

Till this point we have only discussed the inference of a semantical meaning of the context. How-
ever, in order to utilize CI for the purpose of transition probability matrix (TPM) estimation (5.20), like-
lihood p(ck|sk) has to be mapped from an event plane into a spatio-temporal plane (Fig. 5.6) to form
p(ck|Πk, ck−1), i.e. context feature space needs to be extended for an attribute of location. Observe, that
p(ck|sik), which is in fact an independent mode observation likelihood p(ck|mi

k), can be directly applied
in the mode prediction update (5.9) of the IMM filter. However, this strategy is very risky, and thus not rec-
ommended, as any uncertainties in a HMM mode estimate will result in track losses and will significantly
degrade the IMM performance due the presence of a mode bias. Our goal is to find the mapping of a form

p(ck|Πk, ck−1) = f(p(ck|sk), xk). (5.48)

For clarity, consider a context validity region (Fig. 5.6) depicted on the Fig. 5.7 for an expected value
of mode likelihood p(cstraightk |sCV 1

k ) (blue) and p(cleftk |sCT 1

k ) (red). The Scenario represents a state
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Figure 5.7: Illustration of the context relevance function during the mode transition.

transition sequence si1:3 for i ∈ {CV1,CTL1,CV1} which is inferred on basis of a contextual likelihood
p(cjk|sik) corresponding to event elements cj1:3 for j ∈ {straight, left, straight }. In order to find the mapping
(5.48), we assumed that the relevance of the context event should be a quadratic function of the distance.
It is further assumed, that context is observed from the target xk perspective and only valid within some
spatio-temporal neighborhood of the context focal point. Arguably, the simplest model of the relevance
is a Gaussian distribution defined by a focal point µ and by standard deviation Σ of a spatio-temporal
neighborhood. For the purpose of this study, the likelihood p(cjk|sik) for context j = left is constituted
from three segments: leading edge |AB|, steady state |BC|, and trailing edge |CD|. Context relevance for
f(p(ck|sk), xk) is defined as a weighting factor wk as

wk ∝


N

xk;µ, (−3Σ, 0.7Σ) ∩ (0.7Σ, 3Σ)


for |AB| and |CD|,

kxk, k = 0.9 for |BC|,
(5.49)

where Σ is a design parameter (in our experiments is chosen to be Σ = 82), depending on the size of an
intersection. The choice not to model segment |BC| as a Gaussian distribution is to avoid huge spikes
in the likelihood. Modeling the transition from continuous velocity model mCV 1

k−1 to coordinated turn
model mCT 1

k for segment |AB| and vice versa for |CD| is of crucial importance in the real tracking
scenarios. If the mode transition probability p(mCT 1

k |mCV 1

k−1 ) of the jump from mCV 1

k−1 to mCT 1

k is too low,
i.e. πji

k−1|k−1 = p(mCT 1

k |mCV 1

k−1 ) ≈ 0, the IMM filter will very unlikely perform such a jump. In such a
case, the chance of a track loss is high. The underlaying principle of any adaptive Transition Probability
Matrix (TPM) estimation is based upon the count of transitions between the modes. Unsurprisingly, in real
tracking scenarios certain transitions can be quite frequent and others very sparse. In anticipation for these
rare cases, it is better to increase the mode ambiguity prior to an event thus ‘preparing’ the filter for such
unlikely mode transition, i.e. gradually decrease and increase the probability of mCV 1

k−1 and mCT 1

k (Fig.
5.7), respectively. In conclusion, the context likelihood model used in this study is formulated on the basis
of (5.48) and (5.49) as

p(ck|Πk, ck−1) = wk p(ck|sk). (5.50)

Two types of the synthetic detests will be considered in the evaluation of the proposed methodology:
the Markovian Jump Linear System process (MJLS) and more realistic semi-Markov process depicted
in the Fig. 5.4. Arguably, the MJLS (5.51) is considered to be the benchmark dataset for performance
evaluation of the TPM estimators [68], [110].

xk =Ak(mk)xk−1 + Bk(mk)uk + vk,
yk =Ck(mk)xk + Dk(mk)uk + wk.

(5.51)

The parameters of the model are defined on basis of (2.1, 2.2) and the mode state mk is a single element of
a Markov chain sequence mi

k ∈ {mi
1, . . . ,m

i
K} of length K for ∀i ∈ 1, . . . , N i with the number of modes

N i. The Markov sequence is uniquely defined by a transition probability matrix Πk = πji
k−1|k−1.
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The hidden Markov model, e.g. Fig. 5.3, was employed in the process of semi-Markov sequence
generation mi

k ∈ {mi
1, . . . ,m

i
K} of length K for ∀i ∈ 1, . . . , N i. A target specific semi-Markov sequence

is uniquely defined by a transition πji
k−1|k−1 and emission probability matrix θji

k|k−1. As opposed to
MJLS, the HMM sequence is defined only at each intersection Fig. 5.6, as the mode state mi

k = sik can
be inferred only on the basis of contextual information cjk (5.46), and therefore it is significantly shorter
and with the less amount of jumps. The resulting dataset is a sequence of trajectory segments, where each
segment is generated in accordance with the MJLS (5.51) process. Consider a generic trajectory segment
(Fig. 5.8). Each segment is 20s long and constitutes from a single context event cjk, where j ∈ {straight,

Figure 5.8: Trajectory segment.

stop&go, right, sharp right, left, sharp left}. At the beginning, i.e. at the time k1, it is assumed that vehicle
is moving according to CV model, i.e. sCV 1

k , which is reflected by a context observation cstraightk . At
random time k2 ∈ {2, 15} a context event occurs cjk which lasts k3 +Km long, where Km is random such
that k3 ≤ 18s at most, before the event turns back to straight mode again. The resulting trajectory is a
semi-Markov process with mode specific HMM sequence which tries to mimique a real target behavior in
a real environment.

A hypothetical scalar jump Markov linear system with three models was used in the initial set of
experiments in order to compare the convergence of the Quasi-Bayesian estimator with existing works [67]
and [110]. The parameters for the scalar system (5.51) read as follows

Ak(1) =0.8, Ak(2) = 0.9, Ak(3) = 1.0;

Bk(i) =1.0, for i = 1, 2, 3;

Ck(1) =1.0, Ck(2) = 2.0, Ck(3) = 4.0;

Dk(i) =1.0, for i = 1, 2, 3.

(5.52)

Noise properties entering the scalar state space model (5.52) are defined as the Gaussian noises of system
uncertainty vk ≈ N (vk; 0, 2

2), measurement uncertainty wk ≈ N (wk; 0, 2
2) and initial state ambiguity

x0 ≈ N (x0; 0, 1). The true TPM Πk of mode sequence mi
k and the initial TPM estimate Π̂0 are selected

as

Πk =

0.20 0.40 0.40
0.25 0.50 0.25
0.10 0.10 0.80

 , Π̂0 =

0.33 0.33 0.34
0.33 0.33 0.34
0.33 0.33 0.34

 . (5.53)

In the second set of experiments, nearly constant velocity (5.54) and coordinated turn (5.55) models
were employed in the synthetic dataset generation and the estimation process. 2D state space models are
defined in the local level frame and read as follows

pxk+1

pyk+1

vxk+1

vyk+1

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1



pxk
pyk
vxk
vyk

+


T 2

2 0

0 T 2

2
T 0
0 T


axk
ayk


, (5.54)

and


pxk+1

pyk+1

vxk+1

vyk+1

 =


1 0 sin

ωkT

ωk


−1− cos(ωkT )

ωk

0 1
1− cos(ωkT )

ωk
sin

ωkT

ωk


0 0 cos(ωkT ) − sin(ωkT )
0 0 sin(ωkT ) cos(ωkT )



pxk
pyk
vxk
vyk

+


T 2

2 0

0 T 2

2
T 0
0 T


axk
ayk


. (5.55)
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Uncertainties in the state space model (5.54) and (5.55) are generated by a zero mean Gaussian distributed
acceleration noise ak = N (0, σ2

a). Variance σa is for low and high noise nearly constant velocity models
CV 1 and CV 2 set to σa = 0.4ms−2 and σa = 4ms−2, respectively. Four coordinated turn models for low
CTX1 or high kinematic motion CTX2 and right CTRx or left hand side turns CTLx are considered in
the simulation (Fig. 5.3). While coordinated turn models share the same noise acceleration variance σa =
0.04rads−1 the parameter ωk is used for differentiation between individual modes, i.e. ωk(CTR1) =
−0.08rads−1, ωk(CTR2) = −0.20rads−1, ωk(CTL1) = 0.08rads−1 and ωk(CTL2) = 0.08rads−1.
It is assumed, that ωk is a priori known parameter and therefore angular velocity does not need to be
estimated as a state. By keeping the size of the state vector constant across all models, a nontrivial problem
of state estimation within variable structures spaces was avoided at the expanse of an increased number
of modes. Initial conditions for the system are set to x0 = [5km 5km 25ms−1 25ms−1]T . A simplified
sensor model consisting directly from position measurements is utilized in the study.


yxk
yyk


=


1 0 0 0
0 1 0 0


pxk
pyk
vxk
vyk

+


wx

k

wy
k


(5.56)

Uncertainties in observations are modeled by a white noise wk ≈ N (0, σw = 10m) both for x and y
components. This model is used for generating the target originated measurements with detection proba-
bility PD = 0.9. Generated measurements are added to 200 sets of clutter by selecting a random target
start time ts distributed uniformly over the interval ts ∈ (0.50) seconds. Clutter measurements are Poisson
distributed with the rate βFA = 1.10−7. The spatial distribution of the false alarms is uniform in the region
x, y ∈ (0, 10km).

The implemented tracking algorithm follows the logic and advices published in [13] summarized in
fundamentals (Sec. 2.6). Rectangular gates are used for scalar scenario with κ ≥ 3 defined as follows

(yxk − ŷxk|k−1) ≶ κσx
k|k−1 (yyk − ŷyk|k−1) ≶ κσy

k|k−1. (5.57)

Ellipsoidal gating of the measurements yk with the current initiators yk|k−1 is evaluated against gating
threshold γG.

(yk − ŷk|k−1)
T S−1

k|k−1(yk − ŷk|k−1) (5.58)

Here the S−1
k|k−1 is an innovation covariance and γG is χ2 distributed given the probability of gating PG =

0.9 and number of measurements yk. In the cases when measurements fall into the gate {yik}
ny

i=1 we
evaluate them against hypotheses θ0 and θi.

θ0 = All measurments {yik}
ny

i=1 are FA

θi = Measurment {yik}
ny

i=1 belongs to the target, rest are FA

Probabilities p(θi|{yi0:k}
ny

i=1) associated with hypothesis θi are computed as

p(θi|{yik}
ny

i=1) ∝


(1− PDPG)β

ny

FA if i = 0,

p(yik|{yi0:k−1}
ny

i=1)PDβ
ny

FA otherwise.
(5.59)

Here the probability p(yik|{yi0:k−1}
ny

i=1) is defined as N (yk; yk|k−1, Sk|k−1).

5.4.2 Results and Discussion
This section demonstrates the performance of the quasi-Bayesian estimator on three simulated scenarios in
the cases of absence or presence of contextual information. The first scenario was directly adopted from
[110], where the hypothetical scalar jump Markov linear system was considered, i.e. (5.52) and (5.53). The
JMLS, defined by (5.51), generates a process where mode changes occur at each time step k. For this rea-
son, the JMLS process is quite challenging to track with conventional IMM techniques, but makes it ideal
for testing the performance of TPM estimators. Furthermore, scalar JMLS scenario helps in establishing
of the performance boundaries of on-line TPM estimators. In addition, convergence properties of a sub-
optimal quasi-Bayesian technique [68] and a maximum likelihood estimator [110] will be further discussed.
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Note, that the convergence of TPM estimators is highly dependent on the amount of jumps observed be-
tween individual modes. Also note, that contextual information was not used in the first set of experiments.
In order to provide a reader with an intuition of the first set of experiments, a single 100s long example of
the JMLS process, modeled by (5.51, 5.52, 5.53), with corresponding measurements is presented on the
Fig. 5.9. The tracking performance of the standard IMM filter (Alg.: 3) and the IMM augmented with an

Figure 5.9: Scalar JMLS process with corresponding reference measurements.

on-line mode transition probability matrix (TPM) estimation, discussed in (5.3.3), is reported on the Fig.
5.10 left and the Fig. 5.10 right, respectively. Relative errors of aforementioned filtering solutions w.r.t.

Figure 5.10: IMM (left) and IMM-QB adaptive (right) estimates of the scalar JMLS process.

the true trajectory (Fig. 5.9) are shown in the Fig. 5.11. In this particular run, utilization of the estimated
transition probability matrix Π̂k, as opposed to the initial Π0 (5.53), yields a 15% performance gain. This
is confirmed by the mean error values of the IMM x̄ = 2.5964m and IMM-QB adaptive x̄ = 2.2065m
estimates reported from the simulation run shown in the Fig. 5.12. Most importantly, the estimate of TPM
matrix (5.53) elements π̂ji

k−1|k−1 is reported on the Fig. 5.13. It can be observed from the Fig. 5.13, that
some non-insignificant biases exist in the estimated probabilities like the case in [68] and [110]. These
can be attributed to the approximations involved in the derivation of measurement likelihood of the TPM
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Figure 5.11: Relative errors of IMM (left) and IMM-QB adaptive (right) estimates of the scalar JMLS
process.

Figure 5.12: Comparison of the relative errors of IMM and IMM-QB adaptive estimates of the scalar JMLS
process.

matrix p(Πk|yk, yk−1, ck, ck−1) expressed by (5.29) and (5.32), mixing approximation in the IMM (5.16)
and convergence properties of the quasi-Bayesian estimators [67]. As pointed out by Orguner et. al. [110],
the mixing step of the IMM, which combines mixture components (5.15) into a single Gaussian (5.16) by
weighting (averaging) their means (5.17) and covariances (5.18), can result in biases in the estimation by
causing the position of the dominant mode in the mixture to shift slightly towards non-dominant modes.
It is worth noting, that the maximum likelihood TPM estimator, proposed in [110], is an optimal solution
to the JMLS estimation problem, and therefore significantly more accurate than the QB-estimator, which
is regarded only as a sub-optimal but nearly 16× less computationally intense [68]. Finally, the results of
100 Monte Carlo simulation runs of tracking a scalar target following the JMLS process is shown in the
Fig. 5.14 and summarized in the Tab. 5.1. Based on the results, utilizing an adaptive estimate of the TPM
matrix improves the performance of the IMM filter by roughly 23.19%.

