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Abstract: Visual analytics is a research discipline that is based on acknowledging the power
and the necessity of the human vision, understanding, and reasoning in data analysis and
problem solving. Visual analytics develops methods, analytical workflows, and software
tools for analysing data of various types, particularly, spatio-temporal data, which can
describe the processes going on in the environment, society, and economy. We briefly
overview the achievements of the visual analytics research concerning spatio-temporal
data analysis and discuss the major open problems.
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1 Introduction

Whatever algorithms and technologies for computerized data processing appear, human
understanding and reasoning remains the principal and irreplaceable instrument of analy-
sis, modelling, and problem solving. Visual representation of information is acknowledged
as the most effective way of supplying information to the human’s mind and as a promoter
of ideation and analytical reasoning. Visual analytics is a research discipline developing
methods, analytical workflows, and software systems that can support unique capabilities
of humans by providing appropriate visual displays of relevant information and involving
as much as possible the capabilities of computers to store, process, analyse, and visualize
data [18].

Understanding of the processes going on in the environment, society, and economy is
crucial for the survival of the human civilization. All these are spatio-temporal phenomena;
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hence, there is a high demand for approaches to supporting humans in analysis of spatio-
temporal data [2]. Given the importance and complexity of such data, they have always
been one of the major focuses in the visual analytics research.

2 State of the art

Particularly, much research has been done in the last decade on analysis of movement data [1]
(i.e., sequences of spatial positions of moving entities), but substantial attention has also
been given to spatial events (i.e., entities positioned in space and time) and spatial time se-
ries (i.e., temporal variation of spatially distributed attribute values). Visual analytics re-
searchers proposed generalizable and reproducible analytical workflows involving data
selection and filtering, visualization of movement trajectories, aggregate flows, and spatio-
temporal distributions of events and attribute values, clustering based on the spatial, tem-
poral, and thematic components of the data, transformations between spatio-temporal data
types, and derivation of new data objects representing extracted pieces of task-relevant
information. For example, spatial event data can be generated as a result of interactive
detection of significant changes, anomalies, or critical circumstances in movement [4] or in
time series of spatial situations [5]. Conceptual models have been proposed to address the
diversity of spatio-temporal data and systematically consider the possible transformations
between data types [1].

Before performing any analysis, it is necessary to ensure that the data are of appro-
priate coverage and quality. While there exist quite elaborated tools for inspecting proper-
ties of tabular data (e.g., Trifacta data wrangling tools1), they are not yet addressing the
specifics of spatial and temporal data such as the time cycles, spatial and temporal auto-
correlation, smoothness of many phenomena in space and time, existence of geographic
borders and barriers, just to name a few. Researchers are developing recommendations on
how to deal with time series data [14, 15] and movement data [3], as well as other types
of spatio-temporal data [22]. These recommendations gradually find their ways to open-
source implementations [13].

One of the recent developments in visual analytics that may have potentially wide ap-
plicability and appreciable utility for spatio-temporal data analysis is a novel method of
time-based data querying and filtering called Time Mask [6]. Based on any kind of time-related
data, it selects all time intervals in which particular conditions of interest are fulfilled. Next,
from all currently available temporal data, it selects the portions where the temporal ref-
erences fit in the selected intervals. The Time Mask filter can serve as a tool for integrated
analysis of several time-related phenomena: analysts can select time intervals based on the
state of one of them and investigate how the other phenomena developed during these
intervals.

The idea and the work of the Time Mask query method is illustrated in Fig. 1. The
example dataset consists of events of taking photos of cherry blossoms that occurred on
the territory of the USA during 10 years from 2007 till 2016. The data (metadata of the
photos) was obtained from the Flickr photo sharing web service using its API. The whole
set of events is shown in a space-time cube in the upper part of Fig. 1. By means of density-
based clustering, large spatio-temporal clusters of the events were detected. These clusters
signify time periods of mass photo taking in particular areas. The central image in Fig. 1

