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Abstract 

Ba har.J. a a 

Classic hydrodynamic wetting theory leads to a linear relationship between 

spreading speed and the capillary force, being determined only by the surface 

tension of the liquid and its viscosity. 

The theory appears in good agreement with results generated from 

experiments conducted on the spreading of Polydimethylsiloxanes (PDMS) on 

soda-lime glass substrate and fails to account for the behavior of other liquids. 

This thesis examines the role played by the solid substrate on the spreading 

kinetics of liquid droplets. The set of experiments whose results are presented 

below used different types of liquids with various properties of surface tension 

and viscosity tested on three different solid substrates (glass, 

polymethylmethacrylate (PMMA) and polystyrene (PS)). 

The results are summed up in two themes; equilibrial spreading and 

kinetics. PDMS is found to exhibit complete spreading on all three different solids 

at similar rate for glass and PS, but at much lower rate on PMMA. Alkanes 

group, low surface energy liquids, was noted to exhibit equilibrial wetting that is 

proportional to the critical wetting energy of the solid substrate. Alcohols group, 

high surface energy l iquids, was noted to exhibit equilibrial wetting that is 

inversely proportional to the wetting energy of the solids. The equilibrial spreading 

was found explicable on the basis of the axiom "like wets like". Contributions of 

the solid substrate to the spreading kinetics are attributed to specific solid-liquid 

interactions, of dissipative nature, which manifest itself only at the interface. The 

term "interfacial viscosity" is coined to account for this phenomenon. 
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THESIS PROPOSAL 

Ba�har J. a-a 

The Role Of The Solid Substrate on the 

Spreading Kinetics of Liquid Droplet. 

Bashar lalal Sasa 

ABSTRACT: 

Equilibria! wettability is defined in terms of the contact angle between the fluid 

interface and the solid surface in accordance \vith Young's equation. However, the rate at 

which this equilibrium is reached is the subject of active research. The Classic 

hydrodynamic wetting theory, however (which describes the spreading process of liquid 

oyer Solid, which is a linear relationship) ignores the role of surface in this process. It 

determines only the surface tension of the liquid and its viscosity. Present theory, in 

general. appears in good agreement with results generated from experiments conducted 

on the spreading of silicon oil on glass substrate but fails to account for the beha ior of 

other liquids. That the phenomenon essentially entails solid-liquid and solid- vapor 

interactions suggests that their role should be explored. 

The wetting of surfaces by liquid reveals these interactions at a macroscopic level. 

The measurements will use a small droplet of liquid (to minimize gra vitational effect) 

with constant volume. It will be released o ver a solid sm-face from an automatic micro 

syringe. supported on micromanipulator. The droplet will be located in the field of view 

of a digital camera, which is connected to a high-speed video. Then by using an image 

analysis system, we find the rate of change in spreading area vs. time. 
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OBJECTIVES: 

Bashar J. a a 

Ih olid-liquid ( SL) and olid- vapor ( SV) interfacial energy plays an impoliant role 

in the preading kinetics of a liquid on solid substrate. The Interfacial Tension is driving 

pontaneou preading in opposition to the surface tension of the liquid. This study will 

measure the preading rate for liquidts at different surface energy. and different chenucal 

compo ition and facilitate the understanding of the role of surface in spreading kinetics. 

It will also measure the wetting behavior of a surface. or in other words , the critical 

urface energy by using Zissman Plot (the cosine of the wetting angle cos (8) for a series of 

liquid i plotted against the surface tension y of the liquid). Which is used to detemune the 

surface tension of the solid by kno wing the surface tension of several Liquids. 

METHODOLOGY: 

1. Prepare cleaned glass surface as a reference Surface (uncharged). 

2 .  Use other transparent light surfaces (PMMA and Polystyrene). 

3. Measure spreading kinetics o ver those surfaces and compare. 

4. Conduct Zisman measurements "formalism widely used to describe the 

wetting of surfaces by molecular liquids 'to assess" the "surface energy" 

of the modified glass surface. 

COST OF T H E  PROJECT: 

Most of the materials and consumables required for this project would be a vailable 

from the Central Laboratory Unit (CL U) in U.A. E University 

• United Arab Emirates University IV M .Sc. in Matenals Sciences and Engmeering 
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EXPECTED I M P  CT O F  TH I S  WORK: 

Ba harJ. Sasa 

The expected outcome of thi work will be to devise a better understanding of the 

beha \ior of olid - Liquid ( SL) and solid-vapor Interfacial energies to describe the 

wetting phenomena , and develop a quantitative relationship based on the generated data. 

It will gi \'e a di tinct picture for the role of the urface in the spreading process . Tills 

understanding of the surface give the ability to determine whether spreading is complete 

or incomplete for with any liquids. 
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1 . 1  Introduction 

Bashar.l a a 

By definition, wetting i the abi l i ty of l iquids to fonn a boundary surface with 

olid and it  is  an indication for pontaneou preading of l iquid over solid surfaces 

or the abi l i ty of ol id to interact with or accept a l iquid that is spread over i t .  

'Vetting cience whi h al 0 belongs to "col loid / surface phenomena", Shall' 

(199_/, i very much an interdiscipl inary ubject and the attempts to model the 

�preading kinetic have been pur ued through various cientific discipl ines. In spite of 

the complex physical proce es occurring when a liquid contacts a sol id .  The natural 

law of physics. chemistry "or physicochemical" and fl uid mechanical are used to 

de cribe the behavior of spreading, but often despite the l arge number of variables, 

\vhich are i nvolved. 

owadays wettabi l ity study is  the tendency to work when possible in  with a 

well-defined system ( l ike using pure l iquid and pure chemical composition of 

surface) ,  which act as models becau e the use of materia ls  of doubtful composition 

put considerable strain on the question of reproducibi l i ty and interpretations. Since it 

is  important to understand at both "simple" descriptive and "complex" Theoreti cal 

levels .  Wetting is  a dispersion system which h as two phases (at constant air) : 

1. Dispersed phase where phase forming the particles ( l iquid) .  

2 .  Dispersion medium where medium in  which the particles are distributed 

( Sol id and Gas ) .  

These two phases should be reached to  balance in  own energies. So  when a 

drop of (pure) l iquid rests on the flat surface of a (pure) sol id  ( and with or without 

influence of gravi ty) the shape is not a simple spherical l ens but i s  detennined by a 

balance between the air or vapor - l iquid, air -sol id,  and l iquid-sol id interfacial energy 

densities ( interfacial tensions). 
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But it doesn ' t  ine capable that if the 'stem elements rever ed v"il l  have the 

same pr ading. Th re' a difference between l iquid interaction \.vith sol id and so lid 

interacti n \\ith l iquid . Consider the interaction between A, with a high surface free 

energ) and B, with a loy\ surface free energy. The figure 1. 1 sho' example of l iquid 

and sol id in the fir t case lov; spreading is noticed a can be seen there the l iquid has a 

h igh urface ten ion and the ol id has low urface energy. 

A B 

< 

B A 

Fig 1.1 show the different  behavior in  spreading between A&B 

For example.  the interaction between epoxy. with a surface free energy of 46 

mJ/m2• and polyethylene ( PE). with a surface free energy of about 22 mJ/m2. The first 

d iagram in figure 1.2 show. L iquid epoxy (high energy) tries to wet solid PE ( low 

surface energy) .  The contact angle is high . However, when the situation is  reversed 

and l iquid P E  contacts sol id epoxy, the contact angle is much lower and the P E  ,vets 

the epoxy. 

Epoxy Polyethylene 

Polyethylene Epoxy 

Fig 1 .2 different behavior i n  s p reading between E pox .. y & Polyethylene 
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Wettabi l ity ha two le\'el to de cribe thi phenomenon: macro and micro. At 

macro copic levels, is  defined when full and complete co erage of sol id  surface by 

the l iquid . Like other multiphase proces es the flux of preading is  measured on the 

macro copie cale, i .e . ,  the cale observed by the naked eye or accessible by optical 

interfacial effect in th spreading kinetic microscope. 

In micro copic level ( orne cal led Molecular level or Thennodynamic) when a 

l iquid is placed in contact with a sol id  surface resulting in  a contact angle 8 of l ess 

than 90°. Re earcher , Fan and Cagin (1995), arrived to atomistic l evel contact angle 

measurement when studyi ng the wetting of polymer surfaces from Molecular 

Dynamic for various crystal l ine polymer surfaces. 

The C l assic h. drodynamic wetting theory and several theories deal with the 

v;ettabi l i ty l eads to a l inear relationship between spreading speed and the capi l lary 

force being determined only by the surface tension of the l iquid and i t ' s  viscosity. So 

that the preading i s  low, which are based on c lassical hydrodynamics, describe the 

spreading beha\'ior of complete spreading fluids but it's not that effect in  the case of 

other l iquids. i .e .  Wetting is  more easi ly  understood by considering that wetting isn't 

present theory in general appears. In good agreement with results generated from 

experiments conducted on the spreading of sil i con oi l  on most substrate and fai l s  to 

account for the behavior of other l iquids A lteraifi et al (2002). 

The phenomenon of wetting or non-wetting of a sol id  by a l iquid is  

characterized by a parameter known as contact angl e. Experimental techniques for 

contact angle measurements have been developed extensively over the past decades. 

In view of Young's equation ( section 1 .2 ), in which the contact angle "8 ' is the only 

measurable parameter, there are several experimental difficulties associated with 
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mea urem nt f the contact angle. \\'hich Jed to several values for contact angle for 

th am . l i quid and l id.  

Recently. many new method and techniques developed for measuring the 

preading proce of l iquid : but most of these techniques depend only on measuring 

the ide image of the droplet and not on entire circwnference of the drop (see 

Appendix : Commercial instrument and software) 

Wetting is unquestionably a consequential phenomenon. the direct benefit of 

studying wettabil it) is to w1der tand how liquids interact with surfaces which lead to 

improved process contro l .  \vhich associates v,:ith several important teclmologies 

including composite . adhesives. coatings. printing. agricultural plant treatment and 

oil recovery. 

1.2 Thermodynamic Approach 

Surface energies are important in understanding the wettabil ity process. B ut 

determining the value of these energies is not tri"ia l .  The relation betvveen surface 

Interfacials  is governed by Young' s equation: 

YSI' - YSL = YL/' cose ( 1 . 1  ) 

'Where Ysv is the surface free energy of the solid in contact with vapor. YSL is 

the surface free energy of the solid covered with l iquid. YLV is the surface free energy 

of the l iquid-vapor interface, and 8 is the contact angle. 

Fig 1.3 
"(L 

• 'Y v 

showing a l iqu id drop on a flat s urface where Ys\' is the Solid -

Vapor Y L solid-l iqu id, YLV l iqu id-vapor  and e is the contact angle 
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feasuring contact angle is, howe\ er, a po ible matter by USl11g vanous 

technique . \-\'here impl looking for the angle between the surface and a line that i 

tangent to a drop of l iquid on the surface at the point where it intersects the urface, or 

calculate the contact angle from pherical cap approximation. Also measurement of 

YL\ relatively an ea ta k,  but Young's equation ti l l  leaves u with two unknowns. 

For this rea on. it i very d ifficult to mea ure the surface free energy of a sol id due to 

urface mobi l i ty. 

In order to detem1ine surface free energy, a recent section desclibes many 

thennodynamic  approache rel ate Ysv and YSL. These approaches are rather empirical 

and it doe n ' t  appear to be general ly appl icable .  But we prefer to take the approaches, 

which involve dividing surface free energies into different components ( l ike 

di persive, acid-base, hydrogen bonding . . .  etc . ) .  

1.2.1 Dhiding surface free energies: 

These approaches (KA YA et al (2002), KU'ok and Neumann (1999), Reln'eld 

(1997) and Walinder (2000)) have two ways to dividing surface free energies, which 

are the same in the first, second and third approach but different in the l ast approach : 

1.  First  Approach : S u rface Tension 

According to Fowkes ( 1 962) :  The interaction forces a rising from each l iquid 

and sol id  m aterial consists of two components : 

1. Lifshitz-van der Waals ( LW )  interaction tenn, yLW, comprising dispersion Cl), 
Non-polar, and induction force or London forces. 

2. other tenn is Lewis acid-base (AB) interaction tenn, Y AB or Polar interaction (yP) 

involving: 1 - Electrostatic interaction ( electron donor-acceptor interaction) 

2- Hydrogen bond Forces 
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Or 

Bashar.l a a 

( 1 .3 )  

The e interaction (yA.B) are a ymmetric con i t ing o f  an electron accepting 

omp nent which an be quantified tlu'ough surface tension mea urements with pol ar 

l iquid uch as water or fom1amide to l and an electron donating component i and 

can be either attractive or repulsive Grasso el at (2002). 

0.4) 

2. Second Approach : I n terfacial  Tension 

According to Dupr'e  ( 1 869) the change in free energy when creating a unit 

between material 1 "Liquid "and 2 "Solid' in  a medium 3 "Air" 

( 1 . 5 )  

But \vhen material 1 split i n  medium 3 this becomes: 

( 1 .6 )  

Thi al low direct calculation of the total interaction energy between these phases or 

materials.  

3. T h i rd Approach : Solid / Liquid system 

According to Van Oss ( 1 993 )  and Good (1997) A combining rule  i s  necessary 

to calculate YSL from the individual surface tension YL and Ys of the respective 

materials.  They developed a more advanced approach based on the Lifshitz theory 

K1Wk and Neumann (1999). They suggested that a sol id surface consists of two tenns 

explanted in  step 1 .  The surface free energy i s  the sum of a non-polar component 

(lW) and an acid-base component (yAB) as shown in the fol lowing equations. For 

non-polar interactions the geometric mean can be used 

LJI LI1 LIf" 2 � 
r 5L = r 5 + r L - -V r 5 r L ( 1 . 7 )  
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LII 
YSL = 

For polar -interaction where 

And, 

Lff' LII 
Y5L=YS + YL 

AB _ AB AB ') � ') � 
Y5L -r5 + YL ---yYsYr - -l/rsYr 

LII ill 
Y L = YSL + rSL 

') � AB tB 2 � ') � 
- -1/ Y S Y L + r S + r L - 1/ r S r L --1/ r S Y L 

Sa.har.J. asa 

( 1 . 8 )  

( 1 .9 )  

( 1 . 1 0) 

( 1 . 1 1 )  

( 1 . 1 2 )  

( 1 . 1 3 ) 

4. Fourth Approac h :  Using su rface Tension component for contact angle 

measu rement 

According to Young-Dupr'e equation 1 869 : 

rLl cos e = Y51 - rSL 

e ') I LII' Llf' 2 � ') � 
Yr co + Yr = -I/Ys rL + I/rsrL + -I/YsYr 

Or O\\'ens - Wendt - Kaelble approach 

Where yP Hydrogen and dipole-dipole 

1 .2 .2 E mpirical  Approach : 

- 7 � ') � 
rSL -rs + rL - -l/rsrL --l/rsYL 

( 1 . 1 4) 

( 1 . 1 5 ) 

( 1 .2 )  

( 1 . 1 6 ) 

Recent reviews of the l iterature on spreading dynamics by Marmur (1983), de 

Gennes (1985) and several others contlibutors to a more recent book edited by Berg 

(J 993) attest to the continued interest in  the subj ecL 

Several theories deal with the spreading kinetics of l iquids on sol id  substrate, 

most of which rel ate the rate of spreading to the surface tension, and the viscosity of 
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the l iquid only. De Genne' model ( 1 98 5 ), Tanner' model ( 1 979 ) and that proposed 

by Sea1'er and Bera (1993) expre d the rate of pr ading in term of urface tensIOn 

and \ i co i ty. 