The second set of experiments assumes a target that is following the hypothetical JMLS process
(5.52) in a 2D scenario. Target kinematics is modeled in accordance with the nearly constant veloc-
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Figure 5.13: IMM-QB adaptive estimates of TPM elements π̂ji
k−1|k−1 for the scalar JMLS process.

Figure 5.14: Monte Carlo simulation of the tacking of a target governed by scalar JMLS process.

Target Relative Error Relative Error
Tracking Mean [m] Std. [m]

IMM -0.4554 4.5588
IMM-QB Adap. -0.3498 4.4721

Table 5.1: Comparison of the tacking of a target governed by scalar JMLS process
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ity model (5.54), i.e. CV 2 with σa = 4ms−2, and coordinated turn models (5.55) for clockwise and
ωk(CTR2) = −0.20rads−1 counter-clockwise rotations ωk(CTL2) = 0.20rads−1. A simplified sensor
model is considered, which consists directly from position observations (4.18) corrupted only by a white
noise wk ≈ N (0, σw = 10m). Modes of the target ŝi1:k are modeled as a Markov sequence ŝ1:k generated
on the basis of the reference Π̂k, defined by (5.53). In this scenario, contextual information, in a form
of a likelihood p(ck|Πk, ck−1) expressed as (5.50), is considered in aiding the TPM estimation process.
Here, the context relevance, i.e. weighting factor wk, is a Gaussian distributed state dependent function
N

xk;µ,Σ) without any transients (Fig. 5.7). This is due to the fact, that mode state s1:k of the JMLS

process s1:k ∈ {si1, . . . , sik}, where i ∈ {CV 2, CTR2, CTL2}, jumps between modes every time step
k, and thus transient models are not required. This time, however, a total number of 50 JMLS sequences
{s1:k}501 = S1:k were generated where the true sequence ŝ1:k is a subset of S1:k, i.e. ŝ1:k ⊂ S1:k. Set
S1:k was utilized in the event model learning. The hidden Markov model is learned (Sec. 5.3.4) form
the parameters specified as: the number of possible states

3
i=1 s

i
k where i ∈ { CV2,CTR2,CTL2}, the

number of possible context events
3

j=1 c
j
k where j ∈ { straight, right, left }, the context event sequences

{c1:k}501 = C1:k, the initial state transition matrix Π0 and the initial emission probability matrix Θ0. Note,
that set of context sequences C1:k needs to be generated for the mode sequences S1:k given the emission
probability matrix Θk, in this case chosen at random. Such a mapping is computed as the probability of
seeing observations ck = {cj1, c

j
2, . . . , c

j
K} while being in state i at time k, i.e αi

k = p(ck, sik|θk|k−1),
evaluated by Alg. 4. A single sample of the 2D JMLS process (Fig. 5.15), defined by (5.52), is presented
as a reference trajectory and measurements. The tracking performance of the standard IMM filter (Alg.:

Figure 5.15: JMLS process with corresponding reference measurements.

3) is reported in the Fig. 5.16 left. Performance of IMM filters augmented with an on-line mode transition
probabilities estimation process, for cases where contextual observations are available (5.3.3), are shown
in the Fig. 5.16 right and the Fig. 5.16 bottom, respectively. Relative errors of aforementioned filtering so-
lutions w.r.t. the true trajectory (Fig. 5.15) are reported in the Fig. 5.17. In this particular run, the IMM-QB
adaptive tracker outperformed the conventional IMM by a rather small margin of 2.72% as the mean error
value of the adaptive solution reached x̄IMM−QB = 9.7232m, while the IMM mean error was contained
at x̄IMM = 9.9959m. However, inclusion of the contextual knowledge inferred by the HMM gave the
IMM-QB-HMM adaptive estimator a significant advantage over its counterparts. A performance gain of
9.64% and 6.92% was reached over the IMM and the IMM-QB adaptive solution, respectively, while the
mean error of x̄IMM−QB−HMM = 9.0326m was observed. This performance gain can be credited to the
context which boosted the convergence and reduced the steady state error of the estimate of TPM elements
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Figure 5.16: IMM (left), IMM-QB adaptive (right) and IMM-QB-HMM adaptive (bottom) estimates of the
JMLS process.

(Fig. 5.19). Observe, that the informativeness of the likelihood (5.36), a conditional distribution of two
independent sources Λk and Γk, is a key factor in the prior probability estimation process (PPE) of any
TPM matrix represented as a finite mixture. The QB estimator computes a TPM estimate π̂j

k recursively
from a Dirichelt prior p(πj

k−1) and a likelihood (5.36) (5.37) and (5.38). In this recursion, the combined
likelihood ΛkΓk is considered as a weighting factor, and thus any increase of its informativeness has a
immediate impact on the estimator performance. This is demonstrated in the Fig. 5.25, where the combi-
nation of the measurement Λk and the context likelihood Γk resulted into a more informative observation
source. Similarly to the first scenario, the results of 100 Monte Carlo simulation runs of 2D tracking a
target following the JMLS process is shown in the Fig. 5.20 and summarized in the Tab. 5.2. Based on the
results, utilizing an adaptive estimate of the TPM matrix improves the performance of the IMM filter by
roughly 13.98% while context is present and by approximately 5.46% while context is absent. This sce-
nario was rather difficult to track, where the occurrence of track losses was quite frequent, which resulted
into quite large relative errors reported in the Tab. 5.2.

Target Relative Error Relative Error
Tracking Mean [m] Std. [m]

Kalman filter 77.8291 32.0072
IMM 58.3377 40.6348

IMM-QB Adap. 55.1503 41.5219
IMM-QB-HMM Adap. 50.1785 37.2181

Table 5.2: Comparison of the tacking of a target governed by JMLS process

In the last scenario, tracking of a target following the semi-Markov process (Fig. 5.4) is examined
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Figure 5.17: Relative errors of IMM (left), IMM-QB adaptive (right) and IMM-QB-HMM adaptive (bot-
tom) estimates of the JMLS process.

Figure 5.18: Comparison of the relative errors of IMM, IMM-QB adaptive, IMM-QB-HMM adaptive
estimates of the JMLS process.
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Figure 5.19: IMM-QB adaptive (left) and IMM-QB-HMM (right) estimates of TPM elements π̂ji
k−1|k−1

for the JMLS process.

Figure 5.20: Monte Carlo simulation of the tacking of a target governed by JMLS process.

and discussed. In this approximation of the real target tracking problem we demonstrate the potential
and usefulnesses of the goal-driven context-aware reasoning. The process of semi-Markov sequence
generation mi

k ∈ {mi
1, . . . ,m

i
K} of length K for ∀i ∈ 1, . . . , N i is governed by the hidden Markov

model, depicted in the Fig. 5.3. A target specific semi-Markov sequence is uniquely defined by a tran-
sition πji

k−1|k−1 and emission probability matrix θji
k|k−1, chosen at random for the each Monte Carlo

experiment. The resulting dataset is a sequence of trajectory segments (Fig. 5.8), where each seg-
ment is generated in accordance with the MJLS (5.51) process. Target kinematics is modeled in accor-
dance with the nearly constant velocity models (5.54) and coordinated turn models (5.55), i.e. sik where
i ∈ {CV1,CV2,CTR1,CTR2,CTL1,CTL2}. Similarly to the second scenario a simplified sensor model
(4.18) is utilized for the data generation. Context events cjk, where j ∈ {straight, stop&go, right, sharp
right, left, sharp left}, are modeled with accordance to the concepts described in Fig. 5.6 and Fig. 5.7
resulting in a context likelihood model p(ck|Πk, ck−1) = wk p(ck|sk) (5.50). An example of a 300s long
semi-Markov trajectory where a target crossed a total of 25 intersections, i.e. 25 contextual events were
observed, is depicted in the Fig. 5.21. The tracking performance of the standard IMM filter (Alg. 3) is
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Figure 5.21: Semi-Markov process with corresponding reference measurements.

reported in the Fig. 5.22 left. Performance of IMM filters augmented with an on-line mode transition
probabilities estimation process, for cases where contextual observations are denied and available (5.3.3),
are shown in the Fig. 5.22 right and Fig. 5.22 bottom, respectively. Note that the time between mode
mi

k and mj
k−1, i.e. the sojourn time τ i in mode mi

k, is selected based on the sojourn time PDF f(τ ji)

or Π(dk) = eΛdt. Variable Λ is the transition density matrix of the process, defined similarly as Π, with
diagonal elements λii = − 1

τ . By knowing that the mean sojourn time of the process, depicted in the Fig.
5.8, is approximately 20s, i.e. τ ≈ 20s, the direct discrete counterparts of main diagonal elements λii can
be evaluated as πii = 1− 1

τ . Thus, the best guess of the TPM for a given semi-Markov process is utilized
in the IMM filter and read as follows

ΠIMM
k =


0.95 0.01 0.01 0.01 0.01 0.01
0.01 0.95 0.01 0.01 0.01 0.01
0.01 0.01 0.95 0.01 0.01 0.01
0.01 0.01 0.01 0.95 0.01 0.01
0.01 0.01 0.01 0.01 0.95 0.01
0.01 0.01 0.01 0.01 0.01 0.95

 . (5.60)

In cases of IMM-QB and IMM-QB-HMM adaptive filters the initial value of the TPM was chosen from an
uninformative prior Π0 (5.54). As in previous scenarios, relative errors of the IMM, the IMM-QB adaptive
and the IMM-QB-HMM adaptive filters w.r.t. the true trajectory (Fig. 5.21) are shown in the Fig. 5.23.
By stacking relative error plots (Fig. 5.23) over each other (Fig. 5.24), several observation can be made
about filter performances. The performance difference between the IMM-QB adaptive and the IMM is
rather small, when only a marginal performance gain was achieved by the adaptive algorithm 2.72%. The
mean error value of the IMM-QB adaptive solution reached only x̄IMM−QB = 9.7232m and the IMM
mean error was contained at x̄IMM = 9.9959m. However, inclusion of the contextual knowledge inferred
by the HMM gave the IMM-QB-HMM adaptive estimator a significant advantage over its counterparts.
A performance gain of 9.64% and 6.92% was reached over the IMM and the IMM-QB adaptive solution,
respectively, while the mean error of x̄IMM−QB−HMM = 9.0326m was observed. It should be stated,
that performance gain of adaptive TPM trackers relies heavily on the amount of mode changes/jumps a
target perfromes. When the number of mode states is increased, a significantly longer sequences need to
be observed in order to achieve a sufficient convergence rates towards the reference TPM. Inclusion of CI
increases the confidence of TPM estimators that a certain mode transitions was observed as demonstrated
in the Fig. 5.25. In the figure, a combination of the context likelihood and the measurement likelihood,
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Figure 5.22: IMM (left), IMM-QB adaptive (right) and IMM-QB-HMM adaptive (bottom) estimates of the
semi-Markov process.

i.e. joint likelihood (Fig. 5.25 bottom), significantly improve the informativeness of the measurement
likelihood (Fig. 5.25 left). The results of 100 Monte Carlo simulation runs of 2D tracking a target following
the semi-Markov process is shown in the Fig. 5.26 and summarized in the Tab. 5.3. Based on the results,
utilizing an adaptive estimate of the TPM matrix improves the performance of the IMM filter by roughly
5.32% while context is present and by approximately 1.56% while context is absent.

Target Relative Error Relative Error
Tracking Mean [m] Std. [m]

Kalman filter 14.2412 6.6749
IMM 8.1645 1.4268

IMM-QB Adap. 8.0408 1.3650
IMM-QB-HMM Adap. 7.7301 1.2878

Table 5.3: Comparison of the tacking of a target governed by semi-Markov process

5.5 Conclusion
An object tracking framework that views target actions as a Hidden Markov Model with a relevant spa-
tial and event-temporal context associated with each node is proposed and evaluated on synthetic datasets.
Each Markov sequence represents an unique goal that the target seeks to reach within a certain graph topol-
ogy. As the target progresses through the network, the target’s future actions are inferred based on a current
evidence and a priori knowledge. The belief that a vehicle seeks an objective is used to aid the tracking
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Figure 5.23: Relative errors of IMM (left), IMM-QB adaptive (right) and IMM-QB-HMM adaptive (bot-
tom) estimates of the semi-Markov process.

Figure 5.24: Comparison of the relative errors of IMM, IMM-QB adaptive, IMM-QB-HMM adaptive
estimates of the semi-Markov process.
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Figure 5.25: Examples of measurement (left), context (right) and joint likelihood (bottom) functions uti-
lized during by the IMM-QB-HMM adaptive estimator.

Figure 5.26: Monte Carlo simulation of the tacking of a target governed by semi-Markov process.
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process by adjusting the mode transition probabilities in the Interactive Multiple Models estimation pro-
cess. The posterior elements of the TPM matrix are evaluated recursively, by a quasi-Bayesian framework,
in terms of the multiple models mode probabilities and the joint likelihood of contextual information and
measurements.

The sub-optimality of quasi-Bayesian estimators give rise to steady state errors observed in the transi-
tion probabilities estimate. A plausible reasons behind these biases are due to the approximations involved
in the derivation of measurement likelihood of the TPM matrix and due to the mixing process of combining
mixture components into a single Gaussian by averaging their means and covariances. A plausible reasons
behind these biases are due to the approximations involved in the derivation of measurement likelihood of
the TPM matrix and due to the mixing process of combining mixture components into a single Gaussian
by averaging their means and covariances. It is worth noting, that the convergence of the QB estimators
is highly dependent on the amount of jumps observed between individual modes. For this reason, the in-
formativeness of the likelihood is a key performance factor in the recursive estimation of any TPM matrix
represented as a finite mixture.

The underlaying role of the context in a process of the adaptive TPM estimation is twofold. First,
context significantly improves the convergence and reduces the steady state error of the estimated mode
transition probabilities. Second, prior to an event CI adjusts the mode ambiguity of the IMM in such
a way, that occurrence of tacks losses is significantly reduced in cases when the target performs an un-
likely maneuver. Model of the contextual likelihood constitutes from the inferred target mode and the
relevance weighting, that scales with a distance to the event. When the outcome of the event is uncertain
or misjudged, the progressive context weighting gives the IMM filter enough time to reconsider the mode
observation gains, i.e. to prioritize the measurement over context, and avoid track losses.

Based on the outcome of Monte Carlo simulations, utilization of the adaptive estimate of the TPM
matrix improved the performance of the IMM filter by roughly 23.19% in a scalar jump Markov linear
process tracking (JMLS). When the simulation complexity was extended to 2D JMLS tracking, the adaptive
solutions were able to maintain the advantage over the IMM filter by roughly 13.98% while context was
present and by approximately 5.46% while context was absent. In the simulation of the ground object
tracking with airborne sensors, the knowledge of the road topology and target behaviors improved the track
accuracy by roughly 5.32%. We argue, that performance gain of the IMM-QB-HMM filter can be further
increased over the time as the length of the event sequence, i.e. the amount and type of mode transitions, is
risen. It was further observed that the observability of mode states decreases with the increased complexity.
This performance drop can be credited to the sub-optimality of the QB estimators and approximations used
in the derivation of the contextual TPM likelihood from the joint prior (5.20).