1https://www.trifacta.com/
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Figure 1: Illustration of the spatio-temporal filtering by Time Mask. Top: All photo taking
events are shown in a space-time cube. Middle: A Time Mask query tool selects the 45 days
long time intervals before the start times of the large spatio-temporal clusters of the events
occurring in New York. Bottom: The space-time cube includes only the events satisfying
the query.
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demonstrates an interactive visual tool for making Time Mask queries. The user interface
(UI) shows the distribution of chosen datasets or subsets over time. In our example, the
upper part of the UI shows the time series of the daily counts of the individual events,
and the lower part shows the times and durations of the event clusters. In this visual
interface, the user first selected the time intervals when mass photo taking was happening
in New York. These intervals are highlighted by background painting in yellow. Then, the
user selected the 45-days long time intervals before the beginnings of the event clusters in
New York. These intervals are highlighted by background painting in blue. In response to
this query, the data (individual events and clusters) has been filtered. Only the data items
whose time references fit in the time intervals marked in blue have been selected. This
data are shown in the space-time cube at the bottom of Fig. 1. This example demonstrates
how a Time Mask query can select data from multiple disjoint time intervals, thus enabling
flexible data selection and sophisticated analysis workflows.

A notably large amount of visual analytics research was done on analysis of data
from social media [10, 12, 30, 33], in particular, geographically referenced data. Luo and
MacEachren [24] developed conceptual and methodological foundations for geo-social vi-
sual analytics. To support studies of people’s reactions to significant events, visualizations
and analytical workflows were proposed for integrated analysis of the temporal, spatial,
social, and thematic facets of the social media data [20,27–29]. There was also research on vi-
sualization and analysis of people’s movements and long-term mobility behaviors derived
from geo-tagged social media data [9, 31]. In this respect, attention was given to develop-
ment of privacy-preserving approaches to visual analysis [7]. The research on analysing
social media data contributes to better understanding of the society and people’s life.

Visual analytics research topics also include support to development of predictive mod-
els [23]. In relation to spatio-temporal phenomena, approaches have been proposed for
forecasting hotspots of an epidemic outbreak [25], modelling of road traffic flows under
usual and extraordinary conditions [8], prediction of crime incident distribution and deci-
sion support for resource allocation [26], to name a few. On the one hand, these approaches
enable human analysts to incorporate their domain knowledge and insights gained from
the analysis in the model development, on the other hand, they help analysts to use the
models for improving their understanding of the phenomena at hand, verifying their in-
sights and hypotheses, and developing appropriate decision options.

A strong current trend in visual analytics research is development of machine learning
models with understandable and explainable behavior (often called as “eXplainable AI”, or
xAI) [11]; however, modelling of spatio-temporal phenomena has not been addressed in
this research, yet [16].

It has become usual nowadays to study and predict the behavior of complex real-world
phenomena by means of computer simulation models. Since the latter are affected by con-
figuration parameters, they are usually executed multiple times with different parameter
settings to generate ensembles of simulated behaviors. Supporting scientists to explore
and comprehend ensemble simulation data is a prominent research topic in visual analyt-
ics [32]. It is important not only to portray complex behaviors but also help the analysts
to assess the uncertainties arising due to divergences between different predictions and to
investigate the variations of the uncertainty over space and time [17, 19].

To summarize the state of the art in space-time visual analytics, we would like to high-
light the following trends:
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• the advanced state of conceptualization of spatio-temporal data and emerging sys-
tematic approaches to data analysis;

• detailed consideration of data properties and semantic interpretation of data;
• active development of methods and tools for task-oriented data transformation and

analysis; and
• bridging the gaps between data exploration, analysis, and model building.

3 Open problems and possible approaches

Current research in visual analytics strives to address the challenges of big data. Apart from
developing technical solutions for enabling rapid visual representation of and fluid interac-
tion with large amounts of dynamically changing complex data, visual analytics must care
about the natural limitations in the human capability to comprehend information regard-
ing its amount, complexity, and rate of change. Moreover, since the human is not a passive
recipient of information but an important active force in analysis and problem solving, vi-
sual analytics must also care about the limited speed of human cognitive processes. The
involvement of the “human factor” makes the challenges of big data especially hard for
visual analytics. The key idea for addressing these challenges is effective division of labor
between the human and the computer. Thus, computational techniques can be utilized for
partitioning very large spatio-temporal datasets into internally homogeneous coherent por-
tions and extracting characteristic patterns from these portions, and analysts can employ
visual and interactive techniques to understand the patterns and their distribution over
space and time [21]. This approach, however, only deals with the problem of data volume
but does not address the problem of data dynamism.

