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Dynamics of pulsed flow in an elastic tube
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Internal haemorrhage, often leading to cardio-vascular arrest happens to be one of the prime
sources of high fatality rates in mammals. We propose a simplistic model of fluid flow to specify the
location of the haemorrhagic spots, which, if located accurately, could be operated upon leading to
a possible cure. The model we employ for the purpose is inspired by fluid mechanics and consists
of a viscous fluid, pumped by a periodic force and flowing through an elastic tube. The analogy
is with that of blood, pumped from the heart and flowing through an artery or vein. Our results,
aided by graphical illustrations, match reasonably well with experimental observations.

PACS numbers: 87.10.+e, 87.27.As, 87.45.-k, 47.10.+g

INTRODUCTION

The dynamics of fluid flow through elastic tubes occur
in many natural processes, like the organic respiration
process, fluid flow in spongy bodies and flow of blood in
cardiac systems. Studies of these phenomena have cov-
ered a substantial portion of the literature of biological
systems [1-15]. A typical example is the flow of blood
through arteries and veins which are not rigid tubes but
elastic tubes.

These real life systems have been the objects of in-
vestigation for quite a while now and in many of these
processes, nonlinear instabilities have been observed to
occupy positions of paramount importance [8, 9], often
something which can be linked with the likes of Rayleigh
or the ”pearling” instability seen in tubular lipid mem-
branes [10]. Presently, the major emphasis on cardiac
related studies seem to be on the electrophysiology of
cardiac tissues during ischemic jolts [13] and attempts
on linking different aperiodic cardiac processes to studies
in chaos and turbulence [15, 17, 22, 23]. Other studies
have focussed on the time series analysis of the vibrating
heart [11, 12, 19, 21] with efforts on explaining the pulsat-
ing dynamics of cardiac muscles in the more physically
quantifiable language of chaos and associated instabili-
ties. Works in a somewhat different line have shown that
applying fundamental principles of nonlinear physics, it
is possible to forecast beforehand the cardiac disarray
arising due to rapid heart rates (ventricular tachycardia
(VT)) [11] or that due to aperiodic beating of the heart
(ventricular fibrillation (VF)) [11, 12]. Of the wide range
of possibilities for their origin, researches have been fo-
cussed on the transition from tachycardia to fibrillation,
generating spiral waves [13, 15, 16] to the anisotropic
nature of ventricles [14] leading to faster electrical prop-
agation parallel to the long axis of muscle fibers. The
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different methods of electrical defibrillation which have
been presently proposed [15, 18, 19] bear testimony to
the intense efforts on arriving at medical solutions from
theoretical studies of bio-systems. In this paper, we at-
tempt to have an understanding of a complex biologi-
cal process, that of internal haemorrhage in an artery or
vein, through comparisons with an analogical mechani-
cal model. It is to be noted that our approach is much
more generalized in nature than that due to Sinha, et

al [15] or by Panfilov, et al [18], in the sense that we
not only consider the case of ventricular fibrillation as
a cause for aperiodicity in blood flow but we include all
possible external disturbances (like a sudden thud on any
portion of the body) that might lead to internal haem-
orrhage. As such, our approach includes the dynamics
of waves propagating around a steady obstacle [19, 20]
within the heart (clotted blood, in our case) as well as
effectual VF. However, it needs to be mentioned that
since all our conclusions would be drawn via a mapping
to a much simpler mechanical system, we have no claims
to exactness in terms of biological details. But as we
would indicate in the end, our qualitative understanding
can possibly be generalized to enable further physiologi-
cal details, through a simple extension of our model. In
the following analysis, the main focus of our study would
be to determine the point of internal haemorrhage in a
single channel flow, using fundamental principles of fluid
mechanics.