6
Occupancy Grids Fusion and

Environment Mapping

Grid-based environment mapping and obstacle detection becomes increasingly more chal-
lenging when the sensors readings are highly contrasting. As opposed to feature-based ap-
proaches, occupancy-grid techniques do not utilize predefinitions of map features thus com-
pletely avoid the data association problem. Without a measurement prediction, commonly used
approaches to the grid fusion (Bayesian occupancy filter or Dempster-Shafer theory) weight
the measurement grids equally unless specified otherwise by the user. Empirically adjusted
sensor weights are tailored only for a certain scenarios and not at all suited for a general
purpose mapping. It therefore becomes apparent, that sensor weights needs to be adjusted re-
cursively during the fusion process. We show, that discrepancies between the grid maps can be
exploited in such a manner where fusion of contradicting information will be less susceptible
to the sensor weighting and the accuracy of mapped environment can be further improved. We
present a realization of such a conflict insensitive occupancy grid mapping, which combines
advantages of grid-based mapping and situation assessment in a holistic approach.

6.1 Introduction

Situational awareness and environment mapping are the fundamental tasks of any autonomous system. The
design of a robust on-road situation aware system relies on the fusion of multiple complementing sensors in
order to overcame challenges associated with a high variation of observed environments, both in terms of
obstacles’ characteristics and ever changing weather conditions [71]. Most approaches to the mapping use
the simultaneous localization and mapping (SLAM) scheme for representing both the environment and for
successful navigation through the newly build environmental map. Widely utilized feature-based SLAM
refers to the problem of determining ones pose (position and orientation) using observation to features of
unknown position. Features can represent any well-defined point in the world as corners, lines or markers.
The autonomous system is tasked to incrementally build a map of its surrounding environment and at the
same time use this map to compute its own location [38]. Mapping the features or obstacle positions is
thus an integrated part of the SLAM problem. On the contrary, the occupancy-grid SLAM techniques do
not require predefinitions of map features thus completely avoid the data association problem. Instead,
they model arbitrary environments using a dense field of binary (occupied or vacant) random variables,
arranged in an evenly spaced grid. As a matter of fact, localization and mapping are inverse problems,
where mapping considers the map of an environment as an unknown variable, and localization is trying to
find the state of the vehicle w.r.t the world.

Map building techniques are typically either specialized for structured environments and depend en-
tirely on such structure being present in their surroundings i.e. feature-based models, or are tailored for
unstructured environments and ignore any structure that may exist i.e. occupancy grids. The highway and
most of urban and rural sections of the road can be regarded as structural environments. When the envi-
ronment to be mapped is an intersection, a busy urban center, or an off-road scenario many essential parts
of the environment will be incorrectly classified due to the high variation in model-based descriptors. For
these environments, the natural choice is to employ occupancy grid mapping [78], [80], [108].
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In this work, we are concerned about grid-based SLAM applications where the location of the vehicle is
known and the objective is to map the surrounding environment for possible obstacles and threats. The idea
is to utilize visual sensors (Fig. 6.1a), LiDAR ranging (Fig. 6.1b) and contextual information (Fig. 6.1c)
in order to determine drivable spaces (Fig. 6.1d) by employing the occupancy-grid mapping techniques.
Grid maps, in comparison to feature [62] or graph based maps [76], are sensor independent and capable

Figure 6.1: Illustration of occupancy grids and drivable spaces.

to represent any kind of information with a relative ease. The accuracy of the grid map depends primarily
on the resolution, based on which, the environment is discretized into a binary mesh. Example of the
occupancy grid for visual detector, LiDAR, context map and drivable spaces, i.e. a fused grid, are shown
in the Fig. 6.1a, b, c and d, respectively. Visual sensors are extremely rich source of the environmental
features which are naturally modeled as n-dimensional vectors of coordinates and attributes best encaptured
as the feature-based maps. In order to utilize these feature spaces in the occupancy grid framework (Fig.
6.1a), each feature coordinate needs to be projected into the 2D ground plane [79], [108], [109], e.g.
by assuming that a word is flat, and clustered into objects of an interest, such as road lanes and static or
dynamic objects. Sensors relying on the time of arrival principle, such as LiDAR (Fig. 6.1b), are invaluable
for reliable obstacle detection and commonly utilized in the grid mapping [64], [80]. The exploitation of
contextual information for the data fusion and its applicability for the environment mapping caught a lot of
attention in recent years [134], [18]. While exploiting the map context is a well established in the literature
[79], [83], utilization and representation of any arbitrary context is still an understudied problem. We
believe that CI can be intuitively represented in a form of likelihood functions which can be conveniently
represented as grid maps [153]. The challenge of multi-sensor grid mapping is to combine all pieces of
evidence (Fig. 6.1a, b, c) in order to reliably and accurately depict the surrounding environment (Fig.
6.1d).

As opposed to single sensor mapping, grid maps built as a result of the multi-sensor fusion relies heavily
on sensor measurement weighting [122]. Standard approaches to the mapping, i.e. the Binary Bayes filter
[43] or the Dempster-Shafer theory [33], [63], weight the measurements equally unless specified by the
user. On the other hand, empirically adjusted sensor weights are tailored only for a certain scenarios and
produce less reliable map in situations where the sensors readings are contradictory. It therefore becomes



6.1. Introduction 89

apparent, that the sensor weights need to be adaptive in multi-sensor mapping applications. Adaptability
of these weights should be governed by the estimation process in an iterative manner. We are going to
explore the possibility of conflict resolution for cases of the Bayesian occupancy filtering (BOF) and the
Dempster-Shafer theory (DST) of evidence.

In a Bayesian framework, we are taking advantage from discrepancies naturally occurring between
each source of information (Fig. 6.2). We argue, that the discrepancies can be reasoned in a logic-based

Figure 6.2: Illustration of discrepancies between occupancy grids.

manner and the outcome of this reasoning process, i.e. a siltation assessment, can aid the fusion solution
in conflict detection and resolution. In contrast, the Dempster-Shafer theory is considered as one of the
major paradigm shifts for the grid fusion under uncertainty. However, evaluation and performance analyses
of the multi-sensor DST fusion scenarios under real world conditions are quite rare and hard to find. For
this reason, we are presenting a comparative study where three Bayesian occupancy fusion algorithms, i.e.
linear opinion pool, logarithmic rule, BOF with situation assessment, and the classical DST and the DST
with a proportional conflict redistribution (PCR5) are compared, evaluated and discussed.

6.1.1 Overview of the Framework
Nowadays approaches to the environment mapping are based either on feature recognition and tracking
techniques, i.e. feature-based models ([36], [45], [121], [156], [80]), or operate on the occupancy based
map building principle ([62], [76], [79], [108], [109]). The two approaches are by no means mutually
exclusive, but they in fact supplement each others weaknesses. The capability to model free spaces makes
occupancy maps well suited for path planning and obstacle avoidance tasks. However, occupancy maps
are less desirable for localization purposes, where relative pose of the objects is required for accurate
estimation of own position and orientation. Consequently, feature-based methods have been successfully
applied to the numerous localization and mapping tasks [8]. However, feature-based SLAM techniques fail
to discern unknown types of obstacles and to operate reliably in cluttered environments. Our objective is to
create an accurate representation of the environment and determine the drivable spaces in such a way, that
an autonomous system capable of estimating its own pose will be able to safety navigate through the newly
built map. The mapping algorithm is tasked to represent the environment by using the data originated
from multiple complementary sensors and context information sources alike, i.e. cameras, LiDAR and
Geographic Information System (GIS) map. Therefore, by examining existing map building strategies
surveyed in [62] and [76], the occupancy grid mapping was selected as the solution of choice for the task
of determining the drivable spaces.

Arguably, the Bayesian multi-sensor data-fusion is the most popular approach to the occupancy map
building, as demonstrated by ever increasing number of articles, e.g. [66], [71] and [43] to name a few.
The underlining idea behind the occupancy grids [39] is to represent the surrounding environment as a 2D
grid map m with fixed dimensions and spatial resolution (Fig. 6.1). The occupancy of each cell mij is rep-
resented by a random variable within interval mij ∈ {0, 1}, where i ∈ {1, . . . , Ni} corresponds to number
of rows and j ∈ {1, . . . , Nj} represent number of columns. When the occupancy grids are being updated
by sensor measurements, each cell mij within the grid m is associated with an occupancy probability
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p(mij) ∈ {0, 1} as opposed to a binary value, i.e. occupied state p(mij) = 1 or free state p(mij) = 0.
The map building can be formulated as an optimization problem (6.5) that maximize the probability that
particular cell is in fact occupied (or free) m̂ij given the prior knowledge of the environment, vehicle poses
and sensor measurements, i.e. to solve m̂ij = argmaxm1:k

p(mij
k |m

ij
1:k−1, x1:k, y1:k). The recursive so-

lution to this optimization problem [151] is commonly referred to the Bayesian occupancy filter or the
temporal grid fusion (Fig. 6.3). By following the block diagram from left to right, given the know pose of

Figure 6.3: Architecture for single sensor temporal grid fusion.

the vehicle xk and sensor readings yk, an input in a form of the likelihood p(yk|xk), is fed into the tem-
poral fusion block. As stated by the Bayes theorem, probability that particular cell p(mij) is occupied (or
free), i.e. p(mij

k |xk, yk) (6.8), is proportional to the prior grid p(mij
k−1|x1:k−1, y1:k−1) and the likelihood

p(yk|m
ij
k , xk). In general, the surrounding environment is assumed to be static, and thus there is no need

to calculate evolution of the map state p(mij
k ) ∝ p(mij

k |m
ij
k−1), i.e. Chapman-Kolmogorov equation. As

a consequence of p(mij
k |m

ij
k−1) = 0, the Bayesian gain f


p(mij

k |xk, yk) − p(mij
k |m

ij
k−1)


is computed

solely on bases of the measurements as indicated by the block scheme (Fig. 6.3). Term p(mij
k |xk, yk)

in the measurement gain function is defined as the inverse likelihood model. The forgetting factor is a
design parameter purpose of which is to increase or decrease the weight of newly obtain evidence on the
prior map. Note, the temporal fusion architecture (Fig. 6.3) is tailored for a single sensor occupancy grid
building.

Two strategies to the multi-sensor occupancy grid mapping can be distinguished based on a stage where
the temporal fusion is performed [71], [80]. Centralized architectures combine the multiple sensor readings
into a single measurement input before the temporal occupancy mapping takes place. On the contrary,
distributed architectures (Fig. 6.4), perform the temporal fusion update for each individual sensor first,
and only after then the sensor fusion routine is executed. We argue, that distributed occupancy mapping is
more effective while fusing measurements of heterogeneous origin as grids can represent any information
by an occupancy probability and completely avoid nontrivial modeling of physical relationships existing
between the states xk, yk and the map mk. Grid fusion architecture depicted in the Fig. 6.4 was adopted as
the general purpose solution for environment mapping and conflict resolution utilized in this work.

In accordance with the block scheme (Fig. 6.4), the knowledge about the drivable spaces is obtained
from the sensor measurements in three distinct stages: temporal fusion, multi-sensor fusion and conflict
resolution. The raw sensor readings are processed into individual sensor grids by the Bayesian occupancy
filter (Fig. 6.3). Sensor grid represent the observed scene by an occupancy probability p(mij

k ) ∈ {0, 1}
specified for each cell mij

k of the matrix grid mk. At the multi-sensor fusion level, individual sensor grids
are fused together in order to provide truthful representation of the environment expressed in the fusion
grid. Here, the choice of a fusion strategy is not straightforward as various formulas tent to emphasize dif-
ferent pieces of information, and thus resulting in alternative representations of the environment. Perhaps
the most pronounced solutions to the grid fusion are based on Bayesian inference and Dempster-Shafer
theory (DST) of evidence. As for the Bayesian fusion rules basic fusion formula (BFF), linear option pool
(LOP) [1] and the maximum log-probability of occupancy (ML), were considered for the purpose of this
study. The basic fusion formula utilizes the knowledge of sensor weights in a form of proportional gain
applied to the grids as a weighted sum. The linear option pool strategy is merely identical to the basic
fusion formula, but in addition to the BFF option pools utilize the knowledge of the prior grid mk−1. In
general, the LOP generates a lot of conflicts which need to be resolved by a further processing, i.e. by
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Figure 6.4: Architecture for multi-sensor occupancy grid fusion.

a conflict resolution procedure. The fusion based on the maximum probability of occupancy is the most
conservative one. Similarly to the linear option pool, the prior knowledge of the world is utilized in a ML
grid update step. However, the solution suffers from a huge amount of false negative alarms which are
assumed to be true.

Unless specified a priori by the user, the distinction of drivable spaces is primarily dependent on the
result of equality weighted measurement grids. In classical filtering, the truthfulness of an individual
sensor reading is evaluated against that measurement prediction in the form of a likelihood gain. However,
the grid-based approaches do not have the option to predict the behavior of the objects, as this will require
implementation of feature recognition and data association techniques, and thus solely rely on measurement
weighting. Empirically adjusted sensor weights are tailored only for certain scenarios and not at all suitable
for a general purpose mapping. It therefore becomes apparent, that the sensor weights need to be adjusted
recursively during the fusion process [125], [32]. Even though it is feasible to fine tune the weights for
each individual measurement grid such that the drivable spaces can be reliably determined for the presented
scenario, we opt for development of more robust approach based on situation assessment strategies.

