10,482 research outputs found

    Droplets move over viscoelastic substrates by surfing a ridge

    Get PDF
    Liquid drops on soft solids generate strong deformations below the contact line, resulting from a balance of capillary and elastic forces. The movement of these drops may cause strong, potentially singular dissipation in the soft solid. Here we show that a drop on a soft substrate moves by surfing a ridge: the initially flat solid surface is deformed into a sharp ridge whose orientation angle depends on the contact line velocity. We measure this angle for water on a silicone gel and develop a theory based on the substrate rheology. We quantitatively recover the dynamic contact angle and provide a mechanism for stick-slip motion when a drop is forced strongly: the contact line depins and slides down the wetting ridge, forming a new one after a transient. We anticipate that our theory will have implications in problems such as self-organization of cell tissues or the design of capillarity-based microrheometers.Comment: 9 pages, 5 figure

    The Role of the Solid Substrate on the Spreading Kinetics of a Liquid Droplet

    Get PDF
    Classic hydrodynamic wetting theory leads to a linear relationship between spreading speed and the capillary force, being determined only by the surface tension of the liquid and its viscosity. The theory appears in good agreement with results generated from experiments conducted on the spreading of Polydimethylsiloxanes (PDMS) on soda-lime glass substrate and fails to account for the behavior of other liquids. This thesis examines the role played by the solid substrate on the spreading kinetics of liquid droplets. The set of experiments whose results are presented below used different types of liquids with various properties of surface tension and viscosity tested on three different solid substrates (glass, polymethylmethacrylate (PMMA) and polystyrene (PS)). The results are summed up in two themes; equilibrial spreading and kinetics. PDMS is found to exhibit complete spreading on all three different solids at similar rate for glass and PS, but at much lower rate on PMMA. Alkanes group, low surface energy liquids, was noted to exhibit equilibrial wetting that is proportional to the critical wetting energy of the solid substrate. Alcohols group, high surface energy liquids, was noted to exhibit equilibrial wetting that is inversely proportional to the wetting energy of the solids. The equilibrial spreading was found explicable on the basis of the axiom like wets like . Contributions of the solid substrate to the spreading kinetics are attributed to specific solid-liquid interactions, of dissipative nature, which manifest itself only at the interface. The term interfacial viscosity is coined to account for this phenomenon

    Precursor films in wetting phenomena

    Full text link
    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are rather well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e., molecularly thin films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed.Comment: 51 pages, 10 figures; small typos correcte

    The strong influence of substrate conductivity on droplet evaporation

    Get PDF
    We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered

    Drops on soft solids: Free energy and double transition of contact angles

    Get PDF
    The equilibrium shape of liquid drops on elastic substrates is determined by minimising elastic and capillary free energies, focusing on thick incompressible substrates. The problem is governed by three length scales: the size of the drop RR, the molecular size aa, and the ratio of surface tension to elastic modulus γ/E\gamma/E. We show that the contact angles undergo two transitions upon changing the substrates from rigid to soft. The microscopic wetting angles deviate from Young's law when γ/Ea≫1\gamma/Ea \gg 1, while the apparent macroscopic angle only changes in the very soft limit γ/ER≫1\gamma/ER \gg 1. The elastic deformations are worked out in the simplifying case where the solid surface energy is assumed constant. The total free energy turns out lower on softer substrates, consistent with recent experiments

    An introduction to superhydrophobicity

    Get PDF
    This paper is derived from a training session prepared for COST P21. It is intended as an introduction to superhydrophobicity to scientists who may not work in this area of physics or to students. Superhydrophobicity is an effect where roughness and hydrophobicity combine to generate unusually hydrophobic surfaces, causing water to bounce and roll off as if it were mercury and is used by plants and animals to repel water, stay clean and sometimes even to breathe. The effect is also known as The Lotus Effect® and Ultrahydrophobicity. In this paper we introduce many of the theories used, some of the methods used to generate surfaces and then describe some of the implications of the effect
    • …
    corecore