14,718 research outputs found

    Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    Get PDF
    The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload

    Three-dimensional structure of the flow inside the left ventricle of the human heart

    Full text link
    The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still open and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the left-ventricular flow during the cardiac cycle. In this paper we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase averaged, three-dimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical structures: i) straight propagation in the direction of the long axis of a vortex-ring originated from the mitral orifice; ii) asymmetric development of the vortex-ring on an inclined plane; iii) single vortex formation. The analysis of three-dimensional data gives the experimental evidence of the reorganization of the flow in a single vortex persisting until the end of the diastole. This flow pattern seems to optimize the cardiac function since it directs velocity towards the aortic valve just before the systole and minimizes the fraction of blood residing within the ventricle for more cycles

    Dynamics of Pulsed Flow in an Elastic Tube

    Get PDF
    Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime sources of high fatality rates in mammals. We propose a simplistic model of fluid flow to specify the location of the haemorrhagic spots, which, if located accurately, could be operated upon leading to a possible cure. The model we employ for the purpose is inspired by fluid mechanics and consists of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy is with that of blood, pumped from the heart and flowing through an arte ry or vein. Our results, aided by graphical illustrations, match reasonably well with experimental observations.Comment: 6 pages and 4 figure

    Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging

    Get PDF
    Background: The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. Results: The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. Conclusions: The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics

    A coupled mitral valve -- left ventricle model with fluid-structure interaction

    Full text link
    Understanding the interaction between the valves and walls of the heart is important in assessing and subsequently treating heart dysfunction. With advancements in cardiac imaging, nonlinear mechanics and computational techniques, it is now possible to explore the mechanics of valve-heart interactions using anatomically and physiologically realistic models. This study presents an integrated model of the mitral valve (MV) coupled to the left ventricle (LV), with the geometry derived from in vivo clinical magnetic resonance images. Numerical simulations using this coupled MV-LV model are developed using an immersed boundary/finite element method. The model incorporates detailed valvular features, left ventricular contraction, nonlinear soft tissue mechanics, and fluid-mediated interactions between the MV and LV wall. We use the model to simulate the cardiac function from diastole to systole, and investigate how myocardial active relaxation function affects the LV pump function. The results of the new model agree with in vivo measurements, and demonstrate that the diastolic filling pressure increases significantly with impaired myocardial active relaxation to maintain the normal cardiac output. The coupled model has the potential to advance fundamental knowledge of mechanisms underlying MV-LV interaction, and help in risk stratification and optimization of therapies for heart diseases.Comment: 25 pages, 6 figure

    Cardiovascular instrumentation for spaceflight

    Get PDF
    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration

    A hydro-elastic model of hydrocephalus

    Get PDF
    We combine elements of poroelasticity and of fluid mechanics to construct a mathematical model of the human brain and ventricular system. The model is used to study hydrocephalus, a pathological condition in which the normal flow of the cerebrospinal fluid is disturbed, causing the brain to become deformed. Our model extends recent work in this area by including flow through the aqueduct, by incorporating boundary conditions which we believe more accurately represent the anatomy of the brain and by including time dependence. This enables us to construct a quantitative model of the onset, development and treatment of this condition. We formulate and solve the governing equations and boundary conditions for this model and give results which are relevant to clinical observations

    Computational modeling of acute myocardial infarction

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Computer Methods in Biomechanics and Biomedical Engineering on October, 2016, available online at: http://www.tandfonline.com/10.1080/10255842.2015.1105965Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step toward simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size.Peer ReviewedPostprint (author's final draft

    Thyroid hormone levels within reference range are associated with heart rate, cardiac structure, and function in middle-aged men and women

    Get PDF
    Background: Triiodothyronine (T3) has many effects on the heart, and marked changes in cardiac function and structure occur in patients with (subclinical) thyroid disease. We investigated whether between-subject variation in thyroid hormone levels within the euthyroid range is also associated with heart rate and echocardiographic heart function and structure. Methods: Subjects were selected from the Asklepios study (n=2524), a population-representative random sample of patients aged between 35 and 55 years, free from overt cardiovascular disease at baseline. Analyses were restricted to 2078 subjects (1013 women and 1065 men), not using antihypertensive or thyroid medication nor having antithyroperoxidase antibody levels above clinical cut-off or thyrotropin (TSH) levels outside the reference range. All subjects were phenotyped in-depth and underwent comprehensive echocardiography, including diastolic evaluation. Thyroid function parameters were determined by automated electrochemiluminescence. Results: Heart rate was robustly positively associated with (quartiles of) free T3 (FT3) and T3, both in subjects with TSH levels within reference (0.27-4.2 μU/L) and in narrow TSH range (0.5-2.5 μU/L; p<0.0001). FT3 and T3 were negatively associated with left ventricular (LV) end-diastolic volume but positively associated with relative wall thickness. Total T3 (TT3) was associated with enhanced ventricular contraction (as assessed by tissue Doppler imaging). Free thyroxine, FT3, and TT3 were positively associated with late ventricular filling, and TT3 was associated with early ventricular filling. Conclusion: We have demonstrated a strong positive association between thyroid hormone levels within the euthyroid range and heart rate, and more subtle effects on cardiac function and structure. More specifically, we suggest a smaller LV cavity size (with increased relative wall thickness), an enhanced atrial and ventricular contraction, and LV relaxation with higher circulating thyroid hormones. These results illustrate that variation in thyroid hormone levels, even within the reference range, exerts effects on the heart
    corecore