Conflict resolution module, based on the station assessment (SA), was introduced into the grid fusion
architecture in order to improve the fidelity of the drivable spaces [47], [11]. Generally, the situation
assessment could be based on probabilistic models or alternatively based on encoded rules and logical
formulas. The later was encoded into aforementioned architecture (Fig. 6.4) as only the combination
of three sources of information were considered in the solution making an empirical approaches viable.
However, for large scale datasets with extensive variation in sensor reading the rule-based reasoning might
become inadequate and employing the machine learning techniques necessary [95]. As explained on the
illustration below (Fig. 6.5), the discrepancies between grid maps can be exploited in such a manner
where the fusion of contradicting information will be less susceptible to the sensor weighting and the
accuracy of mapped environment can be further improved. On the Fig. 6.5a, a single frame of the fused
grid map is shown while the area under investigation is bounded by a black box. It can be observed, that
wast majority of the grid cells are painted by shades of yellow, which corresponds to highly conflicting
or uncertain information about the drivable spaces, i.e. p(mij

k ≈ 0.5). In order to tip the occupancy
of ambiguous cells towards either occupied p(mij

k >> 0.5) or free p(mij
k << 0.5) state the following

discrepancy resolution logic was adopted. Assume that points A and B are both marked as ambiguous,
that is p(mA

k ≈ 0.5) and p(mB
k ≈ 0.5), respectively. If point A is a grid cell corresponding to the road edge,

this information will be confirmed by a visual sensor as a lane and by context map as a round boundary.
However, LiDAR will likely classify the cell p(mA

k ) as free, because the majority of light beam energy
will be dispersed into the surrounding environment. Therefore, the discrepancy between visual sensor and
context map (Fig. 6.5b) will be very small as the measurements from both sensors confirm each other. On
the contrary, discrepancies of visual sensor vs. LiDAR (Fig. 6.5c) and contextual map vs. LiDAR (Fig.
6.5d) will be rather high as the measurements from both sensor pairs contradict each other. Therefore, the
cell p(mA

k ) will be marked as occupied since (|Context Map − Vision| < 0.5) ∧ (|LiDAR − Vision| >=
0.5)∧ (|LiDAR−Context Map| >= 0.5). Let us assume, that point B belongs to a grid cell corresponding
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Figure 6.5: Exploitation of discrepancies between occupancy grids.

to the new jersey. The presence of the new jersey on the road will be detected by visual sensor and LiDAR
as an obstacle, but not at all by a context map (GIS). For this reason, the discrepancy between visual sensor
and LiDAR (Fig. 6.5c) will be very small as the measurements from both sensors confirm each other. On
the contrary, the discrepancies of visual sensor vs. context map (Fig. 6.5a) and LiDAR vs. contextual map
(Fig. 6.5d) will be rather high as the measurements from both sensor pairs contradict each other. Therefore,
the cell p(mB

k ) will be marked as occupied since (|Context Map − Vision| > 0.5)∧ (|LiDAR − Vision| <
0.5)∧(|LiDAR−Context Map| < 0.5). By assuming three independent information sources Ny for which
three discrepancy grids are needed to represent, the conflict between each pair Nδy a total of Nδy

(Ny−1)

rules need to be formulated in order to represent the scenario. We have implemented these rules into the
weighted linear opinion pool fusion through a situation assessment feedback and successfully demonstrated
the potential of such a coupling during the mapping. Such a reasoning is not uncommon in the occupancy
grid fusion as numerous theories were introduced for the conflict resolution over past decades.

The most cited alternative to the Bayesian theory of fusion was formulated by Dempster and Shafer as
a set of combination rules known as the Dempster-Shafer theory of evidence (DST). DST was developed
to address the uncertainties occurring between occupancy grids by utilization of combination rules, i.e. the
theory of evidence, applied on evidential grids. In the evidential grids, the uncertainties are modeled as
belief functions. The belief about the environment occupancy is classified by either occupied O or free F ,
which results into a set X = {O,F}. The set of all possible subset of X , i.e. the frame of discernment
(FOD), is denoted as 2X = {occupied(O), free(F ), conflict(Ω), unknown(∅)}. In the Bayes theorem,
the occupancy of a cell was evaluated based on single probability per cell, while in DST the decision about
occupancy is made based on the belief function of four masses i.e. occupied O, free F , conflict Ω and
unknown ∅. Furthermore, the belief transition in the Bayes theorem is possible only between two states
and it is symmetrically restricted (Fig. 6.6 left). In the evidential approach, the belief can be transferred
among four states, in which each of these transitions has a different meaning, dynamic and importance
(Fig. 6.6 right). These comparisons illustrate the applicability and relevance of the DST approach for
grid fusion, where the DST models higher level of confidence in cells than just a single probability value.
Despite being capable of combining the independent pieces of evidence, the DST has been also strongly

Figure 6.6: State transitions occurring in the Bayesian occupancy framework and in the Dempster-Shafer
theory field of discernment.
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criticized for its unexpected behavior and by providing counter-intuitive results when combining highly
conflicting information. It is worth noting, that basic DST formula is in complex fusion systems further
altered by a human expert knowledge in order to improve quality and reliability of the solutions. In order
to cope with a lack of expert knowledge or with an unknown and unpredictable evidence, the DST was
extended to new more flexible theories such as transferable belief models (TBM), adaptive combination
rules (ACR) or proportional conflict redistribution (PCR). The PCR formula is particularly interesting as
it redistributes the partial conflicting masses to the elements involved in the conflicts. We are going to
evaluate the DST alongside with PCR in their capability to provide the reliable information about drivable
spaces under measurement uncertainties.

6.1.2 Main Contributions
The contribution of this work are twofold:

• Discrepancy-grid approach for conflict redistribution and automatic sensor weight adjustment is in-
troduced for the Bayesian occupancy (BOF) mapping.

• Comparative study of grid based approaches, namely BOF linear opinion pool, BOF maximum log-
likelihood, BOF with discrepancies resolution, Dempster-Shafer theory (DST), DST with PCR5, to
mapping are discussed, developed and evaluated on the real world scenario.

6.1.3 Relations to the Context Exploitation Framework
Unlike the context exploitation frameworks discussed in Sec. 4.1.3 and Sec. 5.1.3, the map building
techniques are focused on acquiring the information about possible threats and dangerous areas from the
surrounding environment rather than using this a priori knowledge to enhance the SE process. The fusion
node, as a core module in the context-adaptive framework (Fig. 3.3), is in light of the grid-mapping archi-
tecture (Fig. 6.4) only consisting from the state estimation process, which is divided into a temporal fusion
and a multi-sensor grid fusion. The contextual information is represented as a discrepancies between the
individual sensor grids (Fig. 6.5) and/or the GIS map (Fig. 6.1c). The GIS map contexts is used alongside
the measurements in the fusion process governed by Bayesian occupancy filter. On the other hand, the
discrepancies are processed in the context reasoning module, i.e. the context middleware, which are later
used to adjust cell probabilities of the resulting occupancy map. Different from the Bayesian approaches,
the Demster-Shafer theory models the uncertainties between the grids within a specific frame of discern-
ment (Fig. 6.6). DST allows for the extension of FOD for the contextual states within a unified and well
established framework, which does not require implementations of the context management functions.

6.2 Related Work
Nowadays approaches for robotics and autonomous vehicle mobility rely almost exclusively on the knowl-
edge of spatial uncertainties which are observed in the surrounding environment. In the past, this need
has been circumvented by use of highly accurate sensors and by the use of fixtures and calibration points.
These approaches avoid the need of representing uncertainties in the environment by utilizing expansive
high grade sensors with the minimal drift. Another approaches suggest to use multiple, overlapping, lower
resolution sensors and to combine the spatial information (including uncertainties) from all data sources
to obtain the best spatial estimate. However, the problem with usage of low grade sensors leads to accu-
mulation of uncertainties. Modeling uncertainties pose a challenge for design of situation-aware sensor
fusion solutions capable of keeping the system divergence within tolerable margins and to ensure reliable
detection of possible threats. A comprehensive review of the current challenges and approaches was re-
cently presented in [71]. According to survey, the main difficulties in design of situation-aware sensor
fusion algorithms arise from spatio-temporal registration of the sensor readings, data association, manage-
ment of conflicting information and especially heterogeneity of sensors. Khaleghi et al. [71] classifies
approaches to the situation-aware sensor fusion based on sensor layouts, operating environments and the
level of abstraction at which the sensor fusion is performed.

Arguably, the most numerous approaches to the situation-aware sensor fusion assume that environment
can be represented by feature-based models and depend entirely on such features being present in their
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surroundings. In conclusion of the seminal developments in autonomous robotics [132], the problem of
simultaneous localization and mapping (SLAM) gained widespread interest, with numerous potential ap-
plications ranging from robotic planetary exploration to intelligent surveillance [36], [105], [158], [100].
The goal of an autonomous vehicle performing SLAM is to start from an unknown location in an unknown
environment and build a map (consisting of environmental features) of its environment incrementally by
using the uncertain information extracted from its sensors, whilst simultaneously using that map to local-
ize itself with respect to a reference coordinate frame and navigate in real time. The most commonly used
sensors for autonomous vehicle performing SLAM can be categorized into laser, sonar, and vision-based
systems. Additional sensors can be used to better perceive platform state information and the outside
world. These are not restricted to inertial measurement units (IMU), magnetometers, wheel encoders,
infrared technologies and global navigation satellite systems (GNSS). However, all these sensors carry cer-
tain errors, often referred to as measurement noise, and also have several range limitations e.g. light and
sound cannot penetrate walls. SALM approaches falls into two distinct categories based on sensor layout
[8]: an active and a passive.

• Laser ranging systems are accurate active sensors operating based on the time of flight principle.
Sonar-based systems are fast and provide measurements and recognition capacities with amounts of
information similar to vision, but with the lack of appearance data. Active system are usually largely
dependent on inertial sensors where a small error can have large effects on later position estimates.

• Vision systems are passive, they have long range and high resolution, but the computation cost is
considerably high and good visual features are more difficult to extract and match. Vision is used to
estimate the 3D structure, feature location and robot pose, for instance by means of stereo camera
pairs or monocular cameras with structure from motion recovery.

Further classification on SLAM approaches can be made in terms of working environment, for instance,
ground-indoor, ground-outdoor, air-borne or underwater. According to [8], majority of SLAM approaches
are designed for ground-based vehicles operating in indoor-environments [31], [40], [89]. There have been
a growing interest in SLAM for underwater scenarios [159], in which vision plays an important role [88],
[120], in most cases combined with other sensory systems to acquire both depth and appearance infor-
mation of the scene, for instance, acoustic or inertial sensors. Among airborne applications, the work of
Kim et. al. [73], [74] has become the most renowned among the scientific community. SLAM approaches
employing visual sensors (monocular or stereo cameras) require a sufficiently accurate motion model in
order to make predictions on the robot pose before projecting the image features from the previous onto
the current frame. Typically a constant velocity model accompanied with wheel encoder provides accurate
estimate as long as the camera motion stays within the bound of the error covariance. Random sampling
consensus (RANSAC) [86] offers the possibility to construct a proposal distribution from the observed
image features, which contains both inliers and outliers, and thus offer reliable and robust solution.

In the context of autonomous systems [43], the vehicle location is in majority of cases considered to
be know, i.e. observed by on-board sensors. For this reason, the objective of situation-aware sensor fusion
is to map the surrounding environment for possible obstacles and threats. A long-range obstacle detection
system, based on stereo-vision and a laser scanner, was recently proposed in [45] and [121]. Authors
show, that false-alarm rates and miss-detections can be significantly reduced by utilizing simultaneous
multi-sensors tracking and obstacles detection approaches. This concepts was further extended by Wang
et al. [156], who proposed to fuse a millimeter-wave radar and a monocular camera for on-road obstacle
detection and tracking. Feature extraction, i.e. high-level track representation, was performed for both the
radar and the camera, and only matching tracks from both sensors were considered as valid. Kubertschack
et al. [80] formulated the problem of static environments mapping into a situation-aware multi-sensor
fusion architecture. The main difficulty associated with feature-based approaches to the mapping, or SLAM
in general, are related to the data association. Commonly used techniques to this nontrivial problem are
not restricted to the Global Nearest Neighbor (GNN) [36], Joint Probability Data Association (JPDA)
[13], Joint Compatibility Branch and Bound (JCBB) [107], Multiple Hypothesis Tracking (MHT) [100]
and [118], or Maximum-Likelihood Data Association (MLDA) [158], to mention a few. Data association
process is an integral part of the object tracking, for which the common solution is to employ Kalman
or particle filters or any of their variants for each detection. Another potential drawback of feature-based
sensor fusion is related to the signal strength, i.e. signal to noise ratio. Weak signals, if not confirmed by
each individual sensor, can be easily rejected and prevent the start of track initialization process. In these
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scenarios, grid-based SLAM approaches are preferred.
The main advantage of occupancy-grid SLAM over the feature-based techniques is that they are not

feature dependent and thus they completely avoid the data association problem. Instead, they model ar-
bitrary environments using a dense field of binary (occupied or vacant) random variables, arranged in an
evenly spaced grid [39]. A generic grid mapping approach suitable for mapping of huge areas was pre-
sented in [78]. Authors defined a map based on so called grid patches which makes the proposed mapping
real time capable. The grid cells of this map can hold arbitrary data which is calculated based on arbitrary
sensors. A multi-layer 2D grid mapping based on image sequences was proposed in [84]. 3D occupancy
grid mapping for automotive radar was presented in [81], [32]. Moreover, authors presented a simplistic
way of updating the grid by using a fast trilinear interpolation in the measurement domain, in which the
grid spacing is uniform to relax the grid independence assumption. Baig and Aycard [9] apply the Gaus-
sian mixtures to extract moving objects from the video stream. Resulting grid is a linear combination of
LASER range-findings and camera originated measurements. The main drawback of this approach is the
requirement of a robot to successfully perform background subtraction. An efficient computation of oc-
cupancy grid maps with laser range-finders and radar sensors were proposed [64]. The approach utilizes
the graphics processing unit to overcome the limitations of classical occupancy grid computation in auto-
motive environments. Moreover, the authors show that accuracy of a lower resolution radar sensor could
be improved by applying super-resolution algorithms for data processing. Authors also discussed a novel
histogram based approach for road boundary detection with LiDAR and RADAR sensors. Recently, more
attention was given to the fusion of sensors operating on the time-of-arrival principle with stereo caners
[70], [109]. Since both instruments can provide the measure of depth these techniques are arguably more
useful for situation-aware mapping. An extension to the classical occupancy grid framework for dynamic
environments was proposed in [113], [1]. Introduction of dynamic grids greatly improves robustness in
case of faulty or spurious measurements from any of the sensors and when they provide conflicting infor-
mation. As shown in [47], LiDAR and RADAR operate at different frequencies of the electromagnetic
spectrum, which made them an ideal pair for fusion where their complementary characteristics can be fully
exploited. SLAM approach based on occupancy grid mapping was presented in [54]. Presented approach
uses a particle filter in which each particle carries an individual map of the environment. In this paper,
authors presented an adaptive technique for reducing this number in a Rao-Blackwellized particle filter for
learning grid maps. This significantly decreases the uncertainty about the robots pose in the prediction step
of the filter. A quasi-occupancy grid approach was presented by Groover et al. [55], where the RADAR
and monocular camera measurements are clustered into blobs, which are afterwards matched in the fusion
process.

