13,789 research outputs found

    Improvement of Plant Responses by Nanobiofertilizer : A Step towards Sustainable Agriculture

    Get PDF
    Drastic changes in the climate and ecosystem due to natural or anthropogenic activities have severely affected crop production globally. This concern has raised the need to develop environmentally friendly and cost-effective strategies, particularly for keeping pace with the demands of the growing population. The use of nanobiofertilizers in agriculture opens a new chapter in the sustainable production of crops. The application of nanoparticles improves the growth and stress tolerance in plants. Inoculation of biofertilizers is another strategy explored in agriculture. The combination of nanoparticles and biofertilizers produces nanobiofertilizers, which are cost-effective and more potent and eco-friendly than nanoparticles or biofertilizers alone. Nanobiofertilizers consist of biofertilizers encapsulated in nanoparticles. Biofertilizers are the preparations of plant-based carriers having beneficial microbial cells, while nanoparticles are microscopic (1-100 nm) particles that possess numerous advantages. Silicon, zinc, copper, iron, and silver are the commonly used nanoparticles for the formulation of nanobiofertilizer. The green synthesis of these nanoparticles enhances their performance and characteristics. The use of nanobiofertilizers is more effective than other traditional strategies. They also perform their role better than the common salts previously used in agriculture to enhance the production of crops. Nanobiofertilizer gives better and more long-lasting results as compared to traditional chemical fertilizers. It improves the structure and function of soil and the morphological, physiological, biochemical, and yield attributes of plants. The formation and application of nanobiofertilizer is a practical step toward smart fertilizer that enhances growth and augments the yield of crops. The literature on the formulation and application of nanobiofertilizer at the field level is scarce. This product requires attention, as it can reduce the use of chemical fertilizer and make the soil and crops healthy. This review highlights the formulation and application of nanobiofertilizer on various plant species and explains how nanobiofertilizer improves the growth and development of plants. It covers the role and status of nanobiofertilizer in agriculture. The limitations of and future strategies for formulating effective nanobiofertilizer are mentioned.Peer reviewe

    Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture

    Get PDF
    Drastic changes in the climate and ecosystem due to natural or anthropogenic activities have severely affected crop production globally. This concern has raised the need to develop environmentally friendly and cost-effective strategies, particularly for keeping pace with the demands of the growing population. The use of nanobiofertilizers in agriculture opens a new chapter in the sustainable production of crops. The application of nanoparticles improves the growth and stress tolerance in plants. Inoculation of biofertilizers is another strategy explored in agriculture. The combination of nanoparticles and biofertilizers produces nanobiofertilizers, which are cost-effective and more potent and eco-friendly than nanoparticles or biofertilizers alone. Nanobiofertilizers consist of biofertilizers encapsulated in nanoparticles. Biofertilizers are the preparations of plant-based carriers having beneficial microbial cells, while nanoparticles are microscopic (1–100 nm) particles that possess numerous advantages. Silicon, zinc, copper, iron, and silver are the commonly used nanoparticles for the formulation of nanobiofertilizer. The green synthesis of these nanoparticles enhances their performance and characteristics. The use of nanobiofertilizers is more effective than other traditional strategies. They also perform their role better than the common salts previously used in agriculture to enhance the production of crops. Nanobiofertilizer gives better and more long-lasting results as compared to traditional chemical fertilizers. It improves the structure and function of soil and the morphological, physiological, biochemical, and yield attributes of plants. The formation and application of nanobiofertilizer is a practical step toward smart fertilizer that enhances growth and augments the yield of crops. The literature on the formulation and application of nanobiofertilizer at the field level is scarce. This product requires attention, as it can reduce the use of chemical fertilizer and make the soil and crops healthy. This review highlights the formulation and application of nanobiofertilizer on various plant species and explains how nanobiofertilizer improves the growth and development of plants. It covers the role and status of nanobiofertilizer in agriculture. The limitations of and future strategies for formulating effective nanobiofertilizer are mentioned

    Lignin-based nano-enabled agriculture: A mini-review

    Get PDF
    Nowadays sustainable nanotechnological strategies to improve the efficiency of conventional agricultural practices are of utmost importance. As a matter of fact, the increasing use of productive factors in response to the growing food demand plays an important role in determining the environmental impact of agriculture. In this respect, low-efficiency conventional practices are becoming obsolete. On the other hand, the exploitation of nanoscaled systems for the controlled delivery of fertilizers, pesticides and herbicides shows great potential towards the development of sustainable, efficient and resilient agricultural processes, while promoting food security. In this context, lignin - especially in the form of its nanostructures - can play an important role as sustainable biomaterial for nano-enabled agricultural applications. In this review, we present and discuss the current advancements in the preparation of lignin nanoparticles for the controlled release of pesticides, herbicides, and fertilizers, as well as the latest findings in terms of plant response to their application. Special attention has been paid to the state-of-the-art literature concerning the release performance of these lignin-based nanomaterials, whose efficiency is compared with the conventional approaches. Finally, the major challenges and the future scenarios of lignin-based nano-enabled agriculture are considered

    Advances of nanotechnology in agro-environmental studies

    Get PDF
    With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail

    Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties

    Get PDF
    Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45–250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles’ surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Ancient and historical systems

    Get PDF

    Model selection and model averaging on mortality of upper gastrointestinal bleed patients

    Get PDF
    Model Selection (MS) is known to produce uncertainty into model-building process. Besides that, the process of MS is complex and time consuming. Therefore, Model Averaging (MA) had been proposed as an alternative to overcome the issues. This research will provide guidelines of obtaining best model by using two modelling approach which are Model Selection (MS) and Model Averaging (MA) and compares the performance of both methods. Corrected Akaike Information Criteria (AICc) and Bayesian Information Criteria (BIC) were applied in the model-building using MS to help determine the best model. In MA process, model selection criteria are needed to compute the weights of each possible models. Two model selection criteria (AICcand BIC) were compared to observe which will produce model with a better performance. For guidelines illustration, data of Upper Gastrointestinal Bleed (UGIB) were explored to identify influential factors which leads to the mortality of patients. At the end of the study, best model using MA shown to have a better performance andAICc is proven to be a better model selection criterion approach in MA. In conclusion, the most significant factors for mortality of UGIB patients were identified to be shock score, comorbidity and rebleed
    corecore