In a l atter development Tanner (19 9) derived the spreading equation from 

a\'ler- t ke equation for \iscou flow in two dimensions. The author expre ed 

pres ure gradient by urface ten ion cur\' a ture , h nee, he introduced the surface 

profile 1C \\ hich relate to the droplet edge \'elocity as :  

Interfacial Effect in the Spreading Kinetics 

u = dR = _ (J}( 

dt 3 f.1 
( 1 .  1 7) 

Where U is the film ad\'ancing velocity with constant profile  shape, K is a 

profile constant; 11 and CJ are the l iquid viscosity and surface tension, respectively. 

H ere, again. the "surface profile" K is a non-dimensional parameter that has to be 

determined empiricall y. FUlihemlore, Tanner suggested the fol lowing relationships: 

1 r = _ 1( 10 For K < 0.9 
1 0  

And 1 - k � exp( -6r )  For 0 .9< K < 1 .0 

R Kat 
Where k = - and r = -- , R r i s  the equil ibri um contact radius. R r f1Rf · 

( 1 . 1 8 ) 

( 1 . 1 9) 

Subsequently, Seaver and Berg (1994) assumed that the fluid dynamics of the 

spreading of spherical cap droplet may be approximated by a cyl indrical disk. Then, 

they examined the disk spreading in q uasi-steady l aminar Couette flow driven by 

"effective radial  surface tension gradient "at the upper surface. Accordingly, the rate 

equation has been derived as: 
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For complete preading. For In omplete �preading the author den\'ed the rate 

equation a 

dR 
dt ( 1 .2 1  ) 

where R i th radiu of the preading droplet, Y d is the c l indlical disk vol ume 

(V d=n:hdR1) ,  �= 1 - c 8Y' and. � i l iquid " i  cosity, and (J i l iquid surface tension. 

Interfacial Effect in the preading Kinetics apparently due to the difficulty of 

applying the e models. Lelah and Marmur (1 981) uggested that the kinetics of 

preading cou ld  be de cribed by a imple power law of the fol lowing 

( 1 .22)  

where A is the contact area. measured at  t ime t,  and C1  and n are empirical  

c efficient . S ubsequently the author appl ied this equation to the spreading data 

reported by se\'eral im'estigators for a rel atively l arge number of fluid . It was noted 

that the value of n in most of the cases fal l s  within 0 .20 to 0.29, 

F urther analysis of data where the dropl et volume (Y) was independentl y  

varied revealed that c l  was found proportional t o  ylll. The power m was found to 

range from 0.60 to 0 ,72.  This observation prompted Marmur ( 1 98 3 )  to suggest that C l  

scales ,,,i th y2 3 . Thus, the rate of spreading normalized with respect to y2 3 was 

expressed as : 

( 1 . 23 )  

P lotting the same data, m terms of  equation ( 1 .2 3 )  i t  was noted that the 

vanance of the coefficient C2 was reduced to about two orders of magnitude. 

evertheless equation ( 1 .2 1 )  was presented as a convenient fonn for correlati ng and 

comparing experimental data. 
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An early attempt to deri e the rate of spreading was advanced by Ogarev 

and coworker , Ogare\ '  ( J  9 4) . The Ogarev model approximated the shape of the 

preading droplet a a cone, whose geometric parameters were u ed to derive the 

preading equation through a force balance i mplementation. For a given moment, 

the author� balanced the force due to change in the free surface energy of the 

(droplet-on- ol id substrate) ystem and the vi scous resi stance. They concluded the 

following equation for spreadi ng k inetics :  

( 1 .24) 

where R is  the radius of the contact area, V i s  the droplet volume, and Il i s  the 

\' i cosity. The function f relates to the surface energy of the spreading l iquid as 

defined by Young's equation ( 1 . 1 ) . 

Recognizing earl i er inference by Hoffman (1975) and others that the spreading 

process is generally driYen by surface forces and is retarded by viscous forces, de 

Gennes ( J  985) introduced what may be considered as a theoretical rational for the 

empirical power law of Marmur (1 983) . The argument suggested by de Gennes i s  

b a  ed o n  the earlier finding of Hoffman (1 975) that the "apparent ' contact angle can 

be correlated as a function of the capi l lary number co plus a shift factor when 

interfacial and v iscous forces are the dominant forces control l ing the system. The 

cap i l l  a! number co defined as 

U).l 
0) = --

3(} 
( 1 . 2 5 )  

where U i s  the velocity of the contact l ine, Il i s  the viscosity of the spreading fluid and 

Y. is its surface tension. In this regard it is worth noting that a related expression was 

suggested earl ier by Schonhorn et al (1966) to correlate the kinet ics of spreading of 
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urface by polymer melt de Gennes (1985) argument further as umes that 

Hoffman ' data. in the I w \ elocity l imit, ma be pre ented a 

CD = constant * em ( 1 .26)  

I t  i further ug:;,e ted that for relatively smal l droplets where gravitational 

eff ct are nebl igible, the macroscopic shape of the spreading droplet may be 

approximated by spherical cap geometry, de Gennes (1985) . This approximation has 

been u ed to relat the contact angle to the radius and the volume of the spreading 

� 
droplet,  i .e .  the droplet height h = 12 R e ,  and it i s  volume V = 12 n: h R - .  Accordingly 

de GeJ1l1eS (J 985) derived " the spreadi ng law" as : 

R 3m+l = !!.... tV m 
!l 

( 1 .  2 7 )  

Furthermore, the author asceltained that m=3 i s  "indeed expected theoretical ly for all 

case of dry spreading" which doesn ' t  sat isfy al l l iquids A lter�fi et at (2002) and de 

Geanes (1985). 

1 .2 . 3  Complete wett ing o r  Spreading wett ing 

The pontaneous process of wetting can also be derived from the different ial 

between the work of adhesion and cohesion by substitution of the Dupre equation, as 

fol low:  

( 1 .28 ) 

Where W A i s  the work of adhesion and We i s  the work of cohesion, within the 

l iquid layer is shown below: 

( 1 .29)  

Implies that spontaneous spreading wi l l  occur if  the work required to separate 

the l iquid-sol id  interface is greater than l i quid separation itself. The Dupre equation 
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can therefore be further deri ed b introducing the initial spreading oefficient S 

defined by Harkins, a fol lows. 

( 1 . 30)  

\Vhere i1G Spreading is  the free energy ll1crease due to preading, the l iquid 

pread spontaneousI oyer the solid surface when S is positive or zero. %en S is 

negatiye, the l iquid remains as a drop having a definite angle of contact, 8, with the 

oI id urface. 

Spreading is the movement of l iquid across a sol id surface. Contact angle is a 

measure of wettabi 1 i ty. Spreading increases as the contact angle decreases unt i l  

wetting is  complete. Meathrel et  at (2003) and Duncan (1998) hence, spreading wil l  

occur spontaneously when S i s  greater than zero, which also indicates that the surface 

tension of the sol id  must be greater than that of the l iquid, as shown in the above 

equation. From this init ial spreading coefficient equation, it fol lows that wettabi l ity 

can be increased either by increasing the surface energy of the solid or decreasing the 

surface tension of the l iquid. 

1 .2.4 I ncomplete wetting or adhesional  wetting 

From the spreading coefficient (equation 1 . 30),  %en S is  negative, the l i quid 

remains as a drop having a defmite contact angle (8) Stokes and Evans (199 7). 

The thermodynamic definition of incompl ete wetti ng is rooted in  the concept 

of surface energy or surface tension. Surface tension results from an imbalance of 

molecular forces in a l iquid. At the surface of the l iquid, the l iquid molecules are 

attracted to each other and exert a net force pul l ing them together. 
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High \'alue f the urface ten ion mean the molecule tend to interact 

trongly. Lower 'v alu mean the molecule do not interact a trongly. Water ha a 

\'eI high value of urface ten ion because it ha a high degree of hydrogen bonding. 

Organic  molecule with polar groups uch as iodide and hydroxyl have a 

l ightly lower urface energy than water. Pure hydrocarbons are even lower, while 

fluorinated compound are \'ery 10\ because the fluorine atom won't share electrons 

yery wel l so only disper ion interactions occur. 

1 . 2 . 5  Equi l ibr iums o f  multiphase F lu id 

In Liquid -Liquid system, when three or more phases are in thel1110dynamic 

equi l ibrium and i n  contact with a sol id surface, the contact angles between the phases 

are not al l  independent . In three-phase systems, although three contact angles can be 

defined, only tw"o of them are independent (which fol l owing the phase rule F=C-P+2 ) .  

In  four-phase systems, s ix  contact angles can be defined, but only three are 

independent Blunt (2001). 

In a " two-interface" system in which a l iquid phase is both above and below 

a vapor phase and the vapor phase forms a sol id-vapor interphase in one region, the 

pressure profile in the l iquid phases is the same as it would have been i f  the vapor 

phase were not there' thus i n  a gravitational field, the pressure is smal l er in the l iquid 

phase above the vapor phase than it is in the l iquid phase below the vapor phase. This 

results in  the contact angle at the upper three-phase l ine necessari ly being smal ler than 

that at the lower three-phase l ine. This difference in contact angles i s  con entionally 

referred to as contact angle hysteresis ;  the contact angle d ifference predicted to exist 

in the presence of gravity does not violate the Young equation, but the Young 

equation does i mpose a restriction on the equi l ibrium adsorption isotherms at the 
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ol id-\ apor and l id-lIquid interface Ward and Sasges (1998) and Sasaes alld 

Ward (1998). 

1. _.6 Thermal effect in ol id-l iq u id in terface 

The measured temperature distribution nonnal to interfaces showed a 

di tincti, e j ump near the ol id- l iquid interface Afarllyal71a and Kimura (1 999),  which 

could be regarded a the thermal resistance over the interface. O\ving to molecular 

dynamic , which cann t be, neglected even when a system size i s  very smal l .  The 

temperature j ump was con idered to arise from the difference of vibrational frequency 

range of solid and l iquid molecules or from the layered structure of l iquid molecules 

ju t on a soli d  surface. 

The smal l  thermal resi stance (Maruyama et al. (1998) and A1atslll71oto ef al 

(1 995) is due to molecul ar level ordering is noticeable even for the perfect solid-so l id 

contact . L ikewise, the very small l iquid-sol id contact thennal resi stance may be 

ignificant at some mal l system size because the thennal resistance by heat 

conduction monotonical ly  decreases with the reduction of the system size. A 

considerabl e  temperature j ump over a l iquid and sol id interface was actual l y  

suggested in  our molecular dynamjcs simulation. Evaporation and condensation 

through the droplet were simulated by preparing two sol id surfaces with temperature 

differences on the top and bottom of the calculation domain .  

A considerable temperature j ump over a l iquid and sol id  interface was actual ly  

suggested in  molecular dynamics simulation Maruyama et  al (1 998) .  The temperature 

jump was considered to arise from the difference of ibrational frequency range of 

sol id and l iquid molecules or from the l ayered structure of l iquid molecules just on a 

solid surface. 
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1 .2 . 7  Capi l la,"y Force 

Bashar.1 asa 

The capi l lary phenomena had been studied in the early period of the 1 9lh 

c ntur), rang er af (2002). The capi l l ary phenomena can be defined quantitatively in 

tem1 of surface ten ion. urface tension makes the surface of a l iquid act as an elastic 

cover. which minimize the surface area of l iquid so as to mini mize the energy of the 

fluidic ),stem minimal. Although l iquid/sol id contact angle method has been 

e tab l i  hed for decades to measure the surface energy of a flat surface, there is no 

exi ting method to mea ure the surface propeliies inside a capi l lary tube especial ly in 

the micro domain. 

It i commonly theorized that capi l lary forces balanced by viscous resistance 

are the sole forces acting in the spreading process. Thus continUlun based kinetic 

equations relate the rate of spreading to the surface tension and the vi scosity; both are 

properties of the l iquid. 

eveliheless. a l iquid droplet in equi l ibrium on a sol id  substrate is  a system governed 

by the three energies defined by Young-Dupree equation. As the contact l ine moves 

towards equil ibrium, viscous dissipation processes control its rate. 

The droplet is a curved surface reservoir whose pressure is deternuned by the 

surface tension y and the rad ius of curvature as show in fig. 1 .4 

h Air  

\ ... I�I-----I��I Su hstrate 
P \ !  Rc \ 1 

'\j 
Fig 1 .4 s how the Young-Laplace equation element 

In accordance with Young-Laplace equation. i .e .  

b.p =  2y 
P 

( 1 . 3 1  ) 
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\Vhere �p i the pre ure aero the surface, y i the urface tension of the l iquid; p 1 

radiu of curvature. The radiu of curvature a een in the fig 1 .4 i related to the 

contact radiu Rc a 

R 
p = -(-

sin e 
( 1 . 32 )  

so  we can write a direct relation between pres ure a t  the surface and contact 

radiu  Rc " 'hich can be mea ured experi mental ly; 

A 2y si n  e up = 
R( 

( 1 .3 3 )  

According t o  Altera(fi and Aloet (2003), It i s  imperative to note that as the 

contact ar�a increa e , the radiu of curvature increases giving rise to a cOlTesponding 

l essening of the of Laplace pressure, \\'hich amounts to a continual decrease in  the 

driving force. Consequently the spreading must cease to grow when the driving 

component can no longer overcome its resi stance. The latter i s  obviously dictated by 

the pecific nature of the l iquid sol id pair. 

Laplace's equation describes the pressure inside a drop because its surface is 

curved, and the Young-Laplace equation describes how a drop's curvature wi l l  change 

from gravity. In dynamic systems, however, the "dynamic" contact angle is not wel l 

defined Rame (2000). We can describe capi l lary pressure as the difference in  the 

pressure for the non-wetting phase and the pressure for the wetting phase. 

2y cos e 
Pc = PNW Pw = --'--

r 
( 1 . 34)  

Where Pc i s  the capi l l ary pressure PNW i s  the  pressure of  the non-wetting phase, Pv, i s  

the  pressure of  the  wetting phase, y i s  the  interfacial tension 8 is  the contact angle, 

and r is the radius of the curvature. The difference in pressure is  related to the 

interfacial tension and as interfacial tension increases, the capi l l ary pressure increases. 
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1 . 3 Zi man Plot and C dtical Surface Energy 

B a  har.] Sasa 

Thi plot wa de\ eloped b Z i  man at the uval Re earch Laboratory, Zisman 

(1 964). The plot i made b plotting the co ine of the contact angle er us the surface 

free energ of variou wetting l iquid on a given ol id .  The re ul ting plot can be 

intelrupted as a IS a traight l ine. Thus, there exist some unique value for each 

polymeric ol id \-"here the co ine of the contact angle i unity. 