By surveying the approaches to grid-based mapping [66], [71], [43] and [63], the Bayesian occupancy
filtering is the most widely utilized algorithm for determining the state, i.e. probability of occupancy, for
each cell in the grid. A commonly used alternative to the Bayesian filters is formulated as the Dempster-
Shafer Theory (DST) of fusion. DST is considered as one of major paradigm shifts for reasoning under
uncertainty. Despite being capable of combining the independent pieces of evidence, the DST has been
also strongly criticized because of its unexpected behavior and by providing counter-intuitive results when
combining highly conflicting information. However, it is genuinely agreed that Dempsters rule provides
valid results in scenarios where the initial conditions are respected and the problem is well modeled. For
this reason, the conflict solving in DST fusion is intensively studied problem as indicated by ever increasing
number of publications, such as [35], [98], [122], [85], [65], to name a few. While there are numerous cases
where DST was implemented for the navigation purposes, the articles addressing the multi-sensor data
fusion cases are nearly nonexistent. It is worth noting, that basic DST formula is in complex fusion systems
further altered by a human expert knowledge in order to improve quality and reliability of the solution
[160], [137]. In order to cope with a luck of expert knowledge or with an unknown and unpredictable
evidence, the DST was extended to new more flexible theories such as:

• Transferable Belief Model (TBM) [33], refutes the constraint on the frame of discernment and the
underlying probability model, which allows to allocate belief to the elements of the empty set.

• Dezert-Smarandache Theory (DSmT), extends the DST to allow usage of hybrid and dynamic mod-
els and solves numerical issues which originates while combining highly conflicting pieces of evi-
dence.

• Adaptive Combination Rule (ACR), which maximizes the conjunctive and the disjunctive rules based
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on the distribution of the conflict according to a new choice of weighting coefficients.

• Proportional Conflict Redistribution (PCR) [130], [44], redistributes the partial conflicting masses
to the elements involved in the partial conflicts only, considering the conjunctive normal form of the
partial conflicts.

Hierarchical or multi-level approaches to situation-aware sensor fusion are quite rare in the literature.
Three-level architecture for environmental mapping was proposed in [72]. Infrared and ultrasonic sensors
were fused at the signal level through an occupancy grid mapping. At the object assessment level, visual
features observed by cameras were fused with infrared and ultrasonic grids. At the situation assessment
level the results from previews two layers were further reasoned in a probabilistic way. Results show that
multi-layered approaches can significantly improve the efficiency and accuracy of the obtained map. A
design of pre-crash safety system was proposed in [95], where information from a multi-layer laser scanner
and radar were fused in order to improve the vehicle detection. More recently, Nuss et al. [108] combined
occupancy grid maps, digital road maps and multi-object tracking for a rich and robust environmental
perception.

6.3 Model Formulation

6.3.1 Bayesian Occupancy Filter
Generic mapping could be represented by a kinematic state space model consisting of three parts: a kine-
matic motion model (6.1), a measurement model (6.2) and a map (6.3).

xk+1 = fk(xk,uk) + vk or p(xk+1|xk) (6.1)

yk = hk(xk,mk) + wk or p(yk|xk,mk) (6.2)

mk = gk(yk, xk) or p(mk|xk, xk) (6.3)

In above equations, fk represents a function of the target state vector xk the vector of input signals uk and
process noise vk in time k. The state evolution of the vehicle kinematics p(xk+1|xk) is considered to be
know during the mapping, thus (6.1) is mentioned here only for completeness of the formalism and for
comparison to the localization and mapping problems. Variable hk represents a functional relationship
between sensor output yk, target state vector xk and system inputs uk affected by a measurement noise wk.
The map of the environment, i.e. the occupancy grid map, is represented by multi-dimensional matrix mk

(6.4) conditioned on the vehicle state xk and sensor observations yk.

mk =


m11

k m12
k · · · m1j

k

m21
k m22

k · · · m2j
k

...
...

. . .
...

mi1
k mi2

k · · · mij
k

 (6.4)

Each element of the grid matrix mij
k holds information about the probability that corresponding location on

the map is occupied with a probability p(mij
k ) ranging between {0, 1}. A cell of the grid map is denoted

by mij
k where i = {1, . . . , Ni} represents the number of grid rows Ni and j = {1, . . . , Nj} number

of grid columns Nj . The map building step (6.3) can be formulated as an optimization problem that
maximize the probability that particular cell is in fact occupied (or free) m̂1:k given the prior knowledge
of the environment m1:k−1, vehicle poses x1:k and sensor measurements y1:k. In other words, m̂1:k can be
computed as the maximum a posteriori prediction of a function

m̂1:k = argmax
m1:k

p(mk|m1:k−1, x1:k, y1:k). (6.5)

The map m̂1:k in (6.5) represents the environment by fine-grained metric grids of cells and estimates the
probability of any cell for being occupied depending on the sensor readings. Unlike a target tracking, the
mapping do not only contain information about the presence of objects, but also about their absence (free
spaces). Two components are required to find the grid occupancy probability p(mk|m1:k−1, x1:k, y1:k): a
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vehicle state and a measurement model. There is no explicit motion model defined in the case of mapping
(6.1) since it is genuinely assumed that the maps do not change with time and therefore calculations (6.5)
are only done on the basis of measurements. Generally speaking, it is not possible to directly estimate
m̂1:k from the probability p(mk|m1:k−1, x1:k, y1:k) since there are 2[Ni×Nj ] possible states to be estimated.
Therefore, it is assumed that each cell is independent to each other, which allow to reduce the complexity
to 2[Ni ×Nj ] by reconstructing the map from products of the map’s marginal probabilities

p(m1:k|x1:k, y1:k) =
Ni
i

Nj
j

p(mij
1:k|x1:k, y1:k). (6.6)

The probability that a single cell p(mij
1:k) is filled given the measurements y1:k and poses x1:k is computed

by the Bayesian formula

p(mij
1:k|x1:k, y1:k) =

p(yk|m
ij
1:k, xk, x1:k−1, y1:k−1) p(m

ij
1:k|xk, x1:k−1, y1:k−1)

p(yk|x1:k, y1:k−1)
. (6.7)

The terms in above equation (6.7) are denoted as the map estimate p(mij
1:k|x1:k, y1:k), the measurement

likelihood p(yk|m
ij
1:k, xk, x1:k−1, y1:k−1), the map prior p(mij

1:k|xk, x1:k−1, y1:k−1) and the evidence or
normalize factor p(yk|y1:k−1, x1:k). By assuming that current readings are independent of all previous
states, e.g. by applying the 1st order Markov assumption and by knowing the map prior, the probability of
map occupancy (6.7) can be simplified to

p(mij
1:k|x1:k, y1:k) =

p(yk|m
ij
1:k, xk) p(m

ij
1:k|x1:k−1, y1:k−1)

p(yk|x1:k, y1:k−1)
. (6.8)

The Markov assumption requires mij
1:k to hold the information about the entire map and time histories

m1:k. However, this is not necessary true as mij
1:k only represents the state of a single grid cell. There is no

guarantee that an observation yk is conditionally independent of all prior observations given only the state
of a single cell, since standard sensors, such as LiDAR, necessarily couples observations passing through
multiple grid cells. In regions close to the sensor origin, the number of LiDAR beams that contribute to
the probability of a single cell could be quite large. In contrast, far from the origin a single beam could
overlap multiple cells. For this reason, the mij

1:k in equation (6.8) needs to be able to hold information
about entire grid map m1:k. This is achieved by applying Bayesian rule on measurement likelihood term
p(yk|m

ij
1:k, xk) which leads to further factorization

p(mij
1:k|x1:k, y1:k) =

p(mij
1:k|xk, yk) p(yk|xk)

p(mij
0 )

p(mij
1:k|x1:k−1, y1:k−1)

p(yk|x1:k, y1:k−1)
. (6.9)

The initial knowledge for a cell ij for a map mk is denoted by subscript 0, i.e. p(mij
0 ). The factor

p(mij
1:k|xk, yk) is called the inverse sensor model in the literature. The probability that a particular cell

is occupied is given by p(mij
1:k|x1:k, y1:k) defined by (6.9) while the probability that cell is free is 1 −

p(mij
1:k|x1:k, y1:k). Given these two probabilities the odds that a particular grid p(mij

1:k) is being occupied
is given by

p(mij
1:k) =

p(mij
1:k|x1:k, y1:k)

1− p(mij
1:k|x1:k, y1:k)

. (6.10)

Substituting (6.9) to (6.10) leads to

p(mij
1:k) =

p(mij
1:k|xk, yk)

1− p(mij
1:k|xk, yk)

1− p(mij
0 )

p(mij
0 )

p(mij
1:k|x1:k−1, y1:k−1)

1− p(mij
1:k|x1:k−1, y1:k−1)

. (6.11)

The odds ratio of a single hypothesis ensures that an occupancy probability will converge to p(mij
k = 0.5),

i.e. to the unknown state, when there is no evidence which will support the hypothesis. By applying
logarithm to the occupancy grid computation (6.10) numerical errors from multiplying minuscule floating
point numbers can be significantly reduced.

log p(mij
1:k) = log

p(mij
1:k|xk, yk)

1− p(mij
1:k|xk, yk)

+ log
1− p(mij

0 )

p(mij
0 )

+ log p(mij
1:k−1). (6.12)
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For this update rule, one needs only to specify p(mij
1:k|xk, yk) e.g. the inverse sensor model, initial map

p(mij
0 ), and prior occupancy probability of a given cell p(mij

1:k−1). The iterative Bayesian filter update for
computing the new cell estimate p(mij

1:k) can be recovered from the log odds representation (6.12) by the
following equation

p(mij
k ) = 1− 1

1 + explog p(mij
1:k−1)

. (6.13)

6.3.2 Discrepancies Resolution
Commonly used approaches to grid fusion, i.e. Bayesian occupancy filter and Dempster-Shafer theory, are
not able to judge the truthfulness of sensors readings. As a consequence, all measurement grids contribute
equally to the final result, unless specified otherwise by the user. Empirically adjusted sensor weights
are tailored only for certain scenarios and not at all suited for a general purpose mapping. Therefore, re-
searchers devoted a significant effort into development of real time assessment strategies which allow to
determine the sensor quality measure. The majority of these approaches recognize the Dempster-Shafer
theory, which will be analyzed in detail in Sec. 6.3.3, as the main paradigm for reasoning under uncertainty
[82], [109] and only few strategies were developed for Bayesian occupancy frameworks [165], [82]. Zhou
et. al. [165] proposed a sensor fusion framework based on a linear combination of grids. The weights are
computed as an optimization problem that minimizes the entropy of the fused grids by taking into account
empirical data from sensors. Kumar et. al. [82] extended the baseline Bayesian formulation for an addi-
tional state, that represents the probability that a measurement is spurious. Whenever the measurements
are inconsistent with each other the variance of the sensor distribution is increased, thus having a smaller
contribution in the fusion process.

Our vision for automatic sensor weighting, depicted on the Fig. 6.4, is based on the assessment of grid
discrepancies. The discrepancies (Fig. 6.2) are the measure of disagreement between a pair of sensors
denoted as

p(mk,vis. vs. con.) = p(mk,vision)− p(mk,context),

p(mk,vis. vs. LiD.) = p(mk,vision)− p(mk,LiDAR),

p(mk,LiD. vs. con.) = p(mk,LiDAR)− p(mk,context).

(6.14)

The knowledge of discrepancies can be used to tip the probability of uncertain cells, i.e. p(mij
k ) ≈ 0.5,

to either occupied p(mij
k >> 0.5) or free p(mij

k << 0.5) state via the situation assessment feedback. As
outlined in the introductory Sec. 6.1.1, we utilize our expert knowledge of the environment to formulate
the set of rules which are unique to the sensor setup, but general enough to be valid for wide range of
on-road scenarios. We are particularity concerned about the detection of obstacles (new jerseys) which
might occur on the road and lanes which determine the road boundaries. These objects are likely source of
uncertainties as their existence is in conflict with at least one sensor reading at any given time. By assuming
that new jerseys and road lanes might exist in the environment, respective rules (6.15), evaluated on bases
of discrepancies (6.14) depicted in the Fig. 6.5, affirm their existence.

p(mij
k ) =



occupied, if (p(mk,vis. vs. con.) < 0.5) ∧ (p(mk,vis. vs. LiD.) >= 0.5)∧
(new-jersey) (p(mk,LiD. vs. con.) >= 0.5),

occupied, elseif (p(mk,vis. vs. con.) > 0.5) ∧ (p(mk,vis. vs. LiD.) < 0.5)∧
(road lane) (p(mk,LiD. vs. con.) < 0.5),

free, else.

(6.15)

Above rules (6.15) are applied to every cell whose probability is p(mij
k ) ≈ 0.5, i.e. uncertain state

in such a way, that initial probability of a cell p(mij
k ) will be increased above the uncertainty threshold

p(mij
k ) > (0.5 + δ) if occupied or decreased below the occupancy threshold p(mij

k ) < (0.5 − δ) if
free. Parameter δ specifies the interval of uncertainty as stated by (6.49), where 2δ = 0.1. The rule
based reasoning is not uncommon in the occupancy grid conflict resolution as application of probabilistic
reasoning techniques require implementation of image processing techniques on the grids. Recognizing
shapes from the occupancy grids is challenging due to high variations of shapes caused by interchanging
cell probabilities [95].
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6.3.3 Dempster-Shafer Theory of Evidence
In the occupancy grid mapping problem every cell is assumed to be either occupied (O) or free (F ). For
every cell mij

k of grid map mk the frame of discernment (FOD) (Fig. 6.6 right) mk(X ) = {O,F} and its
power set 2Ω are defined as

2X = {∅, O, F,Ω}. (6.16)

The sets ∅ and Ω represent the null set and the conflict set, respectively. The former will always have
a mass function equal to zero mk(∅) = 0, since a cell must be in any of the states mk ∈ {O,F,Ω}
defined in the FOD (6.17). The latter set is especially interesting since it represents the status of a cell
being neither free F nor occupied O but in conflict Ω. In the Bayesian framework, one can model this
situation by assigning p(mij

k ) = 0.5, but there is no measure of confidence in that statement. On the
other hand, the Dempster-Shafer framework is capable to express uncertainties, that the cell might have an
unknown ∅ or conflicting state Ω, with a certain probability. The implementation of the Dempster-Shafer
framework for a set {∅, O, F,Ω} requires to maintain only two grids mk(O) and mk(F ) associated to the
occupied O and free F states of a cell for each sensor reading {mk(1)(O),mk(2)(O), . . . ,mk(n)(O)} and
{mk(1)(F ),mk(2)(F ), . . . mk(n)(F )}, respectively. Even though the power set 2X is composed of four
propositions, it can be seen from the basic probability assignment (BPA) theorem that masses mk(O) and
mk(F ) are sufficient to fully describe the whole FOD (6.16).

A∈2X

mk(A) = mk(∅) +mk(O) +mk(F ) +mk(Ω) = 1,

m(Ω) = mk(O ∪ F ) = 1−mk(O)−mk(F ),

mk(∅) = 0.