In dealing with the latter problem, visual analytics researchers can build on the expe-
riences of successful application of visual analytics to model building. In the case of dy-
namically changing data, the basic approach is to create an initial model based on currently
available data, continuously monitor the model appropriateness to the newly arriving data,
and modify the model when it fails to accommodate the new data well enough. It may not
be feasible to involve a human expert each time when the model requires adaptation. How-
ever, an expert may anticipate how the data may change, based on the previous history of
the changes, and orchestrate suitable model adaptation mechanisms that can be activated
automatically when the prediction fulfills. This can be done for several possible courses of
data evolution. A specific task for visual analytics is to support the process of the expert’s
analytical reasoning based on the previous history of data changes and model adaptations.
While it may not be possible to develop a general solution, a multitude of application- and
task-oriented approaches to handling the problems of big data can be expected.

Another major challenge for visual analytics is achieving wide whilst appropriate and
effective utilization of visual analytics techniques and workflows by analysis practitioners.
A vast amount of research in visualization and visual analytics is concerned with devel-
opment of user-oriented tools and systems, personalization, automated identification of
users’ needs and intentions, as well as user guidance. However, it is not very likely that the
research prototypes developed along these directions will soon be converted into widely
accessible and highly reliable visual analytics software suitable for a large variety of appli-
cations and analysis tasks. Some commercially available systems are quite user-friendly,
but their analytical capabilities are very limited, especially with respect to spatio-temporal
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data. A practicable solution is proliferation of open-access libraries of combinable soft-
ware codes implementing various methods for data processing, analysis, modelling, and
visualization. This trend is now actively developing, being stimulated by the emergence
of the data science languages R and Python and the interactive web-based computational
notebook environments.

A large number and variety of notebooks with examples of application of different data
analysis and visualization methods have been published on the web by numerous people.
These notebooks can be relatively easily adapted to one’s individual needs. As a result,
analytical functionality becomes accessible to and usable by nearly everyone. This gener-
ally positive trend has its back side, however. The notebooks are often created or adapted
by people having quite little idea of how to choose appropriate visualization techniques
and design correct and effective visualizations of the data they deal with, and also have no
good understanding of why, when, and how visualizations need to be used in analysis and
what is their right place in analysis workflows. Some visualizations occurring in the pub-
licly accessible example notebooks may look impressive and convincing to non-specialists,
but, in fact, they may communicate spurious patterns in inadequate ways. Those who
view these visualizations and think of doing the same for their data and tasks often lack
knowledge that would enable critical assessment and understanding of the suitability of
the techniques. Other notebooks include only basic graphics having little analytical value,
whereas better ways exist for representing the relevant information. Furthermore, often
notebooks apply computational methods without checking pre-requisites (e.g., data prop-
erties and quality) and investigation if the parameter settings are suitable and results are
meaningful.

Besides insufficient visualization and data analysis literacy, there is a danger of uncrit-
ical trust in what is produced by computers and taking the outcome of a single run of an
analysis algorithm with default parameter settings, or with settings previously used by
someone else, as the final result. Naive analysts may not realise that a slight change in the
data or parameters can sometimes significantly change the result; therefore, they may not
bother to examine the reaction of the algorithm to such changes and to check results of sev-
eral runs for consistency. More experienced and critically-minded analysts, who usually
take the trouble to evaluate and compare what they get from computers, may tend to rely
solely on statistical measures rather than trying to gain better understanding with the help
of visualizations.

Hence, there is a strong need in disseminating the knowledge on how to create mean-
ingful visualizations and how to use them effectively in data analysis together with com-
puter operations. It is also necessary to spread the philosophy of visual analytics, where
the main principles are the primacy of human understanding and reasoning and awareness
of the weaknesses of computers, which cannot see, understand, and think, and thus need
to be led and controlled by humans.

This challenge can be addressed by creation of easily understandable, practitioner-
oriented textbooks and open online courses. Visual analytics researchers should not only
strive for advancing the research but also take the responsibility for transferring the op-
erational knowledge to practitioners and casual analysts. This is especially important for
achieving wider and better understanding of the environmental, economic, and societal
processes, their interrelations and effects.
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