This necessitates a clearer picture of the real life sys-
tem in operation. Experiments performed long ago by
Brecher, et al [4], on the steady flux of blood through the
superior vena cava of a dog with respect to the pressure
difference in the jugular vein, although initially shows a
linear behavior, the flux somewhat paradoxically attains
a maximum value and no longer increases. It is known
for a long time that the flow of blood is pulsatile as a
consequence of the beating of the heart. The beating
heart produces a pressure pulse that travels through the
blood, and this pressure wave is the pulse felt in arter-
ies. However there is a marked difference between the
acoustic waves generated in the heart and those which
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are felt in arteries. For the former, the waves are a
consequence of the compressibility of the blood and of
the living tissues surrounding it; while for the latter, the
wave owes its existence to the elasticity of the arteries
and the coupling of the vibrations of the artery walls to
the blood flow. In 1961, Bergel [5] studied the velocity
of propagation of the pulse wave through the thoracic
aorta. In his derivation of the velocity of blood through
arteries, he considered blood as an inviscid and incom-
pressible fluid. Inspite of this non-realistic assumption of
an inviscid fluid, which technically means that the fluid
is supposed to be in the high Reynolds’ number zone, he
obtained a wonderful match with the experimental value
of the velocity obtained by McDonald [6]. However the
calculation predicted that the pulse travels undeformed
during propagation, and this is in sharp contrast to ex-
perimental observations. Real life data show that the
pulse wave changes its shape slowly as it travels through
the major arteries. This immediately suggests that to
model a real life system, it is extremely important to
take into account the viscous nature of the blood. In this
work, we study the deformation of a pressure wave (the
heart pulse) when it propagates through a viscous fluid
(the blood) flowing through an elastic tube. Our analysis
reveals a wonderful set of results inherent to the viscous
nature of blood and which match with the experimental
observations.

THE THEORETICAL MODEL

The starting point of our analysis is the well-known
Navier-Stokes’ equation in fluid mechanics [25] and the
equation of continuity, for the case of a viscous, com-
pressible flow through an elastic tube. We consider an
elastic tube filled with a fluid at rest and surrounded by
a fluid. The radius of the tube will be determined by
the transmural pressure difference between the interior
and exterior pressures, as well as the tension in the wall
of the tube. Under normal circumstances, the thickness
of a blood vessel wall is small compared to the resting
radius of the blood vessel. Consequently, to a good ap-
proximation, we can treat the wall as a thin membrane.
Since the pulsating waveform causes the cross-sectional
area to depend on the spatial location, let A(x) be the
cross-sectional area of the tube at a distance x, the pres-
sure at that point, at time t be p(x,t) and the density
is taken to be ρ. If u(x,t) be the velocity parallel to the
tube axis, the continuity equation gives,

∂

∂t
(ρA) +

∂

∂x
(ρAu) = 0 (1)

The modified Navier-Stokes’ equation in the absence of
a perpendicular component of the velocity reduces to,

A[
∂

∂t
(ρu) + u

∂

∂x
(ρu)] = − ∂

∂x
[(p− p0)A]

+ νAρ
1

r

∂

∂r
[r
∂u

∂r
] + νAρ

∂2u

∂x2
(2)

where r gives the radius of the tube at time t and ν is
the Newtonian (and not the kinematic) viscosity of the
fluid.
Assuming linearized pressure dependence of density, i.

e. p − p0 = c0
2(ρ − ρ0) (c0 being the mean velocity of

blood) and considering the deformable material of the
walls of the blood vessels obey Hooke’s law, the pressure
difference across the walls of a thin membrane is given
by [3],

p(x) − p0 =
Eh

r0
(1 − r0

r
) (3)

where E is the Young’s modulus of the walls of the artery
(or vein), r0 is the mean radius and h is the thickness of
the artery (or vein) wall. Now we address the important
question, that of the relative importance of the nonlinear
terms with respect to the linear ones in the above con-
stitutive equations. A simple look at the magnitude of
the Reynold’s number (obtained from putting in experi-
mental data [5]) tells us that it has a value less than 60
[26] and naturally we expect the dynamics to lie within
the inertial zone. Physically speaking, incorporation of
nonlinear terms would mean considering the effects of mi-
croscopic fluctuations occurring at the boundaries of the
artery (or vein) walls due to the periodic input pulse. But
the walls of the artery (or vein) being highly elastic (that
is quite susceptible to stress), the average width of these
fluctuations would be much smaller in magnitude than
the mean radius r0. Thus we can safely drop all nonlin-
earities henceforth. As an additional comment, it might
be suggestive that this dropping of higher-ordered terms
is only to aid an exact analytical solution, although it is
indeed a trivial exercise to exactly solve the two coupled
equations numerically. However, as has been already in-
dicated, this would not add to the physics of mean-flow