(6.17)

The belief X of FOD 2X is a resulting probability that accounts for all the evidence that supports the
proposition X . It represents the degree to which X , in our case occupied or free X ∈ {O,F}, is believed
to be true.

Bel(X) =

A⊆X

m(A). (6.18)

On the other hand, the plausibility of set X ∈ {O,F} of FOD 2X considerate the evidence that does not
provide knowledge about the preposition X . It therefore represents the degree to which X is believed not
to be false.

Pl(X) = 1−


A∩X=X ,A∈2X

m(A). (6.19)

According to the DST, two sources of information mk(1) and mk(2) are combined into a fused belief func-
tion mk(12) through the operator ⊕, which could represent either conjunction ∩ or disjunction ∪ formula,
in accordance with X ̸= ∅ (6.20) and X = ∅ (6.21)

mk(12)(X) = (mk(1) ⊕mk(2))(X) =
(mk(1) ∩mk(2))(X)

1− (mk(1) ∩mk(2))(∅)
, (6.20)

mk(12)(∅) = (mk(1) ⊕mk(2))(∅) = 0. (6.21)

The (mk(1) ∩mk(2))(X) is the conjunctive combination rule such that

(mk(1) ∩mk(2))(X) =


A∩B=X;A,B∈2X

mk(1)(A)mk(2)(B). (6.22)

The denominator of (6.20) is a normalization factor where the (mk(1) ∩ mk(2))(∅) is the measure of a
conflict between sources of information. If combining information is highly contradicting, term (mk(1) ∩
mk(2))(∅) becomes close to 1 and denominator of (6.20) become close to zero. That is the fundamental
weakens in the DST theory and an underlaying topic of criticism. Furthermore, it can be shown that the
Dempster-Shafer combination rule is commutative and associative. Therefore, the fusion of n sensors
{mk(1),mk(2), . . . ,mk(n)} can be performed sequentially, as follows

mk(12n)(X) = ((mk(1)(X)⊕mk(2)(X))⊕ . . . )⊕mk(n)(X). (6.23)
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The DST formula (6.20) for a grid mk(1)(X) and mk(2)(X) can be interpreted for a belief Bel(X = O)
and Bel(X = F ) as stated by formulas (6.24) and (6.25), respectively.

mk(12)(O) =
mk(1)(O)mk(2)(O) +mk(1)(O)mk(2)(Ω) +mk(1)(Ω)mk(2)(O)

1−mk(1)(O)mk(2)(F )−mk(1)(F )mk(2)(O)
(6.24)

mk(12)(F ) =
mk(1)(F )mk(2)(F ) +mk(1)(F )mk(2)(Ω) +mk(1)(Ω)mk(2)(F )

1−mk(1)(O)mk(2)(F )−mk(1)(F )mk(2)(O)
(6.25)

The conflict masses mk(1)(Ω) and mk(1)(Ω) are expressed as

mk(1)(Ω) = mk(1)(O ∪ F ) = 1−mk(1)(O)−mk(1)(F ),

mk(2)(Ω) = mk(2)(O ∪ F ) = 1−mk(2)(O)−mk(2)(F ).
(6.26)

6.3.4 Proportional Conflict Redistribution PCR5
The idea behind the proportional conflict redistribution (PCR) is to transfer conflicting masses of FOD
2X proportionally to non-empty sets according to all integrity constraints [130], [44], [65]. For instance,
Dempster’s rule distributes the conflicting mass equally according to the total conflicting mass through
the normalization step. The DSmH rule transfers the partial conflicts onto partial uncertainties. The com-
bination formula for PCR5 rule for fusion of measurement grids mk(1)(X) with mk(2)(X) is defined as
follows

mk(12)(X) = mk(12)(X) +


Y ∈2X \{X};c(O∩F )=Ω

mk(1)(X)
2
mk(2)(Y )

mk(1)(X) +mk(2)(Y )
+

mk(2)(X)
2
mk(1)(Y )

mk(2)(X) +mk(1)(Y )

(6.27)
where mk(12)(X) corresponds to the conjunctive consensus on X between the two sources and where all
denominators are different from zero and c(X) is the canonical form of X . Canonical term can be in its
simplest form expressed for example X = (O∩F )∩ (O∪F ∪Ω) as c(X) = O∩F ). If a denominator in
one of the terms (6.27) is zero, that fraction is discarded. Mathematically, PCR5 does a better redistribution
of the conflicting mass than Dempsters rule and other rules since PCR5 goes backwards on the tracks of the
conjunctive rule and redistributes the partial conflicting masses only to the sets involved in the conflict and
proportionally to their masses put in the conflict, considering the conjunctive normal form of the partial
conflict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous belief assignment.

A single step of the PCR5 algorithm for three independent sensor readings starts with evaluation of
the conjunctive rules of the DST belief masses mk(12)(O), mk(12)(F ) and mk(12)(Ω) = mk(12)(O ∪ F )
according to formulas (6.24), (6.25) and (6.26), respectively. Based on this formulas, a total conflicting
mass can be obtained

mk(123)(O ∩ F ) =[mk(12)(O)mk(3)(F ) +mk(3)(O) mk(12)(F )] + [mk(3)(O)mk(12)(O ∩ F )+

+mk(3)(F )mk(12)(O ∩ F ) +mk(3)(O ∪ F )mk(12)(O ∪ F )].

(6.28)

Partial conflicting mass mk(12)(O ∩ F ) is calculated as

mk(12)(O ∩ F ) = 1−mk(12)(O)−mk(12)(F )−mk(12)(O ∪ F ), (6.29)

where mk(12)(O ∪ F ) = mk(1)(O ∪ F )mk(2)(O ∪ F ) and individual conflicts are computed as in (6.26).
The partial conflicting mass gains are evaluated based on formulas (6.30) and (6.31).

m̂k(1)(O ∩ F ) = m̂k(1)(Ω) =
mk(1)(Ω)

mk(1)(O) +mk(2)(F )
(6.30)

m̂k(2)(O ∩ F ) = m̂k(2)(Ω) =
mk(2)(Ω)

mk(2)(O) +mk(1)(F )
(6.31)

The final step of the PCR5 algorithm [130] is to redistribute the conflicting masses proportionally on non-
empty sets (6.32), (6.33) and (6.34),

mk(123)(O) = mk(12)(O) + m̂k(11)(Ω) + m̂k(12)(Ω) +mk(3)(O) +mk(12)(O ∩ F ), (6.32)
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mk(123)(F ) = mk(12)(F ) + m̂k(21)(Ω) + m̂k(22)(Ω) +mk(3)(F ) +mk(12)(O ∩ F ), (6.33)

mk(123)(O ∪ F ) = mk(12)(O ∪ F ) +mk(3)(O ∩ F )mk(12)(O ∩ F ), (6.34)

involved in the model according to all integrity constraints (6.35) and (6.36), respectively.

m̂k(11)(Ω) = mk(1)(O) + m̂k(1)(Ω) m̂k(12)(Ω) = mk(2)(O) + m̂k(2)(Ω) (6.35)

m̂k(21)(Ω) = mk(1)(F ) + m̂k(1)(Ω) m̂k(22)(Ω) = mk(2)(F ) + m̂k(2)(Ω) (6.36)

6.4 Experimental Results
Information about drivable spaces is, based on the decentralized multi-layer multi-grid fusion architecture
(Fig. 6.4), obtained in three distinct stages: temporal fusion, multiple-grid fusion and conflict resolution.
The significance of these steps for overall map accuracy was discussed in the introductory Sec. 6.1.1, and
therefore we will turn our attraction towards implementation and evaluation aspects of the architecture. At
the temporal fusion level, sensor readings are transformed into the occupancy grids by the Bayesian update
algorithm. The BOF operates under assumption that surrounding environment is static (Sec. 6.3.1). How-
ever, this assumption could be easily violated when relative velocities between the observer and detected
objects are not negligible, e.g. when the area of interest is mapped by a moving vehicle. Forgetting factor,
a design parameter, was introduced to the mapping process (Fig. 6.3) in order to mitigate the effects of
non-static environments on temporal fusion. The main focus of this work is on the multiple grid fusion
and conflict resolution. For this reason, we seek to fuse grids which provide different perspective on the
environment, which are not necessarily supportive, yet complementary. A good example of these grids is
shown in the Fig. 6.1 and consequently in the Fig. 6.9, where detections perceived by a pair, i.e. vision
sensor and LiDAR observe new-jerseys on the road, will be not confirmed by the third one, i.e. context
map (GIS) which does not include the information about road reconstruction. However, the 2 vs.1 sen-
sor rule does not guarantee the truthfulness of the map and thus independent sensor weighting should be
considered. We will show, that empirically adjusted weights are feasible for solutions when detection of
certain objects are preferred over others, e.g. new-jerseys deployed on the road. Methods for automatic
grid weighting require, to a certain extend, implementation of model based predictors, thus leaning towards
feature-based mapping implementations. Instead of estimating the sensor weights, nowadays approaches
to the occupancy mapping primarily focus on the conflict resolution based on the measure of discrepancy
between each sensor pair. The later strategy is adopted for the purpose of this work. Furthermore, we
will present simple, but efficient, set of rules that can significantly improve the accuracy of built maps via
situation assessment feedback. However, the applicability of these rules is limited to the specific sensor
setup, i.e visual detector, LiDAR and context map. Furthermore, we will present a comparative study be-
tween Bayesian occupancy filtering (BOF) approaches and Dempster-Shafer theories of evidence (DST)
in an automotive driving scenario. The presented scenario (Fig. 6.9) poses multiple challenges for the
mapping algorithm as the vehicle is tasked to detect obstacles and successfully avoid these obstacles by
entering the opposing lane, while at the same time the map needs to correctly update drivable spaces from
the contradicting senor readings. The accuracy of occupancy grid mapping solutions was evaluated on the
dataset consisting from LiDAR observations, lane detections and geodetic reference points of all observed
features. In the following Sec. 6.4.1 and Sec. 6.4.2 we will summarize the implementation of the grid
mapping architecture (Fig. 6.4) and evaluate the accuracy of each fusion method, respectively.

6.4.1 Simulation Design
By following the block diagram (Fig. 6.4) from left to the right, the process of map building starts with
definition of inputs. Three types of sensors were considered for the task in hand: LiDAR, visual detectors
(camera) and contextual (GIS) map. As stated by the temporal fusion formula (6.9), occupancy grid mk

is built on the bases of the inverse measurement likelihood p(mij
1:k|xk, yk) and the prior map p(mij

1:k−1)

or p(mij
1:k|x1:k−1, y1:k−1). Each sensor likelihood p(mij

1:k|xk, yk) for time k carries the knowledge about
the vehicle position x = [px py]

T , defined in local-level frame (ground truth) g, and sensor originated
measurements y = [yx yy]

T , defined in the vehicle frame b. Information about vectors xk and yk associated
with each sensor type at time stamps 1 : k was presented to us in a form of dataset. The dataset, intellectual
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property of Magneti Marelli S.p.A., was generated by a multi-sensor data fusion solution deployed on the
autonomous driving vehicle operating in the geo-referenced environment. Format of the vehicle state vector
and the measurements for every detected object o ∈ {1, . . . , No} and feature f ∈ {1, . . . , Nf} is defined
as follows

yb,{1:No}
k,LiDAR =


k, p(A)

b,o
k ,p(B)

b,o
k ,p(C)

b,o
k ,p(D)

b,o
k , ID{o}


,

yb,{1:Nf}
k,camera =


k,p(A)

b,f
k ,p(B)

b,f
k ,p(C)

b,f
k ,p(D)

b,f
k , ID{f}, class{f}


,

pg,{1:Nf}
k,reference =


k, pgx,fk , pgy,fk , lane width{f}, lane curviture{f}, lane ID{f}


,

xgk =

k, pgxk , pgyk , vgxk , vgyk , θ(yaw)


.

(6.37)

In above equations, points p(A, . . . ,D)
b,o
k and p(A, . . . ,D)

b,f
k define the surface area of objects and fea-

tures detected by LiDARs and cameras observed in body frame b, respectively. Road lanes are subset of all
visible features, position of which is precisely located with respect to the geo-referenced map pg,{1:Nf}

k,reference.
We are not allowed to disclosure the details about sensor fusion solution, neither discuss sensor deploy-
ment and their characteristics, based on which the dataset was built. However, we argue that knowledge of
these characteristics is not crucial for grid mapping evaluation, as we are more concern about appearance
of objects within the grid map rather than their exact location w.r.t. ground truth, which will always be
depended on the grid scale.

By using a grid scale of 1 : 4 one meter of the real world plane is represented by 4 evenly spaced grid
cells. The total size of the area represented by a single grid map mk is 120m× 120m = 14400m2, which
is equivalent to a grid of 480 × 480 cells (Fig. 6.7). The cell of the grid map is denoted by mij

k where
i = {1, . . . , Ni} with represents the number of grid rows Ni = 480 and j = {1, . . . , Nj} with number
of grid columns Nj = 480. The vehicle is positioned in the center of the mesh allowing sensors to scan
an area approximately (the vehicle itself occupies a volume in the grid) up to 60m from the vehicle in all
4 directions. Relationships between vehicle and grid frames are visualized in the Fig. 6.7 below. If the
surface area of an object extends across multiple cells, those under the object’s surface will be declared as
occupied.

Figure 6.7: Visualization of the occupancy map.

LiDAR and camera readings (6.37) are translated into the grid (Fig. 6.7) by the following process. First,
all data points p(A, . . . ,D)

b,o
k at time k are translated Tm

b , offset by the grid origin, and scaled Sm
b = 0.4

from the body frame b to grid frame m, i.e.

p(A, . . . ,D)
b,m
k = Tm

b + Sm
b p(A, . . . ,D)

b,o
k (6.38)

is applied for ∀{o} at time k. Body and map frames are aligned to each other thus no rotations are nec-
essary. Second, points belonging to a single object p(A, . . . ,D)

b,m
k occupy certain cells in the grid, thus

p(m
p(A)
k ), . . . , p(m

p(D)
k )


= 1 is assumed to be true. In order to represent the shape of an object in the

grid space mk, we apply the Bresenham algorithm to mark the cell that form a close approximation to
a straight line between two points, that is m

p(A)
k

Bresenham−−−−−−→ m
p(B)
k ,. . . , mp(C)

k
Bresenham−−−−−−→ m

p(D)
k , ∀{o} at
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time k. Third, the surface area defined by points m
p(A)
k , . . . ,m

p(D)
k is assumed to be occupied, and for

this reason the flood fill algorithm was applied to mark appropriate grid cells under the surface integral
p

m


s
o(x,y)ds

k


= 1 for ∀{o} object surfaces at time k. The process of transforming features f , i.e. fea-

ture points p(A, . . . ,D)
b,f
k , into visual grids follows the same process as defined for the objects o with one

exception. The feature vectors also hold information about object classes, which in our case are classified
as road lanes, static or dynamic objects (Fig. 6.1a). The distinction of classes is only important during
the performance evaluation, and therefore all visual detections are set to be occupied with the maximum
probability, i.e. p


m


s
f(x,y)ds

k


= 1 for ∀{f} feature surfaces at time k.