Thi value i tem1ed the cri t ical surface free energy. The term "critical" i s  used 

becau e an l i quid on the Zisman plot whose surface tension is greater than the 

"critical urface tension" makes a finite contact angle with the ubstrate, i . e. A l iquid 

with urface free energy below the critical value wi l l  wet and spread over the solid 

urface. whereas a l iquid with surface energy above the cri ti cal value might wet but 

won't spread. 

In figure 1 . 5 ,  the Zisman Plot  dividing to tlu'ee regions. "Non-wetti ng" region, 

where the angle between liquid and sol id  is grater than 90°. And "Wetting" region, 

where the angle between l iquid and solid is from 1 ° than 90°. And "Spreadi ng" region 

where the angle between l iquid and solid is less than 1 ° . The l ine separated between 

" Wetting" region and " Spreading" region call ed "critical surface energy" of sol id .  

A l iquid with surface energy above the crit ical value may l eave micro voids at 

the fiber-matrix interface because complete, intimate molecular wetting may not 

occur. This exampl e  plot is for a variety of l iquids wetting sol id  Teflon ( see Fig 1 .6) .  

Cri t ical surface tension values are useful empiri cal  values that characterize 

relative degrees of surface energy of polymer subsh'ates Shah' (1 992) and Frohn 

(2002). Using the concept of critical surface energy, it is  possible to characterize a 

wide variety of polymer and correlate the cri tical surface energy with polymer 

structure. F luorinated materials  have low values of clitical surface energy. 
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H drogenated material , 'uch a polyethylene and polypr pylene, ha\ e l ightly higher 

value . For other ub- tltuent (C I ,  0, ) the cri t ical urface free energy i a little 

higher ti l l .  From the clitical urface energy data j ust given, fluorinated and 

hydrog nated material will be among the lea t wettable. 

Contact angle were mea ured Zisman (1 964) and ShaH' (1 992) at 20°C ,  under 

an anno phere saturated with the probe l iquid. Alkane and other hydrocarbons were 

percolated through neutral grade 1 alumina immediately prior to measurement of 

contact angle . The alcohols were high-purity olvents and were not purified further. 

The fol lowing l iquids \-vere used (the surface tension is in parentheses 

(m m» : 2 .  3 -d imethylpentane (20 . 1 ), n-heptane (20 .2 ) ,  2 ,  2 ,  4-trimethyl (20.6) ,  n

octane ( 2 1 . 7 ) ,  n-nonane (22 .9) .  n-undecane (24. 8 ), cyc10hexane (25 .4) ,  n-dodecane 

(25 .4) ,  n-tetradecane (26.6), n-hexadecane (27 .6) ,  cyc100ctane (29 .9) ,  bicyc10hexyl 

(32 .8 ) .  2 -propanol ( 2 1 .6) ,  ethanol (22 .5 ), I -propanol (23 .8) ,  I-butanol (25 .5 ) ,  1 -

pentanol ( 2 5 .9 ), l -octanol ( 2 7 .6), cyc1ohexanol ( 3 3 .5 ) .  

United Arab Emirates niversity 1 9  M . Sc. in Material Science. and Engineering 



The Role of the olid ubstrate on the preading Kinetic of a L iquId Droplet Ba harJ. asa 

1 .0 • • • 

Sp n'Hlillg. • • 
O. , 9 10  • • 

• • 
0,4 i 
o.  

� II 
� 
0 
U L 

0,4 

O '() 1 It 011 " l't t ill !! 
A 90G 

\\ tt i l l!!. 
10 e 1)0 

• 

• 

0 

t, Sf/ w.E 

- 0  

; -

: " 

- 065 

-s : 
()fJ 

1 0 1 5  
I LL' 

l r  

l·B  

1 0 

Fig 1 .5 I l lustrative sketching shows Zisman plots regions 

United Arab Emirate Univer It)' 20 M. c. in Materia l  Sciences and Engineering 

rI:J. � � 
:.. 
eJ) � 

� 
--

� 
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Fig 1 .6 Zisnam p lots of contact angle  of various h omologous series on 

Teflon ( Polytetrafluoroeth lene) at 2 00e ( Ref Shaw (1 992) ) . ,  n-aLkanes; 0, other 

hydrocarbons; . ,  esters and ethers ;  D ,  h a locarbons and halohydrocarbons; 

.. , different l iq u ids. 
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1 .4 Para meters that effects s prea ding. 

Ba harJ . asa 

preading of l iquid is a \'ery en it ive process and is effected 

by man) parameter l ike:  Temperature, Evaporation rate. RougJmess of the surface. 

hemical Effect, Heterogeneit) . Gravity, Volume of l iquid and H W11idity. 

1'-+. 1 E ffect of  Tem perature 

The temperature influence on the contact angle of partial ly wett ing drops is 

tudied by de Ruijfer ef af (1 99 ') . According to the Young's  equation 0 .1) .  the 

contact angle value i depending mainly on the surface energy of the so lid and surface 

ten ion of l iquid. urface ten ion of l iquid decreasing with increasing temperature. 

which goe to zero at the boi l ing point. 

For exanlple, the surface tensio11 of v,ater decreases significantly \\'ith 

temperature as sho\',11 in the fig 1.7. Lide(l 997) .  The surface tension arises from the 

polar nature of the water molecule. 

� 

E u � 7 0  c ::n D ......, 
c o 
� 6 0  
Q) 

r 
OJ) u (0 '+-L :::> 5 0  � 

Surf s e e  Tens i  on 
o f  '.,.../ a t er  

�J 0 �� __ -L __ � __ �L-__ L-__ � __ � __ -L __ � __ � __ --L 
2 0  40 6 0  8 0  1 0 0 

Temperat.ure ( O C )  

Fig 1 .7 Show the change of  su rface tension o f  water with increases temperature 

For a sol id, surface energy stays relativel constant with temperature. TIus 

effect increases weakly with temperature increases. Thus. the value of surface tension 

at the melting point i s  the value for the solid as wel l .  
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The ame temperature effect occur for polymelic l iquid l ike ( Si l i con oil or 

Polydimethl i loxane PDM ) \\'ith a few e 'ception . S ince polymer don't boi l ,  the 

urface ten ion doe n't go to zero . The urface energy does decrease with temperature, 

but not as dramatical l y  as it doe for mal l molecule l iquids.  The sol id  surface energy 

i al 0 approximatel equal to that of the melt .  This makes sense, since freezing 

" lock " the urface conformation at whate\'er orientation it  had j ust before freezing. 

1 A .2 EYaporation rate of l iq u i d :  

One would expect that the evaporation process of  l iquid droplets was 

de cribed man. years ago. Mo t studies on l iquid drop spreading have focused on the 

nonvolati le l iquid sessi le drops for their simplicity both in the experimental 

measurements and the theoretical analysis .  The contact angle affected by thermal 

radiation incident upon a droplet Chandra et al (1 996) and mn den Doel el at (1 999). 

Inferred radiation is absorbed at the surface of an e aporation droplet Chandra 

et al (1996) ,  heating it  and reducing surface tension. This causes dropl et to pread out, 

i ncreasing l iquid -sol id contact area and decreasing droplet evaporation time. 

However the occurrence of l iquid evaporation i s  inevitable, the effects of 

evaporation on the spreading and the contact angle  become very important for more 

complete understanding of these processes Zhang and Chao (2001), Chao and Zhang 

(2001). Contact angle decreased continuously during droplet evaporation, whi l e  the 

diameter of the wetted region under the droplet remained constant Chandra et al 

(1996). 

On the contrary, j ust recently some underlying pri nciples of the dynamic 

process of evaporation have been pub l i shed van den Doel el at (1 999) .  It seems that 

during the evaporation of a l iquid droplet, the l iquid at the edge of the droplet is  

"pinned" to the underlying surface. This p inning prevents the droplet from sruinking. 
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Thi impl ie that the footprint of the droplet remains constant . The evaporated l iquid 

at the edge is repl enished by l iquid from the bulk of the droplet. 

This  mean that there i a flow of l iquid moving towards the edge of the 

droplet .  If the l iquid droplet contain pcuticles l ike in a droplet of coffee, these 

pat1ic1e wi l l  be tran por1ed outwards by the flow. Final ly when al l the l iquid has 

evaporated, the ( offee) part ic les wi l l  fonn a ring of stain van den Doe! el at (1 999). 

We take this efIect and we study the evaporation rate. So we wi l l  go back to 

di cu ion of thi effect in Chapter 3 Results at pint 3 . 1  Evaporation from two phases: 

Ma s balance, Con finn by al lowing droplet to spread. 

1 .4 . "  Effect of  Rough ness : 

The effect of surface roughness on wettabi l ity was studied more than half a 

century ago. Recentl y, more interest has been stimulated by experimental results 

showing that wettabi l ity can be tuned by surface geometry. He and Lee (2003); 

Patallkar and Chen (2002); Kwok and Neumann ( 1999) and Schlangen (1 996) .  

Surface roughness has the effect o f  making the spreading further the wetting 

of sol id .  The l iquid penetrates and fi l l s  up most of the hol lows and pores in the sol id .  

So the surface i s  part sol id  and part l iquid Duncan ( 1998) and Bico et al (2002). 

In 1 936,  Wenzel recognized that a rough surface would alter the relative 

effective contri bution of the sol id- l iquid interface to the surface free energy. Thus, the 

apparent equi l ibrium contact angle for a l iquid on a rough surface, is  related to that for 

the same l iquid on a smooth surface of the same matelial ,  by the relation 

Cos 8r = r Cos 8s ( 1 .  3 5 )  

where 8 r  " roughness" is  the apparent or measured contact angle and 8s 

"smooth "the true contact angle.  Wenzel looked specifical ly  at roughness and found 

that the ratio (r) of the true area of a sol id  (the molecul ar area including a l l  roughness) 
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t the ge metric area He and Lee (2003), a we would mea ure with a ruler had a 

imple relation hip to the ratio of Co 8r to Co 8 

r = Co 8r / Co 8 ( 1 . 36)  

The intere ting consequence of thi relationship ROUl-a and Fort (2002) is that 

if 8 < 90° then 8r < 8 but v.·hen e >90 0 8r > 8. ( see example in fig 1 . 8 )  

Flat sUI/ace Rough SUl/ace 

Fig 1 .8 \Yettabi l ity sh ift due to su rface rou ghness (He and Lee (2003)) .  

I t  i known that the wettabi l ity of a surface i s  a function of its roughness Non

wetting l iquids exhibit superhydrophobicity on a rough surface. It has been 

demonstrated that surfaces with micro-mach ined structures can have similar effects. 

This phenomenon has many app l ications Patankar and Chen (2002). 

1 . 4 .4 C hemical Effect: 

The natures of a col loidal system are dependent on Duncan (1 998) :  

• Partic le size 

• Particle shape and flexibi l ity 

• Surface properties ( including electrical ) 

• Particle - Particle interactions 

• Particle - solvent interactions 

Lower surface energy polymers have weakly interacting atoms in the 

backbone, whereas high values arise from strong interactions in polar materials 

Schlangen (1 996) and Frohn (2002) . 
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Chemical Comp ition & Molecular tructure depending on ide groups & 

econdary bonding force & cohesive-energy density & chain branching & 

entanglements & cro - l inking. 

Surface free energy varies widel with the types of functional groups at the 

urface. For hydrophobic surfaces, free energy decreases in the order - CH2 > - CH3 > 

- CF2 > - CF2H > - CF3.  H ence the inertness of Teflon. In the case of a self-assembled 

monola er. if the surface is well -ordered, it wi l l  expose -CH3 and have a different 

urface energy than if it exposes -CH2 groups. 

Al 0 Free electron , ions, metastables, radicals and UV generated in  plasma 

regions can impact a surface with energies sufficient to break the molecular bonds on 

the surface of most substrates. This create very reactive free radicals on the polymer 

surface. These free radicals can fmID, cross-l ink, or in the presence of oxygen react 

rapidly to fonn various chemical functional groups on the substrate surface. 

Polar functional groups which can form and enhance bondabil ity include 

carbonyl (C=O) carboxyl ( H OOC),  hydroperoxide ( HOO-) ,  and hydroxyl ( HO-)  

groups. E en smal l  amounts of reactive functional groups incorporated into polymers 

can be h ighly beneficial to improving surface characteristics and wettabi l ity. 

1 .4 .5  H eterogeneity :  

Wettabi li ty increases directly with i ncreasing affinity between the surface 

tension of l iquid and the surface energy of a sol id,  Good (1997) .  

Sol id  surfaces (as  compared with l iquid surfaces) are heterogeneous, even 

after careful pol ishing. M easurements are hence prone to error because of unavoidabl e  

sample d ifferences Duncan (1 998) and Schlangen (1996). 
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The interaction i impOliant in the study of liquid spreading on anisotropic 

or non homogeneou urface . Zhal1g and Chao (2001): Chao and Zhang (_ DOl) ;  

Chao and Zhang (_ 002). 

S urface Liquid S pread ing rate 

Non- Po l ar Non- P o l ar Low 

Non- Polar Po l ar H igh 

Polar Polar Low 

Polar Non- Po l ar H igh 

Table 1 . 1  effect of Heterogeneity between Liquid and s urface on spreading rate. 

1 .4 .6  Gra,ity & Vol u me of the droplet : 

On a sufficiently smooth and homogeneous surface 8 is independent of fluid 

-volume. and since the tendency for a gi\'en mass of fluid to spread increases as 8 

decreases, the contact angle is a usefu l  inverse measurement of wettabil ity : Cos( 8 )  is  

thus an obvious d irect measure of spreading abi lity. 

I t  is  sometimes said that the vol ume of the test drop influences the contact 

angle; and corrected to the Gravity effect. 

1 .4 . 7  Effect of h umidity: 

If the humidity i s  high,  moisture coats the surface of the material providing a 

low resistance path for electron flow. The charge imbalance wi l l  not remain for a 

useful amount of time. H umidity is the measure of moisture in the air. If the h umidity 

i s  h igh. the moisture coats the surface of the material, providing a low-resistance path 

for electron flow. This path al lows the charges to "recombine" and thus neutralize the 

charge imbalance. L ikewise, if i t  is  very dry, a charge can bui ld up to extraordi nary 

levels, up to tens of thousands of volts Website [2] . 
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1 . 5 The Appl ication of Contact Angle M ea urement 

Bashar J asa 

eutral l  , the contact angle of l iquid on solids play great role in our l ife. This 

i mainl true with water; where the o l id  in contact controls its contact angle value. 