in any way.
Linearizing equations (1) and (2) and neglecting all

second-ordered terms (alternative linearization schemes
in the contexts of reaction-diffusion systems, which can
also be mapped to fluid flows, are to be found in [27]),
these respectively reduce to

ρ0
∂u

∂x
= −β

∂p

∂t
(4)

where we use the fact that A=πr2, and β has the value
β = 1

A0
(ρ0

α
+ A0

c02 ), α being equal to Eh
2r0A0

. Eqn.(2) re-
duces to
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A0ρ0
∂u

∂t
= −A0

∂p

∂x
+ νA0ρ0

∂2u

∂r2
+

νρ0A0

r

∂u

∂r

+ νρ0A0
∂2u

∂x2
(5)

It is to be noted that β is basically independent of c0
once the latter becomes large (which it indeed is), relative
to the other term.
Now, considering the variation of the last equation

with respect to x and utilising equation (4), we get

∂

∂t
(−β

∂p

∂t
) = − ∂2p

∂x2
+ ν

∂2

∂r2
(−β

∂p

∂t
) +

ν

r

∂

∂r
(−β

∂p

∂t
)

− νρ0
r2

∂r

∂x

∂u

∂r
+ ν

∂2

∂x2
(−β

∂p

∂t
) (6)

Rearranging and once again plugging in results from
equation (4), we finally obtain the complex wave equa-
tion as

β
∂2p

∂t2
=

∂2p

∂x2
+ γ

∂p

∂t
+ λ

∂2

∂x2
(
∂p

∂t
) (7)

with λ = νβ and γ = 3πλ
A0

. All quantities with suffix ’0’
denote the corresponding parameters for the unstretched
elastic tube. In the above derivation, spatial variations in
density were ignored (not exactly a Boussinesq approxi-
mation) to avoid nonlinearities. More specifically, in ar-
riving at equation (7) from (6), we have used the relations
∂2

∂r2
(∂p
∂t
) = 6π

A
∂p
∂t

≈ 6π
A0

∂p
∂t
, 1

r
∂
∂r
(β ∂p

∂t
) = − 2

r2
∂p
∂t

≈ − 2π
A0

∂p
∂t

and ρ0

r2
∂r
∂x

∂u
∂r

= − β
r2

∂p
∂t

≈ −πβ
A0

∂p
∂t
.

The second and third terms appearing on the right
hand side of the above equation represent the damp-
ing rate due to viscosity. In fact, this dissipation is re-
sponsible for the deformation of the wave pulse and is
of paramount importance in our theory. Now following
usual methods, the modulated pressure wave is repre-
sented as

pk = p0 e
−

(λk2
−γ)

2β t × ei(
1
2β

√
−(γ−λk2)2+4βk2 t+kx) (8)

Damping of the wave occurs for those Fourier compo-
nents for which k2 ≤ γ

λ
. This implies that the Fourier

modes with k0 =
√

γ
λ
=

√

3
r0

will propagate through the

system without any distortion with velocity uk0 = 1√
β
.

Interestingly the velocity of this particular mode matches
with the results obtained by Bergel [5]. The general de-
pendence of velocity on k is given by

uk =
1√
β

√

1− (k2λ− γ)2β

4k2
(9)

and this implies that the propagation mode exists only
within the selected range

√

γ

λ
< |~k| <

√
β

λ
+

√
β + γλ

λ
(10)

The key point in the above velocity expression is that it
is, in general, highly dispersive. However, the fact that
we have arrived at equation (8) utilising equations (4)
and (7) precludes the possibility that in the process of
Fourier transforming the measured velocity to the wave
vector space, localized singularities would be lost and this
means that our analysis is practically valid only for highly
dispersive haemorrhages. This, though, is not a major
deterrent, since almost all real haemorrhagic conditions
conform to such a regime.