The context grid (Fig. 6.1c) was built artificially from the road reference points pg,{1:Nf}
k,ref. defined in

the ground coordinates (6.37). These data points are for ∀{f} at time k translated Ti
g and scaled Si

g from
the ground frame g to the intermediate grid frame i by

pi,f
k = Ti

g + Si
gpg,f

k . (6.39)

After, a rotation Rm
i around the heading angle θ from intermediate to map frame (6.40) was performed.

pm,f
k = Rm

i pi,f
k (6.40)

Once completed, corresponding grid points pm,f
k were connected by the Bresenham line algorithm and the

off-road spaces classified as occupied by the flood fill process.
A temporal fusion step (Fig. 6.3), in other words the Bayesian occupancy filtering (BOF), is identical

for all three measurement sources and follows the derivations established in the Sec. 6.3.1. In short, the
log-odds representation of the BOF map update p(mk), expressed by (6.12), consist of three logarithmic
functions corresponding to the inverse sensor likelihood function log

p(mk|xk,yk)
1−p(mk|xk,yk)

, the initial map 1−p(m0)
p(m0)

and the prior log p(mk−1). Generation of inverse likelihood grids p(mk|xk, yk) was discussed in above
paragraphs. Occupancy probabilities of the initial grid frame p(m0) for each temporal fusion block (Fig.
6.4) corresponds to those of the contextual (GIS) p(mk,context) map at k = 1. The prior grid p(mk−1) is
initialized as uninformative occupancy probability matrix with elements p(mij

k−1) = 0.5. The forgetting
factor is modeled as an exponential time delay for each element

p(mk) = (p(mk)− 0.5)
(− dk

τ +0.5)
, (6.41)

where the time period is equal to the measurement update dk = 10−6s and the time delay was chosen to be
τ = 10−4s. By increasing or decreasing the parameter τ one increases or decreases speed the probability
of a cell is updated by new measurements.

The focal element of the grid fusion architecture (Fig. 6.4) is a fusion process itself. Two predominant
approaches, the Bayesian occupancy filtering (BOF) and Demspter-Shafer theory of evidence (DST), were
employed for the task of the multi-sensor occupancy grid mapping. Until this point, BOF (Sec. 6.3.1)
was presented as the solution of choice for a single sensor grid building. However, the likelihood in the
Bayesian update formula (6.9) can be easily exchanged for a function of multiple measurements combined
with a specific fusion formula. More specifically, linear opinion pool (LOP) [1]

p(mk) = w−1
k


wk,LiDAR p(mk,LiDAR) + wk,vision p(mk,vision) + wk,context p(mk,context)


wk =wk,LiDAR + wk,vision + wk,context

(6.42)

and, very conservative, maximum logarithm of the occupancy (ML)

p(mk) = max f

p(mk,LiDAR), p(mk,vision), p(mk,context)


(6.43)

were tested in the evaluation scenario. In above equations, term wk,sensor represents the weight of an in-
dividual sensor and wk is the normalization factor. Here, the sensor weights are chosen empirically based
on the expert knowledge of the scenario. It has been concluded from the experimentation, that LiDAR
should be slightly preferred over visual sensors, and that both sensors should be trusted more than con-
textual map, in order to emphasize detections not included in the map. Thus, the weights were set up in
a ratio wk,LiDAR : wk,vision : wk,context = 2 : 1.7 : 1. Design strategies that can analyze the perfor-
mance of each sensor in real time and assign some quality measure to it are especially interesting for grid
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fusion. Our vision (Fig. 6.4) to the automatic sensor weighting rely on conflict resolution and assessment
techniques, rather than sensor entropies optimization [165] or inclusion of probabilities that a particular
measurement is being spurious [82]. The process of a conflict resolution starts with the determination of
discrepancies (Fig. 6.2), i.e. by solving the differences (6.14). The knowledge of discrepancies is used to
generate hypothesis (6.15) about a particular cell being occupied or free. Cells classified as the unknown
are evaluated by the hypothesis and their probability is adjusted to either occupied or empty state (6.49).
Combination of the linear opinion pool (6.42) with the conflict assessment (6.15) is presented as the third
formula (LOP-SA) for the Bayesian occupancy fusion.

Alternative to BOF, the Dempster-Shafer theory (Sec. 6.3.3) offers the possibility to express states and
uncertainties in the form of belief functions (6.17, 6.18) and model transitions between these beliefs (Fig.
6.6). The initial assignment to the occupied, free and uncertian masses is performed for each sensor
according to the formulas (6.44), (6.45) and (6.46), respectively.

mij
k (O) =


p(mij

k ), if p(mij
k ) > 0.55,

0, otherwise
(6.44)

mij
k (F ) =


p(mij

k ), if p(mij
k ) < 0.45,

0, otherwise
(6.45)

mij
k (Ω) =


p(mij

k ), if 0.45 ≤ p(mij
k ) ≤ 0.55,

0, otherwise
(6.46)

The Demspter-Shafer combination rule (6.23) is commutative and associative which allows to combine
LiDAR, vision and context measurements by computing the following masses

mk(O) = (mk(LiDAR)(O)⊕mk(vision)(O))⊕mk(context)(O),

mk(F ) = (mk(LiDAR)(F )⊕mk(vision)(F ))⊕mk(context)(F ),

mk(Ω) = (mk(LiDAR)(Ω)⊕mk(vision)(Ω))⊕mk(context)(Ω).

(6.47)

For instance, the DST fusion formula (6.20) for a grid mk(LiDAR)(X) and mk(vision)(X) can be inter-
preted for a belief Bel(X = O) and Bel(X = F ) as (6.24) and (6.25), respectively. For example, the
fusion of LiDAR and vision sensor reads as

mk(LiD.⊕V is.)(O) =
mk(LiD.)(O)mk(vis.)(O) +mk(LiD.)(O)mk(vis.)(Ω) +mk(LiD.)(Ω)mk(vis.)(O)

1−mk(LiD.)(O)mk(vis.)(F )−mk(LiD.)(F )mk(vis.)(O)
,

mk(LiD.⊕V is.)(F ) =
mk(LiD.)(F )mk(vis.)(F ) +mk(LiD.)(F )mk(vis.)(Ω) +mk(LiD.)(Ω)mk(vis.)(F )

1−mk(LiD.)(O)mk(vis.)(F )−mk(LiD.)(F )mk(vis.)(O)
,

mk(LiD.)(Ω) =mk(LiD.)(O ∪ F ) = 1−mk(LiD.)(O)−mk(LiD.)(F ),

mk(vis.)(Ω) =mk(vis.)(O ∪ F ) = 1−mk(vis.)(O)−mk(vis.)(F ).

(6.48)

Aforementioned fusion process can be visualized by the schematics (Fig. 6.8). When readings from a
pair of sensors, i.e. LiDAR and visual detectors, are highly conflicting, denumerators in (6.48) could
become close to zero which could lead to the misinterpretation of the environment and to divisions by
a zero. In order to prevent potential issues we have enhanced the DST formula with the proportional
conflict redistribution algorithm (PCR5) (Sec. 6.3.4). In comparison to the DST, PCR evaluates total
conflicting mass of all sensors (6.28) as opposed to the partial masses occurring between the pairs. Transfer
of the conflicting mass within FOD 2X follows derivations (6.30 - 6.36), which proportionally reassigns
conflicting mass mk(Ω) to either occupied mk(O) or free mk(F ) state in accordance to the individual
sensor contribution.

The ultimate goal of the occupancy grid mapping is to determine the presence of obstacles on the road.
Therefore, a decision must be made to translate a probabilistic formulation into a logical state (6.49). The
state of each cell mij

k can be one of the following: free, occupied or unknown.

mij
k =


free, if p(mij

k ) < (0.5− δ),

unknown, if (0.5− δ) ≤ p(mij
k ) ≤ (0.5 + δ),

occupied, if p(mij
k ) > (0.5 + δ).

(6.49)
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Figure 6.8: Visualization of the Dempster-Shafer fusion.

A small margin around unknown state of size 2δ = 0.1 was chosen to address two common problems.
First, probabilities rarely equals exactly 0.5, which is the definition of unknown. Second, a cell is classi-
fied as free or occupied only if the probability is high enough, so there is a reasonably high confidence.
Choosing δ = 0.05 is generally a fair assumption. If probability of occupancy reaches the value of 0 or 1,
then the log-likelihood in (6.12) tend to converge to ±∞. For this reason, new sensor measurements would
not contribute to occupancy grid update. Therefore, whenever an update is performed, it necessary to avoid
the numerical instabilities by offset the probability of cells, e.g p(mij

k ) ∈ {p(min) = 10−4, p(max) =
1− 10−4}.

6.4.2 Results and Discussion
A scenario which is used for evaluation of Bayesian and Dempster-Shafer approaches to the occupancy
grid mapping represents a typical road reconstruction challenge. Autonomous vehicle moving in the right-
lane is tasked to detect the obstacles in front, i.e new jerseys, and avoid them by entering the opposing lane.
As visualized on the frame sequence (Fig. 6.9) from time t0+130s till t0+160s vehicle is approaching the
new-jerseys. From time t0 + 170s till t0 + 200s vehicle is crossing the middle lane. From time t0 + 210s
onwards the vehicle is moving alongside the obstacle. Sections of the trajectory which are particularly
interesting to analyze occur at times

• t0+170s, when the vehicle is approaching the obstacles. The grid cells belonging to the new-jerseys
should be classified as occupied with the high confidence.

• t0 + 190s, when the vehicle is about to perform an evasive maneuver. The grid cells belonging to
the new-jerseys and area behind them should be continuously classified as occupied. Furthermore,
the cells describing the opposing lane should be classified as free.

• t0+210s, when the vehicle is driving alongside the obstacle. Similarly to the conditions at t0+190s,
the grid cells belonging to the new-jerseys and area behind them should continuously classified as
occupied. The area in front of the vehicle, now driving in the left lane, should be classified as free.

Towards the goal, we first analyze the temporal fusion grids for each individual sensor at the time stamps
t0+170s, t0+190s and t0+210s depicted in Fig. 6.10, Fig. 6.11 and Fig. 6.12, respectively. Starting with
the time stamp t0 + 170s, snapshots of the ground reference (Fig. 6.10a) and results of temporal fusion
for context map (Fig. 6.10b), vision detector (Fig. 6.10c) and LiDAR (Fig. 6.10d,e) are presented. The
ground truth is a surf plot of LiDAR reference points corresponding to the obstacles, yellow rectangles, and
plot of the references associated with road lanes expressed in the vehicle body frame b. In the figure three
type of lanes can be recognized: side lanes painted by a dark blue color, middle lane indicated as cyan,
and marking of obscured area are depicted as red. The context map (Fig. 6.10b) indicates the drivable
area only and the rest of the grid map is marked as not accessible. The context map does not pose the
knowledge about road reconstruction and prevents usage of the opposing lane. All detected visual features
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Figure 6.9: Visualization of the evaluation scenario.

(Fig. 6.10c), which can be classified as road lanes, static or dynamic objected are represented as occupied
with exception of drivable spaces. LiDAR detections are shown in the Fig. 6.10d and Fig. 6.10e, were new
jerseys and off-road objects (trees and bushes) are represented by occupancy grids with and without shadow
cones, respectively. Removing the cones of vision allows for easier comparisons of LiDAR detections with
the ground truth. Analogous description can be adopted for sensors grids at time stamps t0 + 190s and
t0 + 210s.

Having understood sensor grids, which serve as inputs to the fusion module, three alternatives to the
Bayesian occupancy filtering and two Dempster-Shafer theories will be evaluated based on the following
criteria:

• Criterion 1: new-jerseys located in the front of the car in the traffic lane, observed by LiDAR and
visual detectors, should be classified as occupied;

• Criterion 2: obscured areas detected by a lane detector behind the new-jerseys should be classified
as occupied;

• Criterion 3: opposing lane in front of the car should be classified as free;

• Criterion 4: off-road areas should be classified as occupied;

• Criterion 5: miss detections should be sparse or not occur at all.
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Figure 6.10: Measurement grids at the time stamp t0 + 170s

Figure 6.11: Measurement grids at the time stamp t0 + 190s

The capability of a particular fusion solution to truthfully represent the environment at time stamps t0 +
170s, t0 + 190s, t0 + 210s is visualized on Fig. 6.13, Fig. 6.14, Fig. 6.16) and commented in Tab.
6.1, Tab. 6.2, Tab. 6.3, respectively. The ability of a certain fusion solution to reflect on the criteria
either successfully comply to them, or fail them, or be uncetain about the criterion. Sensor grids were
weighted in a ratio wk,LiDAR : wk,vision : wk,context = 2 : 1.7 : 1 for full length of the experiment.
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Figure 6.12: Measurement grids at the time stamp t0 + 210s

By analyzing the grids (Fig. 6.13) at time t0 + 170s following conclusions could be made about the

Figure 6.13: Fused grids at the time stamp t0 + 170s

fusion solutions (Tab. 6.1). The Bayesian algorithm with linear opinion pool fusion formula (Fig. 6.13a)
tempt to produce a quite uncertain representation of the scene. This is due to the fact that information
about road reconstruction is not updated in the context map but only observed by visual detectors and
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LiDAR. Furthermore, both sensors observe only partial occupancy of the grids at the new-jerseys location
as they are position at the top of the vehicle and can see above these obstacles. By employing the situation
assessment feedback into the LOP mapping (Fig. 6.13c), areas previously classified as unknown are now
recognized as either occupied or free. Utilization of the SA module for mapping proved to be invaluable as
the BF −LOP −SA approach produces the most accurate map of the scenario among all tested solutions.
On the other hand, the BF − ML mapping is the most conservative approach to map building as a cell
of the output grid is the one with the highest probability of occupancy from all available inputs 6.13b).
Solution is clearly not able to recognize a possibility of driving in the opposing lane. The Dempster-Shafer
fusion 6.13d) utilizes the conjunction of three masses in order to determine the drivable spaces. Resulting
occupancy map is surprisingly accurate given the amount of conflict which occurs between senors grid.
Finally, the DST − PCRR5 is the only solution which is automatically adjusting the sensor weights.
Despite providing rather mediocre result, it will be shown in further time instances that the confidence, that
obstacles are in fact present, will increase as time progresses.

