43,725 research outputs found

    Space-Time Kernel Density Estimation for Real-Time Interactive Visual Analytics

    Get PDF
    We present a GPU-based implementation of the Space-Time Kernel Density Estimation (STKDE) that provides massive speed up in analyzing spatial- temporal data. In our work we are able to achieve sub- second performance for data sizes transferable over the Internet in realistic time. We have integrated this into web-based visual interactive analytics tools for analyzing spatial-temporal data. The resulting inte- grated visual analytics (VA) system permits new anal- yses of spatial-temporal data from a variety of sources. Novel, interlinked interface elements permit efficient, meaningful analyses

    Web GIS in practice IX: a demonstration of geospatial visual analytics using Microsoft Live Labs Pivot technology and WHO mortality data

    Get PDF
    The goal of visual analytics is to facilitate the discourse between the user and the data by providing dynamic displays and versatile visual interaction opportunities with the data that can support analytical reasoning and the exploration of data from multiple user-customisable aspects. This paper introduces geospatial visual analytics, a specialised subtype of visual analytics, and provides pointers to a number of learning resources about the subject, as well as some examples of human health, surveillance, emergency management and epidemiology-related geospatial visual analytics applications and examples of free software tools that readers can experiment with, such as Google Public Data Explorer. The authors also present a practical demonstration of geospatial visual analytics using partial data for 35 countries from a publicly available World Health Organization (WHO) mortality dataset and Microsoft Live Labs Pivot technology, a free, general purpose visual analytics tool that offers a fresh way to visually browse and arrange massive amounts of data and images online and also supports geographic and temporal classifications of datasets featuring geospatial and temporal components. Interested readers can download a Zip archive (included with the manuscript as an additional file) containing all files, modules and library functions used to deploy the WHO mortality data Pivot collection described in this paper

    Itā€™s About Time: 4th International Workshop on Temporal Analyses of Learning Data

    Get PDF
    Interest in analyses that probe the temporal aspects of learning continues to grow. The study of common and consequential sequences of events (such as learners accessing resources, interacting with other learners and engaging in self-regulatory activities) and how these are associated with learning outcomes, as well as the ways in which knowledge and skills grow or evolve over time are both core areas of interest. Learning analytics datasets are replete with fine-grained temporal data: click streams; chat logs; document edit histories (e.g. wikis, etherpads); motion tracking (e.g. eye-tracking, Microsoft Kinect), and so on. However, the emerging area of temporal analysis presents both technical and theoretical challenges in appropriating suitable techniques and interpreting results in the context of learning. The learning analytics community offers a productive focal ground for exploring and furthering efforts to address these challenges as it is already positioned in the ā€œā€˜middle spaceā€™ where learning and analytic concerns meetā€ (Suthers & Verbert, 2013, p 1). This workshop, the fourth in a series on temporal analysis of learning, provides a focal point for analytics researchers to consider issues around and approaches to temporality in learning analytics

    When is a Network a Network? Multi-Order Graphical Model Selection in Pathways and Temporal Networks

    Full text link
    We introduce a framework for the modeling of sequential data capturing pathways of varying lengths observed in a network. Such data are important, e.g., when studying click streams in information networks, travel patterns in transportation systems, information cascades in social networks, biological pathways or time-stamped social interactions. While it is common to apply graph analytics and network analysis to such data, recent works have shown that temporal correlations can invalidate the results of such methods. This raises a fundamental question: when is a network abstraction of sequential data justified? Addressing this open question, we propose a framework which combines Markov chains of multiple, higher orders into a multi-layer graphical model that captures temporal correlations in pathways at multiple length scales simultaneously. We develop a model selection technique to infer the optimal number of layers of such a model and show that it outperforms previously used Markov order detection techniques. An application to eight real-world data sets on pathways and temporal networks shows that it allows to infer graphical models which capture both topological and temporal characteristics of such data. Our work highlights fallacies of network abstractions and provides a principled answer to the open question when they are justified. Generalizing network representations to multi-order graphical models, it opens perspectives for new data mining and knowledge discovery algorithms.Comment: 10 pages, 4 figures, 1 table, companion python package pathpy available on gitHu

    How context influences the segmentation of movement trajectories - an experimental approach for environmental and behavioral context

    Full text link
    In the digital information age where large amounts of movement data are generated daily through technological devices, such as mobile phones, GPS, and digital navigation aids, the exploration of moving point datasets for identifying movement patterns has become a research focus in GIScience (Dykes and Mountain 2003). Visual analytics (VA) tools, such as GeoVISTA Studio (Gahegan 2001), have been developed to explore large amounts of movement data based on the contention that VA combine computational methods with the outstanding human capabilities for pattern recognition, imagination, association, and reasoning (Andrienko et al. 2008). However, exploring, extracting and understanding the meaning encapsulated in movement data from a user perspective has become a major bottleneck, not only in GIScience, but in all areas of science where this kind of data is collected (Holyoak et al. 2008). Specifically the inherent complex and multidimensional nature of spatio-temporal data has not been sufficiently integrated into visual analytics tools. To ensure the inclusion of cognitive principles for the integration of space-time data, visual analytics has to consider how users conceptualize and understand movement data (Fabrikant et al. 2008). A review on cognitively motivated work exemplifies the urgent need to identify how humans make inferences and derive knowledge from movement data. In order to enhance visual analytics tools by integrating cognitive principles we have to first ask to what extent cognitive factors influence our understanding, reasoning, and analysis of movement pattern extraction. It is especially important to comprehend human knowledge construction and reasoning about spatial and temporal phenomena and processes. This paper proposes an experimental approach with human subject testing to evaluate the importance of contextual information in visual displays of movement patterns. This research question is part of a larger research project, with two main objectives, namely * getting a better understanding of how humans process spatio-temporal information * and empirically validating guidelines to improve the design of visual analytics tools to enhance visual data exploration
    • ā€¦
    corecore