For example. contact angle of water on our kin is about 90 degrees. If it was zero, 

water could ha\'e penetrated the pore of the skin and possibly been absorbed by 

blood. Another example i the structure of a bird ' s  feather i constructed such that the 

contact angle of water on a typical feather is  as high as 1 50 degrees. Appl ications : 

1 .  dhe i\'es 

2 .  Biology system 

3 .  B iomedical re earch 

4. Coatings asses ment & Qual i ty 

5 .  Cosmetics 

6. Dental materials 

7 .  Detergents 

8 .  De\vetting of metal l ic  surfaces 

9. Environment 

1 0. Evaporation & Heat exchanger 

1 1 . Extinguish Fire 

1 2 . Lacquers and paints 

1 3 . Lubricants 

1 4. Mining industry 

1 5 . Oi l  recovery 

1 6. Optics 

1 7 . Painting i nks industry 

1 8 . Paper Industry 
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) 9. Phannaceuti al indu try 
20. Polymer 

2 1 .  Primer Preparation 

22 .  Preservation of buildings 

23 . emiconductor 

24. pray 

25 .  urface Cleanline & treatment 

26.  Synthetic-foi ls  

27 .  Texti les 

Bashar. l .  asa 

Other "Automotive, F lat Panel Display, Hard-Disk, Image processmg, 

M icroelectronics Wafer Inspection. P lastic packaging Soldering and brazing 

Material Research". 

1 . 5 . 1 Adhesives 

The adhesion between different components of composite structure , between 

different materials  l ike glass and metal ,  l eather and fabrics wood and paper, can be 

determined by contact angle measurement. Today, a wide variety of material 

combinations, which have been connected in the past by soldering, welding, and 

means of mechanical connection are more easi ly  and durably connected by adhesives. 

The work of adhesion of two surfaces connected with adhesives, the wetting of 

adhesi\'es on the substrate can be detennined by contact angle measurement, Ashleya 

et al (2003) . 

P lastics adhesion probl ems are widespread throughout the i ndustry. Major 

components of these probl ems are due to the fact that many p lastics have chemical ly 

inert and nonporous surfaces with low surface tensions. That i s, most plastics are 

hydrophobic and are not natura l ly  wettable.  These properties, although advantageous 
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to the de ign engineer, often re ult in secondary as embly and dec rating concerns -

bonding, plinting coating and painting. Surface pretreatments on today' high 

perfonnance engineering re ins solve man adhe ion problems whi le  increasing bond 

strength performance. 

A a general rule, acceptable bonding adh sion is  achieved when the surface 

energy of a ub trate (measured in dynes/cm) is approximately 1 0  dynes/cm greater 

than the urface tension of the l iquid.  In this situation, the l iquid i said to "wet out" 

or acil1ere to the urface. Surface ten ion, which is a measurement of surface energy, is  

the property, due to molecular forces by which a l l  l iquids through contraction of the 

surface tend to bring the contained volume into a shape having the least surface area. 

The h igher the surface energy of the sol id substrate relative to the surface tension of a 

l iquid, the better its "wettab i l ity". 

1 .5 . 2  Biology system 

Wetting of plant surfaces by pesticides and fungicides i s  very important in 

determining the effectiveness of the pesticide and fungicide fonnulations. Interaction 

of plant l eaf and acid rain  is important to know for protecting valuable corps. Critical 

surface tension of cell surfaces and bacteria to implants or drug surfaces needed to be 

identi fied for curing disease or for an artificia l  organ implantation. Example: Lotus 

leaf. 

Physical background of the Lotus-Effect.  The surface physics behind the 

Lotus-E ffect can be derived from the behavior of l iquids appl ied to sol id surfaces . Up 

to present, there are only a few i nvestigations deal ing with the interaction between 

rough biological surfaces, partic les and water. H owever, since the wettabi l i ty of sol id 

surfaces i s  well investigated i n  surface science, it  is  possible to draw conclusions 

about the conditions on leaf surfaces Barthlott and Neinhuis (1 997  B). 
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If a droplet is appl ied to a ol id urfa e, it wi l l  wet the surface to a certain 

degree. The amount of wetting depends on the ratio between the energy nece sary for 

the enlargement of the urface and the gain of energy due to adsorption which 

compensate f; r the fonner. At equi l ibrium the energy of the system is minimized 

Barth/ott and /\�eil1h llis (199 A). 

Surface with only fe\\' or completely lacking polar group 's  exhibit a very low 

interfacial tension de Gel/lies (1985) . This appl ies also to many components of 

epicuticular v;axes ( e.g.  hydrocarbons) .  In the case of water repel lent rough surfaces, 

air is enclosed between the epicuticular wax crystal loids, fom1ing a composite 

surface. This enlarges the water/air i nterface whi le  the sol i d/water interface i s  

minimized. On such a rough " low energy" surface, the water gains very l ittle energy 

through ad orption to compensate for any enlargement of its surface. In this situation, 

spreading does not occur the water fonns a sphelical droplet, and the contact angle of 

the droplet depends a lmost entirely on the surface tension of the water. Barthlott and 

Nei71huis (1997B). 

1 . 5 . 3  Biomedical research 

Example of b iological Studies depending mainly on measurement surface 

energy: Biological compatibi l i ty, Behavior and detection of proteins biomedical 

appl ication, Kasemo (2002) and Ashleya et al (2003). 

One exampl e  of this application is that this work can have imp0l1ant in 

designing a blood -contacting implant, m any properties of the materials shoul d  be 

considered as influencing coagulation and hemolysis as the surface energy -low 

surface energy is l ess l ikely to cause b lood cel l adhesion, Kasemo (2002), reduces 

coagulation whereas h igh surface energy causes a build-up of cel l s  on surface which 

reduces hemolysis .  
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ir-tightne of gla ve sel containi ng medicinal fluid The tightne of 

rubber almg cap on gla urface can be predicated b urface free energy 

m a urem nt . Art i ficial bone and arti ficial organ have to have a certain surface 

free energy to be accepted by the human body. Tubes transporti ng body fluids have to 

a\" id the bui ldup of agglomerate . The same is the prerequisite for bio-membranes. 

The wicking movement of a biological fluid through the channels of a 

diagno tic device occurs via capi l l ary flow. Achievement of capi l lary flow is a 

function of cohe ion force among l iquid molecules and forces of adhesion between 

the l iquid and the wal l s  of the channel ,  Afeathrel et al (2003) . 

Partic les deposited on a waxy surface consist, III most cases, of material ,  

which is  more readi ly wetted than hydrophobi c  wax components. In addition, they are 

in general l arger than the urface microstructures and rest only on the ery tips of the 

l atter. As a result. the interfacial area between both is  minimized. In the case of a 

water droplet rol l ing over a particle,  the surface area of the droplet exposed to air i s  

reduced and energy through ad  orption i s  gained. The partic le is  removed from the 

surface of the droplet only if  a stronger force overcomes the adhesion between 

particle and water droplet Adamson (1 997).  On a given surface, this is the case if the 

adhesion benveen partic le and surface i s  greater than the adhesion between particle 

and water droplet .  Due to the very smal l interfacial area between particle and rough 

surface_ adhesion is minimized. Therefore the particle is " captured" by the water 

droplet and removed from the leaf surface Barthlott, Neinhuis (1 997 B). 

In surfaces with high contact angles, spreading i s  very l imited, and the 

velocity of droplets running off a surface is relatively low Barth/ott and Neinhuis 

(J 99 7) B and A leksandra et al (J 999). 
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1 . 5 . 4  Coating 

tudie maXImize cleaning methods, sol ution , adhe ive propeliies, 

pr ading rate and appl ication methods Adamson (J 99 7). 

1 . 5 . 5  Cosmetics 

The contact angle is an important parameter for the cleaning process of 

hampoo and for the effectiveness of c leaning solution . Surface tension as wel l is a 

parameter for the effectivenes of surfactant solutions. Furthennore, it is necessary for 

th d velopment of time and temperature-stable emulsions for valious cosmetic 

products. Titanium Dioxide is used as a un blocker in suntan creams. The 

de\'elopment of a table, ultra-fine dispersion of Titanium Dioxide in the sun tan 

ernul ion can be simpl ified by measuring the surface free energy of the particles to be 

suspended and the surface tension of the l iquid carner. 

l .  - .6 Dental m aterials 

The contact angle of sal iva on tooth surface depends on the materials used in 

the cleaning process. Artificial material must have a certain surface tension and 

polarity in order to avoid deposition of bacteria and in case of transplants to ensure 

good adhesion betv,reen tooth and embodiment Adamson (1997) .  

l . S . 7  Detergency 

Another area where contact angle plays an important role is  in detergency, the 

process of c leaning clothes, etc . ,  by a surface-active agent. If the soi led cloth is  to get 

rid of dirt, grease, o i l ,  etc. it is necessary that water must spread and penetrate the dirt 

particles. If spreading is to occur, the interfacial tension between sol id- l iquid and 

l iquid vapor must be as mal l as possible .  What the detergent does exactly is to lower 

these interfacial tensions by the process of adsorption. Contact angle measurements of 

lotions oils,  soaps and other toi let preparations on human skin and hair strands 
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pro\ ide valuable infonnation fI r their correct formulation and are now routine 

Adam all (199 J.  

I so hot water i a better cleaning agent because the lower urface tension 

make it a better "wetting agent" to get into pore and fis ures rather than bridging 

them with urface ten ion. Soap and detergents further lower the surface tension. 

Detergency has b en defined as removal of foreign material from solid surface-by

surface chemical mean . The washing of clothes is a COlmnon example of detergent 

act ion FraIm (2001). 

1 . 5 .  De" etting o f  metal l ic  su rfaces. 

Machine such a Lathes are usual l y  coated with a thin l ayer of grease or oil  

especia l ly during transportation to prevent corrosion by water. This is  achieved by the 

fact that grease or oil l ayer fonns a highly non-wetting system with water Ashleya et 

af (1003). 

1 . 5 .9  Emi ronment 

Sands pol luted by oi l  can be cleaned by treatment with surfactant solutions. 

The progress of the cleaning process can easil y  be control led by contact angle 

measurements on the treated and pretreated samples. ( Studies to maximize coverage 

of pesticides, herbicides & insecticides). 

1 . 5 . 1 0  Evaporation & Heat exch angers 

Control droplet surface area to increase or decrease evaporation, optimal 

wetting of heat exchanger surfaces. 

In heat exchangers and condensers used in chemical industries, maximum 

efficiency is achieved if  a non-wett ing agent l ike calcium stearate or oleic acid 

coats the metal surface. Liquids condensed on such coated wal l s  form droplets 

because of high contact angles and fal l  down eas i ly. This technique is cal led 
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"drop-wi e" conden ation . Contact angle mea urement i important in controll ing 

droplet urface area to increa e or decrea e e\'aporation and to optimize wetting of 

heat exchanger urface , Adamson (1997) .  

The spreading of an evaporating l iquid on a solid urface occurs in many 

practical proce es and i of impoliance in a number of practical situations such as 

painting, texti le dyeing, oating, gluing, and thermal engineeling. Typical proce ses 

im'o]ving heat tran fer where the contact angle plays an important role are fi lm 

cooling; boi l ing, and the heat transfer through heat pipes Zhang and Chao (2001), 

Chao and Zhang (2001) and Chao and Zhang (2002). 

1 .5 . 1 1 Extinguishing Fire 

Reducing contact angle increases contact angle area between the droplet and 

solid surface, and also reduces droplet thickness. Enhancing heat conduction through 

the droplet .  Both effects increase droplet evaporation rate. Decreasing the initial 

contact angle from 90° to 20 0 reuses droplet evaporation time by approximately 50% 

Chandra et al. (1 996) .  

A study o f  the effect of contact angle o n  droplet evaporation is  important not 

only in fonnulating accurate model , but also in suggesting strategies to improve 

cooling efficiencies by enhancing surface wetting. For Example it is known that the 

addition of "wetting agents", which reduces surface tension of water, increases the 

fire extinguishing capabi l i t ies of water. Tests show that addition of a wetting agent 

reduces by up to 60% the vol ume of water required to extinguish fire of wood, cotton 

bales and rubber tires. 

Though wetting agents have been used for about 40 years. Little information is  

avai lable on the mechanism by which surf act ants enllance heat transfer from a hot 

surface to impinging droplet in water sprays Chandra et al (1 996). 
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1 . 5 . 1 2  Lacquer and paint 

Bashar}, asa 

!fea urement of hydr phobicity of lacquer surface , e pecial ly for the 

aut mobi le  body coating. Development of stable emul ions for paint 's  torage shel f 

I if! a l o in olve the interfacial tension between the particle and carrier in the paint 

foml ul ation. 

!fea urement of interaction adhesion between paint and substrate surface 

(paper. metaL wood. pIa t ic ) is critical in the coating processes, especial ly for the 

change from solvent-based paints and l acquers to water-based systems, which usual ly  

cause a lot  of problem for the coating processes Ashle.1 'a er a/ (]003). 

1 . 5 . 1 3  L u bricants & Release Agents 

1inimize adhe ion, mold relea e/anti-stick materials .  Controls spreading 

characteristic . For many practical appl ications the spreading of l ubricating oi l  is as 

important as the oi l  vi scosity for some appl ications such as ,  mechanical clocks, or 

fine mechanical meter non- preading propert ies of oi l  are desired Frohn (]OO]). 

l . 5 . 1 4  l\ l ining industry 

Understanding o f  contact angle is a lso important in the mining industry. An 

example is froth flotation, the process of concentrating minerals of heavy metals ( e.g. ,  

zinc blende, galena, chalcopyrite, etc . ) .  

This i s  achieved by agitating finely divided minerals i n  froth of water and air, 

so that some float and others sink .  The useful minerals become attached to the air 

bubbl es, rise with them into the froth l ayer and are col lected. If the contact angle 

between the particle-water-air interfaces is smal l er, the partic le does not float easi ly. 

Therefore this contact angle is increased to as much as 60 degree by adding 

'co l lectors' l ike alkyl xanthanates (e.g., C H 3 . 0. C S . Sna) Adamson ( 199 7) .  
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1 .  - . 1 5  Oil  Recoyery 

Bashar.1 .  asa 

An important technological application that emerged out of contact angle 

tudies i in the enhanced oi l  recO\'ery from and bed . Laboratory experiments on 

d i  placing petroleum by water in glass capi l laries have demonstrated that a 

con iderable  fraction of the oil remains attached to the wall  when the central space of 

the capi l l ary i a lready fil led with water. 

In a and col umn, the amount of oil remammg m the sand when water 

app ared at the down tream end of the column was greater, the greater the contact 

angle. F looding the oi l wel l with surfactants along with water or steam reduce the 

pre ure drop acros each oi l -water meniscu , reduces the o i l -water interfacial  tension 

and changes the contact angle so that water displaces oil at the l iquid-solid interface, 

The process is cal l ed ' telii ary oil recovery' and it is now possible by this 

method to recover more than 90% of oi l  from an oil wel l Adamson (1997) and 

Drummond and Israelacll l'ili (J002). 

The e constraint have important consequences in determining the wettabi l i ty 

o f  multiphase systems.  It is shown that in oi l -wet systems, gas is wetting to water, 

with complete \.\'etting in the l imit of gas/oi l  miscibi l i ty.  Some low-temperature oil 

reservoirs may contain two l iquid hydrocarbon phases, and dUling gas inj ection four 

phases may be present .  

In these circumstances the wettabi l i ty of the system is defined by a vapor/oi l  

contact angle, oi l /water contact angle, and the contact angle between the  tvvo 

nonaqueous l iquid phases Blunt (2001). 