COMPARISON WITH EXPERIMENTAL DATA

AND RESULTS

In the following we give a model estimation of the
velocity of blood as calculated from our theory utiliz-
ing parameters for blood flowing through the thoracic
aorta of dogs [5]. Here E = 4.3 × 106 dynes/cm2,
h/r0 = 0.105, ρ0 = 1.06 gm/c.c., p0 = 100 mm of Hg
pressure, ν = 0.035 dyne-secs/cm2 , r0 = 0.216 cm,
c0 = 1571 m/s. With these values, the undamped wave
velocity (uk0 =

√

γ
λ
), calculated from our theory (4.61

m/s), comes out very close to the mean velocity of blood
flowing through the thoracic aorta of dogs (≈ 4.6 m/s)
[1, 6]. Although this is a surprise agreement, consider-
ing the fact that our theory is valid only for a single-
channelled flow, while the experimental [6] measurement
is for the total multi-channelled network, we feel that
this happens because of the rather insulated nature of
the thoracic aorta compared to its neighborhoods, which
in effect, probably renders it as some approximation of
a single-channelled tube. This seems an interesting com-
parison of our theory with experiments, although, at this
stage, we would not dare any further conclusions based
only on this information.

In Fig.I we show the variation of velocities (actually the
scaled velocity difference, to facilitate plotting) of differ-
ent modes with respect to the wave vector, where the
corresponding parameters (mentioned above) are used.

From this figure, it appears that the velocity decreases
with the increase of wave number, which is an obvious
signature of the presence of viscous damping in the sys-
tem. This information, although apparently a bit more
on the mathematical side, in fact, can be of crucial im-
portance to the medical person in analysing the exact
location of the haemorrhagic spot. For this all that the
doctor needs to know are the blood velocities at a few ar-
bitrary spatial localions, in any major aorta or vein (say,
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FIG. 1: Velocity vs wave vector plot, suitably scaled.

pulmonary). The remaining exercise would be a techni-
cal triviality where a graph is to be drawn plotting blood
velocities against the corresponding spatial locations and
these data would then be translated into the wave-vector
space through a computer calibration for exact compar-
ison with our theoretical results. Now whenever there is
any aperiodicity in the blood flow, due to internal haem-
orrhagic clotting, the Fig.I. would show discontinuities
in the form of spikes in the velocity spectrum, at the
sites where haemorrhage has occurred. In the language
of physics, these are nothing but effects of varying initial
conditions originating from the affected sites. The fact
that observation of the flow in any artery or vein is suf-
ficient is directly related to the fact that the arterial or
venal system is a multi-connected network, which means
that the discontinuity arising in one branch will carry
through to all subsequent branches. A following inspec-
tion of the graph will immediately give an idea on where
this spot is to be expected, or at least a rough idea of
the zone to operate on. Having said that, we should still
be conscious of the fact that our theory presented here
is basically for a pulsed flow in a single elastic tube. To
have an exact comparison with the real biological system,
we need to consider the multi-channelled branching of ar-
teries (or veins), which certainly is a more complex net-
work. The importance of our theory lies in the fact that
to have an understanding of this multi-channelled net-
work, we need to know the dynamics of each individual
channel, after which an analysis of the apparently com-
plicated network boils down to a simple enough initial-
value problem at each individual node, something which
is easily solvable numerically.

In the following graphical illustrations, we consider two
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FIG. 2: Comparison between triangular wave pattern vs dis-
tance graphs after 0.1 sec and 1.0 sec.
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FIG. 3: Comparison between square wave pattern vs distance
graphs after 0.1 sec and 1 sec.

different initial conditions and follow their evolution with
time as defined in eqn.(7), in a co-moving frame of refer-
ence.