Fusion Method Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Bayes Filter Fail Uncertain Success Uncertain Uncertain
LOP Occupancy Detection with Detection with Occupancy prob. Miss detections

probability is probability probability close is ambiguous in are frequent but
is very low. close to 0.5. to uncertain. areas LiDAR sees classified as

as free and high as free and
in the rest. uncertain at most.

Bayes Filter Success Success Fail Success Fail
ML Occupancy Occupancy Occupancy Occupancy Miss detections

probability is probability is probability is probability is are frequent
high. high. very high. high. and classified

as occupied.
Bayes Filter Success Success Success Success Success

LOP - SA Occupancy Occupancy Occupancy Occupancy Negligible
probability is probability is probability is probability is amount of miss

high. high. low. high. detections are
present.

Dempster-Shafer Success Success Success Success Fail
Occupancy Occupancy Occupancy Occupancy prob. Miss detections

probability is probability is probability is is moderately are frequent
high. high. low. high in areas and classified as

LiDAR sees as occupied.
free and high

in the rest.
Dempster-Shafer Uncertain Success Success Uncertain Success

PCR5 Detection with Occupancy Occupancy Detection with Negligible
probability probability is probability is probability is amount of miss
close to 0.5. high. low. close to 0.5. detections are

present.

Table 6.1: Evaluation of fused grids at the time stamp t0 + 170s.

At time t0 + 190s to the simulation, the vehicle is above to start an evasive maneuver. In this mo-
ment, the possibility of driving in the opposing lane should be recognized and the presence of new-jerseys
should be affirmed by the mapping algorithm (Fig. 6.14). Unsurprisingly, the Bayesian occupancy filtering
enhanced with the conflict resolution capability (BOF − LOP − SA) resolved any uncertainties in the
BF − LOP solution (Fig. 6.14a) and deviled the most accurate map (Fig. 6.14c). A fusion formula
based on the maximum logarithm of occupancy proved to be unfeasible for the maneuver which follows
(Fig. 6.14b). The reliability of the map, built by DST formula (Fig. 6.14d), starts to produce some
contra-intuitive results as the conflict between masses rises. On the other hand, the proportional conflict
redistribution rule (Fig. 6.14e), with automatic weights adjustment, starts to deliver results compatible to
BF − LOP mapping. In order to illustrate how conflicting the information from sensor grid appears in
a DST fusion a 4D plot (Fig. 6.15) of occupancy map and the conflicting masses is presented. In the
figure, XY plane represents the result of PCR5 occupancy grid mapping with probabilities ranging be-
tween 0 < p(mij

k ) < 1 represented by a color bar from green to red. The conflict mass is represented by
a Z plane. It can be observed from the Fig. 6.15, that driving in the opposing lane was declared feasible
by PCR5 despite conflicting mass is particularly high in the area. Another highly conflicting cells can be
identified under the new-jerseys and corresponding area in the left size of the road. For this reason, the
DST started to provide contra-intuitive results (6.8). The final comments on the scenario t0 + 190s are
presented in the Tab. 6.2.

In the last data sample (Fig. 6.16), we looking at the persistence of detected drivable space in the
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Figure 6.14: Fused grids at time stamp t0 + 190s

Figure 6.15: 4D Occupancy grids at time stamp t0 + 190s

opposing lane and the consistency of obstacles located in the driving lane. The performance of fusion
solutions in t0 + 210s is very similar to the one observed in the previous t0 + 190s snapshot, which one
difference. The PCR5 fusion is gaining the confidence in way how the conflict mass is redistributed and
thus continuously increasing its performance. The important observations are collected in the Tab. 6.3.
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Fusion Method Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Bayes Filter Fail Uncertain Uncertain Success Uncertain
LOP Occupancy Detection with Detection with Detection with Miss detections

probability is probability probability probability close are frequent
is very low. close to 0.5 close to 0.5 or to uncertain. but classified as

or lower. declared as free uncertain at
maximum.

Bayes Filter Success Success Success Fail Fail
ML Occupancy Occupancy Occupancy Occupancy Miss detections

probability is probability is probability is probability is are frequent
high. high. moderately high. very high. and classified as

occupied.
Bayes Filter Success Success Success Success Success

LOP - SA Occupancy Occupancy Occupancy Occupancy prob. Miss detections
probability is probability is probability is is moderately are very rare.

high. high. high. high in areas
LiDAR considers
as free and high

in the rest.
Dempster-Shafer Success Success Fail Success Fail

Occupancy Occupancy Occupancy Occupancy Miss detections
probability is probability is probability is probability is are frequent

high. high. very low. low. and classified as
occupied.

Dempster-Shafer Uncertain Success Success Success Success
PCR5 Detection with Occupancy Occupancy Occupancy Miss detections

probability probability is probability is probability is are very rare.
close to 0.5. high. high. low.

Table 6.2: Evaluation of fused grids at the time stamp t0 + 190s.

Figure 6.16: Fused grids at time stamp t0 + 210s

6.5 Conclusion
We evaluated two most common algorithms for occupancy mapping, i.e. the Bayesian occupancy filter and
the Demspter-Shafer theory of evidence, in the roadworks scenario. The mapping algorithm was tasked
to build an occupancy grid map of the scenario by combining the readings from LiDAR, visual detectors
and the context (GIS) map. Building maps from multiple grids proved to be challenging in cases when
sensor readings are highly contradicting. Baseline approaches threats measurements equally, which in
case of Bayesian solution leads to large amount of grids cell being classified as uncertain or in case of
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Fusion Method Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5

Bayes Filter Fail Uncertain Uncertain Success Uncertain
LOP Occupancy Detection with Detection with Detection with Miss detections

probability is probability probability probability close are frequent
is very low. close to 0.5 close to 0.5 or to uncertain. but classified

or lower. declared as free as uncertain
at maximum.

Bayes Filter Success Success Success Fail Fail
ML Occupancy Occupancy Occupancy Occupancy Miss detections

probability is probability is probability is probability is are common and
high. high. moderately high. very high. classified as

occupied.
Bayes Filter Success Success Success Success Success

LOP - SA Occupancy Occupancy Occupancy Occupancy Miss detections
probability is probability is probability is probability are very rare.

high. high. high. is low.
Dempster-Shafer Success Success Fail Success Fail

Occupancy Occupancy Occupancy Occupancy Miss detections
probability is probability is probability is probability is are frequent

high. high. very low. low. and classified as
occupied.

Dempster-Shafer Uncertain Uncertain Success Success Success
PCR5 Detection with Occupancy Occupancy Occupancy Miss detections

probability probability is probability is probability is are very rare.
close to 0.5. high. high. low.

Table 6.3: Evaluation of fused grids at the time stamp t0 + 210s.

the Dempster-Shafer theory to an unintuitive results. It therefore become apparent, that sensor weights
should be adjusted either empirically or resolved by means of alternative fusion formulas and reasoning
techniques.

By assessing the Bayesian fusion rules, the conservative maximum logarithmic rule did not meet the
requirements as the autonomous vehicle would have stopped upon the obstacles were reached. Linear
opinion pool showed, that empirical sensor weights are extremely hard to tune for whole simulation run. As
a consequence large portions of the map were classified as uncertain. For this reason, we have developed
the situation assessment logic, which manage to tip the probability to either occupied or free state. We
proved, that simple yet efficient set of rules can significantly reduce amount of ambiguities in the map.
Introduced, rule set works exceptionally well for the given sensor setup, i.e. LiDAR, camera, GIS map, for
majority of on-road scenarios.

Both DST solutions were exposed to highly conflicting evidences, which implies that the PCR solution
should have deliver more reliable information about drivable spaces. However the results shows, that
baseline DST outperformed the PCR by a significant margin in capability to detect obstacles. However, the
DST solution was prone to miss-classifications which hindered its performance. PCR was very close to the
Bayesian fusion results and provided slightly higher confidence of obstacle detection. The choice of sensor
weights have significant impact on the fusion performance and further analysis on optimal sensor weight
should be performed. However, we argue that PCR increased its performance over time and its capability
of determining grids weights independently is highly desirable. The solutions were tested with and without
the prior grid knowledge. As opposed to Bayesian fusion, involvement of the posterior grid in the fusion
process tends to degrade the performance of both approaches and appears to be unnecessary.



Conclusion

In this thesis, several concepts and issues to be taken into account when developing a context-aware infor-
mation fusion system are discussed and analyzed. More specifically, an architecture capable of dynamical
context exploitation at object and situation assessment fusion levels has been proposed and evaluated. The
concept has been applied to ground tracking scenarios with airborne radars and to the autonomous system
localization and mapping problem.

In the first ground target tracking scenario, the problem of a multi-level context representation and ex-
ploitation is addressed. The presented approach represents different types of spatial context in the form of
likelihood functions. The likelihoods are applied as constrains into the particle filter measurement update.
Given the scenario, the accuracy of a target estimate can be improved by approximately 27% w.r.t the con-
ventional tracking solutions. Despite achieving promising results, there are multiple factors and limitations
which need to be considered during algorithm design. First, the generation of accurate and information
rich likelihood masks needs to be addressed. Employing the Bayes classifiers to cluster and partition con-
textual data proved to be very versatile by providing: the ability to couch different types of knowledge, a
principled functional representation exploitable as likelihood in the tracking process, the ability to dynami-
cally update contextual likelihoods by re-training. By enhancing the classification accuracy and robustness
further performance gains can be achieved. Constraining particles in the measurement update could lead
to large amount of particles with small or vanishing weights. By reducing the size of the likelihood func-
tion the Particle filter becomes less efficient and eventually lead to track losses. In order to address this
issue, marginalized particle filters, i.e. the Rao-Blackwellized PF, should be considered for cases when the
constrains become highly nonlinear.

In the second ground target tracking scenario, the target’s actions are represented as a Hidden Markov
model with relevant spatial and event-temporal context associated with each node and arc, respectively.
Each Markov sequence represents an unique goal that a target seeks to reach within a certain graph topol-
ogy. As the target progresses through the network, the target’s future actions are inferred based on current
evidence and a priori knowledge. The belief that a vehicle seeks an objective is used to aid the tracking
process by adjusting the mode transition probabilities in the interacting multiple models (IMM) estimation
process. The posterior elements of the TPM matrix are evaluated recursively, by a quasi-Bayesian estima-
tor, in terms of the multiple models mode probabilities and the joint likelihood of contextual information
and measurements. The convergence of the QB estimators is highly dependent on the target mode exci-
tation, i.e. an amount of jumps observed between individual modes. For this reason, the informativeness
of the likelihood is a key performance contributor in the recursive TPM estimation. The underlaying role
of the context is twofold. First, the presence of CI significantly improves the convergence and reduces the
steady state error of the estimated mode transition probabilities. Second, prior to an event CI adjusts the
mode ambiguity of the IMM in such a way that occurrence of tacks losses is significantly reduced in cases
when the target performs an unlikely maneuver. When the outcome of the event is uncertain or misjudged,
the progressive context weighting gives the IMM filter enough time to reconsider the mode observation
gains, i.e. to prioritize the measurement over context, and avoid track losses. By assessing the outcome
of Monte Carlo simulations, the utilization of the adaptive TPM estimate improved the performance of
the IMM filter by roughly 23.19% in a scalar jump Markov linear process tracking (JMLS). When the
simulation complexity was extended to a 2D JMLS tracking, the adaptive solutions were able to maintain
the advantage over the IMM filter by roughly 13.98% while context was present and by approximately
5.46% while context was absent. In the simulation of the ground object tracking with airborne sensors,
the knowledge of road topology and target habits improved the track accuracy and continuity by roughly
5.32%. We argue, that the performance gain of the IMM-QB-HMM filter will improve over the time as the
length of the event sequence, i.e. the amount and type of mode transients, increases. Arguably, accuracy
and convergence speed of the TPM estimation process can be improved by numerical gradient methods,
such as a maximal likelihood estimator, in exchange for the computational power. Probabilistic reasoning
techniques based on HMM are quite limited in their ability to repent the context-temporal relationships.
For this reason, events models are better represented as the dynamic Bayesian networks (DBN) or the con-
ditional random fields (CRF). In such cases, it is recommended to swap the Kalman filter for the particle
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filter, which is better suited for inference in DBN networks and in propagating a non-linear event modes in
the IMM framework.

Before discussing the subject of context-aware mapping, it is worth noting that event-context and event-
temporal context can be also exploited in the process of data association while consolidating hypothesis
about the measurement origin. Alternatively, the modal context combined with the kinematic measure-
ments can be exploited in a form of the joint probability density of the likelihoods in so called, image-
enhanced IE-IMM filter. According to the Bayesian recursion rule, updates of the hybrid state densities
results a mixture of Gaussians with an exponentially increasing number of components. The challenge here
is to develop a tractable approximate estimators that retain the informativeness of the joint likelihood and
decrease the computation time. Alternatively, a Gaussian wavelet estimator (GWE), that retains the growth
of the Gaussian mixture components by a hypothesis merging techniques, could be also considered.

In field of the autonomous system localization and mapping, grid-SLAM approaches utilizing the
Bayesian occupancy filter and the Demspter-Shafer theory of evidence are evaluated in the road recon-
struction scenario. Mapping algorithms are tasked to build an occupancy grid map of the scenario by
combining the readings from LiDAR, visual detectors and context (GIS) map. Building maps from mul-
tiple grids proved to be challenging in the cases when sensor readings are highly contradicting. Baseline
grid mapping approaches threats measurements equally, which in case of Bayesian solutions lead to large
amount of grids cell being classified as an uncertain or in case of the Dempster-Shafer theory to an unin-
tuitive results. It therefore become apparent that sensor weights should be adjusted either empirically or
resolved by means of alternative fusion formulas and/or reasoning techniques. For these reasons, the situa-
tion assessment logic is proposed, which managed to tip the probability of uncertain grid elements to either
occupied or free state. It was proved that even a simple yet efficient set of rules can significantly reduce
the amount of ambiguities in the built map. However, the baseline DST outperformed the proportional
conflict redistribution (PCR) by a small margin in the capability to detect obstacles. On the other hand the
DST solution was prone to miss-classifications which hindered its performance. The PCR solution was
very close to the Bayesian fusion results augmented with the situation assessment module and shows more
confidence in detecting the obstacles. The choice of sensor weights has a significant impact on the fusion
performance. Therefore, further analysis on the optimal sensor weight should be performed. However, it
can be argued that the PCR increases its performance over time and its capability of determining the grids
weights without an expert knowledge is highly desirable.

In order to improve the fidelity of the mapping process, the compilation of multiple mapping tech-
niques should be considered, such as combination of feature and grid SLAM or multiple model DST rule
frameworks. Extending the field of discernment in a DST framework for contextual states should be also
considered.
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