Capil l ary pressure is the term that environmental engineers and scienti sts often 

use to describe this balance of forces. They learned the term from the petrol eum 

engineers and scientists who applied it to enhanced oi l  recovery ( EOR) processes 
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l . 5 . 1 6  Optics 

The wettabi l i t  f ontact len e a wel l as  the mteracti n and the 

eft! cti, ene of cl eaning olution fom1ulation for contact lenses can be examined by 

contact angle mea urement. 

1 . 5 . 1 7  Print ing ink 

In the  manufacture of  printing ink  , the contact angle formed by a drop of  ink 

on paper detennines the printing quality of ink. It ha been practical ly observed that 8 

mu t be idea l ly  between 90° and 1 1 0° degree . If  i t ' s  l ess than 90 ° degrees, the ink 

wi l l  pread on paper. I f  i t ' s  more than 1 1 0° degree , breaks wi l l  occur whi l e  printing. 

1 . 5 . 1 Paper I n du stry 

Like the pri nting indu try the paper industry is  i nvolved in  wetting problems. 

According to i ts  use the paper h as to be strongly or weakly hydrophobic or 

hydrophi l ic .  A b eaker made of paper must have a di fferent surface energy than a sheet 

of newspaper. A j uice container must have different surface energies on the outside 

( printability) than on the inside ( liquid-resistant and microbiological ly i nert ) .  

1 .5 . 1 9  Pharmacy 

Contro l l ed drug release. wettab i lity and dissol ing behavior of pharmaceutical 

pO\vders, tab lets and capsules of various body l iquids A damson (1 997). 

1 . 5 .20  Polymers 

The interfacial tension and surface free energy of polymers and polymer blend 

can easily be control led by surface tension measurement. The interfacial tension 

between various polymers in a polymer blend or between carbon fibers and 

surrounding polymer in fiber reinforced material is an important parameter for the 

stabi l ity of the materials .  (Studies of surface active agents, contro l led oxidation, 

adhesion) 
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10 t of the polymer l ike polyethylene, polypropylene, Teflon, etc. how hIgh 

contact angle beha i r with many l iquids. A number of applications of pol ymers have 

taken advantage of thi ituation. An example i the Teflon coated frying pan .  Contact 

angle mea urement ha hown that the contact angle is about 35 degrees for cooking 

oil on Teflon: thus oil must not tick to the surface making it easier for cleaning 

Adamson ( 199 '). 

1 . 5 . 2 1 Print in g industry 

\\" ettabi l ity processes are of major importance for the o ffset printing 

pr ce es. Al l  materials involved, l ike paper, metal surfaces, and lUbber surfaces, 

fiU t have a certain surface tension value to have an optimum printing quality. This 

\'alue depends on the surface tension of printing ink and the dampening solution 

re pect1vely. ( Evaluate marking fl uids, papers, foi l s, coatings, transfer platens and 

rol l  ) .  

1 . 5 . 22 P reservation of bu i ldings 

Historical buildings have to be protected and preserved against pol l ution 

l ike acid rain .  Their surfaces have to be impregnated by si l icide acid or synthetic 

materials .  

1 . 5 .23 Semiconductor 

The c leanness and the surface chemical composition on pure semiconductor 

surfaces and treated surfaces l ike nitrides; oxides are cOlTelated to the surface energy 

of these surfaces. Therefore, the measurement of contact angles is a simple and fast 

method for qual ity control in this field .  ( El im inate delamination probl ems, determine 

wafer c leanl iness, and evaluate surface energy values of coatings and adhesives). 
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1 .  - ._4 pray 

The efficien f i n ecticide pray al 0 depend on their wettlllg behavior on 

the urface of  in ect . ual ly in most insecticide , an organic l iquid ha ing a low 

urface ten ion is  used a pray 0 that it  spread compJetely. Contact angle is  therefore 

an e ential  parameter to be con idered in any pe ticide or Insecti cide spray 

formulation Adamson (J 99 ). 

1 .  - . _ 5  S u rface Clean l iness & T reatments 

P l asma treatment to increase wettabi l ity on polymers. Oxidation of si l icon 

wafers, urface prepared for soldering and solder flux efficacy. 

Detect monolayer contamination and evaluate cleaning methods. - Eval uate 

fini h e , cleaning method , treatments and coatings. E valuate finishes, cleaning 

method . treatments and coating . Studies of  additives, wetti ng agents and soil  

removal .  Given the above reasons, a smal l d ifference « 5  degrees) between advancing 

and receding angles suggests that the surface is  free of  contamination, wel l organized, 

and smooth. 

1 . 5 .26 Synthetic foi ls 

Corresponding to the production process and the surface treatment (chemical,  

p lasma. and fl ame treatments)  the composition of foi l s  and their surface 

characteristics can be varied remarkably. Very often the foi ls  have to be printable. 

1 . 5 .27  Texti les 

The wettabi lity of single fiber as well  as the wettabi l i ty o f  fabrics can be 

determined using tensiometer and contact angle meter. Synthetic fibers are usual ly 

coated with hydrophobic m aterials .  The degree of hydrophobicity as  wel l as  the 

homogeneity of the coating can be checked through contact angle measurement. 

( Fabric treatments, fiber treatments, water and soil repel lency) . 
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The importance f contact angle mea urement in the texti l e  and fiber industrY 

n d not be oyer tre ed . Cotton yarn i u uall wetted b water, but synthetic fabrics 

hay d finite contact angle for water. ylon, for example, gives a contact angle of 

ab ut 40 degree . Fablic mu t be coated, therefore, with suitable wetting agents. 

Otherwi e, it wi l l  be difficult to remove dirt and oil whi le  washing the fabric with 

water. But it i advantageou to u e a non-wetting surface for a raincoat or umbrel la  

cloth . Coating by a si l icon polymer gives a highly non-\\,'etting system. Waterproofing 

or water-repel lency is an important industrial process, which depends on contact angle 

\'alue Adamson (1997) .  
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1 . 6 The i Objecti\ 'e 

Bashar .J .  asa 

Thi the i examin the role pl ayed by the ol id ubstrate on the spreading 

kinet lc'  of l iquid droplet . The set of experiments whose results are presented below 

u d di fferent type of l iquids with various prope11ie of urface tension and viscosity 

te�ted on three different olid ubstrates (gJa s, polym thylmethacrylate ( P M MA )  and 

pol y�t)Tene CPS) ) .  

Thi the i introduces a recent technique to mea ure wettabil ity that is based 

on the mea urement of the contact area of a liquid droplet on a solid surface i nstead 

of contact angles. Re ults presented compare the data of contact angle based on 

pherical cap approximation to experi mental measurements of contact angle. 
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Chapter 2 

Material 
& 

Methods 

Ba harJ asa 
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2 . 1 Li q u id 

2 . 1 . 1  i l icon oi l  ( PDM ) 

Ba�har.J asa 

yn nym : i l icon oi l ;  alpha-MethyI-omega-methoxypolydimethylsi loxane; 

carboxypropyldimethyl ; Dimethylpolysi loxane hydrolyzate; Polydimethyl si l icone 

oi l ;  P 1ydimeth '1 i lox ane, Po1yoxy ( dimethylsi lylene), S i l icon and Si loxane. 

1ajor appl ication' Afark (1 999) :  Release agents, rubber molds, sealants and 

gasket , surfactant , water repel lents. adhesives, foam control agents, biomedical 

devi e , per onal care and co metics. dielectric encapsulation, glass sizing agents, 

grea e , hydraul ic  fluid , heat transfer fluids, lubricants, fuser oi l  and process aids. 

The nan1e si l icone was given i n  1 90 1  by Kipping Efschenbroich and Sa/::er 

(199_) to de cribe new compounds of the genelic fonnula R2SiO. These were rapidly 

i dentified as being polymeric and actual l ,  corresponding to polydialkyl si loxanes, The 

name i licone was adopted by the industry and mo t of the time refers to polymers 

wi th the formulation where R = Me (methyl group) as shown Fig 2 . 1  . 

Me Me 

Me - Si - 0 - ( Si - 0 ) 11 
I 

Me Me 

Me 

Si - Me 

Me 

Fig 2. 1 Chemical formula of S i l icone o i l  (wh ere n=O, 1 .  .. ) 

The accompanying number of the Si l icone is the viscosity value in  cp, which 

I S  reciprocally, correlated reciprocal to the Si density, which i s  connected to the 

molecule weight only (with no change in volume). Molecule weight is dependent on 

the n value in Fig 2 . 1 Valignat et af (1 999) .  

The polydimethysiloxanes have a low surface tension (20A m 1m )  and are 

capable  of wetting most surfaces. With the methyl groups pointing to the outside, this 
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gJ\ e \'el) hydrophobIc film and give it good preading area on mo t urface . Even 

the hydrokinetic do not effect the preading on the Gla and PS whIch both have the 

arne rate of preading in spite of two surface are carrying the oppo ite propertie 

(hydrophi l ic  and h drophobi c re pectively) al though Si l icon oils describe as 

hydrophobic l iquid .  

The extraordinary propertie of i l icon material  may be traced back to  the 

idio yncra ie of the i -O-Si ( Si lo  ane) bond. The high flexibi l ity of ( -M e2SiO- ) n 

chain ugge ts 10\ barrier of confonnational changes Elschenbroich and Sal::er 

(1 99::). 

The simultaneous presence of "organic" groups attached to an "inorganic" 

backbone gives i licon a combination of unique properties Stark et al (198_) and 

al low their use in fields as d ifferent as aerospace ( low and high temperature 

flexibi lity). e lectronics (high e lectrical resistance),  medical (excell ent 

biocompatib i l i ty)  and construction ( resistance to weathering).  

Depending on the structure o f  the iIi  con oi l  i s  obtained. Thanks to its 

outstanding properties, si licon is almost ubiquitous i n  modem technology. It 's Their 

advantages include high thennal stabi l i ty, smal l temperature coefficients of viscosity 

and water repel l ing action combined with it's physiological ly  i nnocuous nature , And 

high Flexibi lity owing to low bending vibration energy Elschenbroich and Sal::er 

(1992). 

Hydrophobic and physiological inertness. Shear stabi l i ty, weak intermolecular 

forces, and excellent dielectric strength. Low volati l i ty at high molecular weight l ike 

Si l OO and Si 1 000, Marke (1999). 

In the absence of surface tension gradients, and on smooth, chemical ly 

homogeneous substrates, wetting l iquids build molecularly thin fi lms, conveniently  
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tudi d at th edge of preading micr droplets. patiaH resolved el l ip ometry i a 

rele\ ant technique for thi stud) . 

Since i i i  cone oi l \vets glass "perfectly, "  it contact angle is very close to zero. 

The ide graph can 't h \\' the angle between the olid and the droplet interface, so we 

manl) u e the hadowgraph image and measurement the contact Area, a a function of 

th ddance to the contact l ine. r. The sol id  l ine is the olution of the static capil lary 

theory. Clearly. the slope may be afely extrapolated to the contact l ine, r = 0, at 

whi h point the angle equals the static contact angle of the system Ram£! (2000). 

The so-cal led "complete" preading of PDMS droplets could be resolved into 

three regimes. The first was a flow regime, driven by Laplace energy and was 

bel ie\'ed to be resisted by the l iquid/sol id contact energy. The second was a diffusive 

regime, driven by Fickian-type forces. The third was a fragmented isl and regime, 

which ensued by excessive fi l m  thinning. It is therefore suggested that PDMS, like 

other l iquids. experience partial  wetting with a finite contact angle of about 8 degrees. 

The diffusive regime, leading to the fragmented is land regime, is thought to be 

associated with extraordinary molecular mobil ity of P DM S  A lteraifz and Moet (2003). 

In si l i cone. the activation energy to the viscous movement is very low, and the 

viscosity of s i licone is l ess dependent on temperature than are the viscosities of 

hydrocarbon polymers. Moreover, chain entanglements are involved at higher 

temperature and l imit the viscosity reduction. 
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2 . 1 .2 lkane  o ro u p  

Bashar .1  a 'a 

lkane are one of the hydr carbon fami l ie that have only sp3 carbons. Each 

carbon atom in the molecule i sUITounded by single covalent bond . As a re ult, the 

mol ecule  are tetrahedral ly  haped and are non-polar molecules since al l of the C-H 

bond dipole cancel each other. The general molecular fOlmula for the member of the 

alkan family is :  CnH�n"'2 where n = number o f  carbon atoms in the alkane molecule 

Jias(crtoll alld Hurley (1 993) and Br011 'l1 (1 995). 

In our tudy, three l iquids are used with rel ative high Molecular Weight l ike 

ndecane, Dodecane and Hexadecane. These intennolecular attractions are cal led 

'\'an der \Vaals force " ,  " London forces" or "dispersion forces" . The Dispersion 

force ( 0.02-2 kcla 'mol )  are the weakest of all intennolecular forces. I t  is the 

existence of these forces that accounts for the fact that low-molecular-weight, non

polar ub tances can be l iquefied Brown (1995) . this give explanation to the low value 

of urface tension of alkane. 

The melting point, boi l i ng point, and density of a hydrocarbon are related to 

the strength of these forces. And also is direct propoliion to the molecular weight. 

The general propeliies can be summarizined at two points. A lkane Liquids 

Molecular Weight is  high when compared to other groups and they are insoluble i n  

water "Hydrophobic" a s  shown in Table 2 . 1 
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Fig 2 . 2  Chemical formula of U n decane  

F i g  2 . 3  Chemical  formula of Dodecane  

F i g  2 .4 C h e mical formula of Hexadecane 

Bashar J.Sasa 
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2 . 1 .3 kohol group 

Th leohol group i one of the Organic groups having a hydroxyl (-OH) 

group, contain three group depending in the number of hydroxyl group to: primary 

alcoh 1 ,  di-A1 cohol and tri- leohol .  The charactetistic shLlctural feather of an alcohol 

i an ( -OH) group bonded to an p3-hydridzed arbon. For primary A l cohol it has a 

have high evaporation rate even at l ow temperature 0 we take out this category of 

l iquid Masterto17 and Hurley (1 993) and Br01I'l1 (1 995) . 

In the fUP A C  Y tem Br01I'l1 (1995) ,  the longest chain of carbon atoms 

containing the -OH group is sel ected as the parent compound and number fl:om the 

end c loser to -OH. And changed the uffix -e of the corresponding alkane to -01 .  But 

common name for alcohol s  are derived by naming the alk)'l group attached to -OH 

and then adding the word "alcohol" .  

Because of the  presence of the  -OH group, al cohols  are polar compounds. The 

attraction between the po i tive end of the one dipole  and the negative end of another 

is call ed dipole-dipole  interaction Brown (1 995) .  This attractive between dipoles is 

particularly strong and is given the special name of hydrogen bonding. And for that 

rea on the surface ten ion of alcohol s  are higher than any other l iquids. 