Fig.II gives the comparison between the spatial vari-
ation of an input hypothetical triangular wave at times
0.1 sec and 1 sec. These while obeying the same dynam-
ics as wave pulses through an elastic tube, clearly show
damping along the line of propagation.

Fig.III shows identical variations for an input square
wave-train (hypothetical) at the same times previously
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FIG. 4: Comparison between triangular and square wave pat-
tern vs distance graphs after 0.1 sec. The two graphs are
almost indistinguishable.

mentioned.
Finally, a comparison between two completely differ-

ent hypothetical input pulses has been given in Fig.IV
at 0.1 sec. which shows that although the pulses might
start with widely varying initial conditions, the damp-
ing mechanism operating with non-zero viscosity leaves
very little difference between their output waveforms af-
ter times of the order of 0.1 sec (and larger times).
This study leads us to the conclusion that inspite of

starting with widely varying initial conditions, the pres-
sure pulses lose their memory very quickly and develop
exactly identical forms. This happens because except
a particular mode, the critical mode k0 =

√

γ
λ
, in the

Fourier spectrum, all other modes have non-vanishing
attenuation. However, for small time evolution, in the
scales of measurements (∼ millisecs), the patterns are
perfectly distinguishable and may be utilized in getting
an idea of the variation of the mean viscosity of the blood
to the local viscosity corresponding to a particular wave
vector mode, from a knowledge of the critical mode.

CONCLUSIONS AND DISCUSSIONS

Our objective was to devise a theory which is capa-
ble, more or less exactly, to pinpoint the location of an
internal haemorrhagic spot, in a single arterial or venal
channel, due to clotting of blood. A knowledge of this
can easily be obtained from Fig.I by comparing the vari-
ations of the velocity of the flow against the spatial lo-
cations at different points of any artery or vein, more
technically speaking, by looking at the eventual discon-

tinuities in the spectrum. The fact, that the attenuated
waveforms become independent of the nature of the input
waveforms, after times of the order of 0.1 sec, is proved
by Figs.II-IV. This fact is of immense importance to our
description, since, this in a way points to sort of an uni-

versality in the nature of our analysis. To be more spe-
cific, our analysis shows that we do not even need an
exact description of the nature of the arterial or venal
pulses in individuals to apply our theory. Rather the na-
ture of the arterial (or venal) dynamics adjusts itself in
such a self-consistent way that all specific input details
are washed out and only the system elastic properties be-
come the sole deciding parameter of the position of even-
tual blood clotting. The propagating pressure waves are
defined only within a wave-vector window (eqn.(9)) and
avoid possibilities of unwanted instabilities in eqn.(7). In-
cidentally, it might be noted that our theory is exact for
blood plasma, which is a very close approximation to a
Newtonian fluid, although, blood, in general has minor
non-Newtonian characteristics. As results obtained from
the model calculations show that our observation tallies
extremely well with the experimental value of the veloc-
ity of blood flowing through the thoracic aorta of dogs,
we have justified hopes that compared with real life situ-
ations, the location of the haemorrhagic spot, calculated
from an extended version of our theory and including the
multi-channelled branching of the arterial (or venal) net-
work, would lie within acceptable error limits. However,
as is the wont of any basic theory, ours too is wrought
with a few characteristic assumptions as we have indi-
cated earlier too. The theory presented here is certainly
not complete enough for comparison with a real life ex-
periment done on a multi-connected arterial (or venal)
network, not at least at this stage. But our objective was
basically to describe the dynamics of flow in each individ-
ual channel of the multi-connected network, which, with
well defined initial conditions, could simulate the entire
description of a real life flow. We look forward to experi-
mental verifications of our theory, with experiments done
on a single tube and designed essentially in the way we
have described earlier in the text. For more realistic com-
parisons, we are working on a numerical model with all
the multi-channelled subtleties involved [28], an essential
coupling of single-channeled information analysed here to
the generation of a multi-channelled network.

AKC acknowledges discussions with J. K. Bhattachar-
jee and C. Dasgupta during this work.
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