We also add to this group, water which containing -OH group and similar in 

the spreading behavior of Polythlenglycol and Glycelin .  
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O H  

[/ 
/ � r---' - O H 

O H  

Fig 2.5  Chemical  form ula of G lyceri n  

Fig 2 .6  Chemical form ula  of Polyth lenglycol 

/ 0  .......... 
H H 

Fig 2 . 7  Chemical form ula  of Water 

BasharJ a a 
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2. 1 .4 P d m a ry a mi d e  g ro u p  

Bashar.1 asa 

The characteri t ic tructural feature of an amide is an acyl group ( O=C - H R )  

bonded t o  a trival ent nitroben atom. Amide are named b y  dropping the uffix -oic  

acid from IUP C name of the parent acid, or  -ic acid from it common name, and 

adding -amide BrOlrn ( 199 -) . 

o H 
I I  

H - C - N - R  

Fig 2.8 Acyl grou p  

I f  the nitrogen atom o f  an amide i s  bonded to an alkyl or aryl group, the group 

named Br0lt '71 (1 995) l ike Formamid ( see Fig 2 .9 ), and its location on nitrogen i s  

indicated b y  N-. TIle a l k  1 o r  aryl groups o n  nitrogen are indi cated b y  N, -di l ike 

. ', .\'-dimeth.l'({ormQmide ( D E F )  fig 2 . 1 0  which was used here. 

Amides, the l east reactive of the function deri vative of carboxyl ic  acids. do 

not react with alcohol but it  dissolve in water Brol1'n (1 995) . 
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Fig 2.9 

Fig 2 . 1 0  

o 

/� 
H """"- � N H 2  

Chemical formu la o f  Formamid 

Chemica l  formula of N.N dimethyformanid 

Ba bar.J. asa 
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2 . 1 .5 M ea u rcment  of su rface ten ion "cr ' 

urface ten ion 1 often defin d as the force acting at right angles to any line 

of unit length on the l iquid surface or the work required to increa e the area of a 

urface i othermally and reversibl b unit amount. There are many techniques used 

to mea ure urface ten ion ba ed on the measure of the force required to work 

between ga l iquid interface. 

The technique u ed in this study is (du Nouy ring). The ring tensiometer 

method . In this method we mea ure the maximum force (the force per unit length of 

two circumference ) wi l l  measured as the ring pul ls  a tube of liquid ( two-sided) out  of 

the l iquid .  

The du ouy ring method for measuring surface tension mininze wettibi l ty 

effects at the conditions of the surface or interface. Since the adhesion of a l iquid to a 

metal ring i s  greater than the cohesion of the l iquid itself, the force required to detach 

a ring from the surface of a l iquid is directly rel ated to the size of the ring and the 

surface tension of the l iquid, with the addition of a correction factor to adj ust for 

l iquid sti l l  remaining on the ring. 

Some of the other techniques used to measure surface tension are osci l l ating 

jet ( dynamic) ,  h anging drop spinning drop, sessi l e  drop, capi l lary rise and maximum 

bubble  pressure. The key to du Nouy s new apparatus was the use of a torsion wire, 

which could be twisted to appl y  torque to a l ever arm, from which a ring of interest 

was suspended in contact with the l iquid .  In the original design du ouy proposed 

simply calibrating the i nstrument by measuring the force maximum pull of pure 

l iquids for which surface tension was known, making the technique useful but ti l l  

relative. 
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Thi method uti l ize the mteraction of a platinum ring with the urface being 

t d. The ring i ubmerged below the int rface and sub equently ral ed upwards. 

A the nng move upward it rai e a memscu of the liquid. Eventual ly this meniscus 

tear from th ring and return to i t ' s  original position. Prior to this event. the vol ume, 

and thu the force exelied, of the mem cus pa ses through a maximum value and 

begm to dimini h prior to the actual ly  tearing event . 

Although a l l  l iquids u ed are known urface tension values Reid et al ( 1 987 ) ,  

th  e val ue of surface tension were examined experimental ly .  Because this val ues 

can be effect by the conduction measurement Pel/ice,. et al (2001) . ( see Table 2 .4 ) .  

The Tor ion balance u ed in  th is  tudy produced by White elec .  inst COL TD shown 

in Fig 2 . 1 1 . Capacities 0 - 0 . 1 2  nlm (where 1 newton / meter = 1 000 dynes/cm), 0 - 1 

gram (graduated in 2mg increments) .  The instrument uses a 4cm circumference 

Platinum ( Du- uoy) Ring shown in Fig 2 . 1 1 . 
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Fig 2 . 1 1 Torsion balance a n d  the  Du-Nouy Plat inu m  Rings 

Bashar J a a  

L i quid Surface tens ion ( At 23°C )  

S i l icone oi l - l 00 

S i l icone o i l - l 000 

U ndecane 

Dodecane 

H exadecane 

Formamid 

N.N dimethyfonnan i d  

Pol yth l englycol 

G lycerene 

Water 

2 l .0 

2 l .0 

29 .0  

30 .0  

3 2 . 7  

4 7 . 5 

3 8 . 7  

4 7 . 5 

6 7 . 6 *  

7 2 . 2  

Table 2.4 Su rface Tension valu es for used l iqu ids (* Reid et al (1 987)) 
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2 . 1 .6 M ea u rement the Viscosity ' 11" 

8 ashar.J.  a a 

Vi co i ty re i tance to the intemal friction between molecules. Vi cosity can 

be measured by an in trument cal l ed a vi cometer. Viscosity i affected by the 

temperature. t higher temperatures the visco ity decreases, a the molecules take on 

more kineti energy al lowing them to move pa t each other faster. 

The popul ar method for measuring viscosity is based on the flow though a 

capi l lary tube. This can be dete1l11ined by using simple Ostwald viscometer. A fluid of 

p den ity i a l lowed to fal l  from high h I  in to h2 ( see figure 2 . 1 2 ) in a determined 

time. The time required for a l iquid to flow between the two marks is a function both 

of dynamic \'i cosity and density. The relationship between dynamic viscosity and 

den ity is cal l ed the kinematics viscosity and is defined as 

Kinematics viscosity = Dynamic Viscosity (2 . 1 ) 
Density 

An Oshvald viscometer I S  nonnally suppl ied with a viscometer constant, 

which can be used to calculate viscosity. The Viscosity values are sUlmnmized in 

Table 2 .5 .  
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Fig 2 . 12 S imple  Ostwald viscometer 

L iquid Dynam i c  viscosity 

S i l icone o i l  - 1 00 99 .5  

S i l icone o i l  - 1 000 999 . 8  

Undecane 1 . 1  

Dodecane 1 .4 

Hexadecane 3 . 2 

Formamid 3 . 3 

N . N  d imethyfonnan i d  2 . 2  

Polythlenglycol 6 2 . 7  

G lycerene 9 5 3 .9* 

Water 0 . 9  

B a  har.J . Sasa 

Table 2.5 Viscosity values for used l iq u ids  (*  Reid et al ( 1 98 7 ) )  
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2 . 1 olid ( Gla s, Pl\ l l\l  and P ) 

2 . 1 . 1  Gla 

hemical  composition & Phy ical  Properties 

Ba har. .! .  a a 

Dry i l icon, Soda-l ime ( i02 )  (or boro i l icate) (or fu ed i l ica) glas sl ides 

obtained from Menzel -Gla er Company Geschnitten, Germany. 

odal ime gla , commonly known as window glass, is generally the most 

commonly u ed ubstrate. Microscope sl ides are commonly made from this glass, 

ither u ing afloat gla s proces or a draw glass process. In the case of a float glass 

proce . the glass is cooled oyer a bath of molten tin, enriching its "float" side with tin 

o. ide. Both the float and draw glass fonning processes result  flat glass sheets that 

are mooth on a molecu l ar scale, requiring no further polishing. 

G lass Densityis 2 . 6  g/cm
3 

Glass is one of the materia ls  that is more able  to 

give up electrons when in contact with another material . It's more positive in  the 

triboelectric series) ReJ Tflebsite [J). 

Fig 2 . 1 3  Chemical  Compassion o f  Glass 

Soda-l ime glass contains about 1 3% sodium oxide. This component is highly 

solubl e  in  water, reacting to form sodium hydroxide this wi l l s  ga e glass the 

hydrophi l ic propriety. This reaction occurs in ambient air. The humidity in the air 

wi l l  generate a coating of sodium hydroxide, coating the surface of the glass. This 

Lnited Arab Emirates Universi ty 6 1  M. c. in Materials Sciences and Engineering 



The Role of the oltd ubstrate on the preadlUg K inetic' of a L iquid Droplet. Ba har.J. a, a 

layer may interfere with adhe lon to the gla surface and It i best removed by 

rin 109 in water. nother ffect of forming odium h droxide is its reaction with 

carbon dIOxide in air, leading to the formation of a \\lhite sodium carbonate powder on 

the gla urface, a1 0 r ferred to a "blooming." 

Cleaning process 

Cleaning gla s a very strict process, becau e glass can be pol luted very 

ea i ly, and catche the gIime or chemical from the air Berg (1 993), as shown in Fig 

2 . 1 3 . The efficiency of the method of the cleaning is tested by using SEM 

technique. Effective glas cleaning i achieved using the fol lowing procedure: 

1 .  Inunersion in Chromic Acid solution ( K�Cr207 H�S04 )  with high 

concentration . 

2 .  Allow to dry for and l eave i t  4-6 Hour's  

3 .  Rinse with Disti l led Water fol lowed by Acetone. 

4. All ow to dry by placing glass slide in a vacuum-oven for Yz hr at 90°C 

to evaporate the acetone. 

5 .  The slides are al lowed to cool under vacuum. 

6. The sliders are carefully transferred to the dissector, where they are 

stored for short time period until the t ime of use. Sl ides are used only 

for a single measurement. The cleanness of glass are tested using SEM 

as shown in Fig 2 . 1 5 . 
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Fig 2 . 1 4  Unclean Glass s urface (before clean ing) show the grime and the 

impurities. 
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Fig 2 . 1 5  S E M  image for clean glass show n o  partials in  the s urface and it's 

clean. 
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2.3 .2 Plo) lethyl methacrylate ( P M  lA)  

PMM 1 a\'ai l abl  c mmercial ly und r trade name l ike :  Lucite, Perspex or 

PIe igla . It ha use a object that mu t be c lear, transparent and tough. The physical 

and chemical prope11ie of PMMA is how in Table  2 . 6  

laterjals 

PMMA. 

Table 2.6 

State 

ol id 

Propel1ies 

Formula :  CsH 02 
Density: 1 . 1 88 (but i t ' s  l ess than half that of 

glass (approximately 2 . 6  g/cm3 )  

Molecular Weight: 1 00 . 1 1 7  

Water white, highly transparent, crystal l ike 

sol id  simi l ar to glass at  room temperature, and 

l ight weight . 

Physical properties for PMl\1A.  Ref Website [1} 

PMMA are polymer materials .  B asical l y  it i a long chain polymer made fi'om 

Methyl methacrylate ( MMA) CsHg02 which is l iquid at room temp ( Molecular 

weight : 1 00 . 1 1 7  and Density: 0.943, and free-radical addition polymerization, 

Polarity: Hygroscopic of hydrophi l ic  Ref TVebsite [l] . 

HO-�\ 
o 

Fig 2 . 1 6  C hemical compassion o f  Methyl-meth-acry late 
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Clean ing  proces 

Ba�har.J Sasa 

Commercial P MA sl ide are u ed . Sl ides are u ual ly  covered by adhesive 

heet of paper to protect it  from cra h or scratch as hown in  Fig 2 . 1 7 . 

The cleanl ine of PMMA i examined by using S E M .  The effective c leaning 

method i achieyed by fol lowing methods ee Fig 2 . 1 8 . 

To clean PMMA piece inuner e in Ethanol for 2 hours and rub the surface 

\\'ith a oft sponge to get rid of any gum layer (or the sides were rubbed gently with 

oft ponge in order to get rid of adhesi\'es l ayer) .  Subsequentl y, sl ides were linsed 

with water and immerse in Di H�O for at least five minutes. F inall y  sl ides were 

al lowed to dry in fresh air j ust before the start of Experiment . 

To ensure that no scarification has taken place during the cleaning process, 

SEM technique is used which proves that the surface is smooth and there is no 

rending or crevassing even in m icro scale.  
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Fig 2 . 1 7  U nclean pMJ.\IIA surface with adhesives layer 
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Fig 2 . 1 8  Clean Pl\'Il\1A su rface 
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2 .3.3 Polystyrene ( PS) 

Chemical compo ition & Physical Properties 

Ba haL l .  asa 

ynonym : tyrene pol ymer ; Styrene Resin, vinylbenzene polymer afcolene· 

atactic pol tyrene; average M .W .  250.000and P S .  Physical and chemical properties i s  

how in  table 2 . 7  

lateria ls  State 

PMMA Solid Fommla:  CgHg 

Density: 1 . 05 

Properties 

Molecular Weight : 1 04 . 1 5 1 2  

Melting Point :  240 °C 

Refractive Index : l . 59 

White powder. 

Table 2.7 P hysical property for PS.  Ref Website [1J 

Poly tyrene is an amorphous, thennopl astic polymer and white powder. Free 

radical growth pol ymer, styrene is easily polymerized by benzoyl peroxide, and the 

product polystyrene has a molecular weith in  the range of 1 to 3 mi l l ion ( that is, n= 1 0-

30.000) (benzoyl peroxide). 

benzoyl peroxide 
� 

o + 

Fig 2 . 1 9  Constituting polystyrene 

Cleaning p rocess 

A clean l ab sheet of Polystyrene ( Biddy Steri l in .  Lab Company, U K . )  is  used, this 

PS sheet has c leaned surface as the surface roughness and cleaness are tested by using 

the SEM of the surface as show in  Fig 2 .20. 
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Fig 2 .2 0  PS with clean su rface 

Ba har.J asa 
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2.3 Experimental etu p 

2 . 3 . 1 pread ing mea u rement Set u p  

The experimental etup 1 hown in Fig 2 .2 1 .  To conduct the experiment, the 

l iquid \\ a charged into a 5-11 1  yringe obtained from SGE International Company, 

u tral ia .  The )TInge \Va attached to a metal tand and suspended vertical ly  by 

mlcr manipulator on top of the ub trate surface slide. 

The micromanipulator i used to adjust the po ition of the needle tip of the 

)TInge carefully above the clean glass sl ide.  The tip of the syringe was positioned a 

fe\\ m icrometer from the surface of the glass to eliminate impact effect when the 

droplet wa released. The droplet volume wa elected to be 1 . 5 II I so that gravity 

effect i negligible Ca�abat (1 987). 

Also the head of the syringe should be a straight, circular type to minimize any 

remaining amount of dropl et vol ume on the syringe knife by capi l l ary force of l iquid. 

The syringe i s  c leaning thoroughly  with acetone and a l lowed to dry it  in  an 

oven. In addition, syringe is  flushed with the solvent of interest once or twice before 

measurements. At least ten measurements were taken with each liquid over the same 

sol id .  

The sol id substrate was placed on an optical stand within the  focus of  a eeD 

digital video camera (� inch eDD Digital produced by Jve TK-c 1 3 80 color video 

camera) requires a camera with a higher sensitivi ty or a camera that faci l itates field 

i ntegration Van Vliet et al(1 998) and Mullikin et a! (J 994) . A l Ox eyepiece 

magnification is p laced underneath a test surface slide. The camera was connected to 

a video recorder, which was in  tum connected to an image analysis system. 
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Th l ight ource I nng l ight fiber optic (model LG-R66. OL YMPU 

J P A ) .  using fiber optic l J ght reduces the heat produced normal light. Heat may 

aft! ct the urface ten ion of the l iquid and al so produce bl ulTed image. 

Al l  xperiment were canied out  under the fol lowing condittions : 

• I olated Chamber: to protect the whole sy tem from runway air which may 

be can)' fine and or du t ,  a closed hood from \Va bui ld  P lexi-glass to al low 

light to tran fer throughout a load to l ight press through it .  

• Temperature : around 24° C ± 2 °  C , lab temperature was contro l led using 

pl i t  unit  air condition with thennal en or (produced by SONYO Japan) 

• Hum i dity wa maintained at 47�o R H .  

Typical unage frame acquired b y  the image analysis system are displayed i n  

Fig. 2.22 below. The images were grabbed by the image analyzer from which the 

contact area \\'as digitized and measured as a function of time. 
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Micro m an ipu l ator 

I\t1 i cro S iri ng 

Ba�har. J . Sasa 

Drop let Im age Processing 

CCD 
digital 
camera 1 0 0 VCR 

Fig 2 . 2 1 shows the experimental setup. The  d istant between s l ide and 

camera a re fixed to keep the magnification of eyepiece, and the sou rce of light 

should be above the syringe 
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Fig. 2 .22 Sample of experimental measurement of the contact d roplet area 

for 1 000 cp Si l icone oi l  over Glass, for a) 5 sec, b) 30 sec, and c) 1 20 sec. The 

nu mber p re ent the contact a rea measurement in  mm2 
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2.3 . 1 . 1  ofh' are & a l ibration 

The magnification i calibrated u ing calibration ample to magni fication of 

the phot Image analy i tern of software (ana(rSIS 3 .0  Soft Imaging System 

GmbH Gennany March 1 999) 

Cal ibration method 

1 .  The tandard Calibration ample ( M icrometer) in placed on the l OX , 1 5X and 

_OX obj ective (as shown in  Fig 2.23 ) 

1 - Acquire the focused and enhanced image from the microscope 

2- Snap hot the image 

3 - From the image menu select Set Input 

-l- Cl ick on the X'{ Calibration tab & Insert the required Alagn�fication 

5- From L'nit define the calibration distance unit 

6- Select " ertical option for the calibration d istance to be defined 

7 - Insert the Calibration Length according to the selected distance as defined by the 

calibration sample. Then Sa e the Cal ibration by cl icking on SQ1le 

8- Add the new calibration to the Magnification table by cl icking A dd then press OK 

l Ox l 5X 20X 

Fig 2.23 Shows the :M agnification of three lenses. For all  experiments we used 

l OX objective for the pu rpose of wide spreading a rea. 
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The Role of the ol Jd ub trate on the preading Kinetic of a L iquid Droplet. 

2 .3 . 1 .2 Spherical Cap Approx imation 

B a .  har.J Sasa 

C ntact angle is obtained from the contact area by usmg the con-elation 

known a pherical ap approximation. Thi approach i ba ed on the measurement 

of the contact area of a l iquid droplet on a ol id surface instead of contact angle . 

Re ult how that mea urement of contact area can be converted to contact angle 

u mg pherical cap approximation. The data presented is  compared to the direct 

measurements of contact angle. 

To measure the angle from the area of circumference of droplet from the 

fol l  wing geometric relation: h = 2 RB 
2 

( 2 . 2 )  

where h. R,  8 are the height o f  a droplet, the radius o f  the contact area, the contact 

angle respectively. 

where V i the droplet vol ume 

Jr hR c = V 2 (2 . 3 )  

(2 .4 )  

\vhere A.  D are the contact area and the  d iameter of  the  contact area. 
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fhe Role of the olid ub trate on the preading Kmetic of a LIquid Droplet 

2.3. 1 .3 Side Image of d roplet 

Basbar.J .Sasa 

The et-up u ed t measure the contact area consi ts of digital camera type 

ikon - ] apan . But one of the di advantages is depending mainly on eye estimates . So 

we can not u e the value in our calculation later especial ly  when the value of angle 

comes mal l ( 8< 1 0°) and when \ e compare it with approximation data the data i 

c ming closer in  value with decreasing the angle.  

I t  is  difficult  to f01111 a atisfactory profile image of a sessile drop as its contact 

angle approaches zero (say, is less than 5 degrees) .  The algori thms themsel es have 

no inherent l imi tation in reaching zero if the image is satisfactory. 

Fig 2 .24 Contact  a n gle for 1 .5/lL of  for G lycerin over P M MA 
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The Role o f  the hd ub trate on the preadmg Kinetic of a L iquid Droplet. 

2.3. 1 .4 Contact angle meter 

Bashar J . Sa a 

The d iam t r of the ba ic  and the height can be find of the droplet by using the 

ide image. Then b u ing the pherical cap approximation ( h  = 12 R 8)  the data i s  

c 10  e to  the previou method . Example :  Glycerin over PMMA 

From photo : H= 0.86 nun, 

R = D 2 = ( 2 . 7 1 )  / 2 

8 = 1 . 26 Red = 72 . 720 

Fig 2 .2 5  

0. 86 mm 

Contact angle meter 

Fig 2 .2 6  Diameter of the  base and the  h eight of the  droplet 
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The Role of the ol id ub�trate on the preading Kinetic of a L iquid Droplet. BasharJ.Sa a 

o if  we compaIing between three technical data for the same l iquid / olid 

and aIDe c nduction ( ee tabl 2 .9) ,  the error percentage in measurement of the 

c ntact angle i around 2°10 which can be accepted . So we prefer to u e Spherical cap 

appro. imation, which j easier and more accurate. 

Methods 

S pheri cal cap Approximation 

S ide I mage droplet 

Contact angle meter 

Contact angle 

Tab le 2 .9 shows the different on values of contact angle for 1 .  5 ilL of 

GI) cerin over PMJVIA 
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The Role of the olid ubstrate on the pread ll1g Kinetic f a Liquid Droplet. 

Chapter 3 

Results 
& 

Discussion* 

Ba harJ.  asa 

*
Part of the result is publ ished by " Alteraifi and Sasa, " The role of Solid on the spreading 

kinetic of l iquid dropl et"' . In " Advance in fluid Mechanics:  Computational Method in  
Mult iphase F low r I' " .  (2003 ) ,  editor Mammol i  and Brebbia, WIT press, London. 
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The Role of the ol td ub .. trate on the preadmg K metlcs of a L iquid Droplet. Ba had asa 

3. 1 Evaporation 

Before the on et of pre enting re ult of the set of measurement is made, it i 

important to a cer1ain that dr plet o lume i con erved and evaporation 10 es are 

negl igible. 

3. 1 . 1  VoJume conservation 

For incompre ible fluid , the conservation of o lume for the duration of the 

experiment wa examined using the fol lowing Equation which is  based on spherical 

cap approximation:  ( 3 . 1 )  

\Vhere I is the i nit ial volume and V f i s  the final volume, substi tute Eq.  2 .2  in  3 . 1 

Sub titute Eq.  2 . 3  in  3 .2 

7l hR � = 7l hR� 
2 I 2 / 

( 2 . 2 )  

( 3 .2 )  

( 2 . 3 )  

( 3 .4 )  

( 3 . 3 )  

where Rf and Bf are the equi l ibrium contact radius and equi l ibrium contact 

angle, respectively. Figure 3 . 1  shows cosine of the contact angle, which is obtained 

using spherical cap approximation, plotted versus the cosine of (R) BIR\ which is 

measured experimentally. A straight l ine with slope of 1 demonstrates c learly that 

volume of the droplet for all l iquids was conserved at least for the duration of the 

experiment and that e aporation losses are indeed negligible. 
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The R Ie of the o h d  ubslrate o n  the preading Kmetlcs of a Liquid Droplet. 

0 .8 

0 6  
.......... 

�. en 0 u 
0 . 4  

0 2  o Glyc er in 
o Hexadecane  
X Si l i con  o i l  

o 
o 0 2  0 . 4  0 . 6  0 8  

Sa har J asa 

Fig. 3 . 1  Volume conservation law Eq.  (3. 1 )  for th ree Liqu ids 

(Glycerin, H ex adecane and Si l icon oi l )  
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The Role o f  the ohd ubslrate 00 the preadlllg KinetIcs of a LIquid Droplet 

3. 1 .2 Evaporation i neolioible 

Ba 'har.J Sa a 

For the high apor l iquid , the droplet wa al lowed to pread and evaporate 

completel • .  Thi to v rifY that measurements are taken when evaporation is not 

affecting the preading rate to be ure there i no 10 e in the weight. 

Fig 3 . 2  show that it  take about 800 econds for 1 . 5 flL water droplet to 

e\'aporati n completely. Where a equi l ibrium spreading i reached after 1 00 seconds. 

0 . 0 8  .� O 0 �--s 
� 

--O----<:l.� E 0 . 0 6  u '--
ro 
Q) \\ � 
<=:( 
0) � c: 0 . 0 4  

-0 
ro 
Q) \ � 
D.. � (f) 

0 . 0 2  b 
� 

0 
0 1 0 0 2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  8 0 0  

Ti m e  (s e c) 
Fig 3.2  the  spreading rate for 1 .5/lL of water droplet on glass  al lowed to 

evaporate completely in 800 seconds 
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The Role of tbe ohd ub trate on the preadlllg K r netic of a L IquId Droplet.  Ba bad . a a 

3.2 Gravity E ffect  

The importance f gravity relative to capi l l ary force was inspected usmg 

B nd number Extrand (1 993): 

Bo = pgR; ( 3 . 5 )  
(J 

\\ here g i the grayity acceleration. Ro i s  the radius of the spherical droplet 

before preading and p i the l iquid den i ty. Bond number is  found in the range 

between 0. 1 1 5 and 0.362 for the l iquid u ed in this study. S ince Bo < 1 ,  cap i l lary 

force \\'ere expected to dominate gravi ty. 

The gravity effect wa examined further by al lowing the l iquid drop to spread 

while the ubstrate is fl ipped up -side -down. Figure 3.3 shows the spreadi ng of 

Si 1 00 over Glass s l ide for two cases; spreading of l iquid above glass slide and 

preading of the same l iquid below glass s lide. The figure shows that measurement of 

the areas of spreading are simil ar in both case and within experimental error. 

Therefore. This experiment further val idated that gra i ty effect is indeed negl igible .  
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The Role of the ohd ubstrale on the preading K inetIc' of a L Iquid Droplet .  

1 

0 a b ove g l a s s  O . B  
0 b e l ow g l a s s  

" j-
E U _J 0 . 6  ro 
Q) '-

.::{ 
1Jl 
C 

TI 0 . 4  m 
Q) 
Q.. 

CD 

0 . 2  

Basbar.l. asa 

O �----�--�-----L----�----�--� 
o '1 0 0  2 0 0  3 0 0  

Ti m e  
4 0 0  5 0 0  6 0 0  

Fig 3.3 the spreading different of S il icon 1 00 above and below glass su rface 
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The Role of the oJid ub. trate on the preadlllg Kinetic of a LI quid Droplet. 

3.3 omplete p read ing  

• i l icon O i l  ( l OOcp and l OOOcp) 

8 a har.J . Sasa 

All l iquids tested xhibited spontaneou preading rate at the start of the 

proce then pa ed through a tran ition zone. After tran ition, the droplets either 

continued to pread at 100\'er rate ( i .e .  complete spreading) or ceased to spread ( i .e . ,  

incomplete preadi ng). PDM - 1 00 and PDMS- 1 000 are recognized to exhibit 

complete preading. Figure 3 .4 shows the kinet ic spreading of PDMS- l 000 over 

Gla s at 5 ec, l O see, 60 ec and 240 sec, respectively. 

Typical data repre enting PDMS spreading on three surfaces, namely soda

l ime gla s, P MMA, and PS i shown in Fig. 3 . 5  and Fig 3 .6 for P DM S- I OO for 

PDMS- l 000, re pective1y. 

It is  noted that the spreading rate of PDMS on the three surfaces beha es 

similarly, in what appears to be a power l aw tendency. The spreading behavior on 

soda-l ime glass is nearly identical to that on polystyrene surface. However, the 

spreading of the same l iquid on PMMA exhibits much lower rate within both regimes, 

i .e . ,  spontaneous and low rate. Noting that both P S  and PMMA are organic  surfaces 

does not expl ai n  the polarity of their behavior, yet the divergence is undeniable. 
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The Role of the ol id ubstrate on the preading K inet ic of a L iquid Droplet. Bashar.J .  asa 

Fig 304 Si 1 000 spreading over G lass after ( a )  5 sec, (b) 1 0sec , (c) 60 sec and 

(d)  240 sec  ( the sca le  is t m m )  

nited Arab Emirates Uni\  ersit) 88 M .  c .  in Material Sciences and Engineering 



The Role of the olid ubsLrate on the preading Kinetic' of a l iqUid Droplet 

0 . 4  

0 . :3 5  
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. 'j-
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m 
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-8- p tv1 tl,11 ,A, 
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BasharJ. a:a 
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Fig 3.5 Spreading kinetics of PDM S- l OO o n  soda-l ime glass, PM MA, and PS 
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Fig 3 . 6  Spreading kinetics o f  P D M S- I OOO o n  soda- l ime glass, PMl\1A, a n d  PS 
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In thi regard, it i W011hy to note everal theoret ical model (de Gennes, 

( 19  -), Tanner (1 979) Seare,. (1 994) describe the spreading of PDMS on soda-l ime 

gla s ub trate i in good agreement with the experimental measurements, These 

model which are d rived on ba i of different theoretical considerations, give rise to 

c losely imi lar result , in what appears to be power law relation. It has been shown 

that the e models are equivalent and converges to simi lar results for POMS spreading 

A/rera(fi el a/ (l003). 

Considering the most commonly referenced model , Tanner law, described the 

kinetic data as analyzed in terms of Tanner Equation, which is  based on 

hydrod)11amic considerations accounting for the surface tension a and the viscosity J.l 

of the l iquid, Tanner (1 979) and E(rolls.fi et a/ (1 998). Accordingly, the contact area 

A can be expressed as, 

A = et " ( 3 . 7 )  

\\'here C = kalJ.lRr, R r  i s  the equi l ibrium contact radius, and k i s  a non-dimensional 

parameter that has to be determined empirical ly. 

Tanner' s  exponents for the data of Fig. 3 . 5  and Fig 3 .6 are l isted in Table 3 . 1 .  

Accordingly. the behavior of POMS on glass and on PS  yields an exponent of 0.2, 

which is in agreement \\'ith Tanner's theory. However, identical droplets from the 

same l iquid a l lowed spreading on P M MA exhibit signifi cant departure from the nom1. 

An appreciation of this departure may be seen directly  from both curves in F ig 3 . 5  and 

3 .6 .  Identical POMS droplets produced a contact area of 0 . 1 1  cm2 within about 70 

seconds on either glass or polystyrene substrate. On P M MA substrate, the same 

contact area was reached in 600 seconds that is a tenfold delay, Tanner (19 79). 
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The Role of the ol id ubc,trate on the preadmg Kmeti . of a L iquid Droplet Bashar.1. �a 

Table 3 . 1 Il value  accord ing to Tanner Eq.  (3.7 ) fit, for both PD 1 

pread ing on th ree ol id ; glass P l\ l M A  and PS 

Sol i ds 

G l ass 0 . 20 

PS 0 .20 

PM M A  0 . 1 8  

lntui t i\'ely, one may be lead to bel ieve that the spreading behavior of PDMS 

on the three different substrates ought to correlate with the crit ical wetting energy of 

the olid as defined by Zisman (1 964) . Surpri ingly, comparing the three spread 

exponent (Table 3 . 1 )  with the corre ponding \'alues of the cri tical wetting energies 

(Table 3 .2 )  indicate that the de ired correlation does not exist. Soda-lime glass, 

which ' critical wetting energy, is about 70 dyn/cm functions in a manner similar to 

that of polyst)Tene. an organi c  glass whose critical wetting energy i s  about 32 

d)TI cm. In the meantime, polyrnethylmethacrylate. another organic  glass, whose 

critical wetting energy is 39dyn/cm, departs from both. 

Table 3.2 List  of su rface(s)  used and their critical surface tension for glass, 

P l\ 1l\ I A  and PS 

S urface S urface C ritical Energy (f (dyn/cm) 

G lass 55-78 

P M l \ 1A 39 

PS 33 

The above which display in no uncertain tenns that the sol id substrate plays a 

substantial role  in the spreading kinetics. An attempt to rational ize the Oligin of tlus 

effect wi l l  be presented after examination of the role  the solid substrate plays in the 
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The Role of the o l id  ub trate on the pread ing Kinetic of a Liquid Droplet. Bashar.l asa 

cn e of inc mplete preading. Th equi l ibri um contact area obtained for different 

l iquid 0\ er the tlue urface are ununarized in Table 3 .2 Af) 'el' (1 999). 

3.... I n complete p reading 

The l iquids u ed in thi tudy cal1 be categorized into three gTOupS: Alcohols 

group (glycerin. POI)1h lenglycol and water). a lkane group (hexadecane. dodecane 

and ndecan). and amid group ( fo1111amid and n.ndimeth)fo1111anid ) .  

3"". 1 A lcohol groups  

Alcohols group 's  l iquid howed maXimum spreading area on glass then 

P Th1A then PS .  In Fig 3 . 8 .  F ig  3 . 9  and Fig 3 . 1 0  show the spreading area yerses time 

in second for glycerin. Polythlenglycol and water, respectively. The spreading 

beha\ior of glycerin (as example to Alcohols groups) on soda-lime g lass. P MMA and 

P \\-as x amined. at equi l ibriw11 after 240 sec the spreading area are different which 

sho\',TI in Fig. 3 . 7. for example the spreading of Glycerin on g lass biggest area and 

P 1MA area is bigger than PS  spreading area. 

Fig 3 .7  p reading of G lycerin after 240 sec  over (a )  Glass, (b)  P M M A  and (c)  PS 

(The scale is 1 m m )  
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F ig 3.8 Spreading kinetics of glycerin on glass, Pl\1l\ I A, and PS. 
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Fig 3.9 Spreading kinetics of Polyth lenglycol on glass, Pl\1l\1A, and PS. 
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Fig 3 . 1 0  Spread ing kin etics o f  'Vater o n  glass, PMMA, a n d  PS. 
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If we c n ider gJ c nn a an example of alcohol group, the denved 

mparat iye paramet r are ho\,,'O in Table 3 . .  

Table 3.3 Contact areas (cm2 ), contact angles and 11 values for p reading of 

glycerin on gl ass, Pl\ l MA and PS 

olid Glass P MMA PS 

Contact 0.086 0.042 

Contact Angle, Eq. ( 1 . 2 )  1 6 . 5  70 .6 

Kinetic Exponent (n) 0. 1 4  0 .09 

0.032 

1 04 .5  

0. 1 2  

oting that glycerin i s  a relatively high surface energy l iquid, the axiom "like 

wet l ike" appears to rationalize equi l ibrial spreadi ng of glycerin on the same set of 

ol id ub trates qualitatively. The l argest equi l ibria l  spreading ( smal l est contact 

angle) wa noted to occur on glass, the least on PS and on PMMA it was intennediate. 

However, the kinetic behavior of glycerin on the three sol id substrates, does 

not fol low simple energy-based rational . Again, as the case of P DMS,  PMMA 

exhibited the lowest spreading rate as seen in Table  3 . 3 .  For a second time PMMA 

appears deviant as it causes further retardation to the spreading process. This may be 

related to the high polarity of the methacrylate moiety (particularly the carbonate 

group)  within the chemical structure of the materia l ,  a notion that cal l s  for futiher 

mquIry. 
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304.2 Alka ne <Tro u p  ( H exadecane, Dodecane and U ndeca n e ) 

lkane group' s  l iquid hO\\'ed ma " imum spreading area on P then PM 1A 

then gla s .  Fig 3 . 1 2 . Fig '" . 1 3  and Fig 3 . 1 4 how the spreading area verses time in 

e ond for Hexadecane. Dode ane and Undecan. respect ively. 

Fir t the preading kinetic of a low surface energ l iquid on the three solid 

ub trates \\'a examined . Hexadecane ( as exanlple to Alkanes group) has been 

elected for it  relatiyel) low swJace energ) l iq uid  (32 dyn/cm) and for its non-polar 

character. Fig 3 . l 1 sho,,' the spreading kinetic for Hexadecane over PS .  In addition. 

hexadecane is  kI10\\11 to exhibit incomplete spreading on soda-l ime glass. 

Fig 3. 1 1 H exadecane over PS (a )  after 5 sec ( b )  after 60 sec (The  scale is l mm )  
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Fig 3.1 2 Spreading Kinetics of H exadecane on PS, PMl\1A and glass. 
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T\\ attribute characteriz the preading proce : i ts rate and it equi l ibria 1 contact 

area. oting that a c nstant volume droplet ( l . 5 Il l )  was used in al l  e periments, the 

equil ibrial contact area ma be taken a a measure of wettabi l i ty. 

If  we con ider hexadecane a example of alkane group, the e ti rnates of the 

equil ibrial contact area and spreading exponent, drawn from Fig. 3 . 1 2  and from 

Tanner Equation for hexadecane are tabulated below. 

Table 3A Con tact a reas ( c m
2

), contact angles and Il values for s p reading of 

hexadecane on glass, Pl\ 1l\ 1A  and PS 

olid Glass PMMA PS 

Contact Area ( cny) 0.08 1 0 . 1 4 1  

Contact Angle, Eq .  ( 2 .2 )  23 .9  1 1 . 5 

Kinetic Exponent (n)  0. 1 0  0 . 1 3  

0.205 

6.5 

0. 1 8  

Right away the contributions of each of the solid substrates to the wetting 

process are unmistakable. Equal  droplets from the same l iquid a l lowed to spread 

under identical conditions on three different substrates produce distinctly different 

behaviors. 

Expectedly, the equi l ibrial contact angles (Table 3 .4)  may be qualitatively 

ranked in accordance with the cri tical wetting energy of each respective solid.  Glass 

cau ed hexadecane to assume the l east equi l ibrial spreading ( l argest contact angle). 

On the other end, PS  with the lowe t surface energy produces the l argest wetting 

(smallest contact angle) by hexadecane. PMMA produced intem1ediate effect . It is  

useful to bear in  mind that hexadecane is  a non-polar, low surface energy l iquid as is  

the case with polystyrene. Therefore, i t  is  reasonable  to introduce the i diom: "l ike 

wets l ike" to rational ize the equil ibrial wetting of hexadecane on the three solids. 
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Thi idiom i coined In analog v·/ith to the famou' rule "l ike dl olve l ike" In 

phy ical ch mi try. 

On the ther hand, the kinetic behavior characterized by Tanner' exponent in 

Table 3 .4 sugge t that he ' adecane spreads the fastest on PS (n = 0. 1 8 ) and the slowest 

on ada- l ime glas (n = 0. 1 0) .  P M MA caused intermediate effect (n = 0. 1 3 ) . Clearly, 

for the pr ent y tern, the higher the energy of the sol id substrate the lower the 

preading rate. 
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3A.3 Primary a m id e  ( Fo rmamid  & n.n d imethyform a n i d )  

BasharJ . a a 

Primar: amide gr up' l iquid howed maximum spreading area on glass then 

then P . F ig .., . 1 6  and Fig . 1 7  ho\\ the spreading area verses time in seconds 

for Fomlamid and n.ndimethyformanid, re pect ively. The spreading behavior of 

Formamid (a example to Primar) amide group) oyer Glass ShO\\l1 in Fig 3 . 1 5  after 5 

ec, 1 0  ec. 20 ec and 60 eC . re pecti\ 'ely. V/here it reaches equi l ibrium after 60. 

(�� I 
I 

Fig 3. 1 5  Form a m i d  over Glass ( a )  5 sec, ( b )  1 0  sec, ( c )  2 0  sec and (d )  60 sec 
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If we con ider Fonnamid a an e 'ample of Primary amide group, the derived 

comparati, parameter are hown in Table 3 .5 

Table 3.5 Contact areas ( cm2) and contact angles for spreading of Formamid  

on glass, P l\ 1l\ l A  and PS 

olid 

Contact Area (cm.!) 

Contact Angle, Eq.  ( 2 . 2 )  

Gla  

0.3 1 56 

3 .4 

PMMA PS 

0 .070 1 6  0.03 1 

32 .7  1 1 1 .6 

oting that Fonnamid is  a relatiYeiy high urface energy l iquid, the axiom 

"like wet l ike" appear to rational ize equil ibria l  spreading of Fonnamid on the same 

set of sol id  sub trates qual itatively. The largest equi l ibrial spreading ( smal lest contact 

angle) wa noted to occur on glass, the l east on PS and on PMMA it was intennediate. 
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3.5 Attempt to exp l a in  the ro le of o l i d  

par e e,idenc in the l iterature ugge t that the olid ub trate plays a ke_ 

role.  For example, it \va noted that PDM droplets exhibited spreading kinetics on 

oda l ime gla that i gro ly d ifferent from that on Teflon Ogare1' (1 974.). Also in 

Ho ffil1 an 
, 

experiment Ho/fillan (1 975) PDMS \,vas found to spread readi ly on the 

gla �urface. unl ike the two other l iquid : "Admix-760" and "Santicizer-405". To 

lure the e l iquid "to give a l arge tatic contact angle a desired" the glass surface wa 

altered by vigorous chemical and thermal treatment . These experimental evidences 

ugge t that ol ids indeed p lay an impOltant rol e  in the spreading k inetics of a l iquid.  

This role  is in fact desclibed in Young's equations in term of the sol id/liquid 

interfacial energy. It  rises from the molecular interaction between l iquids and sol ids. 

The contact angle h as been widely conceived as a them10dynamic quantity. 

Accordingly remained to be the main focus of most theoretical and experimental 

invest igations. The rate of change in the contact angle has been commonly used as the 

relevant parameter of spreading dynamics in spite of difficult ies associated with 

contact angle measurements that are wel l recognized in the l iterature A1armur(1983}, 

de Gennes(1985) and Berg (1 993). Considering that the velocity of the contact l ine i s  

the pertinent quantity i t  i s  therefore reasonable  to  regard the change in the contact 

area as the fl ux of the process. It is only recently that a rational l ink  has been made 

between the contact angle and the contact area using sphelical cap approximation de 

Gennes (1 985). 

The above observations are summed up in two themes Equi l ibrial spreading and 

kinetics :  

( 1 )  PDMS is a very low surface energy l iquid, which exceptional ly spreads 

continuously on almost a l l  sol ids and therefore exhibits what is cal l ed "complete" 
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'preading on al l  three oI id . Therefore di cu ion of difference due to the ubstrate 

bare no rele\'anc . 

H exadecane, a low urface energy l iquid, was noted to exhibit equi l ibrial 

wetting that i proportional to the criti cal wetting energy of the sol id ubstrate. 

Glycerin. a high- n rgy l iquid. was noted to exhibit equi l iblial wetting that is  

ill' er ely propoI1ionai to the wetting energy of the sol ids. The e observations are 

related t Young' equation. where 

cos e = (usv - usd / UL \' ( 3 .9 )  

Provided that Us\ is  somehow related t o  Zisman's  energy (the crit ical wett ing 

energy).  In a pragmatic sense, "Like wets l ike" seems to work. 

(_)  Spreading Kinetics: present models based on hydrodynamic  theory 

general l y  relate the dri\"ing tenn to the surface tension of the l iquid and the di sipative 

re i tance is attIibuted to viscous friction. which is  calculated assuming no-sl ip 

condition on the o l id .  The relevant parameter i s  the viscosity of the l iquid. Our 

results discus ed above assert the presence of additional d issipative mechanism, 

which must exist at the interface. We coin the tenn "interfacial  viscosity". This 

agrees with the view accepted by many interfacial researchers that the interface 

( interphase) is  a material at its own, whose properties are distinctly different from 

both phases. 
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Chapter 4 

C onclusions 

Ba. har.J a a 
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The compJex physIcal proce e ccuning \-\·hen a l iquid comes into contact 

with a ol id play an important rol e  in detem1ining the preading rate depending on 

the chemical  proce e' on urface. material ,  po ition on en erg l ine and interfacial 

ten ion between tv,'o or three pha e . 

et of preading experiment was de igned to examme the val idity of 

current models  of spreading kinetic . A number of l iquid having a wide range of 

urface ten ion and vi cosity were used on oda- lime glass, P MMA and P S .  The law 

ad\·anced by de Gennes (1 985) and by SeG1'er and Berg (1 994) are found to describe 

the preading behavior of si l icone o i l ,  but departed signifi cantly in the case of other 

l iquid . It uggested that the urface tension seemingly acts to retain the spherical 

geometry of the droplet surface) the difference between the solid-vapor and sol id

l iquid interfacial  energies, on the other hand. acts to extend the contact area in 

approach to its equil ibrial tate, be it  complete or incomplete. Viscous dissipation, 

expectedly, acts to retard the spreading rate noted in both cases, at the end of a regime 

of pontaneous spreading. 

The present invest igations provide experimental evidence that the solid 

substrate p lays a significant rol e  in the spreading k inetics of l iquids and in 

detennining equ i l ibrial contact angle.  The latter was found explicable  on the basis of 

the axiom "l ike wets l ike". Contributions of the sol id substrate to the spreading 

kinetics are attributed to specific sol id- l iquid interactions, of dissipative nature, which 

manifest itse lf  only at the interface. The tenn "interfacial viscosity" is  coined to 

account for this phenomenon. 

Future work is  to explore the concept of cri t ical surface energy to create a 

wide variety of surface polymers coating with known surface energy, which can be 

control led and correlated the crit ical surface energy with polymer